23.03.2013 Views

Marine Ecological Risk Assessment for Kitimat ... - Northern Gateway

Marine Ecological Risk Assessment for Kitimat ... - Northern Gateway

Marine Ecological Risk Assessment for Kitimat ... - Northern Gateway

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Technical Data Report<br />

<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong><br />

Terminal Operations<br />

ENBRIDGE NORTHERN GATEWAY PROJECT<br />

Jacques Whit<strong>for</strong>d Limited<br />

Fredericton, New Brunswick<br />

Malcolm Stephenson, B.Sc., M.Sc., Ph.D.<br />

Annick St-Amand, B.Sc., M.Sc., Ph.D.<br />

Paul Mazzocco, B.Sc.<br />

Jean-Michel DeVink, B.Sc.F., Ph.D.<br />

2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Executive Summary<br />

Executive Summary<br />

This document is an ecological risk assessment <strong>for</strong> marine terminal operations <strong>for</strong> the Enbridge <strong>Northern</strong><br />

<strong>Gateway</strong> Project (Project), prepared in support of the Environmental and Socio-economic <strong>Assessment</strong><br />

(ESA) <strong>for</strong> the Project, Volume 6B and Volume 6C, Section 4.<br />

The Project involves the development and operation of a crude oil export pipeline, a condensate import<br />

pipeline, a tank terminal and a marine terminal located on the west side of <strong>Kitimat</strong> Arm near <strong>Kitimat</strong>,<br />

British Columbia. The marine terminal includes all marine-based facilities including two tanker berths <strong>for</strong><br />

loading oil tankers and unloading condensate tankers as well as one utility berth. The tank terminal<br />

comprises all land-based facilities, including 14 hydrocarbon storage tanks, each with a capacity of<br />

78,800 m 3 .<br />

For modelling specific effects on the marine environment and biological receptors (modelled species), an<br />

operational life of 50 years is assumed <strong>for</strong> the <strong>Kitimat</strong> Terminal.<br />

This <strong>Marine</strong> ERA evaluates the chemicals from the following sources:<br />

• volatile hydrocarbon and trace element emissions from tanks and valves<br />

• hydrocarbon and trace element emissions from marine engine operations while tankers are berthed<br />

• liquid effluent emissions from the <strong>Kitimat</strong> Terminal arising from normal operations and site-wide<br />

storm water runoff<br />

Study Area and Modelling Locations<br />

The highest level of chemical emissions from the <strong>Kitimat</strong> Terminal to the marine environment would be<br />

deposited in the area that includes <strong>Kitimat</strong> Arm extending north to <strong>Kitimat</strong> and approximately 5 km south<br />

of the marine terminal, Clio Bay and Emsley Cove.<br />

This area is further subdivided into five marine water compartments that are delineated using prominent<br />

geographical features and professional judgment. The concentrations of chemicals of potential concern<br />

(COPC) in the water and sediment of each model compartment are determined using a marine water<br />

quality model and a marine sediment quality model, respectively. Each model compartment is considered<br />

as a potential marine ecological resource location, where marine biota may be exposed to COPC in the<br />

environment: marine algae, benthic invertebrates, fish, sea birds, shore birds, marine mammals and<br />

semi-aquatic mammals living along the shoreline. <strong>Risk</strong>s marine biota from exposure to COPC are<br />

considered individually and collectively to determine whether there may be adverse environmental effects<br />

of the <strong>Kitimat</strong> Terminal operations on the marine environment.<br />

2010 Page i


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Executive Summary<br />

Modelled Cases<br />

Only the operations of the Kitmat Terminal are considered because emissions to the marine environment<br />

from construction and decommissioning do not involve the handling and storage of large quantities of<br />

liquid hydrocarbons. The following three cases are evaluated:<br />

• Base Case: existing conditions and industry in the region, prior to the construction and operation of<br />

the <strong>Kitimat</strong> Terminal.<br />

• Project Case: the <strong>Kitimat</strong> Terminal in isolation, to assess the potential environmental effects of the<br />

<strong>Kitimat</strong> Terminal alone.<br />

• Application Case: the combination of the Base and Project cases and is intended to assess the<br />

potential environmental effects of the <strong>Kitimat</strong> Terminal in combination with other past or existing<br />

sources in the PEAA.<br />

This <strong>Marine</strong> ERA does not attempt to provide a prediction of cumulative environmental effects arising<br />

from the construction, operation or decommissioning of other projects that may presently be in the<br />

planning stages, since the data required to evaluate such projects quantitatively are not available.<br />

Potential <strong>Kitimat</strong> Terminal COPC Emissions to the <strong>Marine</strong> Environment<br />

Two main release pathways <strong>for</strong> COPC are considered: atmospheric release and liquid effluent discharge.<br />

Loadings of COPC to the marine environment from atmospheric deposition are applied to each<br />

compartment of the marine water quality model. Loadings of COPC to the marine environment from<br />

liquid effluent discharge are applied to compartments of the marine water quality model that are adjacent<br />

to the marine terminal. Once in the marine environment, COPC are allowed to disperse throughout the<br />

PEAA, in response to the effects of tide, freshwater runoff and stratification due to salinity differences.<br />

The marine water quality model simulations extended over a three-year period, taking into consideration<br />

realistic tidal and runoff processes. The mean daily seawater concentrations in each model compartment,<br />

<strong>for</strong> each day of a standard year, are used as input to the marine sediment quality model to evaluate the<br />

potential <strong>for</strong> COPC to accumulate in sediment over a 50-year period. The marine sediment quality model<br />

considers two types of sediments: those associated with salt marshes and mudflats in the intertidal zone<br />

and those located in the sub-tidal zone. The potential accumulation of COPC in biota, such as rockweeds,<br />

marine invertebrates, and fish that might be consumed as food or prey by a modelled species (receptor) is<br />

considered at the end of the modelling period.<br />

Atmospheric Release<br />

Low levels of COPC release to the atmosphere will occur as a result of volatile hydrocarbon and trace<br />

element losses from tanks, valves, and emissions from tankers that are at berth. Concentrations of these<br />

substances in air and deposition rates to soil and the marine environment are conservatively estimated at<br />

selected locations within the PEAA.<br />

Page ii 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Executive Summary<br />

Liquid Effluent Discharge<br />

For COPC associated with liquid effluent discharge, the screening of chemicals was based upon chemical<br />

analyses of representative hydrocarbon samples, followed by an analysis taking into consideration the<br />

likely per<strong>for</strong>mance of oil-water separators, the relative solubility of various hydrocarbon fractions, and<br />

the potential <strong>for</strong> hydrocarbons to weather in the retention pond prior to being discharged.<br />

Exposure <strong>Assessment</strong><br />

The exposure assessment evaluates the extent to which a marine receptor will come into contact with<br />

COPC released from the <strong>Kitimat</strong> Terminal. This is based on their habitat preferences, diet, behaviour,<br />

body weight, and food and water ingestion rates, as well as the expected fate and transport of the<br />

individual COPC in the environment.<br />

In all model compartments, the potential risk of environmental effects is evaluated <strong>for</strong> the following<br />

aquatic and sediment community-level KI:<br />

• marine algae exposed to COPC in water<br />

• benthic invertebrates and fish exposed to COPC in sediment<br />

• fish and invertebrates exposed to COPC in water<br />

The following avian and mammalian species are assumed to be exposed to COPC in each model<br />

compartment:<br />

• Bald Eagle (Haliaeetus leucocephalus, a large, charismatic piscivorous bird that seizes prey from the<br />

water surface or may feed on carrion)<br />

• Marbled Murrelet (Brachyramphus marmoratus, a generalist seabird nesting in old-growth <strong>for</strong>est, but<br />

also living on the water surface and feeding on small fish and invertebrates). The Marbled Murrelet is<br />

a species at risk.<br />

• Spotted Sandpiper (Actitis macularia, a shorebird feeding on invertebrates on exposed mudflats and<br />

salt marsh sediments)<br />

• Surf Scoter (Melanitta perspicillata, a sea duck feeding on invertebrates in the intertidal zone)<br />

• coastal-dwelling mink (Mustala vison, a small piscivorous mammal feeding on fish and invertebrates<br />

in the intertidal zone)<br />

• harbour porpoise (Phocoena phocoena vomerina, a charismatic marine mammal living in the offshore<br />

area, and feeding on fish and invertebrates). The harbour porpoise is a species at risk.<br />

• Steller sea lion (Eumetopias jubatus, a large charismatic marine mammal feeding on fish and<br />

invertebrates in the intertidal and nearshore areas). The Steller sea lion is a species at risk.<br />

2010 Page iii


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Executive Summary<br />

Results of the <strong>Marine</strong> ERA<br />

The effect magnitudes <strong>for</strong> the water and sediment community-level receptors are generally rated as<br />

negligible or low <strong>for</strong> the Base, Project and Application cases. The only exceptions occurred in the Base<br />

Case, where benzo(b)fluoranthene (a polycyclic aromatic hydrocarbon) and the trace elements barium,<br />

manganese and zinc were found to be present in water at concentrations that could cause moderate effects<br />

on aquatic community receptors such as fish and plankton. However, these potential Base Case<br />

environmental effects are based on the:<br />

• maximum measured concentration of COPC in water<br />

• assumption that 100% of the measured concentration of each COPC is bioavailable<br />

In each case, the contribution of the Project Case to the overall Application Case is negligible. (i.e., below<br />

the level of detection)<br />

For avian and mammalian species, all calculated HQ values are below thresholds that indicate a potential<br />

risk of adverse effect <strong>for</strong> all modelled cases.<br />

Four species at risk are assessed: eulachon, Marbled Murrelet, Steller sea lion and harbour porpoise. It is<br />

concluded that the environmental effects of COPC released by the operations of the <strong>Kitimat</strong> Terminal<br />

over a 50-year period would not result in adverse effects on these receptors, evaluated as species at risk.<br />

The <strong>Marine</strong> ERA is based on measured data, to the extent practical, with conservative assumptions used<br />

in the exposure and hazard assessments. There<strong>for</strong>e, it is unlikely that the risk of adverse effects on the<br />

marine environment is underestimated.<br />

Page iv 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Table of Contents<br />

Table of Contents<br />

1 Introduction ...................................................................................................... 1-1<br />

1.1 Objectives ........................................................................................................... 1-1<br />

1.2 Organization of <strong>Marine</strong> ERA Technical Data Report .......................................... 1-1<br />

2 <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Framework .......................................................... 2-1<br />

2.1 <strong>Risk</strong> <strong>Assessment</strong> Framework ............................................................................. 2-1<br />

2.2 Problem Formulation .......................................................................................... 2-3<br />

2.2.1 Exposure <strong>Assessment</strong> ................................................................................... 2-3<br />

2.2.2 Hazard <strong>Assessment</strong>....................................................................................... 2-4<br />

2.2.3 <strong>Risk</strong> Characterization .................................................................................... 2-5<br />

2.2.4 Uncertainty and Conservatism in the <strong>Marine</strong> ERA ........................................ 2-5<br />

3 Problem Formulation ........................................................................................ 3-1<br />

3.1 Spatial Boundaries ............................................................................................. 3-1<br />

3.2 Modelled Cases .................................................................................................. 3-1<br />

3.3 Description of Project Effects <strong>Assessment</strong> Area ................................................ 3-3<br />

3.4 <strong>Risk</strong> <strong>Assessment</strong> and Measurement Endpoints in ERA ..................................... 3-5<br />

3.4.1 Derivation of Oral Toxicity Reference Values <strong>for</strong> Mammalian and<br />

Avian Receptors ............................................................................................ 3-6<br />

3.4.1.1 Uncertainty Factors ...................................................................... 3-7<br />

3.4.1.2 Body Mass Scaling Factors .......................................................... 3-9<br />

3.5 Chemical Identification <strong>for</strong> Liquid Effluent Emissions ......................................... 3-9<br />

3.6 Chemical Identification <strong>for</strong> Air Emissions ......................................................... 3-17<br />

3.7 Chemical Screening ......................................................................................... 3-18<br />

3.7.1 Nature of the Constituent ............................................................................. 3-18<br />

3.7.2 Baseline Water Concentration ..................................................................... 3-19<br />

3.7.3 Concentration in Liquid Hydrocarbons ........................................................ 3-19<br />

3.7.4 Biomagnification Potential of COPC ............................................................ 3-22<br />

3.8 Identification of <strong>Marine</strong> Receptors .................................................................... 3-22<br />

3.8.1 Community-Level Key <strong>Marine</strong> Receptors .................................................... 3-23<br />

3.8.2 Species at <strong>Risk</strong> ............................................................................................ 3-23<br />

3.8.3 Avian and Mammalian Key Indicators ......................................................... 3-26<br />

3.8.3.1 Coastal-dwelling Mink ................................................................ 3-26<br />

3.8.3.2 Harbour Porpoise ....................................................................... 3-27<br />

3.8.3.3 Steller Sea Lion .......................................................................... 3-28<br />

3.8.3.4 Bald Eagle .................................................................................. 3-29<br />

3.8.3.5 Marbled Murrelet ........................................................................ 3-30<br />

3.8.3.6 Spotted Sandpiper ..................................................................... 3-31<br />

3.8.3.7 Surf Scoter ................................................................................. 3-32<br />

3.9 Exposure Pathway Screening .......................................................................... 3-33<br />

4 Exposure <strong>Assessment</strong> ...................................................................................... 4-1<br />

4.1 Fate and Transport Modelling of COPC Exposure Point Concentrations ........... 4-1<br />

2010 Page v


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Table of Contents<br />

4.2 Exposure Point Concentrations and Uptake Factors .......................................... 4-6<br />

4.3 Calculation of Daily Dose <strong>for</strong> Mammalian and Avian KI ................................... 4-19<br />

4.4 Exposure Estimates <strong>for</strong> Community-Level Receptors ...................................... 4-19<br />

5 Hazard <strong>Assessment</strong> ......................................................................................... 5-1<br />

5.1 Derivation of Benchmarks <strong>for</strong> Water and Sediment Community-level<br />

<strong>Marine</strong> Receptors ............................................................................................... 5-1<br />

5.2 Derivation of Oral Reference Values <strong>for</strong> Mammalian and Avian <strong>Marine</strong><br />

Receptors ........................................................................................................... 5-3<br />

6 <strong>Risk</strong> Characterization ....................................................................................... 6-1<br />

6.1 Chemical Interactions ......................................................................................... 6-1<br />

6.2 Summary of Base Case Effect Magnitude and Hazard Quotients ...................... 6-2<br />

6.3 Summary of Project Case Effect Magnitude and Hazard Quotients ................... 6-9<br />

6.4 Summary of Application Case Effect Magnitude and Hazard Quotients .......... 6-15<br />

6.5 Species at <strong>Risk</strong> ................................................................................................. 6-17<br />

7 Certainty and Confidence ................................................................................. 7-1<br />

7.1 Selection of Chemicals of Potential Concern ..................................................... 7-1<br />

7.2 Selection of Receptors ....................................................................................... 7-1<br />

7.3 Environmental Fate and Transport Modelling .................................................... 7-2<br />

7.4 Resource-Specific Toxicity Data ........................................................................ 7-2<br />

7.5 Resource Exposure to COPC and HQ Calculations ........................................... 7-2<br />

7.6 Chemical Speciation and Bioavailability ............................................................. 7-3<br />

8 Summary of Environmental Effects .................................................................. 8-1<br />

9 References ...................................................................................................... 9-1<br />

9.1 Literature Cited ................................................................................................... 9-1<br />

9.2 Internet Sites ...................................................................................................... 9-4<br />

Appendix A <strong>Marine</strong> Water Quality Model .................................................... A-1<br />

Appendix B <strong>Marine</strong> Sediment Quality Model .............................................. B-1<br />

Appendix C Exposure Point Concentrations <strong>for</strong> COPC in<br />

Environmental Media ............................................................. C-1<br />

Appendix D Sediment Quality Triad Results <strong>for</strong> Baseline<br />

Environmental Conditions ...................................................... D-1<br />

Appendix E Chemical Composition of Liquid Hydrocarbon Samples .......... E-1<br />

Appendix F COPC Screening and Weathering ........................................... F-1<br />

Appendix G Characteristics of Modelled Species ...................................... G-1<br />

Appendix H Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota ..... H-1<br />

Appendix I <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference<br />

Values (TRV) and Effect Magnitude Benchmark Values ........... I-1<br />

Appendix J Estimated Hazard Indices and Hazard Quotients<br />

<strong>for</strong> Selected Species..................................................... J-1<br />

Page vi 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Table of Contents<br />

List of Tables<br />

Table 1–1 Organization of the <strong>Marine</strong> Environmental <strong>Risk</strong> <strong>Assessment</strong><br />

Technical Data Report ............................................................................ 1-2<br />

Table 3–1 Trace Elements and Organic Compounds Assessed in Diluted<br />

Bitumen, Synthetic Oil and Condensate ............................................... 3-10<br />

Table 3–2 Concentrations of Trace Elements and Organic Compounds with<br />

concentrations above 1 mg/kg in Liquid Hydrocarbons ........................ 3-20<br />

Table 3–3 COPC Modelled in the <strong>Risk</strong> <strong>Assessment</strong>.............................................. 3-21<br />

Table 3–4 Federal and Provincial Listed Species Potentially Present in the<br />

PEAA .................................................................................................... 3-24<br />

Table 3–5 <strong>Marine</strong> Receptors that are Species at <strong>Risk</strong> or Conservation<br />

Concern ................................................................................................ 3-25<br />

Table 3–6 Rationale <strong>for</strong> Exposure Pathways Evaluated <strong>for</strong> Avian and<br />

Mammalian Species ............................................................................. 3-35<br />

Table 4–1 Maximum Base Case Exposure Point Concentration of COPC .............. 4-7<br />

Table 4–2 Maximum Project Case Concentrations of COPC ................................ 4-11<br />

Table 4–3 Maximum Application Case Concentrations of COPC .......................... 4-15<br />

Table 5–1 <strong>Marine</strong> Water Effect Magnitude Benchmarks ......................................... 5-4<br />

Table 5–2 <strong>Marine</strong> Sediment Effect Magnitude Benchmarks .................................... 5-8<br />

Table 6–1 Summary of Base Case Effect Magnitude <strong>for</strong> Water and Sediment<br />

Community-level Receptors ................................................................... 6-2<br />

Table 6–2 Summary of Maximum Base Case Hazard Quotients <strong>for</strong> Avian and<br />

Mammalian Receptors ............................................................................ 6-5<br />

Table 6–3 Summary of Maximum Project Case Effect Magnitude <strong>for</strong> Water<br />

and Sediment Community-level Receptors ............................................ 6-9<br />

Table 6–4 Summary of Project Case Hazard Quotients <strong>for</strong> Avian and<br />

Mammalian Receptors .......................................................................... 6-11<br />

Table 6–5 Summary of Maximum Application Case Effects Magnitude <strong>for</strong><br />

Water and Sediment Community-level Receptors ................................ 6-15<br />

Table 6–6 Summary of Application Case Hazard Quotients <strong>for</strong> Avian and<br />

Mammalian Receptors .......................................................................... 6-19<br />

2010 Page vii


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Table of Contents<br />

List of Figures<br />

Figure 2–1 Conceptual Diagram of the <strong>Marine</strong> ERA Framework ............................... 2-2<br />

Figure 3–1 <strong>Marine</strong> Water Quality Model Compartments ........................................... 3-4<br />

Figure 3–2 Tiered Approach <strong>for</strong> the Application of Uncertainty Factors in ERA ........ 3-8<br />

Figure 3-3 Conceptual Exposure Model <strong>for</strong> <strong>Marine</strong> Key Indicators ......................... 3-34<br />

Figure 4–1 <strong>Marine</strong> Water Quality Model Conceptual Diagram (Stella <strong>for</strong>mat) ........... 4-3<br />

Figure 4–2 <strong>Marine</strong> Sediment Quality Model Conceptual Diagram (Stella <strong>for</strong>mat) ..... 4-5<br />

Figure 5–1 Conceptual Model of Environmental Effect Magnitude............................<br />

5-2<br />

Page viii 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Abbreviations<br />

Abbreviations<br />

ADD ........................................................................................................ average daily dose<br />

AF ............................................................................................................... absorption factor<br />

ATSDR ................................................ Agency <strong>for</strong> Toxic Substances and Disease Registry<br />

BC CDC .......................................................... British Columbia Conservation Data Centre<br />

BCMOE ............................................................ British Columbia Ministry of Environment<br />

BTEX ............................................................... benzene, toluene, ethylbenzene and xylene<br />

BW .................................................................................................................... body weight<br />

CAS number ................................................... Chemical Abstract Service Registry number<br />

CCME ................................................... Canadian Council of Ministers of the Environment<br />

CEA Act ............................................................... Canadian Environmental <strong>Assessment</strong> Act<br />

CEPA .................................................................... Canadian Environmental Protection Act<br />

CMS ................................................................................ Convention on Migratory Species<br />

COPC ................................................................................ chemical(s) of potential concern<br />

COSEWIC .............................. Committee on the Status of Endangered Wildlife in Canada<br />

CPCN ...................................................... Certificate of Public Convenience and Necessity<br />

CWS .................................................................................................. Canada-wide standard<br />

DFO ........................................................................................ Fisheries and Oceans Canada<br />

EC ........................................................................................................ Environment Canada<br />

EPC ......................................................................................... exposure point concentration<br />

ERA ............................................................................................. ecological risk assessment<br />

ESA ......................................................... Environmental and Socio-Economic <strong>Assessment</strong><br />

F1 (> C6-C10) ....................................................... CWS petroleum hydrocarbon fraction 1<br />

F2 (> C10-C16) ..................................................... CWS petroleum hydrocarbon fraction 2<br />

F3 (> C16-C32) ..................................................... CWS petroleum hydrocarbon fraction 3<br />

F4 (> C32-C50) ..................................................... CWS petroleum hydrocarbon fraction 4<br />

fsite ...................................................... The fraction of the total ingestion rate from the site<br />

HI ...................................................................................................................... hazard index<br />

HQ ................................................................................................................ hazard quotient<br />

ICE ................................................................................. interspecies correlation estimation<br />

IF ....................................................................................................................... intake factor<br />

IMMA .........................................................International <strong>Marine</strong> Mammal Association Inc.<br />

IR ..................................................................................................................... ingestion rate<br />

KOW ............... distribution coefficient <strong>for</strong> organic compounds between water and octanol<br />

KD .............................. distribution coefficient <strong>for</strong> substances between water and sediment<br />

KI ...................................................................................................................... key indicator<br />

LOAEL ........................................................................ lowest observed adverse effect level<br />

<strong>Marine</strong> ERA ....................................................................marine ecological risk assessment<br />

ND .................................................................................................................... Not detected<br />

NEB .................................................................................................. National Energy Board<br />

NOAEL ............................................................................ no observed adverse effect level<br />

2010 Page ix


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Abbreviations<br />

<strong>Northern</strong> <strong>Gateway</strong> ................................................ <strong>Northern</strong> <strong>Gateway</strong> Pipelines Partnership<br />

OC ................................................................................................................. organic carbon<br />

PAH .................................................................................. polycyclic aromatic hydrocarbon<br />

PCB ............................................................................................... polychlorinated biphenyl<br />

PEAA ................................................................................... project effects assessment area<br />

PHC ................................................................................................ petroleum hydrocarbons<br />

RIVM ............. The Netherlands National Institute <strong>for</strong> Public Health and the Environment<br />

SARA ....................................................................................................... Species At <strong>Risk</strong> Act<br />

SQG .......................................................................................... Sediment Quality Guideline<br />

TC ............................................................................................................. Transport Canada<br />

TDR ...................................................................................................... technical data report<br />

the Project .................................................................... Enbridge <strong>Northern</strong> <strong>Gateway</strong> Project<br />

TLM ...................................................................................................... Target Lipid Model<br />

TPH ........................................................................................ total petroleum hydrocarbons<br />

TRV ................................................................................................. toxicity reference value<br />

UCLM ........................................................................... upper confidence limit of the mean<br />

UF ............................................................................................................. uncertainty factor<br />

UP ..................................................................................................................... uptake factor<br />

U.S. EPA .................................................. United States Environmental Protection Agency<br />

VLCC .............................................................................................. very large crude carrier<br />

VOC ........................................................................................... volatile organic compound<br />

WHO ......................................................................................... World Health Organization<br />

WQG ............................................................................................. Water Quality Guideline<br />

Page x 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Glossary<br />

acute<br />

Glossary<br />

In toxicology, a toxicity test, exposure, or response to a chemical<br />

substance that is completed or manifest in a short period of time,<br />

usually less than 30 days.<br />

additive interaction In toxicology, chemicals that are structurally similar, have similar<br />

mechanisms of toxicity, and affect the same target tissue or organ in<br />

the body, may be assumed to have additive toxicity.<br />

aliphatic In relation to petroleum hydrocarbons, aliphatic hydrocarbons are<br />

those that do not contain aromatic rings; rather they are linear or<br />

branched molecules.<br />

allometric model A model scaling a physiological process or the toxicity of a chemical<br />

substance to the size or body weight of an animal.<br />

aromatic In relation to petroleum hydrocarbons, aromatic hydrocarbons are<br />

those that have a molecular structure characterized by the presence of<br />

one or more aromatic ring structures composed of six carbon atoms<br />

with double bonds, as in the case of benzene.<br />

avian Pertaining to or derived from birds.<br />

benchmark In ecological risk assessment, a target concentration to which<br />

predicted concentrations of chemical substances can be compared to<br />

determine whether of risks are assessed.<br />

benthivore Feeding on organisms found in or on the sediment surface.<br />

bioaccumulation A term used to describe the processes by which a chemical may be<br />

accumulated by organisms as a result of exposure to that chemical in<br />

water, sediment or soil.<br />

bioavailability The fraction of the total amount of a chemical in environmental media<br />

(i.e., water, sediment, soil or biological tissues ingested as food),<br />

which can be absorbed by an organism either directly from the media<br />

as a result of external exposure, or after being ingested.<br />

biomagnification The sequence of processes resulting in higher concentrations of<br />

chemical contaminant substances in organisms at higher levels in the<br />

food chain (at higher trophic levels).<br />

bioturbation The mixing of sediment by living organisms.<br />

Chemical Abstract Service<br />

registry number<br />

A numbers used to identify organic and inorganic substances such as<br />

organic compounds, polymers, trace elements, minerals and salts.<br />

Each substance is identified by a unique number.<br />

2010 Page xi


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Glossary<br />

chronic In toxicology, a toxicity test, exposure, or response to a chemical<br />

substance that is completed or manifest over a long period of time,<br />

usually more than 90 days, and commonly extending to one or more<br />

life spans.<br />

condensate A low-density mixture of hydrocarbon liquids that are present in raw<br />

natural gas produced from many natural gas or oil fields, or which<br />

condense out of the raw gas if the temperature is reduced below the<br />

hydrocarbon dew point temperature of the raw gas.<br />

diluted bitumen A hydrocarbon consisting of bitumen diluted with condensate in order<br />

to reduce its viscosity, rendering it suitable to be transported via a<br />

pipeline. In addition to condensate, other substances can be used as the<br />

diluent (e.g., naphtha and synthetic oil).<br />

ecosystem A spatially definable unit that includes all of the organisms in a given<br />

area, interacting with the physical environment, so that a flow of<br />

energy leads to clearly defined trophic structure, biological diversity,<br />

and material cycles (i.e., exchange of materials between living and<br />

nonliving parts) within the unit.<br />

endangered A species facing imminent extirpation or extinction.<br />

exposure point concentration A conservative estimate of the average concentration of a chemical<br />

substance in water, sediment, soil, or food (i.e., biological tissues) that<br />

an organism may be exposed to in the environment.<br />

fauna Animal species.<br />

flora Plant species.<br />

fugitive emission Emissions from a facility that are uncontrolled, or incompletely<br />

controlled, and which may be released from an area or from many<br />

small point sources, as opposed to stack emissions which are released<br />

from a single point source and are more readily amenable to control<br />

measures and monitoring.<br />

half-life The period of time required <strong>for</strong> the loss, degradation, or radioactive<br />

decay of a quantity of a substance to one-half the original quantity of<br />

that substance.<br />

hazard index An index derived by dividing the exposure point concentration in<br />

water, sediment, or soil by a benchmark value representing a safe<br />

concentration; or by dividing the average daily dose ingested by an<br />

animal by a toxicity reference value. Where a hazard index value is<br />

less than unity, it is concluded that there is not a high risk present.<br />

Page xii 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Glossary<br />

hazard quotient Where chemical substances have additive interactions, the hazard<br />

index values <strong>for</strong> two or more substances may be summed to estimate a<br />

hazard quotient <strong>for</strong> a class of substances having similar chemical<br />

structure, mode of toxic action, and target tissue or organ. Where a<br />

hazard quotient value is less than unity, it is concluded that there is not<br />

a high risk present.<br />

invertebrate Animals that are not vertebrates (i.e., lacking a vertebral column;<br />

animals that are not fish, amphibians, reptiles, birds or mammals).<br />

lowest observed adverse<br />

effect level<br />

The lowest concentration or dose of a chemical where specifically<br />

defined adverse effects have been observed in test organisms.<br />

measured baseline Measured concentrations of chemical substances in the project effects<br />

assessment area, used to estimate existing levels of risk to the marine<br />

environment.<br />

no observed adverse effect<br />

level<br />

The highest tested concentration or dose of a chemical that has been<br />

reported to have no adverse health effect on test organisms.<br />

order of magnitude The expression refers to a range of values that are roughly within a<br />

factor of ten (e.g., lying between 3 and 30, or 100 and 1,000).<br />

phylogenetic Related to the evolutionary history or line of decent of a particular<br />

species or higher taxonomic group.<br />

piscivore Feeding primarily on fish.<br />

sexual dimorphism Systematic difference in <strong>for</strong>m (e.g., colour, shape or size) between<br />

individuals of different sex within the same species.<br />

species at risk Species at risk include species that are listed under Schedule 1 of the<br />

Species at <strong>Risk</strong> Act (SARA) as extirpated, endangered or threatened<br />

and/or are red-listed by the British Columbia Conservation Data<br />

Centre (BC CDC). Although British Columbia does not have a standalone<br />

endangered species act, red-listed vertebrates may be legally<br />

designated as endangered or threatened under British Columbia’s<br />

Wildlife Act.<br />

species of conservation<br />

concern<br />

Species of conservation concern includes those listed species that are<br />

not currently under the protection of SARA (i.e., are listed as special<br />

concern in Schedule 1 of SARA; or listed in Schedule 2 or 3 of SARA)<br />

and/or blue-listed by the British Columbia Conservation Data Centre.<br />

sub-chronic In toxicology, a toxicity test, exposure, or response to a chemical<br />

substance that is intermediate between acute and chronic, usually<br />

between 30 and 90 days duration.<br />

sub-lethal Not sufficient to cause death.<br />

2010 Page xiii


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Glossary<br />

synthetic oil A hydrocarbon that is the result of processing or upgrading a heavy<br />

crude feedstock to obtain a hydrocarbon with more desirable<br />

characteristics.<br />

threatened A wildlife species that is likely to become an endangered species if<br />

nothing is done to reverse the factors leading to its extirpation or<br />

extinction.<br />

toxicity reference value In ecological risk assessment, the dose level <strong>for</strong> a specific chemical<br />

substance, selected to represent a threshold above which adverse<br />

environmental effects to the health of a given type of organism may be<br />

expected.<br />

trace element Defined in the context of the ecological risk assessment as being an<br />

element present in the liquid hydrocarbons at a concentration greater<br />

than 1 mg/kg, that is not of low inherent toxicity, or a major mineral<br />

<strong>for</strong>ming element.<br />

Page xiv 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 1: Introduction<br />

1 Introduction<br />

<strong>Northern</strong> <strong>Gateway</strong> Pipelines Partnership (<strong>Northern</strong> <strong>Gateway</strong>) proposes to construct and operate an export<br />

oil pipeline and an import condensate pipeline between Bruderheim, Alberta and the <strong>Kitimat</strong> Terminal, to<br />

be located near <strong>Kitimat</strong>, British Columbia. The <strong>Kitimat</strong> Terminal will comprise a tank terminal (tanks and<br />

the interconnect pipes between the tank terminal and the marine terminal) and a marine terminal<br />

(including docks, foundations, loading arms and terminal valves and piping). The marine infrastructure at<br />

tidewater will be constructed to accommodate loading and unloading of hydrocarbons into and out of<br />

berthed tankers.<br />

The general purpose of an ERA is to evaluate the potential that key species that include plants,<br />

invertebrates, fish, birds and mammals, may experience adverse effects as a result of exposure to<br />

chemical stressors related to a particular project or activity. For this <strong>Marine</strong> ERA, effects refer to<br />

toxicologically-induced changes in the health of marine species that might be exposed to chemicals of<br />

potential concern (COPC) released into the marine environment, up to 150 m seaward of the berths, and<br />

the and project effects assessment area (PEAA) as a result of Project related activities. The PEAA<br />

includes <strong>Kitimat</strong> Arm extending north to <strong>Kitimat</strong>, and extends approximately 5 km south of the marine<br />

terminal, into the northern end of Douglas Channel. The PEAA also includes nearby bays such as Clio<br />

Bay and Emsley Cove.<br />

1.1 Objectives<br />

The objectives of this <strong>Marine</strong> ERA Technical Data Report are to estimate:<br />

• COPC emissions to the PEAA from the routine operations of the <strong>Kitimat</strong> Terminal through liquid<br />

effluent discharge<br />

• COPC emissions to the PEAA from the routine operations of the <strong>Kitimat</strong> Terminal through<br />

atmospheric emissions (i.e., fugitive emissions from tanks and valves, and combustion emissions<br />

from tankers while moored at the marine terminal)<br />

• incremental COPC concentrations in the waters of the PEAA (i.e., <strong>Kitimat</strong> Arm and parts of Douglas<br />

Channel) resulting from routine liquid and air emissions of COPC from <strong>Kitimat</strong> Terminal<br />

• incremental COPC concentrations in the sediments of the PEAA resulting from incremental COPC<br />

concentrations in water at the end of an assumed 50-year period of <strong>Kitimat</strong> Terminal operations<br />

• risk to selected marine species inhabiting the PEAA <strong>for</strong> Base Case (present conditions), Project Case<br />

(the incremental risks imposed by a 50-year period of routine operations), of the <strong>Kitimat</strong> Terminal<br />

and Application Case (the sum of Base Case and Project Case)<br />

1.2 Organization of <strong>Marine</strong> ERA Technical Data Report<br />

This report is organized into the sections described in Table 1-1.<br />

2010 Page 1-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 1: Introduction<br />

Table 1–1 Organization of the <strong>Marine</strong> Environmental <strong>Risk</strong> <strong>Assessment</strong><br />

Technical Data Report<br />

Report Section Content<br />

Executive Summary A non-technical summary of key findings to assist the reader in quickly<br />

understanding the most important aspects of this <strong>Marine</strong> ERA.<br />

Section 1 – Introduction An introductory section that describes the role of the <strong>Marine</strong> ERA in the<br />

ESA process as it pertains to the Project. Also introduces various<br />

components included in this <strong>Marine</strong> ERA such as: model scenarios, spatial<br />

and temporal extent and effects rating criteria.<br />

Section 2 – <strong>Ecological</strong> <strong>Risk</strong><br />

A description of ERA methods.<br />

<strong>Assessment</strong> Framework<br />

Section 3 – Problem Formulation A description of various components related to problem <strong>for</strong>mulation.<br />

Includes a description of risk assessment endpoints, chemical screening<br />

and weathering, description of the spatial boundaries, identification of the<br />

modelled species (receptor) and description of a conceptual site model.<br />

Section 4 – Exposure <strong>Assessment</strong> An outline of the exposure assessment including models used <strong>for</strong> fate and<br />

transport of contaminants, exposure point concentrations, uptake and dose<br />

estimates <strong>for</strong> receptors.<br />

Section 5 – Hazard <strong>Assessment</strong> An outline of toxicity reference values used to assess the potential risk of<br />

the Project to the marine receptors.<br />

Section 6 – <strong>Risk</strong> Characterization A presentation of HQ calculation methodology and results <strong>for</strong> modelled<br />

species.<br />

Section 7 – Certainty and<br />

Confidence in the <strong>Marine</strong> ERA<br />

Section 8 – Summary of<br />

Environmental Effects<br />

A qualitative discussion of the implications of uncertainties and<br />

conservatism in the <strong>Marine</strong> ERA.<br />

A summary of the findings of the <strong>Marine</strong> ERA.<br />

Section 9 – References A list of references cited throughout the <strong>Marine</strong> ERA.<br />

Page 1-2 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 2: <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Framework<br />

2 <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Framework<br />

2.1 <strong>Risk</strong> <strong>Assessment</strong> Framework<br />

The primary focus of this <strong>Marine</strong> ERA is quantification<br />

of the potential risk of effects on the health of marine<br />

ecological receptors from the dispersion and deposition<br />

of COPC associated with site runoff and air emissions<br />

from the <strong>Kitimat</strong> Terminal during operations.<br />

This <strong>Marine</strong> ERA has been conducted according to<br />

accepted ERA methodologies and guidance published by<br />

regulatory agencies, including the Canadian Council of<br />

Ministers of Environment (CCME 1996, 1997) and the<br />

United States Environmental Protection Agency (U.S.<br />

EPA 1998).<br />

The <strong>Marine</strong> ERA follows a standard protocol that is<br />

composed of the following steps:<br />

• problem <strong>for</strong>mulation<br />

• exposure assessment<br />

• hazard assessment<br />

• risk characterization<br />

• discussion of certainty and confidence in the predictions<br />

• conclusions and recommendations<br />

Exposure<br />

Receptor<br />

Hazard<br />

The terminology and methodology of this framework follow that laid out by CCME (1996). The<br />

methodological framework of the <strong>Marine</strong> ERA and the chronology of the process steps are presented in<br />

Figure 2-1. The framework and methodology <strong>for</strong> the <strong>Marine</strong> ERA are described in the following subsections.<br />

2010 Page 2-1<br />

<strong>Risk</strong>


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 2: <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Framework<br />

2.2 Problem Formulation<br />

The problem <strong>for</strong>mulation stage is an in<strong>for</strong>mation gathering and interpretation stage that focuses the study<br />

on primary areas of concern <strong>for</strong> the Project. Problem <strong>for</strong>mulation defines the nature and scope of the work<br />

to be conducted, enables practical boundaries to be placed on the overall scope of work, and the <strong>Marine</strong><br />

ERA is directed at the key areas and issues of concern. The gathered data provide in<strong>for</strong>mation regarding<br />

the physical layout and characteristics of the <strong>Kitimat</strong> Terminal and PEAA, possible release points and<br />

mechanisms <strong>for</strong> COPC, potential marine receptors and any other specific areas or issues of concern to be<br />

addressed.<br />

The key tasks requiring evaluation within the problem <strong>for</strong>mulation step include:<br />

• characterization of the geographic areas where the ERA is being conducted<br />

• identification of COPC, and mechanisms of COPC release to the environment<br />

• identification of exposure media and pathways<br />

• identification and characterization of marine receptors<br />

The outcome of these tasks <strong>for</strong>ms the basis <strong>for</strong> the approach taken during the <strong>Marine</strong> ERA.<br />

2.2.1 Exposure <strong>Assessment</strong><br />

The purpose of the exposure assessment step is to evaluate data related to COPC, marine species and<br />

exposure pathways identified during the problem <strong>for</strong>mulation phase of the <strong>Marine</strong> ERA. Using sitespecific<br />

data and a series of conservative assumptions, the exposure assessment predicts the concentration<br />

of any COPC in the environmental media and the concentration or dose rate at which species are exposed<br />

to COPC via exposure scenarios and pathways identified in the problem <strong>for</strong>mulation. The rate of exposure<br />

to chemicals from various pathways (i.e., the dose rate) is usually expressed as the amount of chemical<br />

taken in, normalized <strong>for</strong> body weight (BW) and unit time (e.g., mg chemical/kg BW/day). In the case of a<br />

marine community-level receptor, the exposure is expressed as an exposure concentration in the<br />

environment (mg/L in water or mg/kg in sediment). The magnitude of exposure depends on the<br />

interactions of a number of parameters, including:<br />

• concentrations of COPC in various environmental media<br />

• physical-chemical characteristics of the COPC, which affect their environmental fate and transport<br />

and determine such factors as efficiency of absorption into the body and rate of metabolic breakdown<br />

or excretion<br />

• influence of site-specific environmental characteristics (e.g., geology, sediment type, topography,<br />

hydrology, and hydrogeology on a contaminant’s behaviour within environmental media)<br />

• physiological and behavioural characteristics of the species (e.g., food and water ingestion rates,<br />

sediment intake, and BW)<br />

2010 Page 2-3


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 2: <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Framework<br />

Exposure estimation in the <strong>Marine</strong> ERA was facilitated using integrated mass balance models that<br />

estimate the concentrations of COPC in water on a daily basis <strong>for</strong> a typical year, and in sediment on an<br />

annual basis <strong>for</strong> a period of up to 50 years. Concentrations of COPC in water within the PEAA arrive at a<br />

quasi-steady state within a period of weeks, given a stable release rate to the environment. Concentrations<br />

of COPC in sediment may take many years to reach a steady state, and are, there<strong>for</strong>e, evaluated at the end<br />

of an assumed 50-year period of continuous operation.<br />

Separate exposure assessments are conducted <strong>for</strong> Base Case, Project Case and Application Case, which<br />

are further discussed in Section 4.0. If data were lacking, such that exposures could not be evaluated in a<br />

quantitative manner, then exposures (and potential risks) are estimated and discussed qualitatively.<br />

The exposure assessments <strong>for</strong> the Base Case are based on actual measured concentrations of the COPC<br />

within environmental media and selected biota, where available. Exposure assessments <strong>for</strong> the Project and<br />

Application Case scenarios of the <strong>Marine</strong> ERA are based on predicted liquid effluent concentrations and<br />

air contaminant deposition rates of COPC from emissions. The exposure assessment uses point estimate<br />

values representative of reasonable maximum exposure: 95 th upper confidence limit of the mean<br />

(UCLM); or maximum COPC exposure concentrations. Bioavailability is an important factor that must be<br />

considered during the exposure assessment phase, although a conservative default assumption <strong>for</strong> most<br />

COPC is that they are fully bioavailable in all exposure media.<br />

2.2.2 Hazard <strong>Assessment</strong><br />

The purpose of the hazard assessment (or toxicity assessment) step is to select TRV (these are essentially<br />

exposure limits), <strong>for</strong> COPC. In this <strong>Marine</strong> ERA, two types of receptors are evaluated using different<br />

TRV. Community-level receptors (e.g., marine plants, invertebrates and fish) are evaluated by comparing<br />

predicted concentrations of COPC in water and sediment to effect magnitude benchmarks. Birds and<br />

mammals are assessed using individual-based intake models to assess the ingested dose and potential<br />

toxicity of COPC.<br />

The toxicity of a chemical depends on the amount of chemical taken into the body (the dose) and the<br />

duration of exposure (i.e., the length of time the receptor is exposed to the chemical). For each COPC,<br />

there is a specific dose and duration of exposure necessary to produce a toxic environmental effect in a<br />

given receptor (this is referred to as the dose-response relationship of a chemical). The toxicity of a<br />

chemical is dependent on:<br />

• inherent properties of the chemical to cause a biochemical or physiological response at the site of<br />

action<br />

• ability of the chemical to reach the site of action<br />

• unique sensitivities associated with the species being tested, its life-stage or interactions with other<br />

environmental of physiological conditions<br />

The dose-response principle is central to the ERA methodology <strong>for</strong> assessing risks to birds and mammals.<br />

Page 2-4 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 2: <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Framework<br />

2.2.3 <strong>Risk</strong> Characterization<br />

The risk characterization step integrates the exposure and hazard assessments to provide a conservative<br />

estimate of health risk <strong>for</strong> a marine species. Potential risks are characterized through a comparison of the<br />

estimated or predicted exposures from all pathways (from the exposure assessment) to the identified<br />

exposure limits (from the hazard assessment) <strong>for</strong> all COPC.<br />

Limitations associated with the administrative boundaries and uncertainties of the risk assessment, in<br />

addition to conservative assumptions used in the modelling, are identified and discussed to provide<br />

perspective on the certainty and confidence that should be placed the predictions.<br />

2.2.4 Uncertainty and Conservatism in the <strong>Marine</strong> ERA<br />

There are two broad categories of uncertainties: those associated with toxicological in<strong>for</strong>mation and those<br />

associated with modelling assumptions. The assumptions associated with this ERA are addressed in<br />

Section 7.0.<br />

Toxicological In<strong>for</strong>mation<br />

Toxicity data are rarely available <strong>for</strong> the individual marine species being modelled. There<strong>for</strong>e,<br />

extrapolations are generally required to transfer toxicological knowledge from test species to those<br />

species being assessed. Such transfers are accompanied by uncertainties that relate to the quantity and<br />

quality of the underlying toxicological knowledge, as well as the magnitude of the extrapolation (which<br />

can be visualized as being a function of the taxonomic distance between the modeled species and the<br />

species represented in the toxicological data).<br />

Modelling Assumptions<br />

Uncertainties in the risk assessment are addressed by incorporating conservative (i.e., likely to overstate<br />

risk) assumptions in the analysis. Where several conservative assumptions are involved in the same<br />

calculation, a high level of conservatism can result from the adding of the assumptions. As a result, risk<br />

assessments tend to overstate the actual risk with the result that conclusions are also conservative.<br />

Although many factors are considered in preparation of a risk assessment, the results are generally most<br />

sensitive to a few key assumptions. The uncertainty analysis is included in this report to demonstrate that<br />

the assumptions used are conservative, or that the result of the analysis is not sensitive to the key<br />

assumptions.<br />

2010 Page 2-5


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

3 Problem Formulation<br />

3.1 Spatial Boundaries<br />

The project effects assessment area (PEAA) is the marine environment that interacts directly and<br />

indirectly with the marine terminal infrastructure and 150 m seaward of the berths. The PEAA includes<br />

<strong>Kitimat</strong> Arm extending north to <strong>Kitimat</strong>, and extends approximately 5 km south of the marine terminal,<br />

into the northern end of Douglas Channel. The PEAA also includes nearby bays such as Clio Bay and<br />

Emsley Cove. <strong>Kitimat</strong> Arm is a deep narrow fjord with high coastal relief typical of the North Coast Fjord<br />

ecosection.<br />

For the purposes of marine water and sediment quality modelling, the PEAA is further subdivided into<br />

five marine water compartments (Figure 3-1):<br />

• <strong>Kitimat</strong> Arm 1 (K1)<br />

• <strong>Kitimat</strong> Arm 2 (K2)<br />

• Terminal (T)<br />

• Clio Bay (CB)<br />

• Emsley Point (EP)<br />

These compartments are delineated using prominent geographical features and professional judgment.<br />

The marine water quality model also included several other compartments located beyond the boundaries<br />

of the PEAA:<br />

• West Side Coste Island (CO)<br />

• Amos Passage (AP)<br />

• Kildala Arm (KA)<br />

• Nanakwa Shoal (NS)<br />

• Douglas Channel (DC)<br />

These compartments provide contextual in<strong>for</strong>mation and indicate how concentrations of COPC and risks<br />

to ecological receptors will decrease with increasing distance from the <strong>Kitimat</strong> Terminal.<br />

The concentrations of COPC in water and sediment in each model compartment are assessed in the<br />

marine water quality and marine sediment quality models (Section 4, Appendix A and Appendix B). Each<br />

compartment of the marine water quality model is considered as a potential location of a marine receptor.<br />

The models assume 50 years of operations.<br />

3.2 Modelled Cases<br />

To assess the potential environmental effects of the <strong>Kitimat</strong> Terminal, risk estimates are developed <strong>for</strong> the<br />

Base Case, Project Case and Application Case.<br />

2010 Page 3-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

Base Case<br />

This includes existing conditions and industry in the region to which the environmental effects of the<br />

<strong>Kitimat</strong> Terminal may add. Baseline concentrations of COPC in water, sediment and marine biota, as<br />

measured in sampling campaigns carried out in 2006 and 2008, are summarized in Appendix C. These<br />

data provide a pre-construction baseline against which the predicted changes from the Project can be<br />

compared. The potential environmental effects of baseline conditions on benthic invertebrate fauna are<br />

also evaluated using a sediment quality triad approach (Appendix D). The list of COPC selected <strong>for</strong><br />

baseline sampling was based on the previous experience of the study team with similar types of projects.<br />

When considered reasonable, sampled media were analyzed <strong>for</strong> trace elements, benzene, toluene,<br />

ethylbenzene and xylenes (BTEX), total petroleum hydrocarbon (TPH), polycyclic aromatic<br />

hydrocarbons (PAH), volatile organic compounds (VOC) and phenolics. Reasonableness was determined<br />

by a chemical’s:<br />

• relevance to the Project<br />

• potential presence in marine water, sediment, or biological tissues at concentrations that are likely to<br />

be detectable using routine laboratory analysis<br />

Samples were collected in 2006 and/or 2008 from three marine compartments (K1, K2 and T) and<br />

included water, sediment (nearshore and offshore) and biological tissues (rockweed, mussels, crabs and<br />

fish). In 2006, benthic invertebrate community samples were also collected at selected locations (see<br />

Appendix D). For compartments K1, K2 and T, the baseline values represent the maximum concentration<br />

of each chemical measured within each media type. The rationale <strong>for</strong> selecting the maximum value was<br />

that there are existing industrial sources of COPC located within or near K1, K2 and T and <strong>for</strong> the<br />

purposes of the <strong>Marine</strong> ERA, it is important that baseline conditions not be underestimated when the<br />

effects of the Project are added. For compartments CB and EP, which were not directly sampled, the<br />

baseline values represent the median of the measured values from nearby compartments. The rationale <strong>for</strong><br />

selecting the median as baseline <strong>for</strong> those compartments was that CB and EP are relatively remote from<br />

anthropogenic sources of COPC; there<strong>for</strong>e, the baseline conditions <strong>for</strong> these compartments should lie in<br />

the lower range of measured values where anthropogenic effects are evident, or should be well<br />

represented by the median value where no anthropogenic effects are present. The median value was,<br />

there<strong>for</strong>e, considered to be a reasonable yet conservative way to represent expected COPC concentrations<br />

in those areas.<br />

Project Case<br />

This predicts the incremental environmental effects on marine water and sediment quality and ecological<br />

risk to modelled species. The Project Case takes into consideration the COPC contained in the operational<br />

emissions of the <strong>Kitimat</strong> Terminal to air and water, and the fate and transport of COPC into the marine<br />

environment of <strong>Kitimat</strong> Arm and Douglas Channel.<br />

Application Case<br />

This predicts the combination of the Base and Project cases and the potential environmental effects of the<br />

<strong>Kitimat</strong> Terminal operations with other existing natural and anthropogenic conditions.<br />

Page 3-2 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

3.3 Description of Project Effects <strong>Assessment</strong> Area<br />

The <strong>Kitimat</strong> Terminal will be located near <strong>Kitimat</strong>, British Columbia, on the northwest side of <strong>Kitimat</strong><br />

Arm, just north of Bish Cove (Figure 3-1). The <strong>Kitimat</strong> Terminal consists of a 1,500 m stretch of uplands<br />

and shoreline on the northwest side of <strong>Kitimat</strong> Arm.<br />

The terrestrial environment is part of the Very Wet Maritime Coastal Western Hemlock biogeoclimatic<br />

subzone, characterized by cool mesothermal or maritime climate, with cool summers and relatively mild,<br />

wet winters. Western hemlock (Tsuga heterophylla), amabilis fir (Abies amabilis), western red cedar<br />

(Thuja plicata), Sitka spruce (Picea sitchensis) and yellow cedar (Chamaecyparis nootkatensis) dominate<br />

the terrestrial habitat of the marine terminal and tank terminal locations. Mature <strong>for</strong>est stands occur in the<br />

area of the <strong>Kitimat</strong> Terminal and in recently harvested areas (i.e., cutblocks) early seral vegetation<br />

communities (herbs, shrubs and regenerating trees) are supported.<br />

The marine environment is part of the Inner Pacific <strong>Marine</strong> Shelf ecoregion and is characterized by deep<br />

narrow fjords with high coastal relief. The tides in the region (including the Douglas Channel) are<br />

semidiurnal, with maximum tides of about 6.5 m and mean tides of about 3.3 m. The diversity of the<br />

intertidal community is limited by wide variations in environmental conditions such as salinity. The<br />

dominant macrophyte species on rocky intertidal shorelines are rockweed (Fucus and Enteromorpha<br />

spp.), with barnacles, mussels, periwinkles and limpets being the most common fauna. In sandy intertidal<br />

habitat, the invertebrate community includes clams, gammarid amphipods and polychaete worms.<br />

Isopods, gastropods, brachyurans and oligochaetes typically occur along steep and rocky shores of the<br />

<strong>Kitimat</strong> Arm. Species commonly found in the sub-tidal benthic community include sea urchins, moon<br />

snails, green sea anemones, sea stars, polychaetes and the Cali<strong>for</strong>nia sea cucumber. The soft-bottom<br />

estuaries are dominated by the marine vascular plant, eelgrass (Zostera marina). The muddy substrate<br />

typical of Upper <strong>Kitimat</strong> Arm is characteristic of most British Columbia northern fjords.<br />

2010 Page 3-3


100 m<br />

300 m<br />

100 m<br />

CONTRACTOR:<br />

100 m<br />

100 m<br />

100 m<br />

100 m<br />

200 m<br />

Maitland<br />

Island<br />

200 m<br />

100 m<br />

Jacques Whit<strong>for</strong>d AXYS Ltd.<br />

100 m<br />

100 m<br />

100 m<br />

300 m<br />

DC<br />

Loretta<br />

Island<br />

200 m<br />

100 m<br />

NS<br />

200 m<br />

200 m<br />

<strong>Kitimat</strong><br />

Terminal<br />

Emsley<br />

Cove<br />

CO<br />

EP<br />

Coste<br />

Island<br />

200 m<br />

200 m<br />

T<br />

AP<br />

K2<br />

CB<br />

E N B R I D G E N O R T H E R N G A T E W A Y P R O J E C T<br />

PREPARED BY: PREPARED FOR:<br />

SCALE:<br />

K1<br />

Clio<br />

Bay<br />

<strong>Kitimat</strong><br />

Gobeil<br />

Bay<br />

KA<br />

<strong>Marine</strong> Water Quality<br />

Model Compartments<br />

Kitamaat<br />

Village<br />

100 m<br />

Pipeline Route<br />

Security Fence<br />

Terrestrial PDA<br />

<strong>Marine</strong> PEAA<br />

Watershed Boundary<br />

Bathymetric Contour (100 m)<br />

Railway<br />

Road<br />

0 1 2 3 4 5<br />

FIGURE NUMBER:<br />

PROJECTION:<br />

UTM 9<br />

Kilometres<br />

JWA-1048334-1624<br />

Reference: Pipeline Route R<br />

3-1<br />

1:220,000<br />

NP<br />

DATE:<br />

AUTHOR: APPROVED BY:<br />

DATUM:<br />

20090911<br />

CM<br />

NAD 83<br />

R:\2009Fiscal\1048334_<strong>Northern</strong><strong>Gateway</strong>_ESA_2009


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

3.4 <strong>Risk</strong> <strong>Assessment</strong> and Measurement Endpoints in ERA<br />

<strong>Risk</strong> assessment endpoints are defined as “explicit expressions of the actual environmental value that is to<br />

be protected, operationally defined by an ecological entity and its attributes” (U.S. EPA 1998). Suter<br />

(1993) defined risk assessment endpoints as being explicit expressions of environmental values or<br />

characteristics to be protected at a site, reflecting societal and ecological values. In practice, risk<br />

assessment endpoints are usually broad statements articulating the overall goals of an ERA. For this<br />

<strong>Marine</strong> ERA, risk assessment endpoints are maintenance of:<br />

• rare or endangered species present in the PEAA, with species that are identified in federal or<br />

provincial endangered species legislation being protected at the individual level<br />

• marine plant, invertebrate and fish communities in the PEAA, such that their productivity and<br />

ecological function are not diminished<br />

• marine and semi-aquatic mammal populations in the PEAA, at levels similar to pre-development<br />

levels<br />

• piscivorous birds, shorebirds and seabird populations in the PEAA, at levels similar to<br />

pre-development levels<br />

The in<strong>for</strong>mation needed to deal directly with the risk assessment endpoints is often difficult to generate<br />

and rarely available. There<strong>for</strong>e, measurement endpoints are used to bridge the gap. Measurement<br />

endpoints are simpler and more clearly defined measurable responses to stressors, related to the risk<br />

assessment endpoints, and are intended to provide a basis <strong>for</strong> assessing the risk assessment endpoint.<br />

They may be defined in terms of an unacceptable level of effect to ecological receptors, such as a certain<br />

relative percent decrease in survival, growth or reproduction of ecological populations (Suter 1993). As<br />

part of a weight-of-evidence approach, one or more measurement endpoints may be used <strong>for</strong> each risk<br />

assessment endpoint. Measurement endpoints can also be used as a starting point in the development of<br />

follow-up or environmental effects monitoring programs. The following are the measurement endpoints:<br />

• For community-level marine receptors such as marine plants, invertebrates, and fish, concentrations<br />

of COPC in water and sediment after a modelled duration of 50 years <strong>for</strong> the <strong>Kitimat</strong> Terminal in<br />

combination with existing baseline conditions should not exceed levels that could chronically impair<br />

the survival, growth or reproduction of a sensitive species. Impairment is defined as a 20% reduction<br />

in per<strong>for</strong>mance relative to the expected (control) per<strong>for</strong>mance in a toxicity test. A sensitive species is<br />

defined as being the 5 th percentile species in a species sensitivity distribution. This criterion<br />

corresponds to effect magnitude descriptors of negligible to low. In cases where baseline conditions<br />

already exceed such a threshold, the incremental effects of the Project will be negligible in<br />

comparison with baseline conditions.<br />

• For mammalian and avian receptors, exposures to COPC arising from the environmental effects of the<br />

<strong>Kitimat</strong> Terminal, in conjunction with the baseline condition, should not exceed levels that result in<br />

HI or HQ values greater than unity. In cases where baseline conditions already exceed such a<br />

threshold, the incremental effects of the Project will be negligible in comparison with baseline<br />

conditions.<br />

2010 Page 3-5


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

• For species having special conservation status, HI and HQ values arising from the environmental<br />

effects of the <strong>Kitimat</strong> Terminal, in conjunction with baseline conditions, should not exceed a value of<br />

0.33. In cases where baseline conditions already exceed such a threshold, the incremental effects of<br />

the Project will be negligible in comparison with baseline conditions.<br />

The goal is to identify potential risks to receptors at the population level rather than at the individual<br />

level, with the notable exception of species protected under the federal or provincial legislation. <strong>Risk</strong><br />

assessment calculations focus on the intakes and exposure of a hypothetical individual that is maximally<br />

exposed to COPC within a defined geographic area. As a result of this conservative approach, not all<br />

members of a population will experience the same level of exposure, and hypothetical changes in<br />

individual health will not necessarily manifest themselves as changes in actual individual or population<br />

health.<br />

3.4.1 Derivation of Oral Toxicity Reference Values <strong>for</strong> Mammalian and Avian<br />

Receptors<br />

Hazard index and HQ values calculated <strong>for</strong> marine receptors depend directly upon the selection of the<br />

oral-based TRV. The toxicological database in support of a TRV preferably includes a number of chronic<br />

or multi-generational exposure studies involving exposure of relevant test species (i.e., the ecological<br />

receptor of interest or a phylogenetically similar species) to appropriate chemical <strong>for</strong>ms of the substance<br />

of interest. Ideally, one or more relevant biological endpoints such as growth, reproductive effects, or<br />

survival are measured in the study. Databases that meet this requirement are available <strong>for</strong> some<br />

chemicals, but in many cases available toxicity data are limited to studies conducted with a limited variety<br />

of laboratory animals.<br />

Toxicity Reference Values <strong>for</strong> this ERA are based on dose response studies, typically conducted with<br />

laboratory animals where the lowest observed adverse effects level (LOAEL) or no observed adverse<br />

effects level (NOAEL) has been quantified. TRV used in this risk assessment were determined from<br />

studies in which endpoints were derived from the administered dose, rather than the absorbed dose. This<br />

is a conservative approach because compounds are often administered in a more bioavailable <strong>for</strong>m than<br />

would be found in the environment<br />

The preferred toxicity measure used <strong>for</strong> derivation of TRV in this ERA is the LOAEL since this value<br />

corresponds to the onset of toxicologically induced responses in test animals. However, in the absence of<br />

a suitable LOAEL, more conservative NOAEL-based TRV can be used. Generally, LOAEL used towards<br />

TRV derivation are based on long-term growth or survival, or sub-lethal reproductive effects determined<br />

from chronic exposure studies. As such, these endpoints are relevant to the maintenance of wildlife<br />

populations. The LOAEL represents a threshold dose at which adverse outcomes are likely to become<br />

evident (Sample et al. 1996). This threshold is considered an appropriate endpoint <strong>for</strong> ERA since TRV are<br />

used as the denominator in the HQ calculation (see Section 7.6), and HQ values equal to or greater than<br />

one may be considered indicative of potential adverse environmental effects. Hazard quotients calculated<br />

with NOAEL-based TRV are more conservative since NOAEL refer to a threshold at which no relevant<br />

toxicological effects from COPC exposure are observed (see section 5.2 <strong>for</strong> additional details).<br />

Page 3-6 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

Numerous sources were reviewed to obtain the most relevant TRV <strong>for</strong> ecological receptors. Full details<br />

regarding TRVs can be found in Appendix I. All in<strong>for</strong>mation sources reviewed are provided and<br />

referenced can also be found in Appendix I. These include, but are not limited to:<br />

• Oak Ridge National Laboratory Toxicity Benchmarks <strong>for</strong> Wildlife (Sample et al. 1996)<br />

• U.S. Environmental Protection Agency <strong>Ecological</strong> Soil Screening (EcoSSL) documents<br />

• Agency <strong>for</strong> Toxic Substances and Disease Registry (ATSDR)<br />

• Canadian Environmental Protection Act (CEPA), Priority Substance List <strong>Assessment</strong> Reports<br />

• primary scientific literature<br />

3.4.1.1 Uncertainty Factors<br />

For COPC where LOAEL or NOAEL are not available, sub-chronic or acute toxicity measures such as<br />

median lethal dose (LD50) were obtained and modified using uncertainty factors (UF) to pro-rate these<br />

values to approximate chronic values. The UF scheme outlined here (see Figure 3-2) is based on guidance<br />

provided by Sample and Arenal (1999), U.S. EPA (2002a), Ohio EPA (2008) and professional judgment.<br />

In cases where a search of scientific data indicates a lack of chronic studies <strong>for</strong> a particular contaminant,<br />

UF may be applied to adjust toxicity data from shorter exposures to a chronic exposure basis. Acute<br />

studies are those that are of short duration, generally less than one week. Sub-chronic exposures are of<br />

longer duration (generally shorter than 90 days), but may be considered equivalent to a chronic study if a<br />

critical life stage (such as the gestational period) is included. Chronic exposures are generally longer than<br />

90 days, exceed 50% of the animal’s lifespan, or include a reproductive period. A UF of 3 (half an order<br />

of magnitude on a log scale) is used to adjust data from sub-chronic to chronic exposure, and 10 (an order<br />

of magnitude on a log scale) to adjust data from acute to chronic. It should be noted that preference is<br />

given to longer duration exposure assessments in cases where published data are available, and acute data<br />

are relied on only when necessary.<br />

In cases where a search of scientific data indicates the absence of reproductive or other biological<br />

per<strong>for</strong>mance-based toxicity endpoints that indicate potential <strong>for</strong> adverse environmental effects at the<br />

population level, other less sensitive toxicity endpoints may be considered. Where only a lethal dose<br />

(LD50) is available, a UF of 10 is used to estimate a LOAEL from LD50 data. Again, it should be noted<br />

that preference is always given to sub-lethal data, and lethal data are relied on only when necessary.<br />

NOAEL values are not adjusted upward to estimate LOAEL values. Where the only chronic endpoint<br />

available is a NOAEL, it is used directly and reported as such in the discussion of uncertainties. Hazard<br />

quotient values based on the NOAEL may be permitted to slightly exceed a value of 1.0 since the<br />

NOAEL is not an endpoint that signifies toxicological effects.<br />

2010 Page 3-7


Figure 3–2 Tiered Approach <strong>for</strong> the Application of Uncertainty Factors in<br />

ERA<br />

NOTES:<br />

* A NOAEL can be used if no appropriate LOAEL is available but the resultant reference dose should be<br />

considered more conservative than if it was derived using the LOAEL. Refer to document text <strong>for</strong> details.<br />

** No inter-class UF is used to derive TRV (i.e., mammalian data are not used as the basis to derive avian TRV)<br />

*** An UF of 3 is not required if the reference dose <strong>for</strong> an endangered species is based on a NOAEL.


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

In ERA, the focus is normally to provide protection <strong>for</strong> wildlife at the population level. This is in contrast<br />

to human toxicology and human health risk assessment, where protection of individuals is of paramount<br />

concern. An exception, which has regulatory <strong>for</strong>ce through federal legislation such as the Species at <strong>Risk</strong><br />

Act (SARA) and equivalent legislation in most provinces, occurs when species that are <strong>for</strong>mally protected<br />

are evaluated. To provide protection to the Species at <strong>Risk</strong>, TRVs are based on the NOAEL, or on the<br />

LOAEL with a UF of 3 applied. This value is based on professional judgment and is expected to be<br />

protective yet realistic. These two approaches are considered equivalent and are intended to protect<br />

endangered wildlife receptors from levels of COPC that would cause adverse effects at the individual<br />

level.<br />

3.4.1.2 Body Mass Scaling Factors<br />

Aside from the use of UF, a number of other methods have been used to extrapolate toxicity data between<br />

species with different body masses. The application of acute-based extrapolation factors to estimate a<br />

dose that would be protective of the 5 th percentile species in a species sensitivity distribution from data<br />

representing only a few species (e.g., Luttik et al. 2005), interspecies correlation estimation (ICE) models<br />

(Raimondo et al. 2007) and allometric scaling (Travis and White 1988; Chappell 1992; Mineau et al.<br />

1996; Sample and Arenal 1999) have all been used in ERA. Each of these methods has advantages and<br />

disadvantages, and none is ideal <strong>for</strong> extrapolating toxicity data between laboratory and wildlife species.<br />

Ultimately, the choice in method <strong>for</strong> use in ERA comes to scientific defensibility, practicality and<br />

professional judgment. An allometric scaling factor was used whereby the body mass raised to the<br />

exponent of 0.75 <strong>for</strong> both mammalian and avian receptors in ERA, rather than scaling from a large<br />

receptor animal to a smaller receptor animal. The allometric scaling factor should hold true in either<br />

direction, however, to maintain conservatism in the ERA, TRV are not scaled from a large test animal to a<br />

much smaller receptor animal, which could potentially inflate the TRV.<br />

3.5 Chemical Identification <strong>for</strong> Liquid Effluent Emissions<br />

A variety of liquid hydrocarbons are to be handled at the <strong>Kitimat</strong> Terminal including diluted bitumen,<br />

synthetic oil and condensate. Representative samples of each hydrocarbon were provided by <strong>Northern</strong><br />

<strong>Gateway</strong> and these were considered as the sources of COPC. The hydrocarbon samples were analyzed by<br />

the Research and Productivity Council laboratory in Fredericton, New Brunswick, using the following<br />

analytical packages:<br />

• trace elements<br />

• petroleum hydrocarbons<br />

• polycyclic aromatic hydrocarbons (PAH)<br />

• pentachlorophenol and phenol<br />

• volatile organic compounds (VOC)<br />

See Table 3-1 <strong>for</strong> a full list of trace elements and organic compounds assessed in the diluted bitumen,<br />

synthetic oil and condensate. For data reports from the laboratory per<strong>for</strong>ming the analysis of the<br />

hydrocarbons, see Appendix E.<br />

2010 Page 3-9


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

Table 3–1 Trace Elements and Organic Compounds Assessed in Diluted Bitumen, Synthetic Oil and<br />

Condensate<br />

Trace Elements<br />

Analytes CAS Number<br />

Concentration<br />

(mg/kg)<br />

Diluted Bitumen a Synthetic Oil Condensate<br />

Aluminum 7429-90-5 0.55 ND (< 0.2) 0.6<br />

Antimony 7440-36-0 ND (< 0.02) ND (< 0.02) ND (< 0.02)<br />

Arsenic 7440-38-2 ND (< 0.2) ND (< 0.2) ND (< 0.2)<br />

Barium 7440-39-3 0.2 ND (< 0.2) 1.0<br />

Beryllium 7440-41-7 ND (< 0.02) ND (< 0.02) ND (< 0.02)<br />

Bismuth 7440-69-9 ND (< 0.02) ND (< 0.02) ND (< 0.02)<br />

Boron 7440-42-8 0.3 ND (< 0.2) ND (< 0.2)<br />

Cadmium 7440-43-9 0.0055 ND (< 0.002) ND (< 0.002)<br />

Calcium 7440-70-2 20 ND (< 10) ND (< 10)<br />

Chromium 7440-47-3 0.2 ND (< 0.2) ND (< 0.2)<br />

Cobalt 7440-48-4 0.185 ND (< 0.02) ND (< 0.02)<br />

Copper 7440-50-8 0.25 ND (< 0.2) ND (< 0.2)<br />

Iron 7439-89-6 ND (< 4) ND (< 4) ND (< 4)<br />

Lead 7439-92-1 ND (< 0.02) ND (< 0.02) ND (< 0.02)<br />

Lithium 7439-93-2 ND (< 0.02) ND (< 0.02) ND (< 0.02)<br />

Magnesium 7439-95-4 ND (< 2) ND (< 2) ND (< 2)<br />

Manganese 7439-96-5 0.25 ND (< 0.2) ND (< 0.2)<br />

Mercury 7439-97-6 ND (< 0.005) ND (< 0.005) ND (< 0.005)<br />

Molybdenum 7439-98-7 5.84 ND (< 0.02) 0.06<br />

Nickel 7440-02-0 43.05 ND (< 0.2) 0.6<br />

Potassium 7440-09-7 ND (< 4) ND (< 4) ND (< 4)<br />

Rubidium 7440-17-7 ND (< 0.02) ND (< 0.02) ND (< 0.02)<br />

Page 3-10 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

Table 3–1 Trace Elements and Organic Compounds Assessed in Diluted Bitumen, Synthetic Oil and<br />

Condensate (cont’d)<br />

Analytes CAS Number<br />

Concentration<br />

(mg/kg)<br />

Diluted Bitumen a Synthetic Oil Condensate<br />

Selenium 7782-49-2 ND (< 0.2) ND (< 0.2) ND (< 0.2)<br />

Silver 7440-22-4 ND (< 0.02) ND (< 0.02) ND (< 0.02)<br />

Sodium 7440-23-5 20 ND (< 10) ND (< 10)<br />

Strontium 7440-24-6 0.4 ND (< 0.2) ND (< 0.2)<br />

Tellurium 13494-80-9 ND (< 0.02) ND (< 0.02) ND (< 0.02)<br />

Thallium 7440-28-0 ND (< 0.02) ND (< 0.02) ND (< 0.02)<br />

Tin 7440-31-5 1.48 0.4 0.9<br />

Uranium 7440-61-1 ND (< 0.02) ND (< 0.02) ND (< 0.02)<br />

Vanadium 7440-62-2 118.5 ND (< 0.2) 1.2<br />

Zinc 7440-66-6 ND (< 0.2) ND (< 0.2) 0.3<br />

BTEX<br />

Benzene 71-43-2 280 1,100 13,100<br />

Toluene 108-88-3 990 3,300 25,300<br />

Ethylbenzene 100-41-4 360 1,200 2,900<br />

Xylenes 1330-20-7 1,500 4,200 21,000<br />

TPH – Aliphatics b<br />

C1-C5 c NA NS NS 286,000<br />

>C6-C8 NA 25,700 59,700 359,000<br />

>C8-C10 NA 14,900 39,000 61,200<br />

>C10-C12 NA 26,400 52,800 21,800<br />

>C12-C16 NA 76,500 111,000 24,700<br />

>C16-C21 NA 119,000 100,000 18,800<br />

>C21-C32 NA 186,000 117,000 21,400<br />

2010 Page 3-11


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

Table 3–1 Trace Elements and Organic Compounds Assessed in Diluted Bitumen, Synthetic Oil and<br />

Condensate (cont’d)<br />

TPH – Aromatics b<br />

Analytes CAS Number<br />

Concentration<br />

(mg/kg)<br />

Diluted Bitumen a Synthetic Oil Condensate<br />

>C8-C10 d NA 2,200 5,800 11,900<br />

>C10-C12 NA 880 14,600 6,600<br />

>C12-C16 NA 4,400 27,200 7,800<br />

>C16-C21 NA 12,100 58,900 7,000<br />

>C21-C32 NA 30,100 158,000 11,900<br />

PAH<br />

1-Methylnaphthalene 90-12-0 6.6 99 190<br />

2-Methylnaphthalene 91-57-6 4.2 79 110<br />

Acenaphthene 83-32-9 ND (< 10) ND (< 10) ND (< 10)<br />

Acenaphthylene 208-96-8 ND (< 5.0) ND (< 5.0) ND (< 5.0)<br />

Anthracene 120-12-7 ND (< 5.0) 15 ND (< 5.0)<br />

Benzo(a)anthracene 56-55-3 7.9 ND (< 5.0) ND (< 5.0)<br />

Benzo(b)fluoranthene 205-99-2 ND (< 5.0) ND (< 5.0) ND (< 5.0)<br />

Benzo(k)fluoranthene 207-08-9 ND (< 5.0) ND (< 5.0) ND (< 5.0)<br />

Benzo(ghi)perylene 191-24-2 ND (< 10) ND (< 10) ND (< 10)<br />

Benzo(a)pyrene 50-32-8 ND (< 10) ND (< 10) ND (< 10)<br />

Benzo(e)pyrene 192-97-2 ND (< 5.0) ND (< 5.0) ND (< 5.0)<br />

Chrysene/Triphenylene 218-01-9/ 217-59-4 ND (< 10) ND (< 10) ND (< 10)<br />

Dibenzo(a,h)anthracene 53-70-3 ND (< 5.0) ND (< 5.0) ND (< 5.0)<br />

Fluoranthene 206-44-0 ND (< 10) ND (< 10) ND (< 10)<br />

Fluorene 86-73-7 ND (< 5.0) 14 15<br />

Indeno(123-cd)pyrene 193-39-5 ND (< 5.0) ND (< 5.0) ND (< 5.0)<br />

Page 3-12 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

Table 3–1 Trace Elements and Organic Compounds Assessed in Diluted Bitumen, Synthetic Oil and<br />

Condensate (cont’d)<br />

Analytes CAS Number<br />

Concentration<br />

(mg/kg)<br />

Diluted Bitumen a Synthetic Oil Condensate<br />

Naphthalene 91-20-3 ND (< 5.0) 85 86<br />

Phenanthrene 85-01-8 5.3 12 25<br />

Pyrene 129-00-0 6.1 30 ND (< 5.0)<br />

Acid Extractables (Phenolic Compounds)<br />

2,4-Dimethylphenol 105-67-9 1.0 ND (< 1.0) ND (< 1.0)<br />

2,4-Dinitrophenol 51-28-5 1.8 ND (< 1.0) ND (< 1.0)<br />

4,6-Dinitro-o-cresol 534-52-1 ND (< 1.0) ND (< 1.0) ND (< 1.0)<br />

4-Nitrophenol 100-02-7 ND (< 0.8) ND (< 0.8) ND (< 0.8)<br />

m-Cresol 108-39-4 ND (< 1.0) ND (< 1.0) ND (< 1.0)<br />

o-Cresol 95-48-7 ND (< 1.0) ND (< 1.0) ND (< 1.0)<br />

p-Cresol 106-44-5 ND (< 1.0) ND (< 1.0) ND (< 1.0)<br />

Pentachlorophenol 87-86-5 ND (< 0.2) ND (< 0.2) ND (< 0.2)<br />

Phenol 108-95-2 ND (< 1.0) ND (< 1.0) 2.4<br />

Volatile Organic Compounds<br />

Dichlorodifluoromethane 75-71-8 ND (


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

Table 3–1 Trace Elements and Organic Compounds Assessed in Diluted Bitumen, Synthetic Oil and<br />

Condensate (cont’d)<br />

Analytes CAS Number<br />

Concentration<br />

(mg/kg)<br />

Diluted Bitumen a Synthetic Oil Condensate<br />

Methylene Chloride 75-09-2 ND (


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

Table 3–1 Trace Elements and Organic Compounds Assessed in Diluted Bitumen, Synthetic Oil and<br />

Condensate (cont’d)<br />

Analytes CAS Number<br />

Concentration<br />

(mg/kg)<br />

Diluted Bitumen a Synthetic Oil Condensate<br />

1,3,5-Trimethylbenzene 108-67-8 200 430 1,800<br />

1,2,4-Trichlorobenzene 120-82-1 610 1,600 3,400<br />

1,1,2,2-Tetrachloroethane 79-34-5 ND (


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

Containment berms and other engineered measures will be used to control surface water runoff within the<br />

tank lot. The collected runoff in the containment reservoir will be pumped to the reservoir <strong>for</strong> firefighting.<br />

This water will be tested in-line on a continuous basis to confirm that it has a hydrocarbon content not<br />

greater than 15 parts per million (ppm) oil in water and is suitable <strong>for</strong> release to the environment. The<br />

excess water in the reservoir <strong>for</strong> firefighting will be piped to the marine <strong>for</strong>eshore area. This water will<br />

also be tested in-line to confirm that it has hydrocarbon content not greater than 15 ppm oil in water and is<br />

suitable <strong>for</strong> release to the environment by a discharge pipe located away from the immediate berthing<br />

area. Tankers will be boomed be<strong>for</strong>e loading of oil, and any, oily water thus recovered from berth areas<br />

would be collected and treated be<strong>for</strong>e being sent to the surface water runoff reservoir.<br />

To assess the potential release of COPC from the sub-tidal per<strong>for</strong>ated pipe, a composite hydrocarbon was<br />

developed to represent the combination of the three reference hydrocarbons, as they would report to the<br />

containment reservoir. This composite hydrocarbon is representative of the source of COPC to which<br />

marine receptors might be exposed. The composite hydrocarbon composition was developed using the<br />

concentrations of individual substances found in the reference hydrocarbon samples analyzed (see<br />

Appendix E), as well as the annual throughput capacity of both the oil and the condensate pipelines (i.e.,<br />

the estimated relative contributions of each hydrocarbon to the composite, assuming each hydrocarbon<br />

has a probability of being released that is proportional to the volume handled). For the full details<br />

regarding this procedure, see Appendix F.<br />

As liquid hydrocarbons are entrained with the surface water runoff to the containment reservoir, much of<br />

the hydrocarbon will be recovered. However, the hydrocarbon will also undergo fractionation or<br />

weathering processes (i.e., dissolution and degradation). Together, these weathering processes will<br />

modify the physical and chemical properties of the liquid hydrocarbons, and this will potentially affect<br />

their behaviour, fate and effects in the environment (Sterling et al. 2003). Liquid hydrocarbons are<br />

complex mixtures with components typically demonstrating a wide range of properties. Solubility is an<br />

important parameter when considering the environmental behaviour of these components as dissolution of<br />

a hydrocarbon in water increases its bioavailability, as well as its mobility in the environment. A truly<br />

dissolved compound demonstrates a higher mobility and bioavailability than one that is strongly<br />

associated with particles, which may eventually settle (Schwarzenbach et al. 2002). As solubility is<br />

important in considering the environmental behaviour of organic compounds, the weathering of the<br />

composite hydrocarbon through dissolution followed by degradation was assessed (see Appendix F).<br />

Although other weathering processes might influence the overall environmental behaviour of the liquid<br />

hydrocarbons, the approach is limited to dissolution and degradation. This approach is not applied to trace<br />

elements, which are assumed to readily partition from hydrocarbons to the aqueous phase when in contact<br />

with water. As such, <strong>for</strong> each trace element, the mass expected to be released in association with<br />

hydrocarbon handling is conservatively assumed to fully partition into the water phase in oil-water<br />

separators, and to subsequently be discharged to the marine environment.<br />

Page 3-16 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

3.6 Chemical Identification <strong>for</strong> Air Emissions<br />

Atmospheric deposition rates (dry, wet and total) are estimated <strong>for</strong> various classes of air contaminants that<br />

might be emitted to the atmosphere during operation of the <strong>Kitimat</strong> Terminal. The following are the<br />

classes of air contaminants <strong>for</strong> which deposition estimates are provided: BTEX substances, PAH and<br />

selected trace elements.<br />

The specific air emission sources considered <strong>for</strong> atmospheric deposition include 16 large hydrocarbon<br />

storage tanks (six assumed to contain synthetic oil, six assumed to contain diluted bitumen and four<br />

assumed to contain condensate), two tankers at berth and tugs. The tankers at berth are represented by one<br />

VLCC and one Suezmax class tanker. All tankers are assumed to be fuelled with residual oil (#6 Bunker<br />

C) having a sulphur content of 2.7%.<br />

The U.S. EPA AERMOD model was applied to evaluate the atmospheric deposition of hydrocarbons and<br />

trace elements. The AERMOD dispersion modelling system is based on the following three components:<br />

• AERMAP (AERMOD terrain pre-processor)<br />

• AERMET (AERMOD meteorological pre-processor)<br />

• AERMOD (AERMIC dispersion model)<br />

AERMAP is a terrain pre-processor that is designed to handle the input of receptor terrain elevation data<br />

<strong>for</strong> AERMOD. AERMAP searches <strong>for</strong> the terrain height and location that has the greatest influence on<br />

dispersion <strong>for</strong> an individual receptor. This height is referred to as the height scale. The output from<br />

AERMAP, there<strong>for</strong>e, includes the location and height scale <strong>for</strong> each receptor, which are used to model air<br />

flow around hills.<br />

AERMET is the meteorological pre-processor <strong>for</strong> the AERMOD model. Input data <strong>for</strong> AERMET include<br />

hourly cloud cover observations, surface meteorological observations and twice-daily upper air<br />

soundings. Meteorological data required <strong>for</strong> input into the AERMET meteorological pre-processor<br />

included the following <strong>for</strong> the five-year period of January 1999 to December 2003.<br />

• <strong>Kitimat</strong> (British Columbia) Whitesail monitoring station <strong>for</strong> wind speed, wind direction and<br />

temperature<br />

• Terrace (British Columbia) Airport monitoring station <strong>for</strong> ceiling height and other surface data not<br />

available <strong>for</strong> <strong>Kitimat</strong> Whitesail<br />

• Annette (Alaska) monitoring station <strong>for</strong> upper air data<br />

Output from AERMET comes in the <strong>for</strong>m of two files, including a file of hourly boundary layer<br />

parameter estimates and a file of multiple-level observations of wind speed and direction, temperature and<br />

standard deviation of the fluctuating components of the wind.<br />

AERMOD is the dispersion and deposition modelling component that uses output from AERMAP and<br />

AERMET to predict air contaminant concentrations and deposition rates. Special features of this<br />

AERMOD dispersion model include:<br />

• refined wet and dry deposition algorithms<br />

• the ability to incorporate terrain features into the model<br />

2010 Page 3-17


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

• special treatment of surface releases<br />

• the ability to handle irregularly shaped area sources<br />

• plume models <strong>for</strong> the convective boundary layer<br />

• limitation of vertical mixing in the stable boundary layer<br />

• fixing the reflecting surface at the stack base, if applicable<br />

For the BTEX substances, the deposition estimates are based on the AERMOD model using<br />

chemical-specific air emissions <strong>for</strong> each individual air emission source in operation at the <strong>Kitimat</strong><br />

Terminal, as well as chemical-specific gas properties (i.e., diffusivity in air, diffusivity in water, cuticular<br />

resistance and Henry’s law constant).<br />

No chemical-specific gas and particle properties were available <strong>for</strong> the trace element and PAH<br />

substances. There<strong>for</strong>e, deposition rates <strong>for</strong> those substances are estimated using a first order approach<br />

based on the AERMOD model and tanker SO2 emission and deposition rates. The SO2 emission and<br />

deposition values were converted to substance-specific trace element and PAH deposition rates based on<br />

the ratio of published air emission factors <strong>for</strong> trace element and PAH substances (<strong>for</strong> tankers burning<br />

residual oil) to the equivalent SO2 emission factor.<br />

3.7 Chemical Screening<br />

After compiling the list of analytes detected in the reference hydrocarbons and the resultant composite<br />

hydrocarbon expected at the <strong>Kitimat</strong> Terminal, screening criteria were established to eliminate those<br />

chemical substances that will be present at concentrations so low that they could not possibly present<br />

risks to the marine environment. Two emissions sources from the <strong>Kitimat</strong> Terminal are evaluated:<br />

• excess discharge from the containment reservoir (i.e., site runoff water and treated water that may<br />

have come into contact with hydrocarbons during normal operations of the <strong>Kitimat</strong> Terminal), to be<br />

released through a per<strong>for</strong>ated pipe into the marine environment of <strong>Kitimat</strong> Arm<br />

• atmospheric deposition of COPC from air contaminant emissions as a result of normal operation of<br />

the <strong>Kitimat</strong> Terminal (including the release of volatile substances from land-based facilities such as<br />

tanks, as well as marine engine emissions from tankers while berthed, and air emissions from tugs)<br />

The trace elements aluminum, calcium, magnesium, potassium and sodium are not considered because<br />

they are major constituents of the earth’s crust, are of low inherent toxicity and are considered to be<br />

essential elements or nutrients <strong>for</strong> living organisms.<br />

The following subsections describe additional screening processes to determine which substances<br />

detected in the liquid hydrocarbon samples would be carried <strong>for</strong>ward to the risk assessment.<br />

3.7.1 Nature of the Constituent<br />

All PAH, as well as BTEX and TPH (Canada Wide Standard fractions F1, F2 and F3) were carried<br />

<strong>for</strong>ward. For toxicity of TPH to aquatic or sediment community-level marine receptor, aromatic fractions<br />

F1, F2 and F3, and aliphatic fractions F1 and F2 are considered because the aqueous solubility and<br />

bioavailability of higher fractions is negligible (ATSDR 1999; Di Toro and McGrath 2000; CCME 2008).<br />

Page 3-18 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

The contribution of the F3 aliphatic fraction is also included in the estimate of oral toxicity to avian and<br />

mammalian receptors.<br />

3.7.2 Baseline Water Concentration<br />

So that potential environmental effects of additional increments of substances that may already be close to<br />

critical levels are considered, chemical substances that demonstrated a baseline concentration higher than<br />

that of the water quality screening criteria were carried <strong>for</strong>ward. Guidelines consulted included:<br />

• Canadian Water Quality Guidelines <strong>for</strong> the Protection of Aquatic Life (marine values; CCME 1999a)<br />

• British Columbia Water Quality Guidelines (marine values; BC MOE 2006, Internet site)<br />

• U.S. EPA National Recommended Water Quality Criteria (salt water chronic values; U.S. EPA 2003,<br />

Internet site)<br />

• Australian and New Zealand Guidelines <strong>for</strong> Fresh and <strong>Marine</strong> Water Quality (marine values;<br />

ANZECC 2000, Internet site)<br />

This screening criterion was invoked in the case of cadmium.<br />

3.7.3 Concentration in Liquid Hydrocarbons<br />

Trace elements having a measured concentration above 1 mg/kg in any liquid hydrocarbon sample were<br />

carried <strong>for</strong>ward. The rationale <strong>for</strong> this criterion is based on assumptions related to the potential liquid<br />

hydrocarbon releases, as well as the surface water runoff volume. As described above, any liquid<br />

hydrocarbons released within the tank terminal will be retained by containment berms and collected along<br />

with surface water runoff in a containment reservoir. The annual surface water runoff volume is defined<br />

as the product of the <strong>Kitimat</strong> Terminal area, the annual precipitation and a runoff coefficient. For the<br />

<strong>Kitimat</strong> Terminal, the annual surface water runoff volume is conservatively estimated to be approximately<br />

4.8×10 6 m 3 /year. Assuming that 100 m 3 of liquid hydrocarbons with a corresponding density of<br />

approximately 1,000 kg/m 3 could be released annually within the tank terminal (note that this is a highly<br />

conservative worst case estimate and is not intended to be representative of an actual operating condition),<br />

a concentration of 1 mg/kg of a substance in the composite hydrocarbon would result in an incremental<br />

increase in the concentration of that substance in the water discharged from the containment reservoir of<br />

2.1 x10 -2 mg/m 3 (2.1 x10 -5 mg/L), well below most relevant CCME guidelines <strong>for</strong> the protection of<br />

freshwater aquatic life. As such, a concentration of less than 1 mg/kg in any liquid hydrocarbon was<br />

treated as a de minimis value, below which there will be negligible risk of adverse effects to the marine<br />

environment. Only trace elements with measured concentrations above 1 mg/kg in a liquid hydrocarbon<br />

sample are considered in the risk assessment (see Table 3-2).<br />

For some organic compounds, the screening calculation outlined above is complicated by the fact that<br />

detection limits <strong>for</strong> individual compounds within the hydrocarbon matrix are often elevated. This<br />

difficulty is largely overcome by the use of the Target Lipid Model (TLM, Di Toro et al. 2000; Di Toro<br />

and McGrath 2000; Di Toro et al. 2007) to evaluate risk to receptors exposed to hydrocarbons in marine<br />

water and sediment. The TLM addresses the bulk properties of crude oil and other hydrocarbons, and<br />

implicitly accounts <strong>for</strong> individual chemicals that are minor constituents of the overall hydrocarbon<br />

2010 Page 3-19


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

mixture. Within this framework, the PAH compounds are evaluated as a class, regardless of individual<br />

PAH compound concentrations. In addition, selected organic compounds that were detected as VOC or<br />

phenolics in the individual representative hydrocarbons are also evaluated individually (see Table 3-2).<br />

For the COPC carried <strong>for</strong>ward into the marine water quality model and sediment quality model <strong>for</strong><br />

incorporation into the risk assessment, see Table 3-3.<br />

Table 3–2 Concentrations of Trace Elements and Organic Compounds with<br />

concentrations above 1 mg/kg in Liquid Hydrocarbons<br />

Concentration<br />

(mg/kg)<br />

Trace elements<br />

Diluted Bitumen<br />

Condensate<br />

Synthetic Oil<br />

Barium 0.2 1.0 < 0.2<br />

Calcium 20 < 10 < 10<br />

Molybdenum 5.84 0.06 < 0.02<br />

Nickel 43.05 0.6 < 0.2<br />

Sodium 20 < 10 < 10<br />

Tin 1.48 0.9 0.4<br />

Vanadium<br />

BTEX<br />

118.5 1.2 < 0.2<br />

Benzene 280 13,100 1,100<br />

Toluene 990 25,300 3,300<br />

Ethylbenzene 360 2,900 1,200<br />

Xylenes<br />

PAH<br />

1,500 21,000 4,200<br />

1-Methylnaphthalene 6.6 190 99<br />

2-Methylnaphthalene 4.2 110 79<br />

Anthracene < 5.0 < 5.0 15<br />

Benzo(a)anthracene 7.9 < 5.0 < 5.0<br />

Fluorene < 5.0 15 14<br />

Naphthalene < 5.0 86 85<br />

Phenanthrene 5.3 25 12<br />

Pyrene<br />

Phenolic Compounds<br />

6.1 < 5.0 30<br />

2,4-Dimethylphenol 1.0 < 1.0 < 1.0<br />

2,4-Dinitrophenol 1.8 < 1.0 < 1.0<br />

Phenol < 1.0 2.4 < 1.0<br />

Page 3-20 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

Table 3–2 Concentrations of Trace Elements and Organic Compounds with<br />

concentrations above 1 mg/kg in Liquid Hydrocarbons (cont’d)<br />

Concentration<br />

(mg/kg)<br />

TPH – Aliphatics<br />

Diluted Bitumen<br />

Condensate<br />

Synthetic Oil<br />

>C6-C8 25,700 359,000 59,700<br />

>C8-C10 14,900 61,200 39,000<br />

>C10-C12 26,400 21,800 52,800<br />

>C12-C16 76,500 24,700 111,000<br />

>C16-C21 119,000 18,800 100,000<br />

>C21-C32 186,000 21,400 117,000<br />

TPH – Aromatics<br />

>C8-C10 (-EX) 2,200 11,900 5,800<br />

>C10-C12 880 6,600 14,600<br />

>C12-C16 4,400 7,800 27,200<br />

>C16-C21 12,100 7,000 58,900<br />

>C21-C32 30,100 11,900 158,000<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 610 3,400 1,600<br />

1,3,5-Trimethylbenzene 200 1,800 430<br />

Table 3–3 COPC Modelled in the <strong>Risk</strong> <strong>Assessment</strong><br />

Trace Elements PAH<br />

Barium 1-Methylnaphthalene<br />

Boron 2-Methylnaphthalene<br />

Cadmium Acenaphthene<br />

Manganese Acenaphthylene<br />

Molybdenum Anthracene<br />

Nickel Benzo(a)anthracene<br />

Tin Benzo(b)fluoranthene<br />

Vanadium Benzo(k)fluoranthene<br />

Zinc Benzo(ghi)perylene<br />

Phenolic Compounds Benzo(a)pyrene<br />

2,4-dimethylphenol Benzo(e)pyrene<br />

2,4-dinitrophenol Chrysene<br />

Phenol Dibenzo(a,h)anthracene<br />

2010 Page 3-21


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

Table 3–3 COPC Modelled in the <strong>Risk</strong> <strong>Assessment</strong> (cont’d)<br />

Trace Elements PAH<br />

TPH Fractions Fluoranthene<br />

Aromatics Fluorene<br />

>C8 - C10<br />

>C10 - C12<br />

>C12 - C16<br />

>C16 - C21<br />

>C21 - C32<br />

Indeno(123-cd)pyrene<br />

Naphthalene<br />

Phenanthrene<br />

Pyrene<br />

BTEX<br />

Aliphatics Benzene<br />

>C6 - C8<br />

>C8 - C10<br />

>C10 - C12<br />

>C12 - C16<br />

>C16 - C21<br />

>C21 - C32<br />

Toluene<br />

3.7.4 Biomagnification Potential of COPC<br />

Ethylbenzene<br />

Xylenes (total; m,o,p)<br />

Volatile Organic Compounds (VOC)<br />

1,2,4-trichlorobenzene<br />

1,3,5-trimethylbenzene<br />

Following the COPC screening procedure, none of the retained COPC are considered likely be<br />

transmitted and concentrated at successively higher concentrations as they pass up the food chain. The<br />

process of biomagnification is a key concern with selected chemical substances, including methyl<br />

mercury, PCBs, some dioxin and furan congeners, and some pesticides. Biomagnification is not a key<br />

concern <strong>for</strong> most other inorganic substances, or <strong>for</strong> hydrocarbons including PAH.<br />

3.8 Identification of <strong>Marine</strong> Receptors<br />

With the number of wildlife species within 150 m of the berths, it is not practical to assess each species.<br />

After reviewing the expected species within the PEAA, marine receptors are selected, based on the<br />

following factors:<br />

• indigenous to the area<br />

• likely to be exposed to COPC emissions due to their habitat and home range<br />

• representative of various trophic levels and feeding guilds in the marine ecosystem<br />

• of cultural, economic or social importance<br />

Key habitats and trophic levels in the PEAA must be represented in the selection of marine receptors.<br />

Each marine receptor is considered representative of other species occupying a similar position in the<br />

food web. There<strong>for</strong>e, results of the risk characterization step <strong>for</strong> a selected marine receptor can be used to<br />

make inferences about risk to other species occupying a similar level in the food web. For example, if no<br />

unacceptable risk is expected <strong>for</strong> Spotted Sandpiper, a shorebird that relies heavily on a diet of benthic<br />

invertebrates, then it can be expected that other shorebird species with similar diets will also remain<br />

unaffected. Using these criteria, the marine receptors assessed in the <strong>Marine</strong> ERA are expected to provide<br />

adequate and conservative representation of the faunal and floral diversity in the PEAA.<br />

Page 3-22 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

3.8.1 Community-Level Key <strong>Marine</strong> Receptors<br />

The primary exposure pathway <strong>for</strong> some flora and fauna may be from direct contact with a single abiotic<br />

environmental medium (e.g., marine plants, invertebrates, or fish exposed to COPC in water or sediment).<br />

There<strong>for</strong>e, toxicity benchmarks are commonly derived that relate COPC concentrations in these media<br />

(i.e., water or sediment) to toxicological effects thresholds <strong>for</strong> organisms that reside in or rely on that<br />

medium. Additionally, these benchmarks are typically generated using toxicity data <strong>for</strong> not one, but many<br />

species that reside and rely on that medium, with the intent of protecting sensitive species, and all life<br />

stages.<br />

3.8.2 Species at <strong>Risk</strong><br />

Species at risk or of conservation concern are defined as wildlife species listed in Schedule 1 of the<br />

Canadian Species at <strong>Risk</strong> Act (SARA) as extirpated, endangered, threatened or of special concern; species<br />

that are red-listed (extirpated, endangered or threatened) or blue-listed (of special concern) by the BC<br />

CDC; or listed as endangered, threatened or of special concern by COSEWIC. British Columbia has no<br />

stand-alone endangered species legislation; however, red-listed vertebrate species may be legally<br />

designated as endangered or threatened under the provincial Wildlife Act.<br />

Within the PEAA, 12 species are listed as species at risk or of conservation concern (see Table 3-4).<br />

Steller sea lion are known to be abundant in the PEAA and will likely frequent the marine terminal area.<br />

Marbled Murrelet are marine birds that require old-growth <strong>for</strong>est <strong>for</strong> nesting habitat, and are likely to<br />

frequent the marine terminal area.<br />

The Bocaccio is a member of the rockfish family, listed as threatened by COSEWIC due to a combination<br />

of low recruitment and effects from harvesting. It is a semi-pelagic fish and prefer the upper layers of the<br />

open ocean (DFO 2007b, Internet site) and is evaluated as part of the water community-level.<br />

Eulachon are small pelagic, anadromous fish, listed on the province’s blue list. In British Columbia there<br />

are over 30 known spawning rivers and two are near the PEAA: the Skeena River and the Nass River<br />

systems (Stoffels 2001, Internet site). Occasional spawning has also been noted in Bish Creek off the<br />

<strong>Kitimat</strong> Arm, and located within 150 m of the berths (Forest Service British Columbia 1998, Internet<br />

site). Eulachon were evaluated as part of the water community-level.<br />

Cetacean species found within the coastal waters of British Columbia, and near the marine terminal and<br />

connecting channels, include the following:<br />

• Dall’s porpoise<br />

• Pacific white-sided porpoise<br />

• killer whale (orca)<br />

• humpback whale<br />

2010 Page 3-23


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

Table 3–4 Federal and Provincial Listed Species Potentially Present in the<br />

PEAA<br />

Common Name Scientific Name<br />

Bocaccio Sebastes paucispinus T<br />

Federal Status Provincial Status<br />

SARA<br />

Schedule 1 COSEWIC a BC CDC b S-Rank c<br />

Eulachon Thaleichthys pacificus B S2S3<br />

Killer whale (northern<br />

resident)<br />

Orcinus orca T B S3<br />

Killer whale (transient) Orcinus orca T R S2<br />

Harbour porpoise Phocoena phocoena<br />

vomerina<br />

SC B S3<br />

Humpback whale Megaptera<br />

novaeangliae<br />

T B S3<br />

Grey whale Eschrichtius robustus SC B S3<br />

Blue whale Balaenoptera musculus E B S1N<br />

Fin whale Balaenoptera physalus T B S2N<br />

Sei whale Balaenoptera borealis E B SHN<br />

Steller Sea Lion Eumetopias jubatus SC B S2S3B, S3N<br />

Marbled murrelet Brachyramphus<br />

marmoratus<br />

T R S2B, S4N<br />

NOTES:<br />

a<br />

COSEWIC status<br />

E – endangered: facing imminent extirpation or extinction<br />

T – threatened: likely to become endangered if limiting factors are not reversed<br />

SC – special concern: particularly sensitive to human activities and natural events<br />

b<br />

British Columbia Conservation Data Centre (BC CDC)<br />

R – red-listed: extirpated, endangered or threatened in British Columbia<br />

B – blue-listed: of special concern in British Columbia<br />

c<br />

NatureServe conservation status sub-national rank. Modifiers used with the rankings are as follows:<br />

B – indicates breeding status <strong>for</strong> a migratory species<br />

N – indicates non-breeding status <strong>for</strong> a migratory species<br />

H – historical: possibly extirpated<br />

1 – Critically imperilled<br />

2 – Imperilled<br />

3 – Vulnerable<br />

4 – Apparently Secure<br />

5 – Secure<br />

– listed in SARA schedule 1<br />

Page 3-24 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

See Table 3-5 <strong>for</strong> marine receptors that are Species at <strong>Risk</strong> or of conservation concern. The goal of ERA<br />

is typically to identify potential risks to marine receptors at the population level rather than at the<br />

individual level, with the notable exception being species protected under SARA, BC CDC or COSEWIC.<br />

To accommodate fish (eulachon), mammalian (porpoises, whales, Steller sea lion) and avian (Marbled<br />

Murrelet) species of concern, risk characterization is based on toxicological reference values (TRV)<br />

derived with either NOAEL, or LOAEL divided by an UF of 3 (half an order of magnitude). This is based<br />

on professional judgment and is expected to provide a protective and realistic threshold <strong>for</strong> risk<br />

assessment. These two approaches are considered equivalent and are intended to protect marine species<br />

from concentrations or doses of COPC that could cause adverse environmental effects at the individual<br />

level.<br />

The only cetacean that the GEM team observed in the upper <strong>Kitimat</strong> Arm (defined here as an arbitrary<br />

line crossing the Arm touching the northern end of Coste Island) is a Dall’s porpoise (see PDF 1048334<br />

MMSight PopAnal Feb 13 17 2009.pdf). No harbour porpoises were seen in this region during<br />

project-specific field surveys. Harbour porpoises have been observed in Douglas Channel and presumably<br />

they range throughout the region, and in <strong>Kitimat</strong> Arm. The British Columbia Cetacean Sighting Network<br />

data from 1985-2009 (which are not corrected <strong>for</strong> ef<strong>for</strong>t), suggest that Dall’s porpoise, killer whales and<br />

humpback whales are the most commonly sighted whales near the marine terminal. However, harbour<br />

porpoise tend to be inconspicuous, and their potential presence in the vicinity of the marine terminal may<br />

be underestimated. Little is known about the migratory behavior of Dall’s porpoises, but it would appear<br />

that they may migrate within their range (north in summer, south in winter). Hence, the same individuals<br />

may not reside near the marine terminal <strong>for</strong> most of the year. The larger toothed whales and baleen<br />

whales would be expected to have large ranges, and while they may be periodically sighted near the<br />

marine terminal, it is unlikely that a single individual would remain resident near the marine terminal <strong>for</strong><br />

most of the year.<br />

Harbour porpoises have similar overall dietary requirements to the other small toothed whales likely to be<br />

found in the area (i.e., Dall’s porpoise and Pacific white-sided porpoise, which feed on small schooling<br />

fish such as herring, eelpouts, hake, sandlance, salmon and cod, as well as squid). They tend to frequent<br />

inshore waters and readily accommodate to human activities. Based upon these considerations, the<br />

harbour porpoise was selected as a representative small toothed whale <strong>for</strong> the purposes of the ecological<br />

risk assessment.<br />

Table 3–5 <strong>Marine</strong> Receptors that are Species at <strong>Risk</strong> or Conservation<br />

Concern<br />

Common Name Scientific Name Rationale <strong>for</strong> Inclusion<br />

Eulachon Sebastes paucispinus Occasional spawning has been noted in Bish Creek off the <strong>Kitimat</strong><br />

Arm.<br />

Harbour Porpoise Phocoena phocoena<br />

vomerina<br />

Similar overall dietary requirements to the other small toothed<br />

whales likely to be found in the PEAA and tend to frequent inshore<br />

waters and readily accommodate to human activities.<br />

Steller Sea Lion Eumetopias jubatus Known to be abundant in the PEAA and will likely frequent the<br />

marine terminal area.<br />

Marbled Murrelet Brachyramphus<br />

marmoratus<br />

Require old-growth <strong>for</strong>est <strong>for</strong> nesting habitat. This bird species is<br />

likely to frequent the marine terminal area.<br />

2010 Page 3-25


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

3.8.3 Avian and Mammalian Key Indicators<br />

The following mammalian species (in alphabetical order) are marine receptors <strong>for</strong> the risk assessment:<br />

• coastal-dwelling mink (Mustela vison)<br />

• harbour porpoise (Phocoena phocoena vomerina)<br />

• Steller sea lion (Eumetopias jubatus)<br />

The following avian species (in alphabetical order) are marine receptors <strong>for</strong> the risk assessment:<br />

• Bald Eagle (Haliaeetus leucocephalus)<br />

• Marbled Murrelet (Brachyramphus marmoratus)<br />

• Spotted Sandpiper (Actitis macularius)<br />

• Surf Scoter (Melanitta perspicillata)<br />

For a detailed description of parameters used <strong>for</strong> modelling each species (e.g., body weight, water<br />

ingestion rate, dietary composition and food intake rate), see Appendix G. Brief summaries are provided<br />

below.<br />

3.8.3.1 Coastal-dwelling Mink<br />

The mink weighs approximately 0.85 kg. It is a medium-sized member of the weasel family and is the<br />

most abundant and widely distributed carnivorous mammal in North America (U.S. EPA 1993). Mink are<br />

found throughout the continental portion of Canada (including Newfoundland), except in the most barren<br />

portions of northwestern Quebec and eastern Nunavut.<br />

Mink are active year-round and are associated with aquatic habitats such as rivers, streams, lakes, ditches,<br />

swamps, marshes, coastal shorelines and backwater areas (U.S. EPA 1993). Home ranges vary<br />

considerably but are in the range of 7.8 ha to 380 ha (U.S. EPA 1993). The mink feeds extensively on<br />

small mammals, fish, amphibians and crustaceans, as well as birds, reptiles and insects depending on the<br />

season (U.S. EPA 1993). Mink consume approximately 0.22 kg of wet weight food per day and 0.09 L of<br />

water or its equivalent per day. The diet of coastal-dwelling mink is modelled as including 55% small<br />

mammals, 35% bird prey and 10% benthic invertebrates.<br />

Carnivores such as the mink are classified as tertiary consumers within the ecosystem (CCME 1997).<br />

Based on its consumption of a variety of foods, the coastal-dwelling mink is estimated to ingest<br />

3.58 x 10 4 kg/d of dry soil and 7.77 x10 -4 kg/d of dry sediment incidentally. As the coastal-dwelling mink<br />

is expected to meet dietary water requirements by seeking freshwater sources, direct seawater ingestion is<br />

not considered <strong>for</strong> this KI.<br />

Page 3-26 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

3.8.3.2 Harbour Porpoise<br />

Differences in the skull morphology of harbour porpoises from the Atlantic and Pacific oceans has led to<br />

sub-specific separation. In Canada, members of the Pacific subspecies (P. p. vomerina) inhabit the coastal<br />

waters of British Columbia (Environment Canada 2006a, Internet site). They are small, sexually<br />

dimorphic cetaceans, with a mean length of 1.6 m (60 kg BW) <strong>for</strong> adult females and 1.45 m (50 kg BW)<br />

<strong>for</strong> males (CMS 2003, Internet site). Although colouration may vary, the typical appearance is a dark grey<br />

dorsal side that transitions to a white ventral side at the mid-flank (Hammond and Masi 2000, Internet<br />

site). A dark stripe extends from the mouth to the flippers (CMS 2003, Internet site). Both subspecies are<br />

designated as species of special concern by COSEWIC. Phocoena phocoena vomerina is listed as a<br />

Schedule 1 species under SARA. Incidental catch of the harbour porpoise in fishing gear (e.g., gill nets) is<br />

a major cause of mortality and the major reason <strong>for</strong> these designations. Great white sharks, killer whales<br />

and occasionally bottlenose dolphins will prey on harbour porpoises.<br />

The harbour porpoise is found on the continental shelves of temperate North America, generally<br />

inhabiting oceanic depths of less than 150 m (Environment Canada 2006b, Internet site; IMMA 1998,<br />

Internet site). Some seasonal migration is exhibited, as the harbour porpoise moves north and inshore<br />

during the summer and spends winters further offshore in southern waters (following movements of prey)<br />

(CMS 2003, Internet site). In the Bay of Fundy, <strong>for</strong> example, these animals may cover areas upwards of<br />

11,000 km 2 over the course of one month. However, much of their <strong>for</strong>aging ef<strong>for</strong>t is focused on an area<br />

less than 300 km 2 .<br />

The harbour porpoise diet consists mainly of small (shorter than 40 cm), schooling fish (e.g., herring and<br />

sand lance) and squid, although squid are reportedly more abundant in the diet of Pacific Ocean porpoises<br />

(Santos and Pierce 2003; Environment Canada 2006b, Internet site). Harbour porpoises consume these<br />

food items (assumed 95% fish and squid, 5% benthic invertebrates) at a rate of approximately 4.32 kg wet<br />

weight per day (estimated using the allometric equation provided in Innes et al. 1987). Based on its diet of<br />

pelagic fish and squid, the rate of dry marine sediment ingestion <strong>for</strong> the harbour porpoise is estimated to<br />

be 1.22 x10 -2 kg/d.<br />

2010 Page 3-27


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

3.8.3.3 Steller Sea Lion<br />

The Steller sea lion (Eumetopias jubatus) is the predominant species of sea lion in Canada. It is the largest<br />

species of sea lion in the world (DFO 2007a, Internet site), and has a range extending from the Kuril<br />

Islands and the Sea of Okhotsk in Russia, to the Gulf of Alaska in the north, and down to the west coast<br />

of North American to Año Nuevo Island off central Cali<strong>for</strong>nia. The Cali<strong>for</strong>nia sea lion (Zalophus<br />

cali<strong>for</strong>nianus), native to the coast of Cali<strong>for</strong>nia, Mexico including Baja and the Tres Marias Islands, also<br />

occasionally migrates north to British Columbia (Mate 1978; Price 2002, Internet site). The Steller sea<br />

lion is listed as a species of special concern under SARA, COSEWIC and the BC Ministry of<br />

Environment. In 1970, it was placed under protection through the Federal Fisheries Act as populations<br />

had declined substantially as a result of hunting, accidental mortality from fishing nets and pollution. To<br />

date, populations are recovering rapidly (DFO 2007a, Internet site; Government of Canada 2008a,<br />

Internet site).<br />

Steller sea lions exhibit extreme sexual dimorphism. Males are commonly twice the size of females.<br />

Adult females typically weigh 200 to 300 kg, while adult males typically weigh 400 to 800 kg<br />

(Government of Canada 2008a, Internet site). The average female weight has been estimated as 263 kg<br />

and the average male weight as 566 kg (Gonder 2000, Internet site). Steller sea lions have a limited range<br />

within Canada and are found in three main breeding areas, or rookeries, on the coast of British Columbia:<br />

the Scott Islands, Cape St. James and offshore from the Banks Islands, in the northern British Columbia<br />

mainland. This species is not considered migratory (Government of Canada 2008a, Internet site).<br />

The Steller sea lion diet consists mainly of pelagic fish including salmon, herring, sand lance and<br />

sardines, but it will occasionally hunt benthic species such as rockfish, flounder and skate. Cephalopods<br />

such as squid and octopus are also important parts of its diet (Gonder 2000, Internet site; Government of<br />

Canada 2008a, Internet site). When not hunting in open water, the Steller sea lion can be seen loafing on<br />

rocky shorelines, often in groups (Gonder 2000, Internet site).<br />

Allometric models indicate that a 566 kg male Steller sea lion consumes approximately 45.32 kg of<br />

wet-weight food per day and 29.7 L of seawater per day (U.S. EPA 1993). Steller sea lion are modelled as<br />

consuming 90% fish and 10% marine invertebrates (cephalopods). Based on its consumption of these<br />

foods, Steller sea lions are estimated to incidentally ingest 2.28 x10 -1 kg of dry sediment per day.<br />

Page 3-28 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

3.8.3.4 Bald Eagle<br />

The Bald Eagle is the second largest bird of prey found in North America, and the largest found in<br />

Canada (Stocek 1992, Internet site). Adult birds are readily identified by their striking appearance,<br />

characterized by dark brown body plumage contrasting sharply with white head and tail plumage (Buehler<br />

2000, Internet site). The Bald Eagle’s range is restricted to North America, where it prefers sea coasts,<br />

lakeshores or riverine habitat that possesses suitable nesting trees in which to breed. The majority of<br />

Canada’s breeding population is found along the coastline of British Columbia, although the northern<br />

boreal <strong>for</strong>ests of Alberta, Saskatchewan, Manitoba and Ontario also support substantial breeding<br />

populations. Cape Breton and Newfoundland support the majority of the Atlantic breeding population<br />

(Stocek 1992, Internet site). In the autumn, central Canadian breeding populations migrate to the<br />

west-central and southwestern United States, returning in late winter or early spring. Pacific and Atlantic<br />

populations may remain in their breeding habitat year-round if their fishing areas do not freeze over<br />

(Stocek 1992, Internet site).<br />

Female Bald Eagles are up to 25% larger than males, and birds from northern latitudes (Canada and<br />

Alaska) are larger than their counterparts in the southeastern and southwestern United States (Buehler<br />

2000, Internet site). The typical body mass of the Bald Eagle ranges from 3 kg to 6.3 kg (Buehler 2000,<br />

Internet site), although masses of 7 kg have been recorded (Stocek 1992, Internet site). Immature eagles<br />

grow rapidly owing to a voracious appetite. Bald Eagles are opportunistic feeders, taking live prey when<br />

available but preferring to scavenge carrion or to pirate freshly killed prey from other predators (Stocek<br />

1992, Internet site; U.S. EPA 1993). Their preferred food items include fish, aquatic birds and mammals;<br />

however, choice of prey is site-specific and may vary widely across their range (Buehler 2000, Internet<br />

site). Adult birds are more likely to hunt and kill food items whereas immature birds are more prone to<br />

obtaining food through scavenging and piracy (Stocek 1992, Internet site). Coastal Bald Eagle<br />

populations are modelled as consuming 95% marine fish and 5% mammals, while inland populations are<br />

modelled as consuming 45% terrestrial vertebrates (mammals and birds) and 55% freshwater fish.<br />

For the coastal Bald Eagle, allometric models indicate that a 4.5 kg Bald Eagle (mean adult female size)<br />

consumes approximately 0.649 kg of wet-weight food per day and 0.162 L of fresh water per day (U.S.<br />

EPA 1993), and incidentally ingests 9.76 x10 -5 kg of dry soil and 1.75 x10 -3 kg of dry sediment per day.<br />

The inland Bald Eagle also consumes 0.649 kg of wet-weight food per day and 0.162 L of fresh water per<br />

day, but ingests 0.879 x10 -4 kg of soil and 1.02 x10 -3 kg of sediment per day.<br />

2010 Page 3-29


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

3.8.3.5 Marbled Murrelet<br />

The Marbled Murrelet is a seabird found along the Pacific coast of North America from Alaska to the<br />

northwestern United States. Best known <strong>for</strong> its cryptic nesting behaviour, the Marbled Murrelet is<br />

otherwise unspectacular in appearance. Powerful, stubby wings propel this small, compact species<br />

quickly through the air, but seem better suited as flippers when the bird dives <strong>for</strong> food (Kaiser 1991,<br />

Internet site). Males and females have similar appearance and are similar in size. Male birds from British<br />

Columbia had a mean summer mass of 217 g, whereas females had a mean summer mass of 222.7 g<br />

(Nelson 2000a, Internet site); adults from Alaska had summer masses of 204.9 g ± 19.8 g (Nelson 2000,<br />

Internet site).<br />

On the open ocean, Marbled Murrelet are a common sight, often seen by boaters, although they dive<br />

quickly beneath the surface when approached. Land sightings of this species are exceptionally rare and<br />

little is known of its terrestrial habits. Nests have been documented on cliff faces, in the crooks of trees<br />

and well inshore on the ground in <strong>for</strong>ests with old growth components (Kaiser 1991, Internet site; Smart<br />

1999, Internet site; Nelson 2000, Internet site). Due to this species’ particular nesting habits, logging<br />

activity in British Columbia and Alaska has become a concern. The Marbled Murrelet is currently listed<br />

as threatened under the Species at <strong>Risk</strong> Act (Government of Canada 2008b, Internet site). Limited<br />

migration range (along the Pacific continental coast) and low reproductive rates exacerbate the situation<br />

(Government of Canada 2008b, Internet site).<br />

The Marbled Murrelet <strong>for</strong>ages in inlets, fjords and bays within approximately 5 km of shore and <strong>for</strong>age<br />

range is strongly influenced by prey abundance and proximity to nesting sites (Nelson 2000, Internet site).<br />

Major prey items include marine fish such as sand lance, herring, anchovy, capelin and surf smelt, as well<br />

as crustaceans such as shrimp, krill, amphipods and other marine invertebrates. Ingestion of juvenile<br />

salmonids in freshwater lakes has also been documented (Brooks 1928; Nelson 2000b).<br />

Allometric models indicate that a 220 g Marbled Murrelet consumes approximately 0.081 kg of<br />

wet-weight food per day and 0.021 L of seawater per day (U.S. EPA 1993). The Marbled Murrelet diet is<br />

modelled as consuming 75% fish (70% marine, 5% freshwater) and 25% marine invertebrates. Based on<br />

its consumption of these foods, it is estimated to incidentally ingest 6.68 x10 -4 kg of dry sediment per day.<br />

Page 3-30 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

3.8.3.6 Spotted Sandpiper<br />

The Spotted Sandpiper is one the most widely distributed birds in North America. It capitalizes on<br />

generalist tendencies such as wide food preferences and may occupy almost any habitat in proximity to a<br />

water source.<br />

The Spotted Sandpiper weighs approximately 40 to 50 g (Oring et al. 1997, Internet site; NatureServe<br />

2008, Internet site). It is not a gregarious bird, but tends to migrate singly or in small groups (less than<br />

10 birds). Females are typically 20 to 25% larger than males, and males care <strong>for</strong> the young (Oring et al.<br />

1997, Internet site; NatureServe 2008, Internet site). This species demonstrates polygamous and<br />

monogamous breeding (Oring et al. 1997, Internet site). The breeding range of the Spotted Sandpiper<br />

covers the entire continent of North America from east to west, including from the southern edge of the<br />

Arctic to the southern United States, and altitudes ranging from sea level to 4,700 m above sea level. A<br />

successful breeder will attempt to return to breeding sites, and to sites with which it has previous<br />

experience. Hatchlings will attempt to return to hatch sites to breed. The Spotted Sandpiper can winter in<br />

southwestern British Columbia, the southern United States, Central and South America, Bermuda and the<br />

West Indies (Oring et al. 1997, Internet site).<br />

The Spotted Sandpiper will occupy a variety of habitats, ranging from beaches, to meadows and fields in<br />

agricultural areas, to <strong>for</strong>est (U.S. EPA 1993; Oring et al. 1997, Internet site; NatureServe 2008, Internet<br />

site). It will typically <strong>for</strong>age within 200 m of a water source, and nest within 300 m (typically within<br />

100 m) of a water source (Oring et al. 1997, Internet site). The Spotted Sandpiper is an invertivore<br />

(NatureServe 2008, Internet site) or animal matter generalist (Oring et al. 1997, Internet site), and will<br />

consume almost anything small enough to be eaten, including invertebrates from terrestrial, aquatic and<br />

marine environments (Oring et al. 1997, Internet site). It will occasionally eat crustaceans, leeches,<br />

molluscs, small fish and carrion (U.S. EPA 1993; Oring et al. 1997, Internet site). Vegetation is thought to<br />

be consumed incidentally (Oring et al. 1997, Internet site). The Spotted Sandpiper will walk or wade<br />

<strong>for</strong>ward and probe, jab or stitch prey with its beak (Oring et al. 1997, Internet site). It will often dip<br />

insects in the water be<strong>for</strong>e consuming them (Oring et al. 1997, Internet site). The Spotted Sandpiper<br />

occasionally swims when it is feeding and may make shallow dives to escape predators (Oring et al. 1997,<br />

Internet site; NatureServe 2008, Internet site).<br />

2010 Page 3-31


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

The mean home range of the Spotted Sandpiper is approximately 2,500 m 2 (0.24 ha) (U.S. EPA 1993).<br />

However, female territories increase in size with resource scarcity and predation. Territory sizes were<br />

reportedly on average 815 m 2 in north-central Minnesota, but in areas with greater predation, territories<br />

varied from 12,700 to 14,500 m 2 , and in areas with high predation ranged from 3,000 to 20,000 m 2 (Oring<br />

et al. 1997, Internet site).<br />

Allometric models indicate that a 47.1 g Spotted Sandpiper (average female size) consumes<br />

approximately 0.023 kg of wet-weight food per day and 0.0076 L of seawater per day (U.S. EPA 1993).<br />

The Spotted Sandpiper’s diet is modelled as consuming 45% terrestrial invertebrates, 45% aquatic<br />

invertebrates, 2% aquatic vegetation, 2% terrestrial vegetation and 6% fish. Based on its consumption of<br />

these foods, the Spotted Sandpiper is estimated to incidentally ingest 2.43 x10 -4 kg of dry soil and<br />

4.54 x10 -4 kg of dry sediment per day.<br />

3.8.3.7 Surf Scoter<br />

The Surf Scoter is one of three North American species of scoter and is a sea duck. Surf Scoters inhabit<br />

Atlantic and Pacific coastal environments during the fall, winter and early spring, but migrate to<br />

freshwater wetlands, primarily in the boreal <strong>for</strong>est, to reproduce. Some non-breeding individuals,<br />

however, may remain in coastal environments throughout the year. On wintering grounds, Surf Scoters<br />

prefer shallow coastal areas less than 10 m deep with a variety of hard and soft bottom substrate (Savard<br />

et al. 1998, Internet site). Surf Scoter are frequently found in large mixed-species flocks, but outnumber<br />

other scoters along steep rocky shores and fjords in British Columbia (Savard et al. 1998, Internet site).<br />

The Surf Scoter is a medium size sea duck species, and individuals collected from coastal British<br />

Columbia sites had a mean mass of 1,025 g <strong>for</strong> females and 1,153 g <strong>for</strong> males (Savard et al. 1998, Internet<br />

site). Like most sea ducks, its diet consists primarily of bivalve molluscs in marine environments with a<br />

preference <strong>for</strong> mussels in rocky intertidal areas and clams in soft-bottom areas (Lewis et al. 2007a,<br />

2007b). For a short period of time in the spring, prior to migration, large groups of scoters congregate on<br />

herring spawning sites to feed on deposited roe (Lewis et al. 2007b). Surf Scoter will remain in an area<br />

provided there is sufficient food, but migrate to capitalize on seasonally abundant food sources, such as<br />

herring roe (Lewis et al. 2007b). In freshwater environments, Surf Scoter prey upon a variety of aquatic<br />

invertebrates (Savard et al. 1998, Internet site). In marine environments, the Surf Scoter is modelled as<br />

consuming 90% molluscs, 5% fish (roe) and 5% plant material (Savard et al. 1998, Internet site). With a<br />

modelled body weight of 1.1 kg (1,100 g), allometric models estimate that the Surf Scoter will consume<br />

0.313 kg wet-weight food/day (U.S. EPA 1993) and will ingest 5.91x10 -3 kg dry sediment per day.<br />

Page 3-32 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

Like other sea duck species, Surf Scoters have the ability to eliminate excess salt through supra-orbital<br />

salt glands (DeVink et al. 2005). It is there<strong>for</strong>e able to meet dietary water requirements by consuming<br />

seawater. The moisture content of the Surf Scoter prey items is typically 80% or more, which likely<br />

satisfies the majority of its water consumption requirements. However, after accounting <strong>for</strong> dietary<br />

sources of water, it is conservatively assumed that Surf Scoter ingests an additional 0.03 L/day of<br />

seawater.<br />

3.9 Exposure Pathway Screening<br />

The route by which a receptor may be exposed to COPC is defined as an exposure pathway. For semiaquatic<br />

and marine mammals and birds, exposure to COPC may occur through ingestion of:<br />

• seawater<br />

• sediment (e.g., birds and mammals may ingest sediment contained within prey species or<br />

inadvertently while <strong>for</strong>aging on benthic prey)<br />

• marine plants<br />

• marine invertebrates<br />

• marine fish<br />

For community-level receptors (plants, invertebrates and fish), exposure to COPC may occur through<br />

direct exposure to COPC in water or in sediment.<br />

Conceptual Site Models<br />

Figure 3-3 is a schematic representation of the interactions between the identified modelled species and<br />

the COPC in relevant exposure media, via various potential exposure pathways. The potential exposure<br />

pathways are designated by arrows leading from the contaminant source media to each resource. Relevant<br />

pathways <strong>for</strong> each resource are identified as checked compartments within the matrix.<br />

2010 Page 3-33


Source of COPC<br />

Liquid Hydrocarbons<br />

Entrained by Surface Water<br />

Runo and Recovered from<br />

Berth Operations<br />

Impoundment Reservoir<br />

excess via per<strong>for</strong>ated pipe<br />

<strong>Marine</strong> Water<br />

sedimentation<br />

<strong>Marine</strong> Sediment<br />

NOTE:<br />

X - a potentially complete exposure pathway.<br />

[Uptake]<br />

[Uptake]<br />

Exposure Media<br />

<strong>Marine</strong> Water<br />

Direct Exposure X<br />

Ingestion X X X X X<br />

<strong>Marine</strong> Plants Ingestion X X<br />

Fish Ingestion X X X X X X X<br />

<strong>Marine</strong> Sediment<br />

[Uptake] <strong>Marine</strong><br />

Invertebrates<br />

Potential<br />

Exposure<br />

Pathways<br />

Direct Exposure X<br />

Ingestion X X X X X X X<br />

Ingestion X X X X X X<br />

Figure 3-3 Conceptual Exposure Model <strong>for</strong> <strong>Marine</strong> Key Indicator Resources<br />

Sediment Community (Benthic<br />

Invertebrates, Fish)<br />

Aquatic Community<br />

(<strong>Marine</strong> Plants, Benthic Invertebrates,<br />

Fish)<br />

Source Receptors (KIs)<br />

Spotted Sandpiper<br />

Surf Scoter<br />

Marbled Murrelet<br />

Bald Eagle<br />

Coastal-dwelling Mink<br />

Steller Sea Lion<br />

Harbour Porpoise


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 3: Problem Formulation<br />

The risks of environmental effects to community-level receptors are evaluated by comparing water and<br />

sediment COPC concentrations to community benchmarks as a direct exposure pathway. The risks to<br />

avian and mammalian modelled species are evaluated using multiple exposure pathways. For the rationale<br />

<strong>for</strong> the selected pathways, see Table 3-6.<br />

Table 3–6 Rationale <strong>for</strong> Exposure Pathways Evaluated <strong>for</strong> Avian and<br />

Mammalian Species<br />

Exposure<br />

Pathway<br />

Direct Exposure<br />

to Water and<br />

Sediment<br />

Sediment<br />

Ingestion<br />

Included in<br />

<strong>Marine</strong><br />

ERA? Rationale<br />

No Although wildlife may be exposed by direct contact with seawater and sediment,<br />

absorption of COPC through the skin is not generally considered a major route<br />

of exposure. The integument of marine mammals and birds is generally a<br />

barrier to chemical exchange. The current state of knowledge on dermal toxicity<br />

does not permit a sound evaluation of risks from this type of exposure.<br />

There<strong>for</strong>e, the dermal exposure route is not evaluated. However, it is important<br />

to note that this risk assessment does not contemplate releases of<br />

hydrocarbons that would result in oil slick <strong>for</strong>mation.<br />

Yes It is assumed that during operation, COPC will be deposited to marine<br />

sediment. Wildlife species inadvertently consume sediment during <strong>for</strong>aging,<br />

preening and grooming. There<strong>for</strong>e, this exposure pathway is evaluated <strong>for</strong><br />

wildlife.<br />

Inhalation No Wildlife may be exposed to airborne COPC resulting from emissions from the<br />

<strong>Kitimat</strong> Terminal (e.g., release of COPC from moored tankers), but exposure to<br />

COPC through this exposure pathway will be negligible compared to the other<br />

routes of exposure. There<strong>for</strong>e, this pathway is not considered.<br />

Seawater<br />

Ingestion<br />

Ingestion of<br />

<strong>Marine</strong> Plants,<br />

Invertebrates and<br />

Fish<br />

Yes During operation, COPC may be released from the Project into seawater, either<br />

directly or via atmospheric deposition. The marine species may be exposed to<br />

COPC in seawater if they ingest it. Many marine species will ingest seawater<br />

either directly (as a source of water) or indirectly (as they ingest food items).<br />

There<strong>for</strong>e, this pathway is considered <strong>for</strong> most wildlife KI. The mink and Bald<br />

Eagle are expected to seek freshwater as a dietary water source; this pathway<br />

is not considered <strong>for</strong> the mink or Bald Eagle.<br />

Yes It is assumed that during operation, COPC released into the marine<br />

environment will be taken up by fish, invertebrates and aquatic plants. Wildlife<br />

may then ingest prey or plants and subsequently become exposed to COPC.<br />

While all higher trophic-level species have invertebrates or fish as dietary<br />

components, only the shorebird (Spotted Sandpiper) and the sea duck (Surf<br />

Scoter) are reported ingesting marine plants.<br />

2010 Page 3-35


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 4: Exposure <strong>Assessment</strong><br />

4 Exposure <strong>Assessment</strong><br />

The purpose of the exposure assessment is to develop a quantitative estimate of exposure to each COPC<br />

<strong>for</strong> each marine receptor. This was accomplished by estimating the concentrations of COPC in relevant<br />

environmental abiotic media (i.e., water and sediment), as well as food items (marine plants, benthic<br />

invertebrates and fish) likely to be consumed by the species.<br />

The magnitude of exposure of a species to COPC in the environment depends on the:<br />

• Base Case and Project Case cconcentrations of COPC in various environmental media<br />

• physical-chemical characteristics of the COPC, which affect their environmental fate and transport<br />

and determine such factors as efficiency of absorption into the body and rate of metabolic breakdown<br />

or excretion<br />

• influence of site-specific environmental characteristics (e.g., geology, sediment type, topography,<br />

hydrology and hydrogeology on a contaminant’s behaviour within environmental media)<br />

• physiological and behavioural characteristics of the species (e.g., food and water ingestion rates,<br />

sediment intake and body weight)<br />

For the Base Case, COPC exposure point concentrations (EPC) are based on empirical measurements.<br />

EPC <strong>for</strong> the Application Case are estimated using a fate and transport modelling approach.<br />

4.1 Fate and Transport Modelling of COPC Exposure Point<br />

Concentrations<br />

The modelling approach to estimate the fate and transport of COPC in the marine environment is based<br />

on two independent mass balance (compartment) models. One model estimates fate and transport of<br />

COPC in the water (see Appendix A), while the second estimates deposition of COPC from water into<br />

marine sediment (see Appendix B). The overall objective of this process is to evaluate the likely fate of<br />

COPC released from the assumed liquid effluent discharge location and from atmospheric deposition. The<br />

models apply to all classes of COPC (e.g., BTEX, TPH, PAH, trace elements). Similar models have been<br />

used in the contaminant fate modelling of the Sydney Tar Ponds and Coke Oven Sites (AMEC 2005),<br />

Hamilton Harbour (Ling et al. 1993) and in the Saguenay Fjord (Lun et al. 1998) to elucidate the fate and<br />

transport of contaminants in harbour and estuarine systems.<br />

Mass balance compartment models consisting of two- or three-dimensional arrangements of<br />

compartments, configured to represent the natural environment, have been widely used to simulate<br />

contaminant transport in rivers, lakes and estuaries (Diamond et al. 1994, 1996; Stoetaert and Herman<br />

1995a, 1995b; Stephenson et al. 1995). For example, models of this type have been used in previous<br />

analyses of contaminant fluxes and transport in the Muggah Creek and Sydney Harbour systems (JDAC<br />

2002; AMEC 2005; Ethier 2002). Mass balance models can provide explicit estimates of the fluxes of<br />

contaminants across boundaries or the masses within compartments as a function of time. There<strong>for</strong>e, a<br />

mass balance compartment model is the most appropriate model <strong>for</strong> this study.<br />

2010 Page 4-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 4: Exposure <strong>Assessment</strong><br />

The marine environment model used two independent mass balance models. One represented the water<br />

compartments of the study area (see Figure 4-1 and Appendix A <strong>for</strong> more details), and the second<br />

modelled fate and transport of COPC into the marine sediment (see Figure 4-1 and Appendix B <strong>for</strong> more<br />

details).<br />

The models were created using Stella® v8.1.1. The principle of a mass balance model is that an<br />

environment or process can be represented by one or more compartments, each of which contains a<br />

certain quantity or mass of material. In this case, the compartments represent specific areas within the<br />

PEAA, and the mass represented is the mass of a chemical (e.g., naphthalene) present within the<br />

compartment. For example, SSmass represents the mass of a chemical in the surface sediment of a<br />

modelled area (see Figure 4-2). A compartmental mass may change over time in response to:<br />

• processes representing chemical inputs (e.g., Dep representing the deposition of suspended sediments<br />

and sorbed COPC)<br />

• transport to other compartments (e.g., SS:DS represents the transfer of COPC from surface sediment<br />

to deep sediment (DS mass)<br />

• export outside of the system (this does not occur in the Sediment Quality Model)<br />

• other loss or removal processes (e.g., Decay represents the loss of organic COPC through<br />

degradation)<br />

As required to model processes, additional parameters are included in the models (e.g., Dep Rate<br />

represents the deposition rate of suspended sediments).<br />

The equations representing these processes are solved <strong>for</strong> a series of time steps, allowing the model to<br />

represent the behaviour of the system being modelled over time. Mass is never lost from the model<br />

(except where a specific process such as chemical degradation or radioactive decay is involved), although<br />

it may be stored in various compartments from which it cannot be transferred back to circulation among<br />

other compartments. Moreover, mass is not created within the model, except where it is added through<br />

source inputs (i.e., liquid effluent and air deposition).<br />

In Stella®, compartments are represented by stocks. Processes affecting the input and output of COPC<br />

from compartments are represented by flows. Model parameters in the equations representing these<br />

processes are represented by converters (see Figure 4-1). The arrows in the conceptual diagram (see<br />

Figure 4-1) represent a relationship between two stocks, converters or flows.<br />

Page 4-2 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 4: Exposure <strong>Assessment</strong><br />

4.2 Exposure Point Concentrations and Uptake Factors<br />

For the Base Case, EPC <strong>for</strong> most COPC were measured from site specific media. Water, sediment,<br />

aquatic vegetation (seaweed), fish and benthic invertebrate (crab, mussels) samples collected in the<br />

compartments K1, K2 and T are assessed <strong>for</strong> COPC concentrations (see Appendix C and Appendix D).<br />

Only a small number of samples were collected and analyzed; there<strong>for</strong>e, a thorough statistical analysis<br />

was not possible. As a conservative approach, <strong>for</strong> the Base Case, the collective maximum concentrations<br />

<strong>for</strong> each medium are used as EPC <strong>for</strong> the compartments K1, K2 and T; the median concentrations are<br />

used as EPC <strong>for</strong> the compartments CB and EP. In cases where COPC were not detected, the EPC are<br />

estimated using a value of half the reported analytical detection limit. For the empirically measured EPC<br />

used <strong>for</strong> the Base Case, see Table 4-1.<br />

For the Project Case, the water and sediment fate and transport models generated point estimates of<br />

COPC concentrations in five water compartments (divided into surface and deep sub-compartments) and<br />

five surface sediment compartments (divided into near-shore and off-shore sub-compartments). For the<br />

maximum concentrations, see Table 4-2. The water EPC are based on the 95th UCLM within each<br />

compartment <strong>for</strong> the three years of model data, while the sediment EPC are based on the maximum<br />

concentration within each compartment (i.e., typically the concentration at the end of 50-year model<br />

simulation). For more detail on fate and transport modelling used to generate water and sediment<br />

concentrations, see Appendices A and B.<br />

In addition, <strong>for</strong> the Project Case, additional EPC are also estimated <strong>for</strong> each COPC with the use of<br />

compound-specific uptake factors (UP), that describe the relationship between the concentration of a<br />

chemical in a given abiotic medium to various types of biota (e.g., the uptake of naphthalene from<br />

sediment by benthic invertebrates). For a description of the uptake factors required <strong>for</strong> the calculation of<br />

EPC <strong>for</strong> marine plants, invertebrates and fish, see Appendix H.<br />

The generalized equation used to calculate a COPC concentration in a biotic tissue (such as fish or<br />

benthic invertebrates) from water or sediment concentrations is:<br />

Where:<br />

EPCj = EPCi x UPij<br />

EPCj = Exposure Point Concentration in target biotic tissue j (mg/kg wet weight)<br />

EPCi = Exposure Point Concentration in an environmental medium (i.e., water or<br />

sediment, mg/L or mg/kg dry weight)<br />

UPij = Uptake Factor from the environmental medium i to wet weight target biotic tissue<br />

j (dimensionless)<br />

For the Application Case, EPC from the Base Case and Project Case are summed and are presented in<br />

Table 4-3.<br />

Page 4-6 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 4: Exposure <strong>Assessment</strong><br />

Table 4–1 Maximum Base Case Exposure Point Concentration of COPC<br />

BTEX<br />

Constituent<br />

CAS Registry<br />

Number<br />

Surface Seawater<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water<br />

<strong>Marine</strong> Plant<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic<br />

Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Fish Tissue<br />

Concentration<br />

(mg/kg ww)<br />

Deep Seawater<br />

Concentration<br />

(mg/L)<br />

Off-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Off-shore <strong>Marine</strong><br />

Benthic<br />

Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Benzene 71-43-2 ND (2.50E-04) ND (1.50E-02) - - - ND (2.50E-04) ND (4.00E-02) - -<br />

Ethylbenzene 100-41-4 ND (2.50E-04) ND (1.50E-02) - - - ND (2.50E-04) ND (5.00E-02) - -<br />

Toluene 108-88-3 ND (5.00E-04) ND (1.50E-02) - - - ND (5.00E-04) ND (5.00E-02) - -<br />

Xylenes 1330-20-7 ND (5.00E-04) ND (2.50E-02) - - - ND (5.00E-04) ND (1.00E-01) - -<br />

TPH - CCME CWS % Composition a<br />

Aliph>C06-C08 - F1 0.55 - ND (1.00E-01) - - - - - - -<br />

Aliph>C08-C10 - F1 0.36 - ND (2.00E-01) - - - - - - -<br />

Arom>C08-C10 - F1 0.09 - 4.00E-01 - - - - - - -<br />

F1 – Total 1 - 7.00E-01 - - - - - - -<br />

Aliph>C10-C12 - F2 0.36 - ND (4.00E+00) - - - - - - -<br />

Aliph>C12-C16 - F2 0.44 - ND (7.50E+00) - - - - - - -<br />

Arom>C10-C12 - F2 0.09 - 6.30E+00 - - - - - - -<br />

Arom>C12-C16 - F2 0.11 - ND (7.50E+00) - - - - - - -<br />

F2 – Total 1 - 2.53E+01 - - - - - - -<br />

Aliph>C16-C21 - F3 0.56 - ND (7.50E+00) - - - - - - -<br />

Aliph>C21-C34 - F3 0.24 - ND (7.50E+00) - - - - - - -<br />

Arom>C16-C21 - F3 0.14 - ND (7.50E+00) - - - - - - -<br />

Arom>C21-C34 - F3 0.06 - 2.30E+01 - - - - - - -<br />

F3 – Total 1 - 4.55E+01 - - - - - - -<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAH<br />

<strong>Marine</strong> Ground Fish<br />

Tissue<br />

Concentration<br />

(mg/kg ww)<br />

Acenaphthene 83-32-9 ND (4.00E-05) 8.50E-03 ND (5.00E-03) ND (5.00E-03) ND (5.00E-03) ND (4.00E-05) ND (2.50E-02) ND (5.00E-03) ND (8.48E-03)<br />

Acenaphthylene 208-96-8 8.00E-05 ND (2.50E-03) ND (5.00E-03) ND (5.00E-03) ND (5.00E-03) 8.00E-05 ND (2.50E-02) ND (5.00E-03) ND (8.48E-03)<br />

Anthracene 120-12-7 ND (4.00E-05) 1.43E-02 ND (5.00E-03) ND (5.00E-03) ND (5.00E-03) ND (4.00E-05) ND (2.50E-02) ND (6.28E-03) ND (8.48E-03)<br />

Fluorene 86-73-7 1.20E-04 ND (5.00E-03) ND (5.00E-03) ND (5.00E-03) ND (5.00E-03) 1.20E-04 ND (2.50E-02) ND (5.00E-03) ND (8.48E-03)<br />

1-Methylnaphthalene 90-12-0 - - - - - - - - -<br />

2-Methylnaphthalene 91-57-6 2.10E-04 1.00E-02 - - - 2.10E-04 ND (2.50E-02) - -<br />

Naphthalene 91-20-3 1.10E-04 3.00E-02 ND (5.00E-03) ND (5.00E-03) ND (5.00E-03) 1.10E-04 ND (2.50E-02) ND (6.28E-03) ND (1.00E-02)<br />

Phenanthrene 85-01-8 3.50E-04 8.70E-02 ND (1.00E-02) 4.10E-02 ND (1.00E-02) 3.50E-04 1.80E-01 ND (9.46E-03) ND (1.00E-02)<br />

2010 Page 4-7


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 4: Exposure <strong>Assessment</strong><br />

Table 4–1 Maximum Base Case Exposure Point Concentration of COPC (cont’d)<br />

Constituent<br />

High Molecular Weight PAH<br />

CAS Registry<br />

Number<br />

Surface Seawater<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water<br />

<strong>Marine</strong> Plant<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic<br />

Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Fish Tissue<br />

Concentration<br />

(mg/kg ww)<br />

Deep Seawater<br />

Concentration<br />

(mg/L)<br />

Off-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Off-shore <strong>Marine</strong><br />

Benthic<br />

Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Marine</strong> Ground Fish<br />

Tissue<br />

Concentration<br />

(mg/kg ww)<br />

Fluoranthene 206-44-0 1.07E-03 6.00E-02 ND (5.00E-03) 2.20E-02 ND (5.00E-03) 1.07E-03 3.90E-01 ND (5.00E-03) ND (8.48E-03)<br />

Benz(a)anthracene 56-55-3 1.47E-03 2.00E-02 ND (5.00E-03) ND (5.00E-03) ND (5.00E-03) 1.47E-03 2.70E-01 ND (5.00E-03) ND (8.48E-03)<br />

Benzo(a)pyrene 50-32-8 8.70E-04 ND (5.00E-03) ND (5.00E-03) ND (5.00E-03) ND (5.00E-03) 8.70E-04 3.60E-01 ND (5.00E-03) ND (8.48E-03)<br />

Benzo(e)pyrene 192-97-2 - - - - - - - - -<br />

Benzo(b)fluoranthene 205-99-2 4.69E-03 2.90E-02 ND (5.00E-03) 1.00E-02 ND (5.00E-03) 4.69E-03 7.00E-01 ND (5.00E-03) ND (8.48E-03)<br />

Benzo(g,h,i)perylene 191-24-2 2.50E-04 ND (5.00E-03) ND (5.00E-03) ND (5.00E-03) ND (5.00E-03) 2.50E-04 2.30E-01 ND (5.00E-03) ND (8.48E-03)<br />

Benzo(k)fluoranthene 207-08-9 ND (4.00E-05) ND (5.00E-03) ND (5.00E-03) ND (5.00E-03) ND (5.00E-03) ND (4.00E-05) ND (2.50E-02) ND (5.00E-03) ND (8.48E-03)<br />

Chrysene 218-01-9 1.98E-03 2.80E-02 ND (5.00E-03) 1.40E-02 ND (5.00E-03) 1.98E-03 3.20E-01 ND (5.00E-03) ND (8.48E-03)<br />

Dibenz(a,h)anthracene 53-70-3 8.00E-05 ND (2.50E-03) ND (5.00E-03) ND (5.00E-03) ND (5.00E-03) 8.00E-05 6.00E-02 ND (5.00E-03) ND (8.48E-03)<br />

Indeno(1,2,3-cd)pyrene 193-39-5 4.80E-04 ND (5.00E-03) ND (5.00E-03) ND (5.00E-03) ND (5.00E-03) 4.80E-04 2.50E-01 ND (5.00E-03) ND (8.48E-03)<br />

Pyrene 129-00-0 9.60E-04 3.60E-02 ND (5.00E-03) 1.40E-02 ND (5.00E-03) 9.60E-04 4.00E-01 ND (5.00E-03) ND (8.48E-03)<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 120-82-1 - - - - - - - - -<br />

1,3,5-Trimethylbenzene 108-67-8 - - - - - - - - -<br />

Phenolic Compounds<br />

Phenol 108-95-2 - - - - - - - - -<br />

2,4-Dimethylphenol 105-67-9 - - - - - - - - -<br />

2,4-Dinitrophenol 51-28-5 - - - - - - - - -<br />

Trace Elements<br />

Barium 7440-39-3 1.70E-02 3.57E+01 3.04E+01 4.37E+00 1.44E+00 1.70E-02 1.52E+02 1.63E+00 6.90E-01<br />

Boron 7440-42-8 3.90E+00 - - - - 3.90E+00 5.78E+01 - -<br />

Cadmium 7440-43-9 1.70E-04 1.00E-01 3.59E-01 2.88E-01 1.48E-02 1.70E-04 9.00E-02 2.13E-01 5.43E-02<br />

Manganese 7439-96-5 1.48E+00 - 2.65E+01 1.17E+01 6.67E+00 1.48E+00 7.01E+02 5.08E+00 1.49E+00<br />

Molybdenum 7439-98-7 9.60E-03 5.40E-01 4.30E-02 2.18E-01 6.34E-01 9.60E-03 ND (2.50E-01) 2.18E-01 1.59E-01<br />

Nickel 7440-02-0 8.80E-04 9.40E+00 8.90E-01 1.19E+00 3.69E+00 8.80E-04 2.43E+01 9.32E-01 2.49E+00<br />

Tin 7440-31-5 ND (5.00E-03) ND (2.50E+00) ND (2.50E-02) 1.00E-01 5.70E-02 ND (5.00E-03) ND (1.00E+00) 2.98E-02 2.65E-01<br />

Vanadium 7440-62-2 ND (5.00E-02) 5.36E+00 4.60E-01 4.50E-01 4.90E-01 ND (5.00E-02) 1.44E+01 1.91E-01 9.69E-02<br />

Zinc<br />

NOTES:<br />

7440-66-6 2.10E-02 3.81E+01 5.58E+00 3.33E+01 1.75E+01 2.10E-02 8.59E+01 3.73E+01 1.88E+01<br />

a<br />

TPH fractions do not have CAS numbers.<br />

dw Concentration is reported on a dry weight basis.<br />

ww Concentration is reported on a wet weight basis.<br />

- Data were not reported by the laboratory or that analysis was not requested.<br />

ND ( ) Indicates a constituent that was not detected and as such concentration is expressed as ½ estimated quantification limit.<br />

2010 Page 4-9


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 4: Exposure <strong>Assessment</strong><br />

Table 4–2 Maximum Project Case Concentrations of COPC<br />

BTEX<br />

Constituent<br />

CAS Registry<br />

Number<br />

Surface Seawater<br />

Concentration<br />

(mg/L)<br />

Near-shore<br />

<strong>Marine</strong> Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water<br />

<strong>Marine</strong> Plant<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic<br />

Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Fish Tissue<br />

Concentration<br />

(mg/kg ww)<br />

Deep Seawater<br />

Concentration<br />

(mg/L)<br />

Off-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Off-shore <strong>Marine</strong><br />

Benthic<br />

Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Marine</strong> Ground<br />

Fish Tissue<br />

Concentration<br />

(mg/kg ww)<br />

Benzene 71-43-2 9.29E-06 (K2) 4.63E-07 (K2) 3.86E-05 (K2) 1.57E-09 (K2) 5.86E-06 (K2) 1.08E-06 (K1) 2.67E-07 (K1) 9.07E-10 (K1) 6.79E-07 (K1)<br />

Ethylbenzene 100-41-4 4.84E-06 (K2) 7.06E-06 (K2) 2.01E-04 (K2) 2.19E-08 (K2) 3.05E-05 (K2) 5.61E-07 (K1) 4.08E-06 (K1) 1.27E-08 (K1) 3.54E-06 (K1)<br />

Toluene 108-88-3 2.57E-05 (K2) 1.49E-05 (K2) 4.24E-04 (K2) 4.79E-08 (K2) 6.44E-05 (K2) 2.97E-06 (K1) 8.61E-06 (K1) 2.77E-08 (K1) 7.47E-06 (K1)<br />

Xylenes 1330-20-7 2.47E-05 (K2) 4.52E-05 (K2) 1.29E-03 (K2) 1.39E-07 (K2) 1.96E-04 (K2) 2.86E-06 (K1) 2.62E-05 (K1) 8.07E-08 (K1) 2.27E-05 (K1)<br />

TPH - CCME CWS % Composition a<br />

Aliph>C06-C08 - F1 0.55 1.31E-04 (K2) 1.47E-03 (K2) 4.21E-02 (K2) 2.12E-05 (K2) 6.40E-03 (K2) 1.52E-05 (K1) 8.52E-04 (K1) 1.23E-05 (K1) 7.41E-04 (K1)<br />

Aliph>C08-C10 - F1 0.36 1.72E-05 (K2) 1.48E-03 (K2) 4.39E-02 (K2) 1.96E-05 (K2) 6.66E-03 (K2) 2.00E-06 (K1) 8.54E-04 (K1) 1.14E-05 (K1) 7.72E-04 (K1)<br />

Arom>C08-C10 - F1 0.09 1.61E-05 (K2) 7.19E-05 (K2) 2.05E-03 (K2) 1.07E-06 (K2) 3.11E-04 (K2) 1.86E-06 (K1) 4.16E-05 (K1) 6.20E-07 (K1) 3.61E-05 (K1)<br />

F1 - Total 1 1.65E-04 (K2) 3.02E-03 (K2) 8.81E-02 (K2) 4.19E-05 (K2) 1.34E-02 (K2) 1.91E-05 (K1) 1.75E-03 (K1) 2.42E-05 (K1) 1.55E-03 (K1)<br />

Aliph>C10-C12 - F2 0.36 1.48E-05 (K2) 7.86E-03 (K2) 3.00E-01 (K2) 9.66E-05 (K2) 4.56E-02 (K2) 1.72E-06 (K1) 4.55E-03 (K1) 5.59E-05 (K1) 5.28E-03 (K1)<br />

Aliph>C12-C16 - F2 0.44 2.90E-05 (K2) 5.28E-02 (K2) 1.17E+01 (K2) 5.79E-04 (K2) 1.77E+00 (K2) 3.36E-06 (K1) 3.06E-02 (K1) 3.35E-04 (K1) 2.06E-01 (K1)<br />

Arom>C10-C12 - F2 0.09 1.86E-05 (K2) 3.41E-04 (K2) 3.77E-03 (K2) 4.99E-06 (K2) 5.72E-04 (K2) 2.16E-06 (K1) 1.98E-04 (K1) 2.89E-06 (K1) 6.63E-05 (K1)<br />

Arom>C12-C16 - F2 0.11 2.04E-05 (K2) 1.61E-03 (K2) 8.23E-03 (K2) 2.29E-05 (K2) 1.25E-03 (K2) 2.36E-06 (K1) 9.32E-04 (K1) 1.33E-05 (K1) 1.45E-04 (K1)<br />

F2 - Total 1 8.28E-05 (K2) 6.26E-02 (K2) 1.20E+01 (K2) 7.04E-04 (K2) 1.82E+00 (K2) 9.60E-06 (K1) 3.62E-02 (K1) 4.07E-04 (K1) 2.11E-01 (K1)<br />

Aliph>C16-C21 - F3 0.56 3.28E-05 (K2) 6.86E-02 (K2) - b - b - b 3.80E-06 (K1) 3.97E-02 (K1) - b - b<br />

Aliph>C21-C34 - F3 0.24 5.07E-05 (K2) 2.75E-01 (K2) - b - b - b 5.87E-06 (K1) 1.59E-01 (K1) - b - b<br />

Arom>C16-C21 - F3 0.14 2.26E-05 (K2) 5.55E-03 (K2) 2.88E-02 (K2) 1.51E-04 (K2) 4.37E-03 (K2) 2.61E-06 (K1) 3.22E-03 (K1) 8.78E-05 (K1) 5.06E-04 (K1)<br />

Arom>C21-C34 - F3 0.06 4.15E-05 (K2) 7.07E-02 (K2) 4.21E-01 (K2) 1.78E-03 (K2) 6.39E-02 (K2) 4.81E-06 (K1) 4.10E-02 (K1) 1.03E-03 (K1) 7.40E-03 (K1)<br />

F3 - Total 1 1.48E-04 (K2) 4.20E-01 (K2) 4.50E-01 (K2) 1.94E-03 (K2) 6.83E-02 (K2) 1.71E-05 (K1) 2.43E-01 (K1) 1.12E-03 (K1) 7.91E-03 (K1)<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAH<br />

Acenaphthene 83-32-9 1.29E-11 (K1) 3.07E-10 (K1) 3.39E-09 (K1) 8.89E-12 (K1) 5.14E-10 (K1) 1.53E-12 (K1) 1.81E-10 (K1) 5.26E-12 (K1) 6.09E-11 (K1)<br />

Acenaphthylene 208-96-8 1.55E-13 (K1) 4.63E-12 (K1) 5.11E-11 (K1) 1.33E-13 (K1) 7.76E-12 (K1) 1.83E-14 (K1) 2.74E-12 (K1) 7.88E-14 (K1) 9.19E-13 (K1)<br />

Anthracene 120-12-7 4.75E-09 (K2) 4.43E-07 (K2) 4.96E-06 (K2) 1.22E-08 (K2) 7.53E-07 (K2) 5.50E-10 (K1) 2.57E-07 (K1) 7.06E-09 (K1) 8.72E-08 (K1)<br />

Fluorene 86-73-7 1.08E-08 (K2) 5.10E-07 (K2) 5.65E-06 (K2) 1.44E-08 (K2) 8.58E-07 (K2) 1.25E-09 (K1) 2.95E-07 (K1) 8.33E-09 (K1) 9.95E-08 (K1)<br />

1-Methylnaphthalene 90-12-0 1.25E-07 (K2) 1.07E-06 (K2) 3.07E-05 (K2) 3.12E-08 (K2) 4.66E-06 (K2) 1.45E-08 (K1) 6.20E-07 (K1) 1.80E-08 (K1) 5.39E-07 (K1)<br />

2-Methylnaphthalene 91-57-6 9.68E-08 (K2) 8.10E-07 (K2) 2.31E-05 (K2) 2.36E-08 (K2) 3.51E-06 (K2) 1.12E-08 (K1) 4.69E-07 (K1) 1.36E-08 (K1) 4.07E-07 (K1)<br />

Naphthalene 91-20-3 2.02E-07 (K2) 4.67E-07 (K2) 1.33E-05 (K2) 1.43E-08 (K2) 2.02E-06 (K2) 2.34E-08 (K1) 2.71E-07 (K1) 8.27E-09 (K1) 2.34E-07 (K1)<br />

Phenanthrene 85-01-8 7.35E-09 (K2) 6.86E-07 (K2) 7.68E-06 (K2) 1.89E-08 (K2) 1.17E-06 (K2) 8.52E-10 (K1) 3.98E-07 (K1) 1.09E-08 (K1) 1.35E-07 (K1)<br />

2010 Page 4-11


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 4: Exposure <strong>Assessment</strong><br />

Table 4–2 Maximum Project Case Concentrations of COPC (cont’d)<br />

Constituent<br />

High Molecular Weight PAH<br />

CAS Registry<br />

Number<br />

Surface Seawater<br />

Concentration<br />

(mg/L)<br />

Near-shore<br />

<strong>Marine</strong> Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water<br />

<strong>Marine</strong> Plant<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic<br />

Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Fish Tissue<br />

Concentration<br />

(mg/kg ww)<br />

Deep Seawater<br />

Concentration<br />

(mg/L)<br />

Off-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Off-shore <strong>Marine</strong><br />

Benthic<br />

Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Marine</strong> Ground<br />

Fish Tissue<br />

Concentration<br />

(mg/kg ww)<br />

Fluoranthene 206-44-0 2.96E-12 (K1) 1.82E-09 (K1) 9.78E-09 (K1) 4.80E-11 (K1) 1.48E-09 (K1) 3.51E-13 (K1) 1.08E-09 (K1) 2.85E-11 (K1) 1.76E-10 (K1)<br />

Benz(a)anthracene 56-55-3 2.12E-09 (K2) 5.40E-06 (K2) 3.51E-05 (K2) 1.34E-07 (K2) 5.33E-06 (K2) 2.46E-10 (K1) 3.13E-06 (K1) 7.75E-08 (K1) 6.17E-07 (K1)<br />

Benzo(a)pyrene 50-32-8 1.53E-11 (K1) 6.40E-08 (K1) 5.05E-07 (K1) 7.72E-09 (K1) 7.67E-08 (K1) 1.81E-12 (K1) 3.79E-08 (K1) 4.58E-09 (K1) 9.09E-09 (K1)<br />

Benzo(e)pyrene 192-97-2 5.75E-13 (K1) 4.07E-09 (K1) 5.23E-08 (K1) 4.73E-10 (K1) 7.94E-09 (K1) 6.82E-14 (K1) 2.41E-09 (K1) 2.80E-10 (K1) 9.41E-10 (K1)<br />

Benzo(b)fluoranthene 205-99-2 9.06E-13 (K1) 4.48E-09 (K1) 3.98E-08 (K1) 1.07E-10 (K1) 6.04E-09 (K1) 1.07E-13 (K1) 2.65E-09 (K1) 6.33E-11 (K1) 7.16E-10 (K1)<br />

Benzo(g,h,i)perylene 191-24-2 1.38E-12 (K1) 1.03E-08 (K1) 1.44E-07 (K1) 1.19E-09 (K1) 2.19E-08 (K1) 1.64E-13 (K1) 6.12E-09 (K1) 7.06E-10 (K1) 2.60E-09 (K1)<br />

Benzo(k)fluoranthene 207-08-9 9.06E-13 (K1) 4.36E-09 (K1) 3.76E-08 (K1) 1.04E-10 (K1) 5.71E-09 (K1) 1.07E-13 (K1) 2.58E-09 (K1) 6.18E-11 (K1) 6.77E-10 (K1)<br />

Chrysene 218-01-9 1.46E-12 (K1) 3.71E-09 (K1) 2.41E-08 (K1) 9.18E-11 (K1) 3.66E-09 (K1) 1.73E-13 (K1) 2.20E-09 (K1) 5.44E-11 (K1) 4.34E-10 (K1)<br />

Dibenz(a,h)anthracene 53-70-3 1.02E-12 (K1) 7.63E-09 (K1) 1.07E-07 (K1) 8.80E-10 (K1) 1.62E-08 (K1) 1.21E-13 (K1) 4.52E-09 (K1) 5.22E-10 (K1) 1.92E-09 (K1)<br />

Indeno(1,2,3-cd)pyrene 193-39-5 1.31E-12 (K1) 1.06E-08 (K1) 1.72E-07 (K1) 1.21E-09 (K1) 2.61E-08 (K1) 1.55E-13 (K1) 6.26E-09 (K1) 7.16E-10 (K1) 3.10E-09 (K1)<br />

Pyrene 129-00-0 8.88E-09 (K2) 4.38E-06 (K2) 2.33E-05 (K2) 1.16E-07 (K2) 3.53E-06 (K2) 1.03E-09 (K1) 2.54E-06 (K1) 6.74E-08 (K1) 4.09E-07 (K1)<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 120-82-1 2.99E-06 (K2) 1.12E-04 (K2) 9.88E-04 (K2) 3.23E-05 (K2) 7.50E-05 (K2) 3.47E-07 (K1) 6.51E-05 (K1) 1.87E-05 (K1) 8.69E-06 (K1)<br />

1,3,5-Trimethylbenzene 108-67-8 1.76E-06 (K2) 5.35E-06 (K2) 1.53E-04 (K2) 1.62E-06 (K2) 2.32E-05 (K2) 2.04E-07 (K1) 3.09E-06 (K1) 9.35E-07 (K1) 2.68E-06 (K1)<br />

Phenolic Compounds<br />

Phenol 108-95-2 6.36E-10 (K2) 2.75E-12 (K2) 6.63E-10 (K2) 9.83E-13 (K2) 1.01E-10 (K2) 7.36E-11 (K1) 1.59E-12 (K1) 5.69E-13 (K1) 1.17E-11 (K1)<br />

2,4-Dimethylphenol 105-67-9 9.29E-10 (K2) 2.54E-11 (K2) 6.12E-09 (K2) 8.46E-12 (K2) 4.65E-10 (K2) 1.08E-10 (K1) 1.47E-11 (K1) 4.90E-12 (K1) 5.38E-11 (K1)<br />

2,4-Dinitrophenol 51-28-5 3.52E-09 (K2) 1.42E-10 (K2) 4.03E-09 (K2) 5.06E-11 (K2) 3.06E-10 (K2) 4.08E-10 (K1) 8.21E-11 (K1) 2.92E-11 (K1) 3.54E-11 (K1)<br />

Trace Elements<br />

Barium 7440-39-3 2.73E-09 (K1) 1.02E-05 (K1) 1.98E-07 (K1) 4.96E-07 (K1) 4.99E-08 (K1) 3.35E-10 (K1) 6.28E-06 (K1) 3.05E-07 (K1) 6.13E-09 (K1)<br />

Boron 7440-42-8 7.86E-10 (K2) 1.39E-08 (K2) 1.30E-09 (K2) 4.71E-09 (K2) 1.48E-10 (K2) 9.10E-11 (K1) 8.06E-09 (K1) 2.73E-09 (K1) 1.71E-11 (K1)<br />

Cadmium 7440-43-9 2.57E-10 (K1) 4.05E-06 (K1) 1.51E-07 (K1) 2.55E-04 (K1) 9.98E-08 (K1) 3.05E-11 (K1) 2.42E-06 (K1) 1.52E-04 (K1) 1.19E-08 (K1)<br />

Manganese 7439-96-5 2.43E-09 (K1) 5.55E-05 (K1) 7.03E-06 (K1) 6.16E-07 (K1) 6.65E-06 (K1) 2.93E-10 (K1) 3.36E-05 (K1) 3.73E-07 (K1) 8.04E-07 (K1)<br />

Molybdenum 7439-98-7 1.58E-08 (K2) 1.21E-04 (K2) 2.29E-08 (K2) 8.29E-05 (K2) 7.31E-08 (K2) 1.83E-09 (K1) 7.02E-05 (K1) 4.83E-05 (K1) 8.51E-09 (K1)<br />

Nickel 7440-02-0 1.59E-07 (K2) 1.41E-03 (K2) 2.93E-04 (K2) 7.03E-05 (K2) 2.61E-04 (K2) 1.92E-08 (K1) 8.58E-04 (K1) 4.27E-05 (K1) 3.17E-05 (K1)<br />

Tin 7440-31-5 4.56E-09 (K2) 6.60E-05 (K2) 3.28E-05 (K2) 1.15E-06 (K2) 2.70E-05 (K2) 5.28E-10 (K1) 3.82E-05 (K1) 6.65E-07 (K1) 3.13E-06 (K1)<br />

Vanadium 7440-62-2 4.82E-07 (K2) 9.81E-04 (K2) 1.85E-04 (K2) 2.55E-05 (K2) 1.26E-04 (K2) 5.91E-08 (K1) 6.02E-04 (K1) 1.56E-05 (K1) 1.54E-05 (K1)<br />

Zinc 7440-66-6 1.80E-08 (K1) 2.85E-04 (K1) 4.00E-05 (K1) 8.37E-05 (K1) 3.60E-05 (K1) 2.14E-09 (K1) 1.69E-04 (K1) 4.97E-05 (K1) 4.27E-06 (K1)<br />

NOTES:<br />

a<br />

TPH fractions do not have CAS numbers.<br />

b<br />

Aliphatic F3 fractions were not modelled in marine plants, invertebrates, and fish as they are insufficiently soluble and bioavailable.<br />

dw Concentration is reported on a dry weight basis.<br />

ww Concentration is reported on a wet weight basis.<br />

Locations in parentheses: (K1) <strong>Kitimat</strong> 1 and (K2) <strong>Kitimat</strong> 2.<br />

2010 Page 4-13


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 4: Exposure <strong>Assessment</strong><br />

Table 4–3 Maximum Application Case Concentrations of COPC<br />

BTEX<br />

Constituent<br />

CAS Registry<br />

Number<br />

Surface Seawater<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water<br />

<strong>Marine</strong> Plant<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic<br />

Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Fish Tissue<br />

Concentration<br />

(mg/kg ww)<br />

Deep Seawater<br />

Concentration<br />

(mg/L)<br />

Off-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Off-shore <strong>Marine</strong><br />

Benthic<br />

Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Marine</strong> Ground Fish<br />

Tissue<br />

Concentration<br />

(mg/kg ww)<br />

Benzene 71-43-2 2.59E-04 (K2) 1.50E-02 (K2) 1.08E-03 (K2) 5.09E-05 (K2) 1.64E-04 (K2) 2.51E-04 (K1) 4.00E-02 (K1) 1.36E-04 (K1) 1.58E-04 (K1)<br />

Ethylbenzene 100-41-4 2.55E-04 (K2) 1.50E-02 (K2) 1.06E-02 (K2) 4.67E-05 (K2) 1.61E-03 (K2) 2.51E-04 (K1) 5.00E-02 (K1) 1.55E-04 (K1) 1.58E-03 (K1)<br />

Toluene 108-88-3 5.26E-04 (K2) 1.50E-02 (K2) 8.70E-03 (K2) 4.83E-05 (K2) 1.32E-03 (K2) 5.03E-04 (K1) 5.00E-02 (K1) 1.61E-04 (K1) 1.26E-03 (K1)<br />

Xylenes 1330-20-7 5.25E-04 (K2) 2.50E-02 (K2) 2.74E-02 (K2) 7.72E-05 (K2) 4.17E-03 (K2) 5.03E-04 (K1) 1.00E-01 (K1) 3.08E-04 (K1) 3.99E-03 (K1)<br />

TPH - CCME CWS % Composition a<br />

Aliph>C06-C08 - F1 0.55 1.31E-04 (K2) 1.01E-01 (K2) 4.21E-02 (K2) 1.46E-03 (K2) 6.40E-03 (K2) 1.52E-05 (K1) 8.52E-04 (K1) 1.23E-05 (K1) 7.41E-04 (K1)<br />

Aliph>C08-C10 - F1 0.36 1.72E-05 (K2) 2.01E-01 (K2) 4.39E-02 (K2) 2.68E-03 (K2) 6.66E-03 (K2) 2.00E-06 (K1) 8.54E-04 (K1) 1.14E-05 (K1) 7.72E-04 (K1)<br />

Arom>C08-C10 - F1 0.09 1.61E-05 (K2) 4.00E-01 (K2) 2.05E-03 (K2) 5.96E-03 (K2) 3.11E-04 (K2) 1.86E-06 (K1) 4.16E-05 (K1) 6.20E-07 (K1) 3.61E-05 (K1)<br />

F1 - Total 1 1.65E-04 (K2) 7.03E-01 (K2) 8.81E-02 (K2) 1.01E-02 (K2) 1.34E-02 (K2) 1.91E-05 (K1) 1.75E-03 (K1) 2.42E-05 (K1) 1.55E-03 (K1)<br />

Aliph>C10-C12 - F2 0.36 1.48E-05 (K2) 4.01E+00 (K2) 3.00E-01 (K2) 4.92E-02 (K2) 4.56E-02 (K2) 1.72E-06 (K1) 4.55E-03 (K1) 5.59E-05 (K1) 5.28E-03 (K1)<br />

Aliph>C12-C16 - F2 0.44 2.90E-05 (K2) 7.55E+00 (K2) 1.17E+01 (K2) 8.28E-02 (K2) 1.77E+00 (K2) 3.36E-06 (K1) 3.06E-02 (K1) 3.35E-04 (K1) 2.06E-01 (K1)<br />

Arom>C10-C12 - F2 0.09 1.86E-05 (K2) 6.30E+00 (K2) 3.77E-03 (K2) 9.22E-02 (K2) 5.72E-04 (K2) 2.16E-06 (K1) 1.98E-04 (K1) 2.89E-06 (K1) 6.63E-05 (K1)<br />

Arom>C12-C16 - F2 0.11 2.04E-05 (K2) 7.50E+00 (K2) 8.23E-03 (K2) 1.07E-01 (K2) 1.25E-03 (K2) 2.36E-06 (K1) 9.32E-04 (K1) 1.33E-05 (K1) 1.45E-04 (K1)<br />

F2 - Total 1 8.28E-05 (K2) 2.54E+01 (K2) 1.20E+01 (K2) 3.31E-01 (K2) 1.82E+00 (K2) 9.60E-06 (K1) 3.62E-02 (K1) 4.07E-04 (K1) 2.11E-01 (K1)<br />

Aliph>C16-C21 - F3 0.56 3.28E-05 (K2) 7.57E+00 (K2) - b - b - b 3.80E-06 (K1) 3.97E-02 (K1) - b - b<br />

Aliph>C21-C34 - F3 0.24 5.07E-05 (K2) 7.77E+00 (K2) - b - b - b 5.87E-06 (K1) 1.59E-01 (K1) - b - b<br />

Arom>C16-C21 - F3 0.14 2.26E-05 (K2) 7.51E+00 (K2) 2.88E-02 (K2) 2.05E-01 (K2) 4.37E-03 (K2) 2.61E-06 (K1) 3.22E-03 (K1) 8.78E-05 (K1) 5.06E-04 (K1)<br />

Arom>C21-C34 - F3 0.06 4.15E-05 (K2) 2.31E+01 (K2) 4.21E-01 (K2) 5.82E-01 (K2) 6.39E-02 (K2) 4.81E-06 (K1) 4.10E-02 (K1) 1.03E-03 (K1) 7.40E-03 (K1)<br />

F3 - Total 1 1.48E-04 (K2) 4.59E+01 (K2) 4.50E-01 (K2) 7.87E-01 (K2) 6.83E-02 (K2) 1.71E-05 (K1) 2.43E-01 (K1) 1.12E-03 (K1) 7.91E-03 (K1)<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAH<br />

Acenaphthene 83-32-9 4.00E-05 (K1) 8.50E-03 (K1) 5.00E-03 (K1) 5.00E-03 (K1) 5.00E-03 (K1) 4.00E-05 (K1) 2.50E-02 (K1) 5.00E-03 (K1) 8.48E-03 (K1)<br />

Acenaphthylene 208-96-8 8.00E-05 (K1) 2.50E-03 (K1) 5.00E-03 (K1) 5.00E-03 (K1) 5.00E-03 (K1) 8.00E-05 (K1) 2.50E-02 (K1) 5.00E-03 (K1) 8.48E-03 (K1)<br />

Anthracene 120-12-7 4.00E-05 (K2) 1.43E-02 (K2) 5.00E-03 (K2) 5.00E-03 (K2) 5.00E-03 (K2) 4.00E-05 (K1) 2.50E-02 (K1) 6.28E-03 (K1) 8.48E-03 (K1)<br />

Fluorene 86-73-7 1.20E-04 (K2) 5.00E-03 (K2) 5.01E-03 (K2) 5.00E-03 (K2) 5.00E-03 (K2) 1.20E-04 (K1) 2.50E-02 (K1) 5.00E-03 (K1) 8.48E-03 (K1)<br />

1-Methylnaphthalene 90-12-0 1.25E-07 (K2) 1.07E-06 (K2) 3.07E-05 (K2) 3.12E-08 (K2) 4.66E-06 (K2) 1.45E-08 (K1) 6.20E-07 (K1) 1.80E-08 (K1) 5.39E-07 (K1)<br />

2-Methylnaphthalene 91-57-6 2.10E-04 (K2) 1.00E-02 (K2) 5.02E-02 (K2) 2.91E-04 (K2) 7.63E-03 (K2) 2.10E-04 (K1) 2.50E-02 (K1) 7.27E-04 (K1) 7.63E-03 (K1)<br />

2010 Page 4-15


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 4: Exposure <strong>Assessment</strong><br />

Table 4–3 Maximum Application Case Concentrations of COPC (cont’d)<br />

Constituent<br />

CAS Registry<br />

Number<br />

Surface Seawater<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water<br />

<strong>Marine</strong> Plant<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic<br />

Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Fish Tissue<br />

Concentration<br />

(mg/kg ww)<br />

Deep Seawater<br />

Concentration<br />

(mg/L)<br />

Off-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Off-shore <strong>Marine</strong><br />

Benthic<br />

Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Marine</strong> Ground Fish<br />

Tissue<br />

Concentration<br />

(mg/kg ww)<br />

Naphthalene 91-20-3 1.10E-04 (K2) 3.00E-02 (K2) 5.01E-03 (K2) 5.00E-03 (K2) 5.00E-03 (K2) 1.10E-04 (K1) 2.50E-02 (K1) 6.28E-03 (K1) 1.00E-02 (K1)<br />

Phenanthrene 85-01-8 3.50E-04 (K2) 8.70E-02 (K2) 1.00E-02 (K2) 4.10E-02 (K2) 1.00E-02 (K2) 3.50E-04 (K1) 1.80E-01 (K1) 9.46E-03 (K1) 1.00E-02 (K1)<br />

High Molecular Weight PAH<br />

Fluoranthene 206-44-0 1.07E-03 (K1) 6.00E-02 (K1) 5.00E-03 (K1) 2.20E-02 (K1) 5.00E-03 (K1) 1.07E-03 (K1) 3.90E-01 (K1) 5.00E-03 (K1) 8.48E-03 (K1)<br />

Benz(a)anthracene 56-55-3 1.47E-03 (K2) 2.00E-02 (K2) 5.04E-03 (K2) 5.00E-03 (K2) 5.01E-03 (K2) 1.47E-03 (K1) 2.70E-01 (K1) 5.00E-03 (K1) 8.48E-03 (K1)<br />

Benzo(a)pyrene 50-32-8 8.70E-04 (K1) 5.00E-03 (K1) 5.00E-03 (K1) 5.00E-03 (K1) 5.00E-03 (K1) 8.70E-04 (K1) 3.60E-01 (K1) 5.00E-03 (K1) 8.48E-03 (K1)<br />

Benzo(e)pyrene 192-97-2 5.75E-13 (K1) 4.07E-09 (K1) 5.23E-08 (K1) 4.73E-10 (K1) 7.94E-09 (K1) 6.82E-14 (K1) 2.41E-09 (K1) 2.80E-10 (K1) 9.41E-10 (K1)<br />

Benzo(b)fluoranthene 205-99-2 4.69E-03 (K1) 2.90E-02 (K1) 5.00E-03 (K1) 1.00E-02 (K1) 5.00E-03 (K1) 4.69E-03 (K1) 7.00E-01 (K1) 5.00E-03 (K1) 8.48E-03 (K1)<br />

Benzo(g,h,i)perylene 191-24-2 2.50E-04 (K1) 5.00E-03 (K1) 5.00E-03 (K1) 5.00E-03 (K1) 5.00E-03 (K1) 2.50E-04 (K1) 2.30E-01 (K1) 5.00E-03 (K1) 8.48E-03 (K1)<br />

Benzo(k)fluoranthene 207-08-9 4.00E-05 (K1) 5.00E-03 (K1) 5.00E-03 (K1) 5.00E-03 (K1) 5.00E-03 (K1) 4.00E-05 (K1) 2.50E-02 (K1) 5.00E-03 (K1) 8.48E-03 (K1)<br />

Chrysene 218-01-9 1.98E-03 (K1) 2.80E-02 (K1) 5.00E-03 (K1) 1.40E-02 (K1) 5.00E-03 (K1) 1.98E-03 (K1) 3.20E-01 (K1) 5.00E-03 (K1) 8.48E-03 (K1)<br />

Dibenz(a,h)anthracene 53-70-3 8.00E-05 (K1) 2.50E-03 (K1) 5.00E-03 (K1) 5.00E-03 (K1) 5.00E-03 (K1) 8.00E-05 (K1) 6.00E-02 (K1) 5.00E-03 (K1) 8.48E-03 (K1)<br />

Indeno(1,2,3-cd)pyrene 193-39-5 4.80E-04 (K1) 5.00E-03 (K1) 5.00E-03 (K1) 5.00E-03 (K1) 5.00E-03 (K1) 4.80E-04 (K1) 2.50E-01 (K1) 5.00E-03 (K1) 8.48E-03 (K1)<br />

Pyrene 129-00-0 9.60E-04 (K2) 3.60E-02 (K2) 5.02E-03 (K2) 1.40E-02 (K2) 5.00E-03 (K2) 9.60E-04 (K1) 4.00E-01 (K1) 5.00E-03 (K1) 8.48E-03 (K1)<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 120-82-1 2.99E-06 (K2) 1.12E-04 (K2) 9.88E-04 (K2) 3.23E-05 (K2) 7.50E-05 (K2) 3.47E-07 (K1) 6.51E-05 (K1) 1.87E-05 (K1) 8.69E-06 (K1)<br />

1,3,5-Trimethylbenzene 108-67-8 1.76E-06 (K2) 5.35E-06 (K2) 1.53E-04 (K2) 1.62E-06 (K2) 2.32E-05 (K2) 2.04E-07 (K1) 3.09E-06 (K1) 9.35E-07 (K1) 2.68E-06 (K1)<br />

Phenolic Compounds<br />

Phenol 108-95-2 6.36E-10 (K2) 2.75E-12 (K2) 6.63E-10 (K2) 9.83E-13 (K2) 1.01E-10 (K2) 7.36E-11 (K1) 1.59E-12 (K1) 5.69E-13 (K1) 1.17E-11 (K1)<br />

2,4-Dimethylphenol 105-67-9 9.29E-10 (K2) 2.54E-11 (K2) 6.12E-09 (K2) 8.46E-12 (K2) 4.65E-10 (K2) 1.08E-10 (K1) 1.47E-11 (K1) 4.90E-12 (K1) 5.38E-11 (K1)<br />

2,4-Dinitrophenol 51-28-5 3.52E-09 (K2) 1.42E-10 (K2) 4.03E-09 (K2) 5.06E-11 (K2) 3.06E-10 (K2) 4.08E-10 (K1) 8.21E-11 (K1) 2.92E-11 (K1) 3.54E-11 (K1)<br />

Trace Elements<br />

Barium 7440-39-3 1.70E-02 (K1) 3.57E+01 (K1) 3.04E+01 (K1) 4.37E+00 (K1) 1.44E+00 (K1) 1.70E-02 (K1) 1.52E+02 (K1) 1.63E+00 (K1) 6.90E-01 (K1)<br />

Boron 7440-42-8 3.90E+00 (K2) 1.39E-08 (K2) 6.44E+00 (K2) 4.71E-09 (K2) 7.33E-01 (K2) 3.90E+00 (K1) 5.78E+01 (K1) 1.96E+01 (K1) 7.33E-01 (K1)<br />

Cadmium 7440-43-9 1.70E-04 (K1) 1.00E-01 (K1) 3.59E-01 (K1) 2.88E-01 (K1) 1.48E-02 (K1) 1.70E-04 (K1) 9.00E-02 (K1) 2.13E-01 (K1) 5.43E-02 (K1)<br />

Manganese 7439-96-5 1.48E+00 (K1) 5.55E-05 (K1) 2.65E+01 (K1) 1.17E+01 (K1) 6.67E+00 (K1) 1.48E+00 (K1) 7.01E+02 (K1) 5.08E+00 (K1) 1.49E+00 (K1)<br />

Molybdenum 7439-98-7 9.60E-03 (K2) 5.40E-01 (K2) 4.30E-02 (K2) 2.18E-01 (K2) 6.34E-01 (K2) 9.60E-03 (K1) 2.50E-01 (K1) 2.18E-01 (K1) 1.59E-01 (K1)<br />

Nickel 7440-02-0 8.80E-04 (K2) 9.40E+00 (K2) 8.90E-01 (K2) 1.19E+00 (K2) 3.69E+00 (K2) 8.80E-04 (K1) 2.43E+01 (K1) 9.32E-01 (K1) 2.49E+00 (K1)<br />

Tin 7440-31-5 5.00E-03 (K2) 2.50E+00 (K2) 2.50E-02 (K2) 1.00E-01 (K2) 5.70E-02 (K2) 5.00E-03 (K1) 1.00E+00 (K1) 2.98E-02 (K1) 2.65E-01 (K1)<br />

Vanadium 7440-62-2 5.00E-02 (K2) 5.36E+00 (K2) 4.60E-01 (K2) 4.50E-01 (K2) 4.90E-01 (K2) 5.00E-02 (K1) 1.44E+01 (K1) 1.91E-01 (K1) 9.69E-02 (K1)<br />

Zinc 7440-66-6 2.10E-02 (K1) 3.81E+01 (K1) 5.58E+00 (K1) 3.33E+01 (K1) 1.75E+01 (K1) 2.10E-02 (K1) 8.59E+01 (K1) 3.73E+01 (K1) 1.88E+01 (K1)<br />

NOTES:<br />

a<br />

TPH fractions do not have CAS numbers.<br />

b<br />

Aliphatic F3 fractions were not modelled in marine plants, invertebrates, and fish as they are insufficiently soluble and bioavailable.<br />

dw Concentration is reported on a dry weight basis.<br />

ww Concentration is reported on a wet weight basis.<br />

Locations in parentheses: (K1) <strong>Kitimat</strong> 1 and (K2) <strong>Kitimat</strong> 2.<br />

2010 Page 4-17


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 4: Exposure <strong>Assessment</strong><br />

4.3 Calculation of Daily Dose <strong>for</strong> Mammalian and Avian KI<br />

For mammalian and avian KI, exposure to COPC is calculated as the average daily dose (ADD) ingested.<br />

The ADD can be defined as the amount of a COPC a modelled species might be exposed to on a<br />

mg/kg-bw/day basis. For each modelled species and COPC, the ADD is calculated by summing the intake<br />

from each applicable exposure pathway. The generalized equation <strong>for</strong> ADD is:<br />

For exposure pathway j, where:<br />

IFj<br />

AFj<br />

ADDj = IFj x AFj x EPCj<br />

= Intake Factor (kg contaminated medium / kg body weight • day)<br />

= Absorption Factor (default value of 1; most conservative)<br />

EPCj = Exposure Point Concentration (mg COPC / kg medium)<br />

The Intake Factor (IF) is not specific to each COPC, but is a characteristic of the species being evaluated.<br />

The IF is calculated <strong>for</strong> each exposure pathway using the KI’s medium-specific ingestion rate (IR), the<br />

fraction of the time spent on site (fsite, assumed to equal 100%) and the KI’s body weight (BW, kg) as<br />

follows:<br />

IFj = IRj x fsite / BW<br />

As a conservative measure, modelled species are assumed to spend 100% of their time in each of the<br />

modelled compartments within the PEAA. This means that exposure to COPC from emission sources is<br />

assumed to occur continuously throughout the life of the KI. It is acknowledged that some species will<br />

move between compartments, or in and out of the PEAA (e.g., <strong>for</strong> migration), thereby reducing their<br />

exposure. However, the conservative assumption that a species may be exposed to the highest possible<br />

COPC concentration at all times is meant to be a protective measure. For details related to the body<br />

weight, dietary composition (plant, insect, prey), water and soil ingestion rates <strong>for</strong> each of the modelled<br />

species, refer to Appendix G where details and results of ADD calculations are also presented.<br />

4.4 Exposure Estimates <strong>for</strong> Community-Level Receptors<br />

Community-level receptors are treated as being primarily associated with a single environmental medium<br />

(e.g., benthic invertebrates and sediment), and the potential <strong>for</strong> adverse environmental effects can be<br />

characterized by comparing COPC concentrations in each medium with corresponding toxicity<br />

benchmarks (see section 5.1 <strong>for</strong> additional discussion). There<strong>for</strong>e, the EPC associated with the relevant<br />

environmental medium <strong>for</strong> each community-level marine receptors is used as the exposure estimate<br />

(relevant media are identified in the conceptual site model; see Figure 3-3). The exposure assessment <strong>for</strong><br />

community-level marine receptors does not require the use of UP or ADD calculations.<br />

2010 Page 4-19


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 5: Hazard <strong>Assessment</strong><br />

5 Hazard <strong>Assessment</strong><br />

The hazard assessment identifies the potential adverse environmental effects associated with chronic<br />

exposure of receptors to each COPC. A toxicity assessment is the basis <strong>for</strong> evaluating what might be an<br />

acceptable exposure level, as well as what level may result in adverse environmental effects. The amount<br />

of a substance that can be tolerated, below which adverse environmental effects are not expected to be<br />

observed in a population, is referred to as the toxicity reference value (TRV).<br />

5.1 Derivation of Benchmarks <strong>for</strong> Water and Sediment<br />

Community-level <strong>Marine</strong> Receptors<br />

In this section, only environmental effects that are not otherwise mitigated or compensated <strong>for</strong> are<br />

considered. For the full derivation of benchmark values <strong>for</strong> COPC concentrations in water and sediment,<br />

see Appendix I. A brief summary of the processes involved is presented below.<br />

Adverse environmental effects are defined as those that are detrimental to overall environmental quality.<br />

Without being limiting, in the context of the marine environment, adverse effects could include changes<br />

in water or sediment quality that result in higher ambient concentrations of substances that are considered<br />

to be contaminants, changes in salinity, or changes in thermal regimes. Adverse environmental effects to<br />

the marine environment could also include uncompensated changes in habitat quality or quantity.<br />

The CCME Water Quality Guidelines (WQG, CCME 1999b and updates) <strong>for</strong> the protection of marine life<br />

are presently very limited in terms of the chemical substances <strong>for</strong> which guidelines have been developed<br />

(<strong>for</strong> example, while there are guidelines <strong>for</strong> benzene, ethylbenzene and toluene, there are no guidelines <strong>for</strong><br />

other petroleum hydrocarbon constituents). The WQG are also highly conservative, and it is unclear<br />

whether exceeding a guideline would result in a likely environmental effect.<br />

The CCME Sediment Quality Guidelines (SQG, CCME 1999b and updates) have been criticized on the<br />

basis of their derivation, and are also highly conservative. While it is true that there is a low probability of<br />

adverse environmental effects at constituent concentrations below the SQG levels, there is likewise low<br />

certainty that an adverse environmental effect would occur at a constituent concentration above the<br />

guideline. Benchmark values used to determine the magnitude of environmental effects should be effects<br />

based (i.e., the benchmarks should be referenced to a standard level of effect on marine biota).<br />

Alternatives to the CCME environmental quality guidelines are there<strong>for</strong>e required in order to classify<br />

environmental effect magnitude. A four-tiered approach to evaluating environmental effects magnitude<br />

benchmarks <strong>for</strong> substances added to the marine environment is developed here and is fully described in<br />

Appendix I. The four effect magnitude tiers (see Figure 5-1) are:<br />

• negligible<br />

• low<br />

• moderate<br />

• high<br />

2010 Page 5-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 5: Hazard <strong>Assessment</strong><br />

Figure 5–1 Conceptual Model of Environmental Effect Magnitude<br />

Negligible is defined as the concentration of a substance that falls below the routine analytical limit of<br />

detection <strong>for</strong> that environmental medium (water or sediment, see Figure 5-1). If the concentration of the<br />

substance cannot be detected in the environment using current laboratory standards, it is deemed to have a<br />

negligible probability of having an adverse effect in the environment.<br />

Low is bounded at the lower limit by the analytical limit of detection, and the upper limit by the CHC5<br />

(chronically hazardous concentration – 5 th percentile). The CHC5 is defined as the 5 th percentile of the<br />

species sensitivity distribution (SSD) of chronic no observed effect concentrations (chronic NOEC) <strong>for</strong> all<br />

available data. This value <strong>for</strong> any particular substance is the concentration at which 95% of species tested<br />

would show no observable effect on any tested endpoint (typically growth, reproduction and survival)<br />

during long-term exposure. There<strong>for</strong>e, this value is likely to be protective of more than 95% of species in<br />

the environment and is thought to protect the integrity of the ecosystem.<br />

Moderate is bounded at the lower end by the CHC5 and at the upper end by the CHC50 (chronically<br />

hazardous concentration – 50 th percentile). The CHC50 is similar to the CHC5, but instead uses the median<br />

or 50 th percentile of the species NOEC distributions. Effectively, at the CHC50 level, 50% of species are<br />

showing some level of effect on one or more of the tested endpoints, but equally 50% of species are<br />

showing no adverse effects. Note that this level of effects is still anticipated to be below any acute<br />

lethality threshold. A high environmental effect magnitude benchmark begins at the CHC50 level.<br />

The environmental effects magnitude benchmarks are all intended to lie below any acute lethality<br />

threshold. It is also important to note that the benchmarks are intended to be protective based on chronic<br />

or long-term exposure, and there<strong>for</strong>e would be highly protective of short-term or acute exposures. It is<br />

generally anticipated that the existing CCME Guidelines <strong>for</strong> the protection of freshwater or marine<br />

aquatic life would be in the low range of environmental effects benchmarks.<br />

See Table 5-1 <strong>for</strong> the selected benchmark values <strong>for</strong> determination of effect magnitude <strong>for</strong> the marine<br />

water. See Table 5-2 <strong>for</strong> the selected benchmark values <strong>for</strong> determination of effect magnitude <strong>for</strong> marine<br />

sediment.<br />

Page 5-2 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 5: Hazard <strong>Assessment</strong><br />

5.2 Derivation of Oral Reference Values <strong>for</strong> Mammalian and Avian<br />

<strong>Marine</strong> Receptors<br />

The toxicological database in support of an oral-based TRV preferably includes a number of chronic or<br />

multi-generational exposure studies involving exposure of relevant test species (i.e., the modelled species<br />

of interest or a phylogenetically similar species) to appropriate chemical <strong>for</strong>ms of the substance of<br />

interest. Ideally, one or more relevant biological endpoints such as growth, reproductive outcomes or<br />

survival were measured in the study. Databases that meet this requirement are available <strong>for</strong> some<br />

chemicals, but in most cases, available toxicity data are limited to studies of with laboratory animals<br />

(e.g., mammals [mice, rats, rabbits] and birds [quail, chicken, ducks]).<br />

TRV (see Appendix I) are based on dose response studies of laboratory animals where the LOAEL or<br />

NOAEL has been quantified. TRV used in this risk assessment were determined from studies in which<br />

endpoints are derived from the administered dose, rather than the absorbed dose. This is a conservative<br />

approach because compounds are often administered in a more available <strong>for</strong>m than would be found in the<br />

environment.<br />

The toxicity measure preferred <strong>for</strong> derivation of TRV in this <strong>Marine</strong> ERA is the LOAEL; however, in the<br />

absence of a suitable LOAEL, NOAEL-based TRV are used. Generally, LOAEL used towards TRV<br />

derivation are based on long-term growth or survival, or sub-lethal reproductive outcomes determined<br />

from chronic exposure studies. As such, these endpoints are relevant to the maintenance of wildlife<br />

populations. The LOAEL represents a threshold dose at which adverse outcomes are likely to become<br />

evident (Sample et al. 1996). This threshold is considered appropriate since TRV are used as the<br />

denominator in the HQ calculation (see Section 6), and HQ greater than 1.0 may be considered indicative<br />

of potential adverse environmental effects. Hazard quotients calculated with NOAEL-based TRV are<br />

more conservative since NOAEL represent an exposure level threshold at which no individual<br />

environmental effect from COPC exposure is observed.<br />

Numerous sources were reviewed to obtain the most relevant TRV <strong>for</strong> KI. Full details regarding TRVs<br />

can be found in Appendix I. All in<strong>for</strong>mation sources reviewed are provided and referenced can also be<br />

found in Appendix I, such as:<br />

• Oak Ridge National Laboratory Toxicity Benchmarks <strong>for</strong> Wildlife (Sample et al. 1996)<br />

• U.S. Environmental Protection Agency’s <strong>Ecological</strong> Soil Screening documents<br />

• Agency <strong>for</strong> Toxic Substances and Disease Registry (ATSDR)<br />

• Canadian Environmental Protection Act (CEPA), Priority Substance List <strong>Assessment</strong> Reports<br />

• primary scientific literature<br />

2010 Page 5-3


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 5: Hazard <strong>Assessment</strong><br />

Table 5–1 <strong>Marine</strong> Water Effect Magnitude Benchmarks<br />

Concentration<br />

(mg/L)<br />

Trace Elements<br />

Negligible<br />

DL Fresh a<br />

Low<br />

CHC5<br />

Page 5-4 2010<br />

Ref.<br />

Moderate<br />

CHC50<br />

Barium 2.0E-05 5.8E-03 MPA b 1.5E+01 SRAeco b<br />

Boron 2.0E-04 5.1E+00 ANZECC 9.8E+00 c<br />

Cadmium 5.0E-07 5.5E-03 ANZECC 2.7E-02 SRAeco d<br />

Manganese 2.0E-05 8.0E-02 ANZECC 3.6E+00 e<br />

Molybdenum 2.0E-05 2.3E-02 ANZECC 5.4E+01 SRAeco d<br />

Nickel 2.0E-05 7.0E-02 ANZECC 5.0E-01 SRAeco d<br />

Tin 2.0E-05 1.0E-02 ANZECC 4.0E-01 SRAeco b<br />

Vanadium 2.0E-05 1.0E-01 ANZECC 3.0E-01 f<br />

Zinc 2.0E-04 1.5E-02 ANZECC 8.9E-02 SRAeco d<br />

BTEX<br />

Benzene 5.0E-04 5.6E+00<br />

2.3E+01<br />

EthylBenzene 5.0E-04 8.7E-01 3.5E+00<br />

Di Toro et al. 2000<br />

Toluene 5.0E-04 1.8E+00 7.3E+00<br />

Xylenes (tot) 5.0E-04 7.0E-01 2.8E+00<br />

Ref.<br />

Di Toro et al. 2000<br />

High


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 5: Hazard <strong>Assessment</strong><br />

Table 5–1 <strong>Marine</strong> Water Effect Magnitude Benchmarks (cont’d)<br />

PAH<br />

Concentration<br />

(mg/L)<br />

Negligible<br />

DL Fresh a<br />

Low<br />

CHC5<br />

2010 Page 5-5<br />

Ref.<br />

CHC50<br />

1-Methylnaphthalene 1.0E-05 1.2E-01 4.8E-01<br />

2-Methylnaphthalene 1.0E-05 1.2E-01 4.9E-01<br />

Acenaphthene 1.0E-05 1.2E-01 4.9E-01<br />

Acenaphthylene 1.0E-05 9.4E-02 3.9E-01<br />

Anthracene 1.0E-05 3.8E-02 1.5E-01<br />

Benzo(a)anthracene 1.0E-05 3.5E-03 1.4E-02<br />

Benzo(b)fluoranthene 1.0E-05 1.6E-03 6.4E-03<br />

Benzo(k)fluoranthene 1.0E-05 1.6E-03 6.7E-03<br />

Benzo(ghi)perylene 1.0E-05 7.5E-04 3.1E-03<br />

Di Toro et al. 2000<br />

Benzo(a)pyrene 1.0E-05 2.0E-03 8.3E-03<br />

Benzo(e)pyrene 1.0E-05 7.8E-04 3.2E-03<br />

Chrysene 1.0E-05 3.5E-03 1.4E-02<br />

Dibenzo(a,h)anthracene 1.0E-05 7.6E-04 3.1E-03<br />

Fluoranthene 1.0E-05 1.4E-02 5.9E-02<br />

Fluorene 1.0E-05 6.8E-02 2.8E-01<br />

Indeno(123-cd)pyrene 1.0E-05 6.1E-04 2.5E-03<br />

Naphthalene 5.0E-05 3.7E-01 1.5E+00<br />

Phenanthrene 1.0E-05 3.8E-02 1.5E-01<br />

Pyrene 1.0E-05 1.8E-02 7.3E-02<br />

Moderate<br />

Ref.<br />

Di Toro et al. 2000<br />

High


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 5: Hazard <strong>Assessment</strong><br />

Table 5–1 <strong>Marine</strong> Water Effect Magnitude Benchmarks (cont’d)<br />

Concentration<br />

(mg/L)<br />

Phenolic Compounds<br />

DL Fresh a<br />

CHC5<br />

2,4-Dimethylphenol 1.0E-04 5.7E+00<br />

Negligible<br />

Low<br />

Page 5-6 2010<br />

Ref.<br />

Moderate<br />

CHC50<br />

2.3E+01<br />

2,4-Dinitrophenol 1.0E-04 4.5E+01 Di Toro et al. 2000<br />

1.8E+02<br />

Phenol 5.0E-02 2.5E+01 1.0E+02<br />

TPH Fractions<br />

Aliphatics >C6-C8 5.0E-03 1.2E-01<br />

Aliphatics >C21-C32 2.0E-02 --- Di Toro et al. 2000<br />

---<br />

4.8E-01<br />

Aliphatics >C8-C10 5.0E-03 2.2E-02 8.9E-02<br />

Aliphatics >C10-C12 1.0E-02 3.8E-03 1.5E-02<br />

Aliphatics >C12-C16 1.0E-02 2.8E-04 1.1E-03<br />

Aliphatics >C16-C21 1.0E-02 --- ---<br />

Aromatics >C8-C10 5.0E-03 3.4E-01 1.4E+00<br />

Aromatics >C10-C12 1.0E-02 2.4E-01 9.7E-01<br />

Aromatics >C12-C16 1.0E-02 1.4E-01 5.8E-01<br />

Aromatics >C16-C21 1.0E-02 6.1E-02 2.5E-01<br />

Aromatics >C21-C32 2.0E-02 1.1E-02 4.4E-02<br />

Ref.<br />

Di Toro et al. 2000<br />

Di Toro et al. 2000<br />

High


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 5: Hazard <strong>Assessment</strong><br />

Table 5–1 <strong>Marine</strong> Water Effect Magnitude Benchmarks (cont’d)<br />

NOTES:<br />

--- Not considered because of negligible solubility and bioavailability.<br />

ANZECC Australian and New Zealand Environmental Conservation Council. 2000. Australian and New Zealand Guidelines <strong>for</strong> Fresh and <strong>Marine</strong> Water<br />

Quality.<br />

CHC Chronic Hazardous Concentration<br />

DL Detection Limit<br />

MPA Maximum Permissible Addition concentration (as described by the RIVM; van Vlaardingen et al. 2005)<br />

SRAeco Ecotoxicological Serious <strong>Risk</strong> Addition concentration (as described by the RIVM; Verbruggen et al. 2001; van Vlaardingen et al. 2005).<br />

Ref. Reference<br />

a<br />

Freshwater detection limits as provided by RPC Laboratories; detection limits <strong>for</strong> freshwater are generally lower than <strong>for</strong> marine water and were selected to be<br />

more conservative.<br />

b<br />

van Vlaardingen et al. (2005). (RIVM)<br />

c<br />

Geometric mean of chronic toxicity data (NOAEL) <strong>for</strong> freshwater species (marine chronic data not available, but acute marine and freshwater data were not<br />

significantly different).<br />

d<br />

Verbruggen et al. (2001). (RIVM)<br />

e<br />

Geometric mean of acute toxicity data (LC50 and EC50) <strong>for</strong> aquatic species divided by an uncertainty factor of 10.<br />

f<br />

Reliable CHC50 not available. Assumed to be three times the CHC5.<br />

2010 Page 5-7


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 5: Hazard <strong>Assessment</strong><br />

Table 5–2 <strong>Marine</strong> Sediment Effect Magnitude Benchmarks<br />

Concentration<br />

(mg/kg dw)<br />

Trace Elements<br />

Baseline Concentrations <strong>for</strong> Model Compartments a Incremental <strong>Marine</strong> Sediment Effect Magnitude Benchmarks<br />

CB and EP K1, K2 and T<br />

Nearshore<br />

Off-shore Near-shore Off-shore<br />

Barium 2.9E+01 1.3E+02 3.6E+01 1.5E+02 2.0E-02 5.8E+00<br />

Negligible<br />

DL b CHC5 Ref. CHC50 Ref.<br />

Page 5-8 2010<br />

Low<br />

EqP c<br />

Moderate<br />

1.5E+04<br />

Boron --- 3.9E+01 --- 5.8E+01 8.0E-04 2.0E+01 3.9E+01<br />

Cadmium < 1.0E-01 < 5.0E-02 1.0E-01 9.0E-02 5.0E-03 5.5E+01 2.7E+02<br />

Manganese --- 5.5E+02 --- 7.0E+02 1.5E+00 6.0E+03 2.7E+05<br />

Molybdenum 3.8E-01 < 5.0E-01 5.4E-01 < 5.0E-01 5.0E-02 5.8E+01 1.4E+05<br />

Nickel 8.2E+00 2.1E+01 9.4E+00 2.4E+01 6.3E-02 2.2E+02 1.6E+03<br />

Tin < 5.0E+00 < 2.0E+00 < 5.0E+00 < 2.0E+00 1.6E-01 7.9E+01 3.2E+03<br />

Vanadium d 4.4E+01 1.3E+02 5.4E+01 1.4E+02 1.0E-02 5.0E+01 1.5E+02<br />

Zinc 3.4E+01 8.0E+01 3.8E+01 8.6E+01 2.0E+00 1.5E+02 8.9E+02<br />

BTEX<br />

Benzene<br />

EthylBenzene<br />

< 3.0E-02<br />

< 3.0E-02<br />

< 8.0E-02<br />

< 1.0E-01<br />

< 3.0E-02<br />

< 3.0E-02<br />

< 8.0E-02<br />

< 1.0E-01<br />

8.0E-02<br />

1.0E-01<br />

6.5E+00<br />

9.7E+00<br />

Di Toro<br />

and<br />

2.7E+01<br />

3.9E+01<br />

Toluene<br />

Xylenes (tot)<br />

< 3.0E-02<br />

< 5.0E-02<br />

< 1.0E-01<br />

< 2.0E-01<br />

< 3.0E-02<br />

< 5.0E-02<br />

< 1.0E-01<br />

< 2.0E-01<br />

1.0E-01<br />

2.0E-01<br />

8.1E+00<br />

9.8E+00<br />

McGrath<br />

2000<br />

3.3E+01<br />

4.0E+01<br />

EqP c<br />

Di Toro<br />

and<br />

McGrath<br />

2000<br />

High


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 5: Hazard <strong>Assessment</strong><br />

Table 5–2 <strong>Marine</strong> Sediment Effect Magnitude Benchmarks<br />

Concentration<br />

(mg/kg dw)<br />

Baseline Concentrations <strong>for</strong> Model<br />

Compartments a<br />

CB and EP K1, K2 and T<br />

Nearshore<br />

Off-shore<br />

Nearshore<br />

Off-shore<br />

Negligible<br />

Incremental <strong>Marine</strong> Sediment Effect Magnitude Benchmarks<br />

DL<br />

b<br />

CHC5 Ref . CHC50 Ref<br />

PAH<br />

1-<br />

Methylnaphthalen<br />

e<br />

--- --- --- --- --- 7.6E+00<br />

3.1E+01<br />

2-<br />

Di Toro<br />

Di Toro<br />

Methylnaphthalen < 1.0E-02 < 5.0E-02 1.0E-02 < 5.0E-02 5.0E-02 7.6E+00 and<br />

3.1E+01 and<br />

e<br />

McGrath<br />

McGrath<br />

Acenaphthene < 5.0E-03 < 5.0E-02 8.5E-03 < 5.0E-02 5.0E-02 8.2E+00<br />

2000<br />

3.4E+01<br />

2000<br />

Acenaphthylene < 5.0E-03 < 5.0E-02 < 5.0E-03 < 5.0E-02 5.0E-02 8.1E+00 3.3E+01<br />

Anthracene < 5.0E-03 < 5.0E-02 1.4E-02 < 5.0E-02 5.0E-02 1.0E+01 4.1E+01<br />

Benzo(a)anthrace<br />

ne<br />

7.5E-03 < 5.0E-02 2.0E-02 2.7E-01 5.0E-02 1.4E+01<br />

5.8E+01<br />

Benzo(b)fluoranth<br />

ene<br />

1.4E-02 7.5E-02 2.9E-02 7.0E-01 5.0E-02 1.6E+01 6.7E+01<br />

Benzo(k)fluoranth<br />

ene<br />

< 1.0E-02 < 5.0E-02 < 1.0E-02 < 5.0E-02 5.0E-02 1.6E+01 6.7E+01<br />

Benzo(ghi)peryle<br />

ne<br />

< 1.0E-02 < 5.0E-02 < 1.0E-02 2.3E-01 5.0E-02 1.9E+01 7.5E+01<br />

Benzo(a)pyrene < 1.0E-02 < 5.0E-02 < 1.0E-02 3.6E-01 5.0E-02 1.6E+01 6.6E+01<br />

Benzo(e)pyrene --- --- --- --- --- 1.7E+01 6.9E+01<br />

2010 Page 5-9<br />

Low<br />

Moderate<br />

High


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 5: Hazard <strong>Assessment</strong><br />

Table 5–2 <strong>Marine</strong> Sediment Effect Magnitude Benchmarks<br />

Concentration<br />

(mg/kg dw)<br />

Baseline Concentrations <strong>for</strong> Model Compartments<br />

a<br />

CB and EP K1, K2 and T<br />

Nearshore<br />

Off-shore<br />

Nearshore<br />

Off-shore<br />

Chrysene 1.1E-02 < 5.0E-02 2.8E-02 3.2E-01<br />

Dibenzo(a,h)anthr<br />

acene<br />

Negligible<br />

Page 5-10 2010<br />

DL<br />

5.0E-02<br />

Incremental <strong>Marine</strong> Sediment Effect Magnitude Benchmarks<br />

b CHC5 Ref . CHC50 Ref<br />

Low<br />

1.4E+01<br />

< 5.0E-03 < 5.0E-02 < 5.0E-03 6.0E-02 5.0E-02 1.9E+01<br />

Moderate<br />

5.8E+01<br />

7.6E+01<br />

Fluoranthene 1.5E-02 4.3E-02 6.0E-02 3.9E-01 5.0E-02 1.2E+01 4.8E+01<br />

Fluorene < 1.0E-02 < 5.0E-02 < 1.0E-02 < 5.0E-02 5.0E-02 9.1E+00 3.7E+01<br />

Indeno(123cd)pyrene<br />

< 1.0E-02 < 5.0E-02 < 1.0E-02 2.5E-01 5.0E-02 1.9E+01<br />

7.6E+01<br />

Naphthalene < 1.0E-02 < 5.0E-02 3.0E-02 < 5.0E-02 5.0E-02 6.5E+00 2.6E+01<br />

Phenanthrene 9.0E-03 < 5.0E-02 8.7E-02 1.8E-01 5.0E-02 1.0E+01 4.1E+01<br />

Pyrene<br />

Phenolic<br />

Compounds<br />

1.0E-02 4.3E-02 3.6E-02 4.0E-01 5.0E-02 1.2E+01 4.8E+01<br />

2,4-<br />

Dimethylphenol<br />

--- --- --- --- --- 1.0E+01 Di Toro<br />

and<br />

4.2E+01 Di Toro<br />

and<br />

2,4-Dinitrophenol --- --- --- --- --- 1.5E+01 McGrath 6.0E+01 McGrath<br />

Phenol<br />

TPH Fractions<br />

--- --- --- --- --- 7.5E+00<br />

2000<br />

3.0E+01<br />

2000<br />

Al >C6-C8 < 2.0E-01 --- < 2.0E-01 --- 2.0E-01 9.8E+00 Di Toro 4.0E+01 Di Toro<br />

Al >C8-C10 < 4.0E-01 --- < 4.0E-01 --- 4.0E-01 1.4E+01<br />

and<br />

McGrath<br />

5.6E+01<br />

and<br />

McGrath<br />

Al >C10-C12 < 8.0E+00 --- < 8.0E+00 --- 8.0E+00 1.8E+01 2000<br />

7.5E+01<br />

2000<br />

High


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 5: Hazard <strong>Assessment</strong><br />

Table 5–2 <strong>Marine</strong> Sediment Effect Magnitude Benchmarks<br />

Concentration<br />

(mg/kg dw)<br />

Baseline Concentrations <strong>for</strong> Model Compartments<br />

a<br />

CB and EP K1, K2 and T<br />

Near-shore Off-shore<br />

Nearshore<br />

Off-shore<br />

Al >C12-C16 < 1.5E+01 --- < 1.5E+01 ---<br />

Negligible<br />

2010 Page 5-11<br />

DL<br />

1.5E+01<br />

Incremental <strong>Marine</strong> Sediment Effect Magnitude Benchmarks<br />

b CHC5 Ref . CHC50 Ref<br />

Low<br />

2.6E+01<br />

Al >C16-C21 < 1.5E+01 --- < 1.5E+01 --- 1.5E+01 --- e --- e<br />

Al >C21-C32 < 1.5E+01 --- < 1.5E+01 --- 1.5E+01 --- e --- e<br />

Moderate<br />

1.1E+02<br />

Ar >C8-C10 < 3.0E-01 --- 4.0E-01 --- 3.0E-01 1.1E+01 4.6E+01<br />

Ar >C10-C12 < 5.0E+00 --- 6.3E+00 --- 5.0E+00 1.3E+01<br />

5.1E+01<br />

Ar >C12-C16 < 1.5E+01 --- < 1.5E+01 --- 1.5E+01 1.5E+01 6.1E+01<br />

Ar >C16-C21 < 1.5E+01 --- < 1.5E+01 --- 1.5E+01 2.0E+01 8.0E+01<br />

Ar >C21-C32 < 1.5E+01 --- 2.3E+01 --- 1.5E+01 2.7E+01 1.1E+02<br />

VOCs<br />

1,2,4-<br />

Trichlorobenzene<br />

1,3,5-<br />

Trimethylbenzene<br />

--- --- --- --- --- 1.0E+01 Di Toro<br />

and<br />

4.2E+01<br />

--- --- --- --- --- 6.4E+00<br />

McGrath<br />

2000<br />

2.6E+01<br />

Di Toro<br />

and<br />

McGrath<br />

2000<br />

High


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 5: Hazard <strong>Assessment</strong><br />

Table 5–2 <strong>Marine</strong> Sediment Effect Magnitude Benchmarks (cont’d)<br />

NOTES:<br />

--- Indicates results not reported by the laboratory or analysis not requested.<br />

CHC Chronic Hazardous Concentration<br />

DL Detection Limit<br />

dw dry weight<br />

EqP Equilibrium Partitioning<br />

Ref. Reference<br />

Model Compartments<br />

CB Clio Bay<br />

EP Emsley Point<br />

K1 <strong>Kitimat</strong> 1<br />

K2 <strong>Kitimat</strong> 2<br />

T Terminal<br />

a<br />

Reported concentrations <strong>for</strong> samples collected in compartments K1, K2 and T. For near-shore sediments maximum concentrations were assigned to K1, K2 and<br />

T compartments whereas median concentrations were assigned to CB and EP. For offshore sediments, maximum concentrations of samples collected in the<br />

vicinity of the marine terminal were assigned to K1, K2 and T compartments whereas average concentrations of samples collected at a reference locations<br />

situated on the opposite shore were assigned to compartments CB and EP. Concentration of organics in sediments is assumed to be negligible in the derivation<br />

of benchmarks.<br />

b<br />

For trace elements, derived detection limit based on the equilibrium partitioning approach using the freshwater water detection limits and compound specific Kd<br />

values; detection limits <strong>for</strong> freshwater are generally lower than <strong>for</strong> marine water and were selected to be more conservative. For organics, detection limit as<br />

provided by Maxxam and ALS Laboratories.<br />

c<br />

CHC5 and CHC50 benchmarks <strong>for</strong> trace elements were derived using the equilibrium partitioning approach using corresponding seawater benchmarks and<br />

compound specific Kd values.<br />

d<br />

Total baseline vanadium sediment concentrations are reported although the bioavailable fraction, is assumed to represent 10% of the total vanadium<br />

concentration.<br />

e<br />

Not considered because of negligible solubility and bioavailability.<br />

Page 5-12 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 6: <strong>Risk</strong> Characterization<br />

6 <strong>Risk</strong> Characterization<br />

The purpose of risk characterization is to evaluate the evidence linking COPC with adverse environmental<br />

effects by combining in<strong>for</strong>mation from the exposure and hazard assessments. The potential <strong>for</strong> adverse<br />

environmental effects is quantified by comparing the dose of a substance that can be tolerated, or below<br />

which adverse environmental effects are not expected (i.e., TRV), to the expected daily dose, the amount<br />

of a COPC an organism is expected to be exposed to on a daily basis. The quotient of the two is referred<br />

to as a HQ and the magnitude by which values differ from parity (i.e., TRV = daily dose) is used to make<br />

inferences about the possibility of ecological risks. The EPC of the associated environmental media is<br />

divided by a toxicological benchmark (rather than dividing an ADD by a TRV, as used <strong>for</strong> birds and<br />

mammals).<br />

A HQ less than 1.0 indicates that the exposure concentration is less than the threshold of toxicity <strong>for</strong> the<br />

COPC being evaluated and, given the conservative approach to the estimation of exposure and selection<br />

of TRV, adverse environmental effects are not expected. On the other hand, a HQ of greater than 1.0 does<br />

not necessarily indicate an unacceptable level of risk. In these cases, values greater than 1.0 indicate that<br />

there is a possibility of adverse environmental effects and indicates a need <strong>for</strong> more careful review of both<br />

predicted exposure levels and TRV. As a result, HQ greater than 1.0 should be interpreted carefully and,<br />

further, more focused investigations may be required to reduce conservatism and provide a more realistic<br />

estimate of the level of risk.<br />

Full details of the calculated effect magnitude and HQ values <strong>for</strong> all receptors can be found in<br />

Appendix J. A summary of the findings <strong>for</strong> all receptors at the most exposed locations (i.e., where COPC<br />

concentrations in water and/or sediment are greatest) is provided in Section 6.2 below.<br />

6.1 Chemical Interactions<br />

General Approach<br />

<strong>Risk</strong> assessments are complicated by the fact that most toxicological studies are conducted using a single<br />

chemical whereas environmental exposures generally involve more than one contaminant. Calculating a<br />

HQ <strong>for</strong> exposure to mixture of COPC is problematic because all COPC do not have the same modes of<br />

action, target endpoints or magnitudes of toxicity. Chemicals in a mixture may interact in four general<br />

ways to elicit a response:<br />

• Non-interacting – chemicals do not produce a response in combination with each other; the toxicity of<br />

the mixture is the same as the toxicity of the most toxic component of the mixture.<br />

• Additive – chemicals have similar targets and modes of action but do not interact; the hazard <strong>for</strong><br />

exposure to the mixture is simply the sum of hazards <strong>for</strong> the individual chemicals.<br />

• Synergistic – there is a positive interaction among the chemicals such that the response is greater than<br />

would be expected if the chemicals acted independently or in an additive manner.<br />

• Antagonistic – there is a negative interaction among the chemicals such that the response is less than<br />

would be expected if the chemicals acted independently or in an additive manner.<br />

2010 Page 6-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 6: <strong>Risk</strong> Characterization<br />

There are chemical classes that have similar modes of action and target organs, and in these cases, a more<br />

appropriate characterization of risk is achieved by summing the HQ <strong>for</strong> each compound. HQ <strong>for</strong> BTEX<br />

and TPH are summed to derive a single conservative HI. The PAH substances are also treated as a class,<br />

but are not included with BTEX and TPH since measures of TPH also include the specific PAH<br />

compounds. HQ <strong>for</strong> inorganic COPC are evaluated individually because, unlike TPH and PAH, they<br />

generally have specific toxicities, different modes of action and different target organs, and there is<br />

insufficient data to support mixture toxicity models.<br />

6.2 Summary of Base Case Effect Magnitude and Hazard<br />

Quotients<br />

For the Base Case, effect magnitude and HQ values are only described <strong>for</strong> empirically measured COPC in<br />

environmental media (Tables 6-1 and 6-2). Furthermore, because of a lack of TRV <strong>for</strong> some COPC<br />

(particularly <strong>for</strong> avian receptors), Base Case HQ could not be calculated <strong>for</strong> all COPC and receptor<br />

combinations (Table 6-2).<br />

For the Base Case COPC, effect magnitudes are generally negligible or low <strong>for</strong> water and sediment<br />

community-level receptors. Exceptions include the baseline concentrations of benzo(b)fluoranthene,<br />

barium, manganese and zinc in water, <strong>for</strong> which measured baseline concentrations, if fully bioavailable,<br />

may indicate a moderate effect magnitude. Water samples containing detectable or potentially large<br />

concentrations of these substances were collected from the <strong>Kitimat</strong> 2 and Terminal compartments<br />

(Table 6-1) and may orginate from existing anthropogenic and industrial activities in <strong>Kitimat</strong>. Baseline<br />

sediment quality had either a negligible effect magnitude or low effect magnitude range.<br />

For the avian and mammalian receptors, all calculated HQ and HI values are below thresholds that would<br />

indicate the potential <strong>for</strong> adverse environmental effects as a result of exposure to water, sediment, or<br />

foods ingested from the PEAA.<br />

Table 6–1 Summary of Base Case Effect Magnitude <strong>for</strong> Water and Sediment<br />

Community-level Receptors<br />

Near-shore Off-shore<br />

Constituents<br />

BTEX<br />

Surface Seawater Deep Seawater Sediments Sediments<br />

Benzene Negligible a Negligible a Negligible Negligible<br />

Ethylbenzene Negligible a Negligible a Negligible Negligible<br />

Toluene Negligible a Negligible a Negligible Negligible<br />

Xylenes Negligible a Negligible a TPH - CCME CWS<br />

Negligible Negligible<br />

Aliph>C06-C08 - F1 --- b --- b Negligible --- b<br />

Aliph>C08-C10 - F1 --- b --- b Negligible --- b<br />

Arom>C08-C10 - F1 --- b --- b Low --- b<br />

Aliph>C10-C12 - F2 --- b --- b Negligible --- b<br />

Aliph>C12-C16 - F2 --- b --- b Negligible --- b<br />

Page 6-2 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 6: <strong>Risk</strong> Characterization<br />

Table 6–1 Summary of Base Case Effect Magnitude <strong>for</strong> Water and Sediment<br />

Community-level Receptors (cont’d)<br />

Constituents Surface Seawater Deep Seawater<br />

Near-shore<br />

Sediments<br />

Off-shore<br />

Sediments<br />

Arom>C10-C12 - F2 --- b --- b Low --- b<br />

Arom>C12-C16 - F2 --- b --- b Negligible --- b<br />

Aliph>C16-C21 - F3 --- b,c --- b,c --- b,c --- b,c<br />

Aliph>C21-C34 - F3 --- b,c --- b,c --- b,c --- b,c<br />

Arom>C16-C21 - F3 --- b --- b Negligible --- b<br />

Arom>C21-C34 - F3 --- b --- b Low --- b<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAH<br />

Acenaphthene Low Low Low Negligible<br />

Acenaphthylene Low Low Negligible Negligible<br />

Anthracene Low Low Low Negligible<br />

Fluorene Low Low Negligible Negligible<br />

1-Methylnaphthalene --- b --- b --- b --- b<br />

2-Methylnaphthalene Low Low Low Negligible<br />

Naphthalene Low Low Low Negligible<br />

Phenanthrene Low Low Low Low<br />

High Molecular Weight PAH<br />

Fluoranthene Low Low Low Low<br />

Benz(a)anthracene Low Low Low Low<br />

Benzo(a)pyrene Low Low Negligible Low<br />

Benzo(e)pyrene --- b --- b --- b --- b<br />

Benzo(b)fluoranthene Moderate d Moderate d Low Low<br />

Benzo(g,h,i)perylene Low Low Negligible Low<br />

Benzo(k)fluoranthene Low Low Negligible Negligible<br />

Chrysene Low Low Low Low<br />

Dibenz(a,h)anthracene Low Low Negligible Low<br />

Indeno(1,2,3-cd)pyrene Low Low Negligible Low<br />

Pyrene Low Low Low Low<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene --- b --- b --- b --- b<br />

1,3,5-Trimethylbenzene --- b --- b --- b --- b<br />

Phenolic Compounds<br />

Phenol --- b --- b --- b --- b<br />

2,4-Dimethylphenol --- b --- b --- b --- b<br />

2,4-Dinitrophenol --- b --- b --- b --- b<br />

2010 Page 6-3


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 6: <strong>Risk</strong> Characterization<br />

Table 6–1 Summary of Base Case Effect Magnitude <strong>for</strong> Water and Sediment<br />

Community-level Receptors (cont’d)<br />

Constituents Surface Seawater Deep Seawater<br />

Trace Elements<br />

Near-shore<br />

Sediments<br />

Off-shore<br />

Sediments<br />

Barium Moderate d Moderate d Low Low<br />

Boron Low Low --- b Low<br />

Cadmium Low Low Low Low<br />

Manganese Moderate d Moderate d Negligible Low<br />

Molybdenum Low Low Low Negligible<br />

Nickel Low Low Low Low<br />

Tin Low Low Negligible Negligible<br />

Vanadium Low Low Low Low<br />

Zinc Moderate e Moderate e Low Low<br />

NOTES:<br />

Highlighted cells (grey) indicate “moderate” or higher effect magnitude.<br />

a<br />

Negligible based on the analytical detection limit.<br />

b<br />

Effects magnitude not determined as empirical measurements were either not reported by the laboratory or<br />

analysis was not requested.<br />

c<br />

F3 aliphatics are insufficiently soluble in water to pose a risk to aquatic and sediment receptors.<br />

d Sample collected in <strong>Kitimat</strong> 2 compartment.<br />

e Sample collected in Terminal compartment.<br />

Page 6-4 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 6: <strong>Risk</strong> Characterization<br />

Table 6–2 Summary of Maximum Base Case Hazard Quotients <strong>for</strong> Avian and Mammalian Receptors<br />

BTEX<br />

Constituents Spotted Sandpiper Surf Scoter Marbled Murrelet Bald Eagle Coastal-dwelling Mink Steller Sea Lion Harbour Porpoise<br />

Benzene --- a --- a --- a --- a 6.76E-07 3.63E-06 2.47E-06<br />

Ethylbenzene --- a --- a --- a --- a 2.03E-06 8.70E-06 5.32E-06<br />

Toluene --- a --- a --- a --- a 1.14E-06 5.56E-06 3.49E-06<br />

Xylenes --- a --- a --- a --- a 1.77E-06 7.57E-06 4.62E-06<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 4.26E-05 3.09E-05 --- b 1.89E-06 3.21E-06 6.57E-06 --- b<br />

Aliph>C08-C10 - F1 8.36E-05 6.00E-05 --- b 3.79E-06 6.28E-06 1.29E-05 --- b<br />

Arom>C08-C10 - F1 8.60E-05 6.28E-05 --- b 3.79E-06 6.48E-06 1.32E-05 --- b<br />

F1 - Total 2.12E-04 1.54E-04 --- b 9.46E-06 1.60E-05 3.27E-05 --- b<br />

Aliph>C10-C12 - F2 3.29E-04 2.33E-04 --- b 1.51E-05 2.46E-05 5.09E-05 --- b<br />

Aliph>C12-C16 - F2 6.02E-04 4.19E-04 --- b 2.84E-05 4.48E-05 9.34E-05 --- b<br />

Arom>C10-C12 - F2 2.70E-03 1.96E-03 --- b 1.19E-04 2.03E-04 4.16E-04 --- b<br />

Arom>C12-C16 - F2 3.19E-03 2.31E-03 --- b 1.42E-04 2.40E-04 4.92E-04 --- b<br />

F2 - Total 6.81E-03 4.93E-03 --- b 3.05E-04 5.13E-04 1.05E-03 --- b<br />

Aliph>C16-C21 - F3 1.20E-04 6.88E-05 --- b 7.10E-06 8.55E-06 1.92E-05 --- b<br />

Aliph>C21-C34 - F3 1.20E-04 6.88E-05 --- b 7.10E-06 8.55E-06 1.92E-05 --- b<br />

Arom>C16-C21 - F3 3.90E-03 3.17E-03 --- b 1.42E-04 3.03E-04 5.91E-04 --- b<br />

Arom>C21-C34 - F3 1.16E-02 9.29E-03 --- b 4.35E-04 8.99E-04 1.76E-03 --- b<br />

F3 - Total 1.58E-02 1.26E-02 --- b 5.92E-04 1.22E-03 2.39E-03 --- b<br />

Total TPH HQ = 2.28E-02 1.77E-02 --- b 9.06E-04 1.75E-03 3.48E-03 --- b<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAH<br />

Acenaphthene --- a --- a --- a --- a 3.47E-06 2.39E-06 2.36E-06<br />

Acenaphthylene --- a --- a --- a --- a 3.44E-06 2.39E-06 2.37E-06<br />

Anthracene --- a --- a --- a --- a 3.50E-06 2.40E-06 2.39E-06<br />

Fluorene --- a --- a --- a --- a 3.45E-06 2.40E-06 2.39E-06<br />

1-Methylnaphthalene --- a,b --- a,b --- a,b --- a,b --- b --- b --- b<br />

2-Methylnaphthalene --- a --- a --- a --- a 4.16E-06 3.33E-06 3.48E-06<br />

Naphthalene --- a --- a --- a --- a 3.59E-06 2.46E-06 2.42E-06<br />

Phenanthrene --- a --- a --- a --- a 1.20E-05 6.48E-06 4.98E-06<br />

Total LPAH HQ = 3.37E-05 2.19E-05 2.04E-05<br />

2010 Page 6-5


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 6: <strong>Risk</strong> Characterization<br />

Table 6–2 Summary of Maximum Base Case Hazard Quotients <strong>for</strong> Avian and Mammalian Receptors (cont’d)<br />

High Molecular Weight PAH<br />

Constituents Spotted Sandpiper Surf Scoter Marbled Murrelet Bald Eagle Coastal-dwelling Mink Steller Sea Lion Harbour Porpoise<br />

Fluoranthene --- a --- a --- a --- a 6.34E-06 3.63E-06 3.24E-06<br />

Benz(a)anthracene --- a --- a --- a --- a 3.34E-05 2.70E-05 3.06E-05<br />

Benzo(a)pyrene --- a --- a --- a --- a 3.26E-05 2.49E-05 2.95E-05<br />

Benzo(e)pyrene --- a,b --- a,b --- a,b --- a,b --- b --- b --- b<br />

Benzo(b)fluoranthene --- a --- a --- a --- a 4.10E-05 3.88E-05 4.77E-05<br />

Benzo(g,h,i)perylene --- a --- a --- a --- a 3.26E-05 2.31E-05 2.56E-05<br />

Benzo(k)fluoranthene --- a --- a --- a --- a 3.26E-05 2.25E-05 2.23E-05<br />

Chrysene --- a --- a --- a --- a 4.67E-05 3.26E-05 3.31E-05<br />

Dibenz(a,h)anthracene --- a --- a --- a --- a 3.25E-05 2.25E-05 2.29E-05<br />

Indeno(1,2,3-cd)pyrene --- a --- a --- a --- a 3.26E-05 2.38E-05 2.67E-05<br />

Pyrene --- a --- a --- a --- a 4.71E-05 2.99E-05 3.03E-05<br />

Total HPAH HQ = 3.37E-04 2.49E-04 2.72E-04<br />

Total PAH HQ = 3.71E-04 2.70E-04 2.92E-04<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene --- a,b --- a,b --- a,b --- a,b --- b --- b --- b<br />

1,3,5-Trimethylbenzene --- a,b --- a,b --- a,b --- a,b --- b --- b --- b<br />

Phenolic Compounds<br />

Phenol --- a,b --- a,b --- a,b --- a,b --- b --- b --- b<br />

2,4-Dimethylphenol --- a,b --- a,b --- a,b --- a,b --- b --- b --- b<br />

2,4-Dinitrophenol --- a,b --- a,b --- a,b --- a,b --- b --- b --- b<br />

Trace Elements<br />

Barium 1.20E-03 2.21E-03 8.31E-04 3.75E-04 5.33E-04 3.13E-04 3.07E-04<br />

Boron 7.15E-03 2.13E-03 2.54E-02 1.46E-03 8.86E-04 1.74E-02 1.53E-02<br />

Cadmium 4.63E-02 5.42E-02 1.60E-02 1.40E-03 1.11E-02 2.17E-02 6.98E-03<br />

Manganese 3.02E-03 2.16E-03 3.21E-03 5.10E-04 1.76E-03 2.62E-03 3.21E-03<br />

Molybdenum 2.08E-03 1.94E-03 5.21E-03 3.24E-03 5.64E-02 2.17E-01 1.23E-01<br />

Nickel 6.97E-02 6.27E-02 1.65E-01 7.58E-02 3.66E-02 2.74E-02 2.79E-02<br />

Tin 2.88E-03 3.93E-03 1.36E-03 1.21E-03 6.61E-04 2.07E-03 9.21E-04<br />

Vanadium 1.49E-01 1.34E-01 1.61E-01 5.81E-02 1.49E-02 5.42E-02 3.04E-02<br />

Zinc 6.28E-02 6.92E-02 6.23E-02 2.38E-02 9.68E-03 3.06E-02 1.63E-02<br />

NOTES:<br />

a An ecological hazard quotient could not be calculated because no TRV was available <strong>for</strong> this chemical and receptor combination.<br />

b An ecological hazard quotient was not calculated because this chemical was not assessed in the Base Case <strong>for</strong> this pathway and receptor combination.<br />

2010 Page 6-7


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 6: <strong>Risk</strong> Characterization<br />

6.3 Summary of Project Case Effect Magnitude and Hazard<br />

Quotients<br />

For the Project Case, maximum effects magnitudes and HQ are described in Tables 6-3 and 6-4. Effects<br />

on the water and sediment community-level receptors are all judged to be of negligible or low effect<br />

magnitude, respectively. For the avian and mammalian receptors, all HQ are below threshold values that<br />

would indicate the potential <strong>for</strong> adverse environmental effects.<br />

Table 6–3 Summary of Maximum Project Case Effect Magnitude <strong>for</strong> Water<br />

and Sediment Community-level Receptors<br />

Surface<br />

Seawater Deep Seawater<br />

Near-shore<br />

Sediments<br />

Off-shore<br />

Sediments<br />

Constituents<br />

BTEX<br />

Benzene Negligible a Negligible a Low Low<br />

Ethylbenzene Negligible a Negligible a Low Low<br />

Toluene Negligible a Negligible a Low Low<br />

Xylenes Negligible a Negligible a TPH - CCME CWS<br />

Low Low<br />

Aliph>C06-C08 - F1 Negligible a Negligible a Low Low<br />

Aliph>C08-C10 - F1 Negligible a Negligible a Low Low<br />

Arom>C08-C10 - F1 Negligible a Negligible a Low Low<br />

Aliph>C10-C12 - F2 Negligible b Negligible b Low Low<br />

Aliph>C12-C16 - F2 Negligible b Negligible b Low Low<br />

Arom>C10-C12 - F2 Negligible a Negligible a Low Low<br />

Arom>C12-C16 - F2 Negligible a Negligible a Low Low<br />

Aliph>C16-C21 - F3 --- c --- c --- c --- c<br />

Aliph>C21-C34 - F3 --- c --- c --- c --- c<br />

Arom>C16-C21 - F3 Negligible a Negligible a Low Low<br />

Arom>C21-C34 - F3 Negligible b Negligible b Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAH<br />

Low Low<br />

Acenaphthene Negligible a Negligible a Low Low<br />

Acenaphthylene Negligible a Negligible a Low Low<br />

Anthracene Negligible a Negligible a Low Low<br />

Fluorene Negligible a Negligible a Low Low<br />

1-Methylnaphthalene Negligible a Negligible a Low Low<br />

2-Methylnaphthalene Negligible a Negligible a Low Low<br />

Naphthalene Negligible a Negligible a Low Low<br />

Phenanthrene Negligible a Negligible a Low Low<br />

2010 Page 6-9


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 6: <strong>Risk</strong> Characterization<br />

Table 6–3 Summary of Maximum Project Case Effect Magnitude <strong>for</strong> Water<br />

and Sediment Community-level Receptors (cont’d)<br />

Constituents<br />

High Molecular Weight PAH<br />

Surface<br />

Seawater Deep Seawater<br />

Near-shore<br />

Sediments<br />

Off-shore<br />

Sediments<br />

Fluoranthene Negligible a Negligible a Low Low<br />

Benz(a)anthracene Negligible a Negligible a Low Low<br />

Benzo(a)pyrene Negligible a Negligible a Low Low<br />

Benzo(e)pyrene Negligible a Negligible a Low Low<br />

Benzo(b)fluoranthene Negligible a Negligible a Low Low<br />

Benzo(g,h,i)perylene Negligible a Negligible a Low Low<br />

Benzo(k)fluoranthene Negligible a Negligible a Low Low<br />

Chrysene Negligible a Negligible a Low Low<br />

Dibenz(a,h)anthracene Negligible a Negligible a Low Low<br />

Indeno(1,2,3-cd)pyrene Negligible a Negligible a Low Low<br />

Pyrene Negligible a Negligible a Low Low<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene Negligible a Negligible a Low Low<br />

1,3,5-Trimethylbenzene Negligible a Negligible a Low Low<br />

Phenolic Compounds<br />

Phenol Negligible a Negligible a Low Low<br />

2,4-Dimethylphenol Negligible a Negligible a Low Low<br />

2,4-Dinitrophenol Negligible a Negligible a Low Low<br />

Trace Elements<br />

Barium Negligible a Negligible a Low Low<br />

Boron Negligible a Negligible a Low Low<br />

Cadmium Negligible a Negligible a Low Low<br />

Manganese Negligible a Negligible a Low Low<br />

Molybdenum Negligible a Negligible a Low Low<br />

Nickel Negligible a Negligible a Low Low<br />

Tin Negligible a Negligible a Low Low<br />

Vanadium Negligible a Negligible a Low Low<br />

Zinc Negligible a Negligible a Low Low<br />

NOTES:<br />

a Negligible based on the detection limit<br />

b Negligible based on 1/3 CHC5 value<br />

c F3 aliphatics are insufficiently soluble in water to pose a risk to aquatic and sediment receptors<br />

Page 6-10 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 6: <strong>Risk</strong> Characterization<br />

Table 6–4 Summary of Project Case Hazard Quotients <strong>for</strong> Avian and Mammalian Receptors<br />

Constituents Spotted Sandpiper Surf Scoter Marbled Murrelet Bald Eagle Coastal-dwelling Mink Steller Sea Lion Harbour Porpoise<br />

BTEX<br />

Benzene --- a --- a --- a --- a 1.23E-08 (K2) 1.07E-07 (K2) 6.90E-08 (K2)<br />

Ethylbenzene --- a --- a --- a --- a 3.56E-08 (K2) 1.60E-07 (K2) 9.48E-08 (K2)<br />

Toluene --- a --- a --- a --- a 5.20E-08 (K2) 2.71E-07 (K2) 1.64E-07 (K2)<br />

Xylenes --- a --- a --- a --- a 8.21E-08 (K2) 3.62E-07 (K2) 2.13E-07 (K2)<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 2.12E-05 (K2) 2.41E-05 (K2) 5.51E-05 (K2) 4.25E-05 (K2) 1.45E-05 (K2) 5.94E-05 (K2) 3.44E-05 (K2)<br />

Aliph>C08-C10 - F1 2.14E-05 (K2) 2.50E-05 (K2) 5.71E-05 (K2) 4.43E-05 (K2) 1.51E-05 (K2) 6.11E-05 (K2) 3.53E-05 (K2)<br />

Arom>C08-C10 - F1 5.43E-07 (K2) 5.92E-07 (K2) 1.36E-06 (K2) 1.03E-06 (K2) 3.53E-07 (K2) 1.48E-06 (K2) 8.61E-07 (K2)<br />

F1 - Total 4.32E-05 (K2) 4.98E-05 (K2) 1.14E-04 (K2) 8.78E-05 (K2) 3.00E-05 (K2) 1.22E-04 (K2) 7.06E-05 (K2)<br />

Aliph>C10-C12 - F2 2.90E-05 (K2) 3.41E-05 (K2) 7.80E-05 (K2) 6.06E-05 (K2) 2.07E-05 (K2) 8.35E-05 (K2) 4.82E-05 (K2)<br />

Aliph>C12-C16 - F2 1.11E-03 (K2) 1.31E-03 (K2) 3.03E-03 (K2) 2.36E-03 (K2) 8.03E-04 (K2) 3.24E-03 (K2) 1.88E-03 (K2)<br />

Arom>C10-C12 - F2 2.03E-06 (K2) 2.23E-06 (K2) 4.97E-06 (K2) 3.81E-06 (K2) 1.30E-06 (K2) 5.38E-06 (K2) 3.11E-06 (K2)<br />

Arom>C12-C16 - F2 4.68E-06 (K2) 5.12E-06 (K2) 1.08E-05 (K2) 8.33E-06 (K2) 2.88E-06 (K2) 1.17E-05 (K2) 6.71E-06 (K2)<br />

F2 - Total 1.14E-03 (K2) 1.35E-03 (K2) 3.12E-03 (K2) 2.43E-03 (K2) 8.28E-04 (K2) 3.34E-03 (K2) 1.93E-03 (K2)<br />

Aliph>C16-C21 - F3 1.11E-06 (K2) 6.31E-07 (K2) 2.06E-07 (K1) 6.49E-08 (K2) 7.82E-08 (K2) 1.86E-07 (K2) 3.81E-08 (K1)<br />

Aliph>C21-C34 - F3 4.42E-06 (K2) 2.52E-06 (K2) 8.13E-07 (K1) 2.60E-07 (K2) 3.13E-07 (K2) 7.19E-07 (K2) 1.36E-07 (K1)<br />

Arom>C16-C21 - F3 1.66E-05 (K2) 1.85E-05 (K2) 3.79E-05 (K2) 2.91E-05 (K2) 1.01E-05 (K2) 4.05E-05 (K2) 2.33E-05 (K2)<br />

Arom>C21-C34 - F3 2.35E-04 (K2) 2.64E-04 (K2) 5.51E-04 (K2) 4.26E-04 (K2) 1.47E-04 (K2) 5.90E-04 (K2) 3.39E-04 (K2)<br />

F3 - Total 2.57E-04 (K2) 2.86E-04 (K2) 5.90E-04 (K2) 4.55E-04 (K2) 1.58E-04 (K2) 6.31E-04 (K2) 3.62E-04 (K2)<br />

Total TPH HQ = 1.44E-03 (K2) 1.69E-03 (K2) 3.83E-03 (K2) 2.97E-03 (K2) 1.02E-03 (K2) 4.10E-03 (K2) 2.37E-03 (K2)<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAH<br />

Acenaphthene --- a --- a --- a --- a 2.77E-13 (K1) 2.23E-13 (K1) 2.31E-13 (K1)<br />

Acenaphthylene --- a --- a --- a --- a 4.18E-15 (K1) 3.35E-15 (K1) 3.47E-15 (K1)<br />

Anthracene --- a --- a --- a --- a 4.06E-10 (K2) 3.22E-10 (K2) 3.33E-10 (K2)<br />

Fluorene --- a --- a --- a --- a 4.62E-10 (K2) 3.69E-10 (K2) 3.81E-10 (K2)<br />

1-Methylnaphthalene --- a --- a --- a --- a 2.49E-09 (K2) 2.02E-09 (K2) 2.09E-09 (K2)<br />

2-Methylnaphthalene --- a --- a --- a --- a 1.88E-09 (K2) 1.52E-09 (K2) 1.58E-09 (K2)<br />

Naphthalene --- a --- a --- a --- a 1.08E-09 (K2) 9.22E-10 (K2) 9.67E-10 (K2)<br />

Phenanthrene --- a --- a --- a --- a 6.28E-10 (K2) 4.99E-10 (K2) 5.15E-10 (K2)<br />

Total LPAH HQ = 6.95E-09 (K2) 5.65E-09 (K2) 5.87E-09 (K2)<br />

2010 Page 6-11


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 6: <strong>Risk</strong> Characterization<br />

Table 6–4 Summary of Project Case Hazard Quotients <strong>for</strong> Avian and Mammalian Receptors (cont’d)<br />

Constituents Spotted Sandpiper Surf Scoter Marbled Murrelet Bald Eagle Coastal-dwelling Mink Steller Sea Lion Harbour Porpoise<br />

High Molecular Weight PAH<br />

Fluoranthene --- a --- a --- a --- a 8.08E-13 (K1) 6.37E-13 (K1) 6.55E-13 (K1)<br />

Benz(a)anthracene --- a --- a --- a --- a 2.73E-08 (K2) 2.15E-08 (K2) 2.21E-08 (K2)<br />

Benzo(a)pyrene --- a --- a --- a --- a 4.00E-10 (K1) 3.12E-10 (K1) 3.19E-10 (K1)<br />

Benzo(e)pyrene --- a --- a --- a --- a 4.08E-11 (K1) 3.21E-11 (K1) 3.30E-11 (K1)<br />

Benzo(b)fluoranthene --- a --- a --- a --- a 3.08E-11 (K1) 2.43E-11 (K1) 2.51E-11 (K1)<br />

Benzo(g,h,i)perylene --- a --- a --- a --- a 1.13E-10 (K1) 8.85E-11 (K1) 9.11E-11 (K1)<br />

Benzo(k)fluoranthene --- a --- a --- a --- a 2.91E-11 (K1) 2.30E-11 (K1) 2.37E-11 (K1)<br />

Chrysene --- a --- a --- a --- a 1.87E-11 (K1) 1.48E-11 (K1) 1.52E-11 (K1)<br />

Dibenz(a,h)anthracene --- a --- a --- a --- a 8.32E-11 (K1) 6.54E-11 (K1) 6.73E-11 (K1)<br />

Indeno(1,2,3-cd)pyrene --- a --- a --- a --- a 1.34E-10 (K1) 1.05E-10 (K1) 1.09E-10 (K1)<br />

Pyrene --- a --- a --- a --- a 1.82E-08 (K2) 1.43E-08 (K2) 1.47E-08 (K2)<br />

Total HPAH HQ = 4.62E-08 (K2) 3.64E-08 (K2) 3.75E-08 (K2)<br />

Total PAH HQ = 5.32E-08 (K2) 4.21E-08 (K2) 4.33E-08 (K2)<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene --- a --- a --- a --- a 1.80E-07 (K2) 6.94E-07 (K2) 3.87E-07 (K2)<br />

1,3,5-Trimethylbenzene --- a --- a --- a --- a 1.87E-08 (K2) 7.88E-08 (K2) 4.58E-08 (K2)<br />

Phenolic Compounds<br />

Phenol --- a --- a --- a --- a 1.75E-14 (K2) 3.95E-13 (K2) 2.70E-13 (K2)<br />

2,4-Dimethylphenol --- a --- a --- a --- a 8.81E-13 (K2) 8.70E-12 (K2) 5.69E-12 (K2)<br />

2,4-Dinitrophenol --- a --- a --- a --- a 1.21E-12 (K2) 4.38E-11 (K2) 3.03E-11 (K2)<br />

Trace Elements<br />

Barium 1.55E-10 (K1) 2.33E-10 (K1) 5.21E-11 (K1) 1.92E-11 (K1) 5.15E-11 (K1) 2.53E-11 (K1) 1.57E-11 (K1)<br />

Boron 1.31E-11 (K2) 1.36E-11 (K2) 3.77E-12 (K1) 3.73E-13 (K2) 1.97E-12 (K2) 6.45E-12 (K2) 2.76E-12 (K2)<br />

Cadmium 3.80E-05 (K1) 4.44E-05 (K1) 9.48E-06 (K1) 1.04E-08 (K1) 8.26E-06 (K1) 1.30E-05 (K1) 2.14E-06 (K1)<br />

Manganese 5.23E-10 (K1) 3.64E-10 (K1) 1.03E-09 (K1) 5.20E-10 (K1) 1.30E-09 (K1) 9.85E-10 (K1) 9.83E-10 (K1)<br />

Molybdenum 5.48E-07 (K2) 6.20E-07 (K2) 1.32E-07 (K1) 2.13E-09 (K2) 2.01E-06 (K2) 3.24E-06 (K2) 5.31E-07 (K1)<br />

Nickel 5.89E-06 (K2) 4.99E-06 (K2) 1.07E-05 (K2) 5.40E-06 (K2) 2.62E-06 (K2) 1.95E-06 (K2) 1.94E-06 (K2)<br />

Tin 1.18E-07 (K2) 1.46E-07 (K2) 4.59E-07 (K2) 5.15E-07 (K2) 1.67E-07 (K2) 6.63E-07 (K2) 3.78E-07 (K2)<br />

Vanadium 1.73E-05 (K2) 1.36E-05 (K2) 2.95E-05 (K1) 1.48E-05 (K2) 3.16E-06 (K2) 1.20E-05 (K2) 6.63E-06 (K2)<br />

Zinc 1.72E-07 (K1) 1.84E-07 (K1) 1.09E-07 (K1) 4.98E-08 (K1) 2.22E-08 (K1) 6.70E-08 (K1) 3.23E-08 (K1)<br />

NOTE:<br />

a An ecological hazard quotient could not be calculated because no TRV was available <strong>for</strong> this chemical and receptor combination.<br />

2010 Page 6-13


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 6: <strong>Risk</strong> Characterization<br />

6.4 Summary of Application Case Effect Magnitude and Hazard<br />

Quotients<br />

The Application Case represents the sum of the Base Case and Project Case scenarios. The HQ <strong>for</strong> some<br />

COPC (i.e., a few PAH, VOC, TPH and phenolic compounds) in the Application Case evaluation are<br />

equivalent to the Project Case HQ, because no value is available from the Base Case.<br />

For the Application Case, effect magnitudes <strong>for</strong> the water community receptor (Table 6-5) are generally<br />

rated negligible or low, with the exception of benzo(b)fluoranthene, barium, manganese and zinc which<br />

are also identified as being of moderate effect magnitude in the Base Case. Effect magnitudes <strong>for</strong> the<br />

sediment community receptor are all rated low (Table 6-5). Where both Base and Project Case effect<br />

magnitudes and HQ values are available <strong>for</strong> comparison, the Project Case makes a very small contribution<br />

to the Application Case.<br />

Table 6–5 Summary of Maximum Application Case Effects Magnitude <strong>for</strong><br />

Water and Sediment Community-level Receptors<br />

Surface<br />

Seawater Deep Seawater<br />

Near-shore<br />

Sediments<br />

Off-shore<br />

Sediments<br />

Constituents<br />

BTEX<br />

Benzene Negligible a Negligible a Low Low<br />

Ethylbenzene Negligible a Negligible a Low Low<br />

Toluene Low Low Low Low<br />

Xylenes<br />

TPH - CCME CWS<br />

Low Low Low Low<br />

Aliph>C06-C08 - F1 Negligible a Negligible a Low Low<br />

Aliph>C08-C10 - F1 Negligible a Negligible a Low Low<br />

Arom>C08-C10 - F1 Negligible a Negligible a Low Low<br />

Aliph>C10-C12 - F2 Negligible b Negligible b Low Low<br />

Aliph>C12-C16 - F2 Negligible b Negligible b Low Low<br />

Arom>C10-C12 - F2 Negligible a Negligible a Low Low<br />

Arom>C12-C16 - F2 Negligible a Negligible a Low Low<br />

Aliph>C16-C21 - F3 --- c --- c --- c --- c<br />

Aliph>C21-C34 - F3 --- c --- c --- c --- c<br />

Arom>C16-C21 - F3 Negligible a Negligible a Low Low<br />

Arom>C21-C34 - F3 Negligible b Negligible b Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAH<br />

Low Low<br />

Acenaphthene Low Low Low Low<br />

Acenaphthylene Low Low Low Low<br />

Anthracene Low Low Low Low<br />

Fluorene Low Low Low Low<br />

2010 Page 6-15


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 6: <strong>Risk</strong> Characterization<br />

Table 6–5 Summary of Maximum Application Case Effects Magnitude <strong>for</strong><br />

Water and Sediment Community-level Receptors (cont’d)<br />

Constituents<br />

Surface<br />

Seawater Deep Seawater<br />

Near-shore<br />

Sediments<br />

Off-shore<br />

Sediments<br />

1-Methylnaphthalene Negligible a Negligible a Low Low<br />

2-Methylnaphthalene Low Low Low Low<br />

Naphthalene Low Low Low Low<br />

Phenanthrene Low Low Low Low<br />

High Molecular Weight PAH<br />

Fluoranthene Low Low Low Low<br />

Benz(a)anthracene Low Low Low Low<br />

Benzo(a)pyrene Low Low Low Low<br />

Benzo(e)pyrene Negligible a Negligible a Low Low<br />

Benzo(b)fluoranthene Moderate Moderate Low Low<br />

Benzo(g,h,i)perylene Low Low Low Low<br />

Benzo(k)fluoranthene Low Low Low Low<br />

Chrysene Low Low Low Low<br />

Dibenz(a,h)anthracene Low Low Low Low<br />

Indeno(1,2,3-cd)pyrene Low Low Low Low<br />

Pyrene Low Low Low Low<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene Negligible a Negligible a Low Low<br />

1,3,5-Trimethylbenzene Negligible a Negligible a Low Low<br />

Phenolic Compounds<br />

Phenol Negligible a Negligible a Low Low<br />

2,4-Dimethylphenol Negligible a Negligible a Low Low<br />

2,4-Dinitrophenol Negligible a Negligible a Low Low<br />

Trace Elements<br />

Barium Moderate Moderate Low Low<br />

Boron Low Low Low Low<br />

Cadmium Low Low Low Low<br />

Manganese Moderate Moderate Low Low<br />

Molybdenum Low Low Low Low<br />

Nickel Low Low Low Low<br />

Tin Low Low Low Low<br />

Vanadium Low Low Low Low<br />

Zinc Moderate Moderate Low Low<br />

NOTES:<br />

Highlighted cells (grey) indicate moderate or higher effect magnitude.<br />

a<br />

Negligible based on the detection limit.<br />

b<br />

Negligible based on 1/3 CHC5 value.<br />

c<br />

F3 aliphatics are insufficiently soluble in water to pose a risk to aquatic and sediment receptors.<br />

Page 6-16 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 6: <strong>Risk</strong> Characterization<br />

All Application Case HQ values are below threshold values that would indicate a potential <strong>for</strong> adverse<br />

environmental effects (Table 6-6). The Project-related increments in HQ are very small or negligible<br />

when compared to Base Case HQ. For COPC where no Baseline concentrations were available, HQ<br />

values are several orders of magnitude below threshold values.<br />

6.5 Species at <strong>Risk</strong><br />

Four species assessed in this <strong>Marine</strong> ERA are Species at <strong>Risk</strong>:<br />

• harbour porpoise<br />

• Steller sea lion<br />

• Marbled Murrelet<br />

• eulachon<br />

HQ values <strong>for</strong> the Base, Project and Application cases are presented in Tables 6-2, 6-4 and 6-6,<br />

respectively.<br />

For the harbour porpoise, exposure to trace elements results in the highest HQ values <strong>for</strong> the Application<br />

Case. The highest value results from exposure to molybdenum (HQ = 0.12), which is below the<br />

established HQ threshold of 0.33 <strong>for</strong> a species at risk using a LOAEL-based TRV. The Project Case<br />

contribution to this HQ value is negligible (less than 0.05% of the total). For COPC that are assessed <strong>for</strong><br />

Application contributions alone (i.e., not assessed in Base Case), the highest HQ value <strong>for</strong> the harbour<br />

porpoise was <strong>for</strong> TPH (total HQ = 0.0024; Table 6-4), which is two orders of magnitude lower than the<br />

HQ threshold of 0.33 <strong>for</strong> the protection of individuals of species at risk. There<strong>for</strong>e, there is no<br />

Project-related risk of adverse environmental effects to the health of harbour porpoise, even when they are<br />

conservatively assumed to occupy the most exposed location at all times.<br />

For the Steller sea lion, exposure to trace elements result in the highest HQ values <strong>for</strong> the Application<br />

Case, with the highest value resulting from exposure to molybdenum (HQ = 0.22), below the established<br />

threshold of 0.33 <strong>for</strong> the protection of individuals of species at risk. The biggest contributor to this HQ<br />

value is ingestion of near-shore fish under baseline conditions. The Project Case contribution to the<br />

molybdenum HQ value is negligible (less than 0.06% of the total). For COPC that are assessed <strong>for</strong><br />

Application contributions alone (i.e., not assessed in the Base Case), the highest HQ value <strong>for</strong> the Steller<br />

sea lion is <strong>for</strong> TPH (total HQ = 0.0076; Table 6-4), which is two orders of magnitude lower than the HQ<br />

threshold of 0.33 <strong>for</strong> individual protection of species at risk. There<strong>for</strong>e, there is no adverse environmental<br />

effects to the health of the Steller sea lion, even when they are conservatively assumed to occupy the most<br />

exposed location at all times.<br />

For the Marbled Murrelet, exposure to trace elements result in the highest HQ values <strong>for</strong> the Application<br />

Case, with the highest value resulting of exposure to nickel (HQ = 0.17), below the established threshold<br />

of 1 (the TRV <strong>for</strong> nickel is based on a NOAEL) <strong>for</strong> the protection of individuals of species at risk. The<br />

biggest contributor to this HQ value is ingestion of off-shore fish from baseline conditions. The<br />

Project-related contribution to the nickel HQ is less than 0.06% of the total HQ.<br />

2010 Page 6-17


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 6: <strong>Risk</strong> Characterization<br />

For COPC that are assessed <strong>for</strong> Application contributions alone (limited to TPH <strong>for</strong> the Marbled<br />

Murrelet), the HQ value <strong>for</strong> TPH is 0.0038, which is three orders of magnitude lower than the HQ<br />

threshold of 1 <strong>for</strong> the protection of individuals of species at risk. There<strong>for</strong>e, there is no adverse<br />

environmental effects to the health of the Marbled Murrelet, even when they are conservatively assumed<br />

to occupy the most exposed location at all times.<br />

Eulachon are not directly assessed because fish community-based benchmarks are used in the risk<br />

assessment <strong>for</strong> fish species. As presented in Table 6-5, effects on the aquatic community receptors are<br />

mostly of negligible or low effect magnitude. Only benzo(b)fluoranthene, barium, manganese and zinc<br />

have a magnitude of moderate due to possible Base Case conditions. Effects on aquatic receptors <strong>for</strong> the<br />

Project Case are negligible. There<strong>for</strong>e, no adverse environmental effects to the health of eulachon is<br />

expected, even when they are conservatively assumed to occupy the most exposed location at all times.<br />

Page 6-18 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 6: <strong>Risk</strong> Characterization<br />

Table 6–6 Summary of Application Case Hazard Quotients <strong>for</strong> Avian and Mammalian Receptors<br />

Constituents Spotted Sandpiper Surf Scoter Marbled Murrelet Bald Eagle Coastal-dwelling Mink Steller Sea Lion Harbour Porpoise<br />

BTEX<br />

Benzene --- a --- a --- a --- a 6.88E-07 (K2) 3.73E-06 (K2) 2.54E-06 (K2)<br />

Ethylbenzene --- a --- a --- a --- a 2.06E-06 (K2) 8.86E-06 (K2) 5.42E-06 (K2)<br />

Toluene --- a --- a --- a --- a 1.20E-06 (K2) 5.83E-06 (K2) 3.66E-06 (K2)<br />

Xylenes --- a --- a --- a --- a 1.86E-06 (K2) 7.94E-06 (K2) 4.83E-06 (K2)<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 6.38E-05 (K2) 5.51E-05 (K2) 5.51E-05 (K2) 4.44E-05 (K2) 1.77E-05 (K2) 6.60E-05 (K2) 3.44E-05 (K2)<br />

Aliph>C08-C10 - F1 1.05E-04 (K2) 8.50E-05 (K2) 5.71E-05 (K2) 4.81E-05 (K2) 2.14E-05 (K2) 7.40E-05 (K2) 3.53E-05 (K2)<br />

Arom>C08-C10 - F1 8.65E-05 (K2) 6.34E-05 (K2) 1.36E-06 (K2) 4.82E-06 (K2) 6.84E-06 (K2) 1.47E-05 (K2) 8.61E-07 (K2)<br />

F1 - Total 2.55E-04 (K2) 2.03E-04 (K2) 1.14E-04 (K2) 9.73E-05 (K2) 4.60E-05 (K2) 1.55E-04 (K2) 7.06E-05 (K2)<br />

Aliph>C10-C12 - F2 3.58E-04 (K2) 2.67E-04 (K2) 7.80E-05 (K2) 7.57E-05 (K2) 4.53E-05 (K2) 1.34E-04 (K2) 4.82E-05 (K2)<br />

Aliph>C12-C16 - F2 1.71E-03 (K2) 1.73E-03 (K2) 3.03E-03 (K2) 2.39E-03 (K2) 8.48E-04 (K2) 3.34E-03 (K2) 1.88E-03 (K2)<br />

Arom>C10-C12 - F2 2.70E-03 (K2) 1.96E-03 (K2) 4.97E-06 (K2) 1.23E-04 (K2) 2.05E-04 (K2) 4.21E-04 (K2) 3.11E-06 (K2)<br />

Arom>C12-C16 - F2 3.19E-03 (K2) 2.32E-03 (K2) 1.08E-05 (K2) 1.50E-04 (K2) 2.43E-04 (K2) 5.04E-04 (K2) 6.71E-06 (K2)<br />

F2 - Total 7.96E-03 (K2) 6.28E-03 (K2) 3.12E-03 (K2) 2.73E-03 (K2) 1.34E-03 (K2) 4.40E-03 (K2) 1.93E-03 (K2)<br />

Aliph>C16-C21 - F3 1.22E-04 (K2) 6.95E-05 (K2) 2.06E-07 (K1) 7.16E-06 (K2) 8.63E-06 (K2) 1.93E-05 (K2) 3.81E-08 (K1)<br />

Aliph>C21-C34 - F3 1.25E-04 (K2) 7.14E-05 (K2) 8.13E-07 (K1) 7.36E-06 (K2) 8.86E-06 (K2) 1.99E-05 (K2) 1.36E-07 (K1)<br />

Arom>C16-C21 - F3 3.92E-03 (K2) 3.18E-03 (K2) 3.79E-05 (K2) 1.71E-04 (K2) 3.13E-04 (K2) 6.32E-04 (K2) 2.33E-05 (K2)<br />

Arom>C21-C34 - F3 1.19E-02 (K2) 9.56E-03 (K2) 5.51E-04 (K2) 8.61E-04 (K2) 1.05E-03 (K2) 2.35E-03 (K2) 3.39E-04 (K2)<br />

F3 - Total 1.60E-02 (K2) 1.29E-02 (K2) 5.90E-04 (K2) 1.05E-03 (K2) 1.38E-03 (K2) 3.03E-03 (K2) 3.62E-04 (K2)<br />

Total TPH HQ = 2.42E-02 (K2) 1.94E-02 (K2) 3.83E-03 (K2) 3.88E-03 (K2) 2.76E-03 (K2) 7.58E-03 (K2) 2.37E-03 (K2)<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAH<br />

Acenaphthene --- a --- a --- a --- a 3.47E-06 (K1) 2.39E-06 (K1) 2.36E-06 (K1)<br />

Acenaphthylene --- a --- a --- a --- a 3.44E-06 (K1) 2.39E-06 (K1) 2.37E-06 (K1)<br />

Anthracene --- a --- a --- a --- a 3.50E-06 (K2) 2.40E-06 (K2) 2.39E-06 (K2)<br />

Fluorene --- a --- a --- a --- a 3.45E-06 (K2) 2.40E-06 (K2) 2.39E-06 (K2)<br />

1-Methylnaphthalene --- a --- a --- a --- a 2.49E-09 (K2) 2.02E-09 (K2) 2.09E-09 (K2)<br />

2-Methylnaphthalene --- a --- a --- a --- a 4.16E-06 (K2) 3.34E-06 (K2) 3.48E-06 (K2)<br />

Naphthalene --- a --- a --- a --- a 3.59E-06 (K2) 2.46E-06 (K2) 2.42E-06 (K2)<br />

Phenanthrene --- a --- a --- a --- a 1.20E-05 (K2) 6.49E-06 (K2) 4.98E-06 (K2)<br />

Total LPAH HQ = 3.37E-05 (K2) 2.19E-05 (K2) 2.04E-05 (K2)<br />

High Molecular Weight PAH<br />

2010 Page 6-19


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 6: <strong>Risk</strong> Characterization<br />

Table 6–6 Summary of Application Case Hazard Quotients <strong>for</strong> Avian and Mammalian Receptors (cont’d)<br />

Constituents Spotted Sandpiper Surf Scoter Marbled Murrelet Bald Eagle Coastal-dwelling Mink Steller Sea Lion Harbour Porpoise<br />

Fluoranthene --- a --- a --- a --- a 6.34E-06 (K1) 3.63E-06 (K1) 3.24E-06 (K1)<br />

Benz(a)anthracene --- a --- a --- a --- a 3.34E-05 (K2) 2.70E-05 (K2) 3.06E-05 (K2)<br />

Benzo(a)pyrene --- a --- a --- a --- a 3.26E-05 (K1) 2.49E-05 (K1) 2.95E-05 (K1)<br />

Benzo(e)pyrene --- a --- a --- a --- a 4.08E-11 (K1) 3.21E-11 (K1) 3.30E-11 (K1)<br />

Benzo(b)fluoranthene --- a --- a --- a --- a 4.10E-05 (K1) 3.88E-05 (K1) 4.77E-05 (K1)<br />

Benzo(g,h,i)perylene --- a --- a --- a --- a 3.26E-05 (K1) 2.31E-05 (K1) 2.56E-05 (K1)<br />

Benzo(k)fluoranthene --- a --- a --- a --- a 3.26E-05 (K1) 2.25E-05 (K1) 2.23E-05 (K1)<br />

Chrysene --- a --- a --- a --- a 4.67E-05 (K1) 3.26E-05 (K1) 3.31E-05 (K1)<br />

Dibenz(a,h)anthracene --- a --- a --- a --- a 3.25E-05 (K1) 2.25E-05 (K1) 2.29E-05 (K1)<br />

Indeno(1,2,3-cd)pyrene --- a --- a --- a --- a 3.26E-05 (K1) 2.38E-05 (K1) 2.67E-05 (K1)<br />

Pyrene --- a --- a --- a --- a 4.71E-05 (K2) 2.99E-05 (K2) 3.03E-05 (K2)<br />

Total HPAH HQ = 3.38E-04 (K2) 2.49E-04 (K2) 2.72E-04 (K2)<br />

Total PAH HQ = 3.71E-04 (K2) 2.71E-04 (K2) 2.92E-04 (K2)<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene --- a --- a --- a --- a 1.80E-07 (K2) 6.94E-07 (K2) 3.87E-07 (K2)<br />

1,3,5-Trimethylbenzene --- a --- a --- a --- a 1.87E-08 (K2) 7.88E-08 (K2) 4.58E-08 (K2)<br />

Phenolic Compounds<br />

Phenol --- a --- a --- a --- a 1.75E-14 (K2) 3.95E-13 (K2) 2.70E-13 (K2)<br />

2,4-Dimethylphenol --- a --- a --- a --- a 8.81E-13 (K2) 8.70E-12 (K2) 5.69E-12 (K2)<br />

2,4-Dinitrophenol --- a --- a --- a --- a 1.21E-12 (K2) 4.38E-11 (K2) 3.03E-11 (K2)<br />

Trace Elements<br />

Barium 1.20E-03 (K1) 2.21E-03 (K1) 8.31E-04 (K1) 3.75E-04 (K1) 5.33E-04 (K1) 3.13E-04 (K1) 3.07E-04 (K1)<br />

Boron 7.15E-03 (K2) 2.13E-03 (K2) 2.54E-02 (K1) 1.46E-03 (K2) 8.86E-04 (K2) 1.74E-02 (K2) 1.53E-02 (K2)<br />

Cadmium 4.63E-02 (K1) 5.42E-02 (K1) 1.60E-02 (K1) 1.40E-03 (K1) 1.11E-02 (K1) 2.17E-02 (K1) 6.98E-03 (K1)<br />

Manganese 3.02E-03 (K1) 2.16E-03 (K1) 3.21E-03 (K1) 5.10E-04 (K1) 1.76E-03 (K1) 2.62E-03 (K1) 3.21E-03 (K1)<br />

Molybdenum 2.08E-03 (K2) 1.94E-03 (K2) 5.21E-03 (K1) 3.24E-03 (K2) 5.64E-02 (K2) 2.17E-01 (K2) 1.23E-01 (K1)<br />

Nickel 6.97E-02 (K2) 6.27E-02 (K2) 1.65E-01 (K2) 7.58E-02 (K2) 3.66E-02 (K2) 2.74E-02 (K2) 2.79E-02 (K2)<br />

Tin 2.88E-03 (K2) 3.93E-03 (K2) 1.36E-03 (K2) 1.22E-03 (K2) 6.62E-04 (K2) 2.07E-03 (K2) 9.21E-04 (K2)<br />

Vanadium 1.49E-01 (K2) 1.34E-01 (K2) 1.61E-01 (K1) 5.81E-02 (K2) 1.49E-02 (K2) 5.42E-02 (K2) 3.04E-02 (K2)<br />

Zinc 6.28E-02 (K1) 6.92E-02 (K1) 6.23E-02 (K1) 2.38E-02 (K1) 9.68E-03 (K1) 3.06E-02 (K1) 1.63E-02 (K1)<br />

NOTE:<br />

a An ecological hazard quotient could not be calculated because no TRV was available <strong>for</strong> this chemical and receptor combination.<br />

2010 Page 6-21


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 7: Certainty and Confidence<br />

7 Certainty and Confidence<br />

Administrative boundaries and uncertainties are inherent to many aspects of predicting risks to ecological<br />

receptors. The extent of these boundaries is dictated by the availability and quality of in<strong>for</strong>mation, as well<br />

as the variability associated with many of the processes and factors being considered. When conducting<br />

risk assessments, it is standard practice to implement conservative assumptions (i.e., to make assumptions<br />

that are inherently biased towards safety) when uncertainty is encountered. This strategy generally results<br />

in an overestimation of actual risk, so that the overall ERA conclusions are protective of ecological<br />

receptors. The limitations and assumptions applied in this ERA, and their effect on EHQ estimates, are<br />

identified and described in the following subsections.<br />

7.1 Selection of Chemicals of Potential Concern<br />

The selection of COPC is based on the chemical composition of three representative samples of<br />

hydrocarbon to be handled at the <strong>Kitimat</strong> Terminal: diluted bitumen, synthetic oil and condensate. The<br />

three representative samples were analyzed <strong>for</strong> BTEX, TPH, PAH, phenolic compounds, VOC and trace<br />

elements. PAH were included as a class of compounds, even though many individual PAH compounds<br />

(notably the higher molecular weight compounds) were not detected in the tested hydrocarbon samples.<br />

There<strong>for</strong>e, COPC assessed may include chemicals that are not expected to be released into the marine<br />

environment. Following the COPC screening procedure, only analytes with a concentration above<br />

1 mg/kg were assessed. The rationale <strong>for</strong> this criterion is based upon a scoping calculation that showed<br />

that substances having a concentration of 1 mg/kg or less in the hydrocarbons would not likely be present<br />

in treated storm water at a concentration exceeding WQG values; such concentrations would not cause an<br />

adverse environmental effect upon being released to the marine environment.<br />

In order to consider chemicals that may already be contributing to risk, analytes that demonstrated a<br />

baseline water concentration above guidelines are included. As such, the list of selected COPC may<br />

include substances that are not expected to be released in substantial quantities. For example, cadmium is<br />

assessed because its maximum baseline water concentration exceeds guidelines, and it is important to<br />

evaluate the potential environmental effect of any additional quantity of cadmium.<br />

7.2 Selection of Receptors<br />

The marine receptors include species that could collectively represent various levels of exposure due to<br />

differences in life-history attributes (e.g., body size, trophic level, consumption rates). The receptors are<br />

expected to be representative of other species that may be present in the PEAA and exposed to COPC.<br />

For each receptor, modelled exposure to COPC depends on attributes such as water ingestion rates, food<br />

ingestion rates, sediment ingestion rates and dietary composition. These attributes were characterized<br />

through extensive reviews of available scientific literature. Where species-specific data were unavailable,<br />

body weight-based estimates were often used (e.g., food requirements may be estimated using established<br />

mathematical equations). The species are modelled as solely inhabiting a single model compartment,<br />

which would overestimate their exposure to COPC if, in fact, they move between compartments or<br />

migrate.<br />

2010 Page 7-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 7: Certainty and Confidence<br />

7.3 Environmental Fate and Transport Modelling<br />

Environmental fate and transport models use average environmental data and simplified representations<br />

of the environment and processes involved in order to model the fate and transport of COPC. For<br />

example, in the Water Quality Model, the mass of COPC released into a compartment at a given time is<br />

assumed to be instantaneously distributed equally throughout the entire compartment. This results in<br />

uni<strong>for</strong>m COPC concentrations throughout the compartment. In the natural environment, however, COPC<br />

concentrations will exhibit some spatial variation. Nonetheless, the predicted COPC concentrations within<br />

a compartment should be reasonable estimates of the actual average COPC concentrations. In addition,<br />

the actual variation in COPC concentrations within each compartment is expected to be less than the<br />

predicted differences in COPC concentrations between adjacent compartments.<br />

Although the overall model structures are reliable, the quality of many of the parameter values describing<br />

the environmental fate and partitioning (i.e., distribution) of COPC varies. In such situations, conservative<br />

assumptions are implemented, which may overestimate environmental COPC concentrations.<br />

7.4 Resource-Specific Toxicity Data<br />

For several COPC, the available toxicity database is very limited. Consequently, TRV <strong>for</strong> these<br />

substances are occasionally based on less-than-optimal toxicological studies. These TRV are not<br />

necessarily specific to the KI, reproductive or population-level endpoints, or of chronic duration.<br />

Uncertainty factors are, there<strong>for</strong>e, often necessary to modify available toxicological data. The UF used are<br />

scientifically based and are applied in a manner that is consistent with regulatory guidance.<br />

The measure of toxicity <strong>for</strong> TRV is the chronic LOAEL; however, in certain cases, only chronic NOAEL<br />

is available <strong>for</strong> derivation of TRV. In these cases, no UF is applied. The decision not to apply UF to<br />

translate a NOAEL to a LOAEL is a conservative measure to avoid overestimating the LOAEL and thus<br />

underestimating potential risks. For mammalian KI, NOAEL-based TRV are used <strong>for</strong> the following<br />

COPC: PAH (low and high molecular weight), barium, lead, manganese and inorganic mercury. For avian<br />

KI, NOAEL-based TRV are used <strong>for</strong> cadmium, copper, lead, manganese, nickel and vanadium.<br />

Toxicological testing of environmental contaminants is not nearly as extensive <strong>for</strong> avian species as <strong>for</strong><br />

mammalian species. As a result, avian TRV <strong>for</strong> many COPC are unavailable. This disparity is primarily<br />

due to the widely accepted practice of applying mammalian toxicity data <strong>for</strong> use in human health risk<br />

assessments and establishing other human health-based guidelines (e.g., tolerable intake levels).<br />

Cross-class extrapolation <strong>for</strong> TRV is not advised (Ohio EPA 2008) and the possible uncertainty<br />

associated with the extrapolation of mammalian toxicity data <strong>for</strong> generating avian TRV was considered<br />

unacceptable.<br />

7.5 Resource Exposure to COPC and HQ Calculations<br />

For the purpose of assessing the maximum potential exposure to COPC, HQ are calculated <strong>for</strong> all<br />

modelled species (receptor) in each of the appropriate model compartments where they might be found.<br />

For example, to assess the maximum possible HQ <strong>for</strong> a harbour porpoise inhabiting the <strong>Kitimat</strong> 2 model<br />

compartment, it is assumed that all food, sediment and water ingested originated from that compartment.<br />

Page 7-2 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 7: Certainty and Confidence<br />

This assumption is conservative as it overestimates the exposure of specific species to COPC. Many<br />

marine fauna (e.g., fish, birds, mammals and crab) are mobile and may move among compartments and<br />

outside of the PEAA thereby reducing potential exposure to COPC. Thus, the actual exposure to COPC in<br />

water and sediment of both food (invertebrates, fish) and marine receptors (modelled species), are likely<br />

to be lower than the exposure that is assumed.<br />

7.6 Chemical Speciation and Bioavailability<br />

Trace elements are part of our natural environment and exist in many different <strong>for</strong>ms. In water, trace<br />

elements are rarely present in their elemental <strong>for</strong>m. More commonly, trace elements are present as either<br />

free dissolved ionic species, associated to other organic or inorganic species, or bound to solids. The<br />

distribution amongst these various <strong>for</strong>ms is termed chemical speciation and is related to the environmental<br />

fate and toxicity of trace elements. For example, selenium may be found associated to both organic and<br />

inorganic species with resulting compounds demonstrating varying degrees of toxicity. Several naturally<br />

occurring <strong>for</strong>ms of trace elements have very low toxicity thus pose little risk to biota. Because it is<br />

extremely difficult to predict the <strong>for</strong>m of an element, TRV and toxicity benchmarks are typically based on<br />

studies assessing results of a relatively potent <strong>for</strong>m of the trace elements, even though that particular <strong>for</strong>m<br />

may not occur naturally within the PEAA.<br />

Trace elements and organic compounds can bind to sediment solids, and this can affect their<br />

bioavailability or accessibility to biota. The water-sediment partition coefficient (KD) is a measure of the<br />

tendency of a trace element to bind to a variety of ligands, including organic matter and mineral phases<br />

including, but not limited to, readily exchangeable sorption sites, carbonates, iron and manganese oxides,<br />

and sulphides. The bioavailability of these phases varies, with exchangeable metals generally considered<br />

to be readily bioavailable and sulphide bound metals generally considered to have low or negligible<br />

bioavailability. To be conservative, most trace elements in sediment are assumed to be fully bioavailable<br />

to biota. However, this level of bioavailability is considered to be unrealistic <strong>for</strong> the metals barium and<br />

manganese, <strong>for</strong> which the absorption factor (AF) from sediment when ingested by biota was set to a value<br />

of 0.1. As a special case, the bioavailability of vanadium present in sediment <strong>for</strong> the Base Case was<br />

effectively set to a value of 0.1, by dividing the Base Case vanadium concentrations in sediment by a<br />

factor of 10. This approach is based on the assumption that most of the vanadium present in sediment is<br />

associated with the mineral lattice of sediment grains. This assumption is supported by the U.S. EPA<br />

EcoSSL document <strong>for</strong> vanadium (U.S. EPA 2005). However, due to its anionic character in the aquatic<br />

environment, all vanadium released into the aquatic environment as a result of Project activities is<br />

conservatively assumed to be fully bioavailable. All <strong>Kitimat</strong> Terminal-related discharges are assumed to<br />

be completely (i.e., 100%) bioavailable upon release into the marine environment through the sub-tidal<br />

per<strong>for</strong>ated pipe into the water and sediments. Because of the large discrepancy between the laboratoryderived<br />

bioaccumulation factors and those calculated from measured biota and media concentrations, the<br />

latter are preferred as being representative of processes occurring at the site. For all other COPC,<br />

assuming complete bioavailability is highly conservative and would result in higher HQ estimates.<br />

2010 Page 7-3


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 8: Summary of Environmental Effects<br />

8 Summary of Environmental Effects<br />

The effect magnitudes <strong>for</strong> the water and sediment community-level receptors are generally predicted to be<br />

negligible or low in the Base, Project and Application cases. The only exceptions originated in the Base<br />

Case, where benzo(b)fluoranthene (a PAH), and the trace elements barium, manganese and zinc, found to<br />

be present at concentrations that could cause moderate effects on aquatic community receptor such as fish<br />

and plankton. However, these potential baseline environmental effects were identified on the basis of the<br />

maximum measured concentration of the COPC in water, and also depend upon the assumption that<br />

100% of the measured concentration of each COPC is fully bioavailable. In each case, the contribution of<br />

the Project Case to the overall Application Case is negligible.<br />

For avian and mammalian species, all calculated HQ values are below thresholds that would indicate a<br />

potential risk of adverse environmental effect <strong>for</strong> the Base, Project and Application cases.<br />

For eulachon, Marbled Murrelet, Steller sea lion and harbour porpoise (Species at <strong>Risk</strong>), the<br />

environmental effects of COPC released by the operations of the <strong>Kitimat</strong> Terminal over an assumed<br />

50-year period would result in negligible magnitude adverse effects.<br />

This <strong>Marine</strong> ERA is built on measured data to the extent practical, with conservative assumptions used in<br />

the exposure and hazard assessments. There<strong>for</strong>e, it is unlikely that the risk of adverse environmental<br />

effects on the marine environment is underestimated.<br />

2010 Page 8-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 9: References<br />

9 References<br />

9.1 Literature Cited<br />

Agency <strong>for</strong> Toxic Substances and Disease Registry (ATSDR). 1999. Toxicity Profile <strong>for</strong> Total Petroleum<br />

Hydrocarbons (TPH). United States Department of Health and Human Services.<br />

AMEC. 2005. Remediation of the Sydney Tar Ponds and Coke Oven Sites, Volume 7: Contaminant Fate<br />

Modelling of Sydney Harbour.<br />

Ankley, G.T., G.L. Phipps, E.N. Leonard, D.A. Benoit, V.R. Mattson, P.A. Kosian, A.M. Cotter, J.R.<br />

Dierkes, D.J. Hansen and J.D. Mahony. 1991. Acid-volatile sulfide as a factor mediating<br />

cadmium and nickel bioavailability in contaminated sediments. Environmental Toxicology and<br />

Chemistry 10(10): 1299-1307.<br />

Brooks, A. 1928. Does the Marbled Murrelet nest inland? Murrelet 9: 68.<br />

Canadian Council of Ministers of the Environment (CCME). 1996. A Framework <strong>for</strong> <strong>Ecological</strong> <strong>Risk</strong><br />

<strong>Assessment</strong>: General Guidance.<br />

Canadian Council of Ministers of the Environment (CCME). 1997. A Framework <strong>for</strong> <strong>Ecological</strong> <strong>Risk</strong><br />

<strong>Assessment</strong>: Technical Appendices.<br />

Canadian Council of Ministers of the Environment (CCME). 1999a. Canadian Water Quality Guidelines<br />

<strong>for</strong> the Protection of Aquatic Life.<br />

Canadian Council of Ministers of the Environment (CCME). 1999b. Canadian Environmental Quality<br />

Guidelines. Winnipeg, MB.<br />

Canadian Council of Ministers of the Environment (CCME). 2008. Canada-wide Standard <strong>for</strong> Petroleum<br />

Hydrocarbons (PHC) in Soil: Scientific Rationale Supporting Technical Document.<br />

Chappell, W.R. 1992. Scaling toxicity data across species. Environmental Geochemistry and Health<br />

14(3): 71-80.<br />

DeVink, J.-M.A., H.G. Gilchrist and A.W. Diamond. 2005. Effects of water salinity on growth and<br />

survival of common eider (Somateria mollissima) ducklings. Auk 122: 523-529.<br />

Di Toro, D.M. and J.A. McGrath. 2000. Technical basis <strong>for</strong> narcotic chemicals and polycyclic aromatic<br />

hydrocarbon criteria. II. Mixtures and sediments. Environmental Toxicology and Chemistry<br />

19:1971-1982.<br />

Di Toro, D.M., J.A. McGrath and D.J. Hansen. 2000. Technical basis <strong>for</strong> narcotic chemicals and<br />

polycyclic aromatic hydrocarbon criteria. I. Water and tissue. Environmental Toxicology and<br />

Chemistry 19:1951-1970.<br />

Di Toro, D.M., J.A. McGrath and W.A. Stubblefield. 2007. Predicting the toxicity of neat and weathered<br />

crude oil: toxic potential and the toxicity of saturated mixtures. Environmental Toxicology and<br />

Chemistry 26:24-36.<br />

2010 Page 9-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 9: References<br />

Diamond, M.L., D. Mackay, D.J. Poulton and F.A. Stride. 1994. Development of a mass balance model<br />

of the fate of 17 chemicals in the Bay of Quinte. Journal of Great Lakes Research 20: 643-666.<br />

Diamond, M.L., D. Mackay, D.J. Poulton and F.A. Stride. 1996. Assessing the chemical behaviour and<br />

developing remedial actions using a mass balance model of chemical fate in the Bay of Quinte.<br />

Water Research 30: 405-421.<br />

Ethier, A.L.M. 2002. A Review of Mass Balance Model of the Sources and Fate of Polycyclic Aromatic<br />

Hydrocarbons in Sydney Harbour, Nova Scotia. MSc thesis. Trent University. Peterborough, ON.<br />

GESAMP (IMA/FAO/UNESCO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific<br />

Aspects of <strong>Marine</strong> Pollution). 1991. Coastal Modelling. GESAMP Reports and Studies No. 43,<br />

192 pp.<br />

Innes, S., D.M. Lavigne, W.M. Earle and K.M. Kovacs. 1987. Feeding Rates of Seals and Whales.<br />

Journal of Animal Ecology 56: 115-130.<br />

JDAC. 2002. Contaminant Flux from Muggah Creek to Sydney Harbour. Phase II/III Environmental Site<br />

<strong>Assessment</strong> – Muggah Creek Watershed. Report to Nova Scotia Department of Transportation<br />

and Public Works.<br />

Lewis, T.L., D. Esler and W.S. Boyd. 2007a. Effects of predation by sea ducks on clam abundance in<br />

soft-bottom intertidal habitats. <strong>Marine</strong> Ecology Progress Series 329:131-144.<br />

Lewis, T.L., D. Esler and W.S. Boyd. 2007b. Foraging behaviours of Surf Scoters and white-winged<br />

scoters during spawning of Pacific herring. Condor 109: 216-222.<br />

Ling, H., M.L. Diamond and D. Mackay. 1993. Application of the QWASI fugacity/equivalence model to<br />

assessing sources and fate of contaminants in Hamilton Harbour. Journal of Great Lakes<br />

Research 19: 582-602.<br />

Lun, R., K. Lee, L. DeMarco, C. Nalewajko and D. Mackay. 1998. A model of the fate of polycyclic<br />

aromatic hydrocarbons in the Saguenay Fjord, Canada. Environmental Toxicology and Chemistry<br />

17: 333-341.<br />

Luttik, R., P. Mineau and W. Roelofs. 2005. A review of interspecies toxicity extrapolation in birds and<br />

mammals and a proposal <strong>for</strong> long-term toxicity data. Ecotoxicology 14: 817-832.<br />

Mate, B. 1978. Cali<strong>for</strong>nia Sea Lion. In D. Haley (ed.). <strong>Marine</strong> Mammals of Eastern North Pacific and<br />

Arctic Waters. Pacific Search Press. Seattle, WA. 172-177.<br />

Mineau, P., B.T. Collins and A. Baril. 1996. On the use of scaling factors to improve interspecies<br />

extrapolation of acute toxicity in birds. Regulatory Toxicology and Pharamacology 24: 24-29.<br />

Ohio EPA. 2008. <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Guidance Document. Division of Emergency and Remedial<br />

Response.<br />

Onishi, Y., R.J. Serne, E.M. Arnold, C.E. Cowan, and F.L. Thompson. 1981. Critical Review:<br />

radionuclide transport, sediment transport, and water quality mathematical modelling; and<br />

radionuclide adsorption/desorption mechanisms. Report prepared <strong>for</strong> U.S. Nuclear Regulatory<br />

Commission, NUREG/CR-1322.<br />

Page 9-2 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 9: References<br />

Raimondo, S., P. Mineau and M.G. Barron. 2007. Estimation of chemical toxicity to wildlife species<br />

using interspecies correlation models. Environmental Science and Technology 41: 5888-5894.<br />

Sample, B.E. and C.A. Arenal. 1999. Allometric models <strong>for</strong> interspecies extrapolation of wildlife.<br />

Bulletin of Environmental Contamination and Toxicology 62: 653-663.<br />

Sample, B.E., D.M. Opresko and G.W. Suter II. 1996. Toxicological Benchmarks <strong>for</strong> Wildlife: 1996<br />

Revision. Oak Ridge National Laboratory. Oak Ridge, TN.<br />

Santos M.B. and G.J. Pierce. 2003. The Diet of Harbour Porpoise (Phocoena phocoena) in the Northeast<br />

Atlantic. Oceanography and <strong>Marine</strong> Biology: an Animal Review 41: 355-390.<br />

Schwarzenbach, R.P., P.M. Gschwend and D.M. Imboden. 2002. Environmental Organic Chemistry. 2 nd<br />

edition. Wiley-Interscience. Hoboken, NJ.<br />

Stephenson, M., J.A.K. Reid, Y. Zhuang and S.B. Russell. 1995. Preliminary <strong>Assessment</strong> of Low- and<br />

Intermediate-Level Waste Disposal in the Michigan Basin: Large Lake Model. Atomic Energy of<br />

Canada Limited Report: COG-95-256.<br />

Sterling, M.C.Jr., J.S. Bonner, C.A. Page, C.B. Fuller, A.N.S. Ernest and R.L. Autenrieth. 2003.<br />

Partitioning of crude oil polycyclic aromatic hydrocarbons in aquatic systems. Environmental<br />

Science and Technology 37: 4429-4434.<br />

Stoetaert, K. and P.M.J. Herman. 1995a. Estimating estuarine residence times in the Westerschelde (The<br />

Netherlands) using a box model with fixed dispersion coefficients. Hydrobiologia 311: 215-224.<br />

Stoetaert, K. and P.M.J. Herman. 1995b. Carbon flows in the Westerschelde Estuary (The Netherlands)<br />

evaluated by means of an ecosystem model (MOSES). Hydrobiologia 311: 246-266.<br />

Suter, G.W., II. 1993. <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong>. Lewis Publishers, Boca Raton, Florida, USA.<br />

Travis, C.C. and R.K. White. 1988. Interspecific scaling of toxicity data. <strong>Risk</strong> Analysis 8: 119-125.<br />

United States Environmental Protection Agency (U.S. EPA). 1985. Rates, constants, and kinetics<br />

<strong>for</strong>mulations in surface water quality modelling (Second Edition). EPA/600/3-85/040.<br />

United States Environmental Protection Agency (U.S. EPA). 1987. Processes, coefficients, and models<br />

<strong>for</strong> simulating toxic organics and heavy metals in surface waters. EPA/600.3-87/015.<br />

United States Environmental Protection Agency (U.S. EPA). 1992. Framework <strong>for</strong> ecological risk<br />

assessment. <strong>Risk</strong> <strong>Assessment</strong> Forum. EPA/630/R-92/001<br />

United States Environmental Protection Agency (U.S. EPA). 1993. Wildlife Exposure Factors Handbook<br />

Volume 1. EPA/600/R-93/187. from Maxson, S.J. and L.W. Oring. 1980. Breeding season time<br />

and energy budgets of the polyandrous Spotted Sandpiper. Behaviour 74(3-4): 200-263<br />

United States Environmental Protection Agency (U.S. EPA). 1998. Guidelines <strong>for</strong> <strong>Ecological</strong> <strong>Risk</strong><br />

<strong>Assessment</strong>. EPA/630/R-95/002F.<br />

United States Environmental Protection Agency (U.S. EPA). 2002a. A Review of the Reference Dose and<br />

Reference Concentration Processes. <strong>Risk</strong> <strong>Assessment</strong> Forum.<br />

2010 Page 9-3


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 9: References<br />

United States Environmental Protection Agency (U.S. EPA). 2005. <strong>Ecological</strong> Soil Screening Levels <strong>for</strong><br />

Vanadium, Interim Final. OSWER Directive 9285.7-75. U.S. Environmental Protection Agency<br />

Office of Solid Waste and Emergency Response. April, 2005.<br />

van Vlaardingen, P.L.A., R. Posthumus and C.J.A.M. Posthuma-Doodeman. 2005. Environmental <strong>Risk</strong><br />

Limits <strong>for</strong> Nine Trace Elements. National Institute of Public Health and the Environment. RIVM<br />

Report No 601501 029. Bilthoven, The Netherlands.<br />

Verbruggen, E.M.J., R. Posthumus and A.P. van Wezel. 2001. Ecotoxicological Serious <strong>Risk</strong><br />

Concentrations <strong>for</strong> Soil, Sediment and (Ground)water: Updated Proposals <strong>for</strong> First Series of<br />

Compounds. National Institute of Public Health and the Environment. RIVM Report No 711701<br />

020. Bilthoven, The Netherlands.<br />

9.2 Internet Sites<br />

Australian and New Zealand Environmental Conservation Council (ANZECC). 2000. Australian and<br />

New Zealand Guidelines <strong>for</strong> Fresh and <strong>Marine</strong> Water Quality. Available at:<br />

http://www.mincos.gov.au/publications/australian_and_new_zealand_guidelines_<strong>for</strong>_fresh_and_<br />

marine_water_quality. Accessed: October 2008.<br />

British Columbia Ministry of Environment (BC MOE). 2006. Water Quality Guidelines (Criteria).<br />

Available at: http://www.env.gov.bc.ca/wat/wq/wq_guidelines.html. Accessed: October 2008.<br />

Buehler, D.A. 2000. Bald Eagle (Haliaeetus leucocephalus). Available at:<br />

http://bna.birds.cornell.edu.proxy.hil.unb.ca/bna/species/506doi:10.2173/bna.506. Accessed:<br />

October 2008. from Palmer, R.S., J.S. Gerrard and M.V. Stalmaster. 1988. Bald Eagle. In R.S.<br />

Palmer (ed.). Handbook of North American birds. Yale University Press. New Haven, CT.<br />

Convention on Migratory Species (CMS). 2003. Phocoeana phocoena, Harbour Porpoise. Available at:<br />

http://www.cms.int/reports/small_cetaceans/data/P_phocoena/p_phocoena.htm. Accessed: March<br />

2008.<br />

Environment Canada. 2006a. Harbour Porpoise. Pacific Ocean Population. Available at:<br />

http://www.sararegistry.gc.ca/species/speciesDetails_e.cfm?sid=493. Accessed: March 2008.<br />

Environment Canada. 2006b. Harbour Porpoise. Northwest Atlantic Population. Available at:<br />

http://www.sararegistry.gc.ca/species/speciesDetails_e.cfm?sid=147. Accessed: March 2008.<br />

Fisheries and Ocean Canada (DFO). 2007a. Aquatic Species at <strong>Risk</strong> – Stellar Sea Lion. Available at<br />

http://www.dfo-mpo.gc.ca/species-especes/species/species_stellersealion_e.asp. Accessed:<br />

October 2008.<br />

Fisheries and Ocean Canada (DFO). 2007b. Aquatic Species at <strong>Risk</strong> – Bocaccio. Available at:<br />

http://www.dfo-mpo.gc.ca/species-especes/species/species_bocaccio_e.asp. Accessed: October<br />

2008.<br />

Forest Service British Columbia. 1998. Eulachon: A Significant Fish <strong>for</strong> First Nations Communities –<br />

Extension note #32. Available at:<br />

http://www.<strong>for</strong>.gov.bc.ca/rni/Research/Extension_notes/Enote32.pdf. Accessed: October 2008.<br />

Page 9-4 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 9: References<br />

Gonder, M. 2000. Eumetopias jubatus – Steller Sea Lion. Available at:<br />

http://animaldiversity.ummz.umich.edu/site/accounts/in<strong>for</strong>mation/Eumetopias_jubatus.html.<br />

Accessed: October 2008.<br />

Government of Canada. 2008a. Species at <strong>Risk</strong> Public Registry – Stellar Sea Lion. Available at:<br />

http://www.sararegistry.gc.ca/species/speciesDetails_e.cfm?sid=326. Accessed: October 2008.<br />

Government of Canada. 2008b. Species at <strong>Risk</strong> Public Registry – Marbled Murrelet. Available at:<br />

http://www.sararegistry.gc.ca/species/speciesDetails_e.cfm?sid=39. Accessed: October 2008.<br />

Hammond, G. and A. Masi. 2000. Phocoena phocoena – Harbour Porpoise. Available at:<br />

http://animaldiversity.ummz.umich.edu/site/accounts/in<strong>for</strong>mation/Phocoena_phocoena.html.<br />

Accessed: December 2006.<br />

International <strong>Marine</strong> Mammal Association Inc. (IMMA). 1998. <strong>Marine</strong> Mammal Fact sheet Series:<br />

Harbour Porpoise. Available at: http://www.imma.org/porpoise.html.<br />

Kaiser, G.W. 1991. Canadian Wildlife Service & Canadian Wildlife Federation. Hinterland Who’s Who.<br />

Available at: http://www.hww.ca. Accessed: October 2008.<br />

NatureServe. 2008. NatureServe Explorer: An online encyclopaedia of life [web application]. Version 7.0.<br />

NatureServe, Arlington, VA. Available at: http://www.natureserve.org/explorer. Accessed: March<br />

2008.<br />

Nelson, S.K. 2000a. Marble Murrelet (Brachyramphus marmoratus). Available at:<br />

http://bna.birds.cornell.edu.proxy.hil.unb.ca/bna/species/506doi:10.2173/bna.506. Accessed:<br />

October 2008.from Sealy, S.G. 1975. Aspects of the breeding biology of the Marbled Murrelet in<br />

British Columbia. Bird-Banding 46: 141–154.<br />

Nelson, S.K. 2000b. Marble Murrelet (Brachyramphus marmoratus). Available at:<br />

http://bna.birds.cornell.edu.proxy.hil.unb.ca/bna/species/506doi:10.2173/bna.506. Accessed:<br />

October 2008. from Carter, H.R. and S.G. Sealy. 1986. Year-round use of coastal lakes by<br />

Marbled Murrelets. Condor 88: 473–477.<br />

Oring, L.W., E.M. Gray and J.M. Reed. 1997. Spotted Sandpiper (Actitis macularius). Available at:<br />

http://bna.birds.cornell.edu.proxy.hil.unb.ca/bna/species/289. Accessed: March 2008.<br />

Price, R. 2002. Zalophus cali<strong>for</strong>nianus – Cali<strong>for</strong>nia Sea Lion. Available at:<br />

http://animaldiversity.ummz.umich.edu/site/accounts/in<strong>for</strong>mation/Zalophus_cali<strong>for</strong>nianus.html.<br />

Accessed: October 2008. from Scheffer, V. 1958. Seals, Sea Lions and Walruses: A Review of<br />

the Pinnipedia. Stand<strong>for</strong>d University Press. Stand<strong>for</strong>d, CA.<br />

Savard, J.-P.L., D. Bordage and A. Reed. 1998. Surf Scoter (Melanitta perspicillata). Available at:<br />

http://bna.birds.cornell.edu.proxy.hil.unb.ca/bna/species/363. Accessed: October 2008. from<br />

Vermeer, K. and N. Bourne. 1984. The White-winged Scoter diet in British Columbia waters:<br />

resource partitioning with other scoters. In D.N. Nettleship, G.A. Sanger and P.F. Springer (eds.).<br />

<strong>Marine</strong> Birds: their Feeding Ecology and Commercial Fisheries Relationships. Canadian Wildlife<br />

Service Special Publication. Ottawa, ON. 30-38.<br />

2010 Page 9-5


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Section 9: References<br />

Smart, J. 1999. Brachyramphus marmoratus – Marbled Murrelet. Available at:<br />

http://animaldiversity.ummz.umich.edu/site/accounts/in<strong>for</strong>mation/Brachyramphus_marmoratus.ht<br />

ml. Accessed: October 2008.<br />

Stocek, R.F. 1992. Canadian Wildlife Service & Canadian Wildlife Federation. Hinterland Who’s Who.<br />

Available at: http://www.hww.ca. Accessed: October 2008.<br />

Stoffels, D. 2001. Eulachon in the North Coast. Available at:<br />

http://www.livinglandscapes.bc.ca/northwest/eulachon/resources/NCeulachon.pdf. Accessed:<br />

October 2008.<br />

United States Environmental Protection Agency (U.S. EPA). 2003. Current National Recommended<br />

Water Quality Criteria. Available at: http://www.epa.gov/waterscience/criteria/wqctable/.<br />

Accessed: October 2008.<br />

Page 9-6 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix A: <strong>Marine</strong> Water Quality Model<br />

Appendix A <strong>Marine</strong> Water Quality Model<br />

2010 Page A-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix A: <strong>Marine</strong> Water Quality Model<br />

Table of Contents<br />

Appendix A <strong>Marine</strong> Water Quality Model ................................................... A-1<br />

A.1 Introduction ........................................................................................................ A-5<br />

A.1.1 <strong>Marine</strong> Water Fate and Transport Model ....................................................... A-5<br />

A.2 Principal Model Processes ................................................................................ A-8<br />

A.2.1 Tidal Movement ............................................................................................. A-8<br />

A.3 Additional Parameter Values Used in the Model ............................................. A-18<br />

A.3.1 Model Compartment Depths and Areas ...................................................... A-18<br />

Attachment A1 <strong>Marine</strong> Water Quality Model Equations and<br />

Documentation (In Stella ® Format) ...................................... A1-1<br />

Attachment A2 Water Quality Model Representative Results ........................ A2-1<br />

List of Tables<br />

Table A-1 Drainage Areas and Corresponding Multiplication Factors <strong>for</strong> Each<br />

Compartment ........................................................................................ A-13<br />

Table A-2 Top Four (Least Sum of Squares) Salinity Calibration Models and<br />

the Resulting Values of Mixer, Dispers and Sum of Squares ............... A-16<br />

Table A-3 <strong>Marine</strong> Water Quality Model Compartment Depths and Surface<br />

Areas .................................................................................................... A-18<br />

Table A-4 Boundary Lengths between Model Compartments ............................... A-19<br />

Table A-5 Summary of Predicted COPC Water Concentrations in Each Model<br />

Compartment ........................................................................................ A-22<br />

Table A2-1 Summary of Predicted COPC Water Concentrations in Each Model<br />

Compartment ........................................................................................ A2-3<br />

List of Figures<br />

Figure A-1 <strong>Marine</strong> Water Quality Model Compartments ........................................... A-6<br />

Figure A-2 <strong>Marine</strong> Water Quality Model Conceptual Diagram .................................. A-9<br />

Figure A-3 Correlation of the Model Tide and High and Low Tides at <strong>Kitimat</strong>,<br />

British Columbia ................................................................................... A-12<br />

Figure A-4 Water Model Salinity Calibration Results Comparing One-year<br />

Normalized Measured Concentrations to Modelled Results ................. A-17<br />

Figure A-5 Vanadium Water Concentrations (mg/L) in Surface and Bottom<br />

Compartments ...................................................................................... A-20<br />

Figure A-6 Naphthalene Water Concentrations (mg/L) in Surface and Bottom<br />

Compartments ...................................................................................... A-21<br />

2010 Page A-3


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix A: <strong>Marine</strong> Water Quality Model<br />

A.1 Introduction<br />

A.1.1 <strong>Marine</strong> Water Fate and Transport Model<br />

Environmental fate and transport models are often used to simulate fate and transport of contaminants in<br />

environmental media (e.g., water, sediment), and can be useful tools in extending limited data to<br />

predictions of future conditions. Two independent mass balance compartment models were constructed to<br />

evaluate the likely fate of chemicals of potential concern (COPC) that may be released from the <strong>Kitimat</strong><br />

Terminal to the marine environment with stormwater via an off-shore per<strong>for</strong>ated pipe or by atmospheric<br />

deposition. The first model (hereafter referred to as the <strong>Marine</strong> Water Quality Model) estimates the fate<br />

and transport of COPC in water. The second model simulates the deposition of COPC into the marine<br />

sediment, hereafter referred to as the <strong>Marine</strong> Sediment Quality Model (see Appendix B). The <strong>Marine</strong><br />

Water Quality Model used the commercially available software, Stella® version 8.1.1); it predicts<br />

concentrations of COPC in the surface and bottom water layers of ten model compartments:<br />

• <strong>Kitimat</strong> 1, K1<br />

• <strong>Kitimat</strong> 2, K2<br />

• Terminal, T<br />

• Clio Bay, CB<br />

• Emsley Point, EP<br />

• West Side Coste Island, CO<br />

• Amos Passage, AP<br />

• Kildala Arm, KA<br />

• Nanakwa Shoal, NS<br />

• Douglas Channel, DC<br />

The results of the model are used in the calculation of exposure point concentrations (EPC) <strong>for</strong> the KIs.<br />

The locations of the model compartments are shown in Figure A-1. The detailed equations and<br />

documentation representing the <strong>Marine</strong> Water Quality Model in Stella ® <strong>for</strong>mat are provided in<br />

Attachment A1.<br />

A.1.1.1 Description of Stella ® version 8.1.1<br />

The Stella ® modelling framework is a mass balance modelling system that allows the construction of<br />

models using three basic components:<br />

1. Stocks, compartments that hold and account <strong>for</strong> mass (COPC).<br />

2. Flows, links between compartments that act as valves, and allow mass (COPC) to be transferred<br />

between compartments at rates that are specified by controlling equations.<br />

3. Converters, generally parameters or variables that are entered into the model in order to drive<br />

equations.<br />

2010 Page A-5


100 m<br />

300 m<br />

100 m<br />

CONTRACTOR:<br />

100 m<br />

100 m<br />

100 m<br />

100 m<br />

200 m<br />

Maitland<br />

Island<br />

200 m<br />

100 m<br />

Jacques Whit<strong>for</strong>d AXYS Ltd.<br />

100 m<br />

100 m<br />

100 m<br />

300 m<br />

DC<br />

Loretta<br />

Island<br />

200 m<br />

100 m<br />

NS<br />

200 m<br />

200 m<br />

<strong>Kitimat</strong><br />

Terminal<br />

Emsley<br />

Cove<br />

CO<br />

EP<br />

Coste<br />

Island<br />

200 m<br />

200 m<br />

T<br />

AP<br />

K2<br />

CB<br />

E N B R I D G E N O R T H E R N G A T E W A Y P R O J E C T<br />

PREPARED BY: PREPARED FOR:<br />

SCALE:<br />

K1<br />

Clio<br />

Bay<br />

<strong>Kitimat</strong><br />

Gobeil<br />

Bay<br />

KA<br />

<strong>Marine</strong> Water Quality<br />

Model Compartments<br />

Kitamaat<br />

Village<br />

100 m<br />

Pipeline Route<br />

Security Fence<br />

Terrestrial PDA<br />

<strong>Marine</strong> PEAA<br />

Watershed Boundary<br />

Bathymetric Contour (100 m)<br />

Railway<br />

Road<br />

0 1 2 3 4 5<br />

FIGURE NUMBER:<br />

PROJECTION:<br />

Kilometres<br />

JWA-1048334-1628<br />

Reference: Pipeline Route R<br />

UTM 9<br />

A-1<br />

1:220,000<br />

NP<br />

DATE:<br />

AUTHOR: APPROVED BY:<br />

DATUM:<br />

20090911<br />

CM<br />

NAD 83<br />

R:\2009Fiscal\1048334_<strong>Northern</strong><strong>Gateway</strong>_ESA_2009


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix A: <strong>Marine</strong> Water Quality Model<br />

This is a mass balance model because it is based on the fundamental principle that mass can neither be<br />

created nor destroyed (except as specified by equations describing specific processes such as microbial<br />

degradation of hydrocarbons). It is a compartment model because it consists of compartments configured<br />

to spatially represent the natural environment (i.e., each compartment represents a discrete area and layer<br />

of seawater).<br />

The <strong>Marine</strong> Water Quality Model simulates the behaviour of COPC in the marine environment <strong>for</strong><br />

3.7 years, using a time step (dt) of one hour. According to the model, concentrations of COPC in water<br />

compartments come to a quasi-steady state within approximately one month. There<strong>for</strong>e, the model<br />

outputs between 0.7 years and 3.7 years illustrate the effects of variable tide and runoff conditions on<br />

expected water quality within the model domain.<br />

A conceptual <strong>Marine</strong> Water Quality Model, representing the water compartments (stocks) and fluxes of<br />

COPC between compartments (flows) is presented in Figure A-2. Flow icons (Eff:K2S and Eff:TS)<br />

represent the surface water runoff discharge into the K2 and T compartments and are also identified. The<br />

flow icons represent atmospheric deposition into each of the surface seawater compartments (Dep:K1S,<br />

Dep:K2S, etc.). Note that the majority of model converters and connecters are not shown in Figure A-2 in<br />

order to reduce visual complexity. Flow icons that have only a single arrowhead allow contaminant<br />

transport only in the direction of the arrow. Flow icons that have an arrowhead on each end (biflows)<br />

allow contaminant transport in either direction, depending on whether the calculated flux value in any<br />

time step is positive or negative. A negative flux drives contaminant transport in the direction of the solid<br />

arrowhead.<br />

Due to the complexity of the estuarine environment where freshwater and salt water converge, all water<br />

compartments were subdivided into a shallow, freshwater or brackish surface layer (e.g., K1 Surf) and a<br />

bottom, more saline layer (e.g., K1 Bot). The thickness of the surface layers was set to 8 m, based on a<br />

review of salinity profiles from <strong>Kitimat</strong> Arm. Altogether, the <strong>Marine</strong> Water Quality Model comprises<br />

20 stocks or compartments (each representing a discrete area in the environment where COPC may be<br />

present) and associated flows representing the interactions and transport of COPC between compartments.<br />

Four primary processes are responsible <strong>for</strong> driving the flow of mass (the distribution and fate of COPC) in<br />

the <strong>Marine</strong> Water Quality Model:<br />

1. Tidal movement, which causes water to flow in and out of Douglas Channel and <strong>Kitimat</strong> Arm.<br />

2. Freshwater input from major watercourses in the area, which causes flushing of Douglas Channel and<br />

<strong>Kitimat</strong> Arm and full or partial density stratification of the system.<br />

3. Horizontal dispersion of water caused by small to medium size eddy circulation as well as winddriven<br />

currents exchanging water between adjacent water compartments.<br />

4. Vertical dispersion of water between surface and bottom water layers causing exchange of water<br />

between the layers.<br />

2010 Page A-7


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix A: <strong>Marine</strong> Water Quality Model<br />

The dispersion of water (horizontal and vertical) in <strong>Kitimat</strong> Arm is largely dominated by the inflow of<br />

freshwater, which creates a two-layer water structure. The surface water has a net seaward movement due<br />

to the inflow of freshwater. Since more saline water is entrained into the surface water layer, this also<br />

creates a net landward movement of salt water in the bottom water layer. This kind of flow system is<br />

referred to as estuarine circulation.<br />

Other processes—such as sorption of COPC to particulate matter (including suspended or bedded<br />

sediments), volatilization of COPC from the water surface to the atmosphere, and decomposition of<br />

COPC as a result of microbial action or photolysis—will also act in the environment to reduce the<br />

concentrations of COPC in the water column. However, these processes are not included in the <strong>Marine</strong><br />

Water Quality Model. Omitting these processes is conservative and will result in a model that tends to<br />

overestimate COPC concentrations in water.<br />

A.2 Principal Model Processes<br />

The <strong>Marine</strong> Water Quality Model calculates the mass of each COPC in the ten individual water<br />

compartments (see Attachment A2). Concentrations of COPC are calculated by dividing the mass of<br />

COPC by the volume of water present in the individual compartments. The COPC enter the water<br />

compartments either as a result of liquid effluent discharge to the K2 or T surface water compartments or<br />

as a result of atmospheric deposition to any surface water compartment. Once in a surface water<br />

compartment, COPC can be redistributed to other compartments as a result of tidal water movements,<br />

flushing with freshwater from river inputs, horizontal dispersion or vertical mixing. The most distal water<br />

compartments (representing surface and bottom waters of Douglas Channel) are very large, so that they<br />

provide a sink <strong>for</strong> COPC. Within the model domain, the highest COPC concentrations are generally<br />

estimated <strong>for</strong> the K1, K2 and T compartments due to estuarine circulation of COPC released with liquid<br />

effluent and deposition of COPC released to the atmosphere.<br />

A.2.1 Tidal Movement<br />

The main patterns in the tides are the:<br />

• twice-daily combined lunar and solar tide<br />

• difference between the first and second tide of a day, due to the moon or sun being north or south of<br />

the equator<br />

• spring-neap cycle amplitude (smallest rise and fall in tidal level due to the relative positions of the<br />

moon and sun)<br />

• adjustment of spring tide heights due to the perigees (point nearest the earth's center in the orbit) of<br />

the moon and sun<br />

Page A-8 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix A: <strong>Marine</strong> Water Quality Model<br />

The exact timing (frequency) and height (amplitude) of the tides are temporally and spatially dependent<br />

on the combination of factors affecting the tides. Within the PEAA, the tidal fluctuation is approximately<br />

3.3 m between low and high tide, but can range from 0 m to 6.5 m. This fluctuation is responsible <strong>for</strong> the<br />

largest flow within the model; there<strong>for</strong>e, to emulate the tidal cycle, time-series data on high and low tides<br />

<strong>for</strong> <strong>Kitimat</strong> (published by the Canadian Hydrographic Service of Fisheries and Oceans Canada<br />

(http://www.waterlevels.gc.ca, Tide Station #9140) were used as inputs into the model. The model was<br />

then <strong>for</strong>mulated to extrapolate the tide level at each modelled hourly time step from the time series of<br />

high and low tide levels and times. This extrapolation superimposed a sinusoidal curve between the<br />

published high and low tide data points and extracted the hourly values. The correlation between the<br />

published data and the model extrapolated tide is presented in Figure A-3.<br />

Tidal influence was modelled <strong>for</strong> both the surface and bottom compartments by distributing the total tidal<br />

effect to both layers based on their relative thicknesses.<br />

A.2.1.1 Freshwater Input (River Flow)<br />

One key attribute of the PEAA is that it receives discharge from multiple river systems including <strong>Kitimat</strong><br />

River, Falls River, Dala River, Jesse Falls, and several smaller streams and brooks. Flow of the <strong>Kitimat</strong><br />

River is measured at a gauging station located just below the confluence with Hirsch Creek, about 4 km<br />

upstream of <strong>Kitimat</strong>, British Columbia (http://www.wsc.ec.gc.ca, Station No. 08FF001). The drainage<br />

area at this location is reported as 1,900 km 2 . Data recorded at this station between 1964 and 2006 were<br />

used to calculate mean daily flows <strong>for</strong> the <strong>Kitimat</strong> River. Freshwater flow into each model compartment<br />

was estimated by prorating these mean daily flows by the catchment area of each surface compartment.<br />

Drainage areas (shown in part on Figure A-1) and prorating multipliers to estimate stream flows from the<br />

flows to the <strong>Kitimat</strong> River, are shown in Table A-1.<br />

Freshwater discharged into a marine environment does not immediately mix with salt water. Rather, it can<br />

stratify and create a less saline surface water layer due to the lower density of freshwater compared to salt<br />

water. From observational data collected between 1951 and 2007 (ASL Environmental Sciences Inc.<br />

2009 1<br />

), this typically happens in <strong>Kitimat</strong> Arm and Douglas Channel, with a surface water layer usually<br />

having an average salinity of 17.3 ‰ (parts per thousand) and a bottom water layer extending from a<br />

depth of approximately 8 m below the surface to the bottom, having an average salinity of approximately<br />

30.8 ‰. The less saline surface water layer will gradually mix with seawater with increasing distance<br />

from the freshwater source. This process was incorporated into the model surface layers <strong>for</strong> all model<br />

compartments (Figure A-2).<br />

Flow of mass between adjacent surface compartments is driven primarily by tidal fluctuations. Other<br />

influences are the net outward flow caused by the river discharge affecting each compartment and the<br />

horizontal dispersion, caused by eddy circulation, across the surface layer boundaries. The effects of wind<br />

on water circulation are not explicitly modelled, although these effects will appear within the horizontal<br />

dispersion term.<br />

1 <strong>Marine</strong> Physical Environment TDR. Appendix C: Freshwater Discharges and Temperature-Salinity Distribution.<br />

2010 Page A-11


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix A: <strong>Marine</strong> Water Quality Model<br />

Tides (m)<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

48 58 68 78 88 98 108 118<br />

Hours<br />

Figure A-3 Correlation of the Model Tide and High and Low Tides at <strong>Kitimat</strong>, British Columbia<br />

Tide Reading 1<br />

Tide Reading 2<br />

Tide Reading 3<br />

Tide Reading 4<br />

Predicted Tide<br />

Page A-12 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix A: <strong>Marine</strong> Water Quality Model<br />

Table A-1 Drainage Areas and Corresponding Multiplication Factors <strong>for</strong><br />

Each Compartment<br />

Compartment<br />

Drainage area<br />

(m 2 )<br />

Multiplication factor<br />

Monitoring station 1.90 × 10 9 N/A<br />

K1 2.24 × 10 9 1.18 × 100<br />

K2 2.30 × 10 9 1.21 × 100<br />

T 2.44 × 10 9 1.29 × 100<br />

CB 1.08 × 10 7 5.68 × 10 -3<br />

EP 2.48 × 10 9 1.30 × 100<br />

CO 2.48 × 10 9 1.31 × 100<br />

AP 1.13 × 10 9 5.97 × 10 -1<br />

KA 1.04 × 10 9 5.49 × 10 -1<br />

NS 3.84 × 10 9 2.02 × 100<br />

NOTES:<br />

Compartments K1, K2, T, EP, CO and NS are all in direct line of flow from the <strong>Kitimat</strong> River, and<br />

there<strong>for</strong>e the drainage areas of these compartments increase incrementally from the drainage area of<br />

the <strong>Kitimat</strong> River. Compartments CB, KA and AP are not in direct line of flow from the <strong>Kitimat</strong> River,<br />

and there<strong>for</strong>e have only local drainage areas contributing freshwater runoff.<br />

N/A – not applicable<br />

A.2.1.2 Horizontal Water Dispersion (Dispers)<br />

Horizontal mass transfer between adjacent compartments (i.e., surface to surface or bottom to bottom<br />

layer), in addition to transfers attributable to advection of water due to tidal or river flow, is caused by<br />

horizontal water dispersion (Dispers in the equation). Mass transfer between adjacent compartments is<br />

assumed to be a random dispersion process, represented as the product of dispersivity between the two<br />

compartments (since water moving in one direction must be balanced by water moving in the return<br />

direction). This is calculated by the following equation.<br />

Equation 1:<br />

Where:<br />

d( Mass1)<br />

Mass1∗<br />

Dispers ∗vArea<br />

Mass2<br />

∗ Dispers ∗vArea<br />

=<br />

−<br />

dt<br />

Vol1<br />

Vol2<br />

d(Mass1)/dt = the change in mass (kg) of a COPC in the water of Compartment 1;<br />

Mass1 = the mass (kg) of COPC in Compartment 1;<br />

Mass2 = the mass (kg) of COPC in Compartment 2;<br />

Dispers = a parameter representing the horizontal dispersivity of water movements between<br />

the two compartments (m/h);<br />

2010 Page A-13


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix A: <strong>Marine</strong> Water Quality Model<br />

vArea = the cross-sectional area (m²) of the vertical interface between the adjacent<br />

compartments;<br />

Vol1 = the volume of water in Compartment 1 (m³); and<br />

Vol2 = the volume of water in Compartment 2 (m³).<br />

A positive result represents a net transfer of COPC from Compartment 1 to Compartment 2; a negative<br />

result represents a net transfer of COPC from Compartment 2 to Compartment 1.<br />

The value of the parameter Dispers in the surface compartments was initially set to 0.1 m/s (360 m/h),<br />

and, <strong>for</strong> the bottom compartments, was set to a value of one tenth of the value <strong>for</strong> surface compartments,<br />

based on professional judgment. The value of Dispers was subsequently determined as part of the model<br />

calibration process (Section 2.5), using a least-squares fitting procedure and observed salinity profiles<br />

within the model domain. The final surface compartment (calibrated) value of Dispers was 216 m/h. The<br />

one-tenth relationship between surface and bottom compartment dispersion was maintained throughout<br />

the calibration process.<br />

A.2.1.3 Vertical Water Dispersion (Mixer)<br />

Mass transfer between surface and bottom water compartments is modelled using turbulent mixing<br />

between the layers (i.e., mass transport of water containing COPC between the layers). Turbulent mixing<br />

between the water masses is represented as the product of the concentration in the compartment<br />

(calculated as the mass in the compartment divided by the volume of the compartment), the rate of<br />

vertical mixing between the compartments, and the area of interface between them.<br />

The resulting equation <strong>for</strong> surface water to bottom water compartment mass flux of COPC is:<br />

Equation 2<br />

Where:<br />

d(<br />

Mass _ surf ) Mass _ surf ∗ Mixer ∗ hArea Mass _ bot * Mixer ∗ hArea<br />

=<br />

−<br />

dt<br />

Vol _ surf<br />

Vol _ bot<br />

d(Mass_surf)/dt = the change in mass (kg) of a COPC in the water of a surface compartment;<br />

Mass_surf = the mass (kg) of COPC in the surface water compartment;<br />

Mass_bot = the mass (kg) of COPC in the bottom water compartment;<br />

Mixer = the rate of vertical mixing (m/h) between surface and bottom water<br />

compartments due to turbulent <strong>for</strong>ces;<br />

Vol_surf = the volume (m 3 ) of the surface water compartment;<br />

Vol_bot = the volume (m 3 ) of the bottom water compartment; and<br />

hArea = the area (m 2 ) of the horizontal interface between the surface and bottom water<br />

compartments.<br />

Page A-14 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix A: <strong>Marine</strong> Water Quality Model<br />

A positive result represents a net transfer of COPC from the surface water compartment to the bottom<br />

water compartment; a negative result represents a net transfer of COPC from the bottom water<br />

compartment to the surface water compartment.<br />

The value of the parameter Mixer was initially set to 0.01 m/h, based on professional judgment. This<br />

parameter is largely driven by turbulence and frictional <strong>for</strong>ces acting between the surface and bottom<br />

water layers. The value of Mixer was varied and adjusted using a least-squares fitting procedure during<br />

the model calibration process (Section 2.5). The final (calibrated) value of Mixer was adjusted to<br />

0.012 m/h.<br />

A.2.1.4 Model Calibration<br />

Of the four key processes responsible <strong>for</strong> driving the flow of mass in the <strong>Marine</strong> Water Quality Model,<br />

values <strong>for</strong> river flow and tide were derived from measured data from the PEAA. The remaining two<br />

processes, horizontal dispersion and vertical mixing, which represent (in a very simplified manner) the<br />

aggregate effects of wind, currents, and turbulent water movements at scales ranging from fine to large,<br />

were calculated based on the equations 1 and 2. To ensure that the calculated values were representative<br />

of an actual site-specific condition, measured water salinity depth profiles were used in the calibration.<br />

The spatial extent and thickness of the measured surface water layers depends on the rates of horizontal<br />

and vertical dispersion in the environment. There<strong>for</strong>e, the salinity data provide a means to calibrate the<br />

<strong>Marine</strong> Water Quality Model <strong>for</strong> those parameters. Measured salinity profiles were taken at various<br />

periods during the tidal cycle, at different times of the year, and in several different years. The salinity<br />

profiles, there<strong>for</strong>e, provide detailed snapshots of the mixing of salt water and freshwater in the vicinity of<br />

<strong>Kitimat</strong> Arm.<br />

A stepwise procedure was followed whereby one parameter (Dispers or Mixer) was varied while the<br />

second held constant. Dispers was varied by multiplying the initial value of 360 m/h by a constant<br />

ranging from 0.5 to 1.3 (n = 9 candidate values). Mixer was varied by multiplying the initial rate of<br />

0.01 m/h by a multiplier constant ranging from 0.5 to 2.1 (n = 17 candidate values). The objective of this<br />

procedure was to determine the parameter values <strong>for</strong> Mixer and Dispers that produced model salinity<br />

profiles that best fit (using a lowest sum of squares difference criterion <strong>for</strong> comparing the predicted to the<br />

measured salinities <strong>for</strong> surface and bottom water layers) the observed (measured) salinity profiles. A total<br />

of 153 different combinations of Dispers and Mixer values were tested in this way. The resulting values<br />

<strong>for</strong> the four best models are presented in Table A-2 with the best model parameter values being chosen <strong>for</strong><br />

use in the marine water fate and transport model. As can be seen in Table A-2, the values of Mixer and<br />

Dispers varied little among the top four salinity calibration models, with minimal improvement in the sum<br />

of squares. The optimal calibration decreased Dispers to 0.6 times the original value of 360 m/h and also<br />

increased the vertical mixing coefficient (Mixer) to 1.2 times the original value of 0.01. Because the top<br />

four models had parameter values that varied minimally, the top model values can be assigned greater<br />

level of confidence than if there were alternative solutions that achieved a similar level of agreement with<br />

the observed data. As well, the small variation in the sum of squares suggests that the model was not<br />

sensitive to small variations in the parameter values chosen <strong>for</strong> Dispers and Mixer, and provides greater<br />

confidence in the robustness of the model. The final (optimized) calibration constants applied to the<br />

2010 Page A-15


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix A: <strong>Marine</strong> Water Quality Model<br />

salinity model were 0.6 <strong>for</strong> the Disper multiplier and 1.2 <strong>for</strong> the Mixer multiplier, which resulted in final<br />

model values of 216 m/h <strong>for</strong> Dispers and 0.012 <strong>for</strong> Mixer, respectively (Table A-2).<br />

Table A-2 Top Four (Least Sum of Squares) Salinity Calibration Models and<br />

the Resulting Values of Mixer, Dispers and Sum of Squares<br />

Dispersivity<br />

Multiplier<br />

Mixer Multiplier<br />

Dispers<br />

(m/h)<br />

Mixer<br />

(m/h)<br />

Sum of Squares<br />

0.6 1.2 216 0.012 3474<br />

0.7 1.1 252 0.011 3475<br />

0.7 1.2 252 0.012 3478<br />

0.6 1.3 216 0.013 3483<br />

A comparison of the resulting post-calibration model-predicted water salinity concentrations in both<br />

layers <strong>for</strong> each model compartment and the measured one-year normalized water salinity data is presented<br />

in Figure A-4. The one-year normalization was conducted to summarize salinity measurements collected<br />

between 1951 and 2007 into a representative year. This representative year assumes that, on average, data<br />

collected on a particular calendar day is independent of the year the measurement was taken. Once the<br />

calibration process was completed, the model was re-configured <strong>for</strong> contaminant mass (instead of<br />

salinity) and the contaminant source inputs (atmospheric deposition and reservoir excess discharge) were<br />

added. These changes had no effect on the model calibration.<br />

A.2.1.5 Liquid Effluent Emissions<br />

Runoff water originating at the <strong>Kitimat</strong> Terminal—as well as oily water recovered from the berth areas—<br />

will be sent initially to a firewater reservoir and from there to the impoundment reservoir. Be<strong>for</strong>e excess<br />

water is released to the marine environment, it will be treated so that the oil in water concentration is a<br />

maximum of 15 ppm. The discharge point will be roughly adjacent to the boundary between the K2 and T<br />

model compartments. The modelled discharge rate is approximately 100 m 3 /h. This is a conservative<br />

assumption based on annual precipitation over the PDA. The anticipated concentrations of COPC in the<br />

liquid effluent are presented in Appendix F. In general, water discharged on the rising tide is assumed to<br />

enter compartment K2, whereas water discharged on a falling tide is assumed to enter compartment T.<br />

This relationship is affected by the volume of freshwater entering the compartments and results in liquid<br />

effluent discharging into compartment T at the beginning and ending stages of a rising tide when the tidal<br />

effects are negated by the freshwater flow.<br />

A.2.1.6 Atmospheric emissions and deposition<br />

The air emission sources considered in the atmospheric deposition assessment included 16 hydrocarbon<br />

tanks (containing diluted bitumen, synthetic oil, or condensate), two large marine vessels while berthed<br />

(one oil VLCC class tanker and one Suezmax class condensate tanker), and six tugboats. The marine<br />

vessels were assumed to be fuelled by residual oil (No. 6 Bunker C) with a sulphur content of 2.7%.<br />

Model estimated loadings of COPC to the marine environment from these sources by atmospheric<br />

deposition were applied directly to each surface water compartment of the <strong>Marine</strong> Water Quality Model.<br />

Page A-16 2010


Figure A‐4 Water Model Salinity Calibration Results Comparing One‐year Normalized Measured Concentrations to Modelled Results<br />

Salinity (ppt)<br />

Average<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

30<br />

35<br />

Time of Year<br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br />

K1‐Surf K1‐Bot K2‐Surf K2‐Bot T‐Surf T‐Bot<br />

CB‐Surf CB‐Bot EP‐Surf EP‐Bot AP‐Surf AP‐Bot<br />

KA‐Surf KA‐Bot CO‐Surf CO‐Bot NS‐Surf NS‐Bot<br />

DC‐Surf DC Surf DC‐Bot DC Bot Modelled K1 K1‐Surf Surf Modelled K1 K1‐Bot Bot Modelled K2 K2‐Surf Surf Modelled K2 K2‐Bot Bot<br />

Modelled T‐Surf Modelled T‐Bot Modelled EP‐Surf Modelled EP‐Bot Modelled AP‐Surf Modelled AP‐Bot<br />

Modelled KA‐Surf Modelled KA‐Bot Modelled CO‐Surf Modelled CO‐Bot Modelled NS‐Surf Modelled NS‐Bot


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix A: <strong>Marine</strong> Water Quality Model<br />

A.3 Additional Parameter Values Used in the Model<br />

A.3.1 Model Compartment Depths and Areas<br />

Each model compartment was assigned an area value (m 2 ) based on 2-dimensional surface areas and a<br />

volume value (m 3 ) based on a 5 m triangulated irregular network representation of the local bathymetry;<br />

each were calculated using GIS software (ESRI ArcGIS ArcINFO 9.2) (Table A-3). Each model<br />

compartment and layer was then assigned an average depth (m) calculated by dividing the compartment<br />

volume (m 3 ) by the surface area (m 2 ) of that compartment. Due to the steep local topography, the surface<br />

areas of the surface and bottom water layers were assumed to be the same.<br />

Table A-3 <strong>Marine</strong> Water Quality Model Compartment Depths and Surface<br />

Areas<br />

Compartment Surface Layer Depth<br />

(m)<br />

Bottom or Single<br />

Layer Depth<br />

(m) a<br />

Area<br />

(m 2 )<br />

K1 8 40.9 18,516,000<br />

K2 8 120.5 9,276,800<br />

T 8 133.6 8,362,300<br />

CB 8 11.5 1,620,200<br />

EP 8 142 18,635,000<br />

CO 8 178.2 13,282,500<br />

AP 8 95.6 21,705,800<br />

KA 8 48.8 20,273,600<br />

NS 8 187 41,883,500<br />

DC 8 187<br />

15 b<br />

1×10<br />

NOTES:<br />

a<br />

This is the depth at low tide.<br />

b<br />

DC is defined as being extremely large in order to create a boundary condition such that COPCs<br />

exported from the PEAA do not return.<br />

A.3.1.1 Model Compartment Boundary Lengths<br />

The boundary lengths between model compartments determined the interface lengths and areas used in<br />

the calculation of the amount of mixing that occurred between compartments (in addition to tidal water<br />

movements and those driven by river flow). The boundary lengths were measured using GIS methods and<br />

are presented in Table A-4. The boundary areas (m 2 ) were then calculated as the product of the boundary<br />

length (m) and the tide-adjusted boundary depth (m). Tide effects were proportionally distributed based<br />

on the depth of the surface and bottom compartment (i.e., 8 m <strong>for</strong> surface compartments and as indicated<br />

in Table A-3 <strong>for</strong> bottom water compartments) and resulted in boundary areas being recalculated <strong>for</strong> every<br />

model time step.<br />

Page A-18 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix A: <strong>Marine</strong> Water Quality Model<br />

Table A-4 Boundary Lengths between Model Compartments<br />

Boundary<br />

Length<br />

(m)<br />

K1:K2 3,280<br />

K2:T 2,760<br />

T:CB 960<br />

T:EP 2,520<br />

EP:CO 4,040<br />

CO:NS 3,210<br />

EP:AP 1,720<br />

AP:KA 980<br />

AP:NS 1,700<br />

NS:DC 6,280<br />

A.3.1.2 Modelling Time scale<br />

Project-related release of COPC into the marine environment was assumed to be constant over time. The<br />

Project is also assumed to become operational on January 1st of an unspecified year. The model reached a<br />

quasi-equilibrium state within days or weeks, depending on the compartment (see Figures A-5 to A-6 <strong>for</strong><br />

illustrative results <strong>for</strong> naphthalene and vanadium), and cyclically fluctuated over time thereafter.<br />

There<strong>for</strong>e, it was determined sufficient to model water concentrations over a period of three years and<br />

seven months. The first seven months allow the model to reach quasi-equilibrium. Model water<br />

concentrations over the next three-year period were then averaged on a daily basis to provide a one-year<br />

“typical” daily concentration cycle; this was then used as an input into the marine sediment fate and<br />

transport model (Appendix B). Statistical parameters (minimum, maximum, 95th UCL) <strong>for</strong> each COPC<br />

and compartment combination <strong>for</strong> the three year water concentration modelling period are provided in<br />

Table A-5.<br />

2010 Page A-19


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix A: <strong>Marine</strong> Water Quality Model<br />

Figure A-5 Vanadium Water Concentrations (mg/L) in Surface and Bottom<br />

Compartments<br />

Page A-20 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix A: <strong>Marine</strong> Water Quality Model<br />

Figure A-6 Naphthalene Water Concentrations (mg/L) in Surface and Bottom<br />

Compartments<br />

2010 Page A-21


Table A‐5 Summary of Predicted COPC Water Concentrations in Each Model Compartment<br />

CoPC CAS # K1S K1B K2S K2B TS TB CBS CBB EPS EPB APS APB KAS KAB COS COB NSS NSB<br />

Min (mg/L) 6.01E‐06 9.09E‐07 7.19E‐06 7.37E‐07 7.46E‐06 5.80E‐07 7.36E‐06 8.00E‐07 4.88E‐06 3.96E‐07 2.61E‐06 2.49E‐07 2.06E‐06 3.29E‐07 3.53E‐06 2.63E‐07 1.82E‐06 1.27E‐07<br />

Benzene 71‐43‐2 Max (mg/L) 9.86E‐06 1.23E‐06 1.06E‐05 9.55E‐07 9.58E‐06 7.40E‐07 9.43E‐06 1.10E‐06 5.75E‐06 4.97E‐07 3.27E‐06 3.28E‐07 2.82E‐06 4.27E‐07 4.17E‐06 3.32E‐07 2.27E‐06 1.65E‐07<br />

95 UCL (mg/L) 8.36E‐06 1.08E‐06 9.29E‐06 8.51E‐07 8.64E‐06 6.66E‐07 8.55E‐06 9.47E‐07 5.40E‐06 4.49E‐07 2.99E‐06 2.88E‐07 2.50E‐06 3.78E‐07 3.88E‐06 2.99E‐07 2.03E‐06 1.45E‐07<br />

Min (mg/L) 3.13E‐06 4.74E‐07 3.75E‐06 3.84E‐07 3.89E‐06 3.02E‐07 3.84E‐06 4.17E‐07 2.54E‐06 2.07E‐07 1.36E‐06 1.30E‐07 1.08E‐06 1.71E‐07 1.84E‐06 1.37E‐07 9.49E‐07 6.60E‐08<br />

Ethylbenzene 100‐41‐4 Max (mg/L) 5.14E‐06 6.42E‐07 5.51E‐06 4.98E‐07 4.99E‐06 3.86E‐07 4.92E‐06 5.71E‐07 3.00E‐06 2.59E‐07 1.71E‐06 1.71E‐07 1.47E‐06 2.22E‐07 2.17E‐06 1.73E‐07 1.18E‐06 8.59E‐08<br />

95 UCL (mg/L) 4.36E‐06 5.61E‐07 4.84E‐06 4.43E‐07 4.50E‐06 3.47E‐07 4.45E‐06 4.94E‐07 2.82E‐06 2.34E‐07 1.56E‐06 1.50E‐07 1.30E‐06 1.97E‐07 2.02E‐06 1.56E‐07 1.06E‐06 7.58E‐08<br />

Min (mg/L) 1.66E‐05 2.51E‐06 1.99E‐05 2.04E‐06 2.06E‐05 1.60E‐06 2.03E‐05 2.21E‐06 1.35E‐05 1.09E‐06 7.20E‐06 6.86E‐07 5.70E‐06 9.07E‐07 9.76E‐06 7.27E‐07 5.03E‐06 3.50E‐07<br />

Toluene 108‐88‐3 Max (mg/L) 2.72E‐05 3.40E‐06 2.92E‐05 2.64E‐06 2.65E‐05 2.05E‐06 2.61E‐05 3.03E‐06 1.59E‐05 1.37E‐06 9.04E‐06 9.07E‐07 7.79E‐06 1.18E‐06 1.15E‐05 9.17E‐07 6.27E‐06 4.56E‐07<br />

95 UCL (mg/L) 2.31E‐05 2.97E‐06 2.57E‐05 2.35E‐06 2.39E‐05 1.84E‐06 2.36E‐05 2.62E‐06 1.49E‐05 1.24E‐06 8.25E‐06 7.94E‐07 6.91E‐06 1.04E‐06 1.07E‐05 8.25E‐07 5.61E‐06 4.02E‐07<br />

Min (mg/L) 1.60E‐05 2.41E‐06 1.91E‐05 1.96E‐06 1.98E‐05 1.54E‐06 1.95E‐05 2.12E‐06 1.30E‐05 1.05E‐06 6.93E‐06 6.60E‐07 5.48E‐06 8.73E‐07 9.38E‐06 6.99E‐07 4.84E‐06 3.37E‐07<br />

Xylenes (tot) 8026‐09‐3 Max (mg/L) 2.62E‐05 3.27E‐06 2.81E‐05 2.54E‐06 2.54E‐05 1.97E‐06 2.51E‐05 2.91E‐06 1.53E‐05 1.32E‐06 8.69E‐06 8.72E‐07 7.49E‐06 1.13E‐06 1.11E‐05 8.82E‐07 6.03E‐06 4.38E‐07<br />

95 UCL (mg/L) 2.22E‐05 2.86E‐06 2.47E‐05 2.26E‐06 2.29E‐05 1.77E‐06 2.27E‐05 2.52E‐06 1.44E‐05 1.19E‐06 7.94E‐06 7.64E‐07 6.65E‐06 1.00E‐06 1.03E‐05 7.93E‐07 5.40E‐06 3.86E‐07<br />

Min (mg/L) 1.04E‐05 1.57E‐06 1.24E‐05 1.28E‐06 1.29E‐05 1.00E‐06 1.27E‐05 1.38E‐06 8.44E‐06 6.86E‐07 4.51E‐06 4.30E‐07 3.57E‐06 5.69E‐07 6.11E‐06 4.56E‐07 3.15E‐06 2.19E‐07<br />

Aromatic >C8‐C10 65820‐81‐0 Max (mg/L) 1.71E‐05 2.13E‐06 1.83E‐05 1.65E‐06 1.66E‐05 1.28E‐06 1.63E‐05 1.90E‐06 9.95E‐06 8.60E‐07 5.66E‐06 5.68E‐07 4.88E‐06 7.38E‐07 7.22E‐06 5.74E‐07 3.93E‐06 2.85E‐07<br />

95 UCL (mg/L) 1.45E‐05 1.86E‐06 1.61E‐05 1.47E‐06 1.49E‐05 1.15E‐06 1.48E‐05 1.64E‐06 9.35E‐06 7.77E‐07 5.17E‐06 4.98E‐07 4.33E‐06 6.54E‐07 6.72E‐06 5.17E‐07 3.52E‐06 2.52E‐07<br />

Min (mg/L) 1.21E‐05 1.82E‐06 1.44E‐05 1.48E‐06 1.50E‐05 1.16E‐06 1.48E‐05 1.60E‐06 9.78E‐06 7.95E‐07 5.23E‐06 4.99E‐07 4.14E‐06 6.59E‐07 7.08E‐06 5.28E‐07 3.65E‐06 2.54E‐07<br />

Aromatic >C10‐C12 65821‐01‐2 Max (mg/L) 1.98E‐05 2.47E‐06 2.12E‐05 1.92E‐06 1.92E‐05 1.49E‐06 1.89E‐05 2.20E‐06 1.15E‐05 9.97E‐07 6.56E‐06 6.59E‐07 5.66E‐06 8.56E‐07 8.37E‐06 6.66E‐07 4.55E‐06 3.31E‐07<br />

95 UCL (mg/L) 1.68E‐05 2.16E‐06 1.86E‐05 1.71E‐06 1.73E‐05 1.34E‐06 1.71E‐05 1.90E‐06 1.08E‐05 9.01E‐07 5.99E‐06 5.77E‐07 5.02E‐06 7.57E‐07 7.79E‐06 5.99E‐07 4.07E‐06 2.92E‐07<br />

Min (mg/L) 1.32E‐05 2.00E‐06 1.58E‐05 1.62E‐06 1.64E‐05 1.27E‐06 1.62E‐05 1.76E‐06 1.07E‐05 8.70E‐07 5.73E‐06 5.46E‐07 4.53E‐06 7.22E‐07 7.76E‐06 5.78E‐07 4.00E‐06 2.78E‐07<br />

Aromatic >C12‐C16 65821‐21‐6 Max (mg/L) 2.17E‐05 2.70E‐06 2.32E‐05 2.10E‐06 2.10E‐05 1.63E‐06 2.07E‐05 2.41E‐06 1.26E‐05 1.09E‐06 7.19E‐06 7.21E‐07 6.20E‐06 9.37E‐07 9.16E‐06 7.29E‐07 4.98E‐06 3.62E‐07<br />

95 UCL (mg/L) 1.84E‐05 2.36E‐06 2.04E‐05 1.87E‐06 1.90E‐05 1.46E‐06 1.88E‐05 2.08E‐06 1.19E‐05 9.86E‐07 6.56E‐06 6.32E‐07 5.50E‐06 8.29E‐07 8.53E‐06 6.56E‐07 4.46E‐06 3.20E‐07<br />

Min (mg/L) 1.46E‐05 2.21E‐06 1.75E‐05 1.79E‐06 1.81E‐05 1.41E‐06 1.79E‐05 1.94E‐06 1.18E‐05 9.62E‐07 6.33E‐06 6.04E‐07 5.01E‐06 7.98E‐07 8.58E‐06 6.39E‐07 4.42E‐06 3.08E‐07<br />

Aromatic >C16‐C21 65821‐62‐1 Max (mg/L) 2.39E‐05 2.99E‐06 2.57E‐05 2.32E‐06 2.33E‐05 1.80E‐06 2.29E‐05 2.66E‐06 1.40E‐05 1.21E‐06 7.95E‐06 7.97E‐07 6.85E‐06 1.04E‐06 1.01E‐05 8.06E‐07 5.51E‐06 4.01E‐07<br />

95 UCL (mg/L) 2.03E‐05 2.61E‐06 2.26E‐05 2.07E‐06 2.10E‐05 1.62E‐06 2.08E‐05 2.30E‐06 1.31E‐05 1.09E‐06 7.26E‐06 6.98E‐07 6.08E‐06 9.17E‐07 9.43E‐06 7.25E‐07 4.93E‐06 3.53E‐07<br />

Min (mg/L) 2.69E‐05 4.06E‐06 3.21E‐05 3.29E‐06 3.33E‐05 2.59E‐06 3.29E‐05 3.57E‐06 2.18E‐05 1.77E‐06 1.17E‐05 1.11E‐06 9.22E‐06 1.47E‐06 1.58E‐05 1.18E‐06 8.14E‐06 5.66E‐07<br />

Aromatic >C21‐C32 65822‐13‐2 Max (mg/L) 4.41E‐05 5.50E‐06 4.73E‐05 4.27E‐06 4.28E‐05 3.31E‐06 4.22E‐05 4.90E‐06 2.57E‐05 2.22E‐06 1.46E‐05 1.47E‐06 1.26E‐05 1.91E‐06 1.86E‐05 1.48E‐06 1.01E‐05 7.37E‐07<br />

95 UCL (mg/L) 3.74E‐05 4.81E‐06 4.15E‐05 3.80E‐06 3.86E‐05 2.97E‐06 3.82E‐05 4.23E‐06 2.42E‐05 2.01E‐06 1.34E‐05 1.29E‐06 1.12E‐05 1.69E‐06 1.74E‐05 1.33E‐06 9.08E‐06 6.50E‐07<br />

Min (mg/L) 8.51E‐05 1.29E‐05 1.02E‐04 1.04E‐05 1.06E‐04 8.21E‐06 1.04E‐04 1.13E‐05 6.90E‐05 5.61E‐06 3.69E‐05 3.52E‐06 2.92E‐05 4.65E‐06 5.00E‐05 3.73E‐06 2.58E‐05 1.79E‐06<br />

Aliphatic >C6‐C8 65760‐60‐8 Max (mg/L) 1.40E‐04 1.74E‐05 1.50E‐04 1.35E‐05 1.36E‐04 1.05E‐05 1.34E‐04 1.55E‐05 8.14E‐05 7.03E‐06 4.63E‐05 4.65E‐06 3.99E‐05 6.04E‐06 5.90E‐05 4.70E‐06 3.21E‐05 2.33E‐06<br />

95 UCL (mg/L) 1.18E‐04 1.52E‐05 1.31E‐04 1.20E‐05 1.22E‐04 9.42E‐06 1.21E‐04 1.34E‐05 7.65E‐05 6.35E‐06 4.23E‐05 4.07E‐06 3.54E‐05 5.34E‐06 5.50E‐05 4.23E‐06 2.87E‐05 2.06E‐06<br />

Min (mg/L) 1.12E‐05 1.69E‐06 1.33E‐05 1.37E‐06 1.38E‐05 1.08E‐06 1.37E‐05 1.48E‐06 9.05E‐06 7.35E‐07 4.84E‐06 4.61E‐07 3.83E‐06 6.10E‐07 6.56E‐06 4.89E‐07 3.38E‐06 2.35E‐07<br />

Aliphatic >C8‐C10 65760‐81‐0 Max (mg/L) 1.83E‐05 2.29E‐06 1.96E‐05 1.77E‐06 1.78E‐05 1.37E‐06 1.75E‐05 2.03E‐06 1.07E‐05 9.22E‐07 6.07E‐06 6.09E‐07 5.24E‐06 7.92E‐07 7.74E‐06 6.16E‐07 4.21E‐06 3.06E‐07<br />

95 UCL (mg/L) 1.55E‐05 2.00E‐06 1.72E‐05 1.58E‐06 1.60E‐05 1.24E‐06 1.59E‐05 1.76E‐06 1.00E‐05 8.33E‐07 5.55E‐06 5.34E‐07 4.65E‐06 7.01E‐07 7.21E‐06 5.54E‐07 3.77E‐06 2.70E‐07<br />

Min (mg/L) 9.61E‐06 1.45E‐06 1.15E‐05 1.18E‐06 1.19E‐05 9.28E‐07 1.18E‐05 1.28E‐06 7.80E‐06 6.33E‐07 4.17E‐06 3.97E‐07 3.30E‐06 5.25E‐07 5.65E‐06 4.21E‐07 2.91E‐06 2.03E‐07<br />

Aliphatic >C10‐C12 65761‐01‐2 Max (mg/L) 1.58E‐05 1.97E‐06 1.69E‐05 1.53E‐06 1.53E‐05 1.18E‐06 1.51E‐05 1.75E‐06 9.19E‐06 7.94E‐07 5.23E‐06 5.25E‐07 4.51E‐06 6.82E‐07 6.67E‐06 5.31E‐07 3.63E‐06 2.64E‐07<br />

95 UCL (mg/L) 1.34E‐05 1.72E‐06 1.48E‐05 1.36E‐06 1.38E‐05 1.06E‐06 1.37E‐05 1.51E‐06 8.64E‐06 7.18E‐07 4.78E‐06 4.60E‐07 4.00E‐06 6.04E‐07 6.21E‐06 4.77E‐07 3.25E‐06 2.33E‐07<br />

Min (mg/L) 1.87E‐05 2.83E‐06 2.24E‐05 2.30E‐06 2.33E‐05 1.81E‐06 2.29E‐05 2.49E‐06 1.52E‐05 1.24E‐06 8.13E‐06 7.75E‐07 6.43E‐06 1.02E‐06 1.10E‐05 8.21E‐07 5.68E‐06 3.95E‐07<br />

Aliphatic >C12‐C16 65761‐21‐6 Max (mg/L) 3.07E‐05 3.84E‐06 3.30E‐05 2.98E‐06 2.99E‐05 2.31E‐06 2.94E‐05 3.42E‐06 1.79E‐05 1.55E‐06 1.02E‐05 1.02E‐06 8.80E‐06 1.33E‐06 1.30E‐05 1.04E‐06 7.07E‐06 5.14E‐07<br />

95 UCL (mg/L) 2.61E‐05 3.36E‐06 2.90E‐05 2.65E‐06 2.69E‐05 2.08E‐06 2.66E‐05 2.95E‐06 1.69E‐05 1.40E‐06 9.32E‐06 8.97E‐07 7.81E‐06 1.18E‐06 1.21E‐05 9.31E‐07 6.33E‐06 4.54E‐07<br />

Min (mg/L) 2.12E‐05 3.21E‐06 2.54E‐05 2.60E‐06 2.63E‐05 2.05E‐06 2.60E‐05 2.82E‐06 1.72E‐05 1.40E‐06 9.21E‐06 8.77E‐07 7.29E‐06 1.16E‐06 1.25E‐05 9.30E‐07 6.43E‐06 4.47E‐07<br />

Aliphatic >C16‐C21 65761‐62‐1 Max (mg/L) 3.48E‐05 4.35E‐06 3.74E‐05 3.37E‐06 3.38E‐05 2.61E‐06 3.33E‐05 3.87E‐06 2.03E‐05 1.75E‐06 1.16E‐05 1.16E‐06 9.96E‐06 1.51E‐06 1.47E‐05 1.17E‐06 8.01E‐06 5.82E‐07<br />

95 UCL (mg/L) 2.95E‐05 3.80E‐06 3.28E‐05 3.00E‐06 3.05E‐05 2.35E‐06 3.02E‐05 3.34E‐06 1.91E‐05 1.59E‐06 1.06E‐05 1.02E‐06 8.84E‐06 1.33E‐06 1.37E‐05 1.05E‐06 7.17E‐06 5.14E‐07<br />

Min (mg/L) 3.28E‐05 4.96E‐06 3.92E‐05 4.02E‐06 4.07E‐05 3.16E‐06 4.01E‐05 4.36E‐06 2.66E‐05 2.16E‐06 1.42E‐05 1.36E‐06 1.13E‐05 1.79E‐06 1.93E‐05 1.44E‐06 9.94E‐06 6.91E‐07<br />

Aliphatic >C21‐C32 65762‐13‐2 Max (mg/L) 5.38E‐05 6.71E‐06 5.77E‐05 5.21E‐06 5.22E‐05 4.04E‐06 5.15E‐05 5.98E‐06 3.14E‐05 2.71E‐06 1.78E‐05 1.79E‐06 1.54E‐05 2.33E‐06 2.28E‐05 1.81E‐06 1.24E‐05 8.99E‐07<br />

95 UCL (mg/L) 4.56E‐05 5.87E‐06 5.07E‐05 4.64E‐06 4.71E‐05 3.63E‐06 4.66E‐05 5.17E‐06 2.95E‐05 2.45E‐06 1.63E‐05 1.57E‐06 1.37E‐05 2.06E‐06 2.12E‐05 1.63E‐06 1.11E‐05 7.93E‐07<br />

Min (mg/L) 1.05E‐11 1.32E‐12 9.42E‐12 1.04E‐12 8.02E‐12 8.07E‐13 7.95E‐12 1.05E‐12 6.42E‐12 5.57E‐13 4.10E‐12 3.68E‐13 3.36E‐12 4.97E‐13 5.40E‐12 3.76E‐13 3.31E‐12 1.86E‐13<br />

Acenaphthene 83‐32‐9 Max (mg/L) 1.47E‐11 1.72E‐12 1.27E‐11 1.30E‐12 1.03E‐11 1.01E‐12 1.02E‐11 1.38E‐12 7.77E‐12 6.87E‐13 5.15E‐12 4.81E‐13 4.62E‐12 6.46E‐13 6.46E‐12 4.68E‐13 4.12E‐12 2.41E‐13<br />

95 UCL (mg/L) 1.29E‐11 1.53E‐12 1.13E‐11 1.18E‐12 9.34E‐12 9.13E‐13 9.28E‐12 1.21E‐12 7.22E‐12 6.25E‐13 4.72E‐12 4.24E‐13 4.08E‐12 5.73E‐13 6.00E‐12 4.23E‐13 3.74E‐12 2.13E‐13<br />

Min (mg/L) 1.25E‐13 1.58E‐14 1.13E‐13 1.24E‐14 9.61E‐14 9.68E‐15 9.54E‐14 1.26E‐14 7.70E‐14 6.68E‐15 4.92E‐14 4.41E‐15 4.02E‐14 5.96E‐15 6.47E‐14 4.50E‐15 3.97E‐14 2.23E‐15<br />

Acenaphthylene 208‐96‐8 Max (mg/L) 1.76E‐13 2.07E‐14 1.52E‐13 1.56E‐14 1.23E‐13 1.21E‐14 1.22E‐13 1.65E‐14 9.31E‐14 8.24E‐15 6.18E‐14 5.77E‐15 5.54E‐14 7.75E‐15 7.75E‐14 5.61E‐15 4.94E‐14 2.89E‐15<br />

95 UCL (mg/L) 1.55E‐13 1.83E‐14 1.36E‐13 1.41E‐14 1.12E‐13 1.09E‐14 1.11E‐13 1.45E‐14 8.66E‐14 7.50E‐15 5.66E‐14 5.08E‐15 4.90E‐14 6.86E‐15 7.19E‐14 5.07E‐15 4.48E‐14 2.55E‐15


TableA5SummaryofPredictedCOPCWaterConcentrationsinEachModelCompartment (cont'd)<br />

CoPC CAS# K1S K1B K2S K2B TS TB CBS CBB EPS EPB APS APB KAS KAB COS COB NSS NSB<br />

Anthracene 120127<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

3.08E09<br />

5.04E09<br />

4.28E09<br />

4.65E10<br />

6.30E10<br />

5.50E10<br />

3.68E09<br />

5.41E09<br />

4.75E09<br />

3.77E10<br />

4.89E10<br />

4.35E10<br />

3.81E09<br />

4.90E09<br />

4.42E09<br />

2.97E10<br />

3.79E10<br />

3.40E10<br />

3.76E09<br />

4.83E09<br />

4.37E09<br />

4.09E10<br />

5.61E10<br />

4.85E10<br />

2.49E09<br />

2.94E09<br />

2.76E09<br />

2.03E10<br />

2.54E10<br />

2.30E10<br />

1.33E09<br />

1.67E09<br />

1.53E09<br />

1.27E10<br />

1.68E10<br />

1.47E10<br />

1.06E09<br />

1.44E09<br />

1.28E09<br />

1.68E10<br />

2.18E10<br />

1.93E10<br />

1.81E09<br />

2.13E09<br />

1.99E09<br />

1.35E10<br />

1.70E10<br />

1.53E10<br />

9.32E10<br />

1.16E09<br />

1.04E09<br />

6.48E11<br />

8.44E11<br />

7.44E11<br />

Fluorene 86737<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

7.00E09<br />

1.15E08<br />

9.73E09<br />

1.06E09<br />

1.43E09<br />

1.25E09<br />

8.37E09<br />

1.23E08<br />

1.08E08<br />

8.58E10<br />

1.11E09<br />

9.90E10<br />

8.68E09<br />

1.11E08<br />

1.00E08<br />

6.75E10<br />

8.62E10<br />

7.74E10<br />

8.56E09<br />

1.10E08<br />

9.94E09<br />

9.30E10<br />

1.28E09<br />

1.10E09<br />

5.67E09<br />

6.69E09<br />

6.29E09<br />

4.61E10<br />

5.78E10<br />

5.22E10<br />

3.03E09<br />

3.81E09<br />

3.48E09<br />

2.89E10<br />

3.82E10<br />

3.35E10<br />

2.40E09<br />

3.28E09<br />

2.91E09<br />

3.82E10<br />

4.96E10<br />

4.39E10<br />

4.11E09<br />

4.85E09<br />

4.52E09<br />

3.06E10<br />

3.86E10<br />

3.48E10<br />

2.12E09<br />

2.64E09<br />

2.36E09<br />

1.47E10<br />

1.92E10<br />

1.69E10<br />

1Methylnaphthalene 90120<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

8.11E08<br />

1.33E07<br />

1.13E07<br />

1.23E08<br />

1.66E08<br />

1.45E08<br />

9.70E08<br />

1.43E07<br />

1.25E07<br />

9.95E09<br />

1.29E08<br />

1.15E08<br />

1.01E07<br />

1.29E07<br />

1.17E07<br />

7.83E09<br />

9.99E09<br />

8.98E09<br />

9.93E08<br />

1.27E07<br />

1.15E07<br />

1.08E08<br />

1.48E08<br />

1.28E08<br />

6.58E08<br />

7.76E08<br />

7.29E08<br />

5.35E09<br />

6.70E09<br />

6.06E09<br />

3.52E08<br />

4.42E08<br />

4.03E08<br />

3.35E09<br />

4.43E09<br />

3.88E09<br />

2.78E08<br />

3.81E08<br />

3.38E08<br />

4.43E09<br />

5.76E09<br />

5.09E09<br />

4.77E08<br />

5.63E08<br />

5.24E08<br />

3.55E09<br />

4.48E09<br />

4.03E09<br />

2.46E08<br />

3.06E08<br />

2.74E08<br />

1.71E09<br />

2.23E09<br />

1.96E09<br />

2Methylnaphthalene 91576<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

6.26E08<br />

1.03E07<br />

8.71E08<br />

9.47E09<br />

1.28E08<br />

1.12E08<br />

7.49E08<br />

1.10E07<br />

9.68E08<br />

7.68E09<br />

9.95E09<br />

8.87E09<br />

7.77E08<br />

9.98E08<br />

9.00E08<br />

6.04E09<br />

7.71E09<br />

6.93E09<br />

7.67E08<br />

9.83E08<br />

8.90E08<br />

8.33E09<br />

1.14E08<br />

9.87E09<br />

5.08E08<br />

5.99E08<br />

5.63E08<br />

4.13E09<br />

5.18E09<br />

4.68E09<br />

2.72E08<br />

3.41E08<br />

3.11E08<br />

2.59E09<br />

3.42E09<br />

3.00E09<br />

2.15E08<br />

2.94E08<br />

2.61E08<br />

3.42E09<br />

4.44E09<br />

3.93E09<br />

3.68E08<br />

4.35E08<br />

4.05E08<br />

2.74E09<br />

3.46E09<br />

3.11E09<br />

1.90E08<br />

2.36E08<br />

2.12E08<br />

1.32E09<br />

1.72E09<br />

1.52E09<br />

Naphthalene 91203<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

1.31E07<br />

2.15E07<br />

1.82E07<br />

1.98E08<br />

2.68E08<br />

2.34E08<br />

1.57E07<br />

2.30E07<br />

2.02E07<br />

1.61E08<br />

2.08E08<br />

1.85E08<br />

1.62E07<br />

2.08E07<br />

1.88E07<br />

1.26E08<br />

1.61E08<br />

1.45E08<br />

1.60E07<br />

2.05E07<br />

1.86E07<br />

1.74E08<br />

2.39E08<br />

2.06E08<br />

1.06E07<br />

1.25E07<br />

1.18E07<br />

8.63E09<br />

1.08E08<br />

9.78E09<br />

5.68E08<br />

7.13E08<br />

6.51E08<br />

5.41E09<br />

7.15E09<br />

6.27E09<br />

4.50E08<br />

6.15E08<br />

5.46E08<br />

7.16E09<br />

9.29E09<br />

8.23E09<br />

7.70E08<br />

9.09E08<br />

8.46E08<br />

5.74E09<br />

7.23E09<br />

6.51E09<br />

3.97E08<br />

4.95E08<br />

4.43E08<br />

2.76E09<br />

3.59E09<br />

3.17E09<br />

Phenanthrene 85018<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

4.76E09<br />

7.81E09<br />

6.62E09<br />

7.20E10<br />

9.75E10<br />

8.52E10<br />

5.69E09<br />

8.38E09<br />

7.35E09<br />

5.84E10<br />

7.56E10<br />

6.74E10<br />

5.90E09<br />

7.58E09<br />

6.84E09<br />

4.59E10<br />

5.86E10<br />

5.27E10<br />

5.83E09<br />

7.47E09<br />

6.77E09<br />

6.33E10<br />

8.68E10<br />

7.50E10<br />

3.86E09<br />

4.55E09<br />

4.28E09<br />

3.14E10<br />

3.93E10<br />

3.56E10<br />

2.07E09<br />

2.59E09<br />

2.37E09<br />

1.97E10<br />

2.60E10<br />

2.28E10<br />

1.63E09<br />

2.23E09<br />

1.98E09<br />

2.60E10<br />

3.38E10<br />

2.99E10<br />

2.80E09<br />

3.30E09<br />

3.07E09<br />

2.09E10<br />

2.63E10<br />

2.37E10<br />

1.44E09<br />

1.80E09<br />

1.61E09<br />

1.00E10<br />

1.31E10<br />

1.15E10<br />

Fluoranthene 206440<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

2.40E12<br />

3.37E12<br />

2.96E12<br />

3.02E13<br />

3.96E13<br />

3.51E13<br />

2.16E12<br />

2.91E12<br />

2.60E12<br />

2.38E13<br />

2.99E13<br />

2.70E13<br />

1.84E12<br />

2.36E12<br />

2.14E12<br />

1.85E13<br />

2.31E13<br />

2.09E13<br />

1.82E12<br />

2.34E12<br />

2.13E12<br />

2.41E13<br />

3.15E13<br />

2.78E13<br />

1.47E12<br />

1.78E12<br />

1.66E12<br />

1.28E13<br />

1.58E13<br />

1.43E13<br />

9.40E13<br />

1.18E12<br />

1.08E12<br />

8.43E14<br />

1.10E13<br />

9.72E14<br />

7.70E13<br />

1.06E12<br />

9.36E13<br />

1.14E13<br />

1.48E13<br />

1.31E13<br />

1.24E12<br />

1.48E12<br />

1.38E12<br />

8.61E14<br />

1.07E13<br />

9.71E14<br />

7.59E13<br />

9.46E13<br />

8.57E13<br />

4.27E14<br />

5.53E14<br />

4.89E14<br />

Benzo(a)anthracene 56553<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

1.37E09<br />

2.25E09<br />

1.91E09<br />

2.08E10<br />

2.81E10<br />

2.46E10<br />

1.64E09<br />

2.42E09<br />

2.12E09<br />

1.68E10<br />

2.18E10<br />

1.94E10<br />

1.70E09<br />

2.19E09<br />

1.97E09<br />

1.33E10<br />

1.69E10<br />

1.52E10<br />

1.68E09<br />

2.15E09<br />

1.95E09<br />

1.83E10<br />

2.50E10<br />

2.16E10<br />

1.11E09<br />

1.31E09<br />

1.23E09<br />

9.05E11<br />

1.13E10<br />

1.03E10<br />

5.96E10<br />

7.48E10<br />

6.83E10<br />

5.68E11<br />

7.50E11<br />

6.57E11<br />

4.71E10<br />

6.44E10<br />

5.72E10<br />

7.51E11<br />

9.75E11<br />

8.63E11<br />

8.07E10<br />

9.53E10<br />

8.87E10<br />

6.02E11<br />

7.58E11<br />

6.82E11<br />

4.16E10<br />

5.18E10<br />

4.64E10<br />

2.89E11<br />

3.77E11<br />

3.32E11<br />

Benzo(a)pyrene 50328<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

1.24E11<br />

1.74E11<br />

1.53E11<br />

1.56E12<br />

2.04E12<br />

1.81E12<br />

1.12E11<br />

1.50E11<br />

1.34E11<br />

1.23E12<br />

1.55E12<br />

1.40E12<br />

9.50E12<br />

1.22E11<br />

1.11E11<br />

9.56E13<br />

1.19E12<br />

1.08E12<br />

9.42E12<br />

1.21E11<br />

1.10E11<br />

1.24E12<br />

1.63E12<br />

1.44E12<br />

7.60E12<br />

9.20E12<br />

8.56E12<br />

6.60E13<br />

8.14E13<br />

7.41E13<br />

4.86E12<br />

6.11E12<br />

5.59E12<br />

4.36E13<br />

5.70E13<br />

5.02E13<br />

3.98E12<br />

5.48E12<br />

4.84E12<br />

5.89E13<br />

7.66E13<br />

6.78E13<br />

6.39E12<br />

7.65E12<br />

7.10E12<br />

4.45E13<br />

5.55E13<br />

5.01E13<br />

3.92E12<br />

4.89E12<br />

4.43E12<br />

2.20E13<br />

2.86E13<br />

2.52E13<br />

Benzo(e)pyrene 192972<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

4.66E13<br />

6.55E13<br />

5.75E13<br />

5.87E14<br />

7.68E14<br />

6.82E14<br />

4.20E13<br />

5.65E13<br />

5.04E13<br />

4.62E14<br />

5.81E14<br />

5.25E14<br />

3.57E13<br />

4.57E13<br />

4.16E13<br />

3.60E14<br />

4.48E14<br />

4.07E14<br />

3.54E13<br />

4.55E13<br />

4.14E13<br />

4.67E14<br />

6.13E14<br />

5.40E14<br />

2.86E13<br />

3.46E13<br />

3.22E13<br />

2.48E14<br />

3.06E14<br />

2.78E14<br />

1.83E13<br />

2.30E13<br />

2.10E13<br />

1.64E14<br />

2.14E14<br />

1.89E14<br />

1.50E13<br />

2.06E13<br />

1.82E13<br />

2.22E14<br />

2.88E14<br />

2.55E14<br />

2.40E13<br />

2.88E13<br />

2.67E13<br />

1.67E14<br />

2.09E14<br />

1.88E14<br />

1.47E13<br />

1.84E13<br />

1.66E13<br />

8.29E15<br />

1.07E14<br />

9.49E15<br />

Benzo(b)fluoranthene 205992<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

7.33E13<br />

1.03E12<br />

9.06E13<br />

9.24E14<br />

1.21E13<br />

1.07E13<br />

6.61E13<br />

8.89E13<br />

7.94E13<br />

7.27E14<br />

9.15E14<br />

8.26E14<br />

5.62E13<br />

7.20E13<br />

6.55E13<br />

5.66E14<br />

7.05E14<br />

6.40E14<br />

5.58E13<br />

7.17E13<br />

6.51E13<br />

7.36E14<br />

9.65E14<br />

8.50E14<br />

4.50E13<br />

5.45E13<br />

5.07E13<br />

3.91E14<br />

4.82E14<br />

4.38E14<br />

2.88E13<br />

3.62E13<br />

3.31E13<br />

2.58E14<br />

3.37E14<br />

2.97E14<br />

2.35E13<br />

3.24E13<br />

2.86E13<br />

3.49E14<br />

4.53E14<br />

4.02E14<br />

3.78E13<br />

4.53E13<br />

4.21E13<br />

2.63E14<br />

3.28E14<br />

2.97E14<br />

2.32E13<br />

2.89E13<br />

2.62E13<br />

1.31E14<br />

1.69E14<br />

1.49E14<br />

Benzo(ghi)perylene 191242<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

1.12E12<br />

1.57E12<br />

1.38E12<br />

1.41E13<br />

1.85E13<br />

1.64E13<br />

1.01E12<br />

1.36E12<br />

1.21E12<br />

1.11E13<br />

1.40E13<br />

1.26E13<br />

8.59E13<br />

1.10E12<br />

1.00E12<br />

8.65E14<br />

1.08E13<br />

9.78E14<br />

8.52E13<br />

1.09E12<br />

9.94E13<br />

1.12E13<br />

1.47E13<br />

1.30E13<br />

6.87E13<br />

8.32E13<br />

7.73E13<br />

5.96E14<br />

7.36E14<br />

6.70E14<br />

4.39E13<br />

5.52E13<br />

5.05E13<br />

3.94E14<br />

5.15E14<br />

4.54E14<br />

3.59E13<br />

4.95E13<br />

4.37E13<br />

5.33E14<br />

6.92E14<br />

6.13E14<br />

5.78E13<br />

6.92E13<br />

6.42E13<br />

4.02E14<br />

5.01E14<br />

4.53E14<br />

3.54E13<br />

4.42E13<br />

4.00E13<br />

1.99E14<br />

2.58E14<br />

2.28E14<br />

Benzo(k)fluoranthene 207089<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

7.33E13<br />

1.03E12<br />

9.06E13<br />

9.24E14<br />

1.21E13<br />

1.07E13<br />

6.61E13<br />

8.89E13<br />

7.94E13<br />

7.27E14<br />

9.15E14<br />

8.26E14<br />

5.62E13<br />

7.20E13<br />

6.55E13<br />

5.66E14<br />

7.05E14<br />

6.40E14<br />

5.58E13<br />

7.17E13<br />

6.51E13<br />

7.36E14<br />

9.65E14<br />

8.50E14<br />

4.50E13<br />

5.45E13<br />

5.07E13<br />

3.91E14<br />

4.82E14<br />

4.38E14<br />

2.88E13<br />

3.62E13<br />

3.31E13<br />

2.58E14<br />

3.37E14<br />

2.97E14<br />

2.35E13<br />

3.24E13<br />

2.86E13<br />

3.49E14<br />

4.53E14<br />

4.02E14<br />

3.78E13<br />

4.53E13<br />

4.21E13<br />

2.63E14<br />

3.28E14<br />

2.97E14<br />

2.32E13<br />

2.89E13<br />

2.62E13<br />

1.31E14<br />

1.69E14<br />

1.49E14<br />

Chrysene 218019<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

1.18E12<br />

1.66E12<br />

1.46E12<br />

1.49E13<br />

1.94E13<br />

1.73E13<br />

1.06E12<br />

1.43E12<br />

1.28E12<br />

1.17E13<br />

1.47E13<br />

1.33E13<br />

9.04E13<br />

1.16E12<br />

1.05E12<br />

9.11E14<br />

1.13E13<br />

1.03E13<br />

8.97E13<br />

1.15E12<br />

1.05E12<br />

1.18E13<br />

1.55E13<br />

1.37E13<br />

7.24E13<br />

8.76E13<br />

8.15E13<br />

6.28E14<br />

7.75E14<br />

7.05E14<br />

4.62E13<br />

5.81E13<br />

5.32E13<br />

4.15E14<br />

5.43E14<br />

4.78E14<br />

3.79E13<br />

5.22E13<br />

4.60E13<br />

5.61E14<br />

7.29E14<br />

6.46E14<br />

6.09E13<br />

7.29E13<br />

6.76E13<br />

4.24E14<br />

5.28E14<br />

4.77E14<br />

3.73E13<br />

4.65E13<br />

4.21E13<br />

2.10E14<br />

2.72E14<br />

2.40E14<br />

Dibenzo(a,h)anthracene 53703<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

8.27E13<br />

1.16E12<br />

1.02E12<br />

1.04E13<br />

1.36E13<br />

1.21E13<br />

7.45E13<br />

1.00E12<br />

8.96E13<br />

8.20E14<br />

1.03E13<br />

9.32E14<br />

6.34E13<br />

8.13E13<br />

7.39E13<br />

6.39E14<br />

7.96E14<br />

7.23E14<br />

6.29E13<br />

8.09E13<br />

7.35E13<br />

8.30E14<br />

1.09E13<br />

9.59E14<br />

5.08E13<br />

6.15E13<br />

5.72E13<br />

4.41E14<br />

5.44E14<br />

4.95E14<br />

3.24E13<br />

4.08E13<br />

3.73E13<br />

2.91E14<br />

3.81E14<br />

3.35E14<br />

2.66E13<br />

3.66E13<br />

3.23E13<br />

3.94E14<br />

5.12E14<br />

4.53E14<br />

4.27E13<br />

5.11E13<br />

4.75E13<br />

2.97E14<br />

3.70E14<br />

3.35E14<br />

2.62E13<br />

3.26E13<br />

2.96E13<br />

1.47E14<br />

1.91E14<br />

1.69E14<br />

Indeno(123cd)pyrene 193395<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

1.06E12<br />

1.49E12<br />

1.31E12<br />

1.34E13<br />

1.75E13<br />

1.55E13<br />

9.55E13<br />

1.29E12<br />

1.15E12<br />

1.05E13<br />

1.32E13<br />

1.19E13<br />

8.13E13<br />

1.04E12<br />

9.47E13<br />

8.19E14<br />

1.02E13<br />

9.26E14<br />

8.07E13<br />

1.04E12<br />

9.42E13<br />

1.06E13<br />

1.39E13<br />

1.23E13<br />

6.51E13<br />

7.88E13<br />

7.32E13<br />

5.65E14<br />

6.97E14<br />

6.34E14<br />

4.16E13<br />

5.23E13<br />

4.78E13<br />

3.73E14<br />

4.88E14<br />

4.30E14<br />

3.40E13<br />

4.69E13<br />

4.14E13<br />

5.04E14<br />

6.56E14<br />

5.81E14<br />

5.47E13<br />

6.55E13<br />

6.08E13<br />

3.81E14<br />

4.75E14<br />

4.29E14<br />

3.36E13<br />

4.18E13<br />

3.79E13<br />

1.89E14<br />

2.45E14<br />

2.16E14<br />

Pyrene 129000<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

5.75E09<br />

9.42E09<br />

7.99E09<br />

8.69E10<br />

1.18E09<br />

1.03E09<br />

6.87E09<br />

1.01E08<br />

8.88E09<br />

7.05E10<br />

9.13E10<br />

8.13E10<br />

7.13E09<br />

9.15E09<br />

8.25E09<br />

5.55E10<br />

7.08E10<br />

6.36E10<br />

7.03E09<br />

9.02E09<br />

8.17E09<br />

7.64E10<br />

1.05E09<br />

9.05E10<br />

4.66E09<br />

5.50E09<br />

5.17E09<br />

3.79E10<br />

4.75E10<br />

4.29E10<br />

2.49E09<br />

3.13E09<br />

2.86E09<br />

2.38E10<br />

3.14E10<br />

2.75E10<br />

1.97E09<br />

2.70E09<br />

2.39E09<br />

3.14E10<br />

4.08E10<br />

3.61E10<br />

3.38E09<br />

3.99E09<br />

3.71E09<br />

2.52E10<br />

3.17E10<br />

2.85E10<br />

1.74E09<br />

2.17E09<br />

1.94E09<br />

1.21E10<br />

1.58E10<br />

1.39E10


TableA5SummaryofPredictedCOPCWaterConcentrationsinEachModelCompartment (cont'd)<br />

CoPC CAS# K1S K1B K2S K2B TS TB CBS CBB EPS EPB APS APB KAS KAB COS COB NSS NSB<br />

2,4Dimethylphenol 105679<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

6.01E10<br />

9.86E10<br />

8.37E10<br />

9.09E11<br />

1.23E10<br />

1.08E10<br />

7.19E10<br />

1.06E09<br />

9.29E10<br />

7.37E11<br />

9.55E11<br />

8.51E11<br />

7.46E10<br />

9.58E10<br />

8.64E10<br />

5.80E11<br />

7.41E11<br />

6.66E11<br />

7.36E10<br />

9.44E10<br />

8.55E10<br />

8.00E11<br />

1.10E10<br />

9.48E11<br />

4.88E10<br />

5.75E10<br />

5.41E10<br />

3.96E11<br />

4.97E11<br />

4.49E11<br />

2.61E10<br />

3.27E10<br />

2.99E10<br />

2.49E11<br />

3.28E11<br />

2.88E11<br />

2.06E10<br />

2.82E10<br />

2.50E10<br />

3.29E11<br />

4.27E11<br />

3.78E11<br />

3.53E10<br />

4.17E10<br />

3.88E10<br />

2.63E11<br />

3.32E11<br />

2.99E11<br />

1.82E10<br />

2.27E10<br />

2.03E10<br />

1.27E11<br />

1.65E11<br />

1.46E11<br />

2,4Dinitrophenol 51285<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

2.28E09<br />

3.73E09<br />

3.17E09<br />

3.44E10<br />

4.66E10<br />

4.08E10<br />

2.72E09<br />

4.01E09<br />

3.52E09<br />

2.79E10<br />

3.62E10<br />

3.22E10<br />

2.83E09<br />

3.63E09<br />

3.27E09<br />

2.20E10<br />

2.80E10<br />

2.52E10<br />

2.79E09<br />

3.57E09<br />

3.24E09<br />

3.03E10<br />

4.15E10<br />

3.59E10<br />

1.85E09<br />

2.18E09<br />

2.05E09<br />

1.50E10<br />

1.88E10<br />

1.70E10<br />

9.88E10<br />

1.24E09<br />

1.13E09<br />

9.41E11<br />

1.24E10<br />

1.09E10<br />

7.82E10<br />

1.07E09<br />

9.48E10<br />

1.24E10<br />

1.62E10<br />

1.43E10<br />

1.34E09<br />

1.58E09<br />

1.47E09<br />

9.97E11<br />

1.26E10<br />

1.13E10<br />

6.90E10<br />

8.59E10<br />

7.69E10<br />

4.80E11<br />

6.25E11<br />

5.51E11<br />

Phenol 108952<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

4.11E10<br />

6.75E10<br />

5.72E10<br />

6.22E11<br />

8.43E11<br />

7.36E11<br />

4.92E10<br />

7.24E10<br />

6.36E10<br />

5.04E11<br />

6.54E11<br />

5.82E11<br />

5.10E10<br />

6.56E10<br />

5.91E10<br />

3.97E11<br />

5.07E11<br />

4.55E11<br />

5.04E10<br />

6.46E10<br />

5.85E10<br />

5.47E11<br />

7.50E11<br />

6.48E11<br />

3.34E10<br />

3.94E10<br />

3.70E10<br />

2.71E11<br />

3.40E11<br />

3.07E11<br />

1.78E10<br />

2.24E10<br />

2.04E10<br />

1.70E11<br />

2.25E11<br />

1.97E11<br />

1.41E10<br />

1.93E10<br />

1.71E10<br />

2.25E11<br />

2.92E11<br />

2.58E11<br />

2.42E10<br />

2.85E10<br />

2.66E10<br />

1.80E11<br />

2.27E11<br />

2.04E11<br />

1.25E10<br />

1.55E10<br />

1.39E10<br />

8.67E12<br />

1.13E11<br />

9.96E12<br />

1,2,4Trichlorobenzene 120821<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

1.94E06<br />

3.18E06<br />

2.69E06<br />

2.93E07<br />

3.97E07<br />

3.47E07<br />

2.32E06<br />

3.41E06<br />

2.99E06<br />

2.38E07<br />

3.08E07<br />

2.74E07<br />

2.40E06<br />

3.09E06<br />

2.78E06<br />

1.87E07<br />

2.39E07<br />

2.14E07<br />

2.37E06<br />

3.04E06<br />

2.75E06<br />

2.58E07<br />

3.53E07<br />

3.05E07<br />

1.57E06<br />

1.85E06<br />

1.74E06<br />

1.28E07<br />

1.60E07<br />

1.45E07<br />

8.40E07<br />

1.05E06<br />

9.63E07<br />

8.01E08<br />

1.06E07<br />

9.27E08<br />

6.65E07<br />

9.09E07<br />

8.07E07<br />

1.06E07<br />

1.37E07<br />

1.22E07<br />

1.14E06<br />

1.34E06<br />

1.25E06<br />

8.49E08<br />

1.07E07<br />

9.62E08<br />

5.87E07<br />

7.31E07<br />

6.55E07<br />

4.08E08<br />

5.31E08<br />

4.69E08<br />

1,3,5Trimethylbenzene 108678<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

1.14E06<br />

1.86E06<br />

1.58E06<br />

1.72E07<br />

2.33E07<br />

2.04E07<br />

1.36E06<br />

2.00E06<br />

1.76E06<br />

1.39E07<br />

1.81E07<br />

1.61E07<br />

1.41E06<br />

1.81E06<br />

1.63E06<br />

1.10E07<br />

1.40E07<br />

1.26E07<br />

1.39E06<br />

1.78E06<br />

1.62E06<br />

1.51E07<br />

2.07E07<br />

1.79E07<br />

9.22E07<br />

1.09E06<br />

1.02E06<br />

7.49E08<br />

9.40E08<br />

8.49E08<br />

4.93E07<br />

6.19E07<br />

5.65E07<br />

4.70E08<br />

6.21E08<br />

5.44E08<br />

3.90E07<br />

5.34E07<br />

4.74E07<br />

6.21E08<br />

8.07E08<br />

7.14E08<br />

6.68E07<br />

7.89E07<br />

7.34E07<br />

4.98E08<br />

6.28E08<br />

5.65E08<br />

3.45E07<br />

4.29E07<br />

3.84E07<br />

2.40E08<br />

3.12E08<br />

2.75E08<br />

Barium 7440393<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

2.13E09<br />

3.15E09<br />

2.73E09<br />

2.86E10<br />

3.80E10<br />

3.35E10<br />

2.17E09<br />

3.00E09<br />

2.66E09<br />

2.28E10<br />

2.91E10<br />

2.61E10<br />

2.01E09<br />

2.54E09<br />

2.33E09<br />

1.78E10<br />

2.25E10<br />

2.03E10<br />

1.99E09<br />

2.53E09<br />

2.31E09<br />

2.38E10<br />

3.19E10<br />

2.78E10<br />

1.45E09<br />

1.74E09<br />

1.62E09<br />

1.22E10<br />

1.52E10<br />

1.38E10<br />

8.59E10<br />

1.08E09<br />

9.87E10<br />

7.90E11<br />

1.04E10<br />

9.12E11<br />

6.93E10<br />

9.52E10<br />

8.42E10<br />

1.06E10<br />

1.38E10<br />

1.22E10<br />

1.14E09<br />

1.36E09<br />

1.27E09<br />

8.20E11<br />

1.03E10<br />

9.27E11<br />

6.54E10<br />

8.13E10<br />

7.35E10<br />

4.01E11<br />

5.21E11<br />

4.60E11<br />

Boron 7440428<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

5.09E10<br />

8.34E10<br />

7.07E10<br />

7.69E11<br />

1.04E10<br />

9.10E11<br />

6.08E10<br />

8.95E10<br />

7.86E10<br />

6.24E11<br />

8.08E11<br />

7.20E11<br />

6.31E10<br />

8.10E10<br />

7.31E10<br />

4.91E11<br />

6.26E11<br />

5.63E11<br />

6.23E10<br />

7.98E10<br />

7.23E10<br />

6.76E11<br />

9.27E11<br />

8.01E11<br />

4.13E10<br />

4.87E10<br />

4.57E10<br />

3.35E11<br />

4.20E11<br />

3.80E11<br />

2.21E10<br />

2.77E10<br />

2.53E10<br />

2.10E11<br />

2.78E11<br />

2.43E11<br />

1.75E10<br />

2.39E10<br />

2.12E10<br />

2.78E11<br />

3.61E11<br />

3.19E11<br />

2.99E10<br />

3.53E10<br />

3.28E10<br />

2.23E11<br />

2.81E11<br />

2.53E11<br />

1.54E10<br />

1.92E10<br />

1.72E10<br />

1.07E11<br />

1.40E11<br />

1.23E11<br />

Cadmium 7440439<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

2.07E10<br />

2.92E10<br />

2.57E10<br />

2.63E11<br />

3.44E11<br />

3.05E11<br />

1.89E10<br />

2.55E10<br />

2.28E10<br />

2.07E11<br />

2.61E11<br />

2.35E11<br />

1.63E10<br />

2.08E10<br />

1.90E10<br />

1.61E11<br />

2.01E11<br />

1.83E11<br />

1.62E10<br />

2.07E10<br />

1.88E10<br />

2.10E11<br />

2.76E11<br />

2.43E11<br />

1.29E10<br />

1.55E10<br />

1.45E10<br />

1.11E11<br />

1.37E11<br />

1.25E11<br />

8.14E11<br />

1.02E10<br />

9.36E11<br />

7.32E12<br />

9.58E12<br />

8.44E12<br />

6.65E11<br />

9.16E11<br />

8.09E11<br />

9.89E12<br />

1.29E11<br />

1.14E11<br />

1.07E10<br />

1.28E10<br />

1.19E10<br />

7.49E12<br />

9.34E12<br />

8.44E12<br />

6.52E11<br />

8.13E11<br />

7.36E11<br />

3.71E12<br />

4.80E12<br />

4.24E12<br />

Manganese 7439965<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

1.94E09<br />

2.78E09<br />

2.43E09<br />

2.51E10<br />

3.32E10<br />

2.93E10<br />

1.87E09<br />

2.55E09<br />

2.26E09<br />

1.99E10<br />

2.53E10<br />

2.28E10<br />

1.67E09<br />

2.12E09<br />

1.94E09<br />

1.56E10<br />

1.95E10<br />

1.77E10<br />

1.65E09<br />

2.11E09<br />

1.92E09<br />

2.06E10<br />

2.73E10<br />

2.39E10<br />

1.26E09<br />

1.51E09<br />

1.41E09<br />

1.07E10<br />

1.33E10<br />

1.21E10<br />

7.67E10<br />

9.62E10<br />

8.81E10<br />

6.98E11<br />

9.15E11<br />

8.05E11<br />

6.23E10<br />

8.56E10<br />

7.57E10<br />

9.39E11<br />

1.22E10<br />

1.08E10<br />

1.02E09<br />

1.21E09<br />

1.13E09<br />

7.20E11<br />

8.99E11<br />

8.12E11<br />

5.99E10<br />

7.45E10<br />

6.74E10<br />

3.54E11<br />

4.59E11<br />

4.05E11<br />

Molybdenum 7439987<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

1.03E08<br />

1.68E08<br />

1.43E08<br />

1.55E09<br />

2.10E09<br />

1.83E09<br />

1.22E08<br />

1.79E08<br />

1.58E08<br />

1.26E09<br />

1.63E09<br />

1.45E09<br />

1.26E08<br />

1.62E08<br />

1.46E08<br />

9.88E10<br />

1.26E09<br />

1.13E09<br />

1.25E08<br />

1.60E08<br />

1.45E08<br />

1.36E09<br />

1.86E09<br />

1.61E09<br />

8.29E09<br />

9.79E09<br />

9.20E09<br />

6.75E10<br />

8.46E10<br />

7.65E10<br />

4.46E09<br />

5.60E09<br />

5.11E09<br />

4.24E10<br />

5.60E10<br />

4.91E10<br />

3.53E09<br />

4.83E09<br />

4.29E09<br />

5.61E10<br />

7.29E10<br />

6.45E10<br />

6.04E09<br />

7.13E09<br />

6.64E09<br />

4.49E10<br />

5.66E10<br />

5.09E10<br />

3.13E09<br />

3.90E09<br />

3.49E09<br />

2.16E10<br />

2.81E10<br />

2.48E10<br />

Nickel 7440020<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

1.16E07<br />

1.79E07<br />

1.54E07<br />

1.64E08<br />

2.19E08<br />

1.92E08<br />

1.26E07<br />

1.80E07<br />

1.59E07<br />

1.31E08<br />

1.69E08<br />

1.51E08<br />

1.23E07<br />

1.56E07<br />

1.43E07<br />

1.03E08<br />

1.30E08<br />

1.18E08<br />

1.22E07<br />

1.55E07<br />

1.41E07<br />

1.40E08<br />

1.89E08<br />

1.64E08<br />

8.51E08<br />

1.01E07<br />

9.48E08<br />

7.06E09<br />

8.81E09<br />

7.98E09<br />

4.82E08<br />

6.05E08<br />

5.53E08<br />

4.50E09<br />

5.93E09<br />

5.20E09<br />

3.86E08<br />

5.29E08<br />

4.69E08<br />

6.00E09<br />

7.79E09<br />

6.90E09<br />

6.47E08<br />

7.67E08<br />

7.13E08<br />

4.71E09<br />

5.92E09<br />

5.33E09<br />

3.55E08<br />

4.40E08<br />

3.97E08<br />

2.29E09<br />

2.98E09<br />

2.63E09<br />

Tin 7440315<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

2.95E09<br />

4.84E09<br />

4.10E09<br />

4.46E10<br />

6.04E10<br />

5.28E10<br />

3.53E09<br />

5.19E09<br />

4.56E09<br />

3.62E10<br />

4.69E10<br />

4.18E10<br />

3.66E09<br />

4.70E09<br />

4.24E09<br />

2.85E10<br />

3.63E10<br />

3.27E10<br />

3.61E09<br />

4.63E09<br />

4.19E09<br />

3.92E10<br />

5.38E10<br />

4.65E10<br />

2.39E09<br />

2.82E09<br />

2.65E09<br />

1.94E10<br />

2.44E10<br />

2.20E10<br />

1.28E09<br />

1.61E09<br />

1.47E09<br />

1.22E10<br />

1.61E10<br />

1.41E10<br />

1.01E09<br />

1.38E09<br />

1.23E09<br />

1.61E10<br />

2.09E10<br />

1.85E10<br />

1.73E09<br />

2.05E09<br />

1.91E09<br />

1.29E10<br />

1.63E10<br />

1.47E10<br />

8.94E10<br />

1.11E09<br />

9.97E10<br />

6.22E11<br />

8.09E11<br />

7.14E11<br />

Vanadium 7440622<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

3.63E07<br />

5.52E07<br />

4.75E07<br />

5.03E08<br />

6.72E08<br />

5.91E08<br />

3.87E07<br />

5.45E07<br />

4.82E07<br />

4.03E08<br />

5.17E08<br />

4.63E08<br />

3.72E07<br />

4.69E07<br />

4.30E07<br />

3.16E08<br />

4.00E08<br />

3.61E08<br />

3.67E07<br />

4.66E07<br />

4.26E07<br />

4.26E08<br />

5.75E08<br />

5.00E08<br />

2.60E07<br />

3.09E07<br />

2.90E07<br />

2.17E08<br />

2.70E08<br />

2.45E08<br />

1.49E07<br />

1.87E07<br />

1.71E07<br />

1.39E08<br />

1.83E08<br />

1.60E08<br />

1.20E07<br />

1.64E07<br />

1.45E07<br />

1.85E08<br />

2.40E08<br />

2.13E08<br />

2.00E07<br />

2.37E07<br />

2.20E07<br />

1.45E08<br />

1.82E08<br />

1.64E08<br />

1.11E07<br />

1.38E07<br />

1.24E07<br />

7.05E09<br />

9.16E09<br />

8.09E09<br />

Zinc 7440666<br />

Min(mg/L)<br />

Max(mg/L)<br />

95UCL(mg/L)<br />

1.46E08<br />

2.05E08<br />

1.80E08<br />

1.84E09<br />

2.41E09<br />

2.14E09<br />

1.32E08<br />

1.77E08<br />

1.58E08<br />

1.45E09<br />

1.82E09<br />

1.65E09<br />

1.12E08<br />

1.44E08<br />

1.31E08<br />

1.13E09<br />

1.40E09<br />

1.28E09<br />

1.12E08<br />

1.43E08<br />

1.30E08<br />

1.47E09<br />

1.92E09<br />

1.69E09<br />

8.97E09<br />

1.09E08<br />

1.01E08<br />

7.78E10<br />

9.60E10<br />

8.73E10<br />

5.72E09<br />

7.19E09<br />

6.58E09<br />

5.13E10<br />

6.72E10<br />

5.91E10<br />

4.68E09<br />

6.45E09<br />

5.69E09<br />

6.94E10<br />

9.02E10<br />

7.99E10<br />

7.53E09<br />

9.01E09<br />

8.36E09<br />

5.24E10<br />

6.54E10<br />

5.91E10<br />

4.61E09<br />

5.74E09<br />

5.20E09<br />

2.60E10<br />

3.37E10<br />

2.97E10


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

Attachment A1 <strong>Marine</strong> Water Quality Model<br />

Equations and Documentation<br />

(In Stella ® Format)<br />

2010 Page A1-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

Parameters and equations <strong>for</strong> each model stock, flow and converter are listed below with the associated<br />

document, which provides a rationale <strong>for</strong> the values used, and an explanation of their function.<br />

AP_Bot(t) = AP_Bot(t - dt) + (EPB:APB + KAB:APB + APS:APB - APB:NSB) * dt<br />

INIT AP_Bot = Vol_APB * 0<br />

DOCUMENT: Starting mass of COPC = vol of APB (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

INFLOWS:<br />

EPB:APB = (EP_Bot*Dispers_Bot*Vol_EPB/Area_EP*1365/LVol_EPB) -<br />

(AP_Bot*Dispers_Bot*(Vol_EPB/Area_EP*1365)/LVol_APB)<br />

DOCUMENT: Flow of mass (kg/h) between EPB and APB is driven by turbulent dispersion, represented<br />

as the product of Dispers (m/h), the concentration of the two compartments (kg/m3) and the crosssectional<br />

area of the interface between APB and EPB (1365 m * depth of the cell). Mass flux between<br />

EPB and APB in any time step is based on the fractional water transfer between these two compartments.<br />

KAB:APB = (KA_Bot*Dispers_Bot*(965*MIN(TotDepth_KAB,TotDepth_APB))/Vol_KAB) -<br />

(AP_Bot*Dispers_Bot*(965*MIN(TotDepth_KAB,TotDepth_APB))/Vol_APB)<br />

+<br />

(IF (DTide_KAB*Area_KA)>0<br />

THEN (KA_Bot * (DTide_KAB*Area_KA)/LVol_KAB)<br />

ELSE (AP_Bot * (DTide_KAB*Area_KA)/LVol_APB) )<br />

DOCUMENT: Flow of mass (kg/h) between KAB and APB is driven by tide, represented as the change<br />

in volume of the cells as tidal elevation changes. Flow of mass between KAB and APB is also driven by<br />

turbulent dispersion, represented as the product of Dispers Bot (m/h), the concentration of the two<br />

compartments (kg/m3) and the cross-sectional area of the interface between KAB and APB (965 m *<br />

depth of bottom layer). Mass flux between KAB and APB in any time step is based on the fractional<br />

water transfer between these two compartments.<br />

APS:APB = (AP_Surf*Mixer*Area_AP/Vol_APS) - (AP_Bot*Mixer*Area_AP/LVol_APB)<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "AP" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

2010 Page A1-3


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

OUTFLOWS:<br />

APB:NSB = (AP_Bot*Dispers_Bot*(1645*MIN(TotDepth_APB,TotDepth_NSB))/Vol_APB) -<br />

(NS_Bot*Dispers_Bot*(1645*MIN(TotDepth_APB,TotDepth_NSB))/Vol_NSB)<br />

+<br />

( IF (DTide_KAB*Area_KA + DTide_APB*Area_AP)>0<br />

THEN (AP_Bot * (DTide_KAB*Area_KA + DTide_APB*Area_AP)/LVol_APB)<br />

ELSE (NS_Bot * (DTide_KAB*Area_KA + DTide_APB*Area_AP)/LVol_NSB) )<br />

DOCUMENT: Flow of mass (kg/h) between APB and NSB is driven by tide, represented as the change<br />

in volume of the cells as tidal elevation changes. Flow of mass between APB and NSB is also driven by<br />

turbulent dispersion, represented as the product of Dispers Bot (m/h) and the cross-sectional area of the<br />

interface between APB and NSB (1645 m * depth of bottom layer). Mass flux between APB and NSB in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

AP_Surf(t) = AP_Surf(t - dt) + (EPS:APS + KAS:APS + Dep:APS - APS:NSS - APS:APB) * dt<br />

INIT AP_Surf = Vol_APS * 0<br />

DOCUMENT: Starting mass of COPC = vol of APS (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

INFLOWS:<br />

EPS:APS = (EP_Surf*Dispers_Surf*(1365*MIN(TotDepth_APS,TotDepth_EPS))/Vol_EPS) -<br />

(AP_Surf*Dispers_Surf*(1365*MIN(TotDepth_APS,TotDepth_EPS))/Vol_APS)<br />

DOCUMENT: Flow of mass (kg/h) between EPS and APS is driven by turbulent dispersion, represented<br />

as the product of Dispers (m/h), the concentration of the two compartments (kg/m3) and the crosssectional<br />

area of the interface between APS and EPS (1365 m * depth of surface layer). Mass flux<br />

between EPS and APS in any time step is based on the fractional water transfer between these two<br />

compartments.<br />

KAS:APS = (KA_Surf*Dispers_Surf*(965*MIN(TotDepth_KAS,TotDepth_APS))/Vol_KAS) -<br />

(AP_Surf*Dispers_Surf*(965*MIN(TotDepth_KAS,TotDepth_APS))/Vol_APS)<br />

+ (IF (DTide_KAS * (Area_KA) + KA_Flow) >0<br />

THEN (KA_Surf * (DTide_KAS * (Area_KA) + KA_Flow)/LVol_KAS)<br />

ELSE (AP_Surf * (DTide_KAS * (Area_KA) + KA_Flow)/LVol_APS) )<br />

Page A-4 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

DOCUMENT: Flow of mass (kg/h) between KAS and APS is driven by KA_Flow (water flow from<br />

surface drainage - m³/h). The two compartments (KAS/APS) are visualized as being a pipe and water<br />

flow in the pipe is a direct function of water flow into KAS from overland flow (rivers, streams, etc.).<br />

Flow of mass between KAS and APS is also driven by turbulent dispersion, represented as the product of<br />

Dispers (m/h), the concentration of the two compartments (kg/m3) and the cross-sectional area of the<br />

interface between KAS and APS (965 m * depth of surface layer). Mass flux between KAS and APS in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

Dep:APS = TotDep_APS*Area_AP*(1/8760) * (1/(1000 * 1000 * 1000))<br />

DOCUMENT: Dep:APS is the mass (kg) of COPC entering APS each time step (h).through air<br />

deposition<br />

1/8760 is used to convert years into hours.<br />

1/1,000,000,000 is used to convert ug into kg.<br />

OUTFLOWS:<br />

APS:NSS = (AP_Surf*Dispers_Surf*(1645*MIN(TotDepth_APS,TotDepth_NSS))/Vol_APS) -<br />

(NS_Surf*Dispers_Surf*(1645*MIN(TotDepth_APS,TotDepth_NSS))/Vol_NSS)<br />

+ (IF ((DTide_KAS*Area_KA + DTide_APS*Area_AP) + AP_Flow) >0<br />

THEN (AP_Surf * ((DTide_KAS*Area_KA + DTide_APS*Area_AP) + AP_Flow)/LVol_APS)<br />

ELSE (NS_Surf * ((DTide_KAS*Area_KA + DTide_APS*Area_AP) + AP_Flow)/LVol_NSS))<br />

DOCUMENT: Flow of mass (kg/h) between APS and NSS is driven by AP_Flow (water flow from<br />

surface drainage - m³/h). The two compartments (APS/NSS) are visualized as being a pipe and water<br />

flow in the pipe is a direct function of water flow into APS from overland flow (rivers, streams, etc.).<br />

Flow of mass between APS and NSS is also driven by turbulent dispersion, represented as the product of<br />

Dispers (m/h), the concentration of the two compartments (kg/m3) and the cross-sectional area of the<br />

interface between APS and NSS (1645 m * depth of surface layer). Mass flux between APS and NSS in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

APS:APB = (AP_Surf*Mixer*Area_AP/Vol_APS) - (AP_Bot*Mixer*Area_AP/LVol_APB)<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "AP" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

2010 Page A1-5


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

CB_Bot(t) = CB_Bot(t - dt) + (CBS:CBB - CBB:TB) * dt<br />

INIT CB_Bot = Vol_CBB * 0<br />

DOCUMENT: Starting mass of COPC = vol of CBB (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

INFLOWS:<br />

CBS:CBB = (CB_Surf*Mixer*Area_CB/Vol_CBS) - (CB_Bot*Mixer*Area_CB/LVol_CBB)<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "CB" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

OUTFLOWS:<br />

CBB:TB = (CB_Bot*Dispers_Bot*(955*MIN(TotDepth_CBB,TotDepth_TB))/Vol_CBB) -<br />

(T_Bot*Dispers_Bot*(955*MIN(TotDepth_CBB,TotDepth_TB))/Vol_TB)<br />

+<br />

(IF (DTide_CBB*Area_CB)>0<br />

THEN (CB_Bot * (DTide_CBB*Area_CB)/LVol_CBB)<br />

ELSE (T_Bot * (DTide_CBB*Area_CB)/LVol_TB) )<br />

DOCUMENT: Flow of mass (kg/h) between CBB and TB is driven by tide, represented as the change in<br />

volume of the cells as tidal elevation changes. Flow of mass between CBB and TB is also driven by<br />

turbulent dispersion, represented as the product of Dispers Bot (m/h) and the cross-sectional area of the<br />

interface between CBB and TB (955 m * depth of bottom layer). Mass flux between CBB and TB in any<br />

time step is based on the fractional water transfer between these two compartments.<br />

CB_Surf(t) = CB_Surf(t - dt) + (Dep:CBS - CBS:TS - CBS:CBB) * dt<br />

INIT CB_Surf = Vol_CBS * 0<br />

DOCUMENT: Starting mass of COPC = vol of CBS (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

Page A-6 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

INFLOWS:<br />

Dep:CBS = TotDep_CBS*Area_CB*(1/8760) * (1/(1000 * 1000 * 1000))<br />

DOCUMENT: Dep:CBS is the mass (kg) of COPC entering CBS each time step (h) through air<br />

deposition.<br />

1/8760 is used to convert years into hours.<br />

1/1,000,000,000 is used to convert ug into kg.<br />

OUTFLOWS:<br />

CBS:TS = (CB_Surf*Dispers_Surf*(955*MIN(TotDepth_CBS,TotDepth_TS))/Vol_CBS) -<br />

(T_Surf*Dispers_Surf*(955*MIN(TotDepth_CBS,TotDepth_TS))/Vol_TS)<br />

+<br />

(IF ((DTide_CBS*Area_CB) + CB_Flow) >0<br />

THEN (CB_Surf * ((DTide_CBS*Area_CB) + CB_Flow)/LVol_CBS)<br />

ELSE (T_Surf * ((DTide_CBS*Area_CB) + CB_Flow)/LVol_TS) )<br />

DOCUMENT: Flow of mass (kg/h) between CBS and TS is driven by CB_Flow (water flow from<br />

surface drainage - m³/h). The two compartments (CBS/TS) are visualized as being a pipe and water flow<br />

in the pipe is a direct function of water flow into CBS from overland flow (rivers, streams, etc.). Flow of<br />

mass between CBS and TS is also driven by turbulent dispersion, represented as the product of Dispers<br />

(m/h), the concentration of the two compartments (kg/m3) and the cross-sectional area of the interface<br />

between CBS and TS (955 m * depth of surface layer). Mass flux between CBS and TS in any time step<br />

is based on the fractional water transfer between these two compartments.<br />

CBS:CBB = (CB_Surf*Mixer*Area_CB/Vol_CBS) - (CB_Bot*Mixer*Area_CB/LVol_CBB)<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "CB" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

CO_Bot(t) = CO_Bot(t - dt) + (EPB:COB + COS:COB - COB:NSB) * dt<br />

INIT CO_Bot = Vol_COB * 0<br />

DOCUMENT: Starting mass of COPC = vol of COB (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

2010 Page A1-7


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

INFLOWS:<br />

EPB:COB = (EP_Bot*Dispers_Bot*(4028*MIN(TotDepth_EPB,TotDepth_COB))/Vol_EPB) -<br />

(CO_Bot*Dispers_Bot*(4028*MIN(TotDepth_EPB,TotDepth_COB))/Vol_COB)<br />

+<br />

(IF (DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_CBB*Area_CB + DTide_TB*Area_T +<br />

DTide_EPB*Area_EP)>0<br />

THEN EP_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_CBB*Area_CB +<br />

DTide_TB*Area_T + DTide_EPB*Area_EP)/LVol_EPB<br />

ELSE CO_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_CBB*Area_CB +<br />

DTide_TB*Area_T + DTide_EPB*Area_EP)/LVol_COB )<br />

DOCUMENT: Flow of mass (kg/h) between EPB and COB is driven by tide, represented as the change<br />

in volume of the cells as tidal elevation changes. Flow of mass between EPB and COB is also driven by<br />

turbulent dispersion, represented as the product of Dispers Bot (m/h) and the cross-sectional area of the<br />

interface between EPB and COB (4028 m * depth of bottom layer). Mass flux between EPB and COB in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

COS:COB = (CO_Surf*Mixer*Area_CO/Vol_COS) - (CO_Bot*Mixer*Area_CO/LVol_COB)<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "CO" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

OUTFLOWS:<br />

COB:NSB = (CO_Bot*Dispers_Bot*(3185*MIN(TotDepth_COB,TotDepth_NSB))/Vol_COB) -<br />

(NS_Bot*Dispers_Bot*(3185*MIN(TotDepth_COB,TotDepth_NSB))/Vol_NSB)<br />

+<br />

(IF (DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_CBB*Area_CB + DTide_TB*Area_T +<br />

DTide_EPB*Area_EP + DTide_COB*Area_CO)>0<br />

THEN CO_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_CBB*Area_CB +<br />

DTide_TB*Area_T + DTide_EPB*Area_EP + DTide_COB*Area_CO)/LVol_COB<br />

ELSE<br />

NS_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_CBB*Area_CB +<br />

DTide_TB*Area_T + DTide_EPB*Area_EP + DTide_COB*Area_CO)/LVol_NSB )<br />

DOCUMENT: Flow of mass (kg/h) between COB and NSB is driven by tide, represented as the change<br />

in volume of the cells as tidal elevation changes. Flow of mass between COB and NSB is also driven by<br />

turbulent dispersion, represented as the product of Dispers Bot (m/h) and the cross-sectional area of the<br />

Page A-8 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

interface between COB and NSB (3185 m * depth of bottom layer). Mass flux between COB and NSB in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

CO_Surf(t) = CO_Surf(t - dt) + (EPS:COS + Dep:COS - COS:NSS - COS:COB) * dt<br />

INIT CO_Surf = Vol_COS * 0<br />

DOCUMENT: Starting mass of COPC = vol of COS (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

INFLOWS:<br />

EPS:COS = (EP_Surf*Dispers_Surf*(4028*MIN(TotDepth_EPS,TotDepth_COS))/Vol_EPS) -<br />

(CO_Surf*Dispers_Surf*(4028*MIN(TotDepth_EPS,TotDepth_COS))/Vol_COS)<br />

+<br />

(IF ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2 + DTide_TS*Area_T + DTide_CBS*Area_CB +<br />

DTide_EPS*Area_EP) + EP_Flow) >0<br />

THEN EP_Surf * ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2 + DTide_TS*Area_T +<br />

DTide_CBS*Area_CB + DTide_EPS*Area_EP) + EP_Flow)/LVol_EPS<br />

ELSE CO_Surf *((DTide_K1S*Area_K1 + DTide_K2S*Area_K2 + DTide_TS*Area_T +<br />

DTide_CBS*Area_CB + DTide_EPS*Area_EP) + EP_Flow)/LVol_COS)<br />

DOCUMENT: Flow of mass (kg/h) between EPS and COS is driven by EP_Flow (water flow from<br />

surface drainage - m³/h). The two compartments (EPS/COS) are visualized as being a pipe and water<br />

flow in the pipe is a direct function of water flow into EPS from overland flow (rivers, streams, etc.).<br />

Flow of mass between EPS and COS is also driven by turbulent dispersion, represented as the product of<br />

Dispers (m/h), the concentration of the two compartments (kg/m3) and the cross-sectional area of the<br />

interface between EPS and COS (4028 m * depth of surface layer). Mass flux between EPS and COS in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

Dep:COS = TotDep_COS*Area_CO*(1/8760) * (1/(1000 * 1000 * 1000))<br />

DOCUMENT: Dep:COS is the mass (kg) of COPC entering COS each time step (h) through air<br />

deposition.<br />

1/8760 is used to convert years into hours.<br />

1/1,000,000,000 is used to convert ug into kg.<br />

2010 Page A1-9


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

OUTFLOWS:<br />

COS:NSS = (CO_Surf*Dispers_Surf*(3185*MIN(TotDepth_COS,TotDepth_NSS))/Vol_COS) -<br />

(NS_Surf*Dispers_Surf*(3185*MIN(TotDepth_COS,TotDepth_NSS))/Vol_NSS)<br />

+<br />

(IF ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2 + DTide_TS*Area_T + DTide_CBS*Area_CB +<br />

DTide_EPS*Area_EP + DTide_COS*Area_CO) + CO_Flow) >0<br />

THEN CO_Surf * ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2 + DTide_TS*Area_T +<br />

DTide_CBS*Area_CB + DTide_EPS*Area_EP + DTide_COS*Area_CO) + CO_Flow) /LVol_COS<br />

ELSE<br />

NS_Surf * ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2 + DTide_TS*Area_T +<br />

DTide_CBS*Area_CB + DTide_EPS*Area_EP + DTide_COS*Area_CO) + CO_Flow) /LVol_NSS )<br />

DOCUMENT: Flow of mass (kg/h) between COS and NSS is driven by CO_Flow (water flow from<br />

surface drainage - m³/h). The two compartments (COS/NSS) are visualized as being a pipe and water<br />

flow in the pipe is a direct function of water flow into COS from overland flow (rivers, streams, etc.).<br />

Flow of mass between COS and NSS is also driven by turbulent dispersion, represented as the product of<br />

Dispers (m/h), the concentration of the two compartments (kg/m3) and the cross-sectional area of the<br />

interface between COS and NSS (3185 m * depth of surface layer). Mass flux between COS and NSS in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

COS:COB = (CO_Surf*Mixer*Area_CO/Vol_COS) - (CO_Bot*Mixer*Area_CO/LVol_COB)<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "CO" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

DC_Bot(t) = DC_Bot(t - dt) + (NSB:DCB + DCS:DCB) * dt<br />

INIT DC_Bot = Vol_DCB * 0<br />

DOCUMENT: Starting mass of COPC = vol of DCB (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

INFLOWS:<br />

NSB:DCB = (NS_Bot*Dispers_Bot*(3185*MIN(TotDepth_NSB,TotDepth_DCB))/Vol_NSB) -<br />

(DC_Bot*Dispers_Bot*(3185*MIN(TotDepth_NSB,TotDepth_DCB))/Vol_DCB)<br />

+<br />

Page A-10 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

(IF (DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_TB*Area_T + DTide_CBB*Area_CB +<br />

DTide_EPB*Area_EP + DTide_COB*Area_CO + DTide_KAB*Area_KA+DTide_APB*Area_AP +<br />

DTide_NSB*Area_NS)>0<br />

THEN NS_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_TB*Area_T +<br />

DTide_CBB*Area_CB + DTide_EPB*Area_EP + DTide_COB*Area_CO +<br />

DTide_KAB*Area_KA+DTide_APB*Area_AP + DTide_NSB*Area_NS)/LVol_NSB<br />

ELSE DC_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_TB*Area_T +<br />

DTide_CBB*Area_CB + DTide_EPB*Area_EP + DTide_COB*Area_CO +<br />

DTide_KAB*Area_KA+DTide_APB*Area_AP + DTide_NSB*Area_NS)/LVol_DCB)<br />

DOCUMENT: Flow of mass (kg/h) between NSB and DCB is driven by tide, represented as the change<br />

in volume of the cells as tidal elevation changes. Flow of mass between NSB and DCB is also driven by<br />

turbulent dispersion, represented as the product of Dispers Bot (m/h) and the cross-sectional area of the<br />

interface between NSB and DCB (3185 m * depth of bottom layer). Mass flux between NSB and DCB in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

DCS:DCB = ((DC_Surf*Mixer*Area_DC/Vol_DCS) - (DC_Bot*Mixer*Area_DC/LVol_DCB))*0<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "DC" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

DC_Surf(t) = DC_Surf(t - dt) + (NSS:DCS - DCS:DCB) * dt<br />

INIT DC_Surf = Vol_DCS * 0<br />

DOCUMENT: Starting mass of COPC = vol of DCS (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

INFLOWS:<br />

NSS:DCS = (NS_Surf*Dispers_Surf*(3185*MIN(TotDepth_NSS,TotDepth_DCS))/Vol_NSS) -<br />

(DC_Surf*Dispers_Surf*(3185*MIN(TotDepth_NSS,TotDepth_DCS))/Vol_DCS)<br />

+<br />

2010 Page A1-11


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

(IF ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2 + DTide_TS*Area_T + DTide_CBS*Area_CB +<br />

DTide_EPS*Area_EP + DTide_COS*Area_CO+ DTide_KAS*Area_KA + DTide_APS*Area_AP +<br />

DTide_NSS*Area_NS) + NS_Flow) >0<br />

THEN NS_Surf * ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2 + DTide_TS*Area_T +<br />

DTide_CBS*Area_CB + DTide_EPS*Area_EP + DTide_COS*Area_CO+ DTide_KAS*Area_KA +<br />

DTide_APS*Area_AP + DTide_NSS*Area_NS) + NS_Flow)/LVol_NSS<br />

ELSE DC_Surf * ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2 + DTide_TS*Area_T +<br />

DTide_CBS*Area_CB + DTide_EPS*Area_EP + DTide_COS*Area_CO+ DTide_KAS*Area_KA +<br />

DTide_APS*Area_AP + DTide_NSS*Area_NS) + NS_Flow)/LVol_DCS )<br />

DOCUMENT: Flow of mass (kg/h) between COS and DCS is driven by CO_Flow (water flow from<br />

surface drainage - m³/h). The two compartments (COS/DCS) are visualized as being a pipe and water<br />

flow in the pipe is a direct function of water flow into COS from overland flow (rivers, streams, etc.).<br />

Flow of mass between COS and DCS is also driven by turbulent dispersion, represented as the product of<br />

Dispers (m/h), the concentration of the two compartments (kg/m3) and the cross-sectional area of the<br />

interface between COS and DCS (3185 m * depth of surface layer). Mass flux between COS and DCS in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

OUTFLOWS:<br />

DCS:DCB = ((DC_Surf*Mixer*Area_DC/Vol_DCS) - (DC_Bot*Mixer*Area_DC/LVol_DCB))*0<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "DC" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

EP_Bot(t) = EP_Bot(t - dt) + (TB:EPB + EPS:EPB - EPB:COB - EPB:APB) * dt<br />

INIT EP_Bot = Vol_EPB * 0<br />

DOCUMENT: Starting mass of COPC = vol of EPB (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

INFLOWS:<br />

TB:EPB = (T_Bot*Dispers_Bot*(2520*MIN(TotDepth_TB,TotDepth_EPB))/Vol_TB) -<br />

(EP_Bot*Dispers_Bot*(2520*MIN(TotDepth_TB,TotDepth_EPB))/Vol_EPB)<br />

Page A-12 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

+<br />

(IF (DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_CBB*Area_CB + DTide_TB*Area_T)>0<br />

THEN T_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_CBB*Area_CB +<br />

DTide_TB*Area_T)/LVol_TB<br />

ELSE EP_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_CBB*Area_CB +<br />

DTide_TB*Area_T)/LVol_EPB )<br />

DOCUMENT: Flow of mass (kg/h) between TB and EPB is driven by tide, represented as the change in<br />

volume of the cells as tidal elevation changes. Flow of mass between TB and EPB is also driven by<br />

turbulent dispersion, represented as the product of Dispers Bot (m/h) and the cross-sectional area of the<br />

interface between TB and EPB (2520 m * depth of bottom layer). Mass flux between TB and EPB in any<br />

time step is based on the fractional water transfer between these two compartments.<br />

EPS:EPB = (EP_Surf*Mixer*Area_EP/Vol_EPS) - (EP_Bot*Mixer*Area_EP/LVol_EPB)<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "EP" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

OUTFLOWS:<br />

EPB:COB = (EP_Bot*Dispers_Bot*(4028*MIN(TotDepth_EPB,TotDepth_COB))/Vol_EPB) -<br />

(CO_Bot*Dispers_Bot*(4028*MIN(TotDepth_EPB,TotDepth_COB))/Vol_COB)<br />

+<br />

(IF (DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_CBB*Area_CB + DTide_TB*Area_T +<br />

DTide_EPB*Area_EP)>0<br />

THEN EP_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_CBB*Area_CB +<br />

DTide_TB*Area_T + DTide_EPB*Area_EP)/LVol_EPB<br />

ELSE CO_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_CBB*Area_CB +<br />

DTide_TB*Area_T + DTide_EPB*Area_EP)/LVol_COB )<br />

DOCUMENT: Flow of mass (kg/h) between EPB and COB is driven by tide, represented as the change<br />

in volume of the cells as tidal elevation changes. Flow of mass between EPB and COB is also driven by<br />

turbulent dispersion, represented as the product of Dispers Bot (m/h) and the cross-sectional area of the<br />

interface between EPB and COB (4028 m * depth of bottom layer). Mass flux between EPB and COB in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

EPB:APB = (EP_Bot*Dispers_Bot*Vol_EPB/Area_EP*1365/LVol_EPB) -<br />

(AP_Bot*Dispers_Bot*(Vol_EPB/Area_EP*1365)/LVol_APB)<br />

2010 Page A1-13


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

DOCUMENT: Flow of mass (kg/h) between EPB and APB is driven by turbulent dispersion, represented<br />

as the product of Dispers (m/h), the concentration of the two compartments (kg/m3) and the crosssectional<br />

area of the interface between APB and EPB (1365 m * depth of the cell). Mass flux between<br />

EPB and APB in any time step is based on the fractional water transfer between these two compartments.<br />

EP_Surf(t) = EP_Surf(t - dt) + (TS:EPS + Dep:EPS - EPS:COS - EPS:APS - EPS:EPB) * dt<br />

INIT EP_Surf = Vol_EPS * 0<br />

DOCUMENT: Starting mass of COPC = vol of EPS (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

INFLOWS:<br />

TS:EPS = (T_Surf*Dispers_Surf*(2520*MIN(TotDepth_TS,TotDepth_EPS))/Vol_TS) -<br />

(EP_Surf*Dispers_Surf*(2520*MIN(TotDepth_TS,TotDepth_EPS))/Vol_EPS)<br />

+<br />

(IF ((DTide_K1S*Area_K1+DTide_K2S*Area_K2 + DTide_TS*Area_T + DTide_CBS*Area_CB) +<br />

T_Flow) >0<br />

THEN T_Surf * ((DTide_K1S*Area_K1+DTide_K2S*Area_K2 + DTide_TS*Area_T +<br />

DTide_CBS*Area_CB) + T_Flow)/LVol_TS<br />

ELSE EP_Surf * ((DTide_K1S*Area_K1+DTide_K2S*Area_K2 + DTide_TS*Area_T +<br />

DTide_CBS*Area_CB) + T_Flow)/LVol_EPS)<br />

DOCUMENT: Flow of mass (kg/h) between TS and EPS is driven by T_Flow (water flow from surface<br />

drainage - m³/h). The two compartments (TS/EPS) are visualized as being a pipe and water flow in the<br />

pipe is a direct function of water flow into TS from overland flow (rivers, streams, etc.). Flow of mass<br />

between TS and EPS is also driven by turbulent dispersion, represented as the product of Dispers (m/h),<br />

the concentration of the two compartments (kg/m3) and the cross-sectional area of the interface between<br />

TS and EPS (2520 m * depth of surface layer). Mass flux between TS and EPS in any time step is based<br />

on the fractional water transfer between these two compartments.<br />

Dep:EPS = TotDep_EPS*Area_EP*(1/8760) * (1/(1000 * 1000 * 1000))<br />

DOCUMENT: Dep:EPS is the mass (kg) of COPC entering EPS each time step (h) through air<br />

deposition.<br />

1/8760 is used to convert years into hours.<br />

1/1,000,000,000 is used to convert ug into kg.<br />

Page A-14 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

OUTFLOWS:<br />

EPS:COS = (EP_Surf*Dispers_Surf*(4028*MIN(TotDepth_EPS,TotDepth_COS))/Vol_EPS) -<br />

(CO_Surf*Dispers_Surf*(4028*MIN(TotDepth_EPS,TotDepth_COS))/Vol_COS)<br />

+<br />

(IF ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2 + DTide_TS*Area_T + DTide_CBS*Area_CB +<br />

DTide_EPS*Area_EP) + EP_Flow) >0<br />

THEN EP_Surf * ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2 + DTide_TS*Area_T +<br />

DTide_CBS*Area_CB + DTide_EPS*Area_EP) + EP_Flow)/LVol_EPS<br />

ELSE CO_Surf *((DTide_K1S*Area_K1 + DTide_K2S*Area_K2 + DTide_TS*Area_T +<br />

DTide_CBS*Area_CB + DTide_EPS*Area_EP) + EP_Flow)/LVol_COS)<br />

DOCUMENT: Flow of mass (kg/h) between EPS and COS is driven by EP_Flow (water flow from<br />

surface drainage - m³/h). The two compartments (EPS/COS) are visualized as being a pipe and water<br />

flow in the pipe is a direct function of water flow into EPS from overland flow (rivers, streams, etc.).<br />

Flow of mass between EPS and COS is also driven by turbulent dispersion, represented as the product of<br />

Dispers (m/h), the concentration of the two compartments (kg/m3) and the cross-sectional area of the<br />

interface between EPS and COS (4028 m * depth of surface layer). Mass flux between EPS and COS in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

EPS:APS = (EP_Surf*Dispers_Surf*(1365*MIN(TotDepth_APS,TotDepth_EPS))/Vol_EPS) -<br />

(AP_Surf*Dispers_Surf*(1365*MIN(TotDepth_APS,TotDepth_EPS))/Vol_APS)<br />

DOCUMENT: Flow of mass (kg/h) between EPS and APS is driven by turbulent dispersion, represented<br />

as the product of Dispers (m/h), the concentration of the two compartments (kg/m3) and the crosssectional<br />

area of the interface between APS and EPS (1365 m * depth of surface layer). Mass flux<br />

between EPS and APS in any time step is based on the fractional water transfer between these two<br />

compartments.<br />

EPS:EPB = (EP_Surf*Mixer*Area_EP/Vol_EPS) - (EP_Bot*Mixer*Area_EP/LVol_EPB)<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "EP" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

K1_Bot(t) = K1_Bot(t - dt) + (K1S:K1B - K1B:K2B) * dt<br />

INIT K1_Bot = Vol_K1B * 0<br />

DOCUMENT: Starting mass of COPC = vol of K1B (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

2010 Page A1-15


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

INFLOWS:<br />

K1S:K1B = (K1_Surf*Mixer*Area_K1/Vol_K1S) - (K1_Bot*Mixer*Area_K1/LVol_K1B)<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "K1" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

OUTFLOWS:<br />

K1B:K2B = (K1_Bot*Dispers_Bot*(3278*MIN(TotDepth_K1B,TotDepth_K2B))/Vol_K1B) -<br />

(K2_Bot*Dispers_Bot*(3278*MIN(TotDepth_K1B,TotDepth_K2B))/Vol_K2B)<br />

+<br />

(IF (DTide_K1B*Area_K1)>0<br />

THEN (K1_Bot * (DTide_K1B*Area_K1)/LVol_K1B)<br />

ELSE (K2_Bot * (DTide_K1B*Area_K1)/LVol_K2B) )<br />

DOCUMENT: Flow of mass (kg/h) between K1B and K2B is driven by tide, represented as the change<br />

in volume of the cells as tidal elevation changes. Flow of mass between K1B and K2B is also driven by<br />

turbulent dispersion, represented as the product of Dispers (m/h), the concentration of the two<br />

compartments (kg/m3) and the cross-sectional area of the interface between K1B and K2B (3278 m *<br />

depth of bottom layer). Mass flux between K1B and K2B in any time step is based on the fractional<br />

water transfer between these two compartments.<br />

K1_Surf(t) = K1_Surf(t - dt) + (Dep:K1S - K1S:K2S - K1S:K1B) * dt<br />

INIT K1_Surf = Vol_K1S * 0<br />

DOCUMENT: Starting mass of COPC = vol of K1S (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

INFLOWS:<br />

Dep:K1S = TotDep_K1S*Area_K1*(1/8760) * (1/(1000 * 1000 * 1000))<br />

DOCUMENT: Dep:K1S is the mass (kg) of COPC entering K1S each time step (h) through air<br />

deposition.<br />

1/8760 is used to convert years into hours.<br />

1/1,000,000,000 is used to convert ug into kg.<br />

Page A-16 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

OUTFLOWS:<br />

K1S:K2S = (K1_Surf*Dispers_Surf*(3278*MIN(TotDepth_K1S,TotDepth_K2S))/Vol_K1S) -<br />

(K2_Surf*Dispers_Surf*(3278*MIN(TotDepth_K1S,TotDepth_K2S))/Vol_K2S)<br />

+<br />

(IF ((DTide_K1S*Area_K1) + K1_Flow) >0<br />

THEN (K1_Surf * ((DTide_K1S*Area_K1) + K1_Flow)/LVol_K1S)<br />

ELSE (K2_Surf * ((DTide_K1S*Area_K1) + K1_Flow)/LVol_K2S) )<br />

DOCUMENT: Flow of mass (kg/h) between K1S and K2S is driven by K1_Flow (water flow from<br />

surface drainage - m³/h). The two compartments (K1S/K2S) are visualized as being a pipe and water<br />

flow in the pipe is a direct function of water flow into K1S from overland flow (rivers, streams, etc.).<br />

Flow of mass between K1S and K2S is also driven by turbulent dispersion, represented as the product of<br />

Dispers (m/h), the concentration of the two compartments (kg/m3) and the cross-sectional area of the<br />

interface between K1S and K2S (3278 m * depth of surface layer). Mass flux between K1S and K2S in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

K1S:K1B = (K1_Surf*Mixer*Area_K1/Vol_K1S) - (K1_Bot*Mixer*Area_K1/LVol_K1B)<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "K1" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

K2_Bot(t) = K2_Bot(t - dt) + (K1B:K2B + K2S:K2B - K2B:TB) * dt<br />

INIT K2_Bot = Vol_K2B * 0<br />

DOCUMENT: Starting mass of COPC = vol of K2B (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

INFLOWS:<br />

K1B:K2B = (K1_Bot*Dispers_Bot*(3278*MIN(TotDepth_K1B,TotDepth_K2B))/Vol_K1B) -<br />

(K2_Bot*Dispers_Bot*(3278*MIN(TotDepth_K1B,TotDepth_K2B))/Vol_K2B)<br />

+<br />

(IF (DTide_K1B*Area_K1)>0<br />

THEN (K1_Bot * (DTide_K1B*Area_K1)/LVol_K1B)<br />

2010 Page A1-17


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

ELSE (K2_Bot * (DTide_K1B*Area_K1)/LVol_K2B) )<br />

DOCUMENT: Flow of mass (kg/h) between K1B and K2B is driven by tide, represented as the change<br />

in volume of the cells as tidal elevation changes. Flow of mass between K1B and K2B is also driven by<br />

turbulent dispersion, represented as the product of Dispers (m/h), the concentration of the two<br />

compartments (kg/m3) and the cross-sectional area of the interface between K1B and K2B (3278 m *<br />

depth of bottom layer). Mass flux between K1B and K2B in any time step is based on the fractional<br />

water transfer between these two compartments.<br />

K2S:K2B = (K2_Surf*Mixer*Area_K2/Vol_K2S) - (K2_Bot*Mixer*Area_K2/LVol_K2B)<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "K2" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

OUTFLOWS:<br />

K2B:TB = (K2_Bot*Dispers_Bot*(2759*MIN(TotDepth_K2B,TotDepth_TB))/Vol_K2B) -<br />

(T_Bot*Dispers_Bot*(2759*MIN(TotDepth_K2B,TotDepth_TB))/Vol_TB)<br />

+<br />

(IF (DTide_K1B*Area_K1 + DTide_K2B*Area_K2)>0<br />

THEN K2_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2)/LVol_K2B<br />

ELSE T_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2)/LVol_TB )<br />

DOCUMENT: Flow of mass (kg/h) between K2B and TB is driven by tide, represented as the change in<br />

volume of the cells as tidal elevation changes. Flow of mass between K2B and TB is also driven by<br />

turbulent dispersion, represented as the product of Dispers Bot (m/h) and the cross-sectional area of the<br />

interface between K2B and TB (2759 m * depth of bottom layer). Mass flux between K2B and TB in any<br />

time step is based on the fractional water transfer between these two compartments.<br />

K2_Surf(t) = K2_Surf(t - dt) + (K1S:K2S + Eff:K2S + Dep:K2S - K2S:TS - K2S:K2B) * dt<br />

INIT K2_Surf = Vol_K2S * 0<br />

DOCUMENT: Starting mass of COPC = vol of K2S (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

Page A-18 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

INFLOWS:<br />

K1S:K2S = (K1_Surf*Dispers_Surf*(3278*MIN(TotDepth_K1S,TotDepth_K2S))/Vol_K1S) -<br />

(K2_Surf*Dispers_Surf*(3278*MIN(TotDepth_K1S,TotDepth_K2S))/Vol_K2S)<br />

+<br />

(IF ((DTide_K1S*Area_K1) + K1_Flow) >0<br />

THEN (K1_Surf * ((DTide_K1S*Area_K1) + K1_Flow)/LVol_K1S)<br />

ELSE (K2_Surf * ((DTide_K1S*Area_K1) + K1_Flow)/LVol_K2S) )<br />

DOCUMENT: Flow of mass (kg/h) between K1S and K2S is driven by K1_Flow (water flow from<br />

surface drainage - m³/h). The two compartments (K1S/K2S) are visualized as being a pipe and water<br />

flow in the pipe is a direct function of water flow into K1S from overland flow (rivers, streams, etc.).<br />

Flow of mass between K1S and K2S is also driven by turbulent dispersion, represented as the product of<br />

Dispers (m/h), the concentration of the two compartments (kg/m3) and the cross-sectional area of the<br />

interface between K1S and K2S (3278 m * depth of surface layer). Mass flux between K1S and K2S in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

Eff:K2S = LiqEff_Conc * LiqEff_Vol * 0.001 * 0.001 *<br />

(IF ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2) + K2_Flow) < 0<br />

THEN 1<br />

ELSE 0)<br />

DOCUMENT: COPC mass (kg) from the liquid effluent discharge pipe enters K2S when the net water<br />

movement between K2S and TS is from TS to K2S and is the product of the volume of effluent<br />

(LiqEff_Vol) and its concentration (LiqEff_Conc).<br />

LiqEff_Conc is measured in mg/m3<br />

LiqEff_Vol is measured in m3/hour<br />

Eff:K2S is thus measured in:<br />

mg/m3 * m3/hour * 0.0001 g/mg * 0.001 kg/g = kg/hour<br />

Dep:K2S = TotDep_K2S*Area_K2*(1/8760) * (1/(1000 * 1000 * 1000))<br />

DOCUMENT: Dep:K2S is the mass (kg) of COPC entering K2S each time step (h) through air<br />

deposition.<br />

1/8760 is used to convert years into hours.<br />

1/1,000,000,000 is used to convert ug into kg.<br />

2010 Page A1-19


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

OUTFLOWS:<br />

K2S:TS = (K2_Surf*Dispers_Surf*(2759*MIN(TotDepth_K2S,TotDepth_TS))/Vol_K2S) -<br />

(T_Surf*Dispers_Surf*(2759*MIN(TotDepth_K2S,TotDepth_TS))/Vol_TS)<br />

+<br />

(IF ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2) + K2_Flow) >0<br />

THEN K2_Surf * ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2) + K2_Flow) /LVol_K2S<br />

ELSE T_Surf * ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2) + K2_Flow) /LVol_TS)<br />

DOCUMENT: Flow of mass (kg/h) between K2S and TS is driven by K2_Flow (water flow from surface<br />

drainage - m³/h). The two compartments (K2S/TS) are visualized as being a pipe and water flow in the<br />

pipe is a direct function of water flow into K2S from overland flow (rivers, streams, etc.). Flow of mass<br />

between K2S and TS is also driven by turbulent dispersion, represented as the product of Dispers (m/h),<br />

the concentration of the two compartments (kg/m3) and the cross-sectional area of the interface between<br />

K2S and TS (2759 m * depth of surface layer). Mass flux between K2S and TS in any time step is based<br />

on the fractional water transfer between these two compartments.<br />

K2S:K2B = (K2_Surf*Mixer*Area_K2/Vol_K2S) - (K2_Bot*Mixer*Area_K2/LVol_K2B)<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "K2" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

KA_Bot(t) = KA_Bot(t - dt) + (KAS:KAB - KAB:APB) * dt<br />

INIT KA_Bot = Vol_KAB * 0<br />

DOCUMENT: Starting mass of COPC = vol of KAB (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

INFLOWS:<br />

KAS:KAB = (KA_Surf*Mixer*Area_KA/Vol_KAS) - (KA_Bot*Mixer*Area_KA/LVol_KAB)<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "KA" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

Page A-20 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

OUTFLOWS:<br />

KAB:APB = (KA_Bot*Dispers_Bot*(965*MIN(TotDepth_KAB,TotDepth_APB))/Vol_KAB) -<br />

(AP_Bot*Dispers_Bot*(965*MIN(TotDepth_KAB,TotDepth_APB))/Vol_APB)<br />

+<br />

(IF (DTide_KAB*Area_KA)>0<br />

THEN (KA_Bot * (DTide_KAB*Area_KA)/LVol_KAB)<br />

ELSE (AP_Bot * (DTide_KAB*Area_KA)/LVol_APB) )<br />

DOCUMENT: Flow of mass (kg/h) between KAB and APB is driven by tide, represented as the change<br />

in volume of the cells as tidal elevation changes. Flow of mass between KAB and APB is also driven by<br />

turbulent dispersion, represented as the product of Dispers Bot (m/h), the concentration of the two<br />

compartments (kg/m3) and the cross-sectional area of the interface between KAB and APB (965 m *<br />

depth of bottom layer). Mass flux between KAB and APB in any time step is based on the fractional<br />

water transfer between these two compartments.<br />

KA_Surf(t) = KA_Surf(t - dt) + (Dep:KAS - KAS:APS - KAS:KAB) * dt<br />

INIT KA_Surf = Vol_KAS * 0<br />

DOCUMENT: Starting mass of COPC = vol of KAS (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

INFLOWS:<br />

Dep:KAS = TotDep_KAS*Area_KA*(1/8760) * (1/(1000 * 1000 * 1000))<br />

DOCUMENT: Dep:KAS is the mass (kg) of COPC entering KAS each time step (h) through air<br />

deposition.<br />

1/8760 is used to convert years into hours.<br />

1/1,000,000,000 is used to convert ug into kg.<br />

OUTFLOWS:<br />

KAS:APS = (KA_Surf*Dispers_Surf*(965*MIN(TotDepth_KAS,TotDepth_APS))/Vol_KAS) -<br />

(AP_Surf*Dispers_Surf*(965*MIN(TotDepth_KAS,TotDepth_APS))/Vol_APS)<br />

+ (IF (DTide_KAS * (Area_KA) + KA_Flow) >0<br />

THEN (KA_Surf * (DTide_KAS * (Area_KA) + KA_Flow)/LVol_KAS)<br />

2010 Page A1-21


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

ELSE (AP_Surf * (DTide_KAS * (Area_KA) + KA_Flow)/LVol_APS) )<br />

DOCUMENT: Flow of mass (kg/h) between KAS and APS is driven by KA_Flow (water flow from<br />

surface drainage - m³/h). The two compartments (KAS/APS) are visualized as being a pipe and water<br />

flow in the pipe is a direct function of water flow into KAS from overland flow (rivers, streams, etc.).<br />

Flow of mass between KAS and APS is also driven by turbulent dispersion, represented as the product of<br />

Dispers (m/h), the concentration of the two compartments (kg/m3) and the cross-sectional area of the<br />

interface between KAS and APS (965 m * depth of surface layer). Mass flux between KAS and APS in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

KAS:KAB = (KA_Surf*Mixer*Area_KA/Vol_KAS) - (KA_Bot*Mixer*Area_KA/LVol_KAB)<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "KA" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

NS_Bot(t) = NS_Bot(t - dt) + (COB:NSB + APB:NSB + NSS:NSB - NSB:DCB) * dt<br />

INIT NS_Bot = Vol_NSB * 0<br />

DOCUMENT: Starting mass of COPC = vol of NSB (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

INFLOWS:<br />

COB:NSB = (CO_Bot*Dispers_Bot*(3185*MIN(TotDepth_COB,TotDepth_NSB))/Vol_COB) -<br />

(NS_Bot*Dispers_Bot*(3185*MIN(TotDepth_COB,TotDepth_NSB))/Vol_NSB)<br />

+<br />

(IF (DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_CBB*Area_CB + DTide_TB*Area_T +<br />

DTide_EPB*Area_EP + DTide_COB*Area_CO)>0<br />

THEN CO_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_CBB*Area_CB +<br />

DTide_TB*Area_T + DTide_EPB*Area_EP + DTide_COB*Area_CO)/LVol_COB<br />

ELSE<br />

NS_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_CBB*Area_CB +<br />

DTide_TB*Area_T + DTide_EPB*Area_EP + DTide_COB*Area_CO)/LVol_NSB )<br />

DOCUMENT: Flow of mass (kg/h) between COB and NSB is driven by tide, represented as the change<br />

in volume of the cells as tidal elevation changes. Flow of mass between COB and NSB is also driven by<br />

Page A-22 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

turbulent dispersion, represented as the product of Dispers Bot (m/h) and the cross-sectional area of the<br />

interface between COB and NSB (3185 m * depth of bottom layer). Mass flux between COB and NSB in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

APB:NSB = (AP_Bot*Dispers_Bot*(1645*MIN(TotDepth_APB,TotDepth_NSB))/Vol_APB) -<br />

(NS_Bot*Dispers_Bot*(1645*MIN(TotDepth_APB,TotDepth_NSB))/Vol_NSB)<br />

+<br />

( IF (DTide_KAB*Area_KA + DTide_APB*Area_AP)>0<br />

THEN (AP_Bot * (DTide_KAB*Area_KA + DTide_APB*Area_AP)/LVol_APB)<br />

ELSE (NS_Bot * (DTide_KAB*Area_KA + DTide_APB*Area_AP)/LVol_NSB) )<br />

DOCUMENT: Flow of mass (kg/h) between APB and NSB is driven by tide, represented as the change<br />

in volume of the cells as tidal elevation changes. Flow of mass between APB and NSB is also driven by<br />

turbulent dispersion, represented as the product of Dispers Bot (m/h) and the cross-sectional area of the<br />

interface between APB and NSB (1645 m * depth of bottom layer). Mass flux between APB and NSB in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

NSS:NSB = (NS_Surf*Mixer*Area_NS/Vol_NSS) - (NS_Bot*Mixer*Area_NS/LVol_NSB)<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "NS" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

OUTFLOWS:<br />

NSB:DCB = (NS_Bot*Dispers_Bot*(3185*MIN(TotDepth_NSB,TotDepth_DCB))/Vol_NSB) -<br />

(DC_Bot*Dispers_Bot*(3185*MIN(TotDepth_NSB,TotDepth_DCB))/Vol_DCB)<br />

+<br />

(IF (DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_TB*Area_T + DTide_CBB*Area_CB +<br />

DTide_EPB*Area_EP + DTide_COB*Area_CO + DTide_KAB*Area_KA+DTide_APB*Area_AP +<br />

DTide_NSB*Area_NS)>0<br />

THEN NS_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_TB*Area_T +<br />

DTide_CBB*Area_CB + DTide_EPB*Area_EP + DTide_COB*Area_CO +<br />

DTide_KAB*Area_KA+DTide_APB*Area_AP + DTide_NSB*Area_NS)/LVol_NSB<br />

ELSE DC_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_TB*Area_T +<br />

DTide_CBB*Area_CB + DTide_EPB*Area_EP + DTide_COB*Area_CO +<br />

DTide_KAB*Area_KA+DTide_APB*Area_AP + DTide_NSB*Area_NS)/LVol_DCB )<br />

2010 Page A1-23


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

DOCUMENT: Flow of mass (kg/h) between NSB and DCB is driven by tide, represented as the change<br />

in volume of the cells as tidal elevation changes. Flow of mass between NSB and DCB is also driven by<br />

turbulent dispersion, represented as the product of Dispers Bot (m/h) and the cross-sectional area of the<br />

interface between NSB and DCB (3185 m * depth of bottom layer). Mass flux between NSB and DCB in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

NS_Surf(t) = NS_Surf(t - dt) + (COS:NSS + APS:NSS + Dep:NSS - NSS:DCS - NSS:NSB) * dt<br />

INIT NS_Surf = Vol_NSS * 0<br />

DOCUMENT: Starting mass of COPC = vol of NSS (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

INFLOWS:<br />

COS:NSS = (CO_Surf*Dispers_Surf*(3185*MIN(TotDepth_COS,TotDepth_NSS))/Vol_COS) -<br />

(NS_Surf*Dispers_Surf*(3185*MIN(TotDepth_COS,TotDepth_NSS))/Vol_NSS)<br />

+<br />

(IF ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2 + DTide_TS*Area_T + DTide_CBS*Area_CB +<br />

DTide_EPS*Area_EP + DTide_COS*Area_CO) + CO_Flow) >0<br />

THEN CO_Surf * ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2 + DTide_TS*Area_T +<br />

DTide_CBS*Area_CB + DTide_EPS*Area_EP + DTide_COS*Area_CO) + CO_Flow) /LVol_COS<br />

ELSE<br />

NS_Surf * ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2 + DTide_TS*Area_T +<br />

DTide_CBS*Area_CB + DTide_EPS*Area_EP + DTide_COS*Area_CO) + CO_Flow) /LVol_NSS )<br />

DOCUMENT: Flow of mass (kg/h) between COS and NSS is driven by CO_Flow (water flow from<br />

surface drainage - m³/h). The two compartments (COS/NSS) are visualized as being a pipe and water<br />

flow in the pipe is a direct function of water flow into COS from overland flow (rivers, streams, etc.).<br />

Flow of mass between COS and NSS is also driven by turbulent dispersion, represented as the product of<br />

Dispers (m/h), the concentration of the two compartments (kg/m3) and the cross-sectional area of the<br />

interface between COS and NSS (3185 m * depth of surface layer). Mass flux between COS and NSS in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

APS:NSS = (AP_Surf*Dispers_Surf*(1645*MIN(TotDepth_APS,TotDepth_NSS))/Vol_APS) -<br />

(NS_Surf*Dispers_Surf*(1645*MIN(TotDepth_APS,TotDepth_NSS))/Vol_NSS)<br />

+ (IF ((DTide_KAS*Area_KA + DTide_APS*Area_AP) + AP_Flow) >0<br />

Page A-24 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

THEN (AP_Surf * ((DTide_KAS*Area_KA + DTide_APS*Area_AP) + AP_Flow)/LVol_APS)<br />

ELSE (NS_Surf * ((DTide_KAS*Area_KA + DTide_APS*Area_AP) + AP_Flow)/LVol_NSS) )<br />

DOCUMENT: Flow of mass (kg/h) between APS and NSS is driven by AP_Flow (water flow from<br />

surface drainage - m³/h). The two compartments (APS/NSS) are visualized as being a pipe and water<br />

flow in the pipe is a direct function of water flow into APS from overland flow (rivers, streams, etc.).<br />

Flow of mass between APS and NSS is also driven by turbulent dispersion, represented as the product of<br />

Dispers (m/h), the concentration of the two compartments (kg/m3) and the cross-sectional area of the<br />

interface between APS and NSS (1645 m * depth of surface layer). Mass flux between APS and NSS in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

Dep:NSS = TotDep_NSS*Area_NS*(1/8760) * (1/(1000 * 1000 * 1000))<br />

DOCUMENT: Dep:NSS is the mass (kg) of COPC entering NSS each time step (h) through air<br />

deposition.<br />

1/8760 is used to convert years into hours.<br />

1/1,000,000,000 is used to convert ug into kg.<br />

OUTFLOWS:<br />

NSS:DCS = (NS_Surf*Dispers_Surf*(3185*MIN(TotDepth_NSS,TotDepth_DCS))/Vol_NSS) -<br />

(DC_Surf*Dispers_Surf*(3185*MIN(TotDepth_NSS,TotDepth_DCS))/Vol_DCS)<br />

+<br />

(IF ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2 + DTide_TS*Area_T + DTide_CBS*Area_CB +<br />

DTide_EPS*Area_EP + DTide_COS*Area_CO+ DTide_KAS*Area_KA + DTide_APS*Area_AP +<br />

DTide_NSS*Area_NS) + NS_Flow) >0<br />

THEN NS_Surf * ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2 + DTide_TS*Area_T +<br />

DTide_CBS*Area_CB + DTide_EPS*Area_EP + DTide_COS*Area_CO+ DTide_KAS*Area_KA +<br />

DTide_APS*Area_AP + DTide_NSS*Area_NS) + NS_Flow)/LVol_NSS<br />

ELSE DC_Surf * ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2 + DTide_TS*Area_T +<br />

DTide_CBS*Area_CB + DTide_EPS*Area_EP + DTide_COS*Area_CO+ DTide_KAS*Area_KA +<br />

DTide_APS*Area_AP + DTide_NSS*Area_NS) + NS_Flow)/LVol_DCS )<br />

DOCUMENT: Flow of mass (kg/h) between NSS and DCS is driven by NS_Flow (water flow from<br />

surface drainage - m³/h). The two compartments (NSS/DCS) are visualized as being a pipe and water<br />

flow in the pipe is a direct function of water flow into NSS from overland flow (rivers, streams, etc.).<br />

Flow of mass between NSS and DCS is also driven by turbulent dispersion, represented as the product of<br />

Dispers (m/h), the concentration of the two compartments (kg/m3) and the cross-sectional area of the<br />

interface between NSS and DCS (3185 m * depth of surface layer). Mass flux between NSS and DCS in<br />

any time step is based on the fractional water transfer between these two compartments.<br />

2010 Page A1-25


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

NSS:NSB = (NS_Surf*Mixer*Area_NS/Vol_NSS) - (NS_Bot*Mixer*Area_NS/LVol_NSB)<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "NS" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

T_Bot(t) = T_Bot(t - dt) + (K2B:TB + CBB:TB + TS:TB - TB:EPB) * dt<br />

INIT T_Bot = Vol_TB * 0<br />

DOCUMENT: Starting mass of COPC = vol of TB (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

INFLOWS:<br />

K2B:TB = (K2_Bot*Dispers_Bot*(2759*MIN(TotDepth_K2B,TotDepth_TB))/Vol_K2B) -<br />

(T_Bot*Dispers_Bot*(2759*MIN(TotDepth_K2B,TotDepth_TB))/Vol_TB)<br />

+<br />

(IF (DTide_K1B*Area_K1 + DTide_K2B*Area_K2)>0<br />

THEN K2_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2)/LVol_K2B<br />

ELSE T_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2)/LVol_TB )<br />

DOCUMENT: Flow of mass (kg/h) between K2B and TB is driven by tide, represented as the change in<br />

volume of the cells as tidal elevation changes. Flow of mass between K2B and TB is also driven by<br />

turbulent dispersion, represented as the product of Dispers Bot (m/h) and the cross-sectional area of the<br />

interface between K2B and TB (2759 m * depth of bottom layer). Mass flux between K2B and TB in any<br />

time step is based on the fractional water transfer between these two compartments.<br />

CBB:TB = (CB_Bot*Dispers_Bot*(955*MIN(TotDepth_CBB,TotDepth_TB))/Vol_CBB) -<br />

(T_Bot*Dispers_Bot*(955*MIN(TotDepth_CBB,TotDepth_TB))/Vol_TB)<br />

+<br />

(IF (DTide_CBB*Area_CB)>0<br />

THEN (CB_Bot * (DTide_CBB*Area_CB)/LVol_CBB)<br />

ELSE (T_Bot * (DTide_CBB*Area_CB)/LVol_TB) )<br />

DOCUMENT: Flow of mass (kg/h) between CBB and TB is driven by tide, represented as the change in<br />

volume of the cells as tidal elevation changes. Flow of mass between CBB and TB is also driven by<br />

Page A-26 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

turbulent dispersion, represented as the product of Dispers Bot (m/h) and the cross-sectional area of the<br />

interface between CBB and TB (955 m * depth of bottom layer). Mass flux between CBB and TB in any<br />

time step is based on the fractional water transfer between these two compartments.<br />

TS:TB = (T_Surf*Mixer*Area_T/Vol_TS) - (T_Bot*Mixer*Area_T/LVol_TB)<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "T" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

OUTFLOWS:<br />

TB:EPB = (T_Bot*Dispers_Bot*(2520*MIN(TotDepth_TB,TotDepth_EPB))/Vol_TB) -<br />

(EP_Bot*Dispers_Bot*(2520*MIN(TotDepth_TB,TotDepth_EPB))/Vol_EPB)<br />

+<br />

(IF (DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_CBB*Area_CB + DTide_TB*Area_T)>0<br />

THEN T_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_CBB*Area_CB +<br />

DTide_TB*Area_T)/LVol_TB<br />

ELSE EP_Bot*(DTide_K1B*Area_K1 + DTide_K2B*Area_K2 + DTide_CBB*Area_CB +<br />

DTide_TB*Area_T)/LVol_EPB )<br />

DOCUMENT: Flow of mass (kg/h) between TB and EPB is driven by tide, represented as the change in<br />

volume of the cells as tidal elevation changes. Flow of mass between TB and EPB is also driven by<br />

turbulent dispersion, represented as the product of Dispers Bot (m/h) and the cross-sectional area of the<br />

interface between TB and EPB (2520 m * depth of bottom layer). Mass flux between TB and EPB in any<br />

time step is based on the fractional water transfer between these two compartments.<br />

T_Surf(t) = T_Surf(t - dt) + (K2S:TS + CBS:TS + Eff:TS + Dep:TS - TS:EPS - TS:TB) * dt<br />

INIT T_Surf = Vol_TS * 0<br />

DOCUMENT: Starting mass of COPC = vol of TS (m3) * Initial COPC Concentration<br />

where:<br />

Initial COPC Concentration = 0 kg/m3<br />

2010 Page A1-27


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

INFLOWS:<br />

K2S:TS = (K2_Surf*Dispers_Surf*(2759*MIN(TotDepth_K2S,TotDepth_TS))/Vol_K2S) -<br />

(T_Surf*Dispers_Surf*(2759*MIN(TotDepth_K2S,TotDepth_TS))/Vol_TS)<br />

+<br />

(IF ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2) + K2_Flow) >0<br />

THEN K2_Surf * ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2) + K2_Flow) /LVol_K2S<br />

ELSE T_Surf * ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2) + K2_Flow) /LVol_TS)<br />

DOCUMENT: Flow of mass (kg/h) between K2S and TS is driven by K2_Flow (water flow from surface<br />

drainage - m³/h). The two compartments (K2S/TS) are visualized as being a pipe and water flow in the<br />

pipe is a direct function of water flow into K2S from overland flow (rivers, streams, etc.). Flow of mass<br />

between K2S and TS is also driven by turbulent dispersion, represented as the product of Dispers (m/h),<br />

the concentration of the two compartments (kg/m3) and the cross-sectional area of the interface between<br />

K2S and TS (2759 m * depth of surface layer). Mass flux between K2S and TS in any time step is based<br />

on the fractional water transfer between these two compartments.<br />

CBS:TS = (CB_Surf*Dispers_Surf*(955*MIN(TotDepth_CBS,TotDepth_TS))/Vol_CBS) -<br />

(T_Surf*Dispers_Surf*(955*MIN(TotDepth_CBS,TotDepth_TS))/Vol_TS)<br />

+<br />

(IF ((DTide_CBS*Area_CB) + CB_Flow) >0<br />

THEN (CB_Surf * ((DTide_CBS*Area_CB) + CB_Flow)/LVol_CBS)<br />

ELSE (T_Surf * ((DTide_CBS*Area_CB) + CB_Flow)/LVol_TS) )<br />

DOCUMENT: Flow of mass (kg/h) between CBS and TS is driven by CB_Flow (water flow from<br />

surface drainage - m³/h). The two compartments (CBS/TS) are visualized as being a pipe and water flow<br />

in the pipe is a direct function of water flow into CBS from overland flow (rivers, streams, etc.). Flow of<br />

mass between CBS and TS is also driven by turbulent dispersion, represented as the product of Dispers<br />

(m/h), the concentration of the two compartments (kg/m3) and the cross-sectional area of the interface<br />

between CBS and TS (955 m * depth of surface layer). Mass flux between CBS and TS in any time step<br />

is based on the fractional water transfer between these two compartments.<br />

Eff:TS = LiqEff_Conc * LiqEff_Vol * 0.001 * 0.001 *<br />

(IF ((DTide_K1S*Area_K1 + DTide_K2S*Area_K2) + K2_Flow) >=0<br />

THEN 1<br />

ELSE 0)<br />

DOCUMENT: COPC mass (kg) from the liquid effluent discharge pipe enters TS when the net water<br />

movement between K2S and TS is from K2S to TS and is the product of the volume of effluent<br />

(LiqEff_Vol) and its concentration (LiqEff_Conc).<br />

Page A-28 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

LiqEff_Conc is measured in mg/m3<br />

LiqEff_Vol is measured in m3/hour<br />

Eff:TS is thus measured in:mg/m3 * m3/hour * 0.0001 g/mg * 0.001 kg/g = kg/hour<br />

Dep:TS = TotDep_TS*Area_T*(1/8760) * (1/(1000 * 1000 * 1000))<br />

DOCUMENT: Dep:TS is the mass (kg) of COPC entering TS each time step (h) through air deposition.<br />

1/8760 is used to convert years into hours.<br />

1/1,000,000,000 is used to convert ug into kg.<br />

OUTFLOWS:<br />

TS:EPS = (T_Surf*Dispers_Surf*(2520*MIN(TotDepth_TS,TotDepth_EPS))/Vol_TS) -<br />

(EP_Surf*Dispers_Surf*(2520*MIN(TotDepth_TS,TotDepth_EPS))/Vol_EPS)<br />

+<br />

(IF ((DTide_K1S*Area_K1+DTide_K2S*Area_K2 + DTide_TS*Area_T + DTide_CBS*Area_CB) +<br />

T_Flow) >0<br />

THEN T_Surf * ((DTide_K1S*Area_K1+DTide_K2S*Area_K2 + DTide_TS*Area_T +<br />

DTide_CBS*Area_CB) + T_Flow)/LVol_TS<br />

ELSE EP_Surf * ((DTide_K1S*Area_K1+DTide_K2S*Area_K2 + DTide_TS*Area_T +<br />

DTide_CBS*Area_CB) + T_Flow)/LVol_EPS)<br />

DOCUMENT: Flow of mass (kg/h) between TS and EPS is driven by T_Flow (water flow from surface<br />

drainage - m³/h). The two compartments (TS/EPS) are visualized as being a pipe and water flow in the<br />

pipe is a direct function of water flow into TS from overland flow (rivers, streams, etc.). Flow of mass<br />

between TS and EPS is also driven by turbulent dispersion, represented as the product of Dispers (m/h),<br />

the concentration of the two compartments (kg/m3) and the cross-sectional area of the interface between<br />

TS and EPS (2520 m * depth of surface layer). Mass flux between TS and EPS in any time step is based<br />

on the fractional water transfer between these two compartments.<br />

TS:TB = (T_Surf*Mixer*Area_T/Vol_TS) - (T_Bot*Mixer*Area_T/LVol_TB)<br />

DOCUMENT: The flow of contaminant mass (kg/h) between the surface and bottom layer of "T" is<br />

driven by vertical mixing between the two compartments. The direction of the mass flow is controled by<br />

the concentration differential of the two compartments (kg/m3), the mixer rate (m/h), and the surface area<br />

of the compartment (m2).<br />

2010 Page A1-29


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

Analyte_Master = 35<br />

DOCUMENT: Analyte Master is used to select the COPC to be run in the model. Other "Lookup<br />

Tables" use this trigger to feed the correct constants (e.g., effluent concentrations, deposition rates) to the<br />

model.<br />

The lookup tables are set up to accomodate 48 COPC and hence Analyte Master varies from 1 to 48.<br />

AP_Flow = KR_Flow * 3600 * (1043.2 + 91.5)/1900<br />

DOCUMENT: Surface Runoff into "APS" (m³/h) is calculated by prorating the daily mean flow rates<br />

(m³/s) <strong>for</strong> the Kitemat River measured below Hirsch Creek by the corresponding drainage areas as<br />

calculated using GIS methods.<br />

Where:<br />

3600 is used to convert from m³/s to m³/h<br />

(1043.2 + 91.5) is the cumulative drainage area into "APS" (km²)<br />

1900 in the drainage area at the gauging station (km²)<br />

Area_AP = 21705795<br />

DOCUMENT: Area of "AP" is 21705795 m², based on measurement using GIS software.<br />

Area_CB = 1620222<br />

DOCUMENT: Area of "CB" is 1620222 m², based on measurement using GIS software.<br />

Area_CO = 13282532<br />

DOCUMENT: Area of "CO" is 13282532 m², based on measurement using GIS software.<br />

Area_DC = 10E15<br />

DOCUMENT: Area of "DC" is assumed to 10E15 m² and is indented to represent the almost infinite sink<br />

of the world's oceans<br />

Area_EP = 18634959<br />

DOCUMENT: Area of "EP" is 18634959 m², based on measurement using GIS software.<br />

Page A-30 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

Area_K1 = 18515957<br />

DOCUMENT: Area of "K1" is 18515957 m², based on measurement using GIS software.<br />

Area_K2 = 9276805<br />

DOCUMENT: Area of "K2" is 9276805 m², based on measurement using GIS software.<br />

Area_KA = 20273618<br />

DOCUMENT: Area of "KA" is 20273618 m², based on measurement using GIS software.<br />

Area_NS = 41883525<br />

DOCUMENT: Area of "NS" is 41883525 m², based on measurement using GIS software.<br />

Area_T = 8362299<br />

DOCUMENT: Area of "T" is 8362299 m², based on measurement using GIS software.<br />

CAPB = AP_Bot/LVol_APB<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in AP_ Bot is calculated by dividing the mass<br />

(kg) of the contaminant in the compartment by its volume (m3).<br />

CAPS = AP_Surf/LVol_APS<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in AP_Surf is calculated by dividing the mass<br />

(kg) of the contaminant in the compartment by its volume (m3).<br />

CB_Flow = KR_Flow * 3600 * 10.8/1900<br />

DOCUMENT: Surface Runoff into "CBS" (m³/h) is calculated by prorating the daily mean flow rates<br />

(m³/s) <strong>for</strong> the Kitemat River measured below Hirsch Creek by the corresponding drainage areas as<br />

calculated using GIS methods.<br />

Where:<br />

3600 is used to convert from m³/s to m³/h<br />

10.8 in the drainage area into "CBS" (km²)<br />

1900 in the drainage area at the gauging station (km²)<br />

2010 Page A1-31


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

CCBB = CB_Bot/LVol_CBB<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in CB_ Bot is calculated by dividing the mass<br />

(kg) of the contaminant in the compartment by its volume (m3).<br />

CCBS = CB_Surf/LVol_CBS<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in CB_Surf is calculated by dividing the mass<br />

(kg) of the contaminant in the compartment by its volume (m3).<br />

CCOB = CO_Bot/LVol_COB<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in CO_ Bot is calculated by dividing the mass<br />

(kg) of the contaminant in the compartment by its volume (m3).<br />

CCOS = CO_Surf/LVol_COS<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in CO_Surf is calculated by dividing the mass<br />

(kg) of the contaminant in the compartment by its volume (m3).<br />

CDCB = DC_Bot/LVol_DCB<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in DC_ Bot is calculated by dividing the mass<br />

(kg) of the contaminant in the compartment by its volume (m3).<br />

CDCS = DC_Surf/LVol_DCS<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in DC_Surf is calculated by dividing the mass<br />

(kg) of the contaminant in the compartment by its volume (m3).<br />

CEPB = EP_Bot/LVol_EPB<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in EP_ Bot is calculated by dividing the mass<br />

(kg) of the contaminant in the compartment by its volume (m3).<br />

CEPS = EP_Surf/LVol_EPS<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in EP_Surf is calculated by dividing the mass<br />

(kg) of the contaminant in the compartment by its volume (m3).<br />

Page A-32 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

CK1B = K1_Bot/LVol_K1B<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in K1_ Bot is calculated by dividing the mass<br />

(kg) of the contaminant in the compartment by its volume (m3).<br />

CK1S = K1_Surf/LVol_K1S<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in K1_Surf is calculated by dividing the mass<br />

(kg) of the contaminant in the compartment by its volume (m3).<br />

CK2B = K2_Bot/LVol_K2B<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in K2_ Bot is calculated by dividing the mass<br />

(kg) of the contaminant in the compartment by its volume (m3).<br />

CK2S = K2_Surf/LVol_K2S<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in K2_Surf is calculated by dividing the mass<br />

(kg) of the contaminant in the compartment by its volume (m3).<br />

CKAB = KA_Bot/LVol_KAB<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in KA_ Bot is calculated by dividing the mass<br />

(kg) of the contaminant in the compartment by its volume (m3).<br />

CKAS = KA_Surf/LVol_KAS<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in KA_Surf is calculated by dividing the mass<br />

(kg) of the contaminant in the compartment by its volume (m3).<br />

CNSB = NS_Bot/LVol_NSB<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in NS_ Bot is calculated by dividing the mass<br />

(kg) of the contaminant in the compartment by its volume (m3).<br />

CNSS = NS_Surf/LVol_NSS<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in NS_Surf is calculated by dividing the mass<br />

(kg) of the contaminant in the compartment by its volume (m3).<br />

CO_Flow = KR_Flow * 3600 * (2243.4 + 60.2 + 130 + 10.8 + 32.3 + 7.1)/1900<br />

2010 Page A1-33


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

DOCUMENT: Surface Runoff into "COS" (m³/h) is calculated by prorating the daily mean flow rates<br />

(m³/s) <strong>for</strong> the Kitemat River measured below Hirsch Creek by the corresponding drainage areas as<br />

calculated using GIS methods.<br />

Where:<br />

3600 is used to convert from m³/s to m³/h<br />

(2243.4 + 60.2 + 130 + 10.8 + 32.3 + 7.1) is the cumulative drainage area into "COS" (km²)<br />

1900 in the drainage area at the gauging station (km²)<br />

CTB = T_Bot/LVol_TB<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in T_ Bot is calculated by dividing the mass (kg)<br />

of the contaminant in the compartment by its volume (m3).<br />

CTS = T_Surf/LVol_TS<br />

DOCUMENT: Concentration (kg/m3) of a contaminant in T_Surf is calculated by dividing the mass (kg)<br />

of the contaminant in the compartment by its volume (m3).<br />

Daily_CAPB = (Delay(CAPB,24) + Delay(CAPB,23) + Delay(CAPB,22) + Delay(CAPB,21) +<br />

Delay(CAPB,20) + Delay(CAPB,19) + Delay(CAPB,18) + Delay(CAPB,17) + Delay(CAPB,16) +<br />

Delay(CAPB,15) + Delay(CAPB,14) + Delay(CAPB,13) + Delay(CAPB,12) + Delay(CAPB,11) +<br />

Delay(CAPB,10) + Delay(CAPB,9) + Delay(CAPB,8) + Delay(CAPB,7) + Delay(CAPB,6) +<br />

Delay(CAPB,5) + Delay(CAPB,4) + Delay(CAPB,3) + Delay(CAPB,2) + Delay(CAPB,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CAPB.<br />

Daily_CAPS = (Delay(CAPS,24) + Delay(CAPS,23) + Delay(CAPS,22) + Delay(CAPS,21) +<br />

Delay(CAPS,20) + Delay(CAPS,19) + Delay(CAPS,18) + Delay(CAPS,17) + Delay(CAPS,16) +<br />

Delay(CAPS,15) + Delay(CAPS,14) + Delay(CAPS,13) + Delay(CAPS,12) + Delay(CAPS,11) +<br />

Delay(CAPS,10) + Delay(CAPS,9) + Delay(CAPS,8) + Delay(CAPS,7) + Delay(CAPS,6) +<br />

Delay(CAPS,5) + Delay(CAPS,4) + Delay(CAPS,3) + Delay(CAPS,2) + Delay(CAPS,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CAPS.<br />

Daily_CCBB = (Delay(CCBB,24) + Delay(CCBB,23) + Delay(CCBB,22) + Delay(CCBB,21) +<br />

Delay(CCBB,20) + Delay(CCBB,19) + Delay(CCBB,18) + Delay(CCBB,17) + Delay(CCBB,16) +<br />

Delay(CCBB,15) + Delay(CCBB,14) + Delay(CCBB,13) + Delay(CCBB,12) + Delay(CCBB,11) +<br />

Delay(CCBB,10) + Delay(CCBB,9) + Delay(CCBB,8) + Delay(CCBB,7) + Delay(CCBB,6) +<br />

Delay(CCBB,5) + Delay(CCBB,4) + Delay(CCBB,3) + Delay(CCBB,2) + Delay(CCBB,1) ) /24<br />

Page A-34 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CCBB.<br />

Daily_CCBS = (Delay(CCBS,24) + Delay(CCBS,23) + Delay(CCBS,22) + Delay(CCBS,21) +<br />

Delay(CCBS,20) + Delay(CCBS,19) + Delay(CCBS,18) + Delay(CCBS,17) + Delay(CCBS,16) +<br />

Delay(CCBS,15) + Delay(CCBS,14) + Delay(CCBS,13) + Delay(CCBS,12) + Delay(CCBS,11) +<br />

Delay(CCBS,10) + Delay(CCBS,9) + Delay(CCBS,8) + Delay(CCBS,7) + Delay(CCBS,6) +<br />

Delay(CCBS,5) + Delay(CCBS,4) + Delay(CCBS,3) + Delay(CCBS,2) + Delay(CCBS,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CCBS.<br />

Daily_CCOB = (Delay(CCOB,24) + Delay(CCOB,23) + Delay(CCOB,22) + Delay(CCOB,21) +<br />

Delay(CCOB,20) + Delay(CCOB,19) + Delay(CCOB,18) + Delay(CCOB,17) + Delay(CCOB,16) +<br />

Delay(CCOB,15) + Delay(CCOB,14) + Delay(CCOB,13) + Delay(CCOB,12) + Delay(CCOB,11) +<br />

Delay(CCOB,10) + Delay(CCOB,9) + Delay(CCOB,8) + Delay(CCOB,7) + Delay(CCOB,6) +<br />

Delay(CCOB,5) + Delay(CCOB,4) + Delay(CCOB,3) + Delay(CCOB,2) + Delay(CCOB,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CCOB.<br />

Daily_CCOS = (Delay(CCOS,24) + Delay(CCOS,23) + Delay(CCOS,22) + Delay(CCOS,21) +<br />

Delay(CCOS,20) + Delay(CCOS,19) + Delay(CCOS,18) + Delay(CCOS,17) + Delay(CCOS,16) +<br />

Delay(CCOS,15) + Delay(CCOS,14) + Delay(CCOS,13) + Delay(CCOS,12) + Delay(CCOS,11) +<br />

Delay(CCOS,10) + Delay(CCOS,9) + Delay(CCOS,8) + Delay(CCOS,7) + Delay(CCOS,6) +<br />

Delay(CCOS,5) + Delay(CCOS,4) + Delay(CCOS,3) + Delay(CCOS,2) + Delay(CCOS,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CCOS.<br />

Daily_CDCB = (Delay(CDCB,24) + Delay(CDCB,23) + Delay(CDCB,22) + Delay(CDCB,21) +<br />

Delay(CDCB,20) + Delay(CDCB,19) + Delay(CDCB,18) + Delay(CDCB,17) + Delay(CDCB,16) +<br />

Delay(CDCB,15) + Delay(CDCB,14) + Delay(CDCB,13) + Delay(CDCB,12) + Delay(CDCB,11) +<br />

Delay(CDCB,10) + Delay(CDCB,9) + Delay(CDCB,8) + Delay(CDCB,7) + Delay(CDCB,6) +<br />

Delay(CDCB,5) + Delay(CDCB,4) + Delay(CDCB,3) + Delay(CDCB,2) + Delay(CDCB,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CDCB.<br />

Daily_CDCS = (Delay(CDCS,24) + Delay(CDCS,23) + Delay(CDCS,22) + Delay(CDCS,21) +<br />

Delay(CDCS,20) + Delay(CDCS,19) + Delay(CDCS,18) + Delay(CDCS,17) + Delay(CDCS,16) +<br />

Delay(CDCS,15) + Delay(CDCS,14) + Delay(CDCS,13) + Delay(CDCS,12) + Delay(CDCS,11) +<br />

Delay(CDCS,10) + Delay(CDCS,9) + Delay(CDCS,8) + Delay(CDCS,7) + Delay(CDCS,6) +<br />

Delay(CDCS,5) + Delay(CDCS,4) + Delay(CDCS,3) + Delay(CDCS,2) + Delay(CDCS,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CDCS.<br />

2010 Page A1-35


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

Daily_CEPB = (Delay(CEPB,24) + Delay(CEPB,23) + Delay(CEPB,22) + Delay(CEPB,21) +<br />

Delay(CEPB,20) + Delay(CEPB,19) + Delay(CEPB,18) + Delay(CEPB,17) + Delay(CEPB,16) +<br />

Delay(CEPB,15) + Delay(CEPB,14) + Delay(CEPB,13) + Delay(CEPB,12) + Delay(CEPB,11) +<br />

Delay(CEPB,10) + Delay(CEPB,9) + Delay(CEPB,8) + Delay(CEPB,7) + Delay(CEPB,6) +<br />

Delay(CEPB,5) + Delay(CEPB,4) + Delay(CEPB,3) + Delay(CEPB,2) + Delay(CEPB,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CEPB.<br />

Daily_CEPS = (Delay(CEPS,24) + Delay(CEPS,23) + Delay(CEPS,22) + Delay(CEPS,21) +<br />

Delay(CEPS,20) + Delay(CEPS,19) + Delay(CEPS,18) + Delay(CEPS,17) + Delay(CEPS,16) +<br />

Delay(CEPS,15) + Delay(CEPS,14) + Delay(CEPS,13) + Delay(CEPS,12) + Delay(CEPS,11) +<br />

Delay(CEPS,10) + Delay(CEPS,9) + Delay(CEPS,8) + Delay(CEPS,7) + Delay(CEPS,6) +<br />

Delay(CEPS,5) + Delay(CEPS,4) + Delay(CEPS,3) + Delay(CEPS,2) + Delay(CEPS,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CEPS.<br />

Daily_CK1B = (Delay(CK1B,24) + Delay(CK1B,23) + Delay(CK1B,22) + Delay(CK1B,21) +<br />

Delay(CK1B,20) + Delay(CK1B,19) + Delay(CK1B,18) + Delay(CK1B,17) + Delay(CK1B,16) +<br />

Delay(CK1B,15) + Delay(CK1B,14) + Delay(CK1B,13) + Delay(CK1B,12) + Delay(CK1B,11) +<br />

Delay(CK1B,10) + Delay(CK1B,9) + Delay(CK1B,8) + Delay(CK1B,7) + Delay(CK1B,6) +<br />

Delay(CK1B,5) + Delay(CK1B,4) + Delay(CK1B,3) + Delay(CK1B,2) + Delay(CK1B,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CK1B.<br />

Daily_CK1S = (Delay(CK1S,24) + Delay(CK1S,23) + Delay(CK1S,22) + Delay(CK1S,21) +<br />

Delay(CK1S,20) + Delay(CK1S,19) + Delay(CK1S,18) + Delay(CK1S,17) + Delay(CK1S,16) +<br />

Delay(CK1S,15) + Delay(CK1S,14) + Delay(CK1S,13) + Delay(CK1S,12) + Delay(CK1S,11) +<br />

Delay(CK1S,10) + Delay(CK1S,9) + Delay(CK1S,8) + Delay(CK1S,7) + Delay(CK1S,6) +<br />

Delay(CK1S,5) + Delay(CK1S,4) + Delay(CK1S,3) + Delay(CK1S,2) + Delay(CK1S,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CK1S.<br />

Daily_CK2B = (Delay(CK2B,24) + Delay(CK2B,23) + Delay(CK2B,22) + Delay(CK2B,21) +<br />

Delay(CK2B,20) + Delay(CK2B,19) + Delay(CK2B,18) + Delay(CK2B,17) + Delay(CK2B,16) +<br />

Delay(CK2B,15) + Delay(CK2B,14) + Delay(CK2B,13) + Delay(CK2B,12) + Delay(CK2B,11) +<br />

Delay(CK2B,10) + Delay(CK2B,9) + Delay(CK2B,8) + Delay(CK2B,7) + Delay(CK2B,6) +<br />

Delay(CK2B,5) + Delay(CK2B,4) + Delay(CK2B,3) + Delay(CK2B,2) + Delay(CK2B,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CK2B.<br />

Daily_CK2S = (Delay(CK2S,24) + Delay(CK2S,23) + Delay(CK2S,22) + Delay(CK2S,21) +<br />

Delay(CK2S,20) + Delay(CK2S,19) + Delay(CK2S,18) + Delay(CK2S,17) + Delay(CK2S,16) +<br />

Delay(CK2S,15) + Delay(CK2S,14) + Delay(CK2S,13) + Delay(CK2S,12) + Delay(CK2S,11) +<br />

Page A-36 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

Delay(CK2S,10) + Delay(CK2S,9) + Delay(CK2S,8) + Delay(CK2S,7) + Delay(CK2S,6) +<br />

Delay(CK2S,5) + Delay(CK2S,4) + Delay(CK2S,3) + Delay(CK2S,2) + Delay(CK2S,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CK2S.<br />

Daily_CKAB = (Delay(CKAB,24) + Delay(CKAB,23) + Delay(CKAB,22) + Delay(CKAB,21) +<br />

Delay(CKAB,20) + Delay(CKAB,19) + Delay(CKAB,18) + Delay(CKAB,17) + Delay(CKAB,16) +<br />

Delay(CKAB,15) + Delay(CKAB,14) + Delay(CKAB,13) + Delay(CKAB,12) + Delay(CKAB,11) +<br />

Delay(CKAB,10) + Delay(CKAB,9) + Delay(CKAB,8) + Delay(CKAB,7) + Delay(CKAB,6) +<br />

Delay(CKAB,5) + Delay(CKAB,4) + Delay(CKAB,3) + Delay(CKAB,2) + Delay(CKAB,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CKAB.<br />

Daily_CKAS = (Delay(CKAS,24) + Delay(CKAS,23) + Delay(CKAS,22) + Delay(CKAS,21) +<br />

Delay(CKAS,20) + Delay(CKAS,19) + Delay(CKAS,18) + Delay(CKAS,17) + Delay(CKAS,16) +<br />

Delay(CKAS,15) + Delay(CKAS,14) + Delay(CKAS,13) + Delay(CKAS,12) + Delay(CKAS,11) +<br />

Delay(CKAS,10) + Delay(CKAS,9) + Delay(CKAS,8) + Delay(CKAS,7) + Delay(CKAS,6) +<br />

Delay(CKAS,5) + Delay(CKAS,4) + Delay(CKAS,3) + Delay(CKAS,2) + Delay(CKAS,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CKAS.<br />

Daily_CNSB = (Delay(CNSB,24) + Delay(CNSB,23) + Delay(CNSB,22) + Delay(CNSB,21) +<br />

Delay(CNSB,20) + Delay(CNSB,19) + Delay(CNSB,18) + Delay(CNSB,17) + Delay(CNSB,16) +<br />

Delay(CNSB,15) + Delay(CNSB,14) + Delay(CNSB,13) + Delay(CNSB,12) + Delay(CNSB,11) +<br />

Delay(CNSB,10) + Delay(CNSB,9) + Delay(CNSB,8) + Delay(CNSB,7) + Delay(CNSB,6) +<br />

Delay(CNSB,5) + Delay(CNSB,4) + Delay(CNSB,3) + Delay(CNSB,2) + Delay(CNSB,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CNSB.<br />

Daily_CNSS = (Delay(CNSS,24) + Delay(CNSS,23) + Delay(CNSS,22) + Delay(CNSS,21) +<br />

Delay(CNSS,20) + Delay(CNSS,19) + Delay(CNSS,18) + Delay(CNSS,17) + Delay(CNSS,16) +<br />

Delay(CNSS,15) + Delay(CNSS,14) + Delay(CNSS,13) + Delay(CNSS,12) + Delay(CNSS,11) +<br />

Delay(CNSS,10) + Delay(CNSS,9) + Delay(CNSS,8) + Delay(CNSS,7) + Delay(CNSS,6) +<br />

Delay(CNSS,5) + Delay(CNSS,4) + Delay(CNSS,3) + Delay(CNSS,2) + Delay(CNSS,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CNSS.<br />

Daily_CTB = (Delay(CTB,24) + Delay(CTB,23) + Delay(CTB,22) + Delay(CTB,21) + Delay(CTB,20) +<br />

Delay(CTB,19) + Delay(CTB,18) + Delay(CTB,17) + Delay(CTB,16) + Delay(CTB,15) +<br />

Delay(CTB,14) + Delay(CTB,13) + Delay(CTB,12) + Delay(CTB,11) + Delay(CTB,10) + Delay(CTB,9)<br />

2010 Page A1-37


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

+ Delay(CTB,8) + Delay(CTB,7) + Delay(CTB,6) + Delay(CTB,5) + Delay(CTB,4) + Delay(CTB,3) +<br />

Delay(CTB,2) + Delay(CTB,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CTB.<br />

Daily_CTS = (Delay(CTS,24) + Delay(CTS,23) + Delay(CTS,22) + Delay(CTS,21) + Delay(CTS,20) +<br />

Delay(CTS,19) + Delay(CTS,18) + Delay(CTS,17) + Delay(CTS,16) + Delay(CTS,15) + Delay(CTS,14)<br />

+ Delay(CTS,13) + Delay(CTS,12) + Delay(CTS,11) + Delay(CTS,10) + Delay(CTS,9) + Delay(CTS,8)<br />

+ Delay(CTS,7) + Delay(CTS,6) + Delay(CTS,5) + Delay(CTS,4) + Delay(CTS,3) + Delay(CTS,2) +<br />

Delay(CTS,1) ) /24<br />

DOCUMENT: Daily average concentration (kg/m3) of a contaminant in CTS.<br />

Delta_Tide = LastTide-Tide<br />

DOCUMENT: This is the change in tide elevation (m) from the last model time step.<br />

Depth_APB = 103.6 - Depth_APS<br />

DOCUMENT: Mean depth of "AP" is 103.6 m, based on GIS results. Mean depth of the bottom layer is<br />

thus calculated by subtracting the thickness of the top layer from the total mean depth of the<br />

compartment.<br />

Depth_APS = 8<br />

DOCUMENT: Mean depth of "APS" is 8 m, based on review of salinity profiles.<br />

Depth_CBB = 19.5 - Depth_CBS<br />

DOCUMENT: Mean depth of "BP" is 19.5 m, based on GIS results. Mean depth of the bottom layer is<br />

thus calculated by subtracting the thickness of the top layer from the total mean depth of the<br />

compartment.<br />

Depth_CBS = 8<br />

DOCUMENT: Mean depth of "BPS" is 8 m, based on review of salinity profiles.<br />

Page A-38 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

Depth_COB = 186.2 - Depth_COS<br />

DOCUMENT: Mean depth of "CO" is 186.2 m, based on GIS results. Mean depth of the bottom layer is<br />

thus calculated by subtracting the thickness of the top layer from the total mean depth of the<br />

compartment.<br />

Depth_COS = 8<br />

DOCUMENT: Mean depth of "COS" is 8 m, based on review of salinity profiles.<br />

Depth_DCB = 195 - Depth_DCS<br />

DOCUMENT: Mean depth of "DC" is assumed to be the same as NS. This is meant to reflect local<br />

conditions and not the mean depth of the world's oceans.<br />

Depth_DCS = 8<br />

DOCUMENT: Mean depth of "DCS" is 8 m, based on review of salinity profiles.<br />

Depth_EPB = 150 - Depth_EPS<br />

DOCUMENT: Mean depth of "EPB" is 150 m, based on GIS results. Mean depth of the bottom layer is<br />

thus calculated by subtracting the thickness of the top layer from the total mean depth of the<br />

compartment.<br />

Depth_EPS = 8<br />

DOCUMENT: Mean depth of "EPS" is 8 m, based on review of salinity profiles.<br />

Depth_K1B = 48.9 - Depth_K1S<br />

DOCUMENT: Mean depth of "K1B" is 48.9 m, based on GIS results. Mean depth of the bottom layer is<br />

thus calculated by subtracting the thickness of the top layer from the total mean depth of the<br />

compartment.<br />

Depth_K1S = 8<br />

DOCUMENT: Mean depth of "K1S" is 8 m, based on review of salinity profiles.<br />

2010 Page A1-39


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

Depth_K2B = 128.5 - Depth_K2S<br />

DOCUMENT: Mean depth of "K2B" is 128.5 m, based on GIS results. Mean depth of the bottom layer<br />

is thus calculated by subtracting the thickness of the top layer from the total mean depth of the<br />

compartment.<br />

Depth_K2S = 8<br />

DOCUMENT: Mean depth of "K2S" is 8 m, based on review of salinity profiles.<br />

Depth_KAB = 56.8 - Depth_KAS<br />

DOCUMENT: Mean depth of "KAB" is 56.8 m, based on GIS results. Mean depth of the bottom layer is<br />

thus calculated by subtracting the thickness of the top layer from the total mean depth of the<br />

compartment.<br />

Depth_KAS = 8<br />

DOCUMENT: Mean depth of "KAS" is 8 m, based on review of salinity profiles.<br />

Depth_NSB = 195 - Depth_NSS<br />

DOCUMENT: Mean depth of "195" is ??? m, based on GIS results. Mean depth of the bottom layer is<br />

thus calculated by subtracting the thickness of the top layer from the total mean depth of the<br />

compartment.<br />

Depth_NSS = 8<br />

DOCUMENT: Mean depth of "NSS" is 8 m, based on review of salinity profiles.<br />

Depth_TB = 141.6 - Depth_TS<br />

DOCUMENT: Mean depth of "T" is 141.6 m, based on GIS results. Mean depth of the bottom layer is<br />

thus calculated by subtracting the thickness of the top layer from the total mean depth of the<br />

compartment.<br />

Depth_TS = 8<br />

DOCUMENT: Mean depth of "TS" is 8 m, based on review of salinity profiles.<br />

Dispers_Bot = Dispers_Surf * 0.1<br />

Page A-40 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

DOCUMENT: Dispersivity in the bottom layer is set to 10% of Dispersivity in the surface layer. This is<br />

used to correct <strong>for</strong> the reduced weather induced mixing.<br />

Dispers_Surf = 216<br />

DOCUMENT: Dispers_Surf is the turbulent dispersive horizontal mixing coefficient <strong>for</strong> the surface<br />

layers. For a tidally influenced water body like Douglass Channel and <strong>Kitimat</strong> Arm a value of 0.06 m/sec<br />

has been chosen. This converts to an hourly value of 216 m/h.<br />

DTide_APB = Delta_Tide * Frac_APB<br />

DOCUMENT: DTide APB is the amount of tide (m) affecting the bottom layer of AP (ie APB). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

DTide_APS = Delta_Tide * Frac_APS<br />

DOCUMENT: DTide APS is the amount of tide (m) affecting the surface layer of AP (ie APS). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

DTide_CBB = Delta_Tide * Frac_CBB<br />

DOCUMENT: DTide CBB is the amount of tide (m) affecting the bottom layer of CB (ie CBB). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

DTide_CBS = Delta_Tide * Frac_CBS<br />

DOCUMENT: DTide CBS is the amount of tide (m) affecting the surface layer of CB (ie CBS). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

DTide_COB = Delta_Tide * Frac_COB<br />

DOCUMENT: DTide COB is the amount of tide (m) affecting the bottom layer of CO (ie COB). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

2010 Page A1-41


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

DTide_COS = Delta_Tide * Frac_COS<br />

DOCUMENT: DTide COS is the amount of tide (m) affecting the surface layer of CO (ie COS). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

DTide_DCB = Delta_Tide * Frac_DCB<br />

DOCUMENT: DTide DCB is the amount of tide (m) affecting the bottom layer of DC (ie DCB). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

DTide_DCS = Delta_Tide * Frac_DCS<br />

DOCUMENT: DTide DCS is the amount of tide (m) affecting the surface layer of DC (ie DCS). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

DTide_EPB = Delta_Tide * Frac_EPB<br />

DOCUMENT: DTide EPB is the amount of tide (m) affecting the bottom layer of EP (ie EPB). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

DTide_EPS = Delta_Tide * Frac_EPS<br />

DOCUMENT: DTide EPS is the amount of tide (m) affecting the surface layer of EP (ie EPS). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

DTide_K1B = Delta_Tide * Frac_K1B<br />

DOCUMENT: DTide K1B is the amount of tide (m) affecting the bottom layer of K1 (ie K1B). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

DTide_K1S = Delta_Tide * Frac_K1S<br />

DOCUMENT: DTide K1S is the amount of tide (m) affecting the surface layer of K1 (ie K1S). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

Page A-42 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

DTide_K2B = Delta_Tide * Frac_K2B<br />

DOCUMENT: DTide K2B is the amount of tide (m) affecting the bottom layer of K2 (ie K2B). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

DTide_K2S = Delta_Tide * Frac_K2S<br />

DOCUMENT: DTide K2S is the amount of tide (m) affecting the surface layer of K2 (ie K2S). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

DTide_KAB = Delta_Tide * Frac_KAB<br />

DOCUMENT: DTide KAB is the amount of tide (m) affecting the bottom layer of KA (ie KAB). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

DTide_KAS = Delta_Tide * Frac_KAS<br />

DOCUMENT: DTide KAS is the amount of tide (m) affecting the surface layer of KA (ie KAS). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

DTide_NSB = Delta_Tide * Frac_NSB<br />

DOCUMENT: DTide NSB is the amount of tide (m) affecting the bottom layer of NS (ie NSB). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

DTide_NSS = Delta_Tide * Frac_NSS<br />

DOCUMENT: DTide NSS is the amount of tide (m) affecting the surface layer of NS (ie NSS). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

DTide_TB = Delta_Tide * Frac_TB<br />

DOCUMENT: DTide TB is the amount of tide (m) affecting the bottom layer of T2 (ie TB). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

2010 Page A1-43


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

DTide_TS = Delta_Tide * Frac_TS<br />

DOCUMENT: DTide TS is the amount of tide (m) affecting the surface layer of T (ie TS). It is<br />

calculated by multiplying the net change in tide by the ratio of thickness of the bottom layer to the total<br />

thickness of the compartment.<br />

EP_Flow = KR_Flow * 3600 * (2243.4 + 60.2 + 130 + 10.8 + 32.3)/1900<br />

DOCUMENT: Surface Runoff into "EPS" (m³/h) is calculated by prorating the daily mean flow rates<br />

(m³/s) <strong>for</strong> the Kitemat River measured below Hirsch Creek by the corresponding drainage areas as<br />

calculated using GIS methods.<br />

Where:<br />

3600 is used to convert from m³/s to m³/h<br />

(2243.4 + 60.2 + 130 + 10.8 + 32.3) is the cumulative drainage area into "EPS" (km²)<br />

1900 in the drainage area at the gauging station (km²)<br />

Frac_APB = Depth_APB / (Depth_APS + Depth_APB)<br />

Frac_APS = Depth_APS / (Depth_APS + Depth_APB)<br />

Frac_CBB = Depth_CBB / (Depth_CBS + Depth_CBB)<br />

Frac_CBS = Depth_CBS / (Depth_CBS + Depth_CBB)<br />

Frac_COB = Depth_COB / (Depth_COS + Depth_COB)<br />

Frac_COS = Depth_COS / (Depth_COS + Depth_COB)<br />

Frac_DCB = Depth_DCB / (Depth_DCS + Depth_DCB)<br />

Frac_DCS = Depth_DCS / (Depth_DCS + Depth_DCB)<br />

Frac_EPB = Depth_EPB / (Depth_EPS + Depth_EPB)<br />

Frac_EPS = Depth_EPS / (Depth_EPS + Depth_EPB)<br />

Frac_K1B = Depth_K1B / (Depth_K1S + Depth_K1B)<br />

Frac_K1S = Depth_K1S / (Depth_K1S + Depth_K1B)<br />

Frac_K2B = Depth_K2B / (Depth_K2S + Depth_K2B)<br />

Frac_K2S = Depth_K2S / (Depth_K2S + Depth_K2B)<br />

Frac_KAB = Depth_KAB / (Depth_KAS + Depth_KAB)<br />

Frac_KAS = Depth_KAS / (Depth_KAS + Depth_KAB)<br />

Frac_NSB = Depth_NSB / (Depth_NSS + Depth_NSB)<br />

Page A-44 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

Frac_NSS = Depth_NSS / (Depth_NSS + Depth_NSB)<br />

Frac_TB = Depth_TB / (Depth_TS + Depth_TB)<br />

Frac_TS = Depth_TS / (Depth_TS + Depth_TB)<br />

Julian = INT(1+(365*(((TIME - 672)/8760)-(INT((TIME - 672)/8760)))))<br />

DOCUMENT: Julian is a function that returns the "day of the year" as values ranging from 1 to 365, as<br />

the time of the simulation advances in total elapsed hours from the start of the simulation. This allows the<br />

Daily Runoff to recycle "year after year", based on a single hydrological year stored as a graph in that<br />

parameter.<br />

Note that 672 is used to compensate <strong>for</strong> 28 leap years that have occurred between 1800 and 2007.<br />

K1_Flow = KR_Flow * 3600 * 2243.4/1900<br />

DOCUMENT: Surface Runoff into "K1S" (m³/h) is calculated by prorating the daily mean flow rates<br />

(m³/s) <strong>for</strong> the Kitemat River measured below Hirsch Creek by the corresponding drainage areas as<br />

calculated using GIS methods.<br />

Where:<br />

3600 is used to convert from m³/s to m³/h<br />

2243.4 in the drainage area into "K1S" (km²)<br />

1900 in the drainage area at the gauging station (km²)<br />

K2_Flow = KR_Flow * 3600 * (2243.4 + 60.2)/1900<br />

DOCUMENT: Surface Runoff into "K2S" (m³/h) is calculated by prorating the daily mean flow rates<br />

(m³/s) <strong>for</strong> the Kitemat River measured below Hirsch Creek by the corresponding drainage areas as<br />

calculated using GIS methods.<br />

Where:<br />

3600 is used to convert from m³/s to m³/h<br />

60.2 in the drainage area into "K2S" (km²)<br />

1900 in the drainage area at the gauging station (km²)<br />

KA_Flow = KR_Flow * 3600 * 1043.2/1900<br />

DOCUMENT: Surface Runoff into "KAS" (m³/h) is calculated by prorating the daily mean flow rates<br />

(m³/s) <strong>for</strong> the Kitemat River measured below Hirsch Creek by the corresponding drainage areas as<br />

calculated using GIS methods.<br />

2010 Page A1-45


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

Where:<br />

3600 is used to convert from m³/s to m³/h<br />

1043.2 in the drainage area into "KAS" (km²)<br />

1900 in the drainage area at the gauging station (km²)<br />

LastTide = DELAY(Tide,1)<br />

DOCUMENT: LastTide indicates the tide elevation in the previous time step<br />

LiqEff_Vol = 100.15<br />

DOCUMENT: This is the volume of liquid processed by the Oil/Water separator. It is calculated as the<br />

birmed area of the tank farm multiplied by the annual rainfall and the runoff coefficient, plus the volume<br />

of water recovered during clean up of any accidental spill.<br />

LiqEff_Vol = ((4.0E+05 m2 * 2.1905 m/a * 1) + 1.0e3 m3/a) /365 d/a /24 h/d= 100.15 m3/h<br />

Area of Birmed Tank Farm (m2) = 4.0E+05 (project figure)<br />

Precipitation (m/a) = 2.1905 (Environment Canada)<br />

Runoff coefficient = 1 (assumption)<br />

Water recovered from accidental spills (m3/a) = 1.0E+03 (assumption)<br />

LVol_APB = DELAY(Vol_APB,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_APB calculated in the previous time step.<br />

LVol_APS = DELAY(Vol_APS,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_APS calculated in the previous time step.<br />

LVol_CBB = DELAY(Vol_CBB,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_CBB calculated in the previous time step.<br />

LVol_CBS = DELAY(Vol_CBS,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_CBS calculated in the previous time step.<br />

Page A-46 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

LVol_COB = DELAY(Vol_COB,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_COB calculated in the previous time step.<br />

LVol_COS = DELAY(Vol_COS,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_COS calculated in the previous time step.<br />

LVol_DCB = DELAY(Vol_DCB,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_DCB calculated in the previous time step.<br />

LVol_DCS = DELAY(Vol_DCS,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_DCS calculated in the previous time step.<br />

LVol_EPB = DELAY(Vol_EPB,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_EPB calculated in the previous time step.<br />

LVol_EPS = DELAY(Vol_EPS,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_EPS calculated in the previous time step.<br />

LVol_K1B = DELAY(Vol_K1B,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_K1B calculated in the previous time step.<br />

LVol_K1S = DELAY(Vol_K1S,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_K1S calculated in the previous time step.<br />

LVol_K2B = DELAY(Vol_K2B,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_K2B calculated in the previous time step.<br />

LVol_K2S = DELAY(Vol_K2S,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_K2S calculated in the previous time step.<br />

2010 Page A1-47


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

LVol_KAB = DELAY(Vol_KAB,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_KAB calculated in the previous time step.<br />

LVol_KAS = AreaDELAY(Vol_KAS,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_KAS calculated in the previous time step.<br />

LVol_NSB = DELAY(Vol_NSB,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_NSB calculated in the previous time step.<br />

LVol_NSS = DELAY(Vol_NSS,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_NSS calculated in the previous time step.<br />

LVol_TB = DELAY(Vol_TB,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_TB calculated in the previous time step.<br />

LVol_TS = DELAY(Vol_TS,1)<br />

DOCUMENT: Volume is given in m³ and is the value <strong>for</strong> Vol_TS calculated in the previous time step.<br />

Mixer = 0.012<br />

DOCUMENT: Mixer represents the vertical mixing of water between the surface and bottom<br />

compartments and is estimated to be approximately 0.012 m/h.<br />

NS_Flow = KR_Flow * 3600 * (2243.4 + 60.2 + 130 + 10.8 + 32.3 + 7.1 + 1043.2 + 91.5 + 225.2)/1900<br />

DOCUMENT: Surface Runoff into "NSS" (m³/h) is calculated by prorating the daily mean flow rates<br />

(m³/s) <strong>for</strong> the Kitemat River measured below Hirsch Creek by the corresponding drainage areas as<br />

calculated using GIS methods.<br />

Where:<br />

3600 is used to convert from m³/s to m³/h<br />

(2243.4 + 60.2 + 130 + 10.8 + 32.3 + 7.1 + 1043.2 + 91.5 + 225.2) is the cumulative drainage area into<br />

"NSS" (km²)<br />

1900 in the drainage area at the gauging station (km²)<br />

Page A-48 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

Tide = 0<br />

DOCUMENT: Tide indicates the tide elevation at time t. It is calculated by superimposing a simusoidal<br />

curve on high and low tide data published by the Canadian Hydrographic Service of Fisheries and Oceans<br />

Canada (http://www.waterlevels.gc.ca, Tide Station #9140). The sinusoidal calculations are per<strong>for</strong>med in<br />

a submodel.<br />

TotDepth_APB = Depth_APB + Tide * Frac_APB<br />

DOCUMENT: This is the total thickness (m) of the bottom compartment once adjusted <strong>for</strong> tide.<br />

TotDepth_APS = Depth_APS + Tide * Frac_APS<br />

DOCUMENT: This is the total thickness (m) of the surface compartment once adjusted <strong>for</strong> tide.<br />

TotDepth_CBB = Depth_CBB + Tide * Frac_CBB<br />

DOCUMENT: This is the total thickness (m) of the bottom compartment once adjusted <strong>for</strong> tide.<br />

TotDepth_CBS = Depth_CBS + Tide * Frac_CBS<br />

DOCUMENT: This is the total thickness (m) of the surface compartment once adjusted <strong>for</strong> tide.<br />

TotDepth_COB = Depth_COB + Tide * Frac_COB<br />

DOCUMENT: This is the total thickness (m) of the bottom compartment once adjusted <strong>for</strong> tide.<br />

TotDepth_COS = Depth_COS + Tide * Frac_COS<br />

DOCUMENT: This is the total thickness (m) of the surface compartment once adjusted <strong>for</strong> tide.<br />

TotDepth_DCB = Depth_DCB<br />

DOCUMENT: This is the total thickness (m) of DCB. This compartment is not adjusted <strong>for</strong> tide since<br />

the net volume (and hence mean depth) in the world’s oceans does not change with tide.<br />

TotDepth_DCS = Depth_DCS<br />

DOCUMENT: This is the total thickness (m) of DCS. This compartment is not adjusted <strong>for</strong> tide since<br />

the net volume (and hence mean depth) in the world’s oceans does not change with tide.<br />

2010 Page A1-49


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

TotDepth_EPB = Depth_EPB + Tide * Frac_EPB<br />

DOCUMENT: This is the total thickness (m) of the bottom compartment once adjusted <strong>for</strong> tide.<br />

TotDepth_EPS = Depth_EPS + Tide * Frac_EPS<br />

DOCUMENT: This is the total thickness (m) of the surface compartment once adjusted <strong>for</strong> tide.<br />

TotDepth_K1B = Depth_K1B + Tide * Frac_K1B<br />

DOCUMENT: This is the total thickness (m) of the bottom compartment once adjusted <strong>for</strong> tide.<br />

TotDepth_K1S = Depth_K1S + Tide * Frac_K1S<br />

DOCUMENT: This is the total thickness (m) of the surface compartment once adjusted <strong>for</strong> tide.<br />

TotDepth_K2B = Depth_K2B + Tide * Frac_K2B<br />

DOCUMENT: This is the total thickness (m) of the bottom compartment once adjusted <strong>for</strong> tide.<br />

TotDepth_K2S = Depth_K2S + Tide * Frac_K2S<br />

DOCUMENT: This is the total thickness (m) of the surface compartment once adjusted <strong>for</strong> tide.<br />

TotDepth_KAB = Depth_KAB + Tide * Frac_KAB<br />

DOCUMENT: This is the total thickness (m) of the bottom compartment once adjusted <strong>for</strong> tide.<br />

TotDepth_KAS = Depth_KAS + Tide * Frac_KAS<br />

DOCUMENT: This is the total thickness (m) of the surface compartment once adjusted <strong>for</strong> tide.<br />

TotDepth_NSB = Depth_NSB + Tide * Frac_NSB<br />

DOCUMENT: This is the total thickness (m) of the bottom compartment once adjusted <strong>for</strong> tide.<br />

TotDepth_NSS = Depth_NSS + Tide * Frac_NSS<br />

DOCUMENT: This is the total thickness (m) of the surface compartment once adjusted <strong>for</strong> tide.<br />

Page A-50 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

TotDepth_TB = Depth_TB + Tide * Frac_TB<br />

DOCUMENT: This is the total thickness (m) of the bottom compartment once adjusted <strong>for</strong> tide.<br />

TotDepth_TS = Depth_TS + Tide * Frac_TS<br />

DOCUMENT: This is the total thickness (m) of the surface compartment once adjusted <strong>for</strong> tide.<br />

T_Flow = KR_Flow * 3600 * (2243.4 + 60.2 + 130 + 10.8)/1900<br />

DOCUMENT: Surface Runoff into "TS" (m³/h) is calculated by prorating the daily mean flow rates<br />

(m³/s) <strong>for</strong> the Kitemat River measured below Hirsch Creek by the corresponding drainage areas as<br />

calculated using GIS methods.<br />

Where:<br />

3600 is used to convert from m³/s to m³/h<br />

(2243.4 + 60.2 + 130 + 10.8) is the cumulative drainage area into "TS" (km²)<br />

1900 in the drainage area at the gauging station (km²)<br />

Vol_APB = Area_AP*TotDepth_APB<br />

DOCUMENT: Volume of "APB" is calculated as the product of the surface area (2D) and the mean<br />

depth of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

Vol_APS = Area_AP*TotDepth_APS<br />

DOCUMENT: Volume of "APS" is calculated as the product of the surface area (2D) and the mean depth<br />

of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

Vol_CBB = Area_CB*TotDepth_CBB<br />

DOCUMENT: Volume of "CBB" is calculated as the product of the surface area (2D) and the mean<br />

depth of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

Vol_CBS = Area_CB*TotDepth_CBS<br />

DOCUMENT: Volume of "CBS" is calculated as the product of the surface area (2D) and the mean<br />

depth of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

2010 Page A1-51


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

Vol_COB = Area_CO*TotDepth_COB<br />

DOCUMENT: Volume of "COB" is calculated as the product of the surface area (2D) and the mean<br />

depth of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

Vol_COS = Area_CO*TotDepth_COS<br />

DOCUMENT: Volume of "COS" is calculated as the product of the surface area (2D) and the mean<br />

depth of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

Vol_DCB = Area_DC*TotDepth_DCB<br />

DOCUMENT: Volume of "DCB" is calculated as the product of the surface area (2D) and the mean<br />

depth of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

Vol_DCS = Area_DC * TotDepth_DCS<br />

DOCUMENT: Volume of "DCS" is calculated as the product of the surface area (2D) and the mean<br />

depth of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

Vol_EPB = Area_EP*TotDepth_EPB<br />

DOCUMENT: Volume of "EPB" is calculated as the product of the surface area (2D) and the mean depth<br />

of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

Vol_EPS = Area_EP*TotDepth_EPS<br />

DOCUMENT: Volume of "EPS" is calculated as the product of the surface area (2D) and the mean depth<br />

of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

Vol_K1B = Area_K1*TotDepth_K1B<br />

DOCUMENT: Volume of "K1B" is calculated as the product of the surface area (2D) and the mean<br />

depth of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

Vol_K1S = Area_K1*TotDepth_K1S<br />

DOCUMENT: Volume of "K1S" is calculated as the product of the surface area (2D) and the mean depth<br />

of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

Page A-52 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

Vol_K2B = Area_K2*TotDepth_K2B<br />

DOCUMENT: Volume of "K2B" is calculated as the product of the surface area (2D) and the mean<br />

depth of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

Vol_K2S = Area_K2*TotDepth_K2S<br />

DOCUMENT: Volume of "K2S" is calculated as the product of the surface area (2D) and the mean depth<br />

of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

Vol_KAB = Area_KA*TotDepth_KAB<br />

DOCUMENT: Volume of "KAB" is calculated as the product of the surface area (2D) and the mean<br />

depth of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

Vol_KAS = Area_KA*TotDepth_KAS<br />

DOCUMENT: Volume of "KAS" is calculated as the product of the surface area (2D) and the mean<br />

depth of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

Vol_NSB = Area_NS*TotDepth_NSB<br />

DOCUMENT: Volume of "NSB" is calculated as the product of the surface area (2D) and the mean<br />

depth of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

Vol_NSS = Area_NS*TotDepth_NSS<br />

DOCUMENT: Volume of "NSS" is calculated as the product of the surface area (2D) and the mean depth<br />

of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

Vol_TB = Area_T*TotDepth_TB<br />

DOCUMENT: Volume of "TB" is calculated as the product of the surface area (2D) and the mean depth<br />

of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

Vol_TS = Area_T*TotDepth_TS<br />

DOCUMENT: Volume of "TS" is calculated as the product of the surface area (2D) and the mean depth<br />

of the bottom layer adjusted <strong>for</strong> tide level; volume is given in m3.<br />

2010 Page A1-53


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

CAS_Numbers = GRAPH(Analyte_Master)<br />

(1.00, 71432), (2.00, 100414), (3.00, 108883), (4.00, 8e+006), (5.00, 90120), (6.00, 91576), (7.00,<br />

83329), (8.00, 208968), (9.00, 120127), (10.0, 56553), (11.0, 205992), (12.0, 207089), (13.0, 191242),<br />

(14.0, 50328), (15.0, 192972), (16.0, 218019), (17.0, 53703), (18.0, 206440), (19.0, 86737), (20.0,<br />

193395), (21.0, 91203), (22.0, 85018), (23.0, 129000), (24.0, 105679), (25.0, 51285), (26.0, 108952),<br />

(27.0, 6.6e+007), (28.0, 6.6e+007), (29.0, 6.6e+007), (30.0, 6.6e+007), (31.0, 6.6e+007), (32.0,<br />

6.6e+007), (33.0, 6.6e+007), (34.0, 6.6e+007), (35.0, 6.6e+007), (36.0, 6.6e+007), (37.0, 6.6e+007),<br />

(38.0, 120821), (39.0, 108678), (40.0, 50000), (41.0, 71556), (42.0, 3.3e+006), (43.0, 1.7e+007), (44.0,<br />

7.4e+006), (45.0, 7.4e+006), (46.0, 7.4e+006), (47.0, 7.4e+006), (48.0, 7.4e+006), (49.0, 7.4e+006),<br />

(50.0, 1.6e+007), (51.0, 1.9e+007), (52.0, 7.4e+006), (53.0, 7.4e+006), (54.0, 7.4e+006), (55.0,<br />

7.4e+006), (56.0, 7.4e+006), (57.0, 7.4e+006), (58.0, 7.4e+006), (59.0, 7.8e+006), (60.0, 7.4e+006),<br />

(61.0, 7.4e+006), (62.0, 7.4e+006), (63.0, 7.4e+006)<br />

DOCUMENT: These CAS Numbers correspond to the COPC modeled.<br />

KR_Flow = GRAPH(Julian)<br />

(1.00, 54.8), (2.00, 56.0), (3.00, 62.1), (4.00, 61.8), (5.00, 64.8), (6.00, 78.7), (7.00, 72.7), (8.00, 63.6),<br />

(9.00, 59.1), (10.0, 66.6), (11.0, 78.3), (12.0, 92.8), (13.0, 70.5), (14.0, 63.0), (15.0, 78.0), (16.0, 73.8),<br />

(17.0, 89.3), (18.0, 72.7), (19.0, 72.4), (20.0, 64.2), (21.0, 59.5), (22.0, 64.9), (23.0, 83.4), (24.0, 78.8),<br />

(25.0, 61.3), (26.0, 55.8), (27.0, 63.6), (28.0, 61.9), (29.0, 57.7), (30.0, 64.3), (31.0, 70.5), (32.0, 67.4),<br />

(33.0, 70.6), (34.0, 68.0), (35.0, 64.9), (36.0, 66.3), (37.0, 61.9), (38.0, 68.5), (39.0, 68.0), (40.0, 59.1),<br />

(41.0, 53.8), (42.0, 53.0), (43.0, 55.2), (44.0, 58.3), (45.0, 61.5), (46.0, 66.9), (47.0, 66.3), (48.0, 60.2),<br />

(49.0, 66.6), (50.0, 68.0), (51.0, 66.4), (52.0, 62.5), (53.0, 57.7), (54.0, 50.0), (55.0, 48.4), (56.0, 50.9),<br />

(57.0, 52.3), (58.0, 53.7), (59.0, 59.7), (60.0, 51.7), (61.0, 49.4), (62.0, 47.0), (63.0, 48.1), (64.0, 57.1),<br />

(65.0, 61.5), (66.0, 62.1), (67.0, 60.7), (68.0, 63.5), (69.0, 56.0), (70.0, 65.4), (71.0, 58.1), (72.0, 59.6),<br />

(73.0, 61.2), (74.0, 59.7), (75.0, 56.7), (76.0, 53.8), (77.0, 54.2), (78.0, 57.7), (79.0, 55.4), (80.0, 57.9),<br />

(81.0, 60.3), (82.0, 59.9), (83.0, 57.2), (84.0, 65.1), (85.0, 60.9), (86.0, 58.1), (87.0, 60.8), (88.0, 65.6),<br />

(89.0, 73.4), (90.0, 74.4), (91.0, 76.1), (92.0, 76.4), (93.0, 76.4), (94.0, 72.9), (95.0, 78.0), (96.0, 80.8),<br />

(97.0, 75.5), (98.0, 83.5), (99.0, 82.3), (100, 82.3), (101, 85.2), (102, 93.4), (103, 95.1), (104, 91.4), (105,<br />

93.4), (106, 98.9), (107, 104), (108, 101), (109, 110), (110, 110), (111, 111), (112, 112), (113, 110), (114,<br />

126), (115, 134), (116, 148), (117, 163), (118, 168), (119, 164), (120, 156), (121, 162), (122, 162), (123,<br />

159), (124, 157), (125, 159), (126, 164), (127, 167), (128, 168), (129, 165), (130, 175), (131, 181), (132,<br />

192), (133, 204), (134, 195), (135, 190), (136, 199), (137, 195), (138, 187), (139, 192), (140, 207), (141,<br />

215), (142, 213), (143, 218), (144, 234), (145, 238), (146, 230), (147, 226), (148, 241), (149, 246), (150,<br />

238), (151, 240), (152, 262), (153, 266), (154, 265), (155, 266), (156, 267), (157, 257), (158, 256), (159,<br />

248), (160, 248), (161, 255), (162, 255), (163, 250), (164, 254), (165, 257), (166, 268), (167, 250), (168,<br />

250), (169, 240), (170, 250), (171, 234), (172, 234), (173, 235), (174, 226), (175, 226), (176, 223), (177,<br />

226), (178, 215), (179, 212), (180, 212), (181, 219), (182, 214), (183, 210), (184, 206), (185, 207), (186,<br />

204), (187, 196), (188, 199), (189, 208), (190, 203), (191, 202), (192, 200), (193, 189), (194, 187), (195,<br />

178), (196, 174), (197, 170), (198, 169), (199, 168), (200, 174), (201, 176), (202, 167), (203, 160), (204,<br />

161), (205, 166), (206, 161), (207, 172), (208, 157), (209, 163), (210, 154), (211, 143), (212, 138), (213,<br />

138), (214, 137), (215, 136), (216, 141), (217, 136), (218, 140), (219, 135), (220, 139), (221, 142), (222,<br />

Page A-54 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

135), (223, 131), (224, 125), (225, 121), (226, 128), (227, 128), (228, 114), (229, 122), (230, 117), (231,<br />

118), (232, 116), (233, 118), (234, 113), (235, 119), (236, 116), (237, 115), (238, 112), (239, 122), (240,<br />

115), (241, 105), (242, 106), (243, 104), (244, 113), (245, 122), (246, 119), (247, 127), (248, 126), (249,<br />

125), (250, 123), (251, 125), (252, 127), (253, 120), (254, 113), (255, 106), (256, 106), (257, 107), (258,<br />

108), (259, 122), (260, 112), (261, 107), (262, 130), (263, 128), (264, 145), (265, 158), (266, 161), (267,<br />

142), (268, 140), (269, 134), (270, 116), (271, 172), (272, 239), (273, 182), (274, 153), (275, 131), (276,<br />

146), (277, 129), (278, 146), (279, 202), (280, 192), (281, 173), (282, 191), (283, 258), (284, 192), (285,<br />

188), (286, 181), (287, 166), (288, 171), (289, 146), (290, 148), (291, 158), (292, 165), (293, 168), (294,<br />

187), (295, 235), (296, 206), (297, 223), (298, 221), (299, 188), (300, 213), (301, 192), (302, 162), (303,<br />

169), (304, 169), (305, 204), (306, 213), (307, 198), (308, 196), (309, 176), (310, 148), (311, 131), (312,<br />

127), (313, 132), (314, 132), (315, 149), (316, 137), (317, 123), (318, 124), (319, 119), (320, 114), (321,<br />

100), (322, 118), (323, 163), (324, 190), (325, 142), (326, 132), (327, 122), (328, 102), (329, 101), (330,<br />

96.9), (331, 97.6), (332, 101), (333, 101), (334, 122), (335, 92.0), (336, 101), (337, 101), (338, 109), (339,<br />

86.5), (340, 83.7), (341, 94.7), (342, 100), (343, 77.6), (344, 83.0), (345, 96.0), (346, 85.2), (347, 94.5),<br />

(348, 88.4), (349, 82.5), (350, 105), (351, 76.1), (352, 75.0), (353, 85.9), (354, 70.4), (355, 70.7), (356,<br />

69.7), (357, 70.5), (358, 83.5), (359, 87.8), (360, 90.6), (361, 91.8), (362, 72.2), (363, 78.1), (364, 68.4),<br />

(365, 59.7), (366, 0.00), (367, 0.00)<br />

DOCUMENT: The flow of the <strong>Kitimat</strong> River (m3/second) is based on data presented by the water survey<br />

of Canada as measured below Hirsch creek between 1964 and 2006 (watershed area 1,900 km2).<br />

LiqEff_Conc = GRAPH(Analyte_Master)<br />

(1.00, 262), (2.00, 137), (3.00, 724), (4.00, 696), (5.00, 3.53), (6.00, 2.73), (7.00, 0.00), (8.00, 0.00),<br />

(9.00, 0.134), (10.0, 0.0598), (11.0, 0.00), (12.0, 0.00), (13.0, 0.00), (14.0, 0.00), (15.0, 0.00), (16.0,<br />

0.00), (17.0, 0.00), (18.0, 0.00), (19.0, 0.305), (20.0, 0.00), (21.0, 5.69), (22.0, 0.207), (23.0, 0.25), (24.0,<br />

0.0262), (25.0, 0.0992), (26.0, 0.0179), (27.0, 3708), (28.0, 486), (29.0, 419), (30.0, 817), (31.0, 925),<br />

(32.0, 1429), (33.0, 453), (34.0, 526), (35.0, 575), (36.0, 636), (37.0, 1171), (38.0, 84.4), (39.0, 49.6),<br />

(40.0, 0.00), (41.0, 0.00), (42.0, 0.00), (43.0, 0.00), (44.0, 0.00), (45.0, 0.00), (46.0, 0.0361), (47.0, 0.00),<br />

(48.0, 0.0222), (49.0, 0.000406), (50.0, 0.0148), (51.0, 0.00), (52.0, 0.0137), (53.0, 0.0185), (54.0, 0.00),<br />

(55.0, 0.0185), (56.0, 0.00), (57.0, 0.433), (58.0, 3.19), (59.0, 0.00), (60.0, 0.129), (61.0, 8.78), (62.0,<br />

0.0064), (63.0, 0.0064)<br />

DOCUMENT: COPC Conc is the COPC concentration in the process effluent discharge. Units are in<br />

mg/m3.<br />

TotDep_APS = GRAPH(Analyte_Master)<br />

(1.00, 0.0486), (2.00, 0.0133), (3.00, 0.102), (4.00, 0.0865), (5.00, 0.00), (6.00, 0.00114), (7.00,<br />

0.000302), (8.00, 3.62e-006), (9.00, 1.75e-005), (10.0, 5.75e-005), (11.0, 2.12e-005), (12.0, 2.12e-005),<br />

(13.0, 3.24e-005), (14.0, 0.000358), (15.0, 1.35e-005), (16.0, 3.41e-005), (17.0, 2.39e-005), (18.0, 6.93e-<br />

005), (19.0, 6.4e-005), (20.0, 3.07e-005), (21.0, 0.0162), (22.0, 0.00015), (23.0, 6.09e-005), (24.0, 0.00),<br />

(25.0, 0.00), (26.0, 0.00), (27.0, 0.00), (28.0, 0.00), (29.0, 0.00), (30.0, 0.00), (31.0, 0.00), (32.0, 0.00),<br />

2010 Page A1-55


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

(33.0, 0.00), (34.0, 0.00), (35.0, 0.00), (36.0, 0.00), (37.0, 0.00), (38.0, 0.00), (39.0, 0.00), (40.0, 0.473),<br />

(41.0, 0.00338), (42.0, 4.44e-008), (43.0, 0.534), (44.0, 0.0752), (45.0, 0.0189), (46.0, 0.0368), (47.0,<br />

0.000398), (48.0, 0.00), (49.0, 0.0057), (50.0, 0.0121), (51.0, 0.00355), (52.0, 0.0863), (53.0, 0.0252),<br />

(54.0, 0.0216), (55.0, 0.043), (56.0, 0.00162), (57.0, 0.0113), (58.0, 1.21), (59.0, 0.00979), (60.0, 0.00),<br />

(61.0, 4.56), (62.0, 0.417), (63.0, 0.417)<br />

DOCUMENT: TotDep is the Total Deposition (Wet and Dry) expected at APS. Units are in ug/m2/year.<br />

TotDep_CBS = GRAPH(Analyte_Master)<br />

(1.00, 0.0905), (2.00, 0.0246), (3.00, 0.189), (4.00, 0.16), (5.00, 0.00), (6.00, 0.00142), (7.00, 0.000374),<br />

(8.00, 4.49e-006), (9.00, 2.16e-005), (10.0, 7.11e-005), (11.0, 2.62e-005), (12.0, 2.62e-005), (13.0, 4.01e-<br />

005), (14.0, 0.000443), (15.0, 1.67e-005), (16.0, 4.22e-005), (17.0, 2.96e-005), (18.0, 8.58e-005), (19.0,<br />

7.93e-005), (20.0, 3.8e-005), (21.0, 0.02), (22.0, 0.000186), (23.0, 7.54e-005), (24.0, 0.00), (25.0, 0.00),<br />

(26.0, 0.00), (27.0, 0.00), (28.0, 0.00), (29.0, 0.00), (30.0, 0.00), (31.0, 0.00), (32.0, 0.00), (33.0, 0.00),<br />

(34.0, 0.00), (35.0, 0.00), (36.0, 0.00), (37.0, 0.00), (38.0, 0.00), (39.0, 0.00), (40.0, 0.585), (41.0,<br />

0.00419), (42.0, 5.5e-008), (43.0, 0.662), (44.0, 0.0931), (45.0, 0.0234), (46.0, 0.0456), (47.0, 0.000493),<br />

(48.0, 0.00), (49.0, 0.00706), (50.0, 0.015), (51.0, 0.0044), (52.0, 0.107), (53.0, 0.0312), (54.0, 0.0268),<br />

(55.0, 0.0532), (56.0, 0.002), (57.0, 0.014), (58.0, 1.50), (59.0, 0.0121), (60.0, 0.00), (61.0, 5.64), (62.0,<br />

0.516), (63.0, 0.516)<br />

DOCUMENT: TotDep is the Total Deposition (Wet and Dry) expected at CBS. Units are in ug/m2/year.<br />

TotDep_COS = GRAPH(Analyte_Master)<br />

(1.00, 0.135), (2.00, 0.037), (3.00, 0.297), (4.00, 0.243), (5.00, 0.00), (6.00, 0.0145), (7.00, 0.00383),<br />

(8.00, 4.59e-005), (9.00, 0.000221), (10.0, 0.000728), (11.0, 0.000269), (12.0, 0.000269), (13.0, 0.00041),<br />

(14.0, 0.00454), (15.0, 0.000171), (16.0, 0.000432), (17.0, 0.000303), (18.0, 0.000879), (19.0, 0.000811),<br />

(20.0, 0.000388), (21.0, 0.205), (22.0, 0.00191), (23.0, 0.000771), (24.0, 0.00), (25.0, 0.00), (26.0, 0.00),<br />

(27.0, 0.00), (28.0, 0.00), (29.0, 0.00), (30.0, 0.00), (31.0, 0.00), (32.0, 0.00), (33.0, 0.00), (34.0, 0.00),<br />

(35.0, 0.00), (36.0, 0.00), (37.0, 0.00), (38.0, 0.00), (39.0, 0.00), (40.0, 5.99), (41.0, 0.0428), (42.0, 5.63e-<br />

007), (43.0, 6.77), (44.0, 0.953), (45.0, 0.24), (46.0, 0.467), (47.0, 0.00505), (48.0, 0.00), (49.0, 0.0722),<br />

(50.0, 0.153), (51.0, 0.045), (52.0, 1.09), (53.0, 0.319), (54.0, 0.274), (55.0, 0.545), (56.0, 0.0205), (57.0,<br />

0.143), (58.0, 15.3), (59.0, 0.124), (60.0, 0.00), (61.0, 57.7), (62.0, 5.28), (63.0, 5.28)<br />

DOCUMENT: TotDep is the Total Deposition (Wet and Dry) expected at COS. Units are in ug/m2/year.<br />

TotDep_EPS = GRAPH(Analyte_Master)<br />

(1.00, 0.127), (2.00, 0.0344), (3.00, 0.275), (4.00, 0.225), (5.00, 0.00), (6.00, 0.00894), (7.00, 0.00236),<br />

(8.00, 2.83e-005), (9.00, 0.000136), (10.0, 0.000449), (11.0, 0.000166), (12.0, 0.000166), (13.0,<br />

0.000253), (14.0, 0.0028), (15.0, 0.000105), (16.0, 0.000266), (17.0, 0.000187), (18.0, 0.000541), (19.0,<br />

0.0005), (20.0, 0.000239), (21.0, 0.126), (22.0, 0.00117), (23.0, 0.000475), (24.0, 0.00), (25.0, 0.00),<br />

(26.0, 0.00), (27.0, 0.00), (28.0, 0.00), (29.0, 0.00), (30.0, 0.00), (31.0, 0.00), (32.0, 0.00), (33.0, 0.00),<br />

Page A-56 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

(34.0, 0.00), (35.0, 0.00), (36.0, 0.00), (37.0, 0.00), (38.0, 0.00), (39.0, 0.00), (40.0, 3.69), (41.0, 0.0264),<br />

(42.0, 3.47e-007), (43.0, 4.17), (44.0, 0.587), (45.0, 0.148), (46.0, 0.287), (47.0, 0.00311), (48.0, 0.00),<br />

(49.0, 0.0445), (50.0, 0.0945), (51.0, 0.0277), (52.0, 0.673), (53.0, 0.197), (54.0, 0.169), (55.0, 0.336),<br />

(56.0, 0.0126), (57.0, 0.088), (58.0, 9.45), (59.0, 0.0764), (60.0, 0.00), (61.0, 35.6), (62.0, 3.25), (63.0,<br />

3.25)<br />

DOCUMENT: TotDep is the Total Deposition (Wet and Dry) expected at EPS. Units are in ug/m2/year.<br />

TotDep_K1S = GRAPH(Analyte_Master)<br />

(1.00, 0.349), (2.00, 0.0856), (3.00, 0.726), (4.00, 0.594), (5.00, 0.00), (6.00, 0.0348), (7.00, 0.00919),<br />

(8.00, 0.00011), (9.00, 0.000531), (10.0, 0.00175), (11.0, 0.000645), (12.0, 0.000645), (13.0, 0.000984),<br />

(14.0, 0.0109), (15.0, 0.000409), (16.0, 0.00104), (17.0, 0.000727), (18.0, 0.00211), (19.0, 0.00195),<br />

(20.0, 0.000932), (21.0, 0.492), (22.0, 0.00457), (23.0, 0.00185), (24.0, 0.00), (25.0, 0.00), (26.0, 0.00),<br />

(27.0, 0.00), (28.0, 0.00), (29.0, 0.00), (30.0, 0.00), (31.0, 0.00), (32.0, 0.00), (33.0, 0.00), (34.0, 0.00),<br />

(35.0, 0.00), (36.0, 0.00), (37.0, 0.00), (38.0, 0.00), (39.0, 0.00), (40.0, 14.4), (41.0, 0.103), (42.0, 1.35e-<br />

006), (43.0, 16.2), (44.0, 2.29), (45.0, 0.575), (46.0, 1.12), (47.0, 0.0121), (48.0, 0.00), (49.0, 0.173),<br />

(50.0, 0.368), (51.0, 0.108), (52.0, 2.62), (53.0, 0.767), (54.0, 0.658), (55.0, 1.31), (56.0, 0.0492), (57.0,<br />

0.343), (58.0, 36.8), (59.0, 0.298), (60.0, 0.00), (61.0, 139), (62.0, 12.7), (63.0, 12.7)<br />

DOCUMENT: TotDep is the Total Deposition (Wet and Dry) expected at K1S. Units are in ug/m2/year.<br />

TotDep_K2S = GRAPH(Analyte_Master)<br />

(1.00, 0.199), (2.00, 0.0523), (3.00, 0.408), (4.00, 0.347), (5.00, 0.00), (6.00, 0.00512), (7.00, 0.00135),<br />

(8.00, 1.62e-005), (9.00, 7.82e-005), (10.0, 0.000257), (11.0, 9.49e-005), (12.0, 9.49e-005), (13.0,<br />

0.000145), (14.0, 0.0016), (15.0, 6.02e-005), (16.0, 0.000153), (17.0, 0.000107), (18.0, 0.00031), (19.0,<br />

0.000287), (20.0, 0.000137), (21.0, 0.0724), (22.0, 0.000673), (23.0, 0.000272), (24.0, 0.00), (25.0, 0.00),<br />

(26.0, 0.00), (27.0, 0.00), (28.0, 0.00), (29.0, 0.00), (30.0, 0.00), (31.0, 0.00), (32.0, 0.00), (33.0, 0.00),<br />

(34.0, 0.00), (35.0, 0.00), (36.0, 0.00), (37.0, 0.00), (38.0, 0.00), (39.0, 0.00), (40.0, 2.12), (41.0, 0.0151),<br />

(42.0, 1.99e-007), (43.0, 2.39), (44.0, 0.336), (45.0, 0.0846), (46.0, 0.165), (47.0, 0.00178), (48.0, 0.00),<br />

(49.0, 0.0255), (50.0, 0.0542), (51.0, 0.0159), (52.0, 0.386), (53.0, 0.113), (54.0, 0.0968), (55.0, 0.192),<br />

(56.0, 0.00724), (57.0, 0.0504), (58.0, 5.42), (59.0, 0.0438), (60.0, 0.00), (61.0, 20.4), (62.0, 1.87), (63.0,<br />

1.87)<br />

DOCUMENT: TotDep is the Total Deposition (Wet and Dry) expected at K2S. Units are in ug/m2/year.<br />

TotDep_KAS = GRAPH(Analyte_Master)<br />

(1.00, 0.0313), (2.00, 0.00837), (3.00, 0.0643), (4.00, 0.0548), (5.00, 0.00), (6.00, 0.000612), (7.00,<br />

0.000162), (8.00, 1.94e-006), (9.00, 9.35e-006), (10.0, 3.07e-005), (11.0, 1.13e-005), (12.0, 1.13e-005),<br />

(13.0, 1.73e-005), (14.0, 0.000192), (15.0, 7.2e-006), (16.0, 1.82e-005), (17.0, 1.28e-005), (18.0, 3.71e-<br />

005), (19.0, 3.43e-005), (20.0, 1.64e-005), (21.0, 0.00866), (22.0, 8.05e-005), (23.0, 3.26e-005), (24.0,<br />

0.00), (25.0, 0.00), (26.0, 0.00), (27.0, 0.00), (28.0, 0.00), (29.0, 0.00), (30.0, 0.00), (31.0, 0.00), (32.0,<br />

2010 Page A1-57


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A1: <strong>Marine</strong> Water Quality Model Equations and Documentation<br />

(In Stella® Format)<br />

0.00), (33.0, 0.00), (34.0, 0.00), (35.0, 0.00), (36.0, 0.00), (37.0, 0.00), (38.0, 0.00), (39.0, 0.00), (40.0,<br />

0.253), (41.0, 0.00181), (42.0, 2.38e-008), (43.0, 0.286), (44.0, 0.0402), (45.0, 0.0101), (46.0, 0.0197),<br />

(47.0, 0.000213), (48.0, 0.00), (49.0, 0.00305), (50.0, 0.00648), (51.0, 0.0019), (52.0, 0.0461), (53.0,<br />

0.0135), (54.0, 0.0116), (55.0, 0.023), (56.0, 0.000866), (57.0, 0.00603), (58.0, 0.648), (59.0, 0.00523),<br />

(60.0, 0.00), (61.0, 2.44), (62.0, 0.223), (63.0, 0.223)<br />

DOCUMENT: TotDep is the Total Deposition (Wet and Dry) expected at KAS. Units are in ug/m2/year.<br />

TotDep_NSS = GRAPH(Analyte_Master)<br />

(1.00, 0.0875), (2.00, 0.0235), (3.00, 0.19), (4.00, 0.156), (5.00, 0.00), (6.00, 0.00946), (7.00, 0.0025),<br />

(8.00, 3e-005), (9.00, 0.000144), (10.0, 0.000475), (11.0, 0.000175), (12.0, 0.000175), (13.0, 0.000268),<br />

(14.0, 0.00296), (15.0, 0.000111), (16.0, 0.000282), (17.0, 0.000198), (18.0, 0.000573), (19.0, 0.000529),<br />

(20.0, 0.000253), (21.0, 0.134), (22.0, 0.00124), (23.0, 0.000503), (24.0, 0.00), (25.0, 0.00), (26.0, 0.00),<br />

(27.0, 0.00), (28.0, 0.00), (29.0, 0.00), (30.0, 0.00), (31.0, 0.00), (32.0, 0.00), (33.0, 0.00), (34.0, 0.00),<br />

(35.0, 0.00), (36.0, 0.00), (37.0, 0.00), (38.0, 0.00), (39.0, 0.00), (40.0, 3.91), (41.0, 0.0279), (42.0, 3.67e-<br />

007), (43.0, 4.42), (44.0, 0.622), (45.0, 0.156), (46.0, 0.304), (47.0, 0.00329), (48.0, 0.00), (49.0, 0.0471),<br />

(50.0, 0.1), (51.0, 0.0294), (52.0, 0.713), (53.0, 0.208), (54.0, 0.179), (55.0, 0.355), (56.0, 0.0134), (57.0,<br />

0.0932), (58.0, 10.0), (59.0, 0.0809), (60.0, 0.00), (61.0, 37.7), (62.0, 3.45), (63.0, 3.45)<br />

DOCUMENT: TotDep is the Total Deposition (Wet and Dry) expected at NSS. Units are in ug/m2/year.<br />

TotDep_TS = GRAPH(Analyte_Master)<br />

(1.00, 0.17), (2.00, 0.0475), (3.00, 0.363), (4.00, 0.307), (5.00, 0.00), (6.00, 0.0027), (7.00, 0.000713),<br />

(8.00, 8.54e-006), (9.00, 4.12e-005), (10.0, 0.000135), (11.0, 5e-005), (12.0, 5e-005), (13.0, 7.63e-005),<br />

(14.0, 0.000844), (15.0, 3.17e-005), (16.0, 8.04e-005), (17.0, 5.64e-005), (18.0, 0.000163), (19.0,<br />

0.000151), (20.0, 7.23e-005), (21.0, 0.0382), (22.0, 0.000355), (23.0, 0.000144), (24.0, 0.00), (25.0,<br />

0.00), (26.0, 0.00), (27.0, 0.00), (28.0, 0.00), (29.0, 0.00), (30.0, 0.00), (31.0, 0.00), (32.0, 0.00), (33.0,<br />

0.00), (34.0, 0.00), (35.0, 0.00), (36.0, 0.00), (37.0, 0.00), (38.0, 0.00), (39.0, 0.00), (40.0, 1.11), (41.0,<br />

0.00797), (42.0, 1.05e-007), (43.0, 1.26), (44.0, 0.177), (45.0, 0.0446), (46.0, 0.0868), (47.0, 0.000939),<br />

(48.0, 0.00), (49.0, 0.0134), (50.0, 0.0285), (51.0, 0.00838), (52.0, 0.203), (53.0, 0.0594), (54.0, 0.051),<br />

(55.0, 0.101), (56.0, 0.00382), (57.0, 0.0266), (58.0, 2.85), (59.0, 0.0231), (60.0, 0.00), (61.0, 10.7), (62.0,<br />

0.983), (63.0, 0.983)<br />

DOCUMENT: TotDep is the Total Deposition (Wet and Dry) expected at TS. Units are in ug/m2/year.<br />

Page A-58 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment A2: Water Quality Model Representative Results<br />

Attachment A2 Water Quality Model Representative<br />

Results<br />

2010 Page A2-1


Table A2‐1 Summary of Predicted COPC Water Concentrations in Each Model Compartment<br />

CoPC CAS # K1S K1B K2S K2B TS TB CBS CBB EPS EPB APS APB KAS KAB COS COB NSS NSB<br />

Min (mg/L) 6.01E‐06 9.09E‐07 7.19E‐06 7.37E‐07 7.46E‐06 5.80E‐07 7.36E‐06 8.00E‐07 4.88E‐06 3.96E‐07 2.61E‐06 2.49E‐07 2.06E‐06 3.29E‐07 3.53E‐06 2.63E‐07 1.82E‐06 1.27E‐07<br />

Benzene 71‐43‐2 Max (mg/L) 9.86E‐06 1.23E‐06 1.06E‐05 9.55E‐07 9.58E‐06 7.40E‐07 9.43E‐06 1.10E‐06 5.75E‐06 4.97E‐07 3.27E‐06 3.28E‐07 2.82E‐06 4.27E‐07 4.17E‐06 3.32E‐07 2.27E‐06 1.65E‐07<br />

95 UCL (mg/L) 8.36E‐06 1.08E‐06 9.29E‐06 8.51E‐07 8.64E‐06 6.66E‐07 8.55E‐06 9.47E‐07 5.40E‐06 4.49E‐07 2.99E‐06 2.88E‐07 2.50E‐06 3.78E‐07 3.88E‐06 2.99E‐07 2.03E‐06 1.45E‐07<br />

Min (mg/L) 3.13E‐06 4.74E‐07 3.75E‐06 3.84E‐07 3.89E‐06 3.02E‐07 3.84E‐06 4.17E‐07 2.54E‐06 2.07E‐07 1.36E‐06 1.30E‐07 1.08E‐06 1.71E‐07 1.84E‐06 1.37E‐07 9.49E‐07 6.60E‐08<br />

Ethylbenzene 100‐41‐4 Max (mg/L) 5.14E‐06 6.42E‐07 5.51E‐06 4.98E‐07 4.99E‐06 3.86E‐07 4.92E‐06 5.71E‐07 3.00E‐06 2.59E‐07 1.71E‐06 1.71E‐07 1.47E‐06 2.22E‐07 2.17E‐06 1.73E‐07 1.18E‐06 8.59E‐08<br />

95 UCL (mg/L) 4.36E‐06 5.61E‐07 4.84E‐06 4.43E‐07 4.50E‐06 3.47E‐07 4.45E‐06 4.94E‐07 2.82E‐06 2.34E‐07 1.56E‐06 1.50E‐07 1.30E‐06 1.97E‐07 2.02E‐06 1.56E‐07 1.06E‐06 7.58E‐08<br />

Min (mg/L) 1.66E‐05 2.51E‐06 1.99E‐05 2.04E‐06 2.06E‐05 1.60E‐06 2.03E‐05 2.21E‐06 1.35E‐05 1.09E‐06 7.20E‐06 6.86E‐07 5.70E‐06 9.07E‐07 9.76E‐06 7.27E‐07 5.03E‐06 3.50E‐07<br />

Toluene 108‐88‐3 Max (mg/L) 2.72E‐05 3.40E‐06 2.92E‐05 2.64E‐06 2.65E‐05 2.05E‐06 2.61E‐05 3.03E‐06 1.59E‐05 1.37E‐06 9.04E‐06 9.07E‐07 7.79E‐06 1.18E‐06 1.15E‐05 9.17E‐07 6.27E‐06 4.56E‐07<br />

95 UCL (mg/L) 2.31E‐05 2.97E‐06 2.57E‐05 2.35E‐06 2.39E‐05 1.84E‐06 2.36E‐05 2.62E‐06 1.49E‐05 1.24E‐06 8.25E‐06 7.94E‐07 6.91E‐06 1.04E‐06 1.07E‐05 8.25E‐07 5.61E‐06 4.02E‐07<br />

Min (mg/L) 1.60E‐05 2.41E‐06 1.91E‐05 1.96E‐06 1.98E‐05 1.54E‐06 1.95E‐05 2.12E‐06 1.30E‐05 1.05E‐06 6.93E‐06 6.60E‐07 5.48E‐06 8.73E‐07 9.38E‐06 6.99E‐07 4.84E‐06 3.37E‐07<br />

Xylenes (tot) 8026‐09‐3 Max (mg/L) 2.62E‐05 3.27E‐06 2.81E‐05 2.54E‐06 2.54E‐05 1.97E‐06 2.51E‐05 2.91E‐06 1.53E‐05 1.32E‐06 8.69E‐06 8.72E‐07 7.49E‐06 1.13E‐06 1.11E‐05 8.82E‐07 6.03E‐06 4.38E‐07<br />

95 UCL (mg/L) 2.22E‐05 2.86E‐06 2.47E‐05 2.26E‐06 2.29E‐05 1.77E‐06 2.27E‐05 2.52E‐06 1.44E‐05 1.19E‐06 7.94E‐06 7.64E‐07 6.65E‐06 1.00E‐06 1.03E‐05 7.93E‐07 5.40E‐06 3.86E‐07<br />

Min (mg/L) 1.04E‐05 1.57E‐06 1.24E‐05 1.28E‐06 1.29E‐05 1.00E‐06 1.27E‐05 1.38E‐06 8.44E‐06 6.86E‐07 4.51E‐06 4.30E‐07 3.57E‐06 5.69E‐07 6.11E‐06 4.56E‐07 3.15E‐06 2.19E‐07<br />

Aromatic >C8‐C10 65820‐81‐0 Max (mg/L) 1.71E‐05 2.13E‐06 1.83E‐05 1.65E‐06 1.66E‐05 1.28E‐06 1.63E‐05 1.90E‐06 9.95E‐06 8.60E‐07 5.66E‐06 5.68E‐07 4.88E‐06 7.38E‐07 7.22E‐06 5.74E‐07 3.93E‐06 2.85E‐07<br />

95 UCL (mg/L) 1.45E‐05 1.86E‐06 1.61E‐05 1.47E‐06 1.49E‐05 1.15E‐06 1.48E‐05 1.64E‐06 9.35E‐06 7.77E‐07 5.17E‐06 4.98E‐07 4.33E‐06 6.54E‐07 6.72E‐06 5.17E‐07 3.52E‐06 2.52E‐07<br />

Min (mg/L) 1.21E‐05 1.82E‐06 1.44E‐05 1.48E‐06 1.50E‐05 1.16E‐06 1.48E‐05 1.60E‐06 9.78E‐06 7.95E‐07 5.23E‐06 4.99E‐07 4.14E‐06 6.59E‐07 7.08E‐06 5.28E‐07 3.65E‐06 2.54E‐07<br />

Aromatic >C10‐C12 65821‐01‐2 Max (mg/L) 1.98E‐05 2.47E‐06 2.12E‐05 1.92E‐06 1.92E‐05 1.49E‐06 1.89E‐05 2.20E‐06 1.15E‐05 9.97E‐07 6.56E‐06 6.59E‐07 5.66E‐06 8.56E‐07 8.37E‐06 6.66E‐07 4.55E‐06 3.31E‐07<br />

95 UCL (mg/L) 1.68E‐05 2.16E‐06 1.86E‐05 1.71E‐06 1.73E‐05 1.34E‐06 1.71E‐05 1.90E‐06 1.08E‐05 9.01E‐07 5.99E‐06 5.77E‐07 5.02E‐06 7.57E‐07 7.79E‐06 5.99E‐07 4.07E‐06 2.92E‐07<br />

Min (mg/L) 1.32E‐05 2.00E‐06 1.58E‐05 1.62E‐06 1.64E‐05 1.27E‐06 1.62E‐05 1.76E‐06 1.07E‐05 8.70E‐07 5.73E‐06 5.46E‐07 4.53E‐06 7.22E‐07 7.76E‐06 5.78E‐07 4.00E‐06 2.78E‐07<br />

Aromatic >C12‐C16 65821‐21‐6 Max (mg/L) 2.17E‐05 2.70E‐06 2.32E‐05 2.10E‐06 2.10E‐05 1.63E‐06 2.07E‐05 2.41E‐06 1.26E‐05 1.09E‐06 7.19E‐06 7.21E‐07 6.20E‐06 9.37E‐07 9.16E‐06 7.29E‐07 4.98E‐06 3.62E‐07<br />

95 UCL (mg/L) 1.84E‐05 2.36E‐06 2.04E‐05 1.87E‐06 1.90E‐05 1.46E‐06 1.88E‐05 2.08E‐06 1.19E‐05 9.86E‐07 6.56E‐06 6.32E‐07 5.50E‐06 8.29E‐07 8.53E‐06 6.56E‐07 4.46E‐06 3.20E‐07<br />

Min (mg/L) 1.46E‐05 2.21E‐06 1.75E‐05 1.79E‐06 1.81E‐05 1.41E‐06 1.79E‐05 1.94E‐06 1.18E‐05 9.62E‐07 6.33E‐06 6.04E‐07 5.01E‐06 7.98E‐07 8.58E‐06 6.39E‐07 4.42E‐06 3.08E‐07<br />

Aromatic >C16‐C21 65821‐62‐1 Max (mg/L) 2.39E‐05 2.99E‐06 2.57E‐05 2.32E‐06 2.33E‐05 1.80E‐06 2.29E‐05 2.66E‐06 1.40E‐05 1.21E‐06 7.95E‐06 7.97E‐07 6.85E‐06 1.04E‐06 1.01E‐05 8.06E‐07 5.51E‐06 4.01E‐07<br />

95 UCL (mg/L) ( /L) 22.03E‐05 03E 05 22.61E‐06 61E 06 22.26E‐05 26E 05 22.07E‐06 07E 06 22.10E‐05 10E 05 11.62E‐06 62E 06 22.08E‐05 08E 05 22.30E‐06 30E 06 11.31E‐05 31E 05 11.09E‐06 09E 06 77.26E‐06 26E 06 66.98E‐07 98E 07 66.08E‐06 08E 06 99.17E‐07 17E 07 99.43E‐06 43E 06 77.25E‐07 25E 07 44.93E‐06 93E 06 33.53E‐07 53E 07<br />

Min (mg/L) 2.69E‐05 4.06E‐06 3.21E‐05 3.29E‐06 3.33E‐05 2.59E‐06 3.29E‐05 3.57E‐06 2.18E‐05 1.77E‐06 1.17E‐05 1.11E‐06 9.22E‐06 1.47E‐06 1.58E‐05 1.18E‐06 8.14E‐06 5.66E‐07<br />

Aromatic >C21‐C32 65822‐13‐2 Max (mg/L) 4.41E‐05 5.50E‐06 4.73E‐05 4.27E‐06 4.28E‐05 3.31E‐06 4.22E‐05 4.90E‐06 2.57E‐05 2.22E‐06 1.46E‐05 1.47E‐06 1.26E‐05 1.91E‐06 1.86E‐05 1.48E‐06 1.01E‐05 7.37E‐07<br />

95 UCL (mg/L) 3.74E‐05 4.81E‐06 4.15E‐05 3.80E‐06 3.86E‐05 2.97E‐06 3.82E‐05 4.23E‐06 2.42E‐05 2.01E‐06 1.34E‐05 1.29E‐06 1.12E‐05 1.69E‐06 1.74E‐05 1.33E‐06 9.08E‐06 6.50E‐07<br />

Min (mg/L) 8.51E‐05 1.29E‐05 1.02E‐04 1.04E‐05 1.06E‐04 8.21E‐06 1.04E‐04 1.13E‐05 6.90E‐05 5.61E‐06 3.69E‐05 3.52E‐06 2.92E‐05 4.65E‐06 5.00E‐05 3.73E‐06 2.58E‐05 1.79E‐06<br />

Aliphatic >C6‐C8 65760‐60‐8 Max (mg/L) 1.40E‐04 1.74E‐05 1.50E‐04 1.35E‐05 1.36E‐04 1.05E‐05 1.34E‐04 1.55E‐05 8.14E‐05 7.03E‐06 4.63E‐05 4.65E‐06 3.99E‐05 6.04E‐06 5.90E‐05 4.70E‐06 3.21E‐05 2.33E‐06<br />

95 UCL (mg/L) 1.18E‐04 1.52E‐05 1.31E‐04 1.20E‐05 1.22E‐04 9.42E‐06 1.21E‐04 1.34E‐05 7.65E‐05 6.35E‐06 4.23E‐05 4.07E‐06 3.54E‐05 5.34E‐06 5.50E‐05 4.23E‐06 2.87E‐05 2.06E‐06<br />

Min (mg/L) 1.12E‐05 1.69E‐06 1.33E‐05 1.37E‐06 1.38E‐05 1.08E‐06 1.37E‐05 1.48E‐06 9.05E‐06 7.35E‐07 4.84E‐06 4.61E‐07 3.83E‐06 6.10E‐07 6.56E‐06 4.89E‐07 3.38E‐06 2.35E‐07<br />

Aliphatic >C8‐C10 65760‐81‐0 Max (mg/L) 1.83E‐05 2.29E‐06 1.96E‐05 1.77E‐06 1.78E‐05 1.37E‐06 1.75E‐05 2.03E‐06 1.07E‐05 9.22E‐07 6.07E‐06 6.09E‐07 5.24E‐06 7.92E‐07 7.74E‐06 6.16E‐07 4.21E‐06 3.06E‐07<br />

95 UCL (mg/L) 1.55E‐05 2.00E‐06 1.72E‐05 1.58E‐06 1.60E‐05 1.24E‐06 1.59E‐05 1.76E‐06 1.00E‐05 8.33E‐07 5.55E‐06 5.34E‐07 4.65E‐06 7.01E‐07 7.21E‐06 5.54E‐07 3.77E‐06 2.70E‐07<br />

Min (mg/L) 9.61E‐06 1.45E‐06 1.15E‐05 1.18E‐06 1.19E‐05 9.28E‐07 1.18E‐05 1.28E‐06 7.80E‐06 6.33E‐07 4.17E‐06 3.97E‐07 3.30E‐06 5.25E‐07 5.65E‐06 4.21E‐07 2.91E‐06 2.03E‐07<br />

Aliphatic >C10‐C12 65761‐01‐2 Max (mg/L) 1.58E‐05 1.97E‐06 1.69E‐05 1.53E‐06 1.53E‐05 1.18E‐06 1.51E‐05 1.75E‐06 9.19E‐06 7.94E‐07 5.23E‐06 5.25E‐07 4.51E‐06 6.82E‐07 6.67E‐06 5.31E‐07 3.63E‐06 2.64E‐07<br />

95 UCL (mg/L) 1.34E‐05 1.72E‐06 1.48E‐05 1.36E‐06 1.38E‐05 1.06E‐06 1.37E‐05 1.51E‐06 8.64E‐06 7.18E‐07 4.78E‐06 4.60E‐07 4.00E‐06 6.04E‐07 6.21E‐06 4.77E‐07 3.25E‐06 2.33E‐07<br />

Min (mg/L) 1.87E‐05 2.83E‐06 2.24E‐05 2.30E‐06 2.33E‐05 1.81E‐06 2.29E‐05 2.49E‐06 1.52E‐05 1.24E‐06 8.13E‐06 7.75E‐07 6.43E‐06 1.02E‐06 1.10E‐05 8.21E‐07 5.68E‐06 3.95E‐07<br />

Aliphatic >C12‐C16 65761‐21‐6 Max (mg/L) 3.07E‐05 3.84E‐06 3.30E‐05 2.98E‐06 2.99E‐05 2.31E‐06 2.94E‐05 3.42E‐06 1.79E‐05 1.55E‐06 1.02E‐05 1.02E‐06 8.80E‐06 1.33E‐06 1.30E‐05 1.04E‐06 7.07E‐06 5.14E‐07<br />

95 UCL (mg/L) 2.61E‐05 3.36E‐06 2.90E‐05 2.65E‐06 2.69E‐05 2.08E‐06 2.66E‐05 2.95E‐06 1.69E‐05 1.40E‐06 9.32E‐06 8.97E‐07 7.81E‐06 1.18E‐06 1.21E‐05 9.31E‐07 6.33E‐06 4.54E‐07<br />

Min (mg/L) 2.12E‐05 3.21E‐06 2.54E‐05 2.60E‐06 2.63E‐05 2.05E‐06 2.60E‐05 2.82E‐06 1.72E‐05 1.40E‐06 9.21E‐06 8.77E‐07 7.29E‐06 1.16E‐06 1.25E‐05 9.30E‐07 6.43E‐06 4.47E‐07<br />

Aliphatic >C16‐C21 65761‐62‐1 Max (mg/L) 3.48E‐05 4.35E‐06 3.74E‐05 3.37E‐06 3.38E‐05 2.61E‐06 3.33E‐05 3.87E‐06 2.03E‐05 1.75E‐06 1.16E‐05 1.16E‐06 9.96E‐06 1.51E‐06 1.47E‐05 1.17E‐06 8.01E‐06 5.82E‐07<br />

95 UCL (mg/L) 2.95E‐05 3.80E‐06 3.28E‐05 3.00E‐06 3.05E‐05 2.35E‐06 3.02E‐05 3.34E‐06 1.91E‐05 1.59E‐06 1.06E‐05 1.02E‐06 8.84E‐06 1.33E‐06 1.37E‐05 1.05E‐06 7.17E‐06 5.14E‐07<br />

Min (mg/L) 3.28E‐05 4.96E‐06 3.92E‐05 4.02E‐06 4.07E‐05 3.16E‐06 4.01E‐05 4.36E‐06 2.66E‐05 2.16E‐06 1.42E‐05 1.36E‐06 1.13E‐05 1.79E‐06 1.93E‐05 1.44E‐06 9.94E‐06 6.91E‐07<br />

Aliphatic >C21‐C32 65762‐13‐2 Max (mg/L) 5.38E‐05 6.71E‐06 5.77E‐05 5.21E‐06 5.22E‐05 4.04E‐06 5.15E‐05 5.98E‐06 3.14E‐05 2.71E‐06 1.78E‐05 1.79E‐06 1.54E‐05 2.33E‐06 2.28E‐05 1.81E‐06 1.24E‐05 8.99E‐07<br />

95 UCL (mg/L) 4.56E‐05 5.87E‐06 5.07E‐05 4.64E‐06 4.71E‐05 3.63E‐06 4.66E‐05 5.17E‐06 2.95E‐05 2.45E‐06 1.63E‐05 1.57E‐06 1.37E‐05 2.06E‐06 2.12E‐05 1.63E‐06 1.11E‐05 7.93E‐07<br />

Min (mg/L) 1.05E‐11 1.32E‐12 9.42E‐12 1.04E‐12 8.02E‐12 8.07E‐13 7.95E‐12 1.05E‐12 6.42E‐12 5.57E‐13 4.10E‐12 3.68E‐13 3.36E‐12 4.97E‐13 5.40E‐12 3.76E‐13 3.31E‐12 1.86E‐13<br />

Acenaphthene 83‐32‐9 Max (mg/L) 1.47E‐11 1.72E‐12 1.27E‐11 1.30E‐12 1.03E‐11 1.01E‐12 1.02E‐11 1.38E‐12 7.77E‐12 6.87E‐13 5.15E‐12 4.81E‐13 4.62E‐12 6.46E‐13 6.46E‐12 4.68E‐13 4.12E‐12 2.41E‐13<br />

95 UCL (mg/L) 1.29E‐11 1.53E‐12 1.13E‐11 1.18E‐12 9.34E‐12 9.13E‐13 9.28E‐12 1.21E‐12 7.22E‐12 6.25E‐13 4.72E‐12 4.24E‐13 4.08E‐12 5.73E‐13 6.00E‐12 4.23E‐13 3.74E‐12 2.13E‐13<br />

Min (mg/L) 1.25E‐13 1.58E‐14 1.13E‐13 1.24E‐14 9.61E‐14 9.68E‐15 9.54E‐14 1.26E‐14 7.70E‐14 6.68E‐15 4.92E‐14 4.41E‐15 4.02E‐14 5.96E‐15 6.47E‐14 4.50E‐15 3.97E‐14 2.23E‐15<br />

Acenaphthylene 208‐96‐8 Max (mg/L) 1.76E‐13 2.07E‐14 1.52E‐13 1.56E‐14 1.23E‐13 1.21E‐14 1.22E‐13 1.65E‐14 9.31E‐14 8.24E‐15 6.18E‐14 5.77E‐15 5.54E‐14 7.75E‐15 7.75E‐14 5.61E‐15 4.94E‐14 2.89E‐15<br />

95 UCL (mg/L) 1.55E‐13 1.83E‐14 1.36E‐13 1.41E‐14 1.12E‐13 1.09E‐14 1.11E‐13 1.45E‐14 8.66E‐14 7.50E‐15 5.66E‐14 5.08E‐15 4.90E‐14 6.86E‐15 7.19E‐14 5.07E‐15 4.48E‐14 2.55E‐15


Table A2‐1 Summary of Predicted COPC Water Concentrations in Each Model Compartment<br />

CoPC CAS # K1S K1B K2S K2B TS TB CBS CBB EPS EPB APS APB KAS KAB COS COB NSS NSB<br />

Min (mg/L) 3.08E‐09 4.65E‐10 3.68E‐09 3.77E‐10 3.81E‐09 2.97E‐10 3.76E‐09 4.09E‐10 2.49E‐09 2.03E‐10 1.33E‐09 1.27E‐10 1.06E‐09 1.68E‐10 1.81E‐09 1.35E‐10 9.32E‐10 6.48E‐11<br />

Anthracene 120‐12‐7 Max (mg/L) 5.04E‐09 6.30E‐10 5.41E‐09 4.89E‐10 4.90E‐09 3.79E‐10 4.83E‐09 5.61E‐10 2.94E‐09 2.54E‐10 1.67E‐09 1.68E‐10 1.44E‐09 2.18E‐10 2.13E‐09 1.70E‐10 1.16E‐09 8.44E‐11<br />

95 UCL (mg/L) 4.28E‐09 5.50E‐10 4.75E‐09 4.35E‐10 4.42E‐09 3.40E‐10 4.37E‐09 4.85E‐10 2.76E‐09 2.30E‐10 1.53E‐09 1.47E‐10 1.28E‐09 1.93E‐10 1.99E‐09 1.53E‐10 1.04E‐09 7.44E‐11<br />

Min (mg/L) 7.00E‐09 1.06E‐09 8.37E‐09 8.58E‐10 8.68E‐09 6.75E‐10 8.56E‐09 9.30E‐10 5.67E‐09 4.61E‐10 3.03E‐09 2.89E‐10 2.40E‐09 3.82E‐10 4.11E‐09 3.06E‐10 2.12E‐09 1.47E‐10<br />

Fluorene 86‐73‐7 Max (mg/L) 1.15E‐08 1.43E‐09 1.23E‐08 1.11E‐09 1.11E‐08 8.62E‐10 1.10E‐08 1.28E‐09 6.69E‐09 5.78E‐10 3.81E‐09 3.82E‐10 3.28E‐09 4.96E‐10 4.85E‐09 3.86E‐10 2.64E‐09 1.92E‐10<br />

95 UCL (mg/L) 9.73E‐09 1.25E‐09 1.08E‐08 9.90E‐10 1.00E‐08 7.74E‐10 9.94E‐09 1.10E‐09 6.29E‐09 5.22E‐10 3.48E‐09 3.35E‐10 2.91E‐09 4.39E‐10 4.52E‐09 3.48E‐10 2.36E‐09 1.69E‐10<br />

Min (mg/L) 8.11E‐08 1.23E‐08 9.70E‐08 9.95E‐09 1.01E‐07 7.83E‐09 9.93E‐08 1.08E‐08 6.58E‐08 5.35E‐09 3.52E‐08 3.35E‐09 2.78E‐08 4.43E‐09 4.77E‐08 3.55E‐09 2.46E‐08 1.71E‐09<br />

1‐Methylnaphthalene 90‐12‐0 Max (mg/L) 1.33E‐07 1.66E‐08 1.43E‐07 1.29E‐08 1.29E‐07 9.99E‐09 1.27E‐07 1.48E‐08 7.76E‐08 6.70E‐09 4.42E‐08 4.43E‐09 3.81E‐08 5.76E‐09 5.63E‐08 4.48E‐09 3.06E‐08 2.23E‐09<br />

95 UCL (mg/L) 1.13E‐07 1.45E‐08 1.25E‐07 1.15E‐08 1.17E‐07 8.98E‐09 1.15E‐07 1.28E‐08 7.29E‐08 6.06E‐09 4.03E‐08 3.88E‐09 3.38E‐08 5.09E‐09 5.24E‐08 4.03E‐09 2.74E‐08 1.96E‐09<br />

Min (mg/L) 6.26E‐08 9.47E‐09 7.49E‐08 7.68E‐09 7.77E‐08 6.04E‐09 7.67E‐08 8.33E‐09 5.08E‐08 4.13E‐09 2.72E‐08 2.59E‐09 2.15E‐08 3.42E‐09 3.68E‐08 2.74E‐09 1.90E‐08 1.32E‐09<br />

2‐Methylnaphthalene 91‐57‐6 Max (mg/L) 1.03E‐07 1.28E‐08 1.10E‐07 9.95E‐09 9.98E‐08 7.71E‐09 9.83E‐08 1.14E‐08 5.99E‐08 5.18E‐09 3.41E‐08 3.42E‐09 2.94E‐08 4.44E‐09 4.35E‐08 3.46E‐09 2.36E‐08 1.72E‐09<br />

95 UCL (mg/L) 8.71E‐08 1.12E‐08 9.68E‐08 8.87E‐09 9.00E‐08 6.93E‐09 8.90E‐08 9.87E‐09 5.63E‐08 4.68E‐09 3.11E‐08 3.00E‐09 2.61E‐08 3.93E‐09 4.05E‐08 3.11E‐09 2.12E‐08 1.52E‐09<br />

Min (mg/L) 1.31E‐07 1.98E‐08 1.57E‐07 1.61E‐08 1.62E‐07 1.26E‐08 1.60E‐07 1.74E‐08 1.06E‐07 8.63E‐09 5.68E‐08 5.41E‐09 4.50E‐08 7.16E‐09 7.70E‐08 5.74E‐09 3.97E‐08 2.76E‐09<br />

Naphthalene 91‐20‐3 Max (mg/L) 2.15E‐07 2.68E‐08 2.30E‐07 2.08E‐08 2.08E‐07 1.61E‐08 2.05E‐07 2.39E‐08 1.25E‐07 1.08E‐08 7.13E‐08 7.15E‐09 6.15E‐08 9.29E‐09 9.09E‐08 7.23E‐09 4.95E‐08 3.59E‐09<br />

95 UCL (mg/L) 1.82E‐07 2.34E‐08 2.02E‐07 1.85E‐08 1.88E‐07 1.45E‐08 1.86E‐07 2.06E‐08 1.18E‐07 9.78E‐09 6.51E‐08 6.27E‐09 5.46E‐08 8.23E‐09 8.46E‐08 6.51E‐09 4.43E‐08 3.17E‐09<br />

Min (mg/L) 4.76E‐09 7.20E‐10 5.69E‐09 5.84E‐10 5.90E‐09 4.59E‐10 5.83E‐09 6.33E‐10 3.86E‐09 3.14E‐10 2.07E‐09 1.97E‐10 1.63E‐09 2.60E‐10 2.80E‐09 2.09E‐10 1.44E‐09 1.00E‐10<br />

Phenanthrene 85‐01‐8 Max (mg/L) 7.81E‐09 9.75E‐10 8.38E‐09 7.56E‐10 7.58E‐09 5.86E‐10 7.47E‐09 8.68E‐10 4.55E‐09 3.93E‐10 2.59E‐09 2.60E‐10 2.23E‐09 3.38E‐10 3.30E‐09 2.63E‐10 1.80E‐09 1.31E‐10<br />

95 UCL (mg/L) 6.62E‐09 8.52E‐10 7.35E‐09 6.74E‐10 6.84E‐09 5.27E‐10 6.77E‐09 7.50E‐10 4.28E‐09 3.56E‐10 2.37E‐09 2.28E‐10 1.98E‐09 2.99E‐10 3.07E‐09 2.37E‐10 1.61E‐09 1.15E‐10<br />

Min (mg/L) 2.40E‐12 3.02E‐13 2.16E‐12 2.38E‐13 1.84E‐12 1.85E‐13 1.82E‐12 2.41E‐13 1.47E‐12 1.28E‐13 9.40E‐13 8.43E‐14 7.70E‐13 1.14E‐13 1.24E‐12 8.61E‐14 7.59E‐13 4.27E‐14<br />

Fluoranthene 206‐44‐0 Max (mg/L) 3.37E‐12 3.96E‐13 2.91E‐12 2.99E‐13 2.36E‐12 2.31E‐13 2.34E‐12 3.15E‐13 1.78E‐12 1.58E‐13 1.18E‐12 1.10E‐13 1.06E‐12 1.48E‐13 1.48E‐12 1.07E‐13 9.46E‐13 5.53E‐14<br />

95 UCL (mg/L) 2.96E‐12 3.51E‐13 2.60E‐12 2.70E‐13 2.14E‐12 2.09E‐13 2.13E‐12 2.78E‐13 1.66E‐12 1.43E‐13 1.08E‐12 9.72E‐14 9.36E‐13 1.31E‐13 1.38E‐12 9.71E‐14 8.57E‐13 4.89E‐14<br />

Min (mg/L) 1.37E‐09 2.08E‐10 1.64E‐09 1.68E‐10 1.70E‐09 1.33E‐10 1.68E‐09 1.83E‐10 1.11E‐09 9.05E‐11 5.96E‐10 5.68E‐11 4.71E‐10 7.51E‐11 8.07E‐10 6.02E‐11 4.16E‐10 2.89E‐11<br />

Benzo(a)anthracene 56‐55‐3 Max (mg/L) 2.25E‐09 2.81E‐10 2.42E‐09 2.18E‐10 2.19E‐09 1.69E‐10 2.15E‐09 2.50E‐10 1.31E‐09 1.13E‐10 7.48E‐10 7.50E‐11 6.44E‐10 9.75E‐11 9.53E‐10 7.58E‐11 5.18E‐10 3.77E‐11<br />

95 UCL (mg/L) ( /L) 11.91E‐09 91E 09 22.46E‐10 46E 10 22.12E‐09 12E 09 11.94E‐10 94E 10 11.97E‐09 97E 09 11.52E‐10 52E 10 11.95E‐09 95E 09 22.16E‐10 16E 10 11.23E‐09 23E 09 11.03E‐10 03E 10 66.83E‐10 83E 10 66.57E‐11 57E 11 55.72E‐10 72E 10 88.63E‐11 63E 11 88.87E‐10 87E 10 66.82E‐11 82E 11 44.64E‐10 64E 10 33.32E‐11 32E 11<br />

Min (mg/L) 1.24E‐11 1.56E‐12 1.12E‐11 1.23E‐12 9.50E‐12 9.56E‐13 9.42E‐12 1.24E‐12 7.60E‐12 6.60E‐13 4.86E‐12 4.36E‐13 3.98E‐12 5.89E‐13 6.39E‐12 4.45E‐13 3.92E‐12 2.20E‐13<br />

Benzo(a)pyrene 50‐32‐8 Max (mg/L) 1.74E‐11 2.04E‐12 1.50E‐11 1.55E‐12 1.22E‐11 1.19E‐12 1.21E‐11 1.63E‐12 9.20E‐12 8.14E‐13 6.11E‐12 5.70E‐13 5.48E‐12 7.66E‐13 7.65E‐12 5.55E‐13 4.89E‐12 2.86E‐13<br />

95 UCL (mg/L) 1.53E‐11 1.81E‐12 1.34E‐11 1.40E‐12 1.11E‐11 1.08E‐12 1.10E‐11 1.44E‐12 8.56E‐12 7.41E‐13 5.59E‐12 5.02E‐13 4.84E‐12 6.78E‐13 7.10E‐12 5.01E‐13 4.43E‐12 2.52E‐13<br />

Min (mg/L) 4.66E‐13 5.87E‐14 4.20E‐13 4.62E‐14 3.57E‐13 3.60E‐14 3.54E‐13 4.67E‐14 2.86E‐13 2.48E‐14 1.83E‐13 1.64E‐14 1.50E‐13 2.22E‐14 2.40E‐13 1.67E‐14 1.47E‐13 8.29E‐15<br />

Benzo(e)pyrene 192‐97‐2 Max (mg/L) 6.55E‐13 7.68E‐14 5.65E‐13 5.81E‐14 4.57E‐13 4.48E‐14 4.55E‐13 6.13E‐14 3.46E‐13 3.06E‐14 2.30E‐13 2.14E‐14 2.06E‐13 2.88E‐14 2.88E‐13 2.09E‐14 1.84E‐13 1.07E‐14<br />

95 UCL (mg/L) 5.75E‐13 6.82E‐14 5.04E‐13 5.25E‐14 4.16E‐13 4.07E‐14 4.14E‐13 5.40E‐14 3.22E‐13 2.78E‐14 2.10E‐13 1.89E‐14 1.82E‐13 2.55E‐14 2.67E‐13 1.88E‐14 1.66E‐13 9.49E‐15<br />

Min (mg/L) 7.33E‐13 9.24E‐14 6.61E‐13 7.27E‐14 5.62E‐13 5.66E‐14 5.58E‐13 7.36E‐14 4.50E‐13 3.91E‐14 2.88E‐13 2.58E‐14 2.35E‐13 3.49E‐14 3.78E‐13 2.63E‐14 2.32E‐13 1.31E‐14<br />

Benzo(b)fluoranthene 205‐99‐2 Max (mg/L) 1.03E‐12 1.21E‐13 8.89E‐13 9.15E‐14 7.20E‐13 7.05E‐14 7.17E‐13 9.65E‐14 5.45E‐13 4.82E‐14 3.62E‐13 3.37E‐14 3.24E‐13 4.53E‐14 4.53E‐13 3.28E‐14 2.89E‐13 1.69E‐14<br />

95 UCL (mg/L) 9.06E‐13 1.07E‐13 7.94E‐13 8.26E‐14 6.55E‐13 6.40E‐14 6.51E‐13 8.50E‐14 5.07E‐13 4.38E‐14 3.31E‐13 2.97E‐14 2.86E‐13 4.02E‐14 4.21E‐13 2.97E‐14 2.62E‐13 1.49E‐14<br />

Min (mg/L) 1.12E‐12 1.41E‐13 1.01E‐12 1.11E‐13 8.59E‐13 8.65E‐14 8.52E‐13 1.12E‐13 6.87E‐13 5.96E‐14 4.39E‐13 3.94E‐14 3.59E‐13 5.33E‐14 5.78E‐13 4.02E‐14 3.54E‐13 1.99E‐14<br />

Benzo(ghi)perylene 191‐24‐2 Max (mg/L) 1.57E‐12 1.85E‐13 1.36E‐12 1.40E‐13 1.10E‐12 1.08E‐13 1.09E‐12 1.47E‐13 8.32E‐13 7.36E‐14 5.52E‐13 5.15E‐14 4.95E‐13 6.92E‐14 6.92E‐13 5.01E‐14 4.42E‐13 2.58E‐14<br />

95 UCL (mg/L) 1.38E‐12 1.64E‐13 1.21E‐12 1.26E‐13 1.00E‐12 9.78E‐14 9.94E‐13 1.30E‐13 7.73E‐13 6.70E‐14 5.05E‐13 4.54E‐14 4.37E‐13 6.13E‐14 6.42E‐13 4.53E‐14 4.00E‐13 2.28E‐14<br />

Min (mg/L) 7.33E‐13 9.24E‐14 6.61E‐13 7.27E‐14 5.62E‐13 5.66E‐14 5.58E‐13 7.36E‐14 4.50E‐13 3.91E‐14 2.88E‐13 2.58E‐14 2.35E‐13 3.49E‐14 3.78E‐13 2.63E‐14 2.32E‐13 1.31E‐14<br />

Benzo(k)fluoranthene 207‐08‐9 Max (mg/L) 1.03E‐12 1.21E‐13 8.89E‐13 9.15E‐14 7.20E‐13 7.05E‐14 7.17E‐13 9.65E‐14 5.45E‐13 4.82E‐14 3.62E‐13 3.37E‐14 3.24E‐13 4.53E‐14 4.53E‐13 3.28E‐14 2.89E‐13 1.69E‐14<br />

95 UCL (mg/L) 9.06E‐13 1.07E‐13 7.94E‐13 8.26E‐14 6.55E‐13 6.40E‐14 6.51E‐13 8.50E‐14 5.07E‐13 4.38E‐14 3.31E‐13 2.97E‐14 2.86E‐13 4.02E‐14 4.21E‐13 2.97E‐14 2.62E‐13 1.49E‐14<br />

Min (mg/L) 1.18E‐12 1.49E‐13 1.06E‐12 1.17E‐13 9.04E‐13 9.11E‐14 8.97E‐13 1.18E‐13 7.24E‐13 6.28E‐14 4.62E‐13 4.15E‐14 3.79E‐13 5.61E‐14 6.09E‐13 4.24E‐14 3.73E‐13 2.10E‐14<br />

Chrysene 218‐01‐9 Max (mg/L) 1.66E‐12 1.94E‐13 1.43E‐12 1.47E‐13 1.16E‐12 1.13E‐13 1.15E‐12 1.55E‐13 8.76E‐13 7.75E‐14 5.81E‐13 5.43E‐14 5.22E‐13 7.29E‐14 7.29E‐13 5.28E‐14 4.65E‐13 2.72E‐14<br />

95 UCL (mg/L) 1.46E‐12 1.73E‐13 1.28E‐12 1.33E‐13 1.05E‐12 1.03E‐13 1.05E‐12 1.37E‐13 8.15E‐13 7.05E‐14 5.32E‐13 4.78E‐14 4.60E‐13 6.46E‐14 6.76E‐13 4.77E‐14 4.21E‐13 2.40E‐14<br />

Min (mg/L) 8.27E‐13 1.04E‐13 7.45E‐13 8.20E‐14 6.34E‐13 6.39E‐14 6.29E‐13 8.30E‐14 5.08E‐13 4.41E‐14 3.24E‐13 2.91E‐14 2.66E‐13 3.94E‐14 4.27E‐13 2.97E‐14 2.62E‐13 1.47E‐14<br />

Dibenzo(a,h)anthracene 53‐70‐3 Max (mg/L) 1.16E‐12 1.36E‐13 1.00E‐12 1.03E‐13 8.13E‐13 7.96E‐14 8.09E‐13 1.09E‐13 6.15E‐13 5.44E‐14 4.08E‐13 3.81E‐14 3.66E‐13 5.12E‐14 5.11E‐13 3.70E‐14 3.26E‐13 1.91E‐14<br />

95 UCL (mg/L) 1.02E‐12 1.21E‐13 8.96E‐13 9.32E‐14 7.39E‐13 7.23E‐14 7.35E‐13 9.59E‐14 5.72E‐13 4.95E‐14 3.73E‐13 3.35E‐14 3.23E‐13 4.53E‐14 4.75E‐13 3.35E‐14 2.96E‐13 1.69E‐14<br />

Min (mg/L) 1.06E‐12 1.34E‐13 9.55E‐13 1.05E‐13 8.13E‐13 8.19E‐14 8.07E‐13 1.06E‐13 6.51E‐13 5.65E‐14 4.16E‐13 3.73E‐14 3.40E‐13 5.04E‐14 5.47E‐13 3.81E‐14 3.36E‐13 1.89E‐14<br />

Indeno(123‐cd)pyrene 193‐39‐5 Max (mg/L) 1.49E‐12 1.75E‐13 1.29E‐12 1.32E‐13 1.04E‐12 1.02E‐13 1.04E‐12 1.39E‐13 7.88E‐13 6.97E‐14 5.23E‐13 4.88E‐14 4.69E‐13 6.56E‐14 6.55E‐13 4.75E‐14 4.18E‐13 2.45E‐14<br />

95 UCL (mg/L) 1.31E‐12 1.55E‐13 1.15E‐12 1.19E‐13 9.47E‐13 9.26E‐14 9.42E‐13 1.23E‐13 7.32E‐13 6.34E‐14 4.78E‐13 4.30E‐14 4.14E‐13 5.81E‐14 6.08E‐13 4.29E‐14 3.79E‐13 2.16E‐14<br />

Min (mg/L) 5.75E‐09 8.69E‐10 6.87E‐09 7.05E‐10 7.13E‐09 5.55E‐10 7.03E‐09 7.64E‐10 4.66E‐09 3.79E‐10 2.49E‐09 2.38E‐10 1.97E‐09 3.14E‐10 3.38E‐09 2.52E‐10 1.74E‐09 1.21E‐10<br />

Pyrene 129‐00‐0 Max (mg/L) 9.42E‐09 1.18E‐09 1.01E‐08 9.13E‐10 9.15E‐09 7.08E‐10 9.02E‐09 1.05E‐09 5.50E‐09 4.75E‐10 3.13E‐09 3.14E‐10 2.70E‐09 4.08E‐10 3.99E‐09 3.17E‐10 2.17E‐09 1.58E‐10<br />

95 UCL (mg/L) 7.99E‐09 1.03E‐09 8.88E‐09 8.13E‐10 8.25E‐09 6.36E‐10 8.17E‐09 9.05E‐10 5.17E‐09 4.29E‐10 2.86E‐09 2.75E‐10 2.39E‐09 3.61E‐10 3.71E‐09 2.85E‐10 1.94E‐09 1.39E‐10


Table A2‐1 Summary of Predicted COPC Water Concentrations in Each Model Compartment<br />

CoPC CAS # K1S K1B K2S K2B TS TB CBS CBB EPS EPB APS APB KAS KAB COS COB NSS NSB<br />

Min (mg/L) 6.01E‐10 9.09E‐11 7.19E‐10 7.37E‐11 7.46E‐10 5.80E‐11 7.36E‐10 8.00E‐11 4.88E‐10 3.96E‐11 2.61E‐10 2.49E‐11 2.06E‐10 3.29E‐11 3.53E‐10 2.63E‐11 1.82E‐10 1.27E‐11<br />

2,4‐Dimethylphenol 105‐67‐9 Max (mg/L) 9.86E‐10 1.23E‐10 1.06E‐09 9.55E‐11 9.58E‐10 7.41E‐11 9.44E‐10 1.10E‐10 5.75E‐10 4.97E‐11 3.27E‐10 3.28E‐11 2.82E‐10 4.27E‐11 4.17E‐10 3.32E‐11 2.27E‐10 1.65E‐11<br />

95 UCL (mg/L) 8.37E‐10 1.08E‐10 9.29E‐10 8.51E‐11 8.64E‐10 6.66E‐11 8.55E‐10 9.48E‐11 5.41E‐10 4.49E‐11 2.99E‐10 2.88E‐11 2.50E‐10 3.78E‐11 3.88E‐10 2.99E‐11 2.03E‐10 1.46E‐11<br />

Min (mg/L) 2.28E‐09 3.44E‐10 2.72E‐09 2.79E‐10 2.83E‐09 2.20E‐10 2.79E‐09 3.03E‐10 1.85E‐09 1.50E‐10 9.88E‐10 9.41E‐11 7.82E‐10 1.24E‐10 1.34E‐09 9.97E‐11 6.90E‐10 4.80E‐11<br />

2,4‐Dinitrophenol 51‐28‐5 Max (mg/L) 3.73E‐09 4.66E‐10 4.01E‐09 3.62E‐10 3.63E‐09 2.80E‐10 3.57E‐09 4.15E‐10 2.18E‐09 1.88E‐10 1.24E‐09 1.24E‐10 1.07E‐09 1.62E‐10 1.58E‐09 1.26E‐10 8.59E‐10 6.25E‐11<br />

95 UCL (mg/L) 3.17E‐09 4.08E‐10 3.52E‐09 3.22E‐10 3.27E‐09 2.52E‐10 3.24E‐09 3.59E‐10 2.05E‐09 1.70E‐10 1.13E‐09 1.09E‐10 9.48E‐10 1.43E‐10 1.47E‐09 1.13E‐10 7.69E‐10 5.51E‐11<br />

Min (mg/L) 4.11E‐10 6.22E‐11 4.92E‐10 5.04E‐11 5.10E‐10 3.97E‐11 5.04E‐10 5.47E‐11 3.34E‐10 2.71E‐11 1.78E‐10 1.70E‐11 1.41E‐10 2.25E‐11 2.42E‐10 1.80E‐11 1.25E‐10 8.67E‐12<br />

Phenol 108‐95‐2 Max (mg/L) 6.75E‐10 8.43E‐11 7.24E‐10 6.54E‐11 6.56E‐10 5.07E‐11 6.46E‐10 7.50E‐11 3.94E‐10 3.40E‐11 2.24E‐10 2.25E‐11 1.93E‐10 2.92E‐11 2.85E‐10 2.27E‐11 1.55E‐10 1.13E‐11<br />

95 UCL (mg/L) 5.72E‐10 7.36E‐11 6.36E‐10 5.82E‐11 5.91E‐10 4.55E‐11 5.85E‐10 6.48E‐11 3.70E‐10 3.07E‐11 2.04E‐10 1.97E‐11 1.71E‐10 2.58E‐11 2.66E‐10 2.04E‐11 1.39E‐10 9.96E‐12<br />

Min (mg/L) 1.94E‐06 2.93E‐07 2.32E‐06 2.38E‐07 2.40E‐06 1.87E‐07 2.37E‐06 2.58E‐07 1.57E‐06 1.28E‐07 8.40E‐07 8.01E‐08 6.65E‐07 1.06E‐07 1.14E‐06 8.49E‐08 5.87E‐07 4.08E‐08<br />

1,2,4‐Trichlorobenzene 120‐82‐1 Max (mg/L) 3.18E‐06 3.97E‐07 3.41E‐06 3.08E‐07 3.09E‐06 2.39E‐07 3.04E‐06 3.53E‐07 1.85E‐06 1.60E‐07 1.05E‐06 1.06E‐07 9.09E‐07 1.37E‐07 1.34E‐06 1.07E‐07 7.31E‐07 5.31E‐08<br />

95 UCL (mg/L) 2.69E‐06 3.47E‐07 2.99E‐06 2.74E‐07 2.78E‐06 2.14E‐07 2.75E‐06 3.05E‐07 1.74E‐06 1.45E‐07 9.63E‐07 9.27E‐08 8.07E‐07 1.22E‐07 1.25E‐06 9.62E‐08 6.55E‐07 4.69E‐08<br />

Min (mg/L) 1.14E‐06 1.72E‐07 1.36E‐06 1.39E‐07 1.41E‐06 1.10E‐07 1.39E‐06 1.51E‐07 9.22E‐07 7.49E‐08 4.93E‐07 4.70E‐08 3.90E‐07 6.21E‐08 6.68E‐07 4.98E‐08 3.45E‐07 2.40E‐08<br />

1,3,5‐Trimethylbenzene 108‐67‐8 Max (mg/L) 1.86E‐06 2.33E‐07 2.00E‐06 1.81E‐07 1.81E‐06 1.40E‐07 1.78E‐06 2.07E‐07 1.09E‐06 9.40E‐08 6.19E‐07 6.21E‐08 5.34E‐07 8.07E‐08 7.89E‐07 6.28E‐08 4.29E‐07 3.12E‐08<br />

95 UCL (mg/L) 1.58E‐06 2.04E‐07 1.76E‐06 1.61E‐07 1.63E‐06 1.26E‐07 1.62E‐06 1.79E‐07 1.02E‐06 8.49E‐08 5.65E‐07 5.44E‐08 4.74E‐07 7.14E‐08 7.34E‐07 5.65E‐08 3.84E‐07 2.75E‐08<br />

Min (mg/L) 2.13E‐09 2.86E‐10 2.17E‐09 2.28E‐10 2.01E‐09 1.78E‐10 1.99E‐09 2.38E‐10 1.45E‐09 1.22E‐10 8.59E‐10 7.90E‐11 6.93E‐10 1.06E‐10 1.14E‐09 8.20E‐11 6.54E‐10 4.01E‐11<br />

Barium 7440‐39‐3 Max (mg/L) 3.15E‐09 3.80E‐10 3.00E‐09 2.91E‐10 2.54E‐09 2.25E‐10 2.53E‐09 3.19E‐10 1.74E‐09 1.52E‐10 1.08E‐09 1.04E‐10 9.52E‐10 1.38E‐10 1.36E‐09 1.03E‐10 8.13E‐10 5.21E‐11<br />

95 UCL (mg/L) 2.73E‐09 3.35E‐10 2.66E‐09 2.61E‐10 2.33E‐09 2.03E‐10 2.31E‐09 2.78E‐10 1.62E‐09 1.38E‐10 9.87E‐10 9.12E‐11 8.42E‐10 1.22E‐10 1.27E‐09 9.27E‐11 7.35E‐10 4.60E‐11<br />

Min (mg/L) 5.09E‐10 7.69E‐11 6.08E‐10 6.24E‐11 6.31E‐10 4.91E‐11 6.23E‐10 6.76E‐11 4.13E‐10 3.35E‐11 2.21E‐10 2.10E‐11 1.75E‐10 2.78E‐11 2.99E‐10 2.23E‐11 1.54E‐10 1.07E‐11<br />

Boron 7440‐42‐8 Max (mg/L) 8.34E‐10 1.04E‐10 8.95E‐10 8.08E‐11 8.10E‐10 6.26E‐11 7.98E‐10 9.27E‐11 4.87E‐10 4.20E‐11 2.77E‐10 2.78E‐11 2.39E‐10 3.61E‐11 3.53E‐10 2.81E‐11 1.92E‐10 1.40E‐11<br />

95 UCL (mg/L) 7.07E‐10 9.10E‐11 7.86E‐10 7.20E‐11 7.31E‐10 5.63E‐11 7.23E‐10 8.01E‐11 4.57E‐10 3.80E‐11 2.53E‐10 2.43E‐11 2.12E‐10 3.19E‐11 3.28E‐10 2.53E‐11 1.72E‐10 1.23E‐11<br />

Min (mg/L) 2.07E‐10 2.63E‐11 1.89E‐10 2.07E‐11 1.63E‐10 1.61E‐11 1.62E‐10 2.10E‐11 1.29E‐10 1.11E‐11 8.14E‐11 7.32E‐12 6.65E‐11 9.89E‐12 1.07E‐10 7.49E‐12 6.52E‐11 3.71E‐12<br />

Cadmium 7440‐43‐9 Max (mg/L) 2.92E‐10 3.44E‐11 2.55E‐10 2.61E‐11 2.08E‐10 2.01E‐11 2.07E‐10 2.76E‐11 1.55E‐10 1.37E‐11 1.02E‐10 9.58E‐12 9.16E‐11 1.29E‐11 1.28E‐10 9.34E‐12 8.13E‐11 4.80E‐12<br />

95 UCL (mg/L) ( /L) 22.57E‐10 57E 10 33.05E‐11 05E 11 22.28E‐10 28E 10 22.35E‐11 35E 11 11.90E‐10 90E 10 11.83E‐11 83E 11 11.88E‐10 88E 10 22.43E‐11 43E 11 11.45E‐10 45E 10 11.25E‐11 25E 11 99.36E‐11 36E 11 88.44E‐12 44E 12 88.09E‐11 09E 11 11.14E‐11 14E 11 11.19E‐10 19E 10 88.44E‐12 44E 12 77.36E‐11 36E 11 44.24E‐12 24E 12<br />

Min (mg/L) 1.94E‐09 2.51E‐10 1.87E‐09 1.99E‐10 1.67E‐09 1.56E‐10 1.65E‐09 2.06E‐10 1.26E‐09 1.07E‐10 7.67E‐10 6.98E‐11 6.23E‐10 9.39E‐11 1.02E‐09 7.20E‐11 5.99E‐10 3.54E‐11<br />

Manganese 7439‐96‐5 Max (mg/L) 2.78E‐09 3.32E‐10 2.55E‐09 2.53E‐10 2.12E‐09 1.95E‐10 2.11E‐09 2.73E‐10 1.51E‐09 1.33E‐10 9.62E‐10 9.15E‐11 8.56E‐10 1.22E‐10 1.21E‐09 8.99E‐11 7.45E‐10 4.59E‐11<br />

95 UCL (mg/L) 2.43E‐09 2.93E‐10 2.26E‐09 2.28E‐10 1.94E‐09 1.77E‐10 1.92E‐09 2.39E‐10 1.41E‐09 1.21E‐10 8.81E‐10 8.05E‐11 7.57E‐10 1.08E‐10 1.13E‐09 8.12E‐11 6.74E‐10 4.05E‐11<br />

Min (mg/L) 1.03E‐08 1.55E‐09 1.22E‐08 1.26E‐09 1.26E‐08 9.88E‐10 1.25E‐08 1.36E‐09 8.29E‐09 6.75E‐10 4.46E‐09 4.24E‐10 3.53E‐09 5.61E‐10 6.04E‐09 4.49E‐10 3.13E‐09 2.16E‐10<br />

Molybdenum 7439‐98‐7 Max (mg/L) 1.68E‐08 2.10E‐09 1.79E‐08 1.63E‐09 1.62E‐08 1.26E‐09 1.60E‐08 1.86E‐09 9.79E‐09 8.46E‐10 5.60E‐09 5.60E‐10 4.83E‐09 7.29E‐10 7.13E‐09 5.66E‐10 3.90E‐09 2.81E‐10<br />

95 UCL (mg/L) 1.43E‐08 1.83E‐09 1.58E‐08 1.45E‐09 1.46E‐08 1.13E‐09 1.45E‐08 1.61E‐09 9.20E‐09 7.65E‐10 5.11E‐09 4.91E‐10 4.29E‐09 6.45E‐10 6.64E‐09 5.09E‐10 3.49E‐09 2.48E‐10<br />

Min (mg/L) 1.16E‐07 1.64E‐08 1.26E‐07 1.31E‐08 1.23E‐07 1.03E‐08 1.22E‐07 1.40E‐08 8.51E‐08 7.06E‐09 4.82E‐08 4.50E‐09 3.86E‐08 6.00E‐09 6.47E‐08 4.71E‐09 3.55E‐08 2.29E‐09<br />

Nickel 7440‐02‐0 Max (mg/L) 1.79E‐07 2.19E‐08 1.80E‐07 1.69E‐08 1.56E‐07 1.30E‐08 1.55E‐07 1.89E‐08 1.01E‐07 8.81E‐09 6.05E‐08 5.93E‐09 5.29E‐08 7.79E‐09 7.67E‐08 5.92E‐09 4.40E‐08 2.98E‐09<br />

95 UCL (mg/L) 1.54E‐07 1.92E‐08 1.59E‐07 1.51E‐08 1.43E‐07 1.18E‐08 1.41E‐07 1.64E‐08 9.48E‐08 7.98E‐09 5.53E‐08 5.20E‐09 4.69E‐08 6.90E‐09 7.13E‐08 5.33E‐09 3.97E‐08 2.63E‐09<br />

Min (mg/L) 2.95E‐09 4.46E‐10 3.53E‐09 3.62E‐10 3.66E‐09 2.85E‐10 3.61E‐09 3.92E‐10 2.39E‐09 1.94E‐10 1.28E‐09 1.22E‐10 1.01E‐09 1.61E‐10 1.73E‐09 1.29E‐10 8.94E‐10 6.22E‐11<br />

Tin 7440‐31‐5 Max (mg/L) 4.84E‐09 6.04E‐10 5.19E‐09 4.69E‐10 4.70E‐09 3.63E‐10 4.63E‐09 5.38E‐10 2.82E‐09 2.44E‐10 1.61E‐09 1.61E‐10 1.38E‐09 2.09E‐10 2.05E‐09 1.63E‐10 1.11E‐09 8.09E‐11<br />

95 UCL (mg/L) 4.10E‐09 5.28E‐10 4.56E‐09 4.18E‐10 4.24E‐09 3.27E‐10 4.19E‐09 4.65E‐10 2.65E‐09 2.20E‐10 1.47E‐09 1.41E‐10 1.23E‐09 1.85E‐10 1.91E‐09 1.47E‐10 9.97E‐10 7.14E‐11<br />

Min (mg/L) 3.63E‐07 5.03E‐08 3.87E‐07 4.03E‐08 3.72E‐07 3.16E‐08 3.67E‐07 4.26E‐08 2.60E‐07 2.17E‐08 1.49E‐07 1.39E‐08 1.20E‐07 1.85E‐08 2.00E‐07 1.45E‐08 1.11E‐07 7.05E‐09<br />

Vanadium 7440‐62‐2 Max (mg/L) 5.52E‐07 6.72E‐08 5.45E‐07 5.17E‐08 4.69E‐07 4.00E‐08 4.66E‐07 5.75E‐08 3.09E‐07 2.70E‐08 1.87E‐07 1.83E‐08 1.64E‐07 2.40E‐08 2.37E‐07 1.82E‐08 1.38E‐07 9.16E‐09<br />

95 UCL (mg/L) 4.75E‐07 5.91E‐08 4.82E‐07 4.63E‐08 4.30E‐07 3.61E‐08 4.26E‐07 5.00E‐08 2.90E‐07 2.45E‐08 1.71E‐07 1.60E‐08 1.45E‐07 2.13E‐08 2.20E‐07 1.64E‐08 1.24E‐07 8.09E‐09<br />

Min (mg/L) 1.46E‐08 1.84E‐09 1.32E‐08 1.45E‐09 1.12E‐08 1.13E‐09 1.12E‐08 1.47E‐09 8.97E‐09 7.78E‐10 5.72E‐09 5.13E‐10 4.68E‐09 6.94E‐10 7.53E‐09 5.24E‐10 4.61E‐09 2.60E‐10<br />

Zinc 7440‐66‐6 Max (mg/L) 2.05E‐08 2.41E‐09 1.77E‐08 1.82E‐09 1.44E‐08 1.40E‐09 1.43E‐08 1.92E‐09 1.09E‐08 9.60E‐10 7.19E‐09 6.72E‐10 6.45E‐09 9.02E‐10 9.01E‐09 6.54E‐10 5.74E‐09 3.37E‐10<br />

95 UCL (mg/L) 1.80E‐08 2.14E‐09 1.58E‐08 1.65E‐09 1.31E‐08 1.28E‐09 1.30E‐08 1.69E‐09 1.01E‐08 8.73E‐10 6.58E‐09 5.91E‐10 5.69E‐09 7.99E‐10 8.36E‐09 5.91E‐10 5.20E‐09 2.97E‐10


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix B: <strong>Marine</strong> Sediment Quality Model<br />

Appendix B <strong>Marine</strong> Sediment Quality Model<br />

2010 Page B-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix B: <strong>Marine</strong> Sediment Quality Model<br />

Table of Contents<br />

Appendix B <strong>Marine</strong> Sediment Quality Model .............................................. B-1<br />

B.1 Introduction ........................................................................................................ B-5<br />

B.1.1 Sediment Fate and Transport Model ............................................................. B-5<br />

B.1.2 <strong>Marine</strong> Sediment Quality Model Function ..................................................... B-6<br />

B.2 Principal Model Processes .............................................................................. B-10<br />

B.2.1 Water Sediment COPC Partitioning ............................................................ B-10<br />

B.2.2 Sediment Deposition ................................................................................... B-12<br />

B.2.3 Bioturbation.................................................................................................. B-13<br />

B.2.4 Surface Sediment Burial and Transfer to Deep Sediment .......................... B-13<br />

B.2.5 Degradation of COPC in Sediment .............................................................. B-14<br />

B.3 Additional Parameter Values Used in the Model ............................................. B-16<br />

B.3.1 Water Concentration .................................................................................... B-16<br />

B.3.2 Sediment Bulk Density ................................................................................ B-17<br />

B.3.3 Total Suspended Sediment Concentration .................................................. B-17<br />

B.3.4 Sediment Particle Size ................................................................................ B-18<br />

B.4 References ...................................................................................................... B-19<br />

B.4.1 Literature Cited ............................................................................................ B-19<br />

Attachment B1 Sediment Fate and Transport Model Equations and<br />

Documentation ..................................................................... B1-1<br />

Attachment B2 Sediment Fate and Transport Model Results ........................ B2-1<br />

List of Tables<br />

Table B-1 Sediment Types Associated with Model Compartments a<br />

....................... B-5<br />

Table B-2 COPC-Specific Water-Sediment Partition Coefficient (KD) Values<br />

Used in the <strong>Marine</strong> Sediment Quality Model ......................................... B-11<br />

Table B-3 COPC Sediment Decay Constant (k) Used in the <strong>Marine</strong> Sediment<br />

Quality Model ....................................................................................... B-15<br />

Table B-4 Average Silt and Clay Fraction of Surface Sediments from <strong>Kitimat</strong> 1,<br />

<strong>Kitimat</strong> 2 and Terminal Model Compartments ....................................... B-18<br />

Table B2-1 Summary of Predicted 50 Year Maximum COPC Sediment<br />

Concentrations (mg/kg DW) in Each Model Compartment ................... B2-6<br />

2010 Page B-3


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix B: <strong>Marine</strong> Sediment Quality Model<br />

List of Figures<br />

Figure B-1 <strong>Marine</strong> Water Quality Model Compartments .......................................... B-7<br />

Figure B-2 <strong>Marine</strong> Sediment Quality Model Conceptual Diagram ............................ B-9<br />

Figure B2-1 Naphthalene Concentrations in Near-Shore (Ns) and Off-Shore<br />

(Os) Sediment ...................................................................................... B2-4<br />

Figure B2-2 Vanadium Concentrations in Near-shore (Ns) and Off-shore (Os)<br />

Sediment .............................................................................................. B2-5<br />

Page B-4 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix B: <strong>Marine</strong> Sediment Quality Model<br />

B.1 Introduction<br />

B.1.1 Sediment Fate and Transport Model<br />

Environmental fate and transport models are often used to simulate fate and transport of contaminants in<br />

environmental media (e.g., water, sediment), and can be useful tools <strong>for</strong> extending limited data to<br />

predictions of future conditions. Two independent mass balance compartment models are used to evaluate<br />

the likely fate of chemicals of potential concern (COPC) that may be released from the marine<br />

environment with storm water via an offshore per<strong>for</strong>ated pipe or by atmospheric deposition. The first<br />

model estimates the fate and transport of COPC in water, hereafter referred to as the <strong>Marine</strong> Water<br />

Quality Model (see Appendix A). The second model as described in this appendix simulates deposition of<br />

COPC into the marine sediment. The <strong>Marine</strong> Sediment Quality Model predicts concentrations of COPC<br />

in near-shore and offshore sediment of nine model compartments.<br />

See Figure B-1 <strong>for</strong> the configuration of <strong>Kitimat</strong> Arm, the northern end of Douglas Channel. The results of<br />

the <strong>Marine</strong> Sediment Water Quality Model are used in the calculation of exposure point concentrations<br />

(EPC) <strong>for</strong> the KIs assessed in the <strong>Marine</strong> ERA. The detailed equations and documentation representing<br />

the <strong>Marine</strong> Sediment Quality Model in Stella® <strong>for</strong>mat are provided in Attachment B1.<br />

The <strong>Marine</strong> Sediment Quality Model uses a mass balance approach to account <strong>for</strong> the potential<br />

accumulation of COPC in marine sediments over a period of up to 50 years. The <strong>Marine</strong> Sediment<br />

Quality Model uses a commercially available modeling software (Stella® Version 8.1.1). The model<br />

predicts concentrations of COPC in the marine sediment of eighteen marine sediment model<br />

compartments (see Table B-1), representing the near-shore sediments (i.e., intertidal sediments, including<br />

marsh and mudflat sediments) underlying nine surface water compartments, and the offshore sediments<br />

underlying nine bottom water compartments, described in the <strong>Marine</strong> Water Quality Model.<br />

Table B-1 Sediment Types Associated with Model Compartments a<br />

Near-shore (intertidal)<br />

Offshore (subtidal)<br />

Model Compartments<br />

Sediment Type<br />

Sediment Type<br />

<strong>Kitimat</strong> 1 (K1) Salt Marsh / Near-shore Offshore<br />

<strong>Kitimat</strong> 2 (K2) Salt Marsh / Near-shore Offshore<br />

Terminal (T) Salt Marsh / Near-shore Offshore<br />

Clio Bay (CB) Salt Marsh / Near-shore Offshore<br />

Emsley Point (EP) Salt Marsh / Near-shore Offshore<br />

West Side Coste Island (CO) Salt Marsh / Near-shore Offshore<br />

Amos Passage (AP) Salt Marsh / Near-shore Offshore<br />

Kildala Arm (KA) Salt Marsh / Near-shore Offshore<br />

Nanakwa Shoal (NS) Salt Marsh / Near-shore Offshore<br />

NOTE:<br />

a Based on the compartments identified in Appendix A <strong>for</strong> the <strong>Marine</strong> Water Quality Model.<br />

2010 Page B-5


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix B: <strong>Marine</strong> Sediment Quality Model<br />

The Stella ® modelling framework is a mass balance modelling system that allows the user to construct<br />

models using three basic components:<br />

1. Stocks, compartments that hold and account <strong>for</strong> mass (COPC).<br />

2. Flows, links between compartments that act as valves and allow mass (COPC) to be transferred at<br />

rates that are specified by controlling equations<br />

3. Converters, generally parameters or variables that are entered into the model in order to drive<br />

equations<br />

This is a mass balance model because it is based on the fundamental principle that mass can neither be<br />

created nor destroyed (except as specified by equations describing specific processes such as microbial<br />

degradation of hydrocarbons). It is a compartment model because it consists of compartments configured<br />

to spatially represent the natural environment (i.e., each compartment represents different areas of<br />

sediments). The <strong>Marine</strong> Sediment Quality Model simulates the behaviour of COPC in the marine<br />

environment over a time period of 50 years, using a time step (dt) of one day.<br />

B.1.2 <strong>Marine</strong> Sediment Quality Model Function<br />

Five fundamental processes are responsible <strong>for</strong> driving the flow of mass in the <strong>Marine</strong> Sediment Quality<br />

Model:<br />

1. partitioning of COPC between water and suspended sediments<br />

2. deposition of suspended particles and absorbed COPC into the sediment layer<br />

3. bioturbation of the surface sediment layer by benthic organisms<br />

4. transfer of surface sediments into a deeper sediment layer through burial by deposited sediments<br />

5. degradation and decomposition of COPC in the surface sediment due to physical, chemical and<br />

microbial processes<br />

These processes are described in detail below, and in the model equations and parameters presented in<br />

Attachment B1. The <strong>Marine</strong> Sediment Quality Model does not attempt to describe the short-term<br />

processes of erosion and deposition of near-shore or intertidal sediments, since these processes tend to be<br />

site specific and result in sediment redistribution, rather than processes that determine COPC<br />

concentrations in sediment, as outlined above.<br />

See Figure B-2 <strong>for</strong> a conceptual <strong>Marine</strong> Sediment Quality Model representing the sediment compartments<br />

(stocks) and fluxes between compartments (flows). The basic structure of the model includes two stocks<br />

(rectangular boxes) that model the mass of COPC present in the surface sediment layer (top 5 cm of<br />

sediment; SS_mass) and the deep sediment layer (DS_mass), respectively. The selection of a surface<br />

sediment layer of 5 cm is reasonable. For example, in San Francisco Bay, the Regional Monitoring Plan<br />

Sediment Working Group (RMPSWG 1999) concluded that there is no uni<strong>for</strong>m active sediment layer or<br />

uni<strong>for</strong>m burial depth in San Francisco Bay that could be used <strong>for</strong> sediment monitoring, but that sampling<br />

the top 5 cm provides a reasonable estimate of the most recently deposited material, and is the layer to<br />

which most organisms are exposed.<br />

Page B-6 2010


100 m<br />

300 m<br />

100 m<br />

CONTRACTOR:<br />

100 m<br />

100 m<br />

100 m<br />

100 m<br />

200 m<br />

Maitland<br />

Island<br />

200 m<br />

100 m<br />

Jacques Whit<strong>for</strong>d AXYS Ltd.<br />

100 m<br />

100 m<br />

100 m<br />

300 m<br />

DC<br />

Loretta<br />

Island<br />

200 m<br />

100 m<br />

NS<br />

200 m<br />

200 m<br />

<strong>Kitimat</strong><br />

Terminal<br />

Emsley<br />

Cove<br />

CO<br />

EP<br />

Coste<br />

Island<br />

200 m<br />

200 m<br />

T<br />

AP<br />

K2<br />

CB<br />

E N B R I D G E N O R T H E R N G A T E W A Y P R O J E C T<br />

PREPARED BY: PREPARED FOR:<br />

SCALE:<br />

K1<br />

Clio<br />

Bay<br />

<strong>Kitimat</strong><br />

Gobeil<br />

Bay<br />

KA<br />

<strong>Marine</strong> Water Quality<br />

Model Compartments<br />

Kitamaat<br />

Village<br />

100 m<br />

Pipeline Route<br />

Security Fence<br />

Terrestrial PDA<br />

<strong>Marine</strong> PEAA<br />

Watershed Boundary<br />

Bathymetric Contour (100 m)<br />

Railway<br />

Road<br />

0 1 2 3 4 5<br />

FIGURE NUMBER:<br />

PROJECTION:<br />

Kilometres<br />

JWA-1048334-1630<br />

Reference: Pipeline Route R<br />

UTM 9<br />

B-1<br />

1:220,000<br />

NP<br />

DATE:<br />

AUTHOR: APPROVED BY:<br />

DATUM:<br />

20090911<br />

CM<br />

NAD 83<br />

R:\2009Fiscal\1048334_<strong>Northern</strong><strong>Gateway</strong>_ESA_2009


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix B: <strong>Marine</strong> Sediment Quality Model<br />

The surface sediment layer has one inflow, sediment deposition, as well as two outflows, decay and<br />

burial, to the deep sediment layer. The deep sediment layer serves as the final destination <strong>for</strong> COPC, and<br />

concentrations of COPC are not calculated <strong>for</strong> this sediment layer. Benthic invertebrates and fish are<br />

assumed to be largely confined to the surface sediment layer, which is assumed to correspond to the<br />

sediment layer where oxygen is present and available. The boundary between the surface sediment layer<br />

and the deep sediment layer is assumed to correspond to the boundary between oxidizing and reducing<br />

(anoxic) conditions in the sediments.<br />

The deposition of COPC to the surface sediment layer can be determined from the concentration of COPC<br />

in suspended sediments (Ctss; mg COPC/kg dry sediment) deposited on the surface sediment layer. This<br />

calculation is done using estimated COPC concentrations in water (Cwater; mg/m 3 ) from the <strong>Marine</strong><br />

Water Quality Model (see Appendix A), as well as estimated suspended sediment concentrations in the<br />

water (TSS; mg/m 3 ), water sediment partitioning coefficients (KD; L/kg or m 3 /kg) that govern the<br />

partitioning of the COPC between water and suspended sediments, and the deposition rate at which<br />

sediments are accumulated onto the surface sediment layer.<br />

The concentrations of COPC in seawater used as input to the <strong>Marine</strong> Sediment Quality Model are the<br />

arithmetic mean daily water concentrations <strong>for</strong> a typical year (see Appendix A). The model repeats this<br />

typical year of water-quality data <strong>for</strong> up to 50 years to estimate the potentially worst-case sediment<br />

quality conditions at the end of this period of time. The COPC concentrations in the surface water layer<br />

are applied to the near-shore sediment compartments, whereas COPC concentrations in the bottom water<br />

layer are applied to the offshore sediment compartments.<br />

Using the above in<strong>for</strong>mation, the concentration of COPC in the shallow sediment (Css, mg/kg dry weight)<br />

is calculated using the mass of COPC in the surface sediment layer (SSmass, kg), the sediment bulk<br />

density (SSbd, kg/m 3 ) and the moisture content of the bulk sediment. It is further adjusted <strong>for</strong> the<br />

expected sediment grain size (i.e., the fraction of silt and clay in the sediment layer).<br />

Contaminants of potential concern may be lost from the surface sediment layer by two mechanisms:<br />

decay (which applies only to organic COPC) and burial (representing the transfer of COPC into the deep<br />

sediment layer). The rate at which organic COPC are decomposed in sediment is chemical-specific and is<br />

driven by a decay constant (kdecay). The rate of sediment burial is regulated by the sediment deposition<br />

rate.<br />

The <strong>Marine</strong> Sediment Quality Model treats each COPC individually. During a model run, the individual<br />

characteristics of each COPC are automatically selected using a controller identified as Analyte Master,<br />

which specifies the appropriate chemical-specific values of kdecay and KD <strong>for</strong> the model to use.<br />

The conceptual model (see Figure B-2) represents the fate and transport of a COPC in one sediment<br />

model compartment. The model was then arrayed (replicated in parallel stacked models) so as to<br />

simultaneously model the fate of COPC in the sediment of each of the 18 model compartments. The<br />

model compartments represent discrete areas and water masses, such as portions of <strong>Kitimat</strong> Arm. Arrayed<br />

stocks, flows, and converters are represented by stacked icons (e.g., TSS). Single icons (e.g., Julian) that<br />

are not stacked represent a single quantity or value that applies to all 18 arrayed compartments.<br />

Page B-8 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix B: <strong>Marine</strong> Sediment Quality Model<br />

B.2 Principal Model Processes<br />

B.2.1 Water Sediment COPC Partitioning<br />

In aquatic environments, COPC may undergo reactions with surface binding sites on particles suspended<br />

in the water. Reactions in which the chemical is bound to the solid matrix are referred to as sorption<br />

reactions, and a chemical that is bound to the solid is said to be sorbed.<br />

For inorganic COPC, the water sediment partition coefficient (KD; expressed in L/kg or m 3 /kg, U.S.<br />

EPA 1999) is the equilibrium ratio of the COPC concentration in the suspended sediment solid phase<br />

(mg/kg dry weight) to the COPC concentration in the dissolved phase (expressed in mg/L). Values of KD<br />

expressed in units of L/kg can be converted into units of m 3 /kg by dividing them by a factor of 1,000. In<br />

aquatic systems, the binding of COPC to suspended particles influences the mass of COPC that may be<br />

deposited into bed sediments as a result of the settling of suspended sediments. High KD values result in<br />

stronger binding and also in a greater fraction of the total COPC present in water binding to suspended<br />

particles. The COPC concentration in the suspended sediments (Ctss) there<strong>for</strong>e depends upon the KD<br />

value, the total concentration of COPC in the water, and the availability of suspended sediments to<br />

provide binding sites.<br />

For organic COPC, sorption reactions are usually based upon the partitioning of the organic substance<br />

with organic carbon present in sediment or suspended sediment. The KOC value represents the equilibrium<br />

partitioning between water and organic carbon phases in the sediment. The KOC value, which is usually<br />

estimated from the KOW value (based on equilibrium partitioning of organic substances between water and<br />

octanol), can be converted into an equivalent KD value by adjusting <strong>for</strong> the availability of organic carbon<br />

in the suspended sediment.<br />

KD values were adopted from multiple sources (see Table B-2). Data <strong>for</strong> metals are preferentially based<br />

on Balls’ (1989) compilation of KD values <strong>for</strong> certain metals in European coastal waters and secondarily<br />

on a U.S. EPA (2005) review of KD values <strong>for</strong> surface waters. The KD values <strong>for</strong> boron and manganese<br />

are based on Lemarchand (2005) and Drndarski et al. (1990), respectively. Values <strong>for</strong> organics are based<br />

on standard equations (U.S. EPA 1999; Schwarzenbach et al. 2002) relating KD to their respective<br />

octanol-water partition coefficient (KOW), and the assumed carbon content of suspended sediments. Total<br />

petroleum hydrocarbon (TPH) aromatic and aliphatic fractions are assigned KD values based on the KOW<br />

values of individual hydrocarbons representative of each TPH fraction.<br />

Page B-10 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix B: <strong>Marine</strong> Sediment Quality Model<br />

Table B-2 COPC-Specific Water-Sediment Partition Coefficient (KD) Values<br />

Used in the <strong>Marine</strong> Sediment Quality Model<br />

Substance<br />

KD<br />

(L/kg)<br />

Barium 10,000 U.S. EPA (2005)<br />

Boron 40 Lemarchand (2005)<br />

Cadmium 100,000 Balls (1989)<br />

Manganese 750,000 Drndarski et al. (1990)<br />

Molybdenum 25,119 U.S. EPA (2005)<br />

Nickel 31,623 U.S. EPA (2005)<br />

Tin 79,433 U.S. EPA (2005)<br />

Vanadium 5,012 U.S. EPA (2005)<br />

Zinc 100,000 Balls (1989)<br />

Reference<br />

Benzene 4 Calculated using KOC and equations in U.S. EPA (1999)<br />

Toluene 15 Calculated using KOC and equations in U.S. EPA (1999)<br />

Ethylbenzene 39 Calculated using KOC and equations in U.S. EPA (1999)<br />

Xylenes (m,o,p) 49 Average of xylene isomers calculated using KOC and<br />

equations in U.S. EPA (1999)<br />

1-Methylnaphthalene 228 Calculated using KOC and equations in U.S. EPA (1999)<br />

2-Methylnaphthalene 223 Calculated using KOC and equations in U.S. EPA (1999)<br />

Acenaphthene 244 Calculated using KOC and equations in U.S. EPA (1999)<br />

Acenaphthylene 308 Calculated using KOC and equations in U.S. EPA (1999)<br />

Anthracene 972 Calculated using KOC and equations in U.S. EPA (1999)<br />

Benzo(a)anthracene 15,412 Calculated using KOC and equations in U.S. EPA (1999)<br />

Benzo(a)pyrene 30,750 Calculated using KOC and equations in U.S. EPA (1999)<br />

Benzo(b)fluoranthene 40,536 Calculated using KOC and equations in U.S. EPA (1999)<br />

Benzo(e)pyrene 84,693 Calculated using KOC and equations in U.S. EPA (1999)<br />

Benzo(ghi)perylene 97,240 Calculated using KOC and equations in U.S. EPA (1999)<br />

Benzo(k)fluoranthene 38,712 Calculated using KOC and equations in U.S. EPA (1999)<br />

Chrysene 15,412 Calculated using KOC and equations in U.S. EPA (1999)<br />

Dibenz(a,h)anthracene 97,240 Calculated using KOC and equations in U.S. EPA (1999)<br />

Fluoranthene 3,075 Calculated using KOC and equations in U.S. EPA (1999)<br />

Fluorene 487 Calculated using KOC and equations in U.S. EPA (1999)<br />

Indeno(1,2,3-cd)pyrene 122,418 Calculated using KOC and equations in U.S. EPA (1999)<br />

Naphthalene 61 Calculated using KOC and equations in U.S. EPA (1999)<br />

Phenanthrene 972 Calculated using KOC and equations in U.S. EPA (1999)<br />

Pyrene 2,443 Calculated using KOC and equations in U.S. EPA (1999)<br />

2010 Page B-11


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix B: <strong>Marine</strong> Sediment Quality Model<br />

Table B-2 COPC-Specific Water-Sediment Partition Coefficient (KD) Values<br />

Used in the <strong>Marine</strong> Sediment Quality Model (cont’d)<br />

Substance<br />

KD<br />

(L/kg)<br />

Reference<br />

Aromatic >C8-C10 119 Calculated using KOC and equations in U.S. EPA (1999)<br />

Aromatic >C10 - C12 188 Calculated using KOC and equations in U.S. EPA (1999)<br />

Aromatic >C12 - C16 376 Calculated using KOC and equations in U.S. EPA (1999)<br />

Aromatic >C16 - C21 1,189 Calculated using KOC and equations in U.S. EPA (1999)<br />

Aromatic >C21- C32 9,442 Calculated using KOC and equations in U.S. EPA (1999)<br />

Aliphatic >C6 - C8 299 Calculated using KOC and equations in U.S. EPA (1999)<br />

Aliphatic >C8 - C10 2,372 Calculated using KOC and equations in U.S. EPA (1999)<br />

Aliphatic >C10 - C12 18,839 Calculated using KOC and equations in U.S. EPA (1999)<br />

Aliphatic >C12 - C16 375,890 Calculated using KOC and equations in U.S. EPA (1999)<br />

Aliphatic >C16 - C21 47,321,801 Calculated using KOC and equations in U.S. EPA (1999)<br />

Aliphatic >C21 - C32 47,321,801 Calculated using KOC and equations in U.S. EPA (1999)<br />

2,4-dimethylphenol 6 Calculated using KOC and equations in U.S. EPA (1999)<br />

2,4-dinitrophenol 1 Calculated using KOC and equations in U.S. EPA (1999)<br />

Phenol 1 Calculated using KOC and equations in U.S. EPA (1999)<br />

1,3,5-trimethylbenzene 81 Calculated using KOC and equations in U.S. EPA (1999)<br />

1,2,4-trichlorobenzene 387 Calculated using KOC and equations in U.S. EPA (1999)<br />

B.2.2 Sediment Deposition<br />

The sediment deposition rate (Dep, cm/y) within an aquatic system is a function of the water current<br />

velocity, the particle settling velocity, the depth of the water column, and the concentration of suspended<br />

sediment. There<strong>for</strong>e, if estimates of these parameters are available, it is possible to predict the rate of<br />

sediment deposition. However, it would be difficult to accurately model sedimentation due to the variable<br />

tidal currents and freshwater inputs in the area. As an alternative, measured average sedimentation rates<br />

within <strong>Kitimat</strong> Arm were used to estimate the long-term rate of sediment deposition (Macdonald 1983;<br />

Harris 1999). Macdonald (1983) reported sedimentation rates of 0.21 and 0.47 cm/y, respectively, <strong>for</strong><br />

compacted and uncompacted offshore sediments. These are similar to values published by Harris (1999)<br />

<strong>for</strong> offshore sediment cores collected near Kitamaat Village (0.5 to 0.61 cm/y). As surface or<br />

uncompacted sediments are considered, a deposition rate of 0.5 cm/y is assumed <strong>for</strong> offshore sediment.<br />

This value is also applied to mudflats and saltmarshes as site-specific sedimentation rates were not<br />

available <strong>for</strong> these sediment types.<br />

The benefit of applying values measured from the specific area or nearby areas is that the measured<br />

deposition rates are the product of all factors affecting the deposition rate and provide realistic long-term<br />

average values. For example, flocculation of materials carried by fresh water upon contact with salt water<br />

is known to increase sedimentation in estuaries yet is a difficult process to model (Kranck 1981; Hill et al.<br />

2000). Long-term sedimentation rates, however, capture spatial and temporal variation in flocculation<br />

Page B-12 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix B: <strong>Marine</strong> Sediment Quality Model<br />

through the area. One limitation of using published values reported on an annual basis is the inability to<br />

have sedimentation rates vary simultaneously with water COPC concentrations at a timescale much finer<br />

than the annual scale reported <strong>for</strong> sedimentation rates. However, this inability is not a problem <strong>for</strong> the<br />

present study because it aims to estimate average COPC concentrations in sediment over a longer time<br />

scale and is there<strong>for</strong>e not greatly concerned with short-term fluctuations.<br />

Additionally, the organic COPC concentrations of the surface sediment layer (Css) have a non-linear<br />

positive relationship with sedimentation rate because, as sedimentation and burial rates increase, the mass<br />

of organic COPC lost to decay in the surface sediment layer decreases due to the shorter residency time of<br />

sediment in this layer. The maximum concentration in the surface sediment layer is limited by the<br />

concentration of COPC in the total suspended sediment (Ctss).<br />

B.2.3 Bioturbation<br />

The surface sediment layer is defined by the thickness of the sediment layer within which most benthic<br />

organisms contact sediment. The benthic activity that defines this layer also causes the vertical and<br />

horizontal mixing (bioturbation) of the surface sediment. Rhoads (1967) states that surface sediments,<br />

where deposit feeders are abundant, may be completely reworked several times be<strong>for</strong>e being isolated<br />

from further biological activity by additional sedimentation. The layer of greatest bioturbation is typically<br />

assumed to be approximately 5 cm in thickness (Mazik and Elliott 2000).<br />

While a few benthic organisms may cause slight mixing of sediment to a greater depth, assuming a<br />

greater thickness to the surface sediment layer would be less conservative because it would result in<br />

greater residency time in the surface layer and allow <strong>for</strong> more degradation of organic COPC to occur<br />

(Section B.2.5). There<strong>for</strong>e, while bioturbation is not directly modelled, it is implicitly included in the<br />

model by assuming that the sediment COPC concentrations will be homogeneous within the surface layer<br />

to a depth of 5 cm.<br />

B.2.4 Surface Sediment Burial and Transfer to Deep Sediment<br />

As suspended sediments are deposited on the sediment layer over time, deeper sediments slowly become<br />

buried. The rate of sediment burial, on average, is equal to the rate of sediment deposition because the<br />

surface sediment layer is assumed to have a static thickness (5 cm). Once transferred to the deep sediment<br />

layer, COPC are assumed to become unavailable to biota (particularly plants, invertebrates and<br />

vertebrates) as the zone of greatest biological activity is the surface sediment layer. As the deep sediment<br />

layer is typically anoxic with little biological activity, the rate of chemical degradation in the deep<br />

sediment layer is also assumed to be negligible. In addition, some COPC may be rendered less available<br />

to biota as a result of binding to sulphides that are expected to be present in the anoxic sediments.<br />

The rate of sediment deposition, and there<strong>for</strong>e sediment burial, increases the surface-layer sediment<br />

concentration of organic COPC. This increase occurs because a faster burial rate reduces the period of<br />

time available <strong>for</strong> COPC to be degraded in the mixed sediment layer (see Section B.2.5); however, trace<br />

elements do not decay.<br />

2010 Page B-13


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix B: <strong>Marine</strong> Sediment Quality Model<br />

B.2.5 Degradation of COPC in Sediment<br />

Organic COPC, such as hydrocarbons, typically degrade over time in the sediments due to physical,<br />

chemical and microbial processes (Leahy and Colwell 1990). The greatest decomposition typically occurs<br />

in the surface sediment layer because of the availability of oxygen and higher levels of biological activity.<br />

Certain COPC may persist <strong>for</strong> long periods of time (e.g., high molecular weight PAHs), whereas others<br />

degrade more rapidly (e.g., low molecular weight hydrocarbons such as benzene). The average residence<br />

time of sediment in the surface sediment layer influences the relative amount of the chemical lost<br />

compared to the amount deposited through sedimentation.<br />

The degradation rate of a compound in an environmental medium is typically expressed as a chemical’s<br />

half-life (days, d), which is the time required <strong>for</strong> 50% of the initial mass of COPC to degrade. Half-lives<br />

may be converted to decay constants (k, 1/d) to evaluate the residual concentrations of COPC in surface<br />

sediment compartments. Assuming that the degradation follows first-order kinetics (typical <strong>for</strong><br />

degradation reactions), then the half-life may be converted to a decay constant using the equation:<br />

k = 0.693/half-life<br />

The decay constant is used in the following exponential decay function to model the remaining mass of<br />

chemical over time:<br />

Where:<br />

M(t) = M x e -kt<br />

M(t) = the amount (mass) of COPC at time t<br />

M = the initial mass of COPC at time 0<br />

e = the base of natural logarithms (approximately 2.71828)<br />

k = the decay constant<br />

t = the amount of time elapsed (days)<br />

The half-lives <strong>for</strong> COPC assessed were derived from Mackay et al. (2000) and calculated decay constants<br />

<strong>for</strong> each COPC (see Table B-3).<br />

Page B-14 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix B: <strong>Marine</strong> Sediment Quality Model<br />

Table B-3 COPC Sediment Decay Constant (k) Used in the <strong>Marine</strong> Sediment<br />

Quality Model<br />

Substance<br />

COPC Sediment Decay Constant<br />

(kd = 0.693/half-life; 1/d)<br />

Barium 0 a<br />

Boron 0 1<br />

Cadmium 0 1<br />

Manganese 0 1<br />

Molybdenum 0 1<br />

Nickel 0 1<br />

Tin 0 1<br />

Vanadium 0 1<br />

Zinc 0 1<br />

Benzene 0.00979<br />

Toluene 0.00302<br />

Ethylbenzene 0.00302<br />

Xylenes (m,o,p) 0.00302<br />

1-Methylnaphthalene 0.00302<br />

2-Methylnaphthalene 0.00302<br />

Acenaphthene 0.00098<br />

Acenaphthylene 0.00098<br />

Anthracene 0.00098<br />

Benzo(a)anthracene 0.00030<br />

Benzo(a)pyrene 0.00030<br />

Benzo(b)fluoranthene 0.00030<br />

Benzo(e)pyrene 0.00030<br />

Benzo(ghi)perylene 0.00030<br />

Benzo(k)fluoranthene 0.00030<br />

Chrysene 0.00030<br />

Dibenz(a,h)anthracene 0.00030<br />

Fluoranthene 0.00030<br />

Fluorene 0.00098<br />

Indeno(1,2,3-cd)pyrene 0.00030<br />

Naphthalene 0.00302<br />

Phenanthrene 0.00098<br />

Pyrene 0.00030<br />

2010 Page B-15


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix B: <strong>Marine</strong> Sediment Quality Model<br />

Table B-3 COPC Sediment Decay Constant (k) Used in the <strong>Marine</strong> Sediment<br />

Quality Model (cont’d)<br />

Substance<br />

COPC Sediment Decay Constant<br />

(kd = 0.693/half-life; 1/d)<br />

Aromatic >C8-C10<br />

0.00302<br />

Aromatic >C10 - C12<br />

0.00098<br />

Aromatic >C12 - C16<br />

0.00030<br />

Aromatic >C16 - C21<br />

0.00030<br />

Aromatic >C21- C32<br />

0.00030<br />

Aliphatic > C6 - C8<br />

0.00302<br />

Aliphatic >C8 - C10<br />

0.00302<br />

Aliphatic >C10 - C12<br />

0.00302<br />

Aliphatic >C12 - C16<br />

0.00302<br />

Aliphatic >C16 - C21<br />

0.00302<br />

Aliphatic >C21 - C32<br />

0.00098<br />

2,4-dimethylphenol 0.03025<br />

2,4-dinitrophenol 0.00302<br />

Phenol 0.03025<br />

1,3,5-trimethylbenzene 0.00302<br />

1,2,4-trichlorobenzene 0.00098<br />

NOTE:<br />

a Trace elements do not decay.<br />

SOURCE: Decay constants obtained from MacKay et al. (2000)<br />

B.3 Additional Parameter Values Used in the Model<br />

B.3.1 Water Concentration<br />

The concentrations of COPC in the water (Cwater, kg/m 3 ) of each model compartment are calculated<br />

using the Water Quality Model (Appendix A). From the Water Quality Model, a one-year time series of<br />

daily average COPC concentrations is obtained <strong>for</strong> each model compartment. This typical annual cycle of<br />

COPC concentrations is repeated over a 50-year period in the <strong>Marine</strong> Sediment Quality Model. To<br />

produce a conservative estimate of COPC accumulation in sediment, the <strong>Marine</strong> Sediment Quality Model<br />

was run <strong>for</strong> a 50-year period and maximum concentrations at the end of this period were used.<br />

Cwater directly affects the surface sediment concentration (Css) by influencing the total suspended<br />

sediment COPC concentrations (Ctss). The suspended sediment COPC concentrations will increase in a<br />

manner directly proportional to the water concentration.<br />

Page B-16 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix B: <strong>Marine</strong> Sediment Quality Model<br />

B.3.2 Sediment Bulk Density<br />

The bulk density of the surface sediment (SSbd) is the mass of sediment (kg) per unit of volume (m 3 ) and<br />

is typically expressed on a dry weight basis. To calculate the wet weight bulk density of the surface<br />

sediment, the following equation was used (as described in Macdonald 1983):<br />

Where:<br />

SSbd = MS + MW / VS + VW ,<br />

MS = dry mass of the solids<br />

MW = mass of occluded water<br />

VS = volume of the solids<br />

VW = volume of occluded water<br />

Both MS and MW can be determined using the moisture content of the sediment. Empirical measurements<br />

of the moisture content of sediment samples collected in July 2008 revealed an average moisture content<br />

of 55% by weight (n = 10). Assuming a 1 kg sediment sample, this result would thus represent 0.55 kg of<br />

occluded water and 0.45 kg of dry solids. Using these masses and the density of the occluded water and<br />

dry solids, it is then possible to determine VS and VW. Empirical measurements of dry solids in sediment<br />

cores collected in the region have yielded a dry density of 2,550 kg/m 3 , whereas sediment occluded water<br />

is typically assumed to have a density of 1,020 kg/m 3 , which is that of brackish water (Macdonald 1983).<br />

The calculation provides an estimated sediment wet bulk density of 1,397 kg/m 3 .<br />

B.3.3 Total Suspended Sediment Concentration<br />

The total suspended sediment concentration in water (TSS, kg/m 3 ) is the concentration of sediment or<br />

other particulate matter suspended in the water. In the sediment model, this parameter is used in the<br />

calculation of the COPC concentration on suspended sediment that precipitates onto the surface sediment<br />

layer. The TSS concentration affects the suspended sediment COPC concentrations (Ctss) in an inversely<br />

proportional manner. Increasing the TSS concentration decreases Ctss. Empirical seawater TSS<br />

measurements were available <strong>for</strong> three of the nine compartments with concentrations ranging from 6.4 to<br />

11.6 mg/L (see Appendix D) from seawater samples collected in July 2008. Previous TSS measurements<br />

in the area revealed a TSS concentration of 18 mg/L at Bish Cove during the winter when TSS<br />

contributions from freshwater inputs are expected to be relatively low (Jacques Whit<strong>for</strong>d 2005). As TSS<br />

values are known to vary according to seasonality and freshwater inputs, peaking in the spring and early<br />

summer in response to peak freshwater runoff rates, a standard TSS concentration of 18 mg/L was applied<br />

to all model compartments. This assumption tends to overestimate the mean annual COPC concentration<br />

of the TSS, and subsequently of surface sediments, and is conservative.<br />

2010 Page B-17


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix B: <strong>Marine</strong> Sediment Quality Model<br />

B.3.4 Sediment Particle Size<br />

To adjust the sediment COPC concentration according to the sediment particle-size distribution, a<br />

parameter <strong>for</strong> sediment particle size was included in the model. Particle-size correction reflects the fact<br />

that larger particles (sand and gravel) have relatively low surface areas, and relatively non-reactive<br />

surfaces, and are not typically suspended in the water column. There<strong>for</strong>e, the particle fraction of sediment<br />

comprised of material larger than silt and clay is not considered further. In contrast, fine particles<br />

(silt/clay) have much higher surface area per unit mass than coarser particles and thus have greater surface<br />

reactivity and capacity to sorb COPC. There<strong>for</strong>e, COPC were considered only to bind to the silt and clay<br />

fraction of the sediment.<br />

The particle-size correction is based on sieve analysis data from empirical measurements (see<br />

Appendix D). Sieve analysis was per<strong>for</strong>med on sediment samples collected in February 2006 (model<br />

compartments K2 and T) and July 2008 (model compartments K1 and T). Sediment samples collected in<br />

2006 were from deeper water than those collected in 2008. The deeper sediment samples represent the<br />

offshore sediments; whereas the samples collected closer to shore more represent intertidal sediments,<br />

mudflats and salt marsh. Results were presented either as fraction of gravel (greater than 2 mm), sand<br />

(0.063 mm to 2 mm), silt (0.004 mm to 0.063 mm) and clay (less than 0.004 mm) or gravel, sand and<br />

silt/clay fractions. The fractions of sediment smaller than 0.063 mm were regrouped and averaged<br />

according to model compartments.<br />

For the averages <strong>for</strong> fraction silt/clay <strong>for</strong> these three model compartments, see Table B-4. Empirical<br />

measurements of silt/clay fraction from deep-water sediments were found to be similar between the<br />

<strong>Kitimat</strong> 2 and Terminal compartments (average of 89% and 88%, respectively). Empirical measurements<br />

of silt/clay fraction from shallow-water sediments were much lower with averages of 2% in the <strong>Kitimat</strong> 1<br />

compartment and 17% in the Terminal compartment. Values of silt/clay fraction measured in deeper<br />

sediments were much higher than those measured in shallow sediments which are taken to represent the<br />

offshore and mudflats/saltmarshes sediments respectively. As a conservative approach (likely to<br />

overestimate COPC concentrations in sediment), a value of 100% silt/clay fraction was applied to all<br />

offshore sediments compartments, whereas a value of 20% silt/clay fraction was applied to all intertidal<br />

and mudflat/salt marshes sediments.<br />

Table B-4 Average Silt and Clay Fraction of Surface Sediments from <strong>Kitimat</strong><br />

1, <strong>Kitimat</strong> 2 and Terminal Model Compartments<br />

Average Silt / Clay Fraction<br />

Model Compartment<br />

Offshore Sediments Near-shore Sediments<br />

<strong>Kitimat</strong> 1 N/A 2<br />

<strong>Kitimat</strong> 2 89 N/A<br />

Terminal 88 17<br />

NOTE:<br />

N/A – data not available<br />

Page B-18 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix B: <strong>Marine</strong> Sediment Quality Model<br />

B.4 References<br />

B.4.1 Literature Cited<br />

Balls, P.W. 1989. The partition of trace metals between dissolved and particulate phases in European<br />

coastal waters: a compilation of field data and comparison with laboratory studies. Netherlands<br />

Journal of Sea Research 23: 7-14.<br />

Drndarski, N., D. Stojić, M. Župančić and S. Čupić. 1990. Determination of partition coefficients of<br />

metals in the Sava River environment. Journal of Radioanalytical and Nuclear Chemistry 140:<br />

341-348.<br />

Harris, G.E. 1999. <strong>Assessment</strong> of the Assimilative Capacity of <strong>Kitimat</strong> Arm, British Columbia: A Case<br />

Study Approach to the Sustainable Management of Environmental Contaminants. PhD Thesis.<br />

Simon Fraser University. Burnaby, BC.<br />

Hill, P.S., T.G. Milligan and W.R. Geyer. 2000. Controls on effective settling velocity of suspended<br />

sediment in the Eel River flood plume. Continental Shelf Research 20: 2095-2111.<br />

Jacques Whit<strong>for</strong>d. 2005. Application <strong>for</strong> Approval. <strong>Kitimat</strong> Liquid Natural Gas Project, Environmental<br />

<strong>Assessment</strong> Certificate Application. Burnaby, BC.<br />

Kranck, K. 1981. Particulate matter grain-size characteristics and flocculation in a partially mixed<br />

estuary. Sedimentology 28: 107-114.<br />

Leahy, J.G. and R.R. Colwell. 1990. Microbial degradation of hydrocarbons in the environment.<br />

Microbiology and Molecular Biology Reviews 54: 305-315.<br />

Lemarchand, E. 2005. Étude des Mécanismes de Fractionnement Isotopique du Bore lors de son<br />

Interaction avec les Acides Humiques et les Oxydes de Fer et de Manganèse. PhD Thesis.<br />

Université Paul-Sabatier de Toulouse III. Toulouse, France.<br />

Macdonald, R.W. 1983. Proceedings of a Workshop on the <strong>Kitimat</strong> <strong>Marine</strong> Environment. Institute of<br />

Ocean Sciences. Department of Fisheries and Oceans.Canadian Technical Report of Hydrography<br />

and Ocean Sciences. Report No.18. Sydney, BC.<br />

Mackay, D., W.Y Shiu and K.C. Ma. 2000. Physical-Chemical Properties and Environmental Fate<br />

Handbook on CD-ROM. CRC Press. Boca Raton, FL.<br />

Mazik, K. and M. Elliott. 2000. The effects of chemical pollution on the bioturbation potential of<br />

estuarine intertidal mud flats. Helgoland <strong>Marine</strong> Research 54: 99-109.<br />

Regional Monitoring Program Sediment Working Group (RMPSWG). 1999. Recommendations <strong>for</strong><br />

improvement of RMP sediment monitoring. Report prepared <strong>for</strong> Regional Monitoring Program<br />

<strong>for</strong> Trace Substances, San Francisco Estuary Institute. August 1999. RMP Contribution No. 40d.<br />

Rhoads, D.C. 1967. Biogenic reworking of intertidal and off-shore sediments in Barnstable Harbour and<br />

Buzzards Bay, Massachusetts. Journal of Geology 75: 461-476.<br />

Schwarzenbach, R.P., P.M. Gschwend and D.M. Imboden. 2002. Environmental Organic Chemistry. 2 nd<br />

edition. Wiley-Interscience. Hoboken, NJ.<br />

2010 Page B-19


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix B: <strong>Marine</strong> Sediment Quality Model<br />

United States Environmental Protection Agency (U.S. EPA). 1999. Understanding variation in partition<br />

coefficient, Kd, values. Volume I: The Kd model, methods of measurement, and application of<br />

chemical reaction codes. Office of Air and Radiation Report No. 402/R-99/004A.<br />

United States Environmental Protection Agency (U.S. EPA). 2005. Partition coefficients <strong>for</strong> metals in<br />

surface water, soil, and waste. Research and Development Report No. 600/R-05/074.<br />

Page B-20 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment B1: Sediment Fate and Transport Model Equations and Documentation<br />

Attachment B1 Sediment Fate and Transport Model<br />

Equations and Documentation<br />

2010 Page B1-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment B1: Sediment Fate and Transport Model Equations and Documentation<br />

Parameters and equations <strong>for</strong> each model stock, flow and converter are listed below with the associated<br />

document, which provides a rationale <strong>for</strong> the values used, and an explanation of their function.<br />

DSmass[Model_Compartment](t) = DSmass[Model_Compartment](t - dt) + (SS:DS[Model_Compartment]) * dt<br />

INIT DSmass[Model_Compartment] = 0<br />

DOCUMENT: This stock represents the mass (kg) of the contaminant in the deep sediment layer of a<br />

compartment. The deep layer is considered biologially inactive and contaminants in this layer are not<br />

considered a risk to benthic organisms.<br />

INFLOWS:<br />

SS:DS[Model_Compartment] = Dep_Rate[Model_Compartment]*(SSmass[Model_Compartment]/0.05)<br />

DOCUMENT: This flow represents the transfer or burial of shallow sediment into the deep sediment<br />

layer. It is a function of the daily deposition rate (m/d) and the mass of the contaminant (kg) in the<br />

shallow surface layer (0.05 m).<br />

SSmass[Model_Compartment](t) = SSmass[Model_Compartment](t - dt) + (Dep[Model_Compartment] -<br />

SS:DS[Model_Compartment] - Decay[Model_Compartment]) * dt<br />

INIT SSmass[Model_Compartment] = 0<br />

DOCUMENT: This stock represents the mass (kg) of a contaminant in the shallow sediment layer of a<br />

compartment.<br />

INFLOWS:<br />

Dep[Model_Compartment] = Dep_Rate[Model_Compartment]*Area[Model_Compartment]*Ctss<br />

[Model_Compartment]*SSbd[Model_Compartment]<br />

DOCUMENT: Dep is the mass (kg) of a contaminant deposited into the shallow sediment layer on a<br />

daily basis. It is a function of the deposition rate (m/d), the area (m2), the concentration of contaminant on<br />

the deposited sediment (kg/kg) and the shallow sediment wet bulk density (kg/m3).<br />

m/day * m2 * kg/kg * kg/m3<br />

OUTFLOWS:<br />

SS:DS[Model_Compartment] = Dep_Rate[Model_Compartment]*(SSmass[Model_Compartment]/0.05)<br />

DOCUMENT: This flow represents the transfer or burial of shallow sediment into the deep sediment<br />

layer. It is a function of the daily deposition rate (m/d) and the mass of the contaminant (kg) in the<br />

shallow surface layer (0.05 m).<br />

Decay[Model_Compartment] = SSmass[Model_Compartment]*(1-(EXP(-1*Kdecay)))<br />

2010 Page B1-3


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment B1: Sediment Fate and Transport Model Equations and Documentation<br />

DOCUMENT: Decay is the amount of a contaminant that is lost (kg/d) from the shallow sediment layer<br />

by physical, chemical and biological degradation processes.<br />

Decay is a function of mass of contaminant (kg) in the shallow sediment compartment, and the<br />

exponential function of the decay rate of the given contaminant.<br />

Analyte__Master = 62<br />

DOCUMENT:<br />

1 - Benzene<br />

2 - Ethylbenzene<br />

3 - Toluene<br />

4 - Xylenes (tot)<br />

5 - 1-Methylnaphthalene<br />

6 - 2-Methylnaphthalene<br />

7 - Acenaphthene<br />

8 - Acenaphthylene<br />

9 - Anthracene<br />

10 - Benzo(a)anthracene<br />

11 - Benzo(b)fluoranthene<br />

12 - Benzo(k)fluoranthene<br />

13 - Benzo(ghi)perylene<br />

14 - Benzo(a)pyrene<br />

15 - Benzo(e)pyrene<br />

16 - Chrysene<br />

17 - Dibenzo(a,h)anthracene<br />

18 - Fluoranthene<br />

19 - Fluorene<br />

20 - Indeno(123-cd)pyrene<br />

21 - Naphthalene<br />

22 - Phenanthrene<br />

23 - Pyrene<br />

24 - 2,4-Dimethylphenol<br />

25 - 2,4-Dinitrophenol<br />

26 - Phenol<br />

27 - Al >C6-C8<br />

28 - Al >C8-C10<br />

29 - Al >C10-C12<br />

30 - Al >C12-C16<br />

31 - Al >C16-C21<br />

32 - Al >C21-C32<br />

33 - Ar >C8-C10<br />

34 - Ar >C10-C12<br />

Page B1-4 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment B1: Sediment Fate and Transport Model Equations and Documentation<br />

35 - Ar >C12-C16<br />

36 - Ar >C16-C21<br />

37 - Ar >C21-C32<br />

38 - 1,2,4-Trichlorobenzene<br />

39 - 1,3,5-Trimethylbenzene<br />

40 - Formaldehyde<br />

41 - 1,1,1-Trichloroethane<br />

42 - OCDD<br />

43 - Fluoride<br />

44 - Antimony<br />

45 - Arsenic<br />

46 - Barium<br />

47 - Beryllium<br />

48 - Boron<br />

49 - Cadmium<br />

50 - Chromium<br />

51 - Chromium VI<br />

52 - Cobalt<br />

53 - Copper<br />

54 - Lead<br />

55 - Manganese<br />

56 - Mercury<br />

57 - Molybdenum<br />

58 - Nickel<br />

59 - Selenium<br />

60 - Tin<br />

61 - Vanadium<br />

62 - Zinc<br />

Area[K1_ Ns] = 1<br />

Area[K1_Os] = 1<br />

Area[K2_ Ns] = 1<br />

Area[K2_Os] = 1<br />

Area[T_ Ns] = 1<br />

Area[T_Os] = 1<br />

Area[CB_ Ns] = 1<br />

Area[CB_Os] = 1<br />

Area[EP_ Ns] = 1<br />

Area[EP_Os] = 1<br />

Area[CO_ Ns] = 1<br />

Area[CO_Os] = 1<br />

Area[AP_Ns] = 1<br />

Area[AP_Os] = 1<br />

Area[KA_Ns] = 1<br />

2010 Page B1-5


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment B1: Sediment Fate and Transport Model Equations and Documentation<br />

Area[KA_Os] = 1<br />

Area[NS_Ns] = 1<br />

Area[NS_Os] = 1<br />

DOCUMENT: Area is set to 1 m2 as it represents a unit area. The value entered does not affect results<br />

but is used to simplify further calculations.<br />

CssDW[Model_Compartment] = CssWW[Model_Compartment] /<br />

(SSbd[Model_Compartment] - ( 1020 * 0.7534) )<br />

DOCUMENT: This is the concentration (mg/kg dry sediment) of a given contaminant in the shallow<br />

sediment layer reported in dry weight.<br />

It is a function of the wet weight concentration contaminant in the surface layer (mg/kg wet weight), the<br />

bulk density (kg/m3 wet weight) and the volumetric moisture content of the sediment.<br />

The volumetric moisture content of 75.34% is derived from DFO (1983) (ie. 55% moisture by weight).<br />

CssWW[Model_Compartment] = ( (SSmass[Model_Compartment]*1000000)/(Area[Model_Compartment] *<br />

0.05) * Fsiltclay[Model_Compartment] )<br />

DOCUMENT: This is the concentration (mg/kg wet sediment) of a given contaminant in the shallow<br />

sediment layer reported in wet weight.<br />

It is a function of the mass of contaminant in the surface layer (kg) multiplied by 1 000 000 to convert to<br />

mg, the unit area (m2), the depth (0.05 m) of the shallow sediment layer.<br />

Ctss[Model_Compartment] = Cwater[Model_Compartment]/TSS[Model_Compartment]*((Kd*TSS[Model_<br />

Compartment])/(1+Kd*TSS[Model_Compartment]))<br />

DOCUMENT: Ctss is the concentration (kg/kg) of a contaminant on the suspended sediment in a given<br />

model compartment. It is calculated by dividing the total contaminant concentration in the water (kg/m3)<br />

by the sediment concentration in the water (kg/m3) and multiplying by the fraction (unitless) of<br />

contaminant that is adsorbed to sediment.<br />

Dep_Rate[Model_Compartment] = 0.5/100/365<br />

DOCUMENT: Dep_Rate is the estimated uncompacted sediment deposition rate <strong>for</strong> each compartment.<br />

Deposition rates are typically reported in cm/yr. These values were converted to m/d by dividing by 100<br />

to convert to meters and by 365 to convert to days.<br />

Deposition rates <strong>for</strong> all compartments are set to 5 mm/year; this is a conservative value based on the 4.7<br />

mm/year deposition rate reported in "Proceeding of a workshop on the <strong>Kitimat</strong> <strong>Marine</strong> Environment,<br />

Edited by R.W. Macdonald, 1983".<br />

Fsiltclay[K1_Ns] = 0.2<br />

Page B1-6 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment B1: Sediment Fate and Transport Model Equations and Documentation<br />

DOCUMENT: This converter represents the fraction of the model compartment sediment comprised of<br />

silt and clay. As silt and clay are responsible <strong>for</strong> adsorbing the vast majority of contaminants, larger<br />

particles (sand, gravel) were disregarded as playing a minor role in adsorbing contaminants.<br />

Values <strong>for</strong> offshore sediments model compartments were conservatively assumed to have a silt and<br />

sediment fraction of 100%.<br />

Results from near-shore sediment samples collected by JWL in 2006 and 2008 ranged from 2 to 18%<br />

silt/clay fraction. A value of 20% is thus conservatively used in the model.<br />

Fsiltclay[K1_Os] = 1<br />

Fsiltclay[K2_Ns] = 0.2<br />

Fsiltclay[K2_Os] = 1<br />

Fsiltclay[T_Ns] = 0.2<br />

Fsiltclay[T_Os] = 1<br />

Fsiltclay[CB_Ns] = 0.2<br />

Fsiltclay[CB_Os] = 1<br />

Fsiltclay[EP_Ns] = 0.2<br />

Fsiltclay[EP_Os] = 1<br />

Fsiltclay[CO_Ns] = 0.2<br />

Fsiltclay[CO_Os] = 1<br />

Fsiltclay[AP_Ns] = 0.2<br />

Fsiltclay[AP_Os] = 1<br />

Fsiltclay[KA_Ns] = 0.2<br />

Fsiltclay[KA_Os] = 1<br />

Fsiltclay[NS_Ns] = 0.2<br />

Fsiltclay[NS_Os] = 1<br />

Julian = 1+(365*((TIME/365)-(INT(Time/365))))<br />

DOCUMENT: Julian is a function that returns the "day of the year" as values ranging from 1 to 365, as<br />

the time of the simulation advances in total elapsed days from the start of the simulation. This allows the<br />

Cwater to recycle "year after year", based on a single annual cycle stored as a graph in that parameter.<br />

SSbd[Model_Compartment] = 1397<br />

DOCUMENT: This is the wet weight bulk density of sediment in <strong>Kitimat</strong> Inlet (kg/m3) as calculated <strong>for</strong><br />

data specified in "Proceedings of a Workshop on the <strong>Kitimat</strong> <strong>Marine</strong> Environment - Part II, DFO 1983)<br />

Assuming a density of water of 1020 kg/m3 would yeald an in-situ WW moisture content of 75.34%.<br />

<strong>Kitimat</strong> <strong>Marine</strong> Environment - Part II, DFO 1983)<br />

TSS[Model_Compartment] = 18/1000<br />

2010 Page B1-7


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment B1: Sediment Fate and Transport Model Equations and Documentation<br />

DOCUMENT: TSS is the averaged total suspended sediment concentration (kg/m3) <strong>for</strong> each model<br />

compartment. Values <strong>for</strong> suface and deep water compartments are set to the same value of 18 mg/L as<br />

presented in JW2005 - Application <strong>for</strong> Approval of the <strong>Kitimat</strong> LNG Project, EACA.<br />

Values is divided by 1000 to produce kg/m3.<br />

CAS_Num = GRAPH(Analyte__Master)<br />

(1.00, 71432), (2.00, 100414), (3.00, 108883), (4.00, 8e+006), (5.00, 90120), (6.00, 91576), (7.00,<br />

83329), (8.00, 208968), (9.00, 120127), (10.0, 56553), (11.0, 205992), (12.0, 207089), (13.0, 191242),<br />

(14.0, 50328), (15.0, 192972), (16.0, 218019), (17.0, 53703), (18.0, 206440), (19.0, 86737), (20.0,<br />

193395), (21.0, 91203), (22.0, 85018), (23.0, 129000), (24.0, 105679), (25.0, 51285), (26.0, 108952),<br />

(27.0, 6.6e+007), (28.0, 6.6e+007), (29.0, 6.6e+007), (30.0, 6.6e+007), (31.0, 6.6e+007), (32.0,<br />

6.6e+007), (33.0, 6.6e+007), (34.0, 6.6e+007), (35.0, 6.6e+007), (36.0, 6.6e+007), (37.0, 6.6e+007),<br />

(38.0, 120821), (39.0, 108678), (40.0, 50000), (41.0, 71556), (42.0, 3.3e+006), (43.0, 1.7e+007), (44.0,<br />

7.4e+006), (45.0, 7.4e+006), (46.0, 7.4e+006), (47.0, 7.4e+006), (48.0, 7.4e+006), (49.0, 7.4e+006),<br />

(50.0, 1.6e+007), (51.0, 1.9e+007), (52.0, 7.4e+006), (53.0, 7.4e+006), (54.0, 7.4e+006), (55.0,<br />

7.4e+006), (56.0, 7.4e+006), (57.0, 7.4e+006), (58.0, 7.4e+006), (59.0, 7.8e+006), (60.0, 7.4e+006),<br />

(61.0, 7.4e+006), (62.0, 7.4e+006), (63.0, 7.4e+006)<br />

DOCUMENT: The CAS number is used as the numerical COPC identifier. This allows the user to<br />

identify the chemical modeled and to verify that all physico-chemical properties correspond to the<br />

identified chemical.<br />

Cwater[Model_Compartment] = Julian<br />

DOCUMENT: Cwater is a function of Julian and is the water concentration in each compartment<br />

averaged on a daily basis over a three-year period. These daily averaged values are recycled every 365<br />

days.<br />

Cwater is the total water concentration (kg/m3) and is a direct input from the water model. It is the sum<br />

of inputs from effluent discharge and air deposition, as well as mixing and dispersal of the contaminant in<br />

and among the water compartments.<br />

Kd = GRAPH(Analyte__Master)<br />

(1.00, 0.00387), (2.00, 0.0387), (3.00, 0.0154), (4.00, 0.0487), (5.00, 0.228), (6.00, 0.223), (7.00, 0.244),<br />

(8.00, 0.308), (9.00, 0.972), (10.0, 15.4), (11.0, 40.5), (12.0, 38.7), (13.0, 97.2), (14.0, 30.8), (15.0, 84.7),<br />

(16.0, 15.4), (17.0, 97.2), (18.0, 3.08), (19.0, 0.487), (20.0, 122), (21.0, 0.0614), (22.0, 0.972), (23.0,<br />

2.44), (24.0, 0.00614), (25.0, 0.00107), (26.0, 0.000972), (27.0, 0.299), (28.0, 2.37), (29.0, 18.8), (30.0,<br />

376), (31.0, 47300), (32.0, 47300), (33.0, 0.119), (34.0, 0.188), (35.0, 0.376), (36.0, 1.19), (37.0, 9.44),<br />

(38.0, 0.387), (39.0, 0.0809), (40.0, 6.88e-005), (41.0, 0.00972), (42.0, 4870), (43.0, 0.04), (44.0, 63.1),<br />

(45.0, 10.0), (46.0, 10.0), (47.0, 12.6), (48.0, 0.04), (49.0, 100), (50.0, 126), (51.0, 15.8), (52.0, 50.1),<br />

(53.0, 100), (54.0, 501), (55.0, 750), (56.0, 200), (57.0, 25.1), (58.0, 31.6), (59.0, 25.1), (60.0, 79.4),<br />

(61.0, 5.01), (62.0, 100), (63.0, 100)<br />

Page B1-8 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment B1: Sediment Fate and Transport Model Equations and Documentation<br />

DOCUMENT: Kd is the sediment partition coefficient, which is a measure of the propensity <strong>for</strong> a given<br />

dissolved substance to bind to suspended sediment particles.<br />

Kd is reported in units of L/kg and is converted to m3/kg by dividing by 1000 prior to entering it into<br />

STELLA.<br />

Kdecay = GRAPH(Analyte__Master)<br />

(1.00, 0.00978), (2.00, 0.00302), (3.00, 0.00302), (4.00, 0.00302), (5.00, 0.00302), (6.00, 0.00302), (7.00,<br />

0.000978), (8.00, 0.000978), (9.00, 0.000978), (10.0, 0.000302), (11.0, 0.000302), (12.0, 0.000302),<br />

(13.0, 0.000302), (14.0, 0.000302), (15.0, 0.000302), (16.0, 0.000302), (17.0, 0.000302), (18.0,<br />

0.000302), (19.0, 0.000978), (20.0, 0.000302), (21.0, 0.00302), (22.0, 0.000978), (23.0, 0.000302), (24.0,<br />

0.0302), (25.0, 0.00302), (26.0, 0.0302), (27.0, 0.00302), (28.0, 0.00302), (29.0, 0.00302), (30.0,<br />

0.00302), (31.0, 0.00302), (32.0, 0.000978), (33.0, 0.00302), (34.0, 0.000978), (35.0, 0.000302), (36.0,<br />

0.000302), (37.0, 0.000302), (38.0, 0.000978), (39.0, 0.00302), (40.0, 0.0978), (41.0, 0.000978), (42.0,<br />

0.000302), (43.0, 0.00), (44.0, 0.00), (45.0, 0.00), (46.0, 0.00), (47.0, 0.00), (48.0, 0.00), (49.0, 0.00),<br />

(50.0, 0.00), (51.0, 0.00), (52.0, 0.00), (53.0, 0.00), (54.0, 0.00), (55.0, 0.00), (56.0, 0.00), (57.0, 0.00),<br />

(58.0, 0.00), (59.0, 0.00), (60.0, 0.00), (61.0, 0.00), (62.0, 0.00), (63.0, 0.00)<br />

DOCUMENT: This is the exponential decay rate (per day) at which a given analyte degrades in the<br />

biologically active surface sediment layer. The Decay Consant = 0.693/Half-life (days) of the<br />

contaminant.<br />

Once deposited into the deep sediment layer, the decomposition rate is assumed to be 0 as organic<br />

compounds tend to degrade extremely slowly in anaerobic conditions.<br />

2010 Page B1-9


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment B2: Sediment Fate and Transport Model Results<br />

Attachment B2 Sediment Fate and Transport Model<br />

Results<br />

2010 Page B2-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment B2: Sediment Fate and Transport Model Results<br />

This sub-appendix provides in<strong>for</strong>mation about the sediment model COPC concentrations in all eighteen<br />

sediment model compartments. Graphs (Figures B2-1 and B2-2) of concentrations over time in each<br />

model compartment are provided <strong>for</strong> two COPC, vanadium and naphthalene, while the maximum<br />

concentration <strong>for</strong> all COPC in each model compartment are provided in Table B2-1. The vanadium and<br />

naphthalene graphs are provided to contrast the pattern of COPC accumulation in sediment <strong>for</strong> an element<br />

(vanadium), which does not degrade, and <strong>for</strong> an organic compound (naphthalene).<br />

2010 Page B2-3


Figure B2‐1 Naphthalene Concentrations in Near‐shore (Ns) and Off ‐shore (Os) Sediment<br />

Concentration (mg/kg DW)<br />

5.0E‐07<br />

4.5E‐07<br />

4.0E‐07<br />

3.5E‐07<br />

3.0E‐07<br />

2.5E‐07<br />

2.0E‐07<br />

1.5E‐07<br />

1.0E‐07<br />

5.0E‐08<br />

0.0E+00<br />

Maximum Concentration<br />

(mg/kg DW)<br />

0<br />

5<br />

10<br />

15<br />

20<br />

Years Since Comissioning of Facility<br />

K1 Ns K2 Ns T Ns CB Ns EP Ns<br />

CO Ns AP Ns KA Ns NS Ns<br />

5.0E‐07<br />

4.5E‐07<br />

4.0E‐07<br />

3.5E‐07<br />

3.0E‐07<br />

2.5E‐07<br />

2.0E‐07<br />

1.5E‐07<br />

1.0E‐07<br />

5.0E‐08<br />

0.0E+00<br />

25<br />

30<br />

35<br />

40<br />

45<br />

50<br />

Concentration (mg/kg DW)<br />

5.0E‐07<br />

4.5E‐07<br />

4.0E‐07<br />

3.5E‐07<br />

3.0E‐07<br />

2.5E‐07<br />

2.0E‐07<br />

1.5E‐07<br />

1.0E‐07<br />

5.0E‐08<br />

0.0E+00<br />

0<br />

5<br />

10<br />

15<br />

20<br />

Years Since Comissioning of Facility<br />

K1 Os K2 Os T Os CB Os EP Os<br />

CO Os AP Os KA Os NS Os<br />

K1 Ns K1 Os K2 Ns K2 Os T Ns T Os CB Ns CB Os EP Ns EP Os CO Ns CO Os AP Ns AP Os KA Ns KA Os NS Ns NS Os<br />

25<br />

30<br />

35<br />

40 4<br />

45 4<br />

50


Figure B2‐2 Vanadium Concentrations in Near‐shore (Ns) and Off ‐shore (Os) Sediment<br />

Concentration (mg/kg DW)<br />

1.2E‐03<br />

1.0E‐03<br />

8.0E‐04<br />

6.0E‐04<br />

4.0E‐04<br />

2.0E‐04<br />

0.0E+00<br />

Maximum Concentration<br />

(mg/kg DW)<br />

0<br />

5<br />

10<br />

15<br />

20<br />

Years Since Comissioning of Facility<br />

K1 Ns K2 Ns T Ns CB Ns EP Ns<br />

CO Ns AP Ns KA Ns NS Ns<br />

1.2E‐03<br />

1.0E‐03<br />

8.0E‐04<br />

6.0E‐04<br />

4.0E‐04<br />

2.0E‐04<br />

0.0E+00<br />

25<br />

30<br />

35<br />

40<br />

45<br />

50<br />

Concentration (mg/kg DW)<br />

1.2E‐03<br />

1.0E‐03<br />

8.0E‐04<br />

6.0E‐04<br />

4.0E‐04<br />

2.0E‐04<br />

0.0E+00<br />

0<br />

5<br />

10<br />

15<br />

20<br />

Years Since Comissioning of Facility<br />

K1 Os K2 Os T Os CB Os EP Os<br />

CO Os AP Os KA Os NS Os<br />

K1 Ns K1 Os K2 Ns K2 Os T Ns T Os CB Ns CB Os EP Ns EP Os CO Ns CO Os AP Ns AP Os KA Ns KA Os NS Ns NS Os<br />

25<br />

30<br />

35<br />

40 4<br />

45 4<br />

50


Table B2-1 Summary of Predicted 50 Year Maximum COPC Sediment Concentrations (mg/kg DW) in Each Model Compartment<br />

COPC K1 Ns K1 Os K2 Ns K2 Os T Ns T Os CB Ns CB Os EP Ns EP Os CO Ns CO Os AP Ns AP Os KA Ns KA Os NS Ns NS Os<br />

Benzene 4.26E-07 2.67E-07 4.63E-07 2.10E-07 4.19E-07 1.64E-07 4.15E-07 2.32E-07 2.59E-07 1.10E-07 1.85E-07 7.30E-08 1.44E-07 7.02E-08 1.24E-07 9.24E-08 9.66E-08 3.55E-08<br />

Ethylbenzene 6.40E-06 4.08E-06 7.06E-06 3.22E-06 6.50E-06 2.52E-06 6.43E-06 3.57E-06 4.05E-06 1.69E-06 2.90E-06 1.13E-06 2.24E-06 1.08E-06 2.24E-06 1.08E-06 2.24E-06 1.08E-06<br />

Toluene 1.35E-05 8.61E-06 1.49E-05 6.80E-06 1.37E-05 5.31E-06 1.36E-05 7.54E-06 8.55E-06 3.58E-06 6.13E-06 2.38E-06 4.73E-06 2.29E-06 4.73E-06 2.29E-06 4.73E-06 2.29E-06<br />

Xylenes (tot) 4.10E-05 2.62E-05 4.52E-05 2.07E-05 4.17E-05 1.61E-05 4.13E-05 2.29E-05 2.60E-05 1.09E-05 1.86E-05 7.23E-06 1.44E-05 6.95E-06 1.44E-05 6.95E-06 1.44E-05 6.95E-06<br />

Aromatic >C8-C10 6.53E-05 4.16E-05 7.19E-05 3.28E-05 6.63E-05 2.57E-05 6.56E-05 3.64E-05 4.13E-05 1.73E-05 2.96E-05 1.15E-05 2.29E-05 1.11E-05 2.29E-05 1.11E-05 2.29E-05 1.11E-05<br />

Aromatic >C10-C12 3.08E-04 1.98E-04 3.41E-04 1.56E-04 3.16E-04 1.22E-04 3.13E-04 1.74E-04 1.98E-04 8.23E-05 1.42E-04 5.48E-05 1.09E-04 5.27E-05 1.09E-04 5.27E-05 1.09E-04 5.27E-05<br />

Aromatic >C12-C16 1.45E-03 9.32E-04 1.61E-03 7.37E-04 1.50E-03 5.76E-04 1.48E-03 8.20E-04 9.36E-04 3.89E-04 6.72E-04 2.59E-04 5.18E-04 2.49E-04 5.18E-04 2.49E-04 5.18E-04 2.49E-04<br />

Aromatic >C16-C21 4.99E-03 3.22E-03 5.55E-03 2.54E-03 5.16E-03 1.99E-03 5.11E-03 2.83E-03 3.23E-03 1.34E-03 2.32E-03 8.92E-04 1.78E-03 8.59E-04 1.78E-03 8.59E-04 1.78E-03 8.59E-04<br />

Aromatic >C21-C32 6.37E-02 4.10E-02 7.07E-02 3.24E-02 6.58E-02 2.54E-02 6.51E-02 3.61E-02 4.12E-02 1.71E-02 2.96E-02 1.14E-02 2.28E-02 1.09E-02 2.28E-02 1.09E-02 2.28E-02 1.09E-02<br />

Aliphatic >C6-C8 1.34E-03 8.52E-04 1.47E-03 6.73E-04 1.36E-03 5.26E-04 1.34E-03 7.46E-04 8.46E-04 3.54E-04 6.06E-04 2.35E-04 4.68E-04 2.26E-04 4.68E-04 2.26E-04 4.68E-04 2.26E-04<br />

Aliphatic >C8-C10 1.34E-03 8.54E-04 1.48E-03 6.74E-04 1.36E-03 5.27E-04 1.35E-03 7.48E-04 8.48E-04 3.55E-04 6.08E-04 2.36E-04 4.69E-04 2.27E-04 4.69E-04 2.27E-04 4.69E-04 2.27E-04<br />

Aliphatic >C10-C12 7.13E-03 4.55E-03 7.86E-03 3.59E-03 7.24E-03 2.80E-03 7.17E-03 3.98E-03 4.51E-03 1.89E-03 3.23E-03 1.26E-03 2.50E-03 1.21E-03 2.50E-03 1.21E-03 2.50E-03 1.21E-03<br />

Aliphatic >C12-C16 4.79E-02 3.06E-02 5.28E-02 2.41E-02 4.87E-02 1.88E-02 4.82E-02 2.68E-02 3.03E-02 1.27E-02 2.17E-02 8.44E-03 1.68E-02 8.12E-03 1.68E-02 8.12E-03 1.68E-02 8.12E-03<br />

Aliphatic >C16-C21 6.22E-02 3.97E-02 6.86E-02 3.13E-02 6.32E-02 2.45E-02 6.25E-02 3.47E-02 3.94E-02 1.65E-02 2.82E-02 1.10E-02 2.18E-02 1.05E-02 2.18E-02 1.05E-02 2.18E-02 1.05E-02<br />

Aliphatic >C21-C32 2.48E-01 1.59E-01 2.75E-01 1.26E-01 2.55E-01 9.83E-02 2.52E-01 1.40E-01 1.59E-01 6.63E-02 1.14E-01 4.41E-02 8.81E-02 4.24E-02 8.81E-02 4.24E-02 8.81E-02 4.24E-02<br />

Acenaphthene 3.07E-10 1.81E-10 2.69E-10 1.40E-10 2.21E-10 1.08E-10 2.20E-10 1.44E-10 1.71E-10 7.41E-11 1.42E-10 5.01E-11 1.12E-10 5.02E-11 1.12E-10 5.02E-11 1.12E-10 5.02E-11<br />

Acenaphthylene 4.63E-12 2.74E-12 4.06E-12 2.11E-12 3.35E-12 1.64E-12 3.33E-12 2.17E-12 2.58E-12 1.12E-12 2.14E-12 7.58E-13 1.69E-12 7.59E-13 1.69E-12 7.59E-13 1.69E-12 7.59E-13<br />

Anthracene 4.00E-07 2.57E-07 4.43E-07 2.03E-07 4.11E-07 1.59E-07 4.07E-07 2.26E-07 2.57E-07 1.07E-07 1.85E-07 7.12E-08 1.42E-07 6.85E-08 1.42E-07 6.85E-08 1.42E-07 6.85E-08<br />

Fluorene 4.60E-07 2.95E-07 5.10E-07 2.33E-07 4.73E-07 1.82E-07 4.68E-07 2.59E-07 2.96E-07 1.23E-07 2.12E-07 8.18E-08 1.63E-07 7.88E-08 1.63E-07 7.88E-08 1.63E-07 7.88E-08<br />

1-Methylnaphthalene 9.73E-07 6.20E-07 1.07E-06 4.90E-07 9.88E-07 3.83E-07 9.78E-07 5.43E-07 6.16E-07 2.58E-07 4.41E-07 1.71E-07 3.41E-07 1.65E-07 3.41E-07 1.65E-07 3.41E-07 1.65E-07<br />

2-Methylnaphthalene 7.35E-07 4.69E-07 8.10E-07 3.70E-07 7.46E-07 2.89E-07 7.39E-07 4.10E-07 4.65E-07 1.95E-07 3.33E-07 1.29E-07 2.57E-07 1.24E-07 2.57E-07 1.24E-07 2.57E-07 1.24E-07<br />

Naphthalene 4.24E-07 2.71E-07 4.67E-07 2.14E-07 4.31E-07 1.67E-07 4.26E-07 2.37E-07 2.68E-07 1.12E-07 1.92E-07 7.47E-08 1.49E-07 7.19E-08 1.49E-07 7.19E-08 1.49E-07 7.19E-08<br />

Phenanthrene 6.19E-07 3.98E-07 6.86E-07 3.14E-07 6.37E-07 2.46E-07 6.30E-07 3.49E-07 3.98E-07 1.66E-07 2.86E-07 1.10E-07 2.20E-07 1.06E-07 2.20E-07 1.06E-07 2.20E-07 1.06E-07<br />

Fluoranthene 1.82E-09 1.08E-09 1.60E-09 8.33E-10 1.32E-09 6.45E-10 1.31E-09 8.56E-10 1.02E-09 4.42E-10 8.47E-10 2.99E-10 6.67E-10 2.99E-10 6.67E-10 2.99E-10 6.67E-10 2.99E-10<br />

Benzo(a)anthracene 4.86E-06 3.13E-06 5.40E-06 2.47E-06 5.02E-06 1.94E-06 4.97E-06 2.75E-06 3.14E-06 1.31E-06 2.26E-06 8.69E-07 1.74E-06 8.36E-07 1.74E-06 8.36E-07 1.74E-06 8.36E-07<br />

Benzo(a)pyrene 6.40E-08 3.79E-08 5.61E-08 2.92E-08 4.63E-08 2.26E-08 4.60E-08 3.00E-08 3.58E-08 1.55E-08 2.97E-08 1.05E-08 2.34E-08 1.05E-08 2.34E-08 1.05E-08 2.34E-08 1.05E-08<br />

Benzo(e)pyrene 4.07E-09 2.41E-09 3.57E-09 1.86E-09 2.95E-09 1.44E-09 2.93E-09 1.91E-09 2.28E-09 9.87E-10 1.89E-09 6.68E-10 1.49E-09 6.69E-10 1.49E-09 6.69E-10 1.49E-09 6.69E-10<br />

Benzo(b)fluoranthene 4.48E-09 2.65E-09 3.93E-09 2.04E-09 3.24E-09 1.58E-09 3.22E-09 2.10E-09 2.51E-09 1.08E-09 2.08E-09 7.34E-10 1.64E-09 7.35E-10 1.64E-09 7.35E-10 1.64E-09 7.35E-10<br />

Benzo(ghi)perylene 1.03E-08 6.12E-09 9.05E-09 4.71E-09 7.47E-09 3.65E-09 7.42E-09 4.84E-09 5.77E-09 2.50E-09 4.79E-09 1.69E-09 3.77E-09 1.69E-09 3.77E-09 1.69E-09 3.77E-09 1.69E-09<br />

Benzo(k)fluoranthene 4.36E-09 2.58E-09 3.82E-09 1.99E-09 3.16E-09 1.54E-09 3.14E-09 2.05E-09 2.44E-09 1.06E-09 2.03E-09 7.15E-10 1.59E-09 7.16E-10 1.59E-09 7.16E-10 1.59E-09 7.16E-10<br />

Chrysene 3.71E-09 2.20E-09 3.25E-09 1.69E-09 2.68E-09 1.31E-09 2.67E-09 1.74E-09 2.07E-09 8.98E-10 1.72E-09 6.08E-10 1.35E-09 6.08E-10 1.35E-09 6.08E-10 1.35E-09 6.08E-10<br />

Dibenzo(a,h)anthracene 7.63E-09 4.52E-09 6.69E-09 3.48E-09 5.52E-09 2.70E-09 5.49E-09 3.58E-09 4.27E-09 1.85E-09 3.54E-09 1.25E-09 2.79E-09 1.25E-09 2.79E-09 1.25E-09 2.79E-09 1.25E-09<br />

Indeno(123-cd)pyrene 1.06E-08 6.26E-09 9.25E-09 4.82E-09 7.64E-09 3.73E-09 7.59E-09 4.95E-09 5.90E-09 2.56E-09 4.90E-09 1.73E-09 3.86E-09 1.73E-09 3.86E-09 1.73E-09 3.86E-09 1.73E-09<br />

Pyrene 3.94E-06 2.54E-06 4.38E-06 2.01E-06 4.07E-06 1.57E-06 4.03E-06 2.23E-06 2.55E-06 1.06E-06 1.83E-06 7.05E-07 1.41E-06 6.78E-07 1.41E-06 6.78E-07 1.41E-06 6.78E-07<br />

2,4-Dimethylphenol 2.37E-11 1.47E-11 2.54E-11 1.15E-11 2.26E-11 8.95E-12 2.24E-11 1.26E-11 1.39E-11 5.99E-12 9.89E-12 3.97E-12 7.72E-12 3.82E-12 7.72E-12 3.82E-12 7.72E-12 3.82E-12<br />

2,4-Dinitrophenol 1.29E-10 8.21E-11 1.42E-10 6.48E-11 1.31E-10 5.06E-11 1.29E-10 7.19E-11 8.15E-11 3.41E-11 5.84E-11 2.27E-11 4.51E-11 2.18E-11 4.51E-11 2.18E-11 4.51E-11 2.18E-11<br />

Phenol 2.57E-12 1.59E-12 2.75E-12 1.25E-12 2.45E-12 9.69E-13 2.42E-12 1.37E-12 1.50E-12 6.49E-13 1.07E-12 4.30E-13 8.36E-13 4.14E-13 8.36E-13 4.14E-13 8.36E-13 4.14E-13<br />

1,2,4-Trichlorobenzene 1.01E-04 6.51E-05 1.12E-04 5.15E-05 1.04E-04 4.02E-05 1.03E-04 5.72E-05 6.52E-05 2.71E-05 4.68E-05 1.80E-05 3.60E-05 1.74E-05 3.60E-05 1.74E-05 3.60E-05 1.74E-05<br />

1,3,5-Trimethylbenzene 4.85E-06 3.09E-06 5.35E-06 2.44E-06 4.93E-06 1.91E-06 4.88E-06 2.71E-06 3.07E-06 1.28E-06 2.20E-06 8.54E-07 1.70E-06 8.22E-07 1.70E-06 8.22E-07 1.70E-06 8.22E-07<br />

Barium 1.02E-05 6.24E-06 9.92E-06 4.87E-06 8.69E-06 3.79E-06 8.62E-06 5.19E-06 6.07E-06 2.58E-06 4.73E-06 1.73E-06 3.68E-06 1.70E-06 3.68E-06 1.70E-06 3.68E-06 1.70E-06<br />

Boron 1.24E-08 8.01E-09 1.38E-08 6.33E-09 1.29E-08 4.96E-09 1.27E-08 7.05E-09 8.06E-09 3.34E-09 5.79E-09 2.22E-09 4.45E-09 2.14E-09 4.45E-09 2.14E-09 4.45E-09 2.14E-09<br />

Cadmium 4.03E-06 2.40E-06 3.58E-06 1.85E-06 2.98E-06 1.44E-06 2.96E-06 1.91E-06 2.28E-06 9.82E-07 1.87E-06 6.64E-07 1.47E-06 6.64E-07 1.47E-06 6.64E-07 1.47E-06 6.64E-07<br />

Manganese 5.52E-05 3.34E-05 5.15E-05 2.59E-05 4.41E-05 2.01E-05 4.38E-05 2.72E-05 3.21E-05 1.37E-05 2.57E-05 9.25E-06 2.01E-05 9.17E-06 2.01E-05 9.17E-06 2.01E-05 9.17E-06<br />

Molybdenum 1.09E-04 6.98E-05 1.20E-04 5.52E-05 1.11E-04 4.31E-05 1.10E-04 6.13E-05 7.01E-05 2.91E-05 5.06E-05 1.94E-05 3.89E-05 1.87E-05 3.89E-05 1.87E-05 3.89E-05 1.87E-05<br />

Nickel 1.36E-03 8.53E-04 1.41E-03 6.69E-04 1.27E-03 5.22E-04 1.25E-03 7.27E-04 8.42E-04 3.54E-04 6.33E-04 2.37E-04 4.91E-04 2.31E-04 4.91E-04 2.31E-04 4.91E-04 2.31E-04<br />

Tin 5.89E-05 3.80E-05 6.55E-05 3.00E-05 6.10E-05 2.35E-05 6.04E-05 3.34E-05 3.82E-05 1.59E-05 2.74E-05 1.06E-05 2.11E-05 1.02E-05 2.11E-05 1.02E-05 2.11E-05 1.02E-05<br />

Vanadium 9.59E-04 5.98E-04 9.74E-04 4.68E-04 8.71E-04 3.65E-04 8.63E-04 5.06E-04 5.87E-04 2.48E-04 4.47E-04 1.66E-04 3.47E-04 1.62E-04 3.47E-04 1.62E-04 3.47E-04 1.62E-04<br />

Zinc 2.83E-04 1.68E-04 2.49E-04 1.29E-04 2.06E-04 1.00E-04 2.05E-04 1.33E-04 1.59E-04 6.87E-05 1.32E-04 4.65E-05 1.04E-04 4.65E-05 1.04E-04 4.65E-05 1.04E-04 4.65E-05


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix C: Exposure Point Concentrations <strong>for</strong> COPC in Environmental Media<br />

Appendix C Exposure Point Concentrations <strong>for</strong> COPC<br />

in Environmental Media<br />

2010 Page C-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix C: Exposure Point Concentrations <strong>for</strong> COPC in Environmental Media<br />

Table of Contents<br />

Appendix C Exposure Point Concentrations <strong>for</strong> COPC in<br />

Environmental Media .............................................................. C-1<br />

List of Tables<br />

Table C-1 Base Case Exposure Point Concentrations in <strong>Kitimat</strong> 1 ......................... C-5<br />

Table C-2 Project Alone Exposure Point Concentrations in <strong>Kitimat</strong> 1 ..................... C-7<br />

Table C-3 Project Case Exposure Point Concentrations in <strong>Kitimat</strong> 1 ...................... C-9<br />

Table C-4 Base Case Exposure Point Concentrations in <strong>Kitimat</strong> 2 ....................... C-11<br />

Table C-5 Project Alone Exposure Point Concentrations in <strong>Kitimat</strong> 2 ................... C-13<br />

Table C-6 Project Case Exposure Point Concentrations in <strong>Kitimat</strong> 2 .................... C-15<br />

Table C-7 Base Case Exposure Point Concentrations in Terminal ....................... C-17<br />

Table C-8 Project Alone Exposure Point Concentrations in Terminal ................... C-19<br />

Table C-9 Project Case Exposure Point Concentrations in Terminal .................... C-21<br />

Table C-10 Base Case Exposure Point Concentrations in Clio Bay ........................ C-23<br />

Table C-11 Project Alone Exposure Point Concentrations in Clio Bay .................... C-25<br />

Table C-12 Project Case Exposure Point Concentrations in Clio Bay ..................... C-27<br />

Table C-13 Base Case Exposure Point Concentrations in Emsley Point ................ C-29<br />

Table C-14 Project Alone Exposure Point Concentrations in Emsley Point ............ C-31<br />

Table C-15 Project Case Exposure Point Concentrations in Emsley Point ............. C-33<br />

2010 Page C-3


Table C-1 - Base Case Exposure Point Concentrations in <strong>Kitimat</strong> 1<br />

Constituent CAS Registry Number<br />

3 4 5 6 7 3 4 6 7<br />

Surface Sea Water<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water <strong>Marine</strong><br />

Plant Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong> Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Deep Sea Water<br />

Concentration<br />

(mg/L)<br />

Sub-tidal <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Sub-tidal <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

BTEX<br />

Benzene 71-43-2 2.50E-04 1.50E-02 --- --- --- 2.50E-04 4.00E-02 --- ---<br />

Ethylbenzene 100-41-4 2.50E-04 1.50E-02 --- --- --- 2.50E-04 5.00E-02 --- ---<br />

Toluene 108-88-3 5.00E-04 1.50E-02 --- --- --- 5.00E-04 5.00E-02 --- ---<br />

Xylenes 1330-20-7 5.00E-04 2.50E-02 --- --- --- 5.00E-04 1.00E-01 --- ---<br />

TPH - CCME CWS % Composition<br />

Aliph>C06-C08 - F1 0.55 --- 1.00E-01 --- --- --- --- --- --- ---<br />

Aliph>C08-C10 - F1 0.36 --- 2.00E-01 --- --- --- --- --- --- ---<br />

Arom>C08-C10 - F1 0.09 --- 4.00E-01 --- --- --- --- --- --- ---<br />

F1 - Total 1 --- 7.00E-01 --- --- --- --- --- --- ---<br />

Aliph>C10-C12 - F2 0.36 --- 4.00E+00 --- --- --- --- --- --- ---<br />

Aliph>C12-C16 - F2 0.44 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Arom>C10-C12 - F2 0.09 --- 6.30E+00 --- --- --- --- --- --- ---<br />

Arom>C12-C16 - F2 0.11 --- 7.50E+00 --- --- --- --- --- --- ---<br />

F2 - Total 1 --- 2.53E+01 --- --- --- --- --- --- ---<br />

Aliph>C16-C21 - F3 0.56 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Aliph>C21-C34 - F3 0.24 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Arom>C16-C21 - F3 0.14 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Arom>C21-C34 - F3 0.06 --- 2.30E+01 --- --- --- --- --- --- ---<br />

F3 - Total 1 --- 4.55E+01 --- --- --- --- --- --- ---<br />

<strong>Marine</strong> Ground Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Acenaphthene 83-32-9 4.00E-05 8.50E-03 5.00E-03 5.00E-03 5.00E-03 4.00E-05 2.50E-02 5.00E-03 8.48E-03<br />

Acenaphthylene 208-96-8 8.00E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 8.00E-05 2.50E-02 5.00E-03 8.48E-03<br />

Anthracene 120-12-7 4.00E-05 1.43E-02 5.00E-03 5.00E-03 5.00E-03 4.00E-05 2.50E-02 6.28E-03 8.48E-03<br />

Fluorene 86-73-7 1.20E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 1.20E-04 2.50E-02 5.00E-03 8.48E-03<br />

1-Methylnaphthalene 90-12-0 --- --- --- --- --- --- --- --- ---<br />

2-Methylnaphthalene 91-57-6 2.10E-04 1.00E-02 --- --- --- 2.10E-04 2.50E-02 --- ---<br />

Naphthalene 91-20-3 1.10E-04 3.00E-02 5.00E-03 5.00E-03 5.00E-03 1.10E-04 2.50E-02 6.28E-03 1.00E-02<br />

Phenanthrene 85-01-8 3.50E-04 8.70E-02 1.00E-02 4.10E-02 1.00E-02 3.50E-04 1.80E-01 9.46E-03 1.00E-02<br />

High Molecular Weight PAHs<br />

Fluoranthene 206-44-0 1.07E-03 6.00E-02 5.00E-03 2.20E-02 5.00E-03 1.07E-03 3.90E-01 5.00E-03 8.48E-03<br />

Benz(a)anthracene 56-55-3 1.47E-03 2.00E-02 5.00E-03 5.00E-03 5.00E-03 1.47E-03 2.70E-01 5.00E-03 8.48E-03<br />

Benzo(a)pyrene 50-32-8 8.70E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 8.70E-04 3.60E-01 5.00E-03 8.48E-03<br />

Benzo(e)pyrene 192-97-2 --- --- --- --- --- --- --- --- ---<br />

Benzo(b)fluoranthene 205-99-2 4.69E-03 2.90E-02 5.00E-03 1.00E-02 5.00E-03 4.69E-03 7.00E-01 5.00E-03 8.48E-03<br />

Benzo(g,h,i)perylene 191-24-2 2.50E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-04 2.30E-01 5.00E-03 8.48E-03<br />

Benzo(k)fluoranthene 207-08-9 4.00E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 4.00E-05 2.50E-02 5.00E-03 8.48E-03<br />

Chrysene 218-01-9 1.98E-03 2.80E-02 5.00E-03 1.40E-02 5.00E-03 1.98E-03 3.20E-01 5.00E-03 8.48E-03<br />

Dibenz(a,h)anthracene 53-70-3 8.00E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 8.00E-05 6.00E-02 5.00E-03 8.48E-03<br />

Indeno(1,2,3-cd)pyrene 193-39-5 4.80E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 4.80E-04 2.50E-01 5.00E-03 8.48E-03<br />

Pyrene 129-00-0 9.60E-04 3.60E-02 5.00E-03 1.40E-02 5.00E-03 9.60E-04 4.00E-01 5.00E-03 8.48E-03<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 120-82-1 --- --- --- --- --- --- --- --- ---<br />

1,3,5-Trimethylbenzene 108-67-8 --- --- --- --- --- --- --- --- ---<br />

Phenolic Compounds<br />

Phenol 108-95-2 --- --- --- --- --- --- --- --- ---<br />

2,4-Dimethylphenol 105-67-9 --- --- --- --- --- --- --- --- ---<br />

2,4-Dinitrophenol 51-28-5 --- --- --- --- --- --- --- --- ---<br />

Trace Elements<br />

Barium 7440-39-3 1.70E-02 3.57E+01 3.04E+01 4.37E+00 1.44E+00 1.70E-02 1.52E+02 1.63E+00 6.90E-01<br />

Boron 7440-42-8 3.90E+00 --- --- --- --- 3.90E+00 5.78E+01 --- ---<br />

Cadmium 7440-43-9 1.70E-04 1.00E-01 3.59E-01 2.88E-01 1.48E-02 1.70E-04 9.00E-02 2.13E-01 5.43E-02<br />

Manganese 7439-96-5 1.48E+00 --- 2.65E+01 1.17E+01 6.67E+00 1.48E+00 7.01E+02 5.08E+00 1.49E+00<br />

Molybdenum 7439-98-7 9.60E-03 5.40E-01 4.30E-02 2.18E-01 6.34E-01 9.60E-03 2.50E-01 2.18E-01 1.59E-01<br />

Nickel 7440-02-0 8.80E-04 9.40E+00 8.90E-01 1.19E+00 3.69E+00 8.80E-04 2.43E+01 9.32E-01 2.49E+00<br />

Tin 7440-31-5 5.00E-03 2.50E+00 2.50E-02 1.00E-01 5.70E-02 5.00E-03 1.00E+00 2.98E-02 2.65E-01<br />

Vanadium 7440-62-2 5.00E-02 5.36E+00 4.60E-01 4.50E-01 4.90E-01 5.00E-02 1.44E+01 1.91E-01 9.69E-02<br />

Zinc 7440-66-6 2.10E-02 3.81E+01 5.58E+00 3.33E+01 1.75E+01 2.10E-02 8.59E+01 3.73E+01 1.88E+01


Table C-2 - Project Alone Exposure Point Concentrations in <strong>Kitimat</strong> 1<br />

Constituent CAS Registry Number<br />

3 4 5 6 7 3 4 6 7<br />

Surface Sea Water<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water <strong>Marine</strong><br />

Plant Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong> Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Deep Sea Water<br />

Concentration<br />

(mg/L)<br />

Sub-tidal <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Sub-tidal <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Marine</strong> Ground Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

BTEX<br />

Benzene 71-43-2 8.36E-06 4.26E-07 3.47E-05 1.44E-09 5.28E-06 1.08E-06 2.67E-07 9.07E-10 6.79E-07<br />

Ethylbenzene 100-41-4 4.36E-06 6.40E-06 1.81E-04 1.99E-08 2.75E-05 5.61E-07 4.08E-06 1.27E-08 3.54E-06<br />

Toluene 108-88-3 2.31E-05 1.35E-05 3.82E-04 4.35E-08 5.80E-05 2.97E-06 8.61E-06 2.77E-08 7.47E-06<br />

Xylenes 1330-20-7 2.22E-05 4.10E-05 1.16E-03 1.26E-07 1.76E-04 2.86E-06 2.62E-05 8.07E-08 2.27E-05<br />

TPH - CCME CWS % Composition<br />

Aliph>C06-C08 - F1 0.55 1.18E-04 1.34E-03 3.79E-02 1.92E-05 5.76E-03 1.52E-05 8.52E-04 1.23E-05 7.41E-04<br />

Aliph>C08-C10 - F1 0.36 1.55E-05 1.34E-03 3.95E-02 1.78E-05 6.00E-03 2.00E-06 8.54E-04 1.14E-05 7.72E-04<br />

Arom>C08-C10 - F1 0.09 1.45E-05 6.53E-05 1.85E-03 9.72E-07 2.80E-04 1.86E-06 4.16E-05 6.20E-07 3.61E-05<br />

F1 - Total 1 1.48E-04 2.74E-03 7.93E-02 3.80E-05 1.20E-02 1.91E-05 1.75E-03 2.42E-05 1.55E-03<br />

Aliph>C10-C12 - F2 0.36 1.34E-05 7.13E-03 2.70E-01 8.76E-05 4.10E-02 1.72E-06 4.55E-03 5.59E-05 5.28E-03<br />

Aliph>C12-C16 - F2 0.44 2.61E-05 4.79E-02 1.05E+01 5.26E-04 1.60E+00 3.36E-06 3.06E-02 3.35E-04 2.06E-01<br />

Arom>C10-C12 - F2 0.09 1.68E-05 3.08E-04 3.39E-03 4.50E-06 5.15E-04 2.16E-06 1.98E-04 2.89E-06 6.63E-05<br />

Arom>C12-C16 - F2 0.11 1.84E-05 1.45E-03 7.41E-03 2.06E-05 1.13E-03 2.36E-06 9.32E-04 1.33E-05 1.45E-04<br />

F2 - Total 1 7.46E-05 5.68E-02 1.08E+01 6.38E-04 1.64E+00 9.60E-06 3.62E-02 4.07E-04 2.11E-01<br />

Aliph>C16-C21 - F3 0.56 2.95E-05 6.22E-02 --- --- --- 3.80E-06 3.97E-02 --- ---<br />

Aliph>C21-C34 - F3 0.24 4.56E-05 2.48E-01 --- --- --- 5.87E-06 1.59E-01 --- ---<br />

Arom>C16-C21 - F3 0.14 2.03E-05 4.99E-03 2.59E-02 1.36E-04 3.93E-03 2.61E-06 3.22E-03 8.78E-05 5.06E-04<br />

Arom>C21-C34 - F3 0.06 3.74E-05 6.37E-02 3.79E-01 1.61E-03 5.75E-02 4.81E-06 4.10E-02 1.03E-03 7.40E-03<br />

F3 - Total 1 1.33E-04 3.79E-01 4.05E-01 1.74E-03 6.15E-02 1.71E-05 2.43E-01 1.12E-03 7.91E-03<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Acenaphthene 83-32-9 1.29E-11 3.07E-10 3.39E-09 8.89E-12 5.14E-10 1.53E-12 1.81E-10 5.26E-12 6.09E-11<br />

Acenaphthylene 208-96-8 1.55E-13 4.63E-12 5.11E-11 1.33E-13 7.76E-12 1.83E-14 2.74E-12 7.88E-14 9.19E-13<br />

Anthracene 120-12-7 4.28E-09 4.00E-07 4.46E-06 1.10E-08 6.78E-07 5.50E-10 2.57E-07 7.06E-09 8.72E-08<br />

Fluorene 86-73-7 9.73E-09 4.60E-07 5.09E-06 1.30E-08 7.73E-07 1.25E-09 2.95E-07 8.33E-09 9.95E-08<br />

1-Methylnaphthalene 90-12-0 1.13E-07 9.73E-07 2.76E-05 2.83E-08 4.19E-06 1.45E-08 6.20E-07 1.80E-08 5.39E-07<br />

2-Methylnaphthalene 91-57-6 8.71E-08 7.35E-07 2.08E-05 2.14E-08 3.16E-06 1.12E-08 4.69E-07 1.36E-08 4.07E-07<br />

Naphthalene 91-20-3 1.82E-07 4.24E-07 1.20E-05 1.30E-08 1.82E-06 2.34E-08 2.71E-07 8.27E-09 2.34E-07<br />

Phenanthrene 85-01-8 6.62E-09 6.19E-07 6.91E-06 1.70E-08 1.05E-06 8.52E-10 3.98E-07 1.09E-08 1.35E-07<br />

High Molecular Weight PAHs<br />

Fluoranthene 206-44-0 2.96E-12 1.82E-09 9.78E-09 4.80E-11 1.48E-09 3.51E-13 1.08E-09 2.85E-11 1.76E-10<br />

Benz(a)anthracene 56-55-3 1.91E-09 4.86E-06 3.16E-05 1.20E-07 4.80E-06 2.46E-10 3.13E-06 7.75E-08 6.17E-07<br />

Benzo(a)pyrene 50-32-8 1.53E-11 6.40E-08 5.05E-07 7.72E-09 7.67E-08 1.81E-12 3.79E-08 4.58E-09 9.09E-09<br />

Benzo(e)pyrene 192-97-2 5.75E-13 4.07E-09 5.23E-08 4.73E-10 7.94E-09 6.82E-14 2.41E-09 2.80E-10 9.41E-10<br />

Benzo(b)fluoranthene 205-99-2 9.06E-13 4.48E-09 3.98E-08 1.07E-10 6.04E-09 1.07E-13 2.65E-09 6.33E-11 7.16E-10<br />

Benzo(g,h,i)perylene 191-24-2 1.38E-12 1.03E-08 1.44E-07 1.19E-09 2.19E-08 1.64E-13 6.12E-09 7.06E-10 2.60E-09<br />

Benzo(k)fluoranthene 207-08-9 9.06E-13 4.36E-09 3.76E-08 1.04E-10 5.71E-09 1.07E-13 2.58E-09 6.18E-11 6.77E-10<br />

Chrysene 218-01-9 1.46E-12 3.71E-09 2.41E-08 9.18E-11 3.66E-09 1.73E-13 2.20E-09 5.44E-11 4.34E-10<br />

Dibenz(a,h)anthracene 53-70-3 1.02E-12 7.63E-09 1.07E-07 8.80E-10 1.62E-08 1.21E-13 4.52E-09 5.22E-10 1.92E-09<br />

Indeno(1,2,3-cd)pyrene 193-39-5 1.31E-12 1.06E-08 1.72E-07 1.21E-09 2.61E-08 1.55E-13 6.26E-09 7.16E-10 3.10E-09<br />

Pyrene 129-00-0 7.99E-09 3.94E-06 2.10E-05 1.05E-07 3.18E-06 1.03E-09 2.54E-06 6.74E-08 4.09E-07<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 120-82-1 2.69E-06 1.01E-04 8.89E-04 2.91E-05 6.75E-05 3.47E-07 6.51E-05 1.87E-05 8.69E-06<br />

1,3,5-Trimethylbenzene 108-67-8 1.58E-06 4.85E-06 1.37E-04 1.47E-06 2.09E-05 2.04E-07 3.09E-06 9.35E-07 2.68E-06<br />

Phenolic Compounds<br />

Phenol 108-95-2 5.72E-10 2.57E-12 5.97E-10 9.18E-13 9.07E-11 7.36E-11 1.59E-12 5.69E-13 1.17E-11<br />

2,4-Dimethylphenol 105-67-9 8.37E-10 2.37E-11 5.51E-09 7.90E-12 4.18E-10 1.08E-10 1.47E-11 4.90E-12 5.38E-11<br />

2,4-Dinitrophenol 51-28-5 3.17E-09 1.29E-10 3.63E-09 4.59E-11 2.75E-10 4.08E-10 8.21E-11 2.92E-11 3.54E-11<br />

Trace Elements<br />

Barium 7440-39-3 2.73E-09 1.02E-05 1.98E-07 4.96E-07 4.99E-08 3.35E-10 6.28E-06 3.05E-07 6.13E-09<br />

Boron 7440-42-8 7.07E-10 1.25E-08 1.17E-09 4.24E-09 1.33E-10 9.10E-11 8.06E-09 2.73E-09 1.71E-11<br />

Cadmium 7440-43-9 2.57E-10 4.05E-06 1.51E-07 2.55E-04 9.98E-08 3.05E-11 2.42E-06 1.52E-04 1.19E-08<br />

Manganese 7439-96-5 2.43E-09 5.55E-05 7.03E-06 6.16E-07 6.65E-06 2.93E-10 3.36E-05 3.73E-07 8.04E-07<br />

Molybdenum 7439-98-7 1.43E-08 1.09E-04 2.07E-08 7.51E-05 6.63E-08 1.83E-09 7.02E-05 4.83E-05 8.51E-09<br />

Nickel 7440-02-0 1.54E-07 1.37E-03 2.84E-04 6.80E-05 2.53E-04 1.92E-08 8.58E-04 4.27E-05 3.17E-05<br />

Tin 7440-31-5 4.10E-09 5.93E-05 2.95E-05 1.03E-06 2.43E-05 5.28E-10 3.82E-05 6.65E-07 3.13E-06<br />

Vanadium 7440-62-2 4.75E-07 9.65E-04 1.82E-04 2.51E-05 1.24E-04 5.91E-08 6.02E-04 1.56E-05 1.54E-05<br />

Zinc 7440-66-6 1.80E-08 2.85E-04 4.00E-05 8.37E-05 3.60E-05 2.14E-09 1.69E-04 4.97E-05 4.27E-06


Table C-3 - Project Case Exposure Point Concentrations in <strong>Kitimat</strong> 1<br />

Constituent CAS Registry Number<br />

3 4 5 6 7 3 4 6 7<br />

Surface Sea Water<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water <strong>Marine</strong><br />

Plant Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong> Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Deep Sea Water<br />

Concentration<br />

(mg/L)<br />

Sub-tidal <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Sub-tidal <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Marine</strong> Ground Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

BTEX<br />

Benzene 71-43-2 2.58E-04 1.50E-02 1.07E-03 5.09E-05 1.63E-04 2.51E-04 4.00E-02 1.36E-04 1.58E-04<br />

Ethylbenzene 100-41-4 2.54E-04 1.50E-02 1.06E-02 4.67E-05 1.60E-03 2.51E-04 5.00E-02 1.55E-04 1.58E-03<br />

Toluene 108-88-3 5.23E-04 1.50E-02 8.65E-03 4.83E-05 1.31E-03 5.03E-04 5.00E-02 1.61E-04 1.26E-03<br />

Xylenes 1330-20-7 5.22E-04 2.50E-02 2.73E-02 7.72E-05 4.15E-03 5.03E-04 1.00E-01 3.08E-04 3.99E-03<br />

TPH - CCME CWS % Composition<br />

Aliph>C06-C08 - F1 0.55 1.18E-04 1.01E-01 3.79E-02 1.46E-03 5.76E-03 1.52E-05 8.52E-04 1.23E-05 7.41E-04<br />

Aliph>C08-C10 - F1 0.36 1.55E-05 2.01E-01 3.95E-02 2.68E-03 6.00E-03 2.00E-06 8.54E-04 1.14E-05 7.72E-04<br />

Arom>C08-C10 - F1 0.09 1.45E-05 4.00E-01 1.85E-03 5.96E-03 2.80E-04 1.86E-06 4.16E-05 6.20E-07 3.61E-05<br />

F1 - Total 1 1.48E-04 7.03E-01 7.93E-02 1.01E-02 1.20E-02 1.91E-05 1.75E-03 2.42E-05 1.55E-03<br />

Aliph>C10-C12 - F2 0.36 1.34E-05 4.01E+00 2.70E-01 4.92E-02 4.10E-02 1.72E-06 4.55E-03 5.59E-05 5.28E-03<br />

Aliph>C12-C16 - F2 0.44 2.61E-05 7.55E+00 1.05E+01 8.28E-02 1.60E+00 3.36E-06 3.06E-02 3.35E-04 2.06E-01<br />

Arom>C10-C12 - F2 0.09 1.68E-05 6.30E+00 3.39E-03 9.22E-02 5.15E-04 2.16E-06 1.98E-04 2.89E-06 6.63E-05<br />

Arom>C12-C16 - F2 0.11 1.84E-05 7.50E+00 7.41E-03 1.07E-01 1.13E-03 2.36E-06 9.32E-04 1.33E-05 1.45E-04<br />

F2 - Total 1 7.46E-05 2.54E+01 1.08E+01 3.31E-01 1.64E+00 9.60E-06 3.62E-02 4.07E-04 2.11E-01<br />

Aliph>C16-C21 - F3 0.56 2.95E-05 7.56E+00 --- --- --- 3.80E-06 3.97E-02 --- ---<br />

Aliph>C21-C34 - F3 0.24 4.56E-05 7.75E+00 --- --- --- 5.87E-06 1.59E-01 --- ---<br />

Arom>C16-C21 - F3 0.14 2.03E-05 7.50E+00 2.59E-02 2.05E-01 3.93E-03 2.61E-06 3.22E-03 8.78E-05 5.06E-04<br />

Arom>C21-C34 - F3 0.06 3.74E-05 2.31E+01 3.79E-01 5.82E-01 5.75E-02 4.81E-06 4.10E-02 1.03E-03 7.40E-03<br />

F3 - Total 1 1.33E-04 4.59E+01 4.05E-01 7.87E-01 6.15E-02 1.71E-05 2.43E-01 1.12E-03 7.91E-03<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Acenaphthene 83-32-9 4.00E-05 8.50E-03 5.00E-03 5.00E-03 5.00E-03 4.00E-05 2.50E-02 5.00E-03 8.48E-03<br />

Acenaphthylene 208-96-8 8.00E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 8.00E-05 2.50E-02 5.00E-03 8.48E-03<br />

Anthracene 120-12-7 4.00E-05 1.43E-02 5.00E-03 5.00E-03 5.00E-03 4.00E-05 2.50E-02 6.28E-03 8.48E-03<br />

Fluorene 86-73-7 1.20E-04 5.00E-03 5.01E-03 5.00E-03 5.00E-03 1.20E-04 2.50E-02 5.00E-03 8.48E-03<br />

1-Methylnaphthalene 90-12-0 1.13E-07 9.73E-07 2.76E-05 2.83E-08 4.19E-06 1.45E-08 6.20E-07 1.80E-08 5.39E-07<br />

2-Methylnaphthalene 91-57-6 2.10E-04 1.00E-02 5.02E-02 2.91E-04 7.63E-03 2.10E-04 2.50E-02 7.27E-04 7.63E-03<br />

Naphthalene 91-20-3 1.10E-04 3.00E-02 5.01E-03 5.00E-03 5.00E-03 1.10E-04 2.50E-02 6.28E-03 1.00E-02<br />

Phenanthrene 85-01-8 3.50E-04 8.70E-02 1.00E-02 4.10E-02 1.00E-02 3.50E-04 1.80E-01 9.46E-03 1.00E-02<br />

High Molecular Weight PAHs<br />

Fluoranthene 206-44-0 1.07E-03 6.00E-02 5.00E-03 2.20E-02 5.00E-03 1.07E-03 3.90E-01 5.00E-03 8.48E-03<br />

Benz(a)anthracene 56-55-3 1.47E-03 2.00E-02 5.03E-03 5.00E-03 5.00E-03 1.47E-03 2.70E-01 5.00E-03 8.48E-03<br />

Benzo(a)pyrene 50-32-8 8.70E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 8.70E-04 3.60E-01 5.00E-03 8.48E-03<br />

Benzo(e)pyrene 192-97-2 5.75E-13 4.07E-09 5.23E-08 4.73E-10 7.94E-09 6.82E-14 2.41E-09 2.80E-10 9.41E-10<br />

Benzo(b)fluoranthene 205-99-2 4.69E-03 2.90E-02 5.00E-03 1.00E-02 5.00E-03 4.69E-03 7.00E-01 5.00E-03 8.48E-03<br />

Benzo(g,h,i)perylene 191-24-2 2.50E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-04 2.30E-01 5.00E-03 8.48E-03<br />

Benzo(k)fluoranthene 207-08-9 4.00E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 4.00E-05 2.50E-02 5.00E-03 8.48E-03<br />

Chrysene 218-01-9 1.98E-03 2.80E-02 5.00E-03 1.40E-02 5.00E-03 1.98E-03 3.20E-01 5.00E-03 8.48E-03<br />

Dibenz(a,h)anthracene 53-70-3 8.00E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 8.00E-05 6.00E-02 5.00E-03 8.48E-03<br />

Indeno(1,2,3-cd)pyrene 193-39-5 4.80E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 4.80E-04 2.50E-01 5.00E-03 8.48E-03<br />

Pyrene 129-00-0 9.60E-04 3.60E-02 5.02E-03 1.40E-02 5.00E-03 9.60E-04 4.00E-01 5.00E-03 8.48E-03<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 120-82-1 2.69E-06 1.01E-04 8.89E-04 2.91E-05 6.75E-05 3.47E-07 6.51E-05 1.87E-05 8.69E-06<br />

1,3,5-Trimethylbenzene 108-67-8 1.58E-06 4.85E-06 1.37E-04 1.47E-06 2.09E-05 2.04E-07 3.09E-06 9.35E-07 2.68E-06<br />

Phenolic Compounds<br />

Phenol 108-95-2 5.72E-10 2.57E-12 5.97E-10 9.18E-13 9.07E-11 7.36E-11 1.59E-12 5.69E-13 1.17E-11<br />

2,4-Dimethylphenol 105-67-9 8.37E-10 2.37E-11 5.51E-09 7.90E-12 4.18E-10 1.08E-10 1.47E-11 4.90E-12 5.38E-11<br />

2,4-Dinitrophenol 51-28-5 3.17E-09 1.29E-10 3.63E-09 4.59E-11 2.75E-10 4.08E-10 8.21E-11 2.92E-11 3.54E-11<br />

Trace Elements<br />

Barium 7440-39-3 1.70E-02 3.57E+01 3.04E+01 4.37E+00 1.44E+00 1.70E-02 1.52E+02 1.63E+00 6.90E-01<br />

Boron 7440-42-8 3.90E+00 1.25E-08 6.44E+00 4.24E-09 7.33E-01 3.90E+00 5.78E+01 1.96E+01 7.33E-01<br />

Cadmium 7440-43-9 1.70E-04 1.00E-01 3.59E-01 2.88E-01 1.48E-02 1.70E-04 9.00E-02 2.13E-01 5.43E-02<br />

Manganese 7439-96-5 1.48E+00 5.55E-05 2.65E+01 1.17E+01 6.67E+00 1.48E+00 7.01E+02 5.08E+00 1.49E+00<br />

Molybdenum 7439-98-7 9.60E-03 5.40E-01 4.30E-02 2.18E-01 6.34E-01 9.60E-03 2.50E-01 2.18E-01 1.59E-01<br />

Nickel 7440-02-0 8.80E-04 9.40E+00 8.90E-01 1.19E+00 3.69E+00 8.80E-04 2.43E+01 9.32E-01 2.49E+00<br />

Tin 7440-31-5 5.00E-03 2.50E+00 2.50E-02 1.00E-01 5.70E-02 5.00E-03 1.00E+00 2.98E-02 2.65E-01<br />

Vanadium 7440-62-2 5.00E-02 5.36E+00 4.60E-01 4.50E-01 4.90E-01 5.00E-02 1.44E+01 1.91E-01 9.69E-02<br />

Zinc 7440-66-6 2.10E-02 3.81E+01 5.58E+00 3.33E+01 1.75E+01 2.10E-02 8.59E+01 3.73E+01 1.88E+01


Table C-4 - Base Case Exposure Point Concentrations in <strong>Kitimat</strong> 2<br />

Constituent CAS Registry Number<br />

3 4 5 6 7 3 4 6 7<br />

Surface Sea Water<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water <strong>Marine</strong><br />

Plant Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong> Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Deep Sea Water<br />

Concentration<br />

(mg/L)<br />

Sub-tidal <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Sub-tidal <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

BTEX<br />

Benzene 71-43-2 2.50E-04 1.50E-02 --- --- --- 2.50E-04 4.00E-02 --- ---<br />

Ethylbenzene 100-41-4 2.50E-04 1.50E-02 --- --- --- 2.50E-04 5.00E-02 --- ---<br />

Toluene 108-88-3 5.00E-04 1.50E-02 --- --- --- 5.00E-04 5.00E-02 --- ---<br />

Xylenes 1330-20-7 5.00E-04 2.50E-02 --- --- --- 5.00E-04 1.00E-01 --- ---<br />

TPH - CCME CWS % Composition<br />

Aliph>C06-C08 - F1 0.55 --- 1.00E-01 --- --- --- --- --- --- ---<br />

Aliph>C08-C10 - F1 0.36 --- 2.00E-01 --- --- --- --- --- --- ---<br />

Arom>C08-C10 - F1 0.09 --- 4.00E-01 --- --- --- --- --- --- ---<br />

F1 - Total 1 --- 7.00E-01 --- --- --- --- --- --- ---<br />

Aliph>C10-C12 - F2 0.36 --- 4.00E+00 --- --- --- --- --- --- ---<br />

Aliph>C12-C16 - F2 0.44 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Arom>C10-C12 - F2 0.09 --- 6.30E+00 --- --- --- --- --- --- ---<br />

Arom>C12-C16 - F2 0.11 --- 7.50E+00 --- --- --- --- --- --- ---<br />

F2 - Total 1 --- 2.53E+01 --- --- --- --- --- --- ---<br />

Aliph>C16-C21 - F3 0.56 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Aliph>C21-C34 - F3 0.24 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Arom>C16-C21 - F3 0.14 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Arom>C21-C34 - F3 0.06 --- 2.30E+01 --- --- --- --- --- --- ---<br />

F3 - Total 1 --- 4.55E+01 --- --- --- --- --- --- ---<br />

<strong>Marine</strong> Ground Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Acenaphthene 83-32-9 4.00E-05 8.50E-03 5.00E-03 5.00E-03 5.00E-03 4.00E-05 2.50E-02 5.00E-03 8.48E-03<br />

Acenaphthylene 208-96-8 8.00E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 8.00E-05 2.50E-02 5.00E-03 8.48E-03<br />

Anthracene 120-12-7 4.00E-05 1.43E-02 5.00E-03 5.00E-03 5.00E-03 4.00E-05 2.50E-02 6.28E-03 8.48E-03<br />

Fluorene 86-73-7 1.20E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 1.20E-04 2.50E-02 5.00E-03 8.48E-03<br />

1-Methylnaphthalene 90-12-0 --- --- --- --- --- --- --- --- ---<br />

2-Methylnaphthalene 91-57-6 2.10E-04 1.00E-02 --- --- --- 2.10E-04 2.50E-02 --- ---<br />

Naphthalene 91-20-3 1.10E-04 3.00E-02 5.00E-03 5.00E-03 5.00E-03 1.10E-04 2.50E-02 6.28E-03 1.00E-02<br />

Phenanthrene 85-01-8 3.50E-04 8.70E-02 1.00E-02 4.10E-02 1.00E-02 3.50E-04 1.80E-01 9.46E-03 1.00E-02<br />

High Molecular Weight PAHs<br />

Fluoranthene 206-44-0 1.07E-03 6.00E-02 5.00E-03 2.20E-02 5.00E-03 1.07E-03 3.90E-01 5.00E-03 8.48E-03<br />

Benz(a)anthracene 56-55-3 1.47E-03 2.00E-02 5.00E-03 5.00E-03 5.00E-03 1.47E-03 2.70E-01 5.00E-03 8.48E-03<br />

Benzo(a)pyrene 50-32-8 8.70E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 8.70E-04 3.60E-01 5.00E-03 8.48E-03<br />

Benzo(e)pyrene 192-97-2 --- --- --- --- --- --- --- --- ---<br />

Benzo(b)fluoranthene 205-99-2 4.69E-03 2.90E-02 5.00E-03 1.00E-02 5.00E-03 4.69E-03 7.00E-01 5.00E-03 8.48E-03<br />

Benzo(g,h,i)perylene 191-24-2 2.50E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-04 2.30E-01 5.00E-03 8.48E-03<br />

Benzo(k)fluoranthene 207-08-9 4.00E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 4.00E-05 2.50E-02 5.00E-03 8.48E-03<br />

Chrysene 218-01-9 1.98E-03 2.80E-02 5.00E-03 1.40E-02 5.00E-03 1.98E-03 3.20E-01 5.00E-03 8.48E-03<br />

Dibenz(a,h)anthracene 53-70-3 8.00E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 8.00E-05 6.00E-02 5.00E-03 8.48E-03<br />

Indeno(1,2,3-cd)pyrene 193-39-5 4.80E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 4.80E-04 2.50E-01 5.00E-03 8.48E-03<br />

Pyrene 129-00-0 9.60E-04 3.60E-02 5.00E-03 1.40E-02 5.00E-03 9.60E-04 4.00E-01 5.00E-03 8.48E-03<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 120-82-1 --- --- --- --- --- --- --- --- ---<br />

1,3,5-Trimethylbenzene 108-67-8 --- --- --- --- --- --- --- --- ---<br />

Phenolic Compounds<br />

Phenol 108-95-2 --- --- --- --- --- --- --- --- ---<br />

2,4-Dimethylphenol 105-67-9 --- --- --- --- --- --- --- --- ---<br />

2,4-Dinitrophenol 51-28-5 --- --- --- --- --- --- --- --- ---<br />

Trace Elements<br />

Barium 7440-39-3 1.70E-02 3.57E+01 3.04E+01 4.37E+00 1.44E+00 1.70E-02 1.52E+02 1.63E+00 6.90E-01<br />

Boron 7440-42-8 3.90E+00 --- --- --- --- 3.90E+00 5.78E+01 --- ---<br />

Cadmium 7440-43-9 1.70E-04 1.00E-01 3.59E-01 2.88E-01 1.48E-02 1.70E-04 9.00E-02 2.13E-01 5.43E-02<br />

Manganese 7439-96-5 1.48E+00 --- 2.65E+01 1.17E+01 6.67E+00 1.48E+00 7.01E+02 5.08E+00 1.49E+00<br />

Molybdenum 7439-98-7 9.60E-03 5.40E-01 4.30E-02 2.18E-01 6.34E-01 9.60E-03 2.50E-01 2.18E-01 1.59E-01<br />

Nickel 7440-02-0 8.80E-04 9.40E+00 8.90E-01 1.19E+00 3.69E+00 8.80E-04 2.43E+01 9.32E-01 2.49E+00<br />

Tin 7440-31-5 5.00E-03 2.50E+00 2.50E-02 1.00E-01 5.70E-02 5.00E-03 1.00E+00 2.98E-02 2.65E-01<br />

Vanadium 7440-62-2 5.00E-02 5.36E+00 4.60E-01 4.50E-01 4.90E-01 5.00E-02 1.44E+01 1.91E-01 9.69E-02<br />

Zinc 7440-66-6 2.10E-02 3.81E+01 5.58E+00 3.33E+01 1.75E+01 2.10E-02 8.59E+01 3.73E+01 1.88E+01


Table C-5 - Project Alone Exposure Point Concentrations in <strong>Kitimat</strong> 2<br />

Constituent CAS Registry Number<br />

3 4 5 6 7 3 4 6 7<br />

Surface Sea Water<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water <strong>Marine</strong><br />

Plant Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong> Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Deep Sea Water<br />

Concentration<br />

(mg/L)<br />

Sub-tidal <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Sub-tidal <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Marine</strong> Ground Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

BTEX<br />

Benzene 71-43-2 9.29E-06 4.63E-07 3.86E-05 1.57E-09 5.86E-06 8.51E-07 2.10E-07 7.13E-10 5.37E-07<br />

Ethylbenzene 100-41-4 4.84E-06 7.06E-06 2.01E-04 2.19E-08 3.05E-05 4.43E-07 3.22E-06 1.00E-08 2.80E-06<br />

Toluene 108-88-3 2.57E-05 1.49E-05 4.24E-04 4.79E-08 6.44E-05 2.35E-06 6.80E-06 2.19E-08 5.90E-06<br />

Xylenes 1330-20-7 2.47E-05 4.52E-05 1.29E-03 1.39E-07 1.96E-04 2.26E-06 2.07E-05 6.37E-08 1.80E-05<br />

TPH - CCME CWS % Composition<br />

Aliph>C06-C08 - F1 0.55 1.31E-04 1.47E-03 4.21E-02 2.12E-05 6.40E-03 1.20E-05 6.73E-04 9.68E-06 5.86E-04<br />

Aliph>C08-C10 - F1 0.36 1.72E-05 1.48E-03 4.39E-02 1.96E-05 6.66E-03 1.58E-06 6.74E-04 8.97E-06 6.11E-04<br />

Arom>C08-C10 - F1 0.09 1.61E-05 7.19E-05 2.05E-03 1.07E-06 3.11E-04 1.47E-06 3.28E-05 4.89E-07 2.85E-05<br />

F1 - Total 1 1.65E-04 3.02E-03 8.81E-02 4.19E-05 1.34E-02 1.51E-05 1.38E-03 1.91E-05 1.23E-03<br />

Aliph>C10-C12 - F2 0.36 1.48E-05 7.86E-03 3.00E-01 9.66E-05 4.56E-02 1.36E-06 3.59E-03 4.41E-05 4.18E-03<br />

Aliph>C12-C16 - F2 0.44 2.90E-05 5.28E-02 1.17E+01 5.79E-04 1.77E+00 2.65E-06 2.41E-02 2.65E-04 1.63E-01<br />

Arom>C10-C12 - F2 0.09 1.86E-05 3.41E-04 3.77E-03 4.99E-06 5.72E-04 1.71E-06 1.56E-04 2.29E-06 5.24E-05<br />

Arom>C12-C16 - F2 0.11 2.04E-05 1.61E-03 8.23E-03 2.29E-05 1.25E-03 1.87E-06 7.37E-04 1.05E-05 1.15E-04<br />

F2 - Total 1 8.28E-05 6.26E-02 1.20E+01 7.04E-04 1.82E+00 7.59E-06 2.86E-02 3.21E-04 1.67E-01<br />

Aliph>C16-C21 - F3 0.56 3.28E-05 6.86E-02 --- --- --- 3.00E-06 3.13E-02 --- ---<br />

Aliph>C21-C34 - F3 0.24 5.07E-05 2.75E-01 --- --- --- 4.64E-06 1.26E-01 --- ---<br />

Arom>C16-C21 - F3 0.14 2.26E-05 5.55E-03 2.88E-02 1.51E-04 4.37E-03 2.07E-06 2.54E-03 6.94E-05 4.00E-04<br />

Arom>C21-C34 - F3 0.06 4.15E-05 7.07E-02 4.21E-01 1.78E-03 6.39E-02 3.80E-06 3.24E-02 8.18E-04 5.85E-03<br />

F3 - Total 1 1.48E-04 4.20E-01 4.50E-01 1.94E-03 6.83E-02 1.35E-05 1.92E-01 8.87E-04 6.25E-03<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Acenaphthene 83-32-9 1.13E-11 2.69E-10 2.97E-09 7.79E-12 4.51E-10 1.18E-12 1.40E-10 4.05E-12 4.69E-11<br />

Acenaphthylene 208-96-8 1.36E-13 4.06E-12 4.48E-11 1.17E-13 6.80E-12 1.41E-14 2.11E-12 6.07E-14 7.08E-13<br />

Anthracene 120-12-7 4.75E-09 4.43E-07 4.96E-06 1.22E-08 7.53E-07 4.35E-10 2.03E-07 5.58E-09 6.90E-08<br />

Fluorene 86-73-7 1.08E-08 5.10E-07 5.65E-06 1.44E-08 8.58E-07 9.90E-10 2.33E-07 6.59E-09 7.87E-08<br />

1-Methylnaphthalene 90-12-0 1.25E-07 1.07E-06 3.07E-05 3.12E-08 4.66E-06 1.15E-08 4.90E-07 1.42E-08 4.27E-07<br />

2-Methylnaphthalene 91-57-6 9.68E-08 8.10E-07 2.31E-05 2.36E-08 3.51E-06 8.87E-09 3.70E-07 1.08E-08 3.22E-07<br />

Naphthalene 91-20-3 2.02E-07 4.67E-07 1.33E-05 1.43E-08 2.02E-06 1.85E-08 2.14E-07 6.52E-09 1.85E-07<br />

Phenanthrene 85-01-8 7.35E-09 6.86E-07 7.68E-06 1.89E-08 1.17E-06 6.74E-10 3.14E-07 8.64E-09 1.07E-07<br />

High Molecular Weight PAHs<br />

Fluoranthene 206-44-0 2.60E-12 1.60E-09 8.57E-09 4.21E-11 1.30E-09 2.70E-13 8.33E-10 2.19E-11 1.35E-10<br />

Benz(a)anthracene 56-55-3 2.12E-09 5.40E-06 3.51E-05 1.34E-07 5.33E-06 1.94E-10 2.47E-06 6.13E-08 4.88E-07<br />

Benzo(a)pyrene 50-32-8 1.34E-11 5.61E-08 4.43E-07 6.77E-09 6.72E-08 1.40E-12 2.92E-08 3.52E-09 7.00E-09<br />

Benzo(e)pyrene 192-97-2 5.04E-13 3.57E-09 4.58E-08 4.15E-10 6.96E-09 5.25E-14 1.86E-09 2.16E-10 7.25E-10<br />

Benzo(b)fluoranthene 205-99-2 7.94E-13 3.93E-09 3.49E-08 9.37E-11 5.29E-09 8.26E-14 2.04E-09 4.88E-11 5.51E-10<br />

Benzo(g,h,i)perylene 191-24-2 1.21E-12 9.05E-09 1.27E-07 1.05E-09 1.92E-08 1.26E-13 4.71E-09 5.44E-10 2.00E-09<br />

Benzo(k)fluoranthene 207-08-9 7.94E-13 3.82E-09 3.30E-08 9.15E-11 5.01E-09 8.26E-14 1.99E-09 4.76E-11 5.21E-10<br />

Chrysene 218-01-9 1.28E-12 3.25E-09 2.11E-08 8.05E-11 3.21E-09 1.33E-13 1.69E-09 4.19E-11 3.34E-10<br />

Dibenz(a,h)anthracene 53-70-3 8.96E-13 6.69E-09 9.35E-08 7.72E-10 1.42E-08 9.32E-14 3.48E-09 4.02E-10 1.48E-09<br />

Indeno(1,2,3-cd)pyrene 193-39-5 1.15E-12 9.25E-09 1.51E-07 1.06E-09 2.29E-08 1.19E-13 4.82E-09 5.51E-10 2.38E-09<br />

Pyrene 129-00-0 8.88E-09 4.38E-06 2.33E-05 1.16E-07 3.53E-06 8.13E-10 2.01E-06 5.33E-08 3.24E-07<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 120-82-1 2.99E-06 1.12E-04 9.88E-04 3.23E-05 7.50E-05 2.74E-07 5.15E-05 1.48E-05 6.87E-06<br />

1,3,5-Trimethylbenzene 108-67-8 1.76E-06 5.35E-06 1.53E-04 1.62E-06 2.32E-05 1.61E-07 2.44E-06 7.38E-07 2.12E-06<br />

Phenolic Compounds<br />

Phenol 108-95-2 6.36E-10 2.75E-12 6.63E-10 9.83E-13 1.01E-10 5.82E-11 1.25E-12 4.46E-13 9.23E-12<br />

2,4-Dimethylphenol 105-67-9 9.29E-10 2.54E-11 6.12E-09 8.46E-12 4.65E-10 8.51E-11 1.15E-11 3.84E-12 4.26E-11<br />

2,4-Dinitrophenol 51-28-5 3.52E-09 1.42E-10 4.03E-09 5.06E-11 3.06E-10 3.22E-10 6.48E-11 2.31E-11 2.80E-11<br />

Trace Elements<br />

Barium 7440-39-3 2.66E-09 9.98E-06 1.93E-07 4.84E-07 4.87E-08 2.61E-10 4.90E-06 2.38E-07 4.77E-09<br />

Boron 7440-42-8 7.86E-10 1.39E-08 1.30E-09 4.71E-09 1.48E-10 7.20E-11 6.37E-09 2.16E-09 1.35E-11<br />

Cadmium 7440-43-9 2.28E-10 3.61E-06 1.34E-07 2.27E-04 8.87E-08 2.35E-11 1.86E-06 1.17E-04 9.16E-09<br />

Manganese 7439-96-5 2.26E-09 5.19E-05 6.57E-06 5.76E-07 6.20E-06 2.28E-10 2.61E-05 2.89E-07 6.23E-07<br />

Molybdenum 7439-98-7 1.58E-08 1.21E-04 2.29E-08 8.29E-05 7.31E-08 1.45E-09 5.55E-05 3.82E-05 6.73E-09<br />

Nickel 7440-02-0 1.59E-07 1.41E-03 2.93E-04 7.03E-05 2.61E-04 1.51E-08 6.73E-04 3.35E-05 2.48E-05<br />

Tin 7440-31-5 4.56E-09 6.60E-05 3.28E-05 1.15E-06 2.70E-05 4.18E-10 3.02E-05 5.26E-07 2.47E-06<br />

Vanadium 7440-62-2 4.82E-07 9.81E-04 1.85E-04 2.55E-05 1.26E-04 4.63E-08 4.71E-04 1.23E-05 1.21E-05<br />

Zinc 7440-66-6 1.58E-08 2.51E-04 3.52E-05 7.36E-05 3.17E-05 1.65E-09 1.30E-04 3.83E-05 3.29E-06


Table C-6 - Project Case Exposure Point Concentrations in <strong>Kitimat</strong> 2<br />

Constituent CAS Registry Number<br />

3 4 5 6 7 3 4 6 7<br />

Surface Sea Water<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water <strong>Marine</strong><br />

Plant Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong> Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Deep Sea Water<br />

Concentration<br />

(mg/L)<br />

Sub-tidal <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Sub-tidal <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Marine</strong> Ground Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

BTEX<br />

Benzene 71-43-2 2.59E-04 1.50E-02 1.08E-03 5.09E-05 1.64E-04 2.51E-04 4.00E-02 1.36E-04 1.58E-04<br />

Ethylbenzene 100-41-4 2.55E-04 1.50E-02 1.06E-02 4.67E-05 1.61E-03 2.50E-04 5.00E-02 1.55E-04 1.58E-03<br />

Toluene 108-88-3 5.26E-04 1.50E-02 8.70E-03 4.83E-05 1.32E-03 5.02E-04 5.00E-02 1.61E-04 1.26E-03<br />

Xylenes 1330-20-7 5.25E-04 2.50E-02 2.74E-02 7.72E-05 4.17E-03 5.02E-04 1.00E-01 3.08E-04 3.99E-03<br />

TPH - CCME CWS % Composition<br />

Aliph>C06-C08 - F1 0.55 1.31E-04 1.01E-01 4.21E-02 1.46E-03 6.40E-03 1.20E-05 6.73E-04 9.68E-06 5.86E-04<br />

Aliph>C08-C10 - F1 0.36 1.72E-05 2.01E-01 4.39E-02 2.68E-03 6.66E-03 1.58E-06 6.74E-04 8.97E-06 6.11E-04<br />

Arom>C08-C10 - F1 0.09 1.61E-05 4.00E-01 2.05E-03 5.96E-03 3.11E-04 1.47E-06 3.28E-05 4.89E-07 2.85E-05<br />

F1 - Total 1 1.65E-04 7.03E-01 8.81E-02 1.01E-02 1.34E-02 1.51E-05 1.38E-03 1.91E-05 1.23E-03<br />

Aliph>C10-C12 - F2 0.36 1.48E-05 4.01E+00 3.00E-01 4.92E-02 4.56E-02 1.36E-06 3.59E-03 4.41E-05 4.18E-03<br />

Aliph>C12-C16 - F2 0.44 2.90E-05 7.55E+00 1.17E+01 8.28E-02 1.77E+00 2.65E-06 2.41E-02 2.65E-04 1.63E-01<br />

Arom>C10-C12 - F2 0.09 1.86E-05 6.30E+00 3.77E-03 9.22E-02 5.72E-04 1.71E-06 1.56E-04 2.29E-06 5.24E-05<br />

Arom>C12-C16 - F2 0.11 2.04E-05 7.50E+00 8.23E-03 1.07E-01 1.25E-03 1.87E-06 7.37E-04 1.05E-05 1.15E-04<br />

F2 - Total 1 8.28E-05 2.54E+01 1.20E+01 3.31E-01 1.82E+00 7.59E-06 2.86E-02 3.21E-04 1.67E-01<br />

Aliph>C16-C21 - F3 0.56 3.28E-05 7.57E+00 --- --- --- 3.00E-06 3.13E-02 --- ---<br />

Aliph>C21-C34 - F3 0.24 5.07E-05 7.77E+00 --- --- --- 4.64E-06 1.26E-01 --- ---<br />

Arom>C16-C21 - F3 0.14 2.26E-05 7.51E+00 2.88E-02 2.05E-01 4.37E-03 2.07E-06 2.54E-03 6.94E-05 4.00E-04<br />

Arom>C21-C34 - F3 0.06 4.15E-05 2.31E+01 4.21E-01 5.82E-01 6.39E-02 3.80E-06 3.24E-02 8.18E-04 5.85E-03<br />

F3 - Total 1 1.48E-04 4.59E+01 4.50E-01 7.87E-01 6.83E-02 1.35E-05 1.92E-01 8.87E-04 6.25E-03<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Acenaphthene 83-32-9 4.00E-05 8.50E-03 5.00E-03 5.00E-03 5.00E-03 4.00E-05 2.50E-02 5.00E-03 8.48E-03<br />

Acenaphthylene 208-96-8 8.00E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 8.00E-05 2.50E-02 5.00E-03 8.48E-03<br />

Anthracene 120-12-7 4.00E-05 1.43E-02 5.00E-03 5.00E-03 5.00E-03 4.00E-05 2.50E-02 6.28E-03 8.48E-03<br />

Fluorene 86-73-7 1.20E-04 5.00E-03 5.01E-03 5.00E-03 5.00E-03 1.20E-04 2.50E-02 5.00E-03 8.48E-03<br />

1-Methylnaphthalene 90-12-0 1.25E-07 1.07E-06 3.07E-05 3.12E-08 4.66E-06 1.15E-08 4.90E-07 1.42E-08 4.27E-07<br />

2-Methylnaphthalene 91-57-6 2.10E-04 1.00E-02 5.02E-02 2.91E-04 7.63E-03 2.10E-04 2.50E-02 7.27E-04 7.62E-03<br />

Naphthalene 91-20-3 1.10E-04 3.00E-02 5.01E-03 5.00E-03 5.00E-03 1.10E-04 2.50E-02 6.28E-03 1.00E-02<br />

Phenanthrene 85-01-8 3.50E-04 8.70E-02 1.00E-02 4.10E-02 1.00E-02 3.50E-04 1.80E-01 9.46E-03 1.00E-02<br />

High Molecular Weight PAHs<br />

Fluoranthene 206-44-0 1.07E-03 6.00E-02 5.00E-03 2.20E-02 5.00E-03 1.07E-03 3.90E-01 5.00E-03 8.48E-03<br />

Benz(a)anthracene 56-55-3 1.47E-03 2.00E-02 5.04E-03 5.00E-03 5.01E-03 1.47E-03 2.70E-01 5.00E-03 8.48E-03<br />

Benzo(a)pyrene 50-32-8 8.70E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 8.70E-04 3.60E-01 5.00E-03 8.48E-03<br />

Benzo(e)pyrene 192-97-2 5.04E-13 3.57E-09 4.58E-08 4.15E-10 6.96E-09 5.25E-14 1.86E-09 2.16E-10 7.25E-10<br />

Benzo(b)fluoranthene 205-99-2 4.69E-03 2.90E-02 5.00E-03 1.00E-02 5.00E-03 4.69E-03 7.00E-01 5.00E-03 8.48E-03<br />

Benzo(g,h,i)perylene 191-24-2 2.50E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-04 2.30E-01 5.00E-03 8.48E-03<br />

Benzo(k)fluoranthene 207-08-9 4.00E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 4.00E-05 2.50E-02 5.00E-03 8.48E-03<br />

Chrysene 218-01-9 1.98E-03 2.80E-02 5.00E-03 1.40E-02 5.00E-03 1.98E-03 3.20E-01 5.00E-03 8.48E-03<br />

Dibenz(a,h)anthracene 53-70-3 8.00E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 8.00E-05 6.00E-02 5.00E-03 8.48E-03<br />

Indeno(1,2,3-cd)pyrene 193-39-5 4.80E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 4.80E-04 2.50E-01 5.00E-03 8.48E-03<br />

Pyrene 129-00-0 9.60E-04 3.60E-02 5.02E-03 1.40E-02 5.00E-03 9.60E-04 4.00E-01 5.00E-03 8.48E-03<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 120-82-1 2.99E-06 1.12E-04 9.88E-04 3.23E-05 7.50E-05 2.74E-07 5.15E-05 1.48E-05 6.87E-06<br />

1,3,5-Trimethylbenzene 108-67-8 1.76E-06 5.35E-06 1.53E-04 1.62E-06 2.32E-05 1.61E-07 2.44E-06 7.38E-07 2.12E-06<br />

Phenolic Compounds<br />

Phenol 108-95-2 6.36E-10 2.75E-12 6.63E-10 9.83E-13 1.01E-10 5.82E-11 1.25E-12 4.46E-13 9.23E-12<br />

2,4-Dimethylphenol 105-67-9 9.29E-10 2.54E-11 6.12E-09 8.46E-12 4.65E-10 8.51E-11 1.15E-11 3.84E-12 4.26E-11<br />

2,4-Dinitrophenol 51-28-5 3.52E-09 1.42E-10 4.03E-09 5.06E-11 3.06E-10 3.22E-10 6.48E-11 2.31E-11 2.80E-11<br />

Trace Elements<br />

Barium 7440-39-3 1.70E-02 3.57E+01 3.04E+01 4.37E+00 1.44E+00 1.70E-02 1.52E+02 1.63E+00 6.90E-01<br />

Boron 7440-42-8 3.90E+00 1.39E-08 6.44E+00 4.71E-09 7.33E-01 3.90E+00 5.78E+01 1.96E+01 7.33E-01<br />

Cadmium 7440-43-9 1.70E-04 1.00E-01 3.59E-01 2.88E-01 1.48E-02 1.70E-04 9.00E-02 2.13E-01 5.43E-02<br />

Manganese 7439-96-5 1.48E+00 5.19E-05 2.65E+01 1.17E+01 6.67E+00 1.48E+00 7.01E+02 5.08E+00 1.49E+00<br />

Molybdenum 7439-98-7 9.60E-03 5.40E-01 4.30E-02 2.18E-01 6.34E-01 9.60E-03 2.50E-01 2.18E-01 1.59E-01<br />

Nickel 7440-02-0 8.80E-04 9.40E+00 8.90E-01 1.19E+00 3.69E+00 8.80E-04 2.43E+01 9.32E-01 2.49E+00<br />

Tin 7440-31-5 5.00E-03 2.50E+00 2.50E-02 1.00E-01 5.70E-02 5.00E-03 1.00E+00 2.98E-02 2.65E-01<br />

Vanadium 7440-62-2 5.00E-02 5.36E+00 4.60E-01 4.50E-01 4.90E-01 5.00E-02 1.44E+01 1.91E-01 9.69E-02<br />

Zinc 7440-66-6 2.10E-02 3.81E+01 5.58E+00 3.33E+01 1.75E+01 2.10E-02 8.59E+01 3.73E+01 1.88E+01


Table C-7 - Base Case Exposure Point Concentrations in Terminal<br />

Constituent CAS Registry Number<br />

3 4 5 6 7 3 4 6 7<br />

Surface Sea Water<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water <strong>Marine</strong><br />

Plant Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong> Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Deep Sea Water<br />

Concentration<br />

(mg/L)<br />

Sub-tidal <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Sub-tidal <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

BTEX<br />

Benzene 71-43-2 2.50E-04 1.50E-02 --- --- --- 2.50E-04 4.00E-02 --- ---<br />

Ethylbenzene 100-41-4 2.50E-04 1.50E-02 --- --- --- 2.50E-04 5.00E-02 --- ---<br />

Toluene 108-88-3 5.00E-04 1.50E-02 --- --- --- 5.00E-04 5.00E-02 --- ---<br />

Xylenes 1330-20-7 5.00E-04 2.50E-02 --- --- --- 5.00E-04 1.00E-01 --- ---<br />

TPH - CCME CWS % Composition<br />

Aliph>C06-C08 - F1 0.55 --- 1.00E-01 --- --- --- --- --- --- ---<br />

Aliph>C08-C10 - F1 0.36 --- 2.00E-01 --- --- --- --- --- --- ---<br />

Arom>C08-C10 - F1 0.09 --- 4.00E-01 --- --- --- --- --- --- ---<br />

F1 - Total 1 --- 7.00E-01 --- --- --- --- --- --- ---<br />

Aliph>C10-C12 - F2 0.36 --- 4.00E+00 --- --- --- --- --- --- ---<br />

Aliph>C12-C16 - F2 0.44 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Arom>C10-C12 - F2 0.09 --- 6.30E+00 --- --- --- --- --- --- ---<br />

Arom>C12-C16 - F2 0.11 --- 7.50E+00 --- --- --- --- --- --- ---<br />

F2 - Total 1 --- 2.53E+01 --- --- --- --- --- --- ---<br />

Aliph>C16-C21 - F3 0.56 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Aliph>C21-C34 - F3 0.24 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Arom>C16-C21 - F3 0.14 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Arom>C21-C34 - F3 0.06 --- 2.30E+01 --- --- --- --- --- --- ---<br />

F3 - Total 1 --- 4.55E+01 --- --- --- --- --- --- ---<br />

<strong>Marine</strong> Ground Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Acenaphthene 83-32-9 4.00E-05 8.50E-03 5.00E-03 5.00E-03 5.00E-03 4.00E-05 2.50E-02 5.00E-03 8.48E-03<br />

Acenaphthylene 208-96-8 8.00E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 8.00E-05 2.50E-02 5.00E-03 8.48E-03<br />

Anthracene 120-12-7 4.00E-05 1.43E-02 5.00E-03 5.00E-03 5.00E-03 4.00E-05 2.50E-02 6.28E-03 8.48E-03<br />

Fluorene 86-73-7 1.20E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 1.20E-04 2.50E-02 5.00E-03 8.48E-03<br />

1-Methylnaphthalene 90-12-0 --- --- --- --- --- --- --- --- ---<br />

2-Methylnaphthalene 91-57-6 2.10E-04 1.00E-02 --- --- --- 2.10E-04 2.50E-02 --- ---<br />

Naphthalene 91-20-3 1.10E-04 3.00E-02 5.00E-03 5.00E-03 5.00E-03 1.10E-04 2.50E-02 6.28E-03 1.00E-02<br />

Phenanthrene 85-01-8 3.50E-04 8.70E-02 1.00E-02 4.10E-02 1.00E-02 3.50E-04 1.80E-01 9.46E-03 1.00E-02<br />

High Molecular Weight PAHs<br />

Fluoranthene 206-44-0 1.07E-03 6.00E-02 5.00E-03 2.20E-02 5.00E-03 1.07E-03 3.90E-01 5.00E-03 8.48E-03<br />

Benz(a)anthracene 56-55-3 1.47E-03 2.00E-02 5.00E-03 5.00E-03 5.00E-03 1.47E-03 2.70E-01 5.00E-03 8.48E-03<br />

Benzo(a)pyrene 50-32-8 8.70E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 8.70E-04 3.60E-01 5.00E-03 8.48E-03<br />

Benzo(e)pyrene 192-97-2 --- --- --- --- --- --- --- --- ---<br />

Benzo(b)fluoranthene 205-99-2 4.69E-03 2.90E-02 5.00E-03 1.00E-02 5.00E-03 4.69E-03 7.00E-01 5.00E-03 8.48E-03<br />

Benzo(g,h,i)perylene 191-24-2 2.50E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-04 2.30E-01 5.00E-03 8.48E-03<br />

Benzo(k)fluoranthene 207-08-9 4.00E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 4.00E-05 2.50E-02 5.00E-03 8.48E-03<br />

Chrysene 218-01-9 1.98E-03 2.80E-02 5.00E-03 1.40E-02 5.00E-03 1.98E-03 3.20E-01 5.00E-03 8.48E-03<br />

Dibenz(a,h)anthracene 53-70-3 8.00E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 8.00E-05 6.00E-02 5.00E-03 8.48E-03<br />

Indeno(1,2,3-cd)pyrene 193-39-5 4.80E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 4.80E-04 2.50E-01 5.00E-03 8.48E-03<br />

Pyrene 129-00-0 9.60E-04 3.60E-02 5.00E-03 1.40E-02 5.00E-03 9.60E-04 4.00E-01 5.00E-03 8.48E-03<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 120-82-1 --- --- --- --- --- --- --- --- ---<br />

1,3,5-Trimethylbenzene 108-67-8 --- --- --- --- --- --- --- --- ---<br />

Phenolic Compounds<br />

Phenol 108-95-2 --- --- --- --- --- --- --- --- ---<br />

2,4-Dimethylphenol 105-67-9 --- --- --- --- --- --- --- --- ---<br />

2,4-Dinitrophenol 51-28-5 --- --- --- --- --- --- --- --- ---<br />

Trace Elements<br />

Barium 7440-39-3 1.70E-02 3.57E+01 3.04E+01 4.37E+00 1.44E+00 1.70E-02 1.52E+02 1.63E+00 6.90E-01<br />

Boron 7440-42-8 3.90E+00 --- --- --- --- 3.90E+00 5.78E+01 --- ---<br />

Cadmium 7440-43-9 1.70E-04 1.00E-01 3.59E-01 2.88E-01 1.48E-02 1.70E-04 9.00E-02 2.13E-01 5.43E-02<br />

Manganese 7439-96-5 1.48E+00 --- 2.65E+01 1.17E+01 6.67E+00 1.48E+00 7.01E+02 5.08E+00 1.49E+00<br />

Molybdenum 7439-98-7 9.60E-03 5.40E-01 4.30E-02 2.18E-01 6.34E-01 9.60E-03 2.50E-01 2.18E-01 1.59E-01<br />

Nickel 7440-02-0 8.80E-04 9.40E+00 8.90E-01 1.19E+00 3.69E+00 8.80E-04 2.43E+01 9.32E-01 2.49E+00<br />

Tin 7440-31-5 5.00E-03 2.50E+00 2.50E-02 1.00E-01 5.70E-02 5.00E-03 1.00E+00 2.98E-02 2.65E-01<br />

Vanadium 7440-62-2 5.00E-02 5.36E+00 4.60E-01 4.50E-01 4.90E-01 5.00E-02 1.44E+01 1.91E-01 9.69E-02<br />

Zinc 7440-66-6 2.10E-02 3.81E+01 5.58E+00 3.33E+01 1.75E+01 2.10E-02 8.59E+01 3.73E+01 1.88E+01


Table C-8 - Project Alone Exposure Point Concentrations in Terminal<br />

Constituent CAS Registry Number<br />

3 4 5 6 7 3 4 6 7<br />

Surface Sea Water<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water <strong>Marine</strong><br />

Plant Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong> Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Deep Sea Water<br />

Concentration<br />

(mg/L)<br />

Sub-tidal <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Sub-tidal <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Marine</strong> Ground Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

BTEX<br />

Benzene 71-43-2 8.64E-06 4.19E-07 3.59E-05 1.42E-09 5.45E-06 6.66E-07 1.64E-07 5.55E-10 4.20E-07<br />

Ethylbenzene 100-41-4 4.50E-06 6.50E-06 1.87E-04 2.02E-08 2.84E-05 3.47E-07 2.52E-06 7.82E-09 2.19E-06<br />

Toluene 108-88-3 2.39E-05 1.37E-05 3.95E-04 4.42E-08 5.99E-05 1.84E-06 5.31E-06 1.71E-08 4.62E-06<br />

Xylenes 1330-20-7 2.29E-05 4.17E-05 1.20E-03 1.28E-07 1.82E-04 1.77E-06 1.61E-05 4.97E-08 1.40E-05<br />

TPH - CCME CWS % Composition<br />

Aliph>C06-C08 - F1 0.55 1.22E-04 1.36E-03 3.92E-02 1.95E-05 5.95E-03 9.42E-06 5.26E-04 7.56E-06 4.58E-04<br />

Aliph>C08-C10 - F1 0.36 1.60E-05 1.36E-03 4.08E-02 1.81E-05 6.20E-03 1.24E-06 5.27E-04 7.00E-06 4.78E-04<br />

Arom>C08-C10 - F1 0.09 1.49E-05 6.63E-05 1.91E-03 9.87E-07 2.90E-04 1.15E-06 2.57E-05 3.82E-07 2.23E-05<br />

F1 - Total 1 1.53E-04 2.79E-03 8.19E-02 3.86E-05 1.24E-02 1.18E-05 1.08E-03 1.49E-05 9.58E-04<br />

Aliph>C10-C12 - F2 0.36 1.38E-05 7.24E-03 2.79E-01 8.90E-05 4.24E-02 1.06E-06 2.80E-03 3.44E-05 3.27E-03<br />

Aliph>C12-C16 - F2 0.44 2.69E-05 4.87E-02 1.09E+01 5.34E-04 1.65E+00 2.08E-06 1.88E-02 2.07E-04 1.27E-01<br />

Arom>C10-C12 - F2 0.09 1.73E-05 3.16E-04 3.50E-03 4.63E-06 5.32E-04 1.34E-06 1.22E-04 1.79E-06 4.10E-05<br />

Arom>C12-C16 - F2 0.11 1.90E-05 1.50E-03 7.65E-03 2.13E-05 1.16E-03 1.46E-06 5.76E-04 8.22E-06 8.96E-05<br />

F2 - Total 1 7.70E-05 5.77E-02 1.12E+01 6.49E-04 1.69E+00 5.94E-06 2.23E-02 2.51E-04 1.31E-01<br />

Aliph>C16-C21 - F3 0.56 3.05E-05 6.32E-02 --- --- --- 2.35E-06 2.45E-02 --- ---<br />

Aliph>C21-C34 - F3 0.24 4.71E-05 2.55E-01 --- --- --- 3.63E-06 9.83E-02 --- ---<br />

Arom>C16-C21 - F3 0.14 2.10E-05 5.16E-03 2.68E-02 1.41E-04 4.06E-03 1.62E-06 1.99E-03 5.43E-05 3.13E-04<br />

Arom>C21-C34 - F3 0.06 3.86E-05 6.58E-02 3.91E-01 1.66E-03 5.94E-02 2.97E-06 2.54E-02 6.40E-04 4.58E-03<br />

F3 - Total 1 1.37E-04 3.89E-01 4.18E-01 1.80E-03 6.35E-02 1.06E-05 1.50E-01 6.94E-04 4.89E-03<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Acenaphthene 83-32-9 9.34E-12 2.21E-10 2.45E-09 6.42E-12 3.72E-10 9.13E-13 1.08E-10 3.14E-12 3.63E-11<br />

Acenaphthylene 208-96-8 1.12E-13 3.35E-12 3.70E-11 9.62E-14 5.61E-12 1.09E-14 1.64E-12 4.70E-14 5.49E-13<br />

Anthracene 120-12-7 4.42E-09 4.11E-07 4.61E-06 1.13E-08 7.00E-07 3.40E-10 1.59E-07 4.37E-09 5.40E-08<br />

Fluorene 86-73-7 1.00E-08 4.73E-07 5.26E-06 1.34E-08 7.98E-07 7.74E-10 1.82E-07 5.15E-09 6.15E-08<br />

1-Methylnaphthalene 90-12-0 1.17E-07 9.88E-07 2.85E-05 2.87E-08 4.33E-06 8.98E-09 3.83E-07 1.11E-08 3.34E-07<br />

2-Methylnaphthalene 91-57-6 9.00E-08 7.46E-07 2.15E-05 2.17E-08 3.27E-06 6.93E-09 2.89E-07 8.40E-09 2.52E-07<br />

Naphthalene 91-20-3 1.88E-07 4.31E-07 1.24E-05 1.32E-08 1.88E-06 1.45E-08 1.67E-07 5.10E-09 1.45E-07<br />

Phenanthrene 85-01-8 6.84E-09 6.37E-07 7.14E-06 1.75E-08 1.08E-06 5.27E-10 2.46E-07 6.76E-09 8.35E-08<br />

High Molecular Weight PAHs<br />

Fluoranthene 206-44-0 2.14E-12 1.32E-09 7.07E-09 3.48E-11 1.07E-09 2.09E-13 6.45E-10 1.70E-11 1.05E-10<br />

Benz(a)anthracene 56-55-3 1.97E-09 5.02E-06 3.26E-05 1.24E-07 4.95E-06 1.52E-10 1.94E-06 4.79E-08 3.82E-07<br />

Benzo(a)pyrene 50-32-8 1.11E-11 4.63E-08 3.65E-07 5.58E-09 5.55E-08 1.08E-12 2.26E-08 2.73E-09 5.42E-09<br />

Benzo(e)pyrene 192-97-2 4.16E-13 2.95E-09 3.78E-08 3.42E-10 5.74E-09 4.07E-14 1.44E-09 1.67E-10 5.61E-10<br />

Benzo(b)fluoranthene 205-99-2 6.55E-13 3.24E-09 2.88E-08 7.73E-11 4.37E-09 6.40E-14 1.58E-09 3.78E-11 4.27E-10<br />

Benzo(g,h,i)perylene 191-24-2 1.00E-12 7.47E-09 1.04E-07 8.62E-10 1.59E-08 9.78E-14 3.65E-09 4.21E-10 1.55E-09<br />

Benzo(k)fluoranthene 207-08-9 6.55E-13 3.16E-09 2.72E-08 7.55E-11 4.13E-09 6.40E-14 1.54E-09 3.69E-11 4.04E-10<br />

Chrysene 218-01-9 1.05E-12 2.68E-09 1.74E-08 6.64E-11 2.65E-09 1.03E-13 1.31E-09 3.25E-11 2.59E-10<br />

Dibenz(a,h)anthracene 53-70-3 7.39E-13 5.52E-09 7.72E-08 6.37E-10 1.17E-08 7.23E-14 2.70E-09 3.11E-10 1.15E-09<br />

Indeno(1,2,3-cd)pyrene 193-39-5 9.47E-13 7.64E-09 1.24E-07 8.74E-10 1.89E-08 9.26E-14 3.73E-09 4.27E-10 1.85E-09<br />

Pyrene 129-00-0 8.25E-09 4.07E-06 2.16E-05 1.08E-07 3.29E-06 6.36E-10 1.57E-06 4.17E-08 2.53E-07<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 120-82-1 2.78E-06 1.04E-04 9.19E-04 3.00E-05 6.97E-05 2.14E-07 4.02E-05 1.16E-05 5.37E-06<br />

1,3,5-Trimethylbenzene 108-67-8 1.63E-06 4.93E-06 1.42E-04 1.49E-06 2.15E-05 1.26E-07 1.91E-06 5.77E-07 1.66E-06<br />

Phenolic Compounds<br />

Phenol 108-95-2 5.91E-10 2.45E-12 6.17E-10 8.75E-13 9.37E-11 4.55E-11 9.69E-13 3.46E-13 7.22E-12<br />

2,4-Dimethylphenol 105-67-9 8.64E-10 2.26E-11 5.69E-09 7.53E-12 4.32E-10 6.66E-11 8.95E-12 2.98E-12 3.33E-11<br />

2,4-Dinitrophenol 51-28-5 3.27E-09 1.31E-10 3.74E-09 4.66E-11 2.84E-10 2.52E-10 5.06E-11 1.80E-11 2.19E-11<br />

Trace Elements<br />

Barium 7440-39-3 2.33E-09 8.75E-06 1.69E-07 4.24E-07 4.26E-08 2.03E-10 3.81E-06 1.85E-07 3.71E-09<br />

Boron 7440-42-8 7.31E-10 1.29E-08 1.21E-09 4.39E-09 1.37E-10 5.63E-11 4.99E-09 1.69E-09 1.06E-11<br />

Cadmium 7440-43-9 1.90E-10 3.00E-06 1.11E-07 1.89E-04 7.38E-08 1.83E-11 1.44E-06 9.09E-05 7.10E-09<br />

Manganese 7439-96-5 1.94E-09 4.44E-05 5.62E-06 4.93E-07 5.31E-06 1.77E-10 2.03E-05 2.25E-07 4.84E-07<br />

Molybdenum 7439-98-7 1.46E-08 1.12E-04 2.12E-08 7.70E-05 6.78E-08 1.13E-09 4.34E-05 2.98E-05 5.26E-09<br />

Nickel 7440-02-0 1.43E-07 1.27E-03 2.64E-04 6.33E-05 2.35E-04 1.18E-08 5.25E-04 2.61E-05 1.94E-05<br />

Tin 7440-31-5 4.24E-09 6.14E-05 3.05E-05 1.07E-06 2.51E-05 3.27E-10 2.37E-05 4.12E-07 1.93E-06<br />

Vanadium 7440-62-2 4.30E-07 8.76E-04 1.65E-04 2.28E-05 1.12E-04 3.61E-08 3.67E-04 9.55E-06 9.41E-06<br />

Zinc 7440-66-6 1.31E-08 2.07E-04 2.91E-05 6.09E-05 2.62E-05 1.28E-09 1.01E-04 2.97E-05 2.55E-06


Table C-9 - Project Case Exposure Point Concentrations in Terminal<br />

Constituent CAS Registry Number<br />

3 4 5 6 7 3 4 6 7<br />

Surface Sea Water<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water <strong>Marine</strong><br />

Plant Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong> Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Deep Sea Water<br />

Concentration<br />

(mg/L)<br />

Sub-tidal <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Sub-tidal <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Marine</strong> Ground Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

BTEX<br />

Benzene 71-43-2 2.59E-04 1.50E-02 1.07E-03 5.09E-05 1.63E-04 2.51E-04 4.00E-02 1.36E-04 1.58E-04<br />

Ethylbenzene 100-41-4 2.55E-04 1.50E-02 1.06E-02 4.67E-05 1.61E-03 2.50E-04 5.00E-02 1.55E-04 1.58E-03<br />

Toluene 108-88-3 5.24E-04 1.50E-02 8.67E-03 4.83E-05 1.32E-03 5.02E-04 5.00E-02 1.61E-04 1.26E-03<br />

Xylenes 1330-20-7 5.23E-04 2.50E-02 2.74E-02 7.72E-05 4.15E-03 5.02E-04 1.00E-01 3.08E-04 3.99E-03<br />

TPH - CCME CWS % Composition<br />

Aliph>C06-C08 - F1 0.55 1.22E-04 1.01E-01 3.92E-02 1.46E-03 5.95E-03 9.42E-06 5.26E-04 7.56E-06 4.58E-04<br />

Aliph>C08-C10 - F1 0.36 1.60E-05 2.01E-01 4.08E-02 2.68E-03 6.20E-03 1.24E-06 5.27E-04 7.00E-06 4.78E-04<br />

Arom>C08-C10 - F1 0.09 1.49E-05 4.00E-01 1.91E-03 5.96E-03 2.90E-04 1.15E-06 2.57E-05 3.82E-07 2.23E-05<br />

F1 - Total 1 1.53E-04 7.03E-01 8.19E-02 1.01E-02 1.24E-02 1.18E-05 1.08E-03 1.49E-05 9.58E-04<br />

Aliph>C10-C12 - F2 0.36 1.38E-05 4.01E+00 2.79E-01 4.92E-02 4.24E-02 1.06E-06 2.80E-03 3.44E-05 3.27E-03<br />

Aliph>C12-C16 - F2 0.44 2.69E-05 7.55E+00 1.09E+01 8.28E-02 1.65E+00 2.08E-06 1.88E-02 2.07E-04 1.27E-01<br />

Arom>C10-C12 - F2 0.09 1.73E-05 6.30E+00 3.50E-03 9.22E-02 5.32E-04 1.34E-06 1.22E-04 1.79E-06 4.10E-05<br />

Arom>C12-C16 - F2 0.11 1.90E-05 7.50E+00 7.65E-03 1.07E-01 1.16E-03 1.46E-06 5.76E-04 8.22E-06 8.96E-05<br />

F2 - Total 1 7.70E-05 2.54E+01 1.12E+01 3.31E-01 1.69E+00 5.94E-06 2.23E-02 2.51E-04 1.31E-01<br />

Aliph>C16-C21 - F3 0.56 3.05E-05 7.56E+00 --- --- --- 2.35E-06 2.45E-02 --- ---<br />

Aliph>C21-C34 - F3 0.24 4.71E-05 7.75E+00 --- --- --- 3.63E-06 9.83E-02 --- ---<br />

Arom>C16-C21 - F3 0.14 2.10E-05 7.51E+00 2.68E-02 2.05E-01 4.06E-03 1.62E-06 1.99E-03 5.43E-05 3.13E-04<br />

Arom>C21-C34 - F3 0.06 3.86E-05 2.31E+01 3.91E-01 5.82E-01 5.94E-02 2.97E-06 2.54E-02 6.40E-04 4.58E-03<br />

F3 - Total 1 1.37E-04 4.59E+01 4.18E-01 7.87E-01 6.35E-02 1.06E-05 1.50E-01 6.94E-04 4.89E-03<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Acenaphthene 83-32-9 4.00E-05 8.50E-03 5.00E-03 5.00E-03 5.00E-03 4.00E-05 2.50E-02 5.00E-03 8.48E-03<br />

Acenaphthylene 208-96-8 8.00E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 8.00E-05 2.50E-02 5.00E-03 8.48E-03<br />

Anthracene 120-12-7 4.00E-05 1.43E-02 5.00E-03 5.00E-03 5.00E-03 4.00E-05 2.50E-02 6.28E-03 8.48E-03<br />

Fluorene 86-73-7 1.20E-04 5.00E-03 5.01E-03 5.00E-03 5.00E-03 1.20E-04 2.50E-02 5.00E-03 8.48E-03<br />

1-Methylnaphthalene 90-12-0 1.17E-07 9.88E-07 2.85E-05 2.87E-08 4.33E-06 8.98E-09 3.83E-07 1.11E-08 3.34E-07<br />

2-Methylnaphthalene 91-57-6 2.10E-04 1.00E-02 5.02E-02 2.91E-04 7.63E-03 2.10E-04 2.50E-02 7.27E-04 7.62E-03<br />

Naphthalene 91-20-3 1.10E-04 3.00E-02 5.01E-03 5.00E-03 5.00E-03 1.10E-04 2.50E-02 6.28E-03 1.00E-02<br />

Phenanthrene 85-01-8 3.50E-04 8.70E-02 1.00E-02 4.10E-02 1.00E-02 3.50E-04 1.80E-01 9.46E-03 1.00E-02<br />

High Molecular Weight PAHs<br />

Fluoranthene 206-44-0 1.07E-03 6.00E-02 5.00E-03 2.20E-02 5.00E-03 1.07E-03 3.90E-01 5.00E-03 8.48E-03<br />

Benz(a)anthracene 56-55-3 1.47E-03 2.00E-02 5.03E-03 5.00E-03 5.00E-03 1.47E-03 2.70E-01 5.00E-03 8.48E-03<br />

Benzo(a)pyrene 50-32-8 8.70E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 8.70E-04 3.60E-01 5.00E-03 8.48E-03<br />

Benzo(e)pyrene 192-97-2 4.16E-13 2.95E-09 3.78E-08 3.42E-10 5.74E-09 4.07E-14 1.44E-09 1.67E-10 5.61E-10<br />

Benzo(b)fluoranthene 205-99-2 4.69E-03 2.90E-02 5.00E-03 1.00E-02 5.00E-03 4.69E-03 7.00E-01 5.00E-03 8.48E-03<br />

Benzo(g,h,i)perylene 191-24-2 2.50E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-04 2.30E-01 5.00E-03 8.48E-03<br />

Benzo(k)fluoranthene 207-08-9 4.00E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 4.00E-05 2.50E-02 5.00E-03 8.48E-03<br />

Chrysene 218-01-9 1.98E-03 2.80E-02 5.00E-03 1.40E-02 5.00E-03 1.98E-03 3.20E-01 5.00E-03 8.48E-03<br />

Dibenz(a,h)anthracene 53-70-3 8.00E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 8.00E-05 6.00E-02 5.00E-03 8.48E-03<br />

Indeno(1,2,3-cd)pyrene 193-39-5 4.80E-04 5.00E-03 5.00E-03 5.00E-03 5.00E-03 4.80E-04 2.50E-01 5.00E-03 8.48E-03<br />

Pyrene 129-00-0 9.60E-04 3.60E-02 5.02E-03 1.40E-02 5.00E-03 9.60E-04 4.00E-01 5.00E-03 8.48E-03<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 120-82-1 2.78E-06 1.04E-04 9.19E-04 3.00E-05 6.97E-05 2.14E-07 4.02E-05 1.16E-05 5.37E-06<br />

1,3,5-Trimethylbenzene 108-67-8 1.63E-06 4.93E-06 1.42E-04 1.49E-06 2.15E-05 1.26E-07 1.91E-06 5.77E-07 1.66E-06<br />

Phenolic Compounds<br />

Phenol 108-95-2 5.91E-10 2.45E-12 6.17E-10 8.75E-13 9.37E-11 4.55E-11 9.69E-13 3.46E-13 7.22E-12<br />

2,4-Dimethylphenol 105-67-9 8.64E-10 2.26E-11 5.69E-09 7.53E-12 4.32E-10 6.66E-11 8.95E-12 2.98E-12 3.33E-11<br />

2,4-Dinitrophenol 51-28-5 3.27E-09 1.31E-10 3.74E-09 4.66E-11 2.84E-10 2.52E-10 5.06E-11 1.80E-11 2.19E-11<br />

Trace Elements<br />

Barium 7440-39-3 1.70E-02 3.57E+01 3.04E+01 4.37E+00 1.44E+00 1.70E-02 1.52E+02 1.63E+00 6.90E-01<br />

Boron 7440-42-8 3.90E+00 1.29E-08 6.44E+00 4.39E-09 7.33E-01 3.90E+00 5.78E+01 1.96E+01 7.33E-01<br />

Cadmium 7440-43-9 1.70E-04 1.00E-01 3.59E-01 2.88E-01 1.48E-02 1.70E-04 9.00E-02 2.13E-01 5.43E-02<br />

Manganese 7439-96-5 1.48E+00 4.44E-05 2.65E+01 1.17E+01 6.67E+00 1.48E+00 7.01E+02 5.08E+00 1.49E+00<br />

Molybdenum 7439-98-7 9.60E-03 5.40E-01 4.30E-02 2.18E-01 6.34E-01 9.60E-03 2.50E-01 2.18E-01 1.59E-01<br />

Nickel 7440-02-0 8.80E-04 9.40E+00 8.90E-01 1.19E+00 3.69E+00 8.80E-04 2.43E+01 9.32E-01 2.49E+00<br />

Tin 7440-31-5 5.00E-03 2.50E+00 2.50E-02 1.00E-01 5.70E-02 5.00E-03 1.00E+00 2.98E-02 2.65E-01<br />

Vanadium 7440-62-2 5.00E-02 5.36E+00 4.60E-01 4.50E-01 4.90E-01 5.00E-02 1.44E+01 1.91E-01 9.69E-02<br />

Zinc 7440-66-6 2.10E-02 3.81E+01 5.58E+00 3.33E+01 1.75E+01 2.10E-02 8.59E+01 3.73E+01 1.88E+01


Table C-10 - Base Case Exposure Point Concentrations in Clio Bay<br />

Constituent CAS Registry Number<br />

3 4 5 6 7 3 4 6 7<br />

Surface Sea Water<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water <strong>Marine</strong><br />

Plant Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong> Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Deep Sea Water<br />

Concentration<br />

(mg/L)<br />

Sub-tidal <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Sub-tidal <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

BTEX<br />

Benzene 71-43-2 5.00E-05 1.50E-02 --- --- --- 5.00E-05 4.00E-02 --- ---<br />

Ethylbenzene 100-41-4 5.00E-05 1.50E-02 --- --- --- 5.00E-05 5.00E-02 --- ---<br />

Toluene 108-88-3 5.00E-05 1.50E-02 --- --- --- 5.00E-05 5.00E-02 --- ---<br />

Xylenes 1330-20-7 5.00E-05 2.50E-02 --- --- --- 5.00E-05 1.00E-01 --- ---<br />

TPH - CCME CWS % Composition<br />

Aliph>C06-C08 - F1 0.55 --- 1.00E-01 --- --- --- --- --- --- ---<br />

Aliph>C08-C10 - F1 0.36 --- 2.00E-01 --- --- --- --- --- --- ---<br />

Arom>C08-C10 - F1 0.09 --- 1.50E-01 --- --- --- --- --- --- ---<br />

F1 - Total 1 --- 4.50E-01 --- --- --- --- --- --- ---<br />

Aliph>C10-C12 - F2 0.36 --- 4.00E+00 --- --- --- --- --- --- ---<br />

Aliph>C12-C16 - F2 0.44 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Arom>C10-C12 - F2 0.09 --- 2.50E+00 --- --- --- --- --- --- ---<br />

Arom>C12-C16 - F2 0.11 --- 7.50E+00 --- --- --- --- --- --- ---<br />

F2 - Total 1 --- 2.15E+01 --- --- --- --- --- --- ---<br />

Aliph>C16-C21 - F3 0.56 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Aliph>C21-C34 - F3 0.24 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Arom>C16-C21 - F3 0.14 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Arom>C21-C34 - F3 0.06 --- 7.50E+00 --- --- --- --- --- --- ---<br />

F3 - Total 1 --- 3.00E+01 --- --- --- --- --- --- ---<br />

<strong>Marine</strong> Ground Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Acenaphthene 83-32-9 2.50E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Acenaphthylene 208-96-8 2.50E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Anthracene 120-12-7 2.50E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Fluorene 86-73-7 2.50E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

1-Methylnaphthalene 90-12-0 --- --- --- --- --- --- --- --- ---<br />

2-Methylnaphthalene 91-57-6 2.75E-05 5.00E-03 --- --- --- 2.75E-05 2.50E-02 --- ---<br />

Naphthalene 91-20-3 2.50E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.83E-03<br />

Phenanthrene 85-01-8 3.75E-05 9.00E-03 7.50E-03 1.00E-02 5.00E-03 3.75E-05 2.50E-02 7.68E-03 8.48E-03<br />

High Molecular Weight PAHs<br />

Fluoranthene 206-44-0 1.15E-04 1.50E-02 5.00E-03 5.00E-03 5.00E-03 1.15E-04 4.25E-02 5.00E-03 5.00E-03<br />

Benz(a)anthracene 56-55-3 4.50E-05 7.50E-03 5.00E-03 5.00E-03 5.00E-03 4.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Benzo(a)pyrene 50-32-8 3.75E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 3.75E-05 2.50E-02 5.00E-03 5.00E-03<br />

Benzo(e)pyrene 192-97-2 --- --- --- --- --- --- --- --- ---<br />

Benzo(b)fluoranthene 205-99-2 2.30E-04 1.40E-02 5.00E-03 5.00E-03 5.00E-03 2.30E-04 7.50E-02 5.00E-03 5.00E-03<br />

Benzo(g,h,i)perylene 191-24-2 4.50E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 4.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Benzo(k)fluoranthene 207-08-9 2.50E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Chrysene 218-01-9 3.75E-05 1.05E-02 5.00E-03 5.00E-03 5.00E-03 3.75E-05 2.50E-02 5.00E-03 5.00E-03<br />

Dibenz(a,h)anthracene 53-70-3 2.50E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Indeno(1,2,3-cd)pyrene 193-39-5 3.75E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 3.75E-05 2.50E-02 5.00E-03 5.00E-03<br />

Pyrene 129-00-0 6.50E-05 1.00E-02 5.00E-03 5.00E-03 5.00E-03 6.50E-05 4.25E-02 5.00E-03 5.00E-03<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 120-82-1 --- --- --- --- --- --- --- --- ---<br />

1,3,5-Trimethylbenzene 108-67-8 --- --- --- --- --- --- --- --- ---<br />

Phenolic Compounds<br />

Phenol 108-95-2 --- --- --- --- --- --- --- --- ---<br />

2,4-Dimethylphenol 105-67-9 --- --- --- --- --- --- --- --- ---<br />

2,4-Dinitrophenol 51-28-5 --- --- --- --- --- --- --- --- ---<br />

Trace Elements<br />

Barium 7440-39-3 8.41E-03 2.93E+01 2.35E+01 7.23E-01 1.18E+00 8.41E-03 1.28E+02 1.13E-01 2.82E-01<br />

Boron 7440-42-8 3.60E+00 --- --- --- --- 3.60E+00 3.93E+01 --- ---<br />

Cadmium 7440-43-9 1.10E-04 5.00E-02 3.40E-01 2.34E-01 1.41E-02 1.10E-04 2.50E-02 1.36E-01 1.57E-02<br />

Manganese 7439-96-5 8.15E-03 --- 2.47E+01 4.33E+00 3.98E+00 8.15E-03 5.55E+02 5.15E-01 9.44E-01<br />

Molybdenum 7439-98-7 9.10E-03 3.80E-01 3.60E-02 9.10E-02 2.15E-01 9.10E-03 2.50E-01 5.47E-02 9.17E-02<br />

Nickel 7440-02-0 7.20E-04 8.20E+00 8.65E-01 4.70E-01 1.44E+00 7.20E-04 2.13E+01 1.53E-01 5.75E-01<br />

Tin 7440-31-5 5.00E-03 2.50E+00 2.50E-02 2.50E-02 5.60E-02 5.00E-03 1.00E+00 2.50E-02 4.54E-02<br />

Vanadium 7440-62-2 5.00E-02 4.39E+00 2.55E-01 2.40E-01 3.00E-01 5.00E-02 1.25E+01 5.76E-02 5.00E-02<br />

Zinc 7440-66-6 1.99E-03 3.44E+01 4.70E+00 9.69E+00 1.70E+01 1.99E-03 7.96E+01 3.04E+01 1.46E+01


Table C-11 - Project Alone Exposure Point Concentrations in Clio Bay<br />

Constituent CAS Registry Number<br />

3 4 5 6 7 3 4 6 7<br />

Surface Sea Water<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water <strong>Marine</strong><br />

Plant Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong> Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Deep Sea Water<br />

Concentration<br />

(mg/L)<br />

Sub-tidal <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Sub-tidal <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Marine</strong> Ground Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

BTEX<br />

Benzene 71-43-2 8.55E-06 4.15E-07 3.55E-05 1.41E-09 5.39E-06 9.47E-07 2.32E-07 7.86E-10 5.98E-07<br />

Ethylbenzene 100-41-4 4.45E-06 6.43E-06 1.85E-04 2.00E-08 2.81E-05 4.94E-07 3.57E-06 1.11E-08 3.11E-06<br />

Toluene 108-88-3 2.36E-05 1.36E-05 3.90E-04 4.37E-08 5.93E-05 2.62E-06 7.54E-06 2.43E-08 6.57E-06<br />

Xylenes 1330-20-7 2.27E-05 4.13E-05 1.19E-03 1.27E-07 1.80E-04 2.52E-06 2.29E-05 7.06E-08 2.00E-05<br />

TPH - CCME CWS % Composition<br />

Aliph>C06-C08 - F1 0.55 1.21E-04 1.34E-03 3.88E-02 1.93E-05 5.89E-03 1.34E-05 7.46E-04 1.07E-05 6.52E-04<br />

Aliph>C08-C10 - F1 0.36 1.59E-05 1.35E-03 4.04E-02 1.79E-05 6.13E-03 1.76E-06 7.48E-04 9.95E-06 6.80E-04<br />

Arom>C08-C10 - F1 0.09 1.48E-05 6.56E-05 1.89E-03 9.77E-07 2.87E-04 1.64E-06 3.64E-05 5.43E-07 3.18E-05<br />

F1 - Total 1 1.52E-04 2.76E-03 8.10E-02 3.82E-05 1.23E-02 1.68E-05 1.53E-03 2.12E-05 1.36E-03<br />

Aliph>C10-C12 - F2 0.36 1.37E-05 7.17E-03 2.76E-01 8.81E-05 4.19E-02 1.51E-06 3.98E-03 4.89E-05 4.65E-03<br />

Aliph>C12-C16 - F2 0.44 2.66E-05 4.82E-02 1.08E+01 5.28E-04 1.63E+00 2.95E-06 2.68E-02 2.93E-04 1.81E-01<br />

Arom>C10-C12 - F2 0.09 1.71E-05 3.13E-04 3.47E-03 4.58E-06 5.26E-04 1.90E-06 1.74E-04 2.54E-06 5.83E-05<br />

Arom>C12-C16 - F2 0.11 1.88E-05 1.48E-03 7.57E-03 2.11E-05 1.15E-03 2.08E-06 8.20E-04 1.17E-05 1.27E-04<br />

F2 - Total 1 7.62E-05 5.71E-02 1.10E+01 6.42E-04 1.68E+00 8.45E-06 3.17E-02 3.57E-04 1.86E-01<br />

Aliph>C16-C21 - F3 0.56 3.02E-05 6.25E-02 --- --- --- 3.34E-06 3.47E-02 --- ---<br />

Aliph>C21-C34 - F3 0.24 4.66E-05 2.52E-01 --- --- --- 5.17E-06 1.40E-01 --- ---<br />

Arom>C16-C21 - F3 0.14 2.08E-05 5.11E-03 2.65E-02 1.39E-04 4.02E-03 2.30E-06 2.83E-03 7.72E-05 4.46E-04<br />

Arom>C21-C34 - F3 0.06 3.82E-05 6.51E-02 3.87E-01 1.64E-03 5.88E-02 4.23E-06 3.61E-02 9.10E-04 6.52E-03<br />

F3 - Total 1 1.36E-04 3.85E-01 4.14E-01 1.78E-03 6.28E-02 1.50E-05 2.13E-01 9.87E-04 6.96E-03<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Acenaphthene 83-32-9 9.28E-12 2.20E-10 2.43E-09 6.38E-12 3.70E-10 1.21E-12 1.44E-10 4.16E-12 4.82E-11<br />

Acenaphthylene 208-96-8 1.11E-13 3.33E-12 3.67E-11 9.56E-14 5.58E-12 1.45E-14 2.17E-12 6.24E-14 7.28E-13<br />

Anthracene 120-12-7 4.37E-09 4.07E-07 4.56E-06 1.12E-08 6.93E-07 4.85E-10 2.26E-07 6.21E-09 7.68E-08<br />

Fluorene 86-73-7 9.94E-09 4.68E-07 5.20E-06 1.32E-08 7.90E-07 1.10E-09 2.59E-07 7.33E-09 8.76E-08<br />

1-Methylnaphthalene 90-12-0 1.15E-07 9.78E-07 2.82E-05 2.84E-08 4.28E-06 1.28E-08 5.43E-07 1.58E-08 4.75E-07<br />

2-Methylnaphthalene 91-57-6 8.90E-08 7.39E-07 2.13E-05 2.15E-08 3.23E-06 9.87E-09 4.10E-07 1.19E-08 3.58E-07<br />

Naphthalene 91-20-3 1.86E-07 4.26E-07 1.22E-05 1.30E-08 1.86E-06 2.06E-08 2.37E-07 7.23E-09 2.06E-07<br />

Phenanthrene 85-01-8 6.77E-09 6.30E-07 7.06E-06 1.73E-08 1.07E-06 7.50E-10 3.49E-07 9.61E-09 1.19E-07<br />

High Molecular Weight PAHs<br />

Fluoranthene 206-44-0 2.13E-12 1.31E-09 7.03E-09 3.45E-11 1.07E-09 2.78E-13 8.56E-10 2.25E-11 1.39E-10<br />

Benz(a)anthracene 56-55-3 1.95E-09 4.97E-06 3.23E-05 1.23E-07 4.90E-06 2.16E-10 2.75E-06 6.82E-08 5.43E-07<br />

Benzo(a)pyrene 50-32-8 1.10E-11 4.60E-08 3.63E-07 5.55E-09 5.51E-08 1.44E-12 3.00E-08 3.62E-09 7.20E-09<br />

Benzo(e)pyrene 192-97-2 4.14E-13 2.93E-09 3.76E-08 3.40E-10 5.71E-09 5.40E-14 1.91E-09 2.22E-10 7.45E-10<br />

Benzo(b)fluoranthene 205-99-2 6.51E-13 3.22E-09 2.86E-08 7.69E-11 4.34E-09 8.50E-14 2.10E-09 5.02E-11 5.67E-10<br />

Benzo(g,h,i)perylene 191-24-2 9.94E-13 7.42E-09 1.04E-07 8.57E-10 1.58E-08 1.30E-13 4.84E-09 5.59E-10 2.06E-09<br />

Benzo(k)fluoranthene 207-08-9 6.51E-13 3.14E-09 2.71E-08 7.50E-11 4.11E-09 8.50E-14 2.05E-09 4.89E-11 5.36E-10<br />

Chrysene 218-01-9 1.05E-12 2.67E-09 1.73E-08 6.60E-11 2.63E-09 1.37E-13 1.74E-09 4.31E-11 3.43E-10<br />

Dibenz(a,h)anthracene 53-70-3 7.35E-13 5.49E-09 7.67E-08 6.33E-10 1.16E-08 9.59E-14 3.58E-09 4.13E-10 1.52E-09<br />

Indeno(1,2,3-cd)pyrene 193-39-5 9.42E-13 7.59E-09 1.24E-07 8.68E-10 1.88E-08 1.23E-13 4.95E-09 5.67E-10 2.45E-09<br />

Pyrene 129-00-0 8.17E-09 4.03E-06 2.14E-05 1.07E-07 3.25E-06 9.05E-10 2.23E-06 5.93E-08 3.60E-07<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 120-82-1 2.75E-06 1.03E-04 9.09E-04 2.96E-05 6.90E-05 3.05E-07 5.72E-05 1.64E-05 7.65E-06<br />

1,3,5-Trimethylbenzene 108-67-8 1.62E-06 4.88E-06 1.40E-04 1.47E-06 2.13E-05 1.79E-07 2.71E-06 8.19E-07 2.36E-06<br />

Phenolic Compounds<br />

Phenol 108-95-2 5.85E-10 2.42E-12 6.10E-10 8.66E-13 9.27E-11 6.48E-11 1.37E-12 4.89E-13 1.03E-11<br />

2,4-Dimethylphenol 105-67-9 8.55E-10 2.24E-11 5.63E-09 7.46E-12 4.27E-10 9.48E-11 1.26E-11 4.21E-12 4.74E-11<br />

2,4-Dinitrophenol 51-28-5 3.24E-09 1.29E-10 3.70E-09 4.61E-11 2.81E-10 3.59E-10 7.19E-11 2.56E-11 3.12E-11<br />

Trace Elements<br />

Barium 7440-39-3 2.31E-09 8.67E-06 1.67E-07 4.21E-07 4.23E-08 2.78E-10 5.22E-06 2.53E-07 5.09E-09<br />

Boron 7440-42-8 7.23E-10 1.28E-08 1.19E-09 4.34E-09 1.36E-10 8.01E-11 7.09E-09 2.41E-09 1.51E-11<br />

Cadmium 7440-43-9 1.88E-10 2.98E-06 1.11E-07 1.88E-04 7.33E-08 2.43E-11 1.93E-06 1.21E-04 9.46E-09<br />

Manganese 7439-96-5 1.92E-09 4.41E-05 5.57E-06 4.89E-07 5.27E-06 2.39E-10 2.74E-05 3.04E-07 6.55E-07<br />

Molybdenum 7439-98-7 1.45E-08 1.11E-04 2.10E-08 7.62E-05 6.71E-08 1.61E-09 6.17E-05 4.24E-05 7.47E-09<br />

Nickel 7440-02-0 1.41E-07 1.26E-03 2.61E-04 6.27E-05 2.33E-04 1.64E-08 7.32E-04 3.64E-05 2.70E-05<br />

Tin 7440-31-5 4.19E-09 6.07E-05 3.02E-05 1.06E-06 2.48E-05 4.65E-10 3.36E-05 5.85E-07 2.75E-06<br />

Vanadium 7440-62-2 4.26E-07 8.68E-04 1.63E-04 2.26E-05 1.11E-04 5.00E-08 5.09E-04 1.32E-05 1.31E-05<br />

Zinc 7440-66-6 1.30E-08 2.06E-04 2.89E-05 6.05E-05 2.60E-05 1.69E-09 1.34E-04 3.94E-05 3.39E-06


Table C-12- Project Case Exposure Point Concentrations in Clio Bay<br />

Constituent CAS Registry Number<br />

3 4 5 6 7 3 4 6 7<br />

Surface Sea Water<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water <strong>Marine</strong><br />

Plant Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong> Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Deep Sea Water<br />

Concentration<br />

(mg/L)<br />

Sub-tidal <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Sub-tidal <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Marine</strong> Ground Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

BTEX<br />

Benzene 71-43-2 5.85E-05 1.50E-02 2.43E-04 5.09E-05 3.69E-05 5.09E-05 4.00E-02 1.36E-04 3.21E-05<br />

Ethylbenzene 100-41-4 5.45E-05 1.50E-02 2.26E-03 4.67E-05 3.44E-04 5.05E-05 5.00E-02 1.55E-04 3.19E-04<br />

Toluene 108-88-3 7.36E-05 1.50E-02 1.22E-03 4.83E-05 1.85E-04 5.26E-05 5.00E-02 1.61E-04 1.32E-04<br />

Xylenes 1330-20-7 7.27E-05 2.50E-02 3.80E-03 7.72E-05 5.77E-04 5.25E-05 1.00E-01 3.08E-04 4.17E-04<br />

TPH - CCME CWS % Composition<br />

Aliph>C06-C08 - F1 0.55 1.21E-04 1.01E-01 3.88E-02 1.46E-03 5.89E-03 1.34E-05 7.46E-04 1.07E-05 6.52E-04<br />

Aliph>C08-C10 - F1 0.36 1.59E-05 2.01E-01 4.04E-02 2.68E-03 6.13E-03 1.76E-06 7.48E-04 9.95E-06 6.80E-04<br />

Arom>C08-C10 - F1 0.09 1.48E-05 1.50E-01 1.89E-03 2.24E-03 2.87E-04 1.64E-06 3.64E-05 5.43E-07 3.18E-05<br />

F1 - Total 1 1.52E-04 4.53E-01 8.10E-02 6.37E-03 1.23E-02 1.68E-05 1.53E-03 2.12E-05 1.36E-03<br />

Aliph>C10-C12 - F2 0.36 1.37E-05 4.01E+00 2.76E-01 4.92E-02 4.19E-02 1.51E-06 3.98E-03 4.89E-05 4.65E-03<br />

Aliph>C12-C16 - F2 0.44 2.66E-05 7.55E+00 1.08E+01 8.28E-02 1.63E+00 2.95E-06 2.68E-02 2.93E-04 1.81E-01<br />

Arom>C10-C12 - F2 0.09 1.71E-05 2.50E+00 3.47E-03 3.66E-02 5.26E-04 1.90E-06 1.74E-04 2.54E-06 5.83E-05<br />

Arom>C12-C16 - F2 0.11 1.88E-05 7.50E+00 7.57E-03 1.07E-01 1.15E-03 2.08E-06 8.20E-04 1.17E-05 1.27E-04<br />

F2 - Total 1 7.62E-05 2.16E+01 1.10E+01 2.76E-01 1.68E+00 8.45E-06 3.17E-02 3.57E-04 1.86E-01<br />

Aliph>C16-C21 - F3 0.56 3.02E-05 7.56E+00 --- --- --- 3.34E-06 3.47E-02 --- ---<br />

Aliph>C21-C34 - F3 0.24 4.66E-05 7.75E+00 --- --- --- 5.17E-06 1.40E-01 --- ---<br />

Arom>C16-C21 - F3 0.14 2.08E-05 7.51E+00 2.65E-02 2.05E-01 4.02E-03 2.30E-06 2.83E-03 7.72E-05 4.46E-04<br />

Arom>C21-C34 - F3 0.06 3.82E-05 7.57E+00 3.87E-01 1.91E-01 5.88E-02 4.23E-06 3.61E-02 9.10E-04 6.52E-03<br />

F3 - Total 1 1.36E-04 3.04E+01 4.14E-01 3.96E-01 6.28E-02 1.50E-05 2.13E-01 9.87E-04 6.96E-03<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Acenaphthene 83-32-9 2.50E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Acenaphthylene 208-96-8 2.50E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Anthracene 120-12-7 2.50E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Fluorene 86-73-7 2.50E-05 5.00E-03 5.01E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

1-Methylnaphthalene 90-12-0 1.15E-07 9.78E-07 2.82E-05 2.84E-08 4.28E-06 1.28E-08 5.43E-07 1.58E-08 4.75E-07<br />

2-Methylnaphthalene 91-57-6 2.76E-05 5.00E-03 6.60E-03 1.45E-04 1.00E-03 2.75E-05 2.50E-02 7.27E-04 9.99E-04<br />

Naphthalene 91-20-3 2.52E-05 5.00E-03 5.01E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.83E-03<br />

Phenanthrene 85-01-8 3.75E-05 9.00E-03 7.51E-03 1.00E-02 5.00E-03 3.75E-05 2.50E-02 7.68E-03 8.48E-03<br />

High Molecular Weight PAHs<br />

Fluoranthene 206-44-0 1.15E-04 1.50E-02 5.00E-03 5.00E-03 5.00E-03 1.15E-04 4.25E-02 5.00E-03 5.00E-03<br />

Benz(a)anthracene 56-55-3 4.50E-05 7.50E-03 5.03E-03 5.00E-03 5.00E-03 4.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Benzo(a)pyrene 50-32-8 3.75E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 3.75E-05 2.50E-02 5.00E-03 5.00E-03<br />

Benzo(e)pyrene 192-97-2 4.14E-13 2.93E-09 3.76E-08 3.40E-10 5.71E-09 5.40E-14 1.91E-09 2.22E-10 7.45E-10<br />

Benzo(b)fluoranthene 205-99-2 2.30E-04 1.40E-02 5.00E-03 5.00E-03 5.00E-03 2.30E-04 7.50E-02 5.00E-03 5.00E-03<br />

Benzo(g,h,i)perylene 191-24-2 4.50E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 4.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Benzo(k)fluoranthene 207-08-9 2.50E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Chrysene 218-01-9 3.75E-05 1.05E-02 5.00E-03 5.00E-03 5.00E-03 3.75E-05 2.50E-02 5.00E-03 5.00E-03<br />

Dibenz(a,h)anthracene 53-70-3 2.50E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Indeno(1,2,3-cd)pyrene 193-39-5 3.75E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 3.75E-05 2.50E-02 5.00E-03 5.00E-03<br />

Pyrene 129-00-0 6.50E-05 1.00E-02 5.02E-03 5.00E-03 5.00E-03 6.50E-05 4.25E-02 5.00E-03 5.00E-03<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 120-82-1 2.75E-06 1.03E-04 9.09E-04 2.96E-05 6.90E-05 3.05E-07 5.72E-05 1.64E-05 7.65E-06<br />

1,3,5-Trimethylbenzene 108-67-8 1.62E-06 4.88E-06 1.40E-04 1.47E-06 2.13E-05 1.79E-07 2.71E-06 8.19E-07 2.36E-06<br />

Phenolic Compounds<br />

Phenol 108-95-2 5.85E-10 2.42E-12 6.10E-10 8.66E-13 9.27E-11 6.48E-11 1.37E-12 4.89E-13 1.03E-11<br />

2,4-Dimethylphenol 105-67-9 8.55E-10 2.24E-11 5.63E-09 7.46E-12 4.27E-10 9.48E-11 1.26E-11 4.21E-12 4.74E-11<br />

2,4-Dinitrophenol 51-28-5 3.24E-09 1.29E-10 3.70E-09 4.61E-11 2.81E-10 3.59E-10 7.19E-11 2.56E-11 3.12E-11<br />

Trace Elements<br />

Barium 7440-39-3 8.41E-03 2.93E+01 2.35E+01 7.23E-01 1.18E+00 8.41E-03 1.28E+02 1.13E-01 2.82E-01<br />

Boron 7440-42-8 3.60E+00 1.28E-08 5.94E+00 4.34E-09 6.77E-01 3.60E+00 3.93E+01 1.33E+01 6.77E-01<br />

Cadmium 7440-43-9 1.10E-04 5.00E-02 3.40E-01 2.34E-01 1.41E-02 1.10E-04 2.50E-02 1.36E-01 1.57E-02<br />

Manganese 7439-96-5 8.15E-03 4.41E-05 2.47E+01 4.33E+00 3.98E+00 8.15E-03 5.55E+02 5.15E-01 9.44E-01<br />

Molybdenum 7439-98-7 9.10E-03 3.80E-01 3.60E-02 9.11E-02 2.15E-01 9.10E-03 2.50E-01 5.48E-02 9.17E-02<br />

Nickel 7440-02-0 7.20E-04 8.20E+00 8.65E-01 4.70E-01 1.44E+00 7.20E-04 2.13E+01 1.53E-01 5.75E-01<br />

Tin 7440-31-5 5.00E-03 2.50E+00 2.50E-02 2.50E-02 5.60E-02 5.00E-03 1.00E+00 2.50E-02 4.54E-02<br />

Vanadium 7440-62-2 5.00E-02 4.39E+00 2.55E-01 2.40E-01 3.00E-01 5.00E-02 1.25E+01 5.76E-02 5.00E-02<br />

Zinc 7440-66-6 1.99E-03 3.44E+01 4.70E+00 9.69E+00 1.70E+01 1.99E-03 7.96E+01 3.04E+01 1.46E+01


Table C-13 - Base Case Exposure Point Concentrations in Emsley Point<br />

Constituent CAS Registry Number<br />

3 4 5 6 7 3 4 6 7<br />

Surface Sea Water<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water <strong>Marine</strong><br />

Plant Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong> Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Deep Sea Water<br />

Concentration<br />

(mg/L)<br />

Sub-tidal <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Sub-tidal <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

BTEX<br />

Benzene 71-43-2 5.00E-05 1.50E-02 --- --- --- 5.00E-05 4.00E-02 --- ---<br />

Ethylbenzene 100-41-4 5.00E-05 1.50E-02 --- --- --- 5.00E-05 5.00E-02 --- ---<br />

Toluene 108-88-3 5.00E-05 1.50E-02 --- --- --- 5.00E-05 5.00E-02 --- ---<br />

Xylenes 1330-20-7 5.00E-05 2.50E-02 --- --- --- 5.00E-05 1.00E-01 --- ---<br />

TPH - CCME CWS % Composition<br />

Aliph>C06-C08 - F1 0.55 --- 1.00E-01 --- --- --- --- --- --- ---<br />

Aliph>C08-C10 - F1 0.36 --- 2.00E-01 --- --- --- --- --- --- ---<br />

Arom>C08-C10 - F1 0.09 --- 1.50E-01 --- --- --- --- --- --- ---<br />

F1 - Total 1 --- 4.50E-01 --- --- --- --- --- --- ---<br />

Aliph>C10-C12 - F2 0.36 --- 4.00E+00 --- --- --- --- --- --- ---<br />

Aliph>C12-C16 - F2 0.44 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Arom>C10-C12 - F2 0.09 --- 2.50E+00 --- --- --- --- --- --- ---<br />

Arom>C12-C16 - F2 0.11 --- 7.50E+00 --- --- --- --- --- --- ---<br />

F2 - Total 1 --- 2.15E+01 --- --- --- --- --- --- ---<br />

Aliph>C16-C21 - F3 0.56 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Aliph>C21-C34 - F3 0.24 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Arom>C16-C21 - F3 0.14 --- 7.50E+00 --- --- --- --- --- --- ---<br />

Arom>C21-C34 - F3 0.06 --- 7.50E+00 --- --- --- --- --- --- ---<br />

F3 - Total 1 --- 3.00E+01 --- --- --- --- --- --- ---<br />

<strong>Marine</strong> Ground Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Acenaphthene 83-32-9 2.50E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Acenaphthylene 208-96-8 2.50E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Anthracene 120-12-7 2.50E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Fluorene 86-73-7 2.50E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

1-Methylnaphthalene 90-12-0 --- --- --- --- --- --- --- --- ---<br />

2-Methylnaphthalene 91-57-6 2.75E-05 5.00E-03 --- --- --- 2.75E-05 2.50E-02 --- ---<br />

Naphthalene 91-20-3 2.50E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.83E-03<br />

Phenanthrene 85-01-8 3.75E-05 9.00E-03 7.50E-03 1.00E-02 5.00E-03 3.75E-05 2.50E-02 7.68E-03 8.48E-03<br />

High Molecular Weight PAHs<br />

Fluoranthene 206-44-0 1.15E-04 1.50E-02 5.00E-03 5.00E-03 5.00E-03 1.15E-04 4.25E-02 5.00E-03 5.00E-03<br />

Benz(a)anthracene 56-55-3 4.50E-05 7.50E-03 5.00E-03 5.00E-03 5.00E-03 4.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Benzo(a)pyrene 50-32-8 3.75E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 3.75E-05 2.50E-02 5.00E-03 5.00E-03<br />

Benzo(e)pyrene 192-97-2 --- --- --- --- --- --- --- --- ---<br />

Benzo(b)fluoranthene 205-99-2 2.30E-04 1.40E-02 5.00E-03 5.00E-03 5.00E-03 2.30E-04 7.50E-02 5.00E-03 5.00E-03<br />

Benzo(g,h,i)perylene 191-24-2 4.50E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 4.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Benzo(k)fluoranthene 207-08-9 2.50E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Chrysene 218-01-9 3.75E-05 1.05E-02 5.00E-03 5.00E-03 5.00E-03 3.75E-05 2.50E-02 5.00E-03 5.00E-03<br />

Dibenz(a,h)anthracene 53-70-3 2.50E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Indeno(1,2,3-cd)pyrene 193-39-5 3.75E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 3.75E-05 2.50E-02 5.00E-03 5.00E-03<br />

Pyrene 129-00-0 6.50E-05 1.00E-02 5.00E-03 5.00E-03 5.00E-03 6.50E-05 4.25E-02 5.00E-03 5.00E-03<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 120-82-1 --- --- --- --- --- --- --- --- ---<br />

1,3,5-Trimethylbenzene 108-67-8 --- --- --- --- --- --- --- --- ---<br />

Phenolic Compounds<br />

Phenol 108-95-2 --- --- --- --- --- --- --- --- ---<br />

2,4-Dimethylphenol 105-67-9 --- --- --- --- --- --- --- --- ---<br />

2,4-Dinitrophenol 51-28-5 --- --- --- --- --- --- --- --- ---<br />

Trace Elements<br />

Barium 7440-39-3 8.41E-03 2.93E+01 2.35E+01 7.23E-01 1.18E+00 8.41E-03 1.28E+02 1.13E-01 2.82E-01<br />

Boron 7440-42-8 3.60E+00 --- --- --- --- 3.60E+00 3.93E+01 --- ---<br />

Cadmium 7440-43-9 1.10E-04 5.00E-02 3.40E-01 2.34E-01 1.41E-02 1.10E-04 2.50E-02 1.36E-01 1.57E-02<br />

Manganese 7439-96-5 8.15E-03 --- 2.47E+01 4.33E+00 3.98E+00 8.15E-03 5.55E+02 5.15E-01 9.44E-01<br />

Molybdenum 7439-98-7 9.10E-03 3.80E-01 3.60E-02 9.10E-02 2.15E-01 9.10E-03 2.50E-01 5.47E-02 9.17E-02<br />

Nickel 7440-02-0 7.20E-04 8.20E+00 8.65E-01 4.70E-01 1.44E+00 7.20E-04 2.13E+01 1.53E-01 5.75E-01<br />

Tin 7440-31-5 5.00E-03 2.50E+00 2.50E-02 2.50E-02 5.60E-02 5.00E-03 1.00E+00 2.50E-02 4.54E-02<br />

Vanadium 7440-62-2 5.00E-02 4.39E+00 2.55E-01 2.40E-01 3.00E-01 5.00E-02 1.25E+01 5.76E-02 5.00E-02<br />

Zinc 7440-66-6 1.99E-03 3.44E+01 4.70E+00 9.69E+00 1.70E+01 1.99E-03 7.96E+01 3.04E+01 1.46E+01


Table C-14 - Project Alone Exposure Point Concentrations in Emsley Point<br />

Constituent CAS Registry Number<br />

3 4 5 6 7 3 4 6 7<br />

Surface Sea Water<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water <strong>Marine</strong><br />

Plant Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong> Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Deep Sea Water<br />

Concentration<br />

(mg/L)<br />

Sub-tidal <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Sub-tidal <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Marine</strong> Ground Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

BTEX<br />

Benzene 71-43-2 5.40E-06 2.59E-07 2.25E-05 8.79E-10 3.41E-06 4.49E-07 1.10E-07 3.73E-10 2.83E-07<br />

Ethylbenzene 100-41-4 2.82E-06 4.05E-06 1.17E-04 1.26E-08 1.78E-05 2.34E-07 1.69E-06 5.27E-09 1.48E-06<br />

Toluene 108-88-3 1.49E-05 8.55E-06 2.47E-04 2.75E-08 3.75E-05 1.24E-06 3.58E-06 1.15E-08 3.11E-06<br />

Xylenes 1330-20-7 1.44E-05 2.60E-05 7.51E-04 8.01E-08 1.14E-04 1.19E-06 1.09E-05 3.35E-08 9.47E-06<br />

TPH - CCME CWS % Composition<br />

Aliph>C06-C08 - F1 0.55 7.65E-05 8.46E-04 2.45E-02 1.22E-05 3.72E-03 6.35E-06 3.54E-04 5.09E-06 3.09E-04<br />

Aliph>C08-C10 - F1 0.36 1.00E-05 8.48E-04 2.55E-02 1.13E-05 3.88E-03 8.33E-07 3.55E-04 4.72E-06 3.22E-04<br />

Arom>C08-C10 - F1 0.09 9.35E-06 4.13E-05 1.19E-03 6.15E-07 1.81E-04 7.77E-07 1.73E-05 2.57E-07 1.51E-05<br />

F1 - Total 1 9.59E-05 1.74E-03 5.12E-02 2.41E-05 7.78E-03 7.97E-06 7.26E-04 1.01E-05 6.46E-04<br />

Aliph>C10-C12 - F2 0.36 8.64E-06 4.51E-03 1.75E-01 5.55E-05 2.65E-02 7.18E-07 1.89E-03 2.32E-05 2.20E-03<br />

Aliph>C12-C16 - F2 0.44 1.69E-05 3.03E-02 6.80E+00 3.33E-04 1.03E+00 1.40E-06 1.27E-02 1.39E-04 8.58E-02<br />

Arom>C10-C12 - F2 0.09 1.08E-05 1.98E-04 2.19E-03 2.90E-06 3.33E-04 9.01E-07 8.23E-05 1.21E-06 2.77E-05<br />

Arom>C12-C16 - F2 0.11 1.19E-05 9.36E-04 4.79E-03 1.33E-05 7.27E-04 9.86E-07 3.89E-04 5.55E-06 6.04E-05<br />

F2 - Total 1 4.82E-05 3.60E-02 6.98E+00 4.04E-04 1.06E+00 4.00E-06 1.51E-02 1.69E-04 8.81E-02<br />

Aliph>C16-C21 - F3 0.56 1.91E-05 3.94E-02 --- --- --- 1.59E-06 1.65E-02 --- ---<br />

Aliph>C21-C34 - F3 0.24 2.95E-05 1.59E-01 --- --- --- 2.45E-06 6.63E-02 --- ---<br />

Arom>C16-C21 - F3 0.14 1.31E-05 3.23E-03 1.67E-02 8.81E-05 2.54E-03 1.09E-06 1.34E-03 3.66E-05 2.11E-04<br />

Arom>C21-C34 - F3 0.06 2.42E-05 4.12E-02 2.45E-01 1.04E-03 3.72E-02 2.01E-06 1.71E-02 4.31E-04 3.09E-03<br />

F3 - Total 1 8.58E-05 2.43E-01 2.62E-01 1.13E-03 3.97E-02 7.13E-06 1.01E-01 4.68E-04 3.30E-03<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Acenaphthene 83-32-9 7.22E-12 1.71E-10 1.89E-09 4.95E-12 2.87E-10 6.25E-13 7.41E-11 2.15E-12 2.49E-11<br />

Acenaphthylene 208-96-8 8.66E-14 2.58E-12 2.86E-11 7.42E-14 4.34E-12 7.50E-15 1.12E-12 3.22E-14 3.76E-13<br />

Anthracene 120-12-7 2.76E-09 2.57E-07 2.89E-06 7.07E-09 4.38E-07 2.30E-10 1.07E-07 2.94E-09 3.64E-08<br />

Fluorene 86-73-7 6.29E-09 2.96E-07 3.29E-06 8.35E-09 5.00E-07 5.22E-10 1.23E-07 3.47E-09 4.15E-08<br />

1-Methylnaphthalene 90-12-0 7.29E-08 6.16E-07 1.78E-05 1.79E-08 2.71E-06 6.06E-09 2.58E-07 7.49E-09 2.25E-07<br />

2-Methylnaphthalene 91-57-6 5.63E-08 4.65E-07 1.35E-05 1.35E-08 2.04E-06 4.68E-09 1.95E-07 5.66E-09 1.70E-07<br />

Naphthalene 91-20-3 1.18E-07 2.68E-07 7.75E-06 8.20E-09 1.18E-06 9.78E-09 1.12E-07 3.43E-09 9.78E-08<br />

Phenanthrene 85-01-8 4.28E-09 3.98E-07 4.47E-06 1.10E-08 6.78E-07 3.56E-10 1.66E-07 4.56E-09 5.64E-08<br />

High Molecular Weight PAHs<br />

Fluoranthene 206-44-0 1.66E-12 1.02E-09 5.47E-09 2.69E-11 8.30E-10 1.43E-13 4.42E-10 1.16E-11 7.19E-11<br />

Benz(a)anthracene 56-55-3 1.23E-09 3.14E-06 2.04E-05 7.79E-08 3.10E-06 1.03E-10 1.31E-06 3.23E-08 2.58E-07<br />

Benzo(a)pyrene 50-32-8 8.56E-12 3.58E-08 2.82E-07 4.32E-09 4.29E-08 7.41E-13 1.55E-08 1.87E-09 3.71E-09<br />

Benzo(e)pyrene 192-97-2 3.22E-13 2.28E-09 2.92E-08 2.65E-10 4.44E-09 2.78E-14 9.87E-10 1.15E-10 3.84E-10<br />

Benzo(b)fluoranthene 205-99-2 5.07E-13 2.51E-09 2.22E-08 5.98E-11 3.38E-09 4.38E-14 1.08E-09 2.59E-11 2.92E-10<br />

Benzo(g,h,i)perylene 191-24-2 7.73E-13 5.77E-09 8.07E-08 6.67E-10 1.23E-08 6.70E-14 2.50E-09 2.89E-10 1.06E-09<br />

Benzo(k)fluoranthene 207-08-9 5.07E-13 2.44E-09 2.10E-08 5.83E-11 3.20E-09 4.38E-14 1.06E-09 2.53E-11 2.77E-10<br />

Chrysene 218-01-9 8.15E-13 2.07E-09 1.35E-08 5.14E-11 2.05E-09 7.05E-14 8.98E-10 2.22E-11 1.77E-10<br />

Dibenz(a,h)anthracene 53-70-3 5.72E-13 4.27E-09 5.97E-08 4.93E-10 9.06E-09 4.95E-14 1.85E-09 2.13E-10 7.84E-10<br />

Indeno(1,2,3-cd)pyrene 193-39-5 7.32E-13 5.90E-09 9.62E-08 6.76E-10 1.46E-08 6.34E-14 2.56E-09 2.93E-10 1.27E-09<br />

Pyrene 129-00-0 5.17E-09 2.55E-06 1.35E-05 6.77E-08 2.06E-06 4.29E-10 1.06E-06 2.81E-08 1.71E-07<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 120-82-1 1.74E-06 6.52E-05 5.75E-04 1.87E-05 4.36E-05 1.45E-07 2.71E-05 7.80E-06 3.63E-06<br />

1,3,5-Trimethylbenzene 108-67-8 1.02E-06 3.07E-06 8.87E-05 9.28E-07 1.35E-05 8.49E-08 1.28E-06 3.88E-07 1.12E-06<br />

Phenolic Compounds<br />

Phenol 108-95-2 3.70E-10 1.50E-12 3.86E-10 5.37E-13 5.86E-11 3.07E-11 6.49E-13 2.32E-13 4.87E-12<br />

2,4-Dimethylphenol 105-67-9 5.41E-10 1.39E-11 3.56E-09 4.63E-12 2.70E-10 4.49E-11 5.99E-12 2.00E-12 2.25E-11<br />

2,4-Dinitrophenol 51-28-5 2.05E-09 8.15E-11 2.34E-09 2.90E-11 1.78E-10 1.70E-10 3.41E-11 1.21E-11 1.48E-11<br />

Trace Elements<br />

Barium 7440-39-3 1.62E-09 6.11E-06 1.18E-07 2.96E-07 2.97E-08 1.38E-10 2.59E-06 1.26E-07 2.53E-09<br />

Boron 7440-42-8 4.57E-10 8.11E-09 7.54E-10 2.75E-09 8.60E-11 3.80E-11 3.36E-09 1.14E-09 7.14E-12<br />

Cadmium 7440-43-9 1.45E-10 2.29E-06 8.50E-08 1.44E-04 5.62E-08 1.25E-11 9.88E-07 6.22E-05 4.86E-09<br />

Manganese 7439-96-5 1.41E-09 3.23E-05 4.08E-06 3.58E-07 3.86E-06 1.21E-10 1.38E-05 1.53E-07 3.30E-07<br />

Molybdenum 7439-98-7 9.20E-09 7.05E-05 1.33E-08 4.85E-05 4.27E-08 7.65E-10 2.93E-05 2.02E-05 3.55E-09<br />

Nickel 7440-02-0 9.48E-08 8.47E-04 1.75E-04 4.21E-05 1.56E-04 7.98E-09 3.56E-04 1.77E-05 1.31E-05<br />

Tin 7440-31-5 2.65E-09 3.84E-05 1.91E-05 6.69E-07 1.57E-05 2.20E-10 1.60E-05 2.78E-07 1.30E-06<br />

Vanadium 7440-62-2 2.90E-07 5.91E-04 1.11E-04 1.54E-05 7.57E-05 2.45E-08 2.49E-04 6.48E-06 6.39E-06<br />

Zinc 7440-66-6 1.01E-08 1.60E-04 2.24E-05 4.70E-05 2.02E-05 8.73E-10 6.91E-05 2.03E-05 1.75E-06


Table C-15 - Project Case Exposure Point Concentrations in Emsley Point<br />

Constituent CAS Registry Number<br />

3 4 5 6 7 3 4 6 7<br />

Surface Sea Water<br />

Concentration<br />

(mg/L)<br />

Near-shore <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Surface Water <strong>Marine</strong><br />

Plant Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

Near-shore <strong>Marine</strong> Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

Deep Sea Water<br />

Concentration<br />

(mg/L)<br />

Sub-tidal <strong>Marine</strong><br />

Sediment<br />

Concentration<br />

(mg/kg dw)<br />

Sub-tidal <strong>Marine</strong><br />

Benthic Invertebrates<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Marine</strong> Ground Fish<br />

Tissue Concentration<br />

(mg/kg ww)<br />

BTEX<br />

Benzene 71-43-2 5.54E-05 1.50E-02 2.30E-04 5.09E-05 3.50E-05 5.04E-05 4.00E-02 1.36E-04 3.18E-05<br />

Ethylbenzene 100-41-4 5.28E-05 1.50E-02 2.19E-03 4.66E-05 3.33E-04 5.02E-05 5.00E-02 1.55E-04 3.17E-04<br />

Toluene 108-88-3 6.49E-05 1.50E-02 1.07E-03 4.83E-05 1.63E-04 5.12E-05 5.00E-02 1.61E-04 1.29E-04<br />

Xylenes 1330-20-7 6.44E-05 2.50E-02 3.37E-03 7.71E-05 5.11E-04 5.12E-05 1.00E-01 3.08E-04 4.07E-04<br />

TPH - CCME CWS % Composition<br />

Aliph>C06-C08 - F1 0.55 7.65E-05 1.01E-01 2.45E-02 1.45E-03 3.72E-03 6.35E-06 3.54E-04 5.09E-06 3.09E-04<br />

Aliph>C08-C10 - F1 0.36 1.00E-05 2.01E-01 2.55E-02 2.67E-03 3.88E-03 8.33E-07 3.55E-04 4.72E-06 3.22E-04<br />

Arom>C08-C10 - F1 0.09 9.35E-06 1.50E-01 1.19E-03 2.23E-03 1.81E-04 7.77E-07 1.73E-05 2.57E-07 1.51E-05<br />

F1 - Total 1 9.59E-05 4.52E-01 5.12E-02 6.36E-03 7.78E-03 7.97E-06 7.26E-04 1.01E-05 6.46E-04<br />

Aliph>C10-C12 - F2 0.36 8.64E-06 4.00E+00 1.75E-01 4.92E-02 2.65E-02 7.18E-07 1.89E-03 2.32E-05 2.20E-03<br />

Aliph>C12-C16 - F2 0.44 1.69E-05 7.53E+00 6.80E+00 8.26E-02 1.03E+00 1.40E-06 1.27E-02 1.39E-04 8.58E-02<br />

Arom>C10-C12 - F2 0.09 1.08E-05 2.50E+00 2.19E-03 3.66E-02 3.33E-04 9.01E-07 8.23E-05 1.21E-06 2.77E-05<br />

Arom>C12-C16 - F2 0.11 1.19E-05 7.50E+00 4.79E-03 1.07E-01 7.27E-04 9.86E-07 3.89E-04 5.55E-06 6.04E-05<br />

F2 - Total 1 4.82E-05 2.15E+01 6.98E+00 2.75E-01 1.06E+00 4.00E-06 1.51E-02 1.69E-04 8.81E-02<br />

Aliph>C16-C21 - F3 0.56 1.91E-05 7.54E+00 --- --- --- 1.59E-06 1.65E-02 --- ---<br />

Aliph>C21-C34 - F3 0.24 2.95E-05 7.66E+00 --- --- --- 2.45E-06 6.63E-02 --- ---<br />

Arom>C16-C21 - F3 0.14 1.31E-05 7.50E+00 1.67E-02 2.05E-01 2.54E-03 1.09E-06 1.34E-03 3.66E-05 2.11E-04<br />

Arom>C21-C34 - F3 0.06 2.42E-05 7.54E+00 2.45E-01 1.90E-01 3.72E-02 2.01E-06 1.71E-02 4.31E-04 3.09E-03<br />

F3 - Total 1 8.58E-05 3.02E+01 2.62E-01 3.95E-01 3.97E-02 7.13E-06 1.01E-01 4.68E-04 3.30E-03<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Acenaphthene 83-32-9 2.50E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Acenaphthylene 208-96-8 2.50E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Anthracene 120-12-7 2.50E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Fluorene 86-73-7 2.50E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

1-Methylnaphthalene 90-12-0 7.29E-08 6.16E-07 1.78E-05 1.79E-08 2.71E-06 6.06E-09 2.58E-07 7.49E-09 2.25E-07<br />

2-Methylnaphthalene 91-57-6 2.76E-05 5.00E-03 6.59E-03 1.45E-04 1.00E-03 2.75E-05 2.50E-02 7.27E-04 9.99E-04<br />

Naphthalene 91-20-3 2.51E-05 5.00E-03 5.01E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.83E-03<br />

Phenanthrene 85-01-8 3.75E-05 9.00E-03 7.50E-03 1.00E-02 5.00E-03 3.75E-05 2.50E-02 7.68E-03 8.48E-03<br />

High Molecular Weight PAHs<br />

Fluoranthene 206-44-0 1.15E-04 1.50E-02 5.00E-03 5.00E-03 5.00E-03 1.15E-04 4.25E-02 5.00E-03 5.00E-03<br />

Benz(a)anthracene 56-55-3 4.50E-05 7.50E-03 5.02E-03 5.00E-03 5.00E-03 4.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Benzo(a)pyrene 50-32-8 3.75E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 3.75E-05 2.50E-02 5.00E-03 5.00E-03<br />

Benzo(e)pyrene 192-97-2 3.22E-13 2.28E-09 2.92E-08 2.65E-10 4.44E-09 2.78E-14 9.87E-10 1.15E-10 3.84E-10<br />

Benzo(b)fluoranthene 205-99-2 2.30E-04 1.40E-02 5.00E-03 5.00E-03 5.00E-03 2.30E-04 7.50E-02 5.00E-03 5.00E-03<br />

Benzo(g,h,i)perylene 191-24-2 4.50E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 4.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Benzo(k)fluoranthene 207-08-9 2.50E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Chrysene 218-01-9 3.75E-05 1.05E-02 5.00E-03 5.00E-03 5.00E-03 3.75E-05 2.50E-02 5.00E-03 5.00E-03<br />

Dibenz(a,h)anthracene 53-70-3 2.50E-05 2.50E-03 5.00E-03 5.00E-03 5.00E-03 2.50E-05 2.50E-02 5.00E-03 5.00E-03<br />

Indeno(1,2,3-cd)pyrene 193-39-5 3.75E-05 5.00E-03 5.00E-03 5.00E-03 5.00E-03 3.75E-05 2.50E-02 5.00E-03 5.00E-03<br />

Pyrene 129-00-0 6.50E-05 1.00E-02 5.01E-03 5.00E-03 5.00E-03 6.50E-05 4.25E-02 5.00E-03 5.00E-03<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 120-82-1 1.74E-06 6.52E-05 5.75E-04 1.87E-05 4.36E-05 1.45E-07 2.71E-05 7.80E-06 3.63E-06<br />

1,3,5-Trimethylbenzene 108-67-8 1.02E-06 3.07E-06 8.87E-05 9.28E-07 1.35E-05 8.49E-08 1.28E-06 3.88E-07 1.12E-06<br />

Phenolic Compounds<br />

Phenol 108-95-2 3.70E-10 1.50E-12 3.86E-10 5.37E-13 5.86E-11 3.07E-11 6.49E-13 2.32E-13 4.87E-12<br />

2,4-Dimethylphenol 105-67-9 5.41E-10 1.39E-11 3.56E-09 4.63E-12 2.70E-10 4.49E-11 5.99E-12 2.00E-12 2.25E-11<br />

2,4-Dinitrophenol 51-28-5 2.05E-09 8.15E-11 2.34E-09 2.90E-11 1.78E-10 1.70E-10 3.41E-11 1.21E-11 1.48E-11<br />

Trace Elements<br />

Barium 7440-39-3 8.41E-03 2.93E+01 2.35E+01 7.23E-01 1.18E+00 8.41E-03 1.28E+02 1.13E-01 2.82E-01<br />

Boron 7440-42-8 3.60E+00 8.11E-09 5.94E+00 2.75E-09 6.77E-01 3.60E+00 3.93E+01 1.33E+01 6.77E-01<br />

Cadmium 7440-43-9 1.10E-04 5.00E-02 3.40E-01 2.34E-01 1.41E-02 1.10E-04 2.50E-02 1.36E-01 1.57E-02<br />

Manganese 7439-96-5 8.15E-03 3.23E-05 2.47E+01 4.33E+00 3.98E+00 8.15E-03 5.55E+02 5.15E-01 9.44E-01<br />

Molybdenum 7439-98-7 9.10E-03 3.80E-01 3.60E-02 9.10E-02 2.15E-01 9.10E-03 2.50E-01 5.48E-02 9.17E-02<br />

Nickel 7440-02-0 7.20E-04 8.20E+00 8.65E-01 4.70E-01 1.44E+00 7.20E-04 2.13E+01 1.53E-01 5.75E-01<br />

Tin 7440-31-5 5.00E-03 2.50E+00 2.50E-02 2.50E-02 5.60E-02 5.00E-03 1.00E+00 2.50E-02 4.54E-02<br />

Vanadium 7440-62-2 5.00E-02 4.39E+00 2.55E-01 2.40E-01 3.00E-01 5.00E-02 1.25E+01 5.76E-02 5.00E-02<br />

Zinc 7440-66-6 1.99E-03 3.44E+01 4.70E+00 9.69E+00 1.70E+01 1.99E-03 7.96E+01 3.04E+01 1.46E+01


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix D: Sediment Quality Triad Results <strong>for</strong> Baseline Environmental Conditions<br />

Appendix D Sediment Quality Triad Results <strong>for</strong><br />

Baseline Environmental Conditions<br />

2010 Page D-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix D: Sediment Quality Triad Results <strong>for</strong> Baseline Environmental Conditions<br />

Table of Contents<br />

Appendix D Sediment Quality Triad Results <strong>for</strong> Baseline Environmental<br />

Conditions............................................................................................. D-1<br />

D.1 Sediment and Water Quality .............................................................................. D-5<br />

D.1.1 Current and Historical Anthropogenic Influences .......................................... D-5<br />

D.1.2 Previous Studies ............................................................................................ D-5<br />

D.1.3 Water Quality – Historic Summary ................................................................. D-5<br />

D.1.4 Sediment Quality – Historic and General ....................................................... D-7<br />

D.2 Water and Sediment Quality – 2006-2008 Sampling Program ........................... D-8<br />

D.2.1 Selection of Measurable Parameters ............................................................ D-8<br />

D.2.2 Methods ......................................................................................................... D-8<br />

D.3 Baseline Sampling Results .............................................................................. D-11<br />

D.3.1 Analysis of Seawater ................................................................................... D-11<br />

D.3.2 Analysis of Sediment ................................................................................... D-12<br />

D.3.3 Analysis of Biotic Tissue .............................................................................. D-14<br />

D.4 Baseline Environmental Quality ....................................................................... D-14<br />

D.4.1 <strong>Marine</strong> Water Chemistry .............................................................................. D-14<br />

D.4.2 <strong>Marine</strong> Sediment Chemistry ........................................................................ D-15<br />

D.4.3 <strong>Marine</strong> Sediment Toxicity ............................................................................ D-15<br />

D.4.4 Benthic Invertebrate Assemblages .............................................................. D-15<br />

D.4.5 Summary ..................................................................................................... D-15<br />

D.5 References ...................................................................................................... D-15<br />

Attachment D1 Contaminant Concentrations in Water, Sediment and Biota ........ D1-1<br />

List of Tables<br />

Table D1-1 Baseline Seawater Trace Element Concentrations .............................. D1-3<br />

Table D1-2 Baseline Seawater BTEX, TPH, PAH and Other Organic Compound<br />

Concentrations ..................................................................................... D1-7<br />

Table D1-3 Other Measurable Baseline Parameters in Seawater ......................... D1-11<br />

Table D1-4 Baseline <strong>Marine</strong> Sediments Trace Element Concentrations ............... D1-13<br />

Table D1-5 Baseline <strong>Marine</strong> Sediments BTEX, TPH, PAH and Other Organic<br />

Compound Concentrations ................................................................. D1-17<br />

Table D1-6 Baseline <strong>Marine</strong> Sediments Dioxin and Furan Compounds<br />

Concentrations ................................................................................... D1-21<br />

Table D1-7 Other Measurable Baseline Parameters in <strong>Marine</strong> Sediments ........... D1-23<br />

Table D1-8 Baseline Sediment Toxicity Tests <strong>for</strong> Survival and Growth (2006<br />

Samples Only) .................................................................................... D1-25<br />

Table D1-9 Baseline Benthic Community Structure Summary (2006 Samples<br />

Only) ................................................................................................... D1-25<br />

Table D1-10 Baseline Benthic Community Structure (2006 Samples Only) ............ D1-27<br />

2010 Page D-3


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix D: Sediment Quality Triad Results <strong>for</strong> Baseline Environmental Conditions<br />

Table D1-11 Baseline <strong>Marine</strong> Plant and Benthic Invertebrate Trace Element<br />

Concentrations (2008 Samples Only) ................................................. D1-49<br />

Table D1-12 Baseline <strong>Marine</strong> Fish Trace Element Concentrations (2008<br />

Samples Only) .................................................................................... D1-53<br />

Table D1-13 Baseline <strong>Marine</strong> Plant and Benthic Invertebrate PAH, Dioxin and<br />

Furan Compound Concentrations (2008 Samples Only) .................... D1-57<br />

Table D1-14 Baseline <strong>Marine</strong> Fish PAH, Dioxin and Furan Compound<br />

Concentrations (2008 Samples Only) ................................................. D1-61<br />

List of Figures<br />

Figure D-1 Baseline Sampling Locations in <strong>Kitimat</strong> Arm ........................................ D-10<br />

Page D-4 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix D: Sediment Quality Triad Results <strong>for</strong> Baseline Environmental Conditions<br />

D.1 Sediment and Water Quality<br />

D.1.1 Current and Historical Anthropogenic Influences<br />

In addition to natural processes, human activities in the <strong>Kitimat</strong> area have influenced water, sediment, and<br />

habitat quality within <strong>Kitimat</strong> Arm. Sources of contaminants into <strong>Kitimat</strong> Arm include effluent from a<br />

municipal wastewater treatment plant, the Alcan smelter, Methanex Corporation methanol plant and the<br />

Eurocan pulpmill, as well as storm water runoff from these operations and the municipality. Permitted<br />

effluent discharges are related to:<br />

• The District of <strong>Kitimat</strong> wastewater treatment plant discharges effluent approximately 4 km upstream<br />

of <strong>Kitimat</strong> Arm, releasing suspended solids, biochemical oxygen demand (BOD), phosphorus,<br />

ammonia, nitrate, and fecal coli<strong>for</strong>ms (Norecol, Dames and Moore 1997).<br />

• The Alcan aluminum smelter, in operation since the 1950s, discharges effluent and stormwater<br />

directly into <strong>Kitimat</strong> Arm, and indirectly via Moore Creek and Anderson Creek. The smelter also has<br />

air emissions that have resulted in the deposition of contaminants to sediment. The liquid effluent is<br />

reported to contain suspended solids, coke, aluminum, oil, grease, dissolved fluoride, dissolved iron,<br />

cyanide and PAH (Norecol, Dames and Moore 1997).<br />

• The Methanex Corporation methanol plant has discharged effluent into <strong>Kitimat</strong> Arm (until its closure<br />

in 2006) and stormwater into Beaver Creek and <strong>Kitimat</strong> River. The effluent contained suspended<br />

solids, sodium and methyl <strong>for</strong>mates, chemical oxygen demand (COD), methanol, ammonia, oil and<br />

grease (Norecol, Dames and Moore 1997).<br />

• The Eurocan Pulp and Paper Company discharges effluent from an unbleached kraft mill into the<br />

<strong>Kitimat</strong> River approximately 3 km upstream of <strong>Kitimat</strong> Arm, releasing BOD, color, suspended solids,<br />

turbidity, resin acids, tannin and lignin (BC MOE 1987).<br />

D.1.1 Previous Studies<br />

Studies of <strong>Kitimat</strong> Arm have been conducted since the 1960s. These include oceanographic surveys<br />

(Pickard 1961; Macdonald 1983; Bornhold 1983) and studies associated with industrial activities<br />

(Erickson et al. 1979; Cretney et al. 1983; Paine et al. 1996; Simpson et al. 1996; Norecol, Dames and<br />

Moore 1997; Harris 1999; Eickhoff et al. 2003). The British Columbia Ministry of Environment (BC<br />

MOE) also developed water quality objectives <strong>for</strong> the <strong>Kitimat</strong> River and <strong>Kitimat</strong> Arm (BC MOE 1987).<br />

D.1.2 Water Quality – Historic Summary<br />

<strong>Kitimat</strong> Arm and Douglas Channel are typical of British Columbia fjords where there is considerable<br />

freshwater influence (Pickard 1961). Peak freshwater discharge occurs in May and June during the spring<br />

freshet. Estuarine circulation is created between the late spring and late fall as the surface layer of<br />

freshwater flows out of <strong>Kitimat</strong> Arm and deeper seawater flows in from Douglas Channel (Macdonald<br />

1983). Estuarine circulation is generally not uni<strong>for</strong>m, and tidal influences are predominant. Maximum<br />

surface currents range from 50 to 60 cm/s in <strong>Kitimat</strong> Arm. Estuarine circulation is strongest during<br />

periods of high runoff, but can also be affected by weather (i.e., wind, temperature differences in the<br />

2010 Page D-5


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix D: Sediment Quality Triad Results <strong>for</strong> Baseline Environmental Conditions<br />

water layers) and offshore oceanographic conditions. Currents below the main halocline (strong vertical<br />

salinity gradient) at water depths exceeding 75 to 100 m are weaker, ranging from 3 to 20 cm/s, with<br />

maximum speeds from 10 to 60 cm/s.<br />

In <strong>Kitimat</strong> Arm, salinity is relatively low in the upper 10 m of the water column, with temperature and<br />

salinity gradients present in the upper 50 m throughout much of the year. Gradients diminish during the<br />

winter as both the volume and temperature of freshwater input are greatly reduced. Although there can be<br />

variability in temperature and salinity horizontally over the scale of hundreds of metres in <strong>Kitimat</strong> Arm,<br />

Pickard (1961) suggested that the halocline is generally at a depth from 3 to 7 m. Salinity profiles<br />

reviewed suggest a slightly deeper halocline, at around 8 m. The tidal amplitude in <strong>Kitimat</strong> Arm averages<br />

about 4 m, with spring tides approaching 7 m.<br />

The dissolved oxygen concentration in surface water increases in the spring because of the increased<br />

freshwater influence (oxygen solubility increases with decreasing temperature, and oxygen is more<br />

soluble in fresh water than in salt water). Increasing day length and light intensity may also contribute to<br />

higher daytime oxygen concentrations because increased phytoplankton growth generates additional<br />

oxygen through photosynthesis. The amount of suspended particulate matter (commonly measured as<br />

turbidity) also increases in spring with the increase in phytoplankton growth and in runoff from the<br />

nearby rivers. Suspended particulate matter may be composed of microscopic biota, clay, silt, and<br />

attached organic and inorganic nutrients suspended in the water column by currents or waves. The main<br />

sources are river runoff, biological production and atmospheric fallout, with anthropogenic contributions<br />

from various wastewater effluents and substrate disturbances. Suspended particulate matter is usually<br />

highest in nearshore environments during spring but may increase at any time of year after heavy rain.<br />

The deep basins of Douglas Channel and <strong>Kitimat</strong> Arm typically have low levels of suspended particulate<br />

matter resulting from resuspension of fine bottom substrate particles (Macdonald 1983).<br />

Water chemistry in the <strong>Kitimat</strong> Arm has been influenced by decades of industrial activities and their air<br />

emissions and liquid effluent discharges. The Province of British Columbia developed ambient water-<br />

quality objectives <strong>for</strong> the <strong>Kitimat</strong> River and <strong>Kitimat</strong> Arm in 1987 (BC MOE 1987). These objectives are<br />

similar to the current generic provincial guidelines, with the addition of a fluoride guideline of 1.5 mg/L<br />

to protect from observed discharges from the Rio Tinto Alcan <strong>Kitimat</strong> aluminum smelter. In the 1980s,<br />

fluoride levels up to 15 mg/L were reported <strong>for</strong> <strong>Kitimat</strong> Harbour, along with elevated levels of aluminum,<br />

iron and cyanide.<br />

Contaminants from municipal, commercial and industrial discharges of metals, pesticides, PCBs, dioxins,<br />

furans, PAHs and chlorinated phenols have been documented in <strong>Kitimat</strong> Arm. For example, PAHs have<br />

been detected throughout the inlet from sources such as atmospheric and effluent discharges from the<br />

aluminum smelter, woodstove exhaust and residential waste (Harris 1999). There are limited data on the<br />

vertical profiles of water column PAH (McGroddy et al. 1996 as cited in Harris 1999). However, most of<br />

the contaminants derived from atmospheric deposition are transported out of the inlet by estuarine<br />

circulation (Cretney et al. 1983; Harris 1999). In the late 1970s, PAH concentrations higher than 300 ng/L<br />

were measured in surface water in <strong>Kitimat</strong> Arm (Erickson et al. 1979), decreasing with distance down the<br />

Arm, and ranging from 2 to 80 ng/L outside the Arm. Concentrations of PAH varied considerably within<br />

sampling stations by depth, season and time of day (Erickson et al. 1979).<br />

Page D-6 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix D: Sediment Quality Triad Results <strong>for</strong> Baseline Environmental Conditions<br />

D.1.3 Sediment Quality – Historic and General<br />

Sediment provides habitat <strong>for</strong> benthic organisms and, because contaminants tend to accumulate in such<br />

depositional areas, contamination in sediment is caused by historical as well as current activities. Some<br />

contaminants bioaccumulate and enter the food web. Polycyclic aromatic hydrocarbons, metals, and<br />

dioxins and furans are of interest in the study area because they are related to existing industrial (i.e., the<br />

aluminum smelter, pulp mill, and methanol plant) or municipal (i.e., wastewater treatment, stormwater)<br />

sources. Depositional areas of sediment typically have a higher proportion of fine-grained particles (silt<br />

and clay) and organic content (total organic carbon) when compared to non-depositional areas.<br />

Contaminants tend to associate with these fine particles and organic material. The total organic carbon<br />

(TOC) content of <strong>Kitimat</strong> Arm sediments increases with distance from the <strong>Kitimat</strong> River and ranges from<br />

approximately 1.0% outside Minette Bay, to 1.8% near Emsley Point, to 3% in Douglas Channel (Cretney<br />

et al. 1983). Sandy substrates derived from river flow are prevalent within the inner harbour and along<br />

nearby intertidal areas, whereas finer-grained substrates (silts and clays) are found in deeper portions of<br />

<strong>Kitimat</strong> Arm (EVS 1995; Bornhold 1982).<br />

Existing chemicals of potential concern (COPC) identified in <strong>Kitimat</strong> Arm include PAH, dioxins and<br />

furans and trace elements. Polycyclic aromatic hydrocarbons have been identified in several studies;<br />

however, caution must be applied when reviewing older studies because of differences in analytical<br />

methods and analytical sensitivity. Elevated concentrations of PAH have been detected in sediments up to<br />

70 km south of <strong>Kitimat</strong> Arm (Cretney et al. 1983; Simpson et al. 1996). Core samples collected in the<br />

1990s near the head of the <strong>Kitimat</strong> Arm indicated a peak in PAH concentrations in the 1970s; these<br />

concentrations then decreased after installation of scrubbers at the smelter. However, cores collected<br />

farther down <strong>Kitimat</strong> Arm did not show such decreases over time, and these results were attributed to<br />

resuspension and perturbation processes that continue to redistribute the PAHs in the sediment (Harris<br />

1999).<br />

Results of a study of PAH in sediment of <strong>Kitimat</strong> Arm in the early 1980s indicated the presence of PAH<br />

throughout <strong>Kitimat</strong> Arm (mean concentration 2.55 mg/kg), with a decreasing trend away from <strong>Kitimat</strong><br />

(Cretney et al. 1983). Levels were higher in sediment from the northwest shore of <strong>Kitimat</strong> Arm (5.4 to<br />

10 mg/kg) than from the eastern and western shorelines (2 to 5.4 mg/kg). A 1996 study of PAH in<br />

sediment (Simpson et al. 1996) showed spatial trends consistent with results of Cretney et al. 1983).<br />

However, concentrations of total PAH ranged from 2 to 530 mg/kg, highest at the head of <strong>Kitimat</strong> Arm<br />

near the smelter and higher on the western shore than on the eastern one. Both the prevailing winds (<strong>for</strong><br />

atmospheric deposition) and the influence of the <strong>Kitimat</strong> River flows on currents (<strong>for</strong> transport of<br />

effluent) favour deposition on the west shore of <strong>Kitimat</strong> Arm (Simpson et al. 1996). High molecular-<br />

weight PAH, consistent with contamination from a local high temperature source, were predominant and<br />

indicated persistent presence and limited degradation over time.<br />

In contrast, a study of the Bish Cove area (western shore of <strong>Kitimat</strong> Arm) reported a total PAH<br />

concentration of 2.44 mg/kg in a composite of five samples (relatively low concentrations when<br />

compared with other sites sampled in <strong>Kitimat</strong> Arm, Paine et al. 1996). The Bish Cove sample had<br />

relatively high TOC levels (2.25%) compared with other samples from <strong>Kitimat</strong> Arm, and there was no<br />

toxicity associated with the sample. The decrease in sediment PAH concentration on the western shore of<br />

<strong>Kitimat</strong> Arm between the 1980s and 1990s was attributed to both capping of existing contamination with<br />

2010 Page D-7


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix D: Sediment Quality Triad Results <strong>for</strong> Baseline Environmental Conditions<br />

clean sediments and to the high TOC concentration in the Bish Cove sample. It was also suggested that<br />

PAH associated with pitch and coke particulates in the sediment may have lower than usual<br />

bioavailability (Paine et al. 1996).<br />

Bioaccumulation of PAH in aquatic organisms was demonstrated <strong>for</strong> Dungeness crab muscle and<br />

hepatopancreas tissue (Eickhoff et al. 2003). PAH levels in tissue were highest near the smelter and<br />

indicated that sediment PAH were bioavailable to crabs. Low molecular-weight PAH were present in<br />

higher concentrations in the tissue than were concentrations of the less soluble high molecular weight<br />

PAH (Eickhoff et al. 2003).<br />

Elevated (i.e., higher than sediment quality guideline) concentrations of copper, lead, zinc, fluoride,<br />

cadmium and mercury have been measured in sediment from the inner harbour of <strong>Kitimat</strong> Arm, with<br />

fluoride, aluminum and iron levels linked with Rio Tinto Alcan <strong>Kitimat</strong> aluminum smelter discharges<br />

(BC MOE 1987). Fine-grained substrates in deeper portions of <strong>Kitimat</strong> Arm contain metals from various<br />

industrial effluents (BC MOE 1987). These areas are not flushed during tidal exchange and thus<br />

contaminants may accumulate within the sediment at the centre (or deepest portion) of the Arm.<br />

Dioxins and furans were reported in sediment from <strong>Kitimat</strong> Arm and other areas in the 1990s, with links<br />

suggested to the Eurocan pulp mill (which produces unbleached pulp) and sawmill (which may have used<br />

chlorophenols) or to the Rio Tinto Alcan <strong>Kitimat</strong> aluminum smelter (Norecol, Dames and Moore 1997).<br />

No detectable levels of dioxins or furans have been reported in the <strong>Kitimat</strong> River or at its mouth.<br />

However, detectable levels (up to 125 pg/g) of some dioxin congeners in sediment have been documented<br />

in the Kitamaat Village area, and higher levels have been recorded in the initial dilution zone <strong>for</strong> Rio<br />

Tinto Alcan <strong>Kitimat</strong> aluminum smelter effluent (475 to 982 pg/g).<br />

D.2 Water and Sediment Quality – 2006-2008 Sampling Program<br />

D.2.1 Selection of Measurable Parameters<br />

Water and sediment quality are important to marine ecosystem health. Key indicators of water quality<br />

relevant to the <strong>Kitimat</strong> Terminal include measures of turbidity, salinity, temperature, pH and<br />

concentrations of nutrients, trace elements and hydrocarbons including benzene, toluene, ethylbenzene<br />

and xylenes (BTEX), TPH and PAH. Indicators of sediment quality include measures of grain size, total<br />

organic carbon, trace elements, BTEX, TPA and PAH. Sediment data provide reliable evidence of<br />

contamination from current and historic activities. Water quality can vary significantly depending upon<br />

site-specific conditions.<br />

D.2.2 Methods<br />

Historic baseline data available <strong>for</strong> the area were augmented with a field program in February 2006; this<br />

program was designed to investigate water and sediment chemistry near the marine terminal. Additional<br />

sampling took place in July 2008. Samples were collected using defined protocols and a quality<br />

assurance/quality control program designed to produce high-quality data (i.e., defined protocols were<br />

followed <strong>for</strong> sample collection and handling, and analysis was carried out at suitably accredited<br />

laboratories).<br />

Page D-8 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix D: Sediment Quality Triad Results <strong>for</strong> Baseline Environmental Conditions<br />

In February 2006, water and sediment samples were collected from eight locations near the marine<br />

terminal and from two reference locations on the east side of <strong>Kitimat</strong> Arm (Figure D-1). Sediment<br />

samples were collected from depths ranging from 30 to 100 m. Water samples were analyzed <strong>for</strong> total<br />

metals, BTEX, TPH, PAH and ammonia content. Sediment samples were analyzed <strong>for</strong>:<br />

• total metals<br />

• acid volatile sulfide and simultaneously extracted metals (AVS-SEM)<br />

• BTEX<br />

• TPH<br />

• PAH<br />

• polychlorinated biphenyls (PCB)<br />

• dioxins and furans<br />

• grain size<br />

• TOC<br />

• porewater ammonia and sulphide<br />

At four baseline stations (JW1, JW3, JW4 and JW5) and at the two reference stations (JW9 and JW10),<br />

additional sediments were collected to be analyzed <strong>for</strong> their benthic invertebrate assemblages.<br />

Sediment toxicity to benthic invertebrates was assessed using standard bioassay protocols on samples<br />

from ten sediment stations. A 10-day marine amphipod (Eohaustorius estuarius) survival test and<br />

a 20-day polychaete (Neanthes arenaceodentata) survival and growth test were conducted.<br />

In July 2008, additional water and sediment samples were collected from two locations, the first being<br />

collected from the Bish Cove–marine terminal area (samples denoted MT), while the second sampling<br />

area was located farther north, in proximity of the Town of <strong>Kitimat</strong>, at Chimco Beach (samples denoted<br />

KIT). The purpose of the 2008 samples was to assess water and sediment conditions in nearshore,<br />

shallow-water portions of <strong>Kitimat</strong> Arm. These samples were collected from the intertidal zone along the<br />

western shore of <strong>Kitimat</strong> Arm. At high tide, the water depth at the sediment sampling locations ranged<br />

from 1 to 4 m. Seawater samples were collected from the water’s surface during low tide.<br />

In addition to those parameters analyzed during the 2006 seawater sampling, 2008 seawater samples were<br />

analyzed <strong>for</strong> petroleum hydrocarbon fractionation, dioxins and furans (marine terminal samples only), and<br />

alkalinity, phosphate, nitrate and nitrite, and sulfate content. Parameters analyzed in 2008 sediment<br />

samples mirrored those measured in 2006 with the following omissions; neither dioxins and furans nor<br />

AVS-SEM were measured during the 2008 sediment sampling program.<br />

Further, the July 2008 sampling included sampling of biota including rockweed, vertebrates (fish from the<br />

intertidal zone and ground fish from the sub-tidal zone), and invertebrates (shore crabs, Dungeness crab,<br />

and mussels) collected <strong>for</strong> analysis of COPC in tissues.<br />

2010 Page D-9


CONTRACTOR:<br />

Jacques Whit<strong>for</strong>d AXYS Ltd.<br />

200 m<br />

Bish Creek<br />

Bish<br />

Cove<br />

Emsley<br />

Point<br />

EP<br />

To <strong>Kitimat</strong><br />

<strong>Kitimat</strong><br />

Terminal<br />

MT<br />

JW4<br />

JW8<br />

JW12<br />

JW3<br />

JW11<br />

JW2<br />

JW1<br />

JW6<br />

JW5<br />

JW7<br />

T<br />

200 m<br />

K i t i m a t A r m<br />

K2<br />

CB<br />

K1<br />

Clio Bay<br />

100 m<br />

JW10<br />

E N B R I D G E N O R T H E R N G A T E W A Y P R O J E C T<br />

PREPARED BY: PREPARED FOR:<br />

SCALE:<br />

KIT<br />

Baseline Sampling Locations<br />

in <strong>Kitimat</strong> Arm<br />

JW9<br />

Pipeline Route<br />

Security Fence<br />

Terrestrial PDA<br />

Kitamaat<br />

Village<br />

2008 Sample Location<br />

2006 Sample Location<br />

2006 Reference Sample Location<br />

Bathymetric Contour (100 m)<br />

Railway<br />

Road<br />

0 0.5 1 1.5<br />

Reference: Pipeline Route R<br />

FIGURE NUMBER:<br />

PROJECTION:<br />

Kilometres<br />

JWA-1038983-1632<br />

1:60,000<br />

UTM 9<br />

D-1<br />

NP<br />

DATE:<br />

AUTHOR: APPROVED BY:<br />

DATUM:<br />

20090911<br />

CM<br />

NAD 83<br />

R:\2009Fiscal\1048334_<strong>Northern</strong><strong>Gateway</strong>_ESA_2009


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix D: Sediment Quality Triad Results <strong>for</strong> Baseline Environmental Conditions<br />

All tables related to the results of water and sediment quality results are in Attachment D1:<br />

• Water quality results of the 2006 and 2008 sampling campaigns are reported in Table D1-1 (water<br />

quality data <strong>for</strong> trace elements), Table D1-2 (BTEX, TPH, PAH, and other organic analytes in water),<br />

and Table D1-3 (seawater general chemistry).<br />

• Sediment quality results of the 2006 and 2008 sampling campaigns are reported in Table D1-4 (trace<br />

elements and AVS-SEM in sediments), Table D1-5 (BTEX, TPH, PAH, and other organic analytes in<br />

sediment), Table D1-6 (dioxin and furan analysis <strong>for</strong> sediments) and Table D1-7 (TOC and sediment<br />

grain size analysis).<br />

• Toxicity test results, benthic invertebrate community summary statistics, and benthic invertebrate<br />

community composition data (2006 samples only) are reported in Tables D1-8, D1-9, and D1-10,<br />

respectively.<br />

• Results of chemical analysis of biota are reported in Tables D1-11 (trace elements in rockweeds and<br />

invertebrates), D1-12 (trace elements in fish), D1-13 (PAH, dioxins and furans in rockweeds and<br />

invertebrates), and D1-14 (PAH, dioxins and furans in fish).<br />

D.3 Baseline Sampling Results<br />

D.3.1 Analysis of Seawater<br />

There are Canadian marine water quality guidelines <strong>for</strong> the protection of aquatic life <strong>for</strong> arsenic,<br />

cadmium, chromium, and mercury (CCME 2007). There are also British Columbia guidelines <strong>for</strong> copper,<br />

lead, mercury, selenium, silver and zinc (BC MOE 2006, including both maximum and 30-day average<br />

values <strong>for</strong> the protection of marine and estuarine aquatic life). Three trace elements were present at or<br />

above CCME or provincial guidelines in one or more samples (Table D1-1).<br />

Boron exceeded the provincial guideline of 1.2 mg/L at all 10 sampling stations in 2006, with<br />

concentrations ranging from 3.4 to 3.9 mg/L. However, the boron concentration of seawater typically falls<br />

in the range of 4.4 mg/L, and the values found in this study are typical of coastal environments. Baseline<br />

boron concentrations in seawater are, there<strong>for</strong>e, not considered unusual.<br />

Cadmium concentrations slightly exceeded the CCME and British Columbia guidelines of 0.00012 mg/L<br />

at four of the ten stations, with values measured in 2006 ranging from 0.00010 to 0.00017 mg/L. The<br />

cadmium data collected in 2008 gave lower results (all were reported as less than 0.00002 mg/L).<br />

There<strong>for</strong>e, it is possible that cadmium concentrations reported in 2006 were elevated because of<br />

particulate matter in the samples or because the samples may have suffered from contamination.<br />

Like cadmium, to which it is closely related geochemically, the zinc concentration slightly exceeded the<br />

British Columbia guideline (0.01 mg/L) at one station in 2006, but lower concentrations (all less than<br />

0.0025 mg/L) were reported in 2008.<br />

The manganese concentration at Station JW12 in 2006 (1.48 mg/L) appeared to be an outlier, as the<br />

highest concentration of manganese detected among the other stations was 0.011 mg/L. All values<br />

reported in 2008 were less than approximately 0.01 mg/L. Several other trace elements, including barium,<br />

cobalt, iron, manganese, and silicon, were highest at Station JW12 in 2006 and may collectively indicate<br />

2010 Page D-11


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix D: Sediment Quality Triad Results <strong>for</strong> Baseline Environmental Conditions<br />

the presence of particulates in the sample. Concentrations of BTEX and TPH were non-detectable in<br />

seawater (Table D1-2). However, the provincial water quality guidelines <strong>for</strong> the PAH chrysene and<br />

benzo(a) pyrene were exceeded at several stations, with the highest concentrations occurring at Station<br />

JW12 (Table D1-2). Total PAH concentrations were highest at Stations JW12 (11.5 µg/L) and JW4<br />

(10.6 µg/L). All other stations with detectable PAH concentrations had levels less than half of those<br />

reported at JW12 and JW4. Values reported in 2008 were uni<strong>for</strong>mly non-detectable (generally less than<br />

0.00005 mg/L). Again, the values reported in 2006 may have been influenced by the presence of<br />

particulate matter in the samples.<br />

Salinity was relatively consistent among 2006 bottom water samples (Table D1-6), ranging from 26.2‰<br />

to 28‰, with much lower salinity recorded in the 2008 surface water samples (ranging from 1.3‰ to<br />

5‰). These results are consistent with the presence of a halocline within <strong>Kitimat</strong> Arm, as discussed<br />

above.<br />

D.3.2 Analysis of Sediment<br />

A sediment-sampling program was completed in February 2006 to assess baseline sediment quality. Eight<br />

samples in the vicinity of the marine terminal and one at each of two reference stations located near the<br />

eastern shore of <strong>Kitimat</strong> Arm were collected from depths of 30 to 100 m. Sediment samples were<br />

analyzed <strong>for</strong> trace elements and AVS-SEM, (Table D1-4), hydrocarbons including PAH and PCB<br />

(Table D1-5), dioxins and furans (Table D1-6), and general chemistry and grain size (Table D1-7).<br />

Sediment toxicity tests using the amphipod (Eohaustorius estuarius) and the polychaete (Neanthes<br />

arenaceodentata) were also conducted (Table D1-8).<br />

D.3.2.1 Sediment Chemistry<br />

Trace element concentrations in sediment are provided in Table D1-4. Concentrations of all metals were<br />

below relevant CCME guidelines (probable effect levels). Heavy metal concentrations were generally<br />

lower in nearshore sediment samples collected in 2008 than in offshore sediment samples collected in<br />

2008. This difference is consistent with the grain size characteristics of the sediments (nearshore samples<br />

were predominantly sandy; offshore samples were predominantly clay).<br />

Bioavailability of metals can be assessed by measuring amounts of Acid Volatile Sulfide (AVS) and<br />

Simultaneously Extracted Metals (SEM) in sediment. Based on theory and observations <strong>for</strong> contaminated<br />

sites, not all the metals reported <strong>for</strong> a sample are available and toxic to aquatic organisms (Di Toro et al.<br />

1992). Silver, copper, cadmium, nickel, lead and zinc <strong>for</strong>m highly insoluble precipitates in the presence of<br />

sulfide (analyzed as AVS). If the molar concentration of the sum of SEM metals is less than the AVS<br />

concentration (ratio less than 1.0), the metals will be almost exclusively bound to sulphide, their<br />

bioavailability will be extremely low, and toxicity will be unlikely. Seasonally, AVS levels are generally<br />

lowest in the spring, so bioavailability will decrease throughout the summer. Results <strong>for</strong> AVS/SEM<br />

analysis are shown in Table D1-4, and indicate AVS/SEM ratios well below 1.0 <strong>for</strong> all samples analyzed.<br />

As a result, metals in general in sediment are not expected to be bioavailable or to pose a risk of toxicity<br />

to benthic organisms.<br />

Page D-12 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix D: Sediment Quality Triad Results <strong>for</strong> Baseline Environmental Conditions<br />

Data <strong>for</strong> hydrocarbons including PAH compounds (16 parent compounds plus methylated naphthalene),<br />

and PCB are presented in Table D1-5. The Ocean Disposal Guideline <strong>for</strong> total PAH (as indicated in<br />

Environment Canada 2008) of 2.5 mg/kg was slightly exceeded at stations JW2 and JW3 and nearly<br />

matched at JW1 (2.49 mg/kg). The values <strong>for</strong> total PAH reported in Table D1-5 were lower than those<br />

reported historically <strong>for</strong> parts of <strong>Kitimat</strong> Arm (Cretney et al. 1983; Simpson et al. 1996; Harris 1999).<br />

Federal and provincial guidelines <strong>for</strong> individual PAH and <strong>for</strong> total low- and high-molecular-weight PAH<br />

were not exceeded in any samples. As in the case of metals, concentrations of PAH in nearshore<br />

sediments sampled in 2008 were considerably lower than concentrations reported <strong>for</strong> offshore sediments<br />

in 2006. Concentrations of total PCB in offshore sediments sampled in 2006 were non-detectable.<br />

Dioxin and furan levels in <strong>Kitimat</strong> Arm sediment collected in February 2006 are listed in Table D1-6.<br />

Concentrations were lower than reported in various areas of <strong>Kitimat</strong> Arm in the 1990s (Norecol, Dames<br />

and Moore 1997). Norecol, Dames and Moore (1997) indicated several potential sources of dioxins and<br />

furans, including the Eurocan pulp mill, its <strong>for</strong>mer sawmill, and the Rio Tinto Alcan <strong>Kitimat</strong> aluminum<br />

smelter.<br />

D.3.2.2 Sediment Toxicity<br />

Sediment toxicity to representative benthic invertebrates (an amphipod and a polychaete) was assessed in<br />

2006 using standard bioassay protocols. A 10-day marine amphipod (Eohaustorius estuarius) survival test<br />

and a 20-day polychaete (Neanthes arenaceodentata) survival and growth test were done.<br />

The sediment samples were considered nontoxic as determined by the amphipod survival test, the<br />

polychaete survival test and the polychaete growth test (Table D1-8). Amphipod survival ranged from<br />

81% to 88% in the terminal area samples and 90% to 97% in the reference samples, with statistically<br />

significantly lower survival in five of the eight samples from the study area (Figure D-1) compared to<br />

only one of the reference samples (JW9). However, all of the samples were deemed to pass the toxicity<br />

test (i.e., survival was greater than 80% in each case). There were no significant differences in survival<br />

(100%) or growth of the polychaete in PDA and reference samples.<br />

D.3.2.3 Benthic Invertebrate Community<br />

The purpose of the benthic invertebrate assemblage analysis is to evaluate the abundance and composition<br />

of the benthic invertebrate community with respect to other in<strong>for</strong>mation (such as chemical data and<br />

sediment grain size) relevant to the samples. Because some taxa (such as mollusks and crustaceans) are<br />

generally more sensitive to environmental stressors than others (such as polychaetes), the benthic<br />

community assemblage can provide useful in<strong>for</strong>mation on overall environmental quality. A summary of<br />

descriptive statistics pertaining to the 2006 benthic invertebrate assemblage data appears in Table D1-9,<br />

with raw counts presented in Table D1-10.<br />

Total abundance of organisms tended to be higher at reference stations JW9 and JW10 on the east side of<br />

<strong>Kitimat</strong> Arm (4,174 and 3,223 organisms respectively) when compared to stations JW1, JW3, JW4 and<br />

JW5 on the west side of <strong>Kitimat</strong> Arm, where total abundance ranged from 1,136 at JW1 to 3,026 at JW4.<br />

Species richness was also greatest at reference stations, ranging from 137 to 170 taxa, when compared to<br />

stations on the west side of <strong>Kitimat</strong> Arm, where species richness ranged from 77 to 112 taxa.<br />

2010 Page D-13


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix D: Sediment Quality Triad Results <strong>for</strong> Baseline Environmental Conditions<br />

The percentage of the total number of taxa that were mollusks or crustaceans was calculated at each<br />

station, as was the percentage of taxa that were comprised of polychaetes. Mollusks and crustaceans<br />

accounted <strong>for</strong> 36% to 39% of taxa found at reference stations whereas polychaetes accounted <strong>for</strong> 52% to<br />

55% of the taxa found at reference stations. The community composition was similar at stations on the<br />

west side of <strong>Kitimat</strong> Arm, where mollusks and crustaceans made up between 31% and 35% of all taxa,<br />

and polychaetes made up between 47% and 61% of taxa.<br />

D.3.3 Analysis of Biotic Tissue<br />

Samples of biota were collected from the nearshore and offshore environments in 2008 to provide<br />

baseline data on concentrations of contaminant substances in tissues. The sampled nearshore biota<br />

included rockweed (SEAWD), mussels (MUSS, soft tissue only), shore crabs (SCRAB, whole animal),<br />

and small fish from tidal pools (SFISH, whole animal). The sampled offshore biota included Dungeness<br />

crab (DCRAB, analyzed as leg meat and hepatopancreas) and groundfish (GFISH, analyzed as fillet and<br />

carcass). Samples were collected from the vicinity of the marine terminal (MT, Figure D-1), and from a<br />

site located closer to <strong>Kitimat</strong> (KIT).<br />

Trace element data are reported in Tables D1-11 and D1-12. Data <strong>for</strong> PAH and dioxins and furans are<br />

reported in Tables D1-13 and D1-14. Polycyclic aromatic hydrocarbons were not detected in seaweed<br />

tissue, shore crab tissue, shore fish or ground fish from either sampling area (Table D1-12). However,<br />

mussels collected from both sampling areas contained detectable levels of chrysene and fluoranthene,<br />

while phenanthrene was only detected in a mussel from the <strong>Kitimat</strong> sampling area and pyrene was only<br />

detected in a mussel from the marine terminal area. Mussels lack the capacity to substantially metabolize<br />

PAH, a capability that is well developed in crustaceans and vertebrates. There<strong>for</strong>e, the detection of low<br />

levels of PAH in mussel tissues is not unusual.<br />

Several dioxins and furans were reported at concentrations above their respective detection limits within<br />

Dungeness crab, shore fish, mussels and ground fish, with no apparent differences between specimens<br />

collected from either sampling area (Tables D1-13 and D1-14). Dioxins and furans were not found above<br />

their detection limits in seaweed tissue collected from either sampling location.<br />

D.4 Baseline Environmental Quality<br />

D.4.1 <strong>Marine</strong> Water Chemistry<br />

Data collected in 2006 and 2008 show that water quality in the PEAA is generally consistent with what<br />

would be expected <strong>for</strong> a coastal area under anthropogenic influence. Differences between 2006 and 2008<br />

relate mainly to the fact that samples from 2006 were collected from near the bottom at some depth.<br />

Salinity was relatively high, and in some samples, entrained sediment particles may have contributed to<br />

detections of some trace elements and PAH. Data from 2008 were collected from the surface nearshore<br />

environment and show considerably lower salinity and no evidence of environmental quality impairment.<br />

Page D-14 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix D: Sediment Quality Triad Results <strong>for</strong> Baseline Environmental Conditions<br />

D.4.2 <strong>Marine</strong> Sediment Chemistry<br />

Data collected in 2006 show evidence of marine sediment chemical impacts with PAH, including<br />

phenanthrene, and a variety of high-molecular-weight PAH that may originate from the past operations of<br />

the aluminum smelter. Traces of dioxins and furans were also detected, although the origin of these<br />

substances is not known. The 2008 sampling of nearshore sediment found lower concentrations of many<br />

metals and PAH. The lower values are consistent with the predominantly sandy characteristic of the<br />

nearshore sediments, with lower proportions of clay and sediment organic matter than the offshore<br />

sediments. The clay and organic matter fractions of the sediment would be expected to be relatively<br />

enriched in trace elements and organic contaminants, respectively.<br />

D.4.3 <strong>Marine</strong> Sediment Toxicity<br />

Sediment toxicity testing conducted on offshore sediments showed no overt evidence <strong>for</strong> toxicity to either<br />

test species; however, the marine amphipod test indicated a tendency <strong>for</strong> sediments collected on the west<br />

side of <strong>Kitimat</strong> Arm to have lower survival than reference sediments collected from the east side of the<br />

Arm.<br />

D.4.4 Benthic Invertebrate Assemblages<br />

Species richness tended to be higher in benthic samples collected from reference stations on the east side<br />

of <strong>Kitimat</strong> Arm than in benthic samples collected from the west side of the Arm. The proportions of<br />

molluscs and crustaceans to polychaetes also shifted slightly in favour of polychaetes on the west side of<br />

<strong>Kitimat</strong> Arm.<br />

D.4.5 Summary<br />

Although not statistically testable, the indicators <strong>for</strong> sediment chemistry, sediment toxicity, and benthic<br />

invertebrate assemblages all tend to indicate slight impairment of sediment quality and the biological<br />

community in offshore sediments near the marine terminal when compared to reference sites on the east<br />

side of <strong>Kitimat</strong> Arm. Based upon the sediment chemistry results alone, it does not appear that nearshore<br />

sediment quality is impaired.<br />

D.5 References<br />

D.5.1 Literature Cited<br />

Bornhold, B.D. 1983. Sedimentation in the Douglas Channel and <strong>Kitimat</strong> Arm. In Proceedings of a<br />

workshop on the <strong>Kitimat</strong> marine environment. Institute of Ocean Sciences, DFO, Sidney, BC:<br />

Canadian Technical Hydrography and Ocean Sciences, Ministry of Supply and Services, Ottawa,<br />

Ontario.<br />

2010 Page D-15


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix D: Sediment Quality Triad Results <strong>for</strong> Baseline Environmental Conditions<br />

Cretney, W.J., C.S. Wong, R.W. Mcdonald, P.E. Erickson and B.R. Fowler. 1983. Polycyclic aromatic<br />

hydrocarbons in surface sediments and age-date cores from <strong>Kitimat</strong> Arm, Douglas Channel and<br />

adjoining waterways. In: Proceedings of a workshop on the <strong>Kitimat</strong> marine environment. Institute<br />

of Ocean Sciences, DFO, Sidney, BC: Canadian Technical Hydrography and Oceans Sciences,<br />

Ministry of Supply and Services, Ottawa, Ontario.<br />

Di Toro, D.M., J.D. Mahony, D.J. Hansen, K.J. Scott, A.R. Carlson and G.T. Ankley. 1992. Acid Volatile<br />

Sulfide Predicts the Acute Toxicity of Cadmium and Nickel in Sediments. Environmental Science<br />

and Technology 26: 96–101.<br />

Eickhoff, C.V., S-X. He, F.A.P.C. Gobas and F.C.P. Law. 2003. Determination of polycylic aromatic<br />

hydrocarbons in Dungeness crabs (Cancer magister) near an aluminum smelter in <strong>Kitimat</strong> Arm,<br />

British Columbia, Canada. Environmental Toxicology and Chemistry 22: 50–58.<br />

Erickson, P., B.R. Fowler, D.A. Brown, W. Heath, and K. Thompson. 1979. Hydrocarbon levels in the<br />

marine environment of <strong>Kitimat</strong> Arm and its seaward approaches. Seakem Oceanography Ltd.<br />

Sidney B.C. 308 pp.<br />

EVS Consultants. 1995. 1994 Alcan marine monitoring program intensive study, raw data volume. EVS<br />

Consultants, North Vancouver BC. Project No. 3/045-11. Cited in C. Eickhoff. 2004. Studies of<br />

polycyclic aromatic hydrocarbons in Dungeness crabs: biomonitoring, physiologically based<br />

toxicokinetic model and human health risk assessment. Ph.D. Thesis submitted to Simon Fraser<br />

University, Burnaby, BC.<br />

Harris, G.E. 1999. <strong>Assessment</strong> of the assimilative capacity of <strong>Kitimat</strong> Arm, British Columbia: A case<br />

study approach of the sustainable management of environmental contaminants, in School of<br />

Resource and Environmental Management. 1999, Simon Fraser University: Burnaby. p. 242.<br />

Macdonald, R.W. 1983. The distribution and dynamics of suspended particles in <strong>Kitimat</strong> fjord system. In:<br />

Proceedings of a workshop on the <strong>Kitimat</strong> marine environment. 1983. Institute of Ocean<br />

Sciences, DFO, Sidney, BC: Canadian Technical Hydrography and Ocean Sciences, Ministry of<br />

Supply and Services, Ottawa, Ontario.<br />

McGroddy, S.E., J.W. Farrington and P.M. Gschwend. 1996. Comparison of the in situ and desorption<br />

sediment-water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls.<br />

Environmental Science and Technology 30: 172–177.<br />

Norecol, Dames and Moore Inc. 1997. Eurocan Pulp and Paper Ltd., First cycle environmental effects<br />

monitoring program. Vancouver, BC.<br />

Paine, M.D., P.M. Chapman, P.J. Allard, M.H. Murdoch and D. Minifie. 1996. Limited bioavailability of<br />

sediment PAH near an aluminium smelter: contamination does not equal effects. Environmental<br />

Toxicology and Chemistry 15: 2003–2018.<br />

Pickard, G.L. 1961. Oceanographic features of inlets in the British Columbia mainland coast. Journal of<br />

the Fisheries Research Board of Canada 18: 907–982.<br />

Page D-16 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix D: Sediment Quality Triad Results <strong>for</strong> Baseline Environmental Conditions<br />

Simpson, C.D., A.A. Mosi, W.R. Cullen, and K.J. Reimer. 1996. Composition and distribution of<br />

polycyclic aromatic hydrocarbon contamination in surficial marine sediments from <strong>Kitimat</strong><br />

Harbor, Canada. Science of the Total Environment 181: 265–278.<br />

D.5.2 Internet Sites<br />

British Columbia Ministry of the Environment (BC MOE). 1987. Water quality assessment and objectives<br />

<strong>for</strong> the lower <strong>Kitimat</strong> River and <strong>Kitimat</strong> Arm. Overview Report. Available at:<br />

http://www.env.gov.bc.ca/wat/wq/objectives/kitimat/kitimat.html<br />

British Columbia Ministry of the Environment (BC MOE). 2006. British Columbia approved water<br />

quality guidelines, 2006 edition. Science and In<strong>for</strong>mation Branch. Available at:<br />

http://www.env.gov.bc.ca/wat/wq/BCguidelines/approv_wq_guide/approved.html<br />

Canadian Council of Ministers of the Environment (CCME). 2007. Canadian water quality guidelines <strong>for</strong><br />

the protection of aquatic life. Updated September, 2007. Available at:<br />

http://www.ccme.ca/assets/pdf/rev_aql_summary_tbl_7.0_e.pdf<br />

Environment Canada. 2008. Guidelines <strong>for</strong> ocean disposal of dredged materials. Available at:<br />

http://www.pyr.ec.gc.ca/ep/ocean-disposal/index_e.htm<br />

2010 Page D-17


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Attachment D1 Contaminant Concentrations in<br />

Water, Sediment and Biota<br />

2010 Page D1-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-1 Baseline Seawater Trace Element Concentrations<br />

Trace<br />

Elements<br />

Guidelines<br />

(mg/L)<br />

Concentration<br />

(mg/L)<br />

<strong>Kitimat</strong> 1 <strong>Kitimat</strong> 2 Terminal<br />

KIT-WAT-01 KIT-WAT-01-D JW2 JW2-D JW2-D2 JW3 JW4 JW12 JW9-R JW10-R JW1 JW5 JW6 JW7 MT-WAT-01 MT-WAT-01-D<br />

Aluminum – a 0.353 0.304


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-1 Baseline Seawater Trace Element Concentrations (cont’d)<br />

Trace<br />

Elements<br />

Guidelines<br />

(mg/L)<br />

Concentration<br />

(mg/L)<br />

<strong>Kitimat</strong> 1 <strong>Kitimat</strong> 2 Terminal<br />

KIT-WAT-01 KIT-WAT-01-D JW2 JW2-D JW2-D2 JW3 JW4 JW12 JW9-R JW10-R JW1 JW5 JW6 JW7 MT-WAT-01 MT-WAT-01-D<br />

Thallium – a


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-2 Baseline Seawater BTEX, TPH, PAH and Other Organic Compound Concentrations<br />

BTEX<br />

Analytes<br />

Guidelines<br />

(mg/L)<br />

Concentration<br />

(mg/L)<br />

<strong>Kitimat</strong> 1 <strong>Kitimat</strong> 2 Terminal<br />

KIT-WAT-01 KIT-WAT-01-D JW2 JW2-D JW2-D2 JW3 JW4 JW12 JW9-R JW10-R JW1 JW5 JW6 JW7 MT-WAT-01 MT-WAT-01-D<br />

Benzene 0.11 a,b


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-2 Baseline Seawater BTEX, TPH, PAH and Other Organic Compound Concentrations (cont’d)<br />

Analytes<br />

PAHs (cont’d)<br />

Guidelines<br />

(mg/L)<br />

Concentration<br />

(mg/L)<br />

<strong>Kitimat</strong> 1 <strong>Kitimat</strong> 2 Terminal<br />

KIT-WAT-01 KIT-WAT-01-D JW2 JW2-D JW2-D2 JW3 JW4 JW12 JW9-R JW10-R JW1 JW5 JW6 JW7 MT-WAT-01 MT-WAT-01-D<br />

Chrysene 0.0001 b


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-3 Other Measurable Baseline Parameters in Seawater<br />

Parameter<br />

<strong>Kitimat</strong> 1 <strong>Kitimat</strong> 2<br />

Concentration<br />

(mg/L; unless otherwise stated)<br />

Terminal<br />

KIT-WAT-01 KIT-WAT-01-D JW2 JW2-D JW2-D2 JW3 JW4 JW12 JW9-R JW10-R JW1 JW5 JW6 JW7 MT-WAT-01 MT-WAT-01-D<br />

Hardness a 224 241 – b – b – b – b – b – b – b – b – b – b – b – b 731 745<br />

Alkalinity, bicarbonate a 14.9 13.9 – b – b – b – b – b – b – b – b – b – b – b – b 24.8 24.3<br />

Alkalinity, carbonate a


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-4 Baseline <strong>Marine</strong> Sediments Trace Element Concentrations<br />

Trace<br />

Elements<br />

Concentration<br />

(mg/kg dw; unless otherwise stated)<br />

Guidelines<br />

<strong>Kitimat</strong> 1 <strong>Kitimat</strong> 2 Terminal<br />

(mg/kg dw)<br />

Nearshore Offshore Offshore Nearshore<br />

CCME PEL a KIT-SED-01 KIT-SED-01-D JW2 JW3 JW3-D JW4 JW12 JW9-R JW10-R JW1 JW5 JW6 JW7 MT-SED-01 MT-SED-01-D<br />

Aluminum – b – c – c 35900 35300 36900 35600 35500 25400 32800 35800 32500 35000 37300 – c – c<br />

Antimony – b 0.16 0.14


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-4 Baseline <strong>Marine</strong> Sediments Trace Element Concentrations (cont’d)<br />

Trace<br />

Elements<br />

Concentration<br />

(mg/kg dw; unless otherwise stated)<br />

Guidelines<br />

<strong>Kitimat</strong> 1 <strong>Kitimat</strong> 2 Terminal<br />

(mg/kg dw)<br />

Nearshore Offshore Offshore Nearshore<br />

CCME PEL a KIT-SED-01 KIT-SED-01-D JW2 JW3 JW3-D JW4 JW12 JW9-R JW10-R JW1 JW5 JW6 JW7 MT-SED-01 MT-SED-01-D<br />

Thallium – b


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-5 Baseline <strong>Marine</strong> Sediments BTEX, TPH, PAH and Other Organic Compound Concentrations<br />

Concentration<br />

(mg/kg dw)<br />

Analytes<br />

Guidelines<br />

(mg/kg dw)<br />

<strong>Kitimat</strong> 1<br />

Nearshore<br />

<strong>Kitimat</strong> 2<br />

Offshore Offshore<br />

Terminal<br />

Nearshore<br />

CCME PEL a KIT-WAT-01 KIT-WAT-01-D JW2 JW3 JW3-D JW4 JW12 JW9-R JW10-R JW1 JW5 JW6 JW7 MT-WAT-01 MT-WAT-01-D<br />

BTEX<br />

Benzene<br />

– b<br />


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-5 Baseline <strong>Marine</strong> Sediments BTEX, TPH, PAH and Other Organic Compound Concentrations (cont’d)<br />

Concentration<br />

(mg/kg dw)<br />

Analytes<br />

Guidelines<br />

(mg/kg dw)<br />

<strong>Kitimat</strong> 1<br />

Nearshore<br />

<strong>Kitimat</strong> 2<br />

Offshore Offshore<br />

Terminal<br />

Nearshore<br />

CCME PEL a KIT-WAT-01 KIT-WAT-01-D JW2 JW3 JW3-D JW4 JW12 JW9-R JW10-R JW1 JW5 JW6 JW7 MT-WAT-01 MT-WAT-01-D<br />

Benzo(b)fluoranthene<br />

– b<br />


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-6 Baseline <strong>Marine</strong> Sediments Dioxin and Furan Compounds Concentrations<br />

Analytes<br />

Guidelines<br />

(mg/kg dw)<br />

Concentration<br />

(ng/kg dw)<br />

<strong>Kitimat</strong> 1 <strong>Kitimat</strong> 2 Terminal<br />

Nearshore Offshore Offshore Nearshore<br />

KIT-SED-01 KIT-SED-01-D JW2 JW3 JW3-D JW4 JW12 JW9-R JW10-R JW1 JW5 JW6 JW7 MT-SED-01 MT-SED-01-D<br />

Dioxins<br />

2,3,7,8-TCDD – a – b – b 0.17 0.15 – b 0.14 0.17 c – b – b 0.15 0.21 0.13 c 0.17 – b – b<br />

1,2,3,7,8-PeCDD – a – b – b 1.7 1.28 – b 1.03 1.25 – b – b 1.32 1.63 0.95 1.4 – b – b<br />

1,2,3,4,7,8-HxCDD – a – b – b < 0.16 0.2 – b < 0.12 0.19 – b – b < 0.08 < 0.12 0.13 0.19 – b – b<br />

1,2,3,6,7,8-HxCDD – a – b – b 14.6 12.3 – b 9.27 11.8 – b – b 11.5 13.1 8.05 12.7 – b – b<br />

1,2,3,7,8,9-HxCDD – a – b – b 6.46 5.44 – b 4.37 5.28 – b – b 5.25 5.98 3.82 5.42 – b – b<br />

1,2,3,4,6,7,8-HpCDD – a – b – b 15.4 14.2 – b 12 12.9 – b – b 14.8 14.2 10.1 16.5 – b – b<br />

OCDD – a – b – b 51.8 53.8 – b 48.9 45.5 – b – b 63.3 43 37.2 82.4 – b – b<br />

Furans<br />

2,3,7,8-TCDF – a – b – b 0.35 0.32 – b 0.32 0.3 – b – b 0.38 0.37 0.25 0.32 – b – b<br />

1,2,3,7,8-PeCDF – a – b – b 0.08 0.08 – b 0.06 c 0.08 c – b – b 0.09 0.12 c 0.06 c 0.08 c – b – b<br />

2,3,4,7,8-PeCDF – a – b – b 0.13 0.18 c – b 0.13 c 0.11 c – b – b 0.14 0.15 0.12 0.15 – b – b<br />

1,2,3,4,7,8-HxCDF – a – b – b 0.13 0.15 c – b 0.19 0.13 c – b – b 0.18 0.15 c 0.12 c 0.17 c – b – b<br />

1,2,3,6,7,8-HxCDF – a – b – b 0.08 c 0.09 – b 0.11 0.08 c – b – b 0.14 0.09 c 0.09 0.10 c – b – b<br />

1,2,3,7,8,9-HxCDF – a – b – b < 0.03 < 0.03 – b < 0.03 < 0.02 – b – b 0.04 < 0.03 0.02 c 0.02 c – b – b<br />

2,3,4,6,7,8-HxCDF – a – b – b 0.11 c 0.12 – b 0.08 0.11 c – b – b 0.1 0.1 0.08 c 0.09 – b – b<br />

1,2,3,4,6,7,8-HpCDF – a – b – b 1.35 1.35 – b 1.37 1.22 – b – b 1.54 1.37 0.98 1.33 – b – b<br />

1,2,3,4,7,8,9-HpCDF – a – b – b 0.15 0.14 – b 0.11 c 0.09 c – b – b 0.14 0.1 0.09 c 0.08 c – b – b<br />

OCDF – a – b – b 2.43 2.76 – b 2.92 2.49 – b – b 3.87 2.57 1.81 2.77 – b – b<br />

NOTES:<br />

a CCME or BC MOE guideline not available.<br />

b Results were not reported by the laboratory or analysis was not requested.<br />

c Target could not be confirmed as it did not satisfy all criteria. Reported value may be interpreted as an estimation of the maximum analyte concentration.<br />

"–" indicates that data was not available.<br />

"


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-7 Other Measurable Baseline Parameters in <strong>Marine</strong> Sediments<br />

Parameter<br />

General Chemistry<br />

Nearshore<br />

<strong>Kitimat</strong> 1 <strong>Kitimat</strong> 2 Terminal<br />

Offshore Offshore Nearshore<br />

KIT-WAT-01 KIT-WAT-01-D JW2 JW3 JW3-D JW4 JW12 JW9-R JW10-R JW1 JW5 JW6 JW7 MT-WAT-01 MT-WAT-01-D<br />

TOC (%)


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-8 Baseline Sediment Toxicity Tests <strong>for</strong> Survival and Growth (2006 Samples Only)<br />

Eohaustorius<br />

estuarius<br />

Neanthes<br />

arenaceodentata<br />

<strong>Kitimat</strong> 2 Terminal<br />

Control-1M Control-2M<br />

Offshore Offshore<br />

JW2 JW3 JW3-D JW4 JW12 JW9-R JW10-R JW1 JW5 JW6 JW7<br />

Survival (%) 99 ± 2 100 ± 0 88 ± 8 80 ± 12 – a 87 ± 4 81 ± 11 97 ± 4 90 ± 8 88 ± 8 85 ± 12 82 ± 6 84 ± 8<br />

Notes – – Passed Passed – a Passed Passed Reference Reference Passed Passed Passed Passed<br />

Survival (%) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 – a 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0<br />

Mean Growth<br />

Rate (mg/worm·d)<br />

– – 1.04 ± 0.09 0.99 ± 0.08 – a 0.95 ± 0.21 1.02 ± 0.11 1.00 ± 0.07 0.98 ± 0.15 1.00 ± 0.07 0.97 ± 0.13 0.99 ± 0.13 0.97 ± 0.10<br />

Notes – – NSD-R NSD-R – a NSD-R NSD-R NSD-C NSD-C NSD-R NSD-R NSD-R NSD-R<br />

NOTES:<br />

"–" indicates that data was not available.<br />

a<br />

Results were not reported by the laboratory or analysis was not requested.<br />

D - field duplicate sample<br />

NSD-C - Not significantly differenct from laboratory control<br />

NSD-R - Not significantly different from either reference sediment<br />

R - sample collected at a reference location<br />

SOURCE: Analysis per<strong>for</strong>med by Vizon Scitec. Inc. Laboratories (2006).<br />

Table D1-9 Baseline Benthic Community Structure Summary (2006 Samples Only)<br />

<strong>Kitimat</strong> 2 Terminal<br />

Parameter<br />

Offshore Offshore<br />

JW2 JW3 JW3-D JW4 JW12 JW9-R JW10-R JW1 JW5 JW6 JW7<br />

Abundance – a 1628 – a 3026 – a 4174 3223 1136 1697 – a – a<br />

Species Richness – a 112 – a 108 – a 170 137 77 109 – a – a<br />

Mollusc + Crustacean species – a 38 – a 38 – a 62 53 24 34 – a – a<br />

Molluscs + Crustaceans (%) – a 34% – a 35% – a 36% 39% 31% 31% – a – a<br />

Polychaete species – a 68 – a 60 – a 93 71 36 62 – a – a<br />

Polychaete species (%) – a 61% – a 56% – a 55% 52% 47% 57% – a – a<br />

NOTES:<br />

"–" indicates that data was not available.<br />

a<br />

Results were not reported by the laboratory or analysis was not requested.<br />

D - field duplicate sample<br />

R - sample collected at a reference location<br />

SOURCE: Analysis per<strong>for</strong>med by Biologica Environmental Services Ltd. Laboratories (2006).<br />

2010 Page D1-25


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-10 Baseline Benthic Community Structure (2006 Samples Only)<br />

PORIFERA<br />

Leucilla nuttingi<br />

CNIDARIA<br />

Hydrozoa<br />

TAXON<br />

Perigonimus repens 2<br />

Anthozoa<br />

Urticina sp. 1<br />

NEMERTEA<br />

No. of individuals<br />

Carinoma mutabilis 3 6<br />

Cerebratulus cali<strong>for</strong>niensis 13 10 3<br />

Anopla sp. D (SCAMIT) 1<br />

Nemertea indet.<br />

<strong>Kitimat</strong> 2 Terminal<br />

Offshore Offshore<br />

JW3 JW4 JW9-R JW10-R JW1 JW5<br />

A Int J A Int J A Int J A Int J A Int J A Int J A Int J<br />

1<br />

2 2<br />

Tubulanus polymorphus 16 29 3 4 4 3 2 7<br />

Tubulanus sp.<br />

ANNELIDA<br />

Polychaeta Errantia<br />

Ancistrosyllis groenlandica 1<br />

Aphrodita parva 1<br />

Cenogenus simpla 7 2<br />

Dentinephtys glabra 3 3<br />

Dorvillea pseudorubrovittata 2<br />

Eranno bicirrata 5<br />

Eranno spp. 16 1<br />

Eteone cali<strong>for</strong>nica 1<br />

Eteone nr. cali<strong>for</strong>nica 1<br />

Eteone longa complex 4 1<br />

Eteone spilotus 4<br />

Eteone spp.<br />

Eulalia sp. 1 (Ruff) 3 1 1<br />

1<br />

8<br />

1<br />

2 2<br />

1 1<br />

2<br />

2<br />

3<br />

1<br />

2<br />

2010 Page D1-27<br />

1<br />

1 4<br />

3 3 1 6 4 1 1 1 1 2 2<br />

1<br />

2<br />

2<br />

1<br />

1<br />

1<br />

7 7<br />

2 1<br />

1<br />

1<br />

3<br />

1<br />

2 1 1 1<br />

3<br />

1 2<br />

2<br />

4<br />

2<br />

1<br />

1<br />

2<br />

4<br />

1<br />

1<br />

1<br />

1<br />

2 5<br />

1<br />

1<br />

1<br />

7<br />

1<br />

2


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-10 Baseline Benthic Community Structure (2006 Samples Only) (cont’d)<br />

ANNELIDA (cont’d)<br />

TAXON<br />

No. of individuals<br />

Gattyana treadwelli 19 1<br />

Glycera nana 20 4<br />

Glycinde armigera 3<br />

Goniada brunnea 5 1<br />

Goniada spp.<br />

Gyptis nr. pluriesta 1<br />

Lumbrineris cruzensis 61 13 1 8 2<br />

Malmgreniella bansei<br />

Malmgreniella berkeleyorum 1<br />

Malmgreniella spp.<br />

Nephtys caecoides<br />

Nephtys cornuta 238 2<br />

Nephtys ferruginea 22<br />

<strong>Kitimat</strong> 2 Terminal<br />

Offshore Offshore<br />

JW3 JW4 JW9-R JW10-R JW1 JW5<br />

A Int J A Int J A Int J A Int J A Int J A Int J A Int J<br />

1<br />

1<br />

1<br />

2<br />

5 1<br />

1<br />

2<br />

1<br />

1<br />

1 2<br />

3<br />

5 1<br />

Nephtys punctata 42 23 2 6 2 1 9 6<br />

Nephtys spp. 1 1<br />

Nereis procera 1<br />

90<br />

1<br />

1<br />

1<br />

35<br />

3<br />

2010 Page D1-29<br />

1<br />

2 1<br />

7<br />

7<br />

1<br />

23<br />

3<br />

15<br />

1<br />

6 7<br />

1 1<br />

1<br />

5<br />

8 2<br />

1<br />

19 8<br />

1<br />

1<br />

18 2<br />

2<br />

7 2<br />

3<br />

1<br />

2<br />

66<br />

5<br />

1<br />

3<br />

3<br />

1<br />

1 4 2<br />

1<br />

26<br />

1<br />

2<br />

9 6 1<br />

Ninoe gemmea 69 67 43 9 7 3 15 13 13 15 5 8 14 27 8 4 2 2 12 13 9<br />

Onuphis iridescens 3<br />

Onuphis nr. iridescens 9 9<br />

Onuphis spp.<br />

Ophiodromus pugettensis<br />

Parougia caeca 8<br />

2 3<br />

Pholoe glabra 25 5 2<br />

Pholoe minuta 26 6<br />

Pholoe sp. N-1 (Ruff) 6<br />

Pholoe spp.<br />

1<br />

3 3<br />

2<br />

3 1<br />

Pholoides asperus 12 10 7 3 1<br />

Podarkeopsis perkinsi 13 3 1 4<br />

Polyeunoa tuta 1<br />

1<br />

2<br />

1<br />

1 1<br />

1<br />

2 1<br />

3<br />

1 1<br />

1<br />

2 1<br />

1 2<br />

5<br />

1<br />

22 3 2<br />

11 1<br />

1<br />

5 6 3<br />

3 1<br />

1 4<br />

1<br />

1<br />

9 5<br />

4<br />

2<br />

3 1<br />

1<br />

1 5<br />

1<br />

1<br />

1<br />

1<br />

1 3<br />

3 2 4<br />

1 2


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-10 Baseline Benthic Community Structure (2006 Samples Only) (cont’d)<br />

ANNELIDA (cont’d)<br />

TAXON<br />

Protodorvillea gracilis 2<br />

No. of individuals<br />

<strong>Kitimat</strong> 2 Terminal<br />

Offshore Offshore<br />

JW3 JW4 JW9-R JW10-R JW1 JW5<br />

A Int J A Int J A Int J A Int J A Int J A Int J A Int J<br />

Scoletoma luti 145 68 45 42 16 8 21 14 9 10 4 4 27 11 14 29 7 7 16 16 3<br />

Scoletoma spp. 5 4<br />

Sphaerosyllis ranunculus 1<br />

Sphaerosyllis spp. 1<br />

Sphaerodoropsis sphaerulifer 1<br />

Typosyllis heterochaeta 115 19 13 14<br />

Polychaeta Sedentaria<br />

Ampharete nr. acutifrons 13<br />

Ampharete finmarchica 1<br />

Ampharete spp.<br />

Anobothrus gracilis 2<br />

Aphelochaeta sp. 2 8 4<br />

2 1<br />

1<br />

3<br />

3 5 1<br />

8<br />

1 1<br />

Aphelochaeta spp. 17 32 24 11 6 1 2 1<br />

Aricidea antennata 134 24 1 21 3<br />

Aricidea catherinae 14<br />

Aricidea lopezi 248 13<br />

Aricidea ramosa 528 7 3 68<br />

50 1<br />

Aricidea simplex 28 13 1 7 3<br />

Aricidea spp. 18 3 1 11 1<br />

Artacama coniferi 5 2 1 1<br />

Artacamella hancocki 42 2 3 9<br />

Asclerocheilus beringianus 3 2 7 1 2 1<br />

Axiothella rubrocincta 1<br />

Barantolla nr. americana 1<br />

Brada sachalina 1 1<br />

Capitella capitata complex 6 2<br />

Chaetozone commonalis 24 1 1 11<br />

Chaetozone nr. setosa 19 7 1<br />

1<br />

19 3<br />

51 3<br />

2 52 1<br />

4<br />

1<br />

1<br />

1<br />

2010 Page D1-31<br />

2<br />

1<br />

1 4<br />

1<br />

1<br />

1<br />

56 15 6 20 2 1 1 1<br />

1<br />

2<br />

29 12 1 21 2<br />

14<br />

7<br />

1 1 1<br />

1<br />

76 3<br />

16 5<br />

3<br />

2<br />

4<br />

27<br />

188<br />

4 3<br />

3<br />

1<br />

1<br />

11 15 4 11 1<br />

9 1 1 12 1 2 3<br />

1<br />

1<br />

6 2<br />

1<br />

1 1<br />

3<br />

12 4<br />

64 3<br />

82<br />

12 6 1 2<br />

1<br />

1<br />

7 2 1<br />

8<br />

1<br />

1<br />

4<br />

19<br />

32<br />

3<br />

49 6<br />

3<br />

3 5<br />

62 3 1<br />

5<br />

1<br />

1<br />

3<br />

1<br />

6<br />

1 1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-10 Baseline Benthic Community Structure (2006 Samples Only) (cont’d)<br />

ANNELIDA (cont’d)<br />

TAXON<br />

No. of individuals<br />

Chaetozone spp. 2 37 7 2<br />

Chone spp.<br />

Clymenura spp. 1 3<br />

Cossura bansei 40 2<br />

Cossura modica 2<br />

Cossura pygodactylata 29 21<br />

<strong>Kitimat</strong> 2 Terminal<br />

Offshore Offshore<br />

JW3 JW4 JW9-R JW10-R JW1 JW5<br />

A Int J A Int J A Int J A Int J A Int J A Int J A Int J<br />

2 3<br />

Decamastus nr. gracilis 31 17 28<br />

Dipolydora socialis<br />

Euchone analis 1 1 1 1<br />

Euchone incolor 4<br />

Euchone spp.<br />

Euclymene nr. zonalis 2 1<br />

Euclymeninae sp. 1 2 2<br />

2<br />

13 5<br />

Euclymeninae indet. 1 4 10<br />

18 2<br />

2<br />

1 1<br />

7 5<br />

2<br />

1 4<br />

1<br />

1 3<br />

1 2<br />

1<br />

1<br />

2010 Page D1-33<br />

1 3<br />

2<br />

10 5<br />

2<br />

6<br />

5<br />

1 1<br />

23 14 26 5 1 1<br />

8 3<br />

2 2<br />

5 2<br />

8<br />

4 3<br />

5<br />

37 7<br />

1<br />

2 6<br />

3 2 1<br />

Galathowenia oculata 1537 3142 2242 214 274 144 329 1122 397 330 666 734 434 616 378 60 157 250 170 307 339<br />

Heteromastus filobranchus 1 1 1<br />

Jasmineira pacifica 2 1 1<br />

Lanassa gracilis 1 1<br />

Lanassa spp.<br />

Laonice cirrata 2<br />

Leitoscoloplos pugettensis 87 67 2<br />

Levinsenia gracilis 215 16 1 34<br />

Lysippe labiata 3 3 2<br />

Maldane sarsi 56 7<br />

1<br />

1<br />

23 3<br />

Mediomastus cali<strong>for</strong>niensis 90 17 3 13 1<br />

Megalomma splendida 2 3<br />

Melinna elisabethae 4 3 6<br />

Melinna nr. heterodonta 70 9 53 23<br />

Melinna spp.<br />

1<br />

2<br />

27 1<br />

15<br />

3 1 3<br />

1 1<br />

2 2<br />

2 1 1<br />

1 1<br />

1<br />

41 53 1 41 12 1<br />

64 10 1 44 3<br />

39 8<br />

2 3<br />

1<br />

1<br />

1<br />

1<br />

3 4<br />

11 3<br />

1 2 1 1 1<br />

1 1<br />

3 17 5 30 1 1 5 15 3 6 7<br />

1<br />

24<br />

1<br />

20<br />

5<br />

2<br />

5<br />

22 2<br />

1 1<br />

3<br />

2 2 1<br />

10<br />

4 7<br />

7 5 3<br />

5


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-10 Baseline Benthic Community Structure (2006 Samples Only) (cont’d)<br />

ANNELIDA (cont’d)<br />

TAXON<br />

No. of individuals<br />

Microclymene nr. caudata 64 92 93<br />

Monticellina serratiseta 25<br />

Monticellina spp. 1<br />

Myriochele nr. gracilis 2<br />

Myriochele olgae 38 10<br />

Notomastus hemipodus<br />

Notomastus latericeus 14 39<br />

Notoproctus pacificus 4<br />

Ophelina acuminata 4<br />

Ophelina breviata 5 2 1<br />

Owenia nr. johnsoni 9<br />

Paraonella spp. 1<br />

Pectinaria cali<strong>for</strong>niensis 15 1<br />

Pectinaria granulata 18 7<br />

Pherusa negligens 2 1<br />

Phyllochaetopterus pottsi 1<br />

Phylo felix 1<br />

Pista moorei 1<br />

Pista wui 1<br />

Polycirrus spp. 1<br />

Polydora spp.<br />

Potamilla intermedia<br />

Praxillella gracilis 3 6 4<br />

Prionospio (Prionospio) jubata 23 7<br />

Prionospio (Minuspio) lighti 14 7<br />

Prionospio (Minuspio) multibranchiata 7 1<br />

Prionospio (Prionospio) steenstrupi 4 12<br />

Proclea graffi 2 2<br />

<strong>Kitimat</strong> 2 Terminal<br />

Offshore Offshore<br />

JW3 JW4 JW9-R JW10-R JW1 JW5<br />

A Int J A Int J A Int J A Int J A Int J A Int J A Int J<br />

1<br />

1<br />

1<br />

1<br />

4<br />

23<br />

1<br />

6<br />

8 3 25 43 49 2 11 7 21 14 4<br />

1<br />

1<br />

1 2<br />

7<br />

7 1<br />

Rhodine bitorquata 10 2 1 9 2<br />

2 1<br />

1<br />

1<br />

2<br />

3<br />

2<br />

1 2<br />

2010 Page D1-35<br />

18 10<br />

1<br />

10 38<br />

2<br />

2<br />

20<br />

4 1<br />

3 1 1 2 1<br />

8<br />

4<br />

18 7<br />

1<br />

1<br />

1<br />

1<br />

4 1<br />

2<br />

1<br />

13 4<br />

1 2<br />

4 11<br />

1<br />

1<br />

1<br />

1 1<br />

1 1<br />

9 1<br />

4<br />

1<br />

1<br />

3<br />

2<br />

1<br />

1<br />

16 15 30<br />

1<br />

2<br />

1 1<br />

1<br />

2 1<br />

1<br />

2 2


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-10 Baseline Benthic Community Structure (2006 Samples Only) (cont’d)<br />

ANNELIDA (cont’d)<br />

TAXON<br />

No. of individuals<br />

Scalibregma cali<strong>for</strong>nicum 2 2<br />

Sosanopsis wireni 1<br />

Spio cirrifera 4 6<br />

Spiophanes berkeleyorum 38 1 3 5 1<br />

<strong>Kitimat</strong> 2 Terminal<br />

Offshore Offshore<br />

JW3 JW4 JW9-R JW10-R JW1 JW5<br />

A Int J A Int J A Int J A Int J A Int J A Int J A Int J<br />

Sternaspis nr. fossor 55 51 36 2 3 1 13 19 26 10 9 5 25 10 2 3 7 1 2 3 1<br />

Terebellides cali<strong>for</strong>nica 2<br />

Terebellides horikoshii 36 1 3 8<br />

Terebellides reishi 1<br />

Terebellides sp. A (Steinhauer and Imamura) 46 13 2 16<br />

Terebellides spp. 7 1 2<br />

Travisia brevis 3 31<br />

Trochochaeta multisetosa 1<br />

SIPUNCULA<br />

Golfingiidae indet.<br />

Nephasoma diaphanes 49 3<br />

Thysanocardia nigra 5 1<br />

MOLLUSCA<br />

Aplacophora<br />

1<br />

9<br />

1 5 1<br />

Chaetoderma argenteum 40 54 6 6 11 2 5 8<br />

Falcidens longus 2 8 4<br />

Polyplacophora<br />

Lepidozona interstincta<br />

Gastropoda<br />

Acanthodoris sp.<br />

Acteocina culcitella<br />

Alvania compacta 118<br />

Astyris gausapata 3<br />

Balcis columbiana 3<br />

Bittium munitum<br />

Colus halli<br />

1<br />

1<br />

1<br />

8 11<br />

1<br />

1<br />

1<br />

3<br />

12<br />

1<br />

1<br />

32<br />

1<br />

2 2<br />

2010 Page D1-37<br />

2 2<br />

4 6<br />

2<br />

2 8<br />

10<br />

2 31<br />

12 2<br />

4 5<br />

1 3 3<br />

33<br />

1 6 1<br />

1<br />

4 5<br />

1<br />

1<br />

10 2<br />

1<br />

34 1<br />

1<br />

1<br />

1 7 1 1<br />

7 12 3 9 13<br />

24<br />

3<br />

3<br />

2 1<br />

1<br />

6<br />

1<br />

1 33<br />

7 1 5 3<br />

1<br />

4<br />

3<br />

1 1<br />

2<br />

1<br />

9 5 1<br />

1 1<br />

11<br />

1 3


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-10 Baseline Benthic Community Structure (2006 Samples Only) (cont’d)<br />

MOLLUSCA (cont’d)<br />

Cylichna attonsa<br />

TAXON<br />

Diaphana cali<strong>for</strong>nica 1<br />

Haminoea virescens 5<br />

Haminoea sp. 1<br />

Limalepeta caecoides<br />

Odostomia spp.<br />

Oenopota turricula<br />

Oenopota spp. 1<br />

Parvaplustrum sp. 2<br />

Solariella peramabilis<br />

Trichotropis cancellata<br />

No. of individuals<br />

Turbonilla spp. 4 1<br />

Bivalvia<br />

<strong>Kitimat</strong> 2 Terminal<br />

Offshore Offshore<br />

JW3 JW4 JW9-R JW10-R JW1 JW5<br />

A Int J A Int J A Int J A Int J A Int J A Int J A Int J<br />

16<br />

1 2<br />

Acila castrensis 22 25 7<br />

Adontorhina cyclia 691 1<br />

Astarte esquimalti<br />

Axinopsida serricata 93 716<br />

Cardiomya planetica 1 1 6 1<br />

Cardiomya sp.<br />

Clinocardium blandum<br />

1<br />

2<br />

1<br />

1<br />

7<br />

1<br />

1<br />

29<br />

7<br />

1<br />

1<br />

8 11<br />

Cyclocardia ventricosa 2 3 1 2 1<br />

Delectopecten vancouverensis<br />

Ennucula tenuis 2 15 4<br />

Macoma carlottensis 18 251 42 6 15<br />

Macoma elimata 2 16 56<br />

Macoma yoldi<strong>for</strong>mis 1 9 24<br />

Macoma spp.<br />

Mytilus spp.<br />

Nuculana hamata 9 3<br />

Nuculana minuta 2 1<br />

1<br />

2<br />

2<br />

3 96<br />

4<br />

1<br />

1<br />

1<br />

1<br />

1<br />

123<br />

2<br />

3 137<br />

3 27<br />

1 2<br />

2010 Page D1-39<br />

4<br />

1<br />

1<br />

1<br />

1<br />

3 1<br />

5<br />

1<br />

3 6 4 19 19 3<br />

243 1<br />

1<br />

57 333<br />

3<br />

1 1<br />

1 2 2 11 2<br />

1 2 5 1 9 38<br />

1<br />

1<br />

2<br />

2<br />

1<br />

236<br />

2<br />

18 170<br />

1<br />

2<br />

2<br />

1<br />

28<br />

3<br />

5 31<br />

2 78 11 3 95 30 3 16<br />

1 9 24<br />

6 2<br />

2<br />

3 79<br />

2<br />

2 1<br />

3 3<br />

14<br />

1 2<br />

1<br />

1<br />

32<br />

1<br />

2 34<br />

1 2<br />

1<br />

1<br />

2<br />

1 20 1<br />

1 8


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-10 Baseline Benthic Community Structure (2006 Samples Only) (cont’d)<br />

MOLLUSCA (cont’d)<br />

Nuculana spp.<br />

TAXON<br />

No. of individuals<br />

Nutricola lordi 6 19 1 1<br />

Pandora bilirata 1 1<br />

Pandora wardiana 1<br />

Parvilucina tenuisculpta<br />

Solamen columbianum<br />

Thyasira flexuosa 5 39<br />

Xylophaga washingtona<br />

Scaphopoda<br />

Pulsellum salishorum 24 8 1<br />

Rhabdus rectius 5 26 8<br />

Rhabdus nr. rectius<br />

ARTHROPODA<br />

CRUSTACEA<br />

Ostracoda<br />

Bathyleberis sp. 26<br />

Scleroconcha trituberculata 44 31<br />

Cirripedia<br />

Balanomorpha indet.<br />

Cumacea<br />

Campylaspis biplicata 1<br />

Cumacea indet. 1<br />

Diastylis dalli 3<br />

Diastylis nr. paraspinulosa 1<br />

Diastylis pellucida 1<br />

Diastylis umatillensis 9<br />

Eudorella pacifica 42 2<br />

Eudorellopsis integra 3<br />

Eudorellopsis longirostris 15<br />

Lampropidae indet. 1<br />

<strong>Kitimat</strong> 2 Terminal<br />

Offshore Offshore<br />

JW3 JW4 JW9-R JW10-R JW1 JW5<br />

A Int J A Int J A Int J A Int J A Int J A Int J A Int J<br />

2<br />

3<br />

5<br />

1<br />

1<br />

1<br />

10<br />

3<br />

3<br />

1<br />

4<br />

1<br />

11 1<br />

1<br />

3 9<br />

1<br />

1 3<br />

1<br />

3 21 2<br />

5<br />

5<br />

1<br />

1<br />

5 1<br />

1<br />

2010 Page D1-41<br />

2<br />

1 7<br />

1<br />

1<br />

1<br />

5<br />

1 13<br />

18 8 1 2<br />

10<br />

17 25<br />

1<br />

3<br />

1<br />

9<br />

1<br />

1 3<br />

1<br />

2 12<br />

2 1 2 2 4<br />

1<br />

2<br />

6<br />

1<br />

6 5<br />

1<br />

1<br />

4<br />

6<br />

2<br />

1 5<br />

1<br />

6<br />

2<br />

16<br />

1<br />

1 1<br />

1<br />

3<br />

1<br />

2<br />

7 1<br />

5<br />

6<br />

1<br />

5


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-10 Baseline Benthic Community Structure (2006 Samples Only) (cont’d)<br />

TAXON<br />

CRUSTACEA (cont’d)<br />

cf. Lamprops sp. 1<br />

Leptostylis sp. 2<br />

No. of individuals<br />

Leucon magnadentata 23 3<br />

Leucon subnasica 23<br />

Leucon sp.<br />

Vaunthompsonia pacifica 1 1<br />

Tanaidacea<br />

<strong>Kitimat</strong> 2 Terminal<br />

Offshore Offshore<br />

JW3 JW4 JW9-R JW10-R JW1 JW5<br />

A Int J A Int J A Int J A Int J A Int J A Int J A Int J<br />

1<br />

9<br />

1 1<br />

Leptognathia gracilis 3 6 1 1 2<br />

Pseudotanais oculatus 4<br />

Isopoda<br />

Gnathia trilobata 9<br />

Gnathia sp. 4<br />

Amphipoda<br />

Americhelidium shoemakeri 6<br />

Americhelidium variabilum 1<br />

Ampelisca agassizi 1<br />

Ampelisca unsocalae 18 35 1 9 7<br />

Anonyx lilljeborgi 1<br />

Apolochus staudei 1<br />

Bathymedon pumilis 26<br />

Bruzelia tuberculata 5<br />

Cephalophoxoides homilis 21 1<br />

Deflexilodes enigmaticus 7<br />

Guernea reduncans 2<br />

Harpiniopsis fulgens 43<br />

Heterophoxus affinis 26 14<br />

Heterophoxus ellisi 4 2<br />

Kroyera carinata 1<br />

Metaphoxus frequens 23<br />

Metopa dawsoni 2<br />

1<br />

1<br />

20<br />

18 1<br />

13<br />

1 3<br />

1 2<br />

2<br />

1<br />

2 2 1<br />

2<br />

1<br />

2 3<br />

5<br />

18<br />

4 4<br />

2010 Page D1-43<br />

17<br />

4<br />

5<br />

1<br />

2<br />

1<br />

2 5 1 2 5<br />

3<br />

4<br />

1<br />

1<br />

6 3<br />

5<br />

1<br />

1<br />

5<br />

1<br />

4<br />

1<br />

1<br />

2<br />

3<br />

1<br />

1<br />

1<br />

6 1<br />

18<br />

6 1<br />

1 4<br />

3<br />

6<br />

3<br />

2<br />

2<br />

6 2<br />

1<br />

1<br />

1<br />

1<br />

2<br />

2 11<br />

4<br />

6 3<br />

1<br />

1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-10 Baseline Benthic Community Structure (2006 Samples Only) (cont’d)<br />

TAXON<br />

No. of individuals<br />

Nicippe tumida 11 8<br />

Opisa tridentata 1<br />

Orchomene decipens 3<br />

Phoxocephalidae indet.<br />

Syrrhoe longifrons 2<br />

Westwoodilla caecula 3 2<br />

Decapoda<br />

Pinnixa occidentalis complex 5<br />

Pinnixa sp.<br />

PHORONIDA<br />

Phoronidae indet.<br />

BRACHIOPODA<br />

Platidia hornii 1<br />

ECHINODERMATA<br />

Ophiuroidea<br />

Amphiodia periercta<br />

Amphiodia urtica 5 1<br />

Amphiodia sp.<br />

Ophiura sarsi 1 25<br />

Ophiura sp.<br />

Ophiuridae indet.<br />

Ophiuroidea indet.<br />

Echinoidea<br />

Brisaster acutifrons 2<br />

Holothuroidea<br />

Chiridota albatrossii 2 1<br />

Ekmania diomedeae<br />

Molpadia intermedia 1<br />

Pentamera populifera<br />

Pentamera pseudocalcigera<br />

<strong>Kitimat</strong> 2 Terminal<br />

Offshore Offshore<br />

JW3 JW4 JW9-R JW10-R JW1 JW5<br />

A Int J A Int J A Int J A Int J A Int J A Int J A Int J<br />

1<br />

1<br />

1<br />

1 3<br />

23 67<br />

2<br />

18<br />

1<br />

1 1<br />

3<br />

6 2<br />

1<br />

1<br />

1<br />

4 1<br />

1<br />

4<br />

2 1<br />

1 1<br />

2 1<br />

2010 Page D1-45<br />

2<br />

4<br />

4<br />

1 1<br />

1 1<br />

1<br />

1<br />

1<br />

25<br />

15 32<br />

2<br />

1<br />

8<br />

1<br />

1 3<br />

1<br />

3<br />

1<br />

1<br />

2<br />

1<br />

1 1<br />

1 1<br />

8 31<br />

1<br />

4<br />

2 2<br />

2<br />

1<br />

1<br />

2<br />

1<br />

1<br />

1<br />

1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-10 Baseline Benthic Community Structure (2006 Samples Only) (cont’d)<br />

Pentamera sp.<br />

HEMICHORDATA<br />

TAXON<br />

No. of individuals<br />

Saccoglossus sp. 4 7<br />

<strong>Kitimat</strong> 2 Terminal<br />

Offshore Offshore<br />

JW3 JW4 JW9-R JW10-R JW1 JW5<br />

A Int J A Int J A Int J A Int J A Int J A Int J A Int J<br />

2 3<br />

1<br />

Total Number of Organisms by Stage 6269 5511 3104 999 436 193 952 1503 571 1523 1593 1058 1541 1139 543 560 295 281 694 545 458<br />

Total Number of Organisms 14884<br />

Organisms per m 2<br />

1628<br />

3026<br />

Total Number of Taxa 210 154 95 92 52 24 80 60 29 126 90 55 104 68 35 59 31 20 85 49 33<br />

MEIOFAUNA<br />

Harpacticoida indet. 6<br />

Nematoda indet. 70<br />

MEMO<br />

Collembola indet. 1<br />

Diptera indet. adult 1<br />

Fragment of manufactured deck sponge<br />

Foraminifera tubes<br />

Gastropoda indet. egg case 5<br />

Homoptera indet. adult 1<br />

Invertebrate egg 65<br />

Invertebrate egg cases 4<br />

Laqueus sp. shells<br />

Pisces indet. otolith<br />

Saunderia pacificus (larvae) 1<br />

Terebratalia sp. shells<br />

Trichoptera indet. larvae 1<br />

NOTES:<br />

A - Adult<br />

Int - Intermediate<br />

J - Juvenile<br />

P - Present<br />

R - sample collected at a reference location<br />

SOURCE: Analysis per<strong>for</strong>med by Biologica Environmental Services Ltd. Laboratories (2006).<br />

3<br />

P<br />

1<br />

2<br />

1<br />

1<br />

26<br />

1<br />

2010 Page D1-47<br />

4174<br />

1 3<br />

1<br />

49<br />

P<br />

1<br />

1<br />

2<br />

2 2<br />

3223<br />

1<br />

1<br />

5<br />

1<br />

1136<br />

13<br />

P<br />

P<br />

1<br />

1697<br />

3 2<br />

4<br />

17<br />

24<br />

P<br />

1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-11 Baseline <strong>Marine</strong> Plant and Benthic Invertebrate Trace Element Concentrations (2008 Samples Only)<br />

Trace<br />

Elements<br />

KIT-<br />

SEAWD-01-<br />

02 ENTIRE<br />

KIT-MUSS-<br />

01-02<br />

ENTIRE<br />

KIT-MUSS-<br />

01-D<br />

KIT-<br />

SCRAB-01-<br />

03 ENTIRE<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Kitimat</strong> 1 Terminal<br />

KIT-<br />

DCRAB-01-<br />

03 LEG<br />

KIT-DCRAB-01-03<br />

HEPATOPANCREAS<br />

KIT-DCRAB-<br />

04-06 LEG<br />

KIT-DCRAB-04-06<br />

HEPATOPANCREAS<br />

2010 Page D1-49<br />

MT-<br />

SEAWD-01<br />

MT-MUSS-<br />

01-02<br />

ENTIRE<br />

MT-<br />

SCRAB-01<br />

ENTIRE<br />

MT-<br />

CRAB-<br />

01-03<br />

LEG<br />

MT-CRAB-01-03<br />

HEPATOPANCREAS<br />

MT-<br />

CRAB-<br />

04-05<br />

LEG<br />

MT-CRAB-04-05<br />

HEPATOPANCREAS<br />

Aluminum 114 32.8 50.8 91.9 6.4 7.0 5.0 6.2 25.9 80.4 170 5.6 4.4 4.8 2.4<br />

Antimony


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-11 Baseline <strong>Marine</strong> Plant and Benthic Invertebrate Trace Element Concentrations (2008 Samples Only) (cont’d)<br />

Trace<br />

Elements<br />

KIT-<br />

SEAWD-01-<br />

02 ENTIRE<br />

KIT-MUSS-<br />

01-02<br />

ENTIRE<br />

KIT-MUSS-<br />

01-D<br />

KIT-<br />

SCRAB-01-<br />

03 ENTIRE<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Kitimat</strong> 1 Terminal<br />

KIT-<br />

DCRAB-01-<br />

03 LEG<br />

KIT-DCRAB-01-03<br />

HEPATOPANCREAS<br />

KIT-DCRAB-<br />

04-06 LEG<br />

KIT-DCRAB-04-06<br />

HEPATOPANCREAS<br />

2010 Page D1-51<br />

MT-<br />

SEAWD-01<br />

MT-MUSS-<br />

01-02<br />

ENTIRE<br />

MT-<br />

SCRAB-01<br />

ENTIRE<br />

MT-<br />

CRAB-<br />

01-03<br />

LEG<br />

MT-CRAB-01-03<br />

HEPATOPANCREAS<br />

MT-<br />

CRAB-<br />

04-05<br />

LEG<br />

MT-CRAB-04-05<br />

HEPATOPANCREAS<br />

Titanium – a<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

Uranium 0.315 0.0285 0.0503 0.0384


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-12 Baseline <strong>Marine</strong> Fish Trace Element Concentrations (2008 Samples Only)<br />

Trace<br />

Elements<br />

KIT-<br />

SFISH-01<br />

ENTIRE<br />

KIT-<br />

SFISH-<br />

01-D<br />

ENTIRE<br />

KT-<br />

GFISH-<br />

01<br />

FILLET<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Kitimat</strong> 1 Terminal<br />

KT-<br />

GFISH-<br />

01 FISH-<br />

REST<br />

KT-<br />

GFISH-<br />

02<br />

FILLET<br />

KT-<br />

GFISH-<br />

02 FISH-<br />

REST<br />

KIT-<br />

GFISH-<br />

04<br />

FILLET<br />

KIT-<br />

GFISH-<br />

04 FISH-<br />

REST<br />

MT-<br />

SFISH-<br />

01-02<br />

ENTIRE<br />

MT-<br />

GFISH-<br />

01<br />

FILLET<br />

Aluminum 54.0 121 2.7 5.4


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-12 Baseline <strong>Marine</strong> Fish Trace Element Concentrations (2008 Samples Only) (cont’d)<br />

Trace<br />

Elements<br />

KIT-<br />

SFISH-01<br />

ENTIRE<br />

KIT-<br />

SFISH-<br />

01-D<br />

ENTIRE<br />

KT-<br />

GFISH-<br />

01<br />

FILLET<br />

Concentration<br />

(mg/kg ww)<br />

<strong>Kitimat</strong> 1 Terminal<br />

KT-<br />

GFISH-<br />

01 FISH-<br />

REST<br />

KT-<br />

GFISH-<br />

02<br />

FILLET<br />

KT-<br />

GFISH-<br />

02 FISH-<br />

REST<br />

KIT-<br />

GFISH-<br />

04<br />

FILLET<br />

KIT-<br />

GFISH-<br />

04 FISH-<br />

REST<br />

MT-<br />

SFISH-<br />

01-02<br />

ENTIRE<br />

MT-<br />

GFISH-<br />

01<br />

FILLET<br />

Thallium


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-13 Baseline <strong>Marine</strong> Plant and Benthic Invertebrate PAH, Dioxin and Furan Compound Concentrations (2008 Samples Only)<br />

Analytes<br />

PAHs (mg/kg ww)<br />

KIT-<br />

SEAWD-01-<br />

02 ENTIRE<br />

KIT-<br />

MUSS-<br />

01-02<br />

ENTIRE<br />

KIT-<br />

MUSS-<br />

01-D<br />

KIT-<br />

SCRAB-<br />

01-03<br />

ENTIRE<br />

Concentration<br />

<strong>Kitimat</strong> 1 Terminal<br />

KIT-<br />

KIT-<br />

MT- MT- MT-<br />

DCRAB-<br />

DCRAB-<br />

MT- MUSS- SCRAB- CRAB-<br />

01-03 KIT-DCRAB-01-03 04-06 KIT-DCRAB-04-06 SEAWD- 01-02 01 01-03 MT-CRAB-01-03<br />

LEG HEPATOPANCREAS LEG HEPATOPANCREAS 01 ENTIRE ENTIRE LEG HEPATOPANCREAS<br />

2010 Page D1-57<br />

MT-<br />

CRAB-<br />

04-05<br />

LEG<br />

MT-CRAB-04-05<br />

HEPATOPANCREAS<br />

Acenaphthene


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-13 Baseline <strong>Marine</strong> Plant and Benthic Invertebrate PAH, Dioxin and Furan Compound Concentrations (2008 Samples Only) (cont’d)<br />

KIT-<br />

SEAWD-01-<br />

Analytes 02 ENTIRE<br />

Dioxins (ng/kg ww) cont’d<br />

KIT-<br />

MUSS-<br />

01-02<br />

ENTIRE<br />

KIT-<br />

MUSS-<br />

01-D<br />

KIT-<br />

SCRAB-<br />

01-03<br />

ENTIRE<br />

Concentration<br />

<strong>Kitimat</strong> 1 Terminal<br />

KIT-<br />

KIT-<br />

MT- MT- MT-<br />

DCRAB-<br />

DCRAB-<br />

MT- MUSS- SCRAB- CRAB-<br />

01-03 KIT-DCRAB-01-03 04-06 KIT-DCRAB-04-06 SEAWD- 01-02 01 01-03 MT-CRAB-01-03<br />

LEG HEPATOPANCREAS LEG HEPATOPANCREAS 01 ENTIRE ENTIRE LEG HEPATOPANCREAS<br />

2010 Page D1-59<br />

MT-<br />

CRAB-<br />

04-05<br />

LEG<br />

MT-CRAB-04-05<br />

HEPATOPANCREAS<br />

1,2,3,4,6,7,8-HpCDD 0.21 0.22 0.20 – a 0.22 – a 0.22 – a 0.16 0.24 – a 0.15 – a 0.27 – a<br />

Sum HpCDD 0.46 0.47 0.20 – a 0.2 – a 0.43 – a 0.38 0.49 – a 0.36 – a 0.64 – a<br />

OCDD 0.73 0.98 0.77 – a 0.73 – a 0.61 – a 0.52 1.20 – a 0.49 – a 0.95 – a<br />

TOTAL PCDD 1.20 1.5 0.97 – a 1.20 – a 1.2 – a 0.90 1.7 – a 0.98 – a 2.2 – a<br />

Furans (ng/kg ww)<br />

2,3,7,8-TCDF


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-14 Baseline <strong>Marine</strong> Fish PAH, Dioxin and Furan Compound Concentrations (2008 Samples Only)<br />

Analytes<br />

PAHs (mg/kg ww)<br />

KIT-<br />

SFISH-<br />

01<br />

ENTIRE<br />

KIT-<br />

SFISH-<br />

01-D<br />

ENTIRE<br />

KT-<br />

GFISH-<br />

01<br />

FILLET<br />

KT-<br />

GFISH-<br />

01<br />

FISH-<br />

REST<br />

Concentration<br />

<strong>Kitimat</strong> 1 Terminal<br />

KT-<br />

GFISH-<br />

02<br />

FILLET<br />

KT-<br />

GFISH-<br />

02<br />

FISH-<br />

REST<br />

KIT-<br />

GFISH-<br />

04<br />

FILLET<br />

KIT-<br />

GFISH-<br />

04 FISH-<br />

REST<br />

MT-<br />

SFISH-<br />

01-02<br />

ENTIRE<br />

MT-<br />

GFISH-<br />

01<br />

FILLET<br />

Acenaphthene


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment D1: Contaminant Concentrations in Water, Sediment and Biota<br />

Table D1-14 Baseline <strong>Marine</strong> Fish PAH, Dioxin and Furan Compound Concentrations (2008 Samples Only) (cont’d)<br />

Analytes<br />

KIT-<br />

SFISH-<br />

01<br />

ENTIRE<br />

KIT-<br />

SFISH-<br />

01-D<br />

ENTIRE<br />

KT-<br />

GFISH-<br />

01<br />

FILLET<br />

KT-<br />

GFISH-<br />

01<br />

FISH-<br />

REST<br />

Concentration<br />

<strong>Kitimat</strong> 1 Terminal<br />

KT-<br />

GFISH-<br />

02<br />

FILLET<br />

KT-<br />

GFISH-<br />

02<br />

FISH-<br />

REST<br />

KIT-<br />

GFISH-<br />

04<br />

FILLET<br />

KIT-<br />

GFISH-<br />

04 FISH-<br />

REST<br />

MT-<br />

SFISH-<br />

01-02<br />

ENTIRE<br />

MT-<br />

GFISH-<br />

01<br />

FILLET<br />

1,2,3,4,6,7,8-HpCDD 0.21 0.20 – a – a – a 0.18 – a 0.19 0.17 – a 0.17 – a – a – a 0.20 – a – a – a – a – a 0.15<br />

Sum HpCDD 0.41 0.42 – a – a – a 0.38 – a 0.43 0.22 – a 0.36 – a – a – a 0.41 – a – a – a – a – a 0.34<br />

OCDD 0.73 0.77 – a – a – a 0.81 – a 0.78 0.57 – a 0.64 – a – a – a 0.53 – a – a – a – a – a 0.61<br />

TOTAL PCDD 1.10 1.20 – a – a – a 1.40 – a 1.7 0.99 – a 1.0 – a – a – a 1.3 – a – a – a – a – a 0.95<br />

Furans (ng/kg ww)<br />

2,3,7,8-TCDF


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix E: Chemical Composition of Liquid Hydrocarbon Samples<br />

Appendix E Chemical Composition of Liquid<br />

Hydrocarbon Samples<br />

2010 Page E-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix E: Chemical Composition of Liquid Hydrocarbon Samples<br />

Table of Contents<br />

Appendix E Chemical Composition of Liquid Carbon Samples ...................... E-1<br />

E.1 Chemical Composition of Liquid Hydrocarbon Samples .................................... E-7<br />

E.2 Certificates of Analysis .................................................................................... E-12<br />

Attachment E1 Certificate of Analyses .............................................................. E1-1<br />

E1.1 Certificate of Analyses 1 .................................................................................. E1-3<br />

E1.2 Certificate of Analyses 2 .................................................................................. E1-7<br />

List of Tables<br />

Table E-1 Trace Elements and Organic Compounds Analyzed in Diluted<br />

Bitumen, Synthetic Oil and Condensate ................................................. E-7<br />

2010 Page E-3


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix E: Chemical Composition of Liquid Hydrocarbon Samples<br />

Abbreviations<br />

BTEX .............................................................. benzene, toluene, ethylbenzene and xylenes<br />

CAS .......................................................................................... Chemical Abstracts Service<br />

PAH ................................................................................ polycyclic aromatic hydrocarbons<br />

TPH ......................................................................................... total petroleum hydrocarbon<br />

2010 Page E-5


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix E: Chemical Composition of Liquid Hydrocarbon Samples<br />

E.1 Chemical Composition of Liquid Hydrocarbon Samples<br />

To identify potential constituents of discharges to a marine environment, three liquid hydrocarbons were<br />

considered and representative samples were analyzed. For the list of specific trace elements, compounds<br />

analyzed and reported concentrations, see Table E-1.<br />

Table E-1 Trace Elements and Organic Compounds Analyzed in Diluted<br />

Bitumen, Synthetic Oil and Condensate<br />

Analytes<br />

CAS Number<br />

Concentration<br />

(mg/kg)<br />

Diluted Bitumen a Synthetic Oil Condensate<br />

Trace Elements<br />

Aluminum 7429-90-5 0.6 < 0.2 0.6<br />

Antimony 7440-36-0 < 0.02 < 0.02 < 0.02<br />

Arsenic 7440-38-2 < 0.2 < 0.2 < 0.2<br />

Barium 7440-39-3 0.2 < 0.2 1.0<br />

Beryllium 7440-41-7 < 0.02 < 0.02 < 0.02<br />

Bismuth 7440-69-9 < 0.02 < 0.02 < 0.02<br />

Boron 7440-42-8 0.3 < 0.2 < 0.2<br />

Cadmium 7440-43-9 0.006 < 0.002 < 0.002<br />

Calcium 7440-70-2 20 < 10 < 10<br />

Chromium 7440-47-3 0.2 < 0.2 < 0.2<br />

Cobalt 7440-48-4 0.18 < 0.02 < 0.02<br />

Copper 7440-50-8 0.4 < 0.2 < 0.2<br />

Iron 7439-89-6 < 4 < 4 < 4<br />

Lead 7439-92-1 < 0.02 < 0.02 < 0.02<br />

Lithium 7439-93-2 < 0.02 < 0.02 < 0.02<br />

Magnesium 7439-95-4 < 2 < 2 < 2<br />

Manganese 7439-96-5 0.4 < 0.2 < 0.2<br />

Mercury 7439-97-6 < 0.005 < 0.005 < 0.005<br />

Molybdenum 7439-98-7 5.97 < 0.02 0.06<br />

Nickel 7440-02-0 43.1 < 0.2 0.6<br />

Potassium 7440-09-7 < 4 < 4 < 4<br />

Rubidium 7440-17-7 < 0.02 < 0.02 < 0.02<br />

Selenium 7782-49-2 < 0.2 < 0.2 < 0.2<br />

Silver 7440-22-4 < 0.02 < 0.02 < 0.02<br />

2010 Page E-7


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix E: Chemical Composition of Liquid Hydrocarbon Samples<br />

Table E-1 Trace Elements and Organic Compounds Analyzed in Diluted<br />

Bitumen, Synthetic Oil and Condensate (cont’d)<br />

Analytes<br />

CAS Number<br />

Concentration<br />

(mg/kg)<br />

Diluted Bitumen a<br />

Synthetic<br />

Oil Condensate<br />

Trace Elements (cont’d)<br />

Sodium 7440-23-5 20 < 10 < 10<br />

Strontium 7440-24-6 0.4 < 0.2 < 0.2<br />

Tellurium 13494-80-9 < 0.02 < 0.02 < 0.02<br />

Thallium 7440-28-0 < 0.02 < 0.02 < 0.02<br />

Tin 7440-31-5 1.49 0.4 0.9<br />

Uranium 7440-61-1 < 0.02 < 0.02 < 0.02<br />

Vanadium 7440-62-2 119 < 0.2 1.2<br />

Zinc<br />

EX<br />

7440-66-6 < 0.2 < 0.2 0.3<br />

Benzene 71-43-2 280 1,100 13,100<br />

Toluene 108-88-3 990 3,300 25,300<br />

Ethylbenzene 100-41-4 360 1,200 2,900<br />

Xylenes<br />

TPH – Aliphatics<br />

1330-20-7 1,500 4,200 21,000<br />

C1-C5 NA NS NS 286,000<br />

>C6-C8 NA 25,700 59,700 359,000<br />

>C8-C10 NA 14,900 39,000 61,200<br />

>C10-C12 NA 26,400 52,800 21,800<br />

>C12-C16 NA 76,500 111,000 24,700<br />

>C16-C21 NA 119,000 100,000 18,800<br />

>C21-C32 NA 186,000 117,000 21,400<br />

TPH – Aromatics<br />

>C8-C10 b NA 2,200 5,800 11,900<br />

>C10-C12 NA 880 14,600 6,600<br />

>C12-C16 NA 4,400 27,200 7,800<br />

>C16-C21 NA 12,100 58,900 7,000<br />

>C21-C32 NA 30,100 158,000 11,900<br />

Page E-8 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix E: Chemical Composition of Liquid Hydrocarbon Samples<br />

Table E-1 Trace Elements and Organic Compounds Analyzed in Diluted<br />

Bitumen, Synthetic Oil and Condensate (cont’d)<br />

Analytes<br />

CAS Number<br />

Concentration<br />

(mg/kg)<br />

Diluted Bitumen a Synthetic Oil Condensate<br />

TPH – Fractions<br />

TPH c NA 498,000 754,000 552,000<br />

F1 (>C6-C10) NA 41,000 104,000 374,000<br />

F2 (>C10-C16) NA 136,000 246,000 80,900<br />

F3 (>C16-C34) NA 394,000 467,000 59,900<br />

F4 (>C34-C50) NA 51,000 62,000 20,400<br />

Asphaltenes<br />

PAH<br />

NA 83,000 4,000 NS<br />

1-Methylnaphthalene 90-12-0 6.6 99 190<br />

2-Methylnaphthalene 91-57-6 4.2 79 110<br />

Acenaphthene 83-32-9 < 10 < 10 < 10<br />

Acenaphthylene 208-96-8 < 5.0 < 5.0 < 5.0<br />

Anthracene 120-12-7 < 5.0 15 < 5.0<br />

Benzo(a)anthracene 56-55-3 7.9 < 5.0 < 5.0<br />

Benzo(b)fluoranthene 205-99-2 < 5.0 < 5.0 < 5.0<br />

Benzo(k)fluoranthene 207-08-9 < 5.0 < 5.0 < 5.0<br />

Benzo(ghi)perylene 191-24-2 < 10 < 10 < 10<br />

Benzo(a)pyrene 50-32-8 < 10 < 10 < 10<br />

Benzo(e)pyrene 192-97-2 < 5.0 < 5.0 < 5.0<br />

Chrysene/Triphenylene 218-01-9/ 217-<br />

59-4<br />

< 10 < 10 < 10<br />

Dibenzo(a,h)anthracene 53-70-3 < 5.0 < 5.0 < 5.0<br />

Fluoranthene 206-44-0 < 10 < 10 < 10<br />

Fluorene 86-73-7 < 5.0 14 15<br />

Indeno(1,2,3-cd)pyrene 193-39-5 < 5.0 < 5.0 < 5.0<br />

Naphthalene 91-20-3 < 5.0 85 86<br />

Phenanthrene 85-01-8 5.3 12 25<br />

Pyrene 129-00-0 6.1 30 < 5.0<br />

2010 Page E-9


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix E: Chemical Composition of Liquid Hydrocarbon Samples<br />

Table E-1 Trace Elements and Organic Compounds Analyzed in Diluted<br />

Bitumen, Synthetic Oil and Condensate (cont’d)<br />

Analytes<br />

CAS Number<br />

Concentration<br />

(mg/kg)<br />

Diluted Bitumen a<br />

Synthetic<br />

Oil Condensate<br />

Acid Extractables (Phenolic Compounds)<br />

2,4-Dimethylphenol 105-67-9 1.0 < 1.0 < 1.0<br />

2,4-Dinitrophenol 51-28-5 1.8 < 1.0 < 1.0<br />

4,6-Dinitro-o-cresol 534-52-1 < 1.0 < 1.0 < 1.0<br />

4-Nitrophenol 100-02-7 < 0.8 < 0.8 < 0.8<br />

m-Cresol 108-39-4 < 1.0 < 1.0 < 1.0<br />

o-Cresol 95-48-7 < 1.0 < 1.0 < 1.0<br />

p-Cresol 106-44-5 < 1.0 < 1.0 < 1.0<br />

Pentachlorophenol 87-86-5 < 0.2 < 0.2 < 0.2<br />

Phenol<br />

Volatile Organic Compounds<br />

108-95-2 < 1.0 < 1.0 2.4<br />

Dichlorodifluoromethane 75-71-8


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix E: Chemical Composition of Liquid Hydrocarbon Samples<br />

Table E-1 Trace Elements and Organic Compounds Analyzed in Diluted<br />

Bitumen, Synthetic Oil and Condensate (cont’d)<br />

Analytes<br />

CAS Number<br />

Concentration<br />

(mg/kg)<br />

Diluted Bitumen a<br />

Synthetic<br />

Oil Condensate<br />

1,2-Dichloroethane 107-06-2


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix E: Chemical Composition of Liquid Hydrocarbon Samples<br />

E.2 Certificates of Analysis<br />

See the following certificates of analysis in Attachment E1:<br />

• trace metals<br />

• petroleum hydrocarbons<br />

• volatile organic compounds<br />

• methyl mercury<br />

• polycyclic aromatic hydrocarbons<br />

• acid extractables<br />

Page E-12 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment E1: Certificate of Analyses<br />

Attachment E1 Certificate of Analyses<br />

2010 Page E1-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment E1: Certificate of Analyses<br />

E1.1 Certificate of Analyses 1<br />

2010 Page E1-3


RPC<br />

921 College Hill Rd,<br />

Fredericton, N.B. E3B 629<br />

Report No.: 84534-lAS<br />

Jacques Whit<strong>for</strong>d Limited<br />

PO Box 1116<br />

Fredericton NB E3B 5C2<br />

Attn: Malcolm Stephenson<br />

Trace Metals Analysis<br />

September 19,2008<br />

Fax: 506.452.7652<br />

RPC ID 84534 RB 84534-01A 84534-01 B 84534-02 84534-03<br />

Client lD QA/QC MKH<br />

cRW-o794<br />

Duplicate<br />

Ausust 25108<br />

Concentration (mg/kq)<br />

SYN-0748<br />

Auqust 25108<br />

Aluminum<br />

Antimonv<br />

Arsenic<br />

Barium<br />

tservllium<br />

Bismuth<br />

Boron<br />

Cadmium<br />

Calcium<br />

Chromium<br />

Gobalt<br />

Copper<br />

lron<br />

Lead<br />

Lithium<br />

Maqnesium<br />

Manqanese<br />

Mercury<br />

Molvbdenum<br />

Nickel<br />

Potassium<br />

Rubidium<br />

Selenium<br />

Silver<br />

Sodium<br />

Strontium<br />

Iellurium<br />

Thallium<br />

Tin<br />

Uranium<br />

Vanadium<br />

Z,nc<br />

< 0.2<br />

< 0.02<br />

< 0.2<br />

< 0.2<br />

< 0.02<br />

< 0.02<br />

< 0.2<br />

< 0.002<br />


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Attachment E1: Certificate of Analyses<br />

E1.2 Certificate of Analyses 2<br />

2010 Page E1-7


onn<br />

0too<br />

6'E E<br />

tr3=<br />

O n -<br />

8H9<br />

='6'<br />

o<br />

6<br />

0,<br />

:'<br />

o<br />

=<br />

0,<br />

gsF<br />

*Ht<br />

+ur<br />

8."<br />

6'<br />

0t<br />

v,<br />

o<br />

3. o<br />

CN<br />

'11<br />

><br />

Ptr<br />

*eo 8=<br />

Pg<br />

3<br />

9l<br />

o<br />

!<br />

o<br />

FF g<br />

= d E<br />

Xs,<br />

A<br />

<br />

I 5<br />

10,<br />

tr<<br />

to<br />

t'<br />

@<br />

o<br />

J<br />

N<br />

g<br />

o<br />

Dt><br />

2<br />

l5lf<br />

ttE<br />

tl=<br />

D t0,<br />

D<br />

J<br />

3<br />

D<br />

)<br />

D<br />

l3<br />

l3<br />

t<<br />

to<br />

te<br />

lo<br />

lo<br />

i<br />

!<br />

-<br />

-.1<br />

o<br />

r€ 8<br />

ilzd<br />

ililo Ego<br />

+lF<br />

J<br />

0t<br />

o<br />

v<br />

6i 0,<br />

N O<br />

{ =<br />

o, I<br />

$;<br />

dEtoIoo=<br />

3o<br />

o<br />

E<br />

o<br />

f<br />

(t,<br />

o<br />

5<br />

Qqt o<br />

ll<br />

coo{<br />

t (l<br />

r 0 t<br />

! t 3<br />

6- p.<br />

o . o<br />

o<br />

,IV<br />

)to<br />

oto<br />

llo<br />

trlN<br />

t><br />

lE<br />

0t<br />

o<br />

V<br />

o<br />

o)<br />

a<br />

o<br />

N<br />

N<br />

)<br />

D<br />

I<br />

iJ<br />

\,<br />

l0)<br />

o<br />

v<br />

I<br />

?<br />

o<br />

NI<br />

10,<br />

tc)<br />

lo<br />

o<br />

tr<br />

o<br />

o,<br />

=o f.<br />

ltfr<br />

5'q.<br />

O(cl q)<br />

Y r o<br />

d r-'@<br />

o =.o<br />

= - J<br />

E<br />

- *<br />

q<br />

d<br />

F<br />

Fo<br />

o<br />

3<br />

1<br />

fl I<br />

*lF*l*ts*lFtFtFt*tFtF<br />

o<br />

o<br />

5<br />

D<br />

II<br />

I<br />

5 9<br />

II<br />

I<br />

o . O<br />

8 s<br />

!<br />

o<br />

.8-<br />

*l* c 5<br />

a,<br />

3<br />

o<br />

x<br />

( t I<br />

A F<br />

='a<br />

= o<br />

F a<br />

EB.<br />

: x o<br />

ii-R<br />

o r =<br />

= . j =<br />

o o))x<br />

.s\i<br />

- a = .<br />

P<br />

o n<br />

t-<br />

P<br />

c) o b<br />

ul<br />

(tl<br />

o !.)<br />

o o I o<br />

ctl<br />

5 s,|


onv<br />

Q O O<br />

o(D<br />

o :<br />

= ' o<br />

d8 E<br />

x,af<br />

o<br />

lE<br />

!,<br />

t<br />

o<br />

O n -<br />

8He<br />

Fr<br />

8= Eo<br />

< o<br />

o "<br />

o.<br />

SsP<br />

,5t<br />

+sr<br />

J<br />

!,<br />

*<br />

c,<br />

$_<br />

a<br />

o<br />

3. o<br />

o(t<br />

J}<br />

x d<br />

* *<br />

- o<br />

8=<br />

9 -<br />

3<br />

0,<br />

o<br />

xlP=<br />

g 8 x 2<br />

figgs6(rl<br />

AE<br />

!eR<br />

d=<br />

s6 (D<br />

t,<br />

o<br />

o<br />

5<br />

to<br />

o<br />

It<br />

o<br />

:(t,<br />

o<br />

:'<br />

@<br />

0t<br />

o<br />

coo{='<br />

olr<br />

el$<br />

iE<br />

FF<br />

lr<br />

| 'r'l<br />

t5<br />

96lla<br />

0)<br />

p.<br />

3<br />

o<br />

o.<br />

lF-<br />

| -rr<br />

llo<br />

l?<br />

o l o<br />

giI<br />

lo (^t<br />

5<br />

o<br />

fr $F &<br />

lf fl<br />

f q 5g<br />

I<br />

H; tr<br />

+i 6<br />

"'F g<br />

!<br />

o<br />

a<br />

h)<br />

o<br />

3<br />

*lFl*lF<br />

c<br />

5<br />

o<br />

qr@ E<br />

t-{ o<br />

BE A<br />

o i o t<br />

g . a<br />

: x 0 )<br />

t8ii-R<br />

9 3 . -<br />

o r E<br />

t'.d B<br />

o<br />

o v<br />

o<br />

b<br />

(rl I o I a<br />

Ctl<br />

6 9<br />

* s<br />

O I<br />

.9:=<br />

- l ! .<br />

6sS<br />

mb o<br />

clro.t- i<br />

@91] :<br />

8aF<br />

nt; o<br />

oqt<br />

C L :<br />

i E<br />

CL<br />

o<br />

CL<br />

o<br />

5<br />

o<br />

0)<br />

0<br />

o<br />

B<br />

*<br />

o<br />

o<br />

N<br />

o<br />

O)<br />

@<br />

A<br />

(rl<br />

o,<br />

5<br />

I<br />

x<br />

-<br />

I<br />

5<br />

o<br />

Cr)<br />

o)<br />

o<br />

(.,<br />

(o<br />

A<br />

o<br />

a<br />

:,r<br />

)<br />

H 9<br />

ctl<br />

o<br />

5<br />

9F EsN<br />

s d<br />

o)<br />

5<br />

o<br />

a<br />

@<br />

(o<br />

o<br />

o<br />

(rl<br />

(o<br />

(o<br />

o<br />

N<br />

o<br />

5<br />

o<br />

@<br />

H 25<br />

(rl<br />

(^)<br />

5<br />

I<br />

oP =F 1<br />

3<br />

o<br />

5<br />

a<br />

o<br />

N<br />

5<br />

o,<br />

o<br />

A<br />

o,<br />

o<br />

a<br />

o<br />

(')<br />

N<br />

a<br />

o<br />

CtJ<br />

O A<br />

@ o<br />

l<br />

I<br />

I<br />

-l<br />

;i-f,$F<br />


Report tD: 8453+OAS<br />

Report Date: 2GSep.Og<br />

Date Received: rt-Sep_Og<br />

Attention: Malcolm<br />

Stephenson<br />

Fax #: 506.452.7652<br />

malcolm.stephenson@acqueswhit<strong>for</strong>d.com<br />

Jacques Whit<strong>for</strong>d Limited<br />

PO Box 1116,11i Woodstock Road<br />

Fredericton, NB E3B 5C2<br />

This report relates onry trc the sampre(s) and in<strong>for</strong>mation provided<br />

Method:<br />

to the<br />

Merhanorexbaction<br />

raboratory.<br />

<strong>for</strong>roweo'rv puig" ec,r,ns.r"rrrlii""Jon<br />

RL = Reporting Limlt<br />

"iJGp usEpA8260.<br />

Orgnnic Analytical Services<br />

Page 3 of 6<br />

npc<br />

921 Coltege Hiil Rd<br />

Fredericton NB<br />

Ganada E3B 629<br />

Tel: 506-452-1212<br />

Fax: 506-452-0594<br />

www.rpc.ca


orD<br />

o :<br />

go'<br />

' o<br />

o<br />

d oJ<br />

Fdd<br />

3EE<br />

gF'<br />

o "<br />

o.<br />

oXf<br />

$s$<br />

esrt<br />

f,$F u *i<br />

i s3<br />

ef;r<br />

(D No<br />

gl<br />

o.Jn<br />

1' o<br />

o o<br />

a 4<br />

u o<br />

3 =<br />

f m<br />

i f $f$ ?tn<br />

#+<br />

8.= E(n<br />

o<br />

5dBl<br />

d iEl<br />

lqHgj<br />

o9<br />

:t<br />

o,<br />

=<br />

o<br />

o,<br />

J<br />

cr<br />

Dl<br />

?l<br />

i d<br />

i d ;Egj<br />

E ut=n<br />

CL<br />

(ct<br />

o<br />

' /<br />

@<br />

o<br />

3. o<br />

(D<br />

(tt<br />

6o8<br />

0, !,<br />

O J<br />

4 t o<br />

C J<br />

E 8<br />

d5E!<br />

< ='=i! 'o<br />

f<br />

E 8.:<br />

f g=e o<br />

O - - =<br />

J<br />

o<br />

S E't a,<br />

'6'<br />

o<br />

J<br />

o<br />

o<br />

o<br />

E F3 3<br />

€ r<br />

f<br />

sa<br />

!, ggE o<br />

C"<br />

g -5;<br />

h,<br />

o<br />

3<br />

I<br />

0,<br />

f<br />

CL<br />

E E9<br />

i o=5' f<br />

/<br />

o<br />

'


8E 3l<br />

ovn<br />

0roo<br />

6'8 E<br />

F f f<br />

O n -<br />

Efi#f<br />

ci l-<br />

RV9<br />

?6<br />

o "<br />

g<br />

ssH<br />

rBg<br />

#tr<br />

@ l^S.<br />

q t v<br />

:n><br />

H F<br />

3<br />

sr<br />

PIJ<br />

tu9o<br />

r*3<br />

e3<br />

P=<br />

g<br />

3(r,<br />

F<br />

tt<br />

5o:'<br />

Ese<br />

Ef$<br />

dEg<br />

5Sr<br />

Ncl<br />

\ g<br />

o a<br />

+Ffi.<br />

s;<br />

at,<br />

I<br />

eoo 5 X ^<br />

; f,E<br />

o<br />

!t<br />

Jo<br />

d<br />

I<br />

II coo<br />

r+r<br />

9 d 6<br />

!<br />

o<br />

a{s<br />

{<br />

J<br />

! ag<br />

d-dE<br />

o-=<br />

$o<br />

3<br />

ggg<br />

t q8<br />

f;FF<br />

i:s<br />

ggs<br />

$fi $<br />

o€o<br />

o<br />

9.<br />

o<br />

Hrt o<br />

0t<br />

Af,F<br />

ss i<br />

ft62 mii<br />

Bs<br />

F,s<br />

sro<br />

pil<br />

d<br />

;ilf,$F<br />

-l<br />

o<br />

d<br />

0,<br />

6'<br />

tr 0<br />

ot<br />

SSn6s<br />

o<br />

ot<br />

a<br />

o<br />

ES- d<br />

o-'<br />

o<br />

u,


onv<br />

0)(D(D<br />

F ."oo E E<br />

d<br />

o,<br />

6'<br />

O a -<br />

R V9<br />

:'6'<br />

o "<br />

g<br />

:l<br />

g.<br />

SrF<br />

iEts<br />

'64 E:,6<br />

o<br />

ot<br />

,,<br />

o<br />

6'<br />

o<br />

0<br />

J}<br />

x d<br />

sr o<br />

**<br />

o<br />

8:<br />

i<<br />

e.<br />

'o<br />

s gt$<br />

Fx€r<br />

6Sr<br />

Ncl<br />

\ g<br />

o q<br />

ot-<br />

Ng)<br />

d<br />

!t<br />

:'<br />

o<br />

t<br />

Q<br />

o<br />

=<br />

(D<br />

9.<br />

o<br />

o<br />

eot o<br />

.ct<br />

o<br />

=<br />

{<br />

g $E'g<br />

'biFtr9<br />

I gli<br />

i<br />

+F<br />

:i's<br />

-(D :J.<br />

;T g<br />

g,F' u<br />

sct<br />

h)<br />

o<br />

3<br />

8 ; o<br />

Fa- I<br />

ooF F<br />

iir o J 7<br />

e.+-t- E<br />

-i: =<br />

l,<br />

o<br />

*e - o<br />

a r =<br />

P 6<br />

ga<br />

F*<br />

f O<br />

;fF<br />

@g='<br />

$is<br />

o<br />

0,<br />

s3<br />

g<br />

o<br />

o<br />

o<br />

o<br />

g=E<br />

; q<br />

ooo<br />

$<br />

P-' I<br />

-l<br />

E gd9d's<br />

d<br />

0)<br />

6'<br />

iurfiqF<br />

(n('|^


I<br />

n<br />

o<br />

D O<br />

o 5<br />

0)<br />

c)<br />

a<br />

E<br />

O n<br />

8V<br />

='*<br />

o "<br />

s*<br />

,r^ Y<br />

J<br />

='<br />

o,<br />

o)<br />

N<br />

oo<br />

o<br />

9 ;<br />

l l<br />

O O<br />

a<br />

o<br />

='<br />

o<br />

@<br />

iilF u s3<br />

il s9<br />

o<br />

o<br />

=<br />

; P}<br />

" t t 0<br />

ot<br />

s d8<br />

c$a<br />

o N o<br />

a \g<br />

Rsa<br />

aq)<br />

3<br />

Eo<br />

Fi<br />

6 83.<br />

I *a<br />

qr 6il<br />

X r d<br />

=. ='(n<br />

U, J^<br />

x{€<br />

= ='5<br />

Eo 6 '<br />

o t<br />

. o o<br />

c =<br />

? =<br />

F d<br />

E 8<br />

o ( '<br />

o o ,<br />

5 5<br />

s<br />

a<br />

h,<br />

o<br />

3<br />

= T<br />

ts<br />

a r =<br />

o o<br />

o o<br />

lJ<br />

o<br />

t8-<br />

' 0 ,<br />

J<br />

o.<br />

d x P<br />

o-Jx<br />

o aE<br />

q-ou<br />

dI<br />

3<br />

o<br />

o<br />

=<br />

F:=<br />

- r j .<br />

6=f<br />

mE o<br />

(,o-r-<br />

@gi'<br />

crI a'<br />

u x.8<br />

n<br />

0,<br />

d<br />

s.<br />

oo<br />

3<br />

o<br />

o)<br />

ET<br />

o<br />

il<br />

o<br />

d 0)<br />

-l<br />

E erBgF U (t(tr^47<br />

P'PXi@=<br />

ES' 0 d<br />

F f .-$ilI<br />

6'<br />

0)<br />

< h ,<br />

o v<br />

N- u)<br />

g 6<br />


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

Appendix F COPC Screening and Weathering<br />

2010 Page F-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

Table of Contents<br />

Appendix F COPC Screening and Weathering......................................................... F-1<br />

F.1 Chemicals of Potential Concern Screening ....................................................... F-7<br />

F.2 Liquid Effluent Emissions .................................................................................. F-8<br />

F.2.1 Dissolution ................................................................................................... F-23<br />

F.2.2 Degradation ................................................................................................. F-25<br />

F.3 Atmospheric Deposition ................................................................................... F-26<br />

F.4 References ...................................................................................................... F-30<br />

F.4.1 Literature Cited ............................................................................................ F-30<br />

F.4.2 Personal Communications ........................................................................... F-31<br />

F.4.3 Internet sites ................................................................................................ F-31<br />

List of Tables<br />

Table F-1 Screening Criteria <strong>for</strong> Inclusion or Exclusion of Chemical<br />

Substances as COPC ............................................................................. F-9<br />

Table F-2 Subcooled Liquid Solubility, Effective Solubility, Dissolved and<br />

Undissolved Water Concentrations of Each COPC .............................. F-19<br />

Table F-3 Total Atmospheric Deposition Rates (g/m 2 /y) <strong>for</strong> Each COPC .............. F-28<br />

2010 Page F-3


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

Abbreviations<br />

BTEX .............................................................. benzene, toluene, ethylbenzene and xylenes<br />

CCME ................................................... Canadian Council of Ministers of the Environment<br />

COPC ................................................................................... chemicals of potential concern<br />

PAH ................................................................................ polycyclic aromatic hydrocarbons<br />

TPH ......................................................................................... total petroleum hydrocarbon<br />

VOC ......................................................................................... volatile organic compounds<br />

2010 Page F-5


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

F.1 Chemicals of Potential Concern Screening<br />

To assess the potential risk of environmental effects from emissions to the marine environment, chemicals<br />

of potential concern (COPC) likely to be emitted to the environment were identified through a multiplecriteria<br />

screening process. The criteria used to screen the hydrocarbons (diluted bitumen, synthetic oil and<br />

condensate) <strong>for</strong> potential COPC are:<br />

• nature of the constituent. The potentially hazardous hydrocarbons constituents are assumed to<br />

include:<br />

• benzene, toluene, ethylbenzene and xylenes (BTEX)<br />

• total petroleum hydrocarbon (TPH) fractionated according to the Canada Wide Standard<br />

methodology (CCME 2008)<br />

• polycyclic aromatic hydrocarbons (PAH)<br />

• volatile organic compounds (VOC)<br />

• phenolics<br />

• trace elements, although selected trace elements having low inherent toxicity (see Table F-1)<br />

were screened out<br />

• constituent not detected. If a constituent included within the analytical suites listed above was not<br />

detected in any of the hydrocarbons, it was deemed to be below a level of concern.<br />

• concentration in any liquid hydrocarbon less than 1 mg/kg. As a further screening step, a scoping<br />

calculation showed that if the concentration of a substance in a liquid hydrocarbon is 1 mg/kg, and if<br />

that substance fully dissolves in site runoff water, the average concentration in water discharged from<br />

the reservoir will be approximately 0.0001 mg/L. This concentration is below most relevant CCME<br />

(2007) water quality guidelines <strong>for</strong> hydrocarbon and trace element COPC (exceptions being cadmium<br />

and PAH, as well as mercury, which was not detectable in the hydrocarbons). Since stringent<br />

environmental quality criteria would generally be met in a reservoir <strong>for</strong> substances present in the<br />

liquid hydrocarbons at a concentration below 1 mg/kg, it was not considered necessary to evaluate the<br />

potential environmental effects of such substances.<br />

• baseline water concentration above guideline: As a final step, substances previously removed from<br />

consideration as COPC would be brought back if the baseline concentration of that substance in<br />

seawater exceeded an existing CCME (2007) marine water quality guideline <strong>for</strong> the protection of<br />

aquatic life. This was included so that if existing sources of chemical emissions are in the<br />

environment are close to a toxicity threshold, the potential environmental effects of any additional<br />

input would be considered.<br />

For the chemical-specific in<strong>for</strong>mation used in the screening process and the rationale <strong>for</strong> excluding<br />

effluent constituents, see Table F-1.<br />

2010 Page F-7


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

F.2 Liquid Effluent Emissions<br />

A composite hydrocarbon representing a mixture of diluted bitumen, synthetic oil and condensate was<br />

derived based on the results of chemical analysis of samples of each hydrocarbon, as well as the average<br />

annual throughput capacity of 83,400 m 3 /d <strong>for</strong> an oil pipeline and 30,700 m 3 /d <strong>for</strong> a condensate pipeline.<br />

Thus, on a daily basis, 83,400 m 3 of oil (either diluted bitumen or synthetic oil) and 30,700 m 3 of<br />

condensate would be handled <strong>for</strong> a total composite volume of 114,100 m 3 .<br />

The concentration of each COPC in the three liquid hydrocarbons is converted to mg/m 3 (from mg/kg)<br />

using their respective density (diluted bitumen 935 kg/m 3 , condensate 724 kg/m 3 , synthetic oil 865 kg/m 3 )<br />

(Regine Sutter 2008, pers. comm.). Next, the concentration of each COPC (in mg/m 3 ) is multiplied by the<br />

daily throughput volumes stated previously <strong>for</strong> the oil and condensate pipelines, and summed up to<br />

determine the total mass (in mg) of each constituent. Finally, the concentration (in mg/m 3 ) of each<br />

constituent in the composite hydrocarbon is determined by dividing the total mass of each constituent by<br />

the total volume of 114,100 m 3 . This is converted to mg/kg using the density of the composite<br />

hydrocarbon, which is determined as:<br />

ρ<br />

Where:<br />

CH<br />

ρ<br />

⎛ kg ⎞<br />

⎜ ⎟ =<br />

3<br />

⎝ m ⎠<br />

DB<br />

⎛ kg ⎞<br />

⎜ ⎟ × V<br />

3<br />

⎝ m ⎠<br />

DB<br />

ρ = density (kg/m 3 )<br />

V = volume (m 3 )<br />

CH = composite hydrocarbon<br />

DB = diluted bitumen<br />

SO = synthetic oil<br />

COND = condensate<br />

( m<br />

3<br />

) + ρ<br />

V<br />

DB<br />

SO<br />

( m<br />

3<br />

⎛ kg ⎞<br />

3<br />

⎜ ⎟ × VSO<br />

( m ) + ρ<br />

3<br />

⎝ m ⎠<br />

3<br />

) + V ( m ) + V<br />

⎛ kg ⎞<br />

⎜ ⎟ × V<br />

3<br />

⎝ m ⎠<br />

)<br />

Page F-8 2010<br />

SO<br />

COND<br />

COND<br />

For the resulting concentrations of COPC in the composite hydrocarbon, see Table F-2.<br />

It is assumed that an annual volume of up to 100 m 3 of oil could be released annually within the Kitmat<br />

Terminal and would be entrained to the impoundment reservoir. It is further assumed that, on an annual<br />

basis, 1 m 3 of operationally released oil would be recovered at the berths along with 1,000 m 3 of seawater.<br />

Runoff water originating at the <strong>Kitimat</strong> Terminal—as well as oily water recovered from the berth areas—<br />

will be sent initially to a firewater reservoir and from there to an impoundment reservoir. Be<strong>for</strong>e excess<br />

water is released through a per<strong>for</strong>ated pipe to the marine environment, it will be treated so that the oil in<br />

water concentration is a maximum of 15 parts per million (ppm).<br />

( m<br />

3<br />

COND<br />

( m<br />

3<br />

)


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

Table F-1 Screening Criteria <strong>for</strong> Inclusion or Exclusion of Chemical Substances as COPC<br />

Analytes<br />

Maximum Liquid<br />

Hydrocarbons<br />

Concentration<br />

(mg/kg)<br />

Maximum Water Baseline<br />

Concentration<br />

(mg/L)<br />

Selected Screening Value<br />

(mg/L)<br />

Baseline Water<br />

Concentration Exceed<br />

Guidelines<br />

Air Deposition Rates<br />

Assessed Further<br />

Rationale <strong>for</strong> Exclusion<br />

Trace Elements<br />

Aluminum 0.6 0.364 NA NA NO NO Low inherent toxicity or an essential nutrient<br />

Antimony ND ND 0.27 a ND YES NO Not detected in liquid hydrocarbons<br />

Arsenic ND 0.0019 0.0125 b,c3 NO YES NO Not detected in liquid hydrocarbons<br />

Barium 1.0 0.017 NA NO YES YES<br />

Beryllium ND ND NA ND YES NO Not detected in liquid hydrocarbons<br />

Bismuth ND ND NA ND NO NO Not detected in liquid hydrocarbons<br />

Boron 0.3 3.9 1.2 b YES NO YES<br />

Cadmium 0.0055 0.00017 0.00012 b, c YES YES YES<br />

Calcium 20 342 NA NA NO NO Low inherent toxicity or an essential nutrient<br />

Chromium 0.2 ND 0.056 b, c, e ND YES NO Concentration in liquid hydrocarbons < 1 mg/kg<br />

Chromium VI NA NA 0.0015 b, c NA YES NO Calculated Project Alone EPC more than four orders<br />

of magnitude smaller than baseline and/or guidelines<br />

Cobalt 0.185 0.0021 NA NA YES NO Concentration in liquid hydrocarbons < 1 mg/kg<br />

Copper 0.25 0.0012 0.002 b NO YES NO Concentration in liquid hydrocarbons < 1 mg/kg<br />

Iron ND 0.181 NA NA NO NO Not detected in liquid hydrocarbons<br />

Lead ND 0.000062 0.002 b NO YES NO Not detected in liquid hydrocarbons<br />

Lithium ND ND NA ND NO NO Not detected in liquid hydrocarbons<br />

Magnesium ND 1190 NA NA NO NO Low inherent toxicity or an essential nutrient<br />

Manganese 0.25 1.48 NA NA YES YES<br />

Mercury ND ND 0.00002 b ND YES NO Not detected in liquid hydrocarbons<br />

Molybdenum 5.84 0.0096 NA NA YES YES<br />

Nickel 43.05 0.00088 0.0082 d NO YES YES<br />

Potassium ND 362 NA NA NO NO Low inherent toxicity or an essential nutrient<br />

Rubidium ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Selenium ND 0.00099 0.002 b NO YES NO Not detected in liquid hydrocarbons<br />

Silver ND ND 0.0014 d ND NO NO Not detected in liquid hydrocarbons<br />

Sodium 20 8820 NA NA NO NO Low inherent toxicity or an essential nutrient<br />

Strontium 0.4 5.8 NA f NA NO NO Concentration in liquid hydrocarbons < 1 mg/kg<br />

Tellurium ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Thallium ND ND 0.017 a NO NO NO Not detected in liquid hydrocarbons<br />

Tin 1.48 ND NA ND NO YES<br />

Uranium ND 0.0027 NA NA NO NO Not detected in liquid hydrocarbons<br />

2010 Page F-9


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

Table F-1 Screening Criteria <strong>for</strong> Inclusion or Exclusion of Chemical Substances as COPC (cont’d)<br />

Analytes<br />

Maximum Liquid<br />

Hydrocarbons<br />

Concentration<br />

(mg/kg)<br />

Maximum Water Baseline<br />

Concentration<br />

(mg/L)<br />

Selected Screening Value<br />

(mg/L)<br />

Baseline Water<br />

Concentration Exceed<br />

Guidelines<br />

Air Deposition Rates<br />

Assessed Further<br />

Trace Elements (cont’d)<br />

Vanadium 118.5 ND 0.1 a ND YES YES<br />

Zinc 0.3 0.021 0.01 b BTEX<br />

YES YES YES<br />

Benzene 13,100 ND 0.11 b, c ND YES YES<br />

Toluene 25,300 ND 0.215 c ND YES YES<br />

Ethylbenzene 2,900 ND 0.025 b ND YES YES<br />

Xylenes<br />

TPH – Aliphatics<br />

21,000 ND NA ND YES YES<br />

C1-C5 286,000 NA NA NA NO NO Not persistent<br />

>C6-C8 359,000 NA NA NA NO YES<br />

>C8-C10 61,200 NA NA NA NO YES<br />

>C10-C12 52,800 NA NA NA NO YES<br />

>C12-C16 111,000 NA NA NA NO YES<br />

>C16-C21 119,000 NA NA NA NO YES<br />

>C21-C32 186,000 NA NA NA NO YES<br />

TPH – Aromatics<br />

>C8-C10 11,900 NA NA NA NO YES<br />

>C10-C12 14,600 NA NA NA NO YES<br />

>C12-C16 27,200 NA NA NA NO YES<br />

>C16-C21 58,900 NA NA NA NO YES<br />

>C21-C32<br />

TPH – Fractions<br />

158,000 NA NA NA NO YES<br />

TPH 754,000 NA NA NA NO NO See fractionation<br />

F1 (>C6-C10) 374,000 ND NA ND NO NO See fractionation<br />

F2 (>C10-C16) 246,000 ND NA ND NO NO See fractionation<br />

F3 (>C16-C34) 467,000 ND NA ND NO NO See fractionation<br />

F4 (>C34-C50) 62,000 NA NA NA NO NO Not readily bioavailable<br />

Asphaltenes<br />

PAH<br />

83,000 NA NA NA NO NO Not readily bioavailable<br />

1-Methylnaphthalene 190 NA 0.001 b NA NO YES<br />

2-Methylnaphthalene 110 0.00021 0.001 b NO YES YES<br />

Acenaphthene ND ND 0.006 b ND YES YES<br />

Acenaphthylene ND 0.00008 NA NA YES YES<br />

Anthracene 15 ND NA ND YES YES<br />

Rationale <strong>for</strong> Exclusion<br />

2010 Page F-11


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

Table F-1 Screening Criteria <strong>for</strong> Inclusion or Exclusion of Chemical Substances as COPC (cont’d)<br />

Analytes<br />

Maximum Liquid<br />

Hydrocarbons<br />

Concentration<br />

(mg/kg)<br />

Maximum Water Baseline<br />

Concentration<br />

(mg/L)<br />

Selected Screening Value<br />

(mg/L)<br />

Baseline Water<br />

Concentration Exceed<br />

Guidelines<br />

Air Deposition Rates<br />

Assessed Further<br />

Rationale <strong>for</strong> Exclusion<br />

PAH (cont’d)<br />

Benzo(a)anthracene 7.9 0.00147 NA NA YES YES<br />

Benzo(b)fluoranthene ND 0.00469 NA NA YES YES<br />

Benzo(k)fluoranthene ND ND NA ND YES YES<br />

Benzo(ghi)perylene ND 0.00025 NA NA YES YES<br />

Benzo(a)pyrene ND 0.00087 0.00001 b YES YES YES<br />

Benzo(e)pyrene ND NA NA NA YES YES<br />

Chrysene ND 0.00198 0.0001 b YES YES YES<br />

Dibenzo(a,h)anthracene ND 0.00008 NA NA YES YES<br />

Fluoranthene ND 0.00107 NA NA YES YES<br />

Fluorene 15 0.00012 0.0012 b NO YES YES<br />

Indeno(1,2,3-cd)pyrene ND 0.00048 NA NA YES YES<br />

Naphthalene 86 0.00011 0.001 b NO YES YES<br />

Phenanthrene 25 0.00035 NA NA YES YES<br />

Pyrene<br />

Dioxins<br />

30 0.00096 NA NA YES YES<br />

Octachlorodibenzo-p-dioxin NA 5.1 × 10 -9 Acid Extractables (Phenolic Compounds)<br />

NA NA YES NO Calculated Project Alone EPC more than four orders<br />

of magnitude smaller than baseline and/or guidelines.<br />

2,4-Dimethylphenol 1.0 NA NA NA NO YES<br />

2,4-Dinitrophenol 1.8 NA NA NA NO YES<br />

4,6-Dinitro-o-cresol ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

4-Nitrophenol ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

m-Cresol i ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

o-Cresol ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

p-Cresol i ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Pentachlorophenol ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Phenol<br />

Volatile Organic Compounds<br />

2.4 NA NA NA NO YES<br />

Dichlorodifluoromethane ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Chloromethane ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

1,2-Dichlorotetrafluoroethane ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Vinyl Chloride ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Bromomethane ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

2010 Page F-13


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

Table F-1 Screening Criteria <strong>for</strong> Inclusion or Exclusion of Chemical Substances as COPC (cont’d)<br />

Maximum Liquid<br />

Hydrocarbons<br />

Analytes<br />

Concentration<br />

(mg/kg)<br />

Volatile Organic Compounds (cont’d)<br />

Maximum Water Baseline<br />

Concentration<br />

(mg/L)<br />

Selected Screening Value<br />

(mg/L)<br />

Baseline Water<br />

Concentration Exceed<br />

Guidelines<br />

Air Deposition Rates<br />

Assessed Further<br />

Rationale <strong>for</strong> Exclusion<br />

Chloroethane ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Acrolein ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Trichlorofluoromethane ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

1,1-Dichloroethylene ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Methylene Chloride ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Trichlorotrifluoroethane ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

1,2-Dichloroethylene (trans) ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

1,1-Dichloroethane ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

1,2-Dichloroethylene (cis) ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Bromochloromethane ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Chloro<strong>for</strong>m ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

1,1,1-Trichloroethane ND NA NA NA YES NO Calculated Project Alone EPC more than four orders<br />

of magnitude smaller than baseline and/or guidelines.<br />

Carbon Tetrachloride ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

1,2-Dichloroethane ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Trichloroethylene ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

1,2-Dichloropropane ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Bromodichloromethane ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

1,3-Dichloropropylene (trans) ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

1,3-Dichloropropylene (cis) ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

1,1,2-Trichloroethane ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Tetrachloroethylene ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Dibromochloromethane ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

1,2-Dibromoethane ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Chlorobenzene ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Styrene ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Bromo<strong>for</strong>m ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

1,3,5-Trimethylbenzene 1,800 NA NA NA NO YES<br />

1,2,4-Trichlorobenzene 3,400 NA NA NA NO YES<br />

1,1,2,2-Tetrachloroethane ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

1,3-Dichlorobenzene ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

1,4-Dichlorobenzene ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

2010 Page F-15


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

Table F-1 Screening Criteria <strong>for</strong> Inclusion or Exclusion of Chemical Substances as COPC (cont’d)<br />

Maximum Liquid<br />

Hydrocarbons<br />

Analytes<br />

Concentration<br />

(mg/kg)<br />

Volatile Organic Compounds (cont’d)<br />

Maximum Water Baseline<br />

Concentration<br />

(mg/L)<br />

Selected Screening Value<br />

(mg/L)<br />

Baseline Water<br />

Concentration Exceed<br />

Guidelines<br />

Air Deposition Rates<br />

Assessed Further<br />

Rationale <strong>for</strong> Exclusion<br />

1,2-Dichlorobenzene ND NA NA NA NO NO Not detected in liquid hydrocarbons<br />

Formaldehyde NA NA NA NA YES NO Calculated Project Alone EPC more than four orders<br />

of magnitude smaller than baseline and/or guidelines.<br />

NOTES:<br />

a Australian and New Zealand Environmental Conservation Council (ANZECC 2000, Internet site).<br />

b<br />

British Columbia Ministry of Environment (BC MOE 2006, Internet site).<br />

c<br />

Canadian Council of Ministers of the Environment (CCME 2007).<br />

d<br />

USEPA. Current National Recommended Water Quality Criteria (2003, Internet site).<br />

e<br />

Guidelines values <strong>for</strong> Chromium III.<br />

f<br />

Mid oceanic baseline concentration of strontium in seawater is 7.7 mg/L; obtained from http://www.marscigrp.org/ocpertbl.html (accessed October 2008).<br />

NA – not available<br />

ND – not detected<br />

2010 Page F-17


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

Table F-2 Subcooled Liquid Solubility, Effective Solubility, Dissolved and Undissolved Water<br />

Concentrations of Each COPC<br />

Analytes<br />

Composite<br />

Hydrocarbon<br />

(mg/kg)<br />

Composite<br />

Hydrocarbon xi<br />

CL<br />

(mol/m 3 )<br />

CE<br />

(mol/m 3 )<br />

CD<br />

(mol/m 3 )<br />

Trace Elements a<br />

Barium 3.79E-01 - - - - 3.61E-02 - -<br />

Boron 2.33E-01 - - - - 2.22E-02 - -<br />

Cadmium 4.27E-03 4.06E-04<br />

Manganese 1.94E-01 - - - - 1.85E-02 - -<br />

Molybdenum 4.54E+00 - - - - 4.33E-01 - -<br />

Nickel 3.35E+01 - - - - 3.19E+00 - -<br />

Tin 1.35E+00 - - - - 1.29E-01 - -<br />

Vanadium 9.22E+01 - - - - 8.78E+00 - -<br />

Zinc<br />

BTEX<br />

6.73E-02 - - - - 6.40E-03 - -<br />

Benzene 3.93E+03 8.57E-03 2.28E+01 b 1.95E-01 4.79E-03 3.74E-01 2.62E-01 0.00E+00<br />

Toluene 8.48E+03 1.57E-02 5.59E+00 b 8.77E-02 1.44E-03 1.52E-01 1.37E-01 0.00E+00<br />

Ethylbenzene 1.60E+03 2.57E-03 1.43E+00 b 3.68E-03 8.77E-03 8.08E-01 7.24E-01 0.00E+00<br />

Xylenes 8.16E+03 1.31E-02 2.07E+00 b,c TPH – Aliphatics<br />

2.71E-02 7.32E-03 7.77E-01 6.96E-01 0.00E+00<br />

>C6-C8 1.30E+05 2.22E-01 1.43E-01 d 3.16E-02 3.16E-02 3.16E+00 2.84E+00 8.73E-01<br />

>C8-C10 4.42E+04 5.80E-02 1.46E-02 d 8.46E-04 8.46E-04 1.10E-01 9.86E-02 3.88E-01<br />

2010 Page F-19<br />

CD<br />

(g/m 3 )<br />

CDD<br />

(g/m 3 )<br />

CU<br />

(g/m 3 )


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

Table F-2 Subcooled Liquid Solubility, Effective Solubility, Dissolved and Undissolved Water<br />

Concentrations of Each COPC (cont’d)<br />

Composite<br />

Analytes Hydrocarbon<br />

(mg/kg)<br />

TPH – Aliphatics (cont’d)<br />

Composite<br />

Hydrocarbon xi<br />

CL<br />

(mol/m 3 )<br />

CE<br />

(mol/m 3 )<br />

CD<br />

(mol/m 3 )<br />

>C10-C12 4.55E+04 4.85E-02 1.49E-03 d 7.24E-05 7.24E-05 1.16E-02 1.04E-02 4.08E-01<br />

>C12-C16 9.07E+04 7.73E-02 5.55E-05 d 4.29E-06 4.29E-06 8.58E-04 7.68E-04 8.16E-01<br />

>C16-C21 1.03E+05 6.49E-02 2.72E-07 d 1.76E-08 1.76E-08 4.76E-06 4.26E-06 9.25E-01<br />

>C21-C32 1.59E+05 1.00E-01 2.72E-07 d 2.72E-08 2.72E-08 7.35E-06 7.10E-06 1.43E+00<br />

TPH – Aromatics<br />

>C8-C10 7.24E+03 1.03E-02 3.93E-01 d 4.04E-03 4.04E-03 4.85E-01 4.34E-01 1.93E-02<br />

>C10-C12 1.27E+04 1.67E-02 2.37E-01 d 3.95E-03 3.95E-03 5.13E-01 4.60E-01 6.60E-02<br />

>C12-C16 2.26E+04 2.57E-02 1.11E-01 d 2.85E-03 2.85E-03 4.27E-01 4.12E-01 1.63E-01<br />

>C16-C21 4.67E+04 4.19E-02 3.12E-02 d 1.31E-03 1.31E-03 2.48E-01 2.40E-01 3.97E-01<br />

>C21-C32 1.24E+05 8.78E-02 3.19E-03 4 PAH<br />

2.80E-04 2.80E-04 6.73E-02 6.49E-02 1.11E+00<br />

1-Methylnaphthalene 1.20E+02 1.44E-04 1.97E-01 b 2.84E-05 2.84E-05 4.04E-03 2.83E-03 7.02E-04<br />

2-Methylnaphthalene 8.63E+01 1.03E-04 2.19E-01 b 2.26E-05 2.26E-05 3.22E-03 2.26E-03 4.73E-04<br />

Acenaphthene ND ND 1.25E-01 b N/A N/A N/A N/A N/A<br />

Acenaphthylene ND ND 4.93E-01 b N/A N/A N/A N/A N/A<br />

Anthracene 1.15E+01 1.10E-05 1.97E-02 b 2.16E-07 2.16E-07 3.84E-05 3.44E-05 9.96E-05<br />

Benzo(a)anthracene 6.53E+00 4.88E-06 1.05E-03 b 5.09E-09 5.09E-09 1.16E-06 1.12E-06 5.87E-05<br />

Benzo(b)fluoranthene ND ND 1.54E-04 b N/A N/A N/A N/A N/A<br />

Page F-20 2010<br />

CD<br />

(g/m 3 )<br />

CDD<br />

(g/m 3 )<br />

CU<br />

(g/m 3 )


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

Table F-2 Subcooled Liquid Solubility, Effective Solubility, Dissolved and Undissolved Water<br />

Concentrations of Each COPC (cont’d)<br />

Analytes<br />

Composite<br />

Hydrocarbon<br />

(mg/kg)<br />

Composite<br />

Hydrocarbon xi<br />

CL<br />

(mol/m 3 )<br />

CE<br />

(mol/m 3 )<br />

CD<br />

(mol/m 3 )<br />

PAH (cont’d)<br />

Benzo(k)fluoranthene ND ND 2.52E-04 b N/A N/A N/A N/A N/A<br />

Benzo(ghi)perylene ND ND 3.01E-04 b N/A N/A N/A N/A N/A<br />

Benzo(a)pyrene ND ND 4.59E-04 b N/A N/A N/A N/A N/A<br />

Benzo(e)pyrene ND ND 5.17E-04 b N/A N/A N/A N/A N/A<br />

Chrysene ND ND 8.76E-06 b N/A N/A N/A N/A N/A<br />

Dibenzo(a,h)anthracene ND ND 5.33E-04 b N/A N/A N/A N/A N/A<br />

Fluoranthene ND ND 8.41E-03 b N/A N/A N/A N/A N/A<br />

Fluorene 1.42E+01 1.46E-05 9.08E-02 b 1.33E-06 1.33E-06 2.20E-04 1.97E-04 1.07E-04<br />

Indeno(1,2,3-cd)pyrene ND ND 1.91E-04 d N/A N/A N/A N/A N/A<br />

Naphthalene 8.52E+01 1.13E-04 8.56E-01 b 9.70E-05 6.33E-05 8.12E-03 5.69E-03 0.00E+00<br />

Phenanthrene 1.51E+01 1.44E-05 3.48E-02 b 5.02E-07 5.02E-07 8.95E-05 8.02E-05 1.27E-04<br />

Pyrene 2.29E+01 1.93E-05 1.29E-02 b 2.49E-07 2.49E-07 5.04E-05 4.86E-05 2.02E-04<br />

Acid Extractables (Phenolic Compounds)<br />

2,4-Dimethylphenol 8.26E-01 1.15E-06 7.16E+01 b 8.26E-05 6.44E-07 7.87E-05 2.62E-05 0.00E+00<br />

2,4-Dinitrophenol 1.49E+00 1.38E-06 1.75E+01 e 2.41E-05 7.69E-07 1.42E-04 9.92E-05 0.00E+00<br />

Phenol 5.65E-01 1.02E-06 1.35E+03 b 1.38E-03 5.72E-07 5.38E-05 1.79E-05 0.00E+00<br />

2010 Page F-21<br />

CD<br />

(g/m 3 )<br />

CDD<br />

(g/m 3 )<br />

CU<br />

(g/m 3 )


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

Table F-2 Subcooled Liquid Solubility, Effective Solubility, Dissolved and Undissolved Water<br />

Concentrations of Each COPC (cont’d)<br />

Composite<br />

Analytes Hydrocarbon<br />

(mg/kg)<br />

Volatile Organic Compounds<br />

Composite<br />

Hydrocarbon xi<br />

CL<br />

(mol/m 3 )<br />

CE<br />

(mol/m 3 )<br />

CD<br />

(mol/m 3 )<br />

1,3,5-Trimethylbenzene 2.02E+03 1.87E-03 2.20E-01 b 4.12E-04 4.12E-04 7.61E-02 7.34E-02 1.10E-02<br />

1,2,4-Trichlorobenze 7.53E+02 1.07E-03 4.16E-01 b 4.44E-04 4.44E-04 5.34E-02 4.78E-02 1.73E-03<br />

NOTES:<br />

a<br />

Trace elements are assumed completely soluble in water and are not submitted to the weathering process.<br />

b<br />

Mackay et al. (2000).<br />

c<br />

Value is <strong>for</strong> o-xylene (maximum CL value <strong>for</strong> xylenes).<br />

d<br />

Calculated using logKOW according to method in Di Toro et al. (2007).<br />

e<br />

Calculated according to method in Prausnitz (1969) as found in Shiu and Mackay (1986).<br />

xi – molar fraction<br />

CL – subcooled liquid solubility<br />

CE – effective solubility<br />

CD – dissolved concentration<br />

CDD – dissolved degraded concentration<br />

CU – undissolved concentration<br />

N/A – not applicable<br />

NA – not available<br />

ND – not detected<br />

Page F-22 2010<br />

CD<br />

(g/m 3 )<br />

CDD<br />

(g/m 3 )<br />

CU<br />

(g/m 3 )


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

Hydrocarbons entrained in the water column and into the marine environment can undergo weathering<br />

processes that may change the properties of their constituents (Sterling et al. 2003). These weathering<br />

processes may include, but are not limited to, volatilization, degradation and dissolution. Volatilization<br />

losses are not quantitatively assessed because the hydrocarbons released to the impoundment reservoir are<br />

not expected to be present at concentrations that would <strong>for</strong>m a slick (the oil-water separator will prevent<br />

this). However, it is noted that the smallest petroleum hydrocarbons (i.e., C1-C5) are highly volatile and<br />

would not likely persist in water beyond the reservoir. These highly volatile hydrocarbons are not<br />

considered further. For other hydrocarbons (C6 and greater), the effects of two weathering processes,<br />

dissolution (i.e., preferential solubility of hydrocarbons in water) and degradation (microbial and other<br />

breakdown processes), are considered.<br />

F.2.1 Dissolution<br />

The dissolution of an organic compound in water is dictated by its aqueous solubility. The aqueous<br />

solubility of an organic compound is defined as its maximum dissolved concentration (Schwarzenbach et<br />

al. 2002). If the concentration of an organic COPC is found to be lower than this value, it may be truly<br />

dissolved. However, if the reported concentration in the water column is higher than the reported<br />

solubility, then dissolved and undissolved <strong>for</strong>ms may be present within the medium. Undissolved<br />

hydrocarbons could be present as emulsions, droplets, or adsorbed to or coating particulate matter. The<br />

liquid hydrocarbons under consideration are composed of many individual components, which present a<br />

wide range of physicochemical properties including, but not limited to, solubility values. For example,<br />

benzene is relatively soluble in water (1,778 mg/L; Mackay et al. 2000), whereas the solubility of the<br />

higher TPH fractions (e.g., F3 and F4 aliphatic compounds) is negligible. Relatively soluble components<br />

may be expected to readily dissolve, whereas components presenting relatively low solubility values are<br />

not expected to be dissolved in appreciable amounts. The solubility value of each individual component<br />

has important implications <strong>for</strong> their respective environmental behaviour. As such, the dissolution of a<br />

compound within an aqueous medium increases its bioavailability and its mobility (Schwarzenbach et al.<br />

2002). Furthermore, a compound demonstrating a high aqueous solubility may also exhibit a higher<br />

toxicity potential as the toxicity potential can be linked not only to its inherent toxicity, but also to the<br />

dissolved aqueous concentration (Peters et al. 1999; Di Toro et al. 2007).<br />

The solubility of an organic compound depends on its presence either in pure <strong>for</strong>m or within a mixture.<br />

When present in pure <strong>for</strong>m, the maximum dissolved concentration will be that of its aqueous solubility.<br />

However, when present within a mixture (as is the case <strong>for</strong> the liquid hydrocarbons under consideration<br />

here) then the effective aqueous solubility of each organic component is modified by the presence of other<br />

hydrocarbons as described by Raoult’s law (Peters et al. 1999; Sterling et al. 2003; Di Toro et al. 2007):<br />

Where <strong>for</strong> component i:<br />

CE,i = effective solubility<br />

xi = molar fraction<br />

CL,i = subcooled liquid solubility<br />

C = x C<br />

E,<br />

i<br />

2010 Page F-23<br />

i<br />

L,<br />

i


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

The molar fraction of component i is defined as:<br />

# mol of component i within the mixture<br />

x i =<br />

total moles of all components in the mixture<br />

The subcooled liquid solubility is needed <strong>for</strong> this approach because the components found within the<br />

mixture are liquids. Finally, it should be noted that the application of Raoult’s law requires the<br />

assumption that the mixture described follows ideal behaviour (Peters et al. 1999; Sterling et al. 2003; Di<br />

Toro et al. 2007).<br />

The effective aqueous solubility (CE) is related to the aqueous solubility of the pure organic compound<br />

(CL) through the amount found within the mixture on a molar basis (xi). If a constituent is present in pure<br />

<strong>for</strong>m, then its molar fraction is 1 and its effective aqueous solubility equals the reported solubility.<br />

However, as compounds are mixed together, the molar fraction of a constituent decreases, and the<br />

effective solubility of individual constituents also decreases. As a result, a compound with a relatively<br />

high aqueous solubility may have a low effective solubility if present in very small amount within the<br />

mixture (Peters et al. 1999; Sterling et al. 2003; Di Toro et al. 2007). The effective solubility of each<br />

organic compound (or fraction) found within the mixture is calculated.<br />

To determine the total loading of each COPC, the following data are used:<br />

• composite hydrocarbon concentrations (see Table F-2)<br />

• water oil content<br />

• volume of water directed to the oil water separator (retained by containment berms and recovered<br />

from berths)<br />

The volume of containment berms water runoff (m 3 /y) is determined as:<br />

Where:<br />

Q = A C × P × RC<br />

AC = containment area (4.0 ×10 5 m 2 )<br />

P = annual average total precipitation (2.19 m/a; Environment Canada 2006, Internet site)<br />

RC = runoff coefficient (set at 1 <strong>for</strong> maximum conservatism)<br />

As stated, the water oil content is determined assuming an annual on-land oil release of 100 m 3 entrained<br />

by the reservoir, and an annual recovery of 1 m 3 of oil due to transfer operations recuperated along with<br />

1,000 m 3 of seawater. For an individual component, if the total water concentration is lower than the<br />

effective aqueous solubility, it is assumed to be dissolved and the total water concentration is equal to the<br />

dissolved concentration:<br />

Where <strong>for</strong> component i:<br />

CT,i = total water concentration<br />

CD,i = dissolved concentration<br />

if C ≤ C then C = C<br />

T,<br />

i<br />

E,<br />

i<br />

Page F-24 2010<br />

T,<br />

i<br />

D,<br />

i


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

If, however, the total water concentration is higher than the effective aqueous solubility, then the<br />

dissolved concentration is limited by this value, and an undissolved contribution is identified as the total<br />

water concentration subtracted by the effective water solubility as:<br />

Where <strong>for</strong> component i:<br />

≤<br />

=<br />

if CT<br />

, i C E,<br />

i then C E,<br />

i C D,<br />

i and CU<br />

, i CT<br />

, i CD<br />

, i<br />

CU,i = undissolved concentration<br />

The effective aqueous solubility and the dissolved and undissolved concentrations in water are calculated<br />

<strong>for</strong> each COPC (see Table F-2). It should be noted that this approach is not applied to trace elements as<br />

they are assumed to readily (fully) dissolve in the water phase. The following COPC will be completely<br />

dissolved in water:<br />

• benzene<br />

• toluene<br />

• ethylbenzene<br />

• total xylenes<br />

• naphthalene<br />

• 2,4-dimethylphenol<br />

• 2,4-dinitrophenol<br />

• phenol<br />

Finally, it is assumed that the oil-water separator will have a per<strong>for</strong>mance of 15 ppm concentration of oil<br />

in water, typical of current oil-water separator technology. As such, following the oil water separator, the<br />

concentrations of dissolved constituents remain unchanged and the concentrations of undissolved<br />

constituents are decreased according to the oil water separator per<strong>for</strong>mance of 15 ppm oil in water.<br />

F.2.2 Degradation<br />

Weathering of the dissolved organic compounds through degradation (e.g., microbial degradation and<br />

photolysis) while in the reservoir was also considered. First-order kinetics are applied to determine the<br />

dissolved concentration of each COPC at the point of discharge. First-order kinetics link the initial<br />

concentration of a compound to its concentration at a specified time through (Schwarzenbach et al. 2002):<br />

Where:<br />

ln C = −kt<br />

+ ln<br />

C = concentration at a specified time (mol/m 3 )<br />

k = first-order rate constant (1/h)<br />

t = time (h)<br />

C0 = the initial concentration, i.e., the concentration at time zero (mol/m 3 )<br />

2010 Page F-25<br />

C0<br />

=<br />


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

In this approach, the concentration at a specified time is defined as the dissolved degraded concentration<br />

(CDD) and the initial concentration as the dissolved concentration (CD) and the equation is rewritten as:<br />

ln C = −kt<br />

+ lnC<br />

Moving <strong>for</strong>ward, the first-order rate constant is defined as (Schwarzenbach et al. 2002):<br />

Where:<br />

DD<br />

ln2<br />

k =<br />

t½<br />

t½ = half-life of each component in water which corresponds to the time required <strong>for</strong> a quantity to<br />

decrease to half its initial value (i.e. when C = ½C0) (Schwarzenbach et al. 2002)<br />

The half-life of each organic COPC was identified from the literature (Mackay et al. 2000). Values were<br />

found to range from 55 (2,4-dimethylphenol and phenol) to 1,700 hours (benzo(a)anthracene, pyrene and<br />

1,2,4-trichlorobenzene). Compounds with a relatively high half-life demonstrate a higher stability thus a<br />

greater persistence in the environment whereas compounds with a smaller half-life will tend to degrade<br />

more rapidly (Schwarzenbach et al. 2002). Using half-life values specific to each organic COPC, firstorder<br />

rate constants are calculated as stated above.<br />

Finally, the residence time (t) of the COPC in the reservoir is based on the residence time of the total<br />

surface water runoff from the PDA into the reservoir following:<br />

Where:<br />

A<br />

t =<br />

PDA<br />

Page F-26 2010<br />

D<br />

× P × RC<br />

V<br />

APDA = Project Development Area (2.2 ×10 6 m 2 )<br />

V = volume of the reservoir (48,000 m 3 ; assumed depth of 2 m with area of 24,000 m 2 )<br />

Using the dissolved concentration, the residence time and the rate constants specific to each organic<br />

COPC, the degraded dissolved concentration (CDD) is calculated (see Table F-2).<br />

F.3 Atmospheric Deposition<br />

The atmospheric deposition assessment considered specific air emission sources that will be in operation.<br />

Atmospheric deposition rates are estimated <strong>for</strong> BTEX, PAHs and trace elements based on the methods<br />

described below. Dry, wet and total deposition rates are estimated.<br />

Specific emission sources included as part of this assessment included 14 large hydrocarbon tanks, two<br />

large marine vessels moored at berths and six tugboats. The hydrocarbon tanks are assumed to include six<br />

diluted bitumen tanks (typically composed of 50% bitumen and 50% naphtha or condensate), five<br />

synthetic oil tanks and three condensate tanks. The two marine vessels moored at berths are represented<br />

by one oil very large crude carrier class tanker <strong>for</strong> export of diluted bitumen or synthetic oil, and one


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

Suezmax class condensate import tanker. <strong>Marine</strong> vessels are assumed to burn No. 6 Bunker C residual oil<br />

with 2.7% sulphur content as fuel.<br />

The U.S. EPA AERMOD model was applied in the atmospheric dispersion and deposition assessment of<br />

BTEX, PAHs and trace elements. AERMOD is a steady-state plume model that can be applied to simple<br />

and complex terrain in either rural or urban areas. It can be used to study surface and elevated (stack)<br />

releases, as well as multiple emission sources (U.S. EPA 2004). AERMOD also includes two additional<br />

components: AERMAP (AERMOD terrain pre-processor) and AERMET (AERMOD meteorological<br />

pre-processor).<br />

AERMAP is a terrain pre-processor that is designed to handle the input of receptor terrain elevation data<br />

<strong>for</strong> AERMOD. AERMAP searches <strong>for</strong> the terrain height and location that has the greatest influence on<br />

dispersion <strong>for</strong> an individual receptor. This height is referred to as the height scale. Output from AERMAP<br />

there<strong>for</strong>e includes the location and height scale <strong>for</strong> each receptor, which are used <strong>for</strong> the computation of<br />

air flow around hills.<br />

AERMET is the meteorological pre-processor <strong>for</strong> the AERMOD model. Input data <strong>for</strong> AERMET include<br />

hourly cloud cover observations, surface meteorological observations and twice-daily upper air<br />

soundings. Meteorological data required <strong>for</strong> input into the AERMET meteorological pre-processor<br />

included the following <strong>for</strong> the five-year period of January 1999 to December 2003:<br />

• British Columbia <strong>Kitimat</strong> Whitesail monitoring station <strong>for</strong> wind speed, wind direction and<br />

temperature<br />

• British Columbia Terrace Airport monitoring station <strong>for</strong> ceiling height and other surface data not<br />

available <strong>for</strong> <strong>Kitimat</strong> Whitesail<br />

• Annette, Alaska monitoring station <strong>for</strong> upper air data<br />

AERMOD uses the output from AERMAP and AERMET to predict air contaminant concentrations and<br />

deposition rates. Special features of the AERMOD dispersion model include:<br />

• refined wet and dry deposition algorithms<br />

• the ability to treat the vertical inhomogeneity of the planetary boundary layer<br />

• special treatment of surface releases<br />

• irregularly shaped area sources<br />

• plume models <strong>for</strong> the convective boundary layer<br />

• limitation of vertical mixing in the stable boundary layer and fixing the reflecting surface at the stack<br />

base<br />

For BTEX, the wet deposition estimates are based on the AERMOD dispersion and deposition model<br />

using compound specific air emissions from individual air emission source in operation and compound<br />

specific physicochemical properties (diffusivity in air, diffusivity in water, cuticular resistance and<br />

Henry’s law constant).<br />

2010 Page F-27


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

For trace elements and PAHs, element and compound specific gas and particle properties were not<br />

available. There<strong>for</strong>e, wet deposition rates are estimated by using a first order approach using the<br />

AERMOD dispersion and deposition model and marine vessel sulphur dioxide (SO2) emissions. The<br />

resulting SO2 deposition rates are converted to trace element and PAH deposition rates, based on the ratio<br />

of published air emission factors <strong>for</strong> trace elements and PAHs (<strong>for</strong> marine vessels burning residual oil;<br />

U.S. EPA 1998, Internet site) to the equivalent SO2 emission factor.<br />

Dry deposition rates are calculated by applying a conservative average dry deposition rate of 0.5 cm/s<br />

(based on literature search and professional judgment) to the predicted annual average SO2 concentrations<br />

as calculated by AERMOD. These were then prorated using published air emission factors (U.S. EPA<br />

1998, Internet site) to develop dry deposition rates <strong>for</strong> BTEX, PAH and trace elements. Total deposition<br />

rates are calculated by summing the wet and dry deposition rates (see Table F-3).<br />

Table F-3 Total Atmospheric Deposition Rates (g/m 2 /y) <strong>for</strong> Each COPC<br />

Analytes <strong>Kitimat</strong> 1 <strong>Kitimat</strong> 2 Terminal Clio Bay<br />

Emsley<br />

Point<br />

Barium 1.12E-06 1.65E-07 8.68E-08 4.56E-08 2.87E-07<br />

Boron NA NA NA NA NA<br />

Cadmium 1.73E-07 2.55E-08 1.34E-08 7.06E-09 4.45E-08<br />

Manganese 1.31E-06 1.92E-07 1.01E-07 5.32E-08 3.36E-07<br />

Molybdenum 3.43E-07 5.04E-08 2.66E-08 1.40E-08 8.80E-08<br />

Nickel 3.68E-05 5.42E-06 2.85E-06 1.50E-06 9.45E-06<br />

Tin NA NA NA NA NA<br />

Vanadium 1.39E-04 2.04E-05 1.07E-05 5.64E-06 3.56E-05<br />

Zinc<br />

BTEX<br />

1.27E-05 1.87E-06 9.83E-07 5.16E-07 3.25E-06<br />

Benzene 3.49E-07 1.99E-07 1.70E-07 9.05E-08 1.27E-07<br />

Toluene 7.26E-07 4.08E-07 3.63E-07 1.89E-07 2.75E-07<br />

Ethylbenzene 8.56E-08 5.23E-08 4.75E-08 2.46E-08 3.44E-08<br />

Xylenes<br />

TPH – Aliphatics<br />

5.94E-07 3.47E-07 3.07E-07 1.60E-07 2.25E-07<br />

>C6-C8 NA NA NA NA NA<br />

>C8-C10 NA NA NA NA NA<br />

>C10-C12 NA NA NA NA NA<br />

>C12-C16 NA NA NA NA NA<br />

>C16-C21 NA NA NA NA NA<br />

>C21-C32 NA NA NA NA NA<br />

Page F-28 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

Table F-3 Total Atmospheric Deposition Rates (g/m 2 /y) <strong>for</strong> Each COPC<br />

(cont’d)<br />

Analytes <strong>Kitimat</strong> 1 <strong>Kitimat</strong> 2 Terminal Clio Bay<br />

TPH – Aromatics<br />

Emsley<br />

Point<br />

>C8-C10 NA NA NA NA NA<br />

>C10-C12 NA NA NA NA NA<br />

>C12-C16 NA NA NA NA NA<br />

>C16-C21 NA NA NA NA NA<br />

>C21-C32 NA NA NA NA NA<br />

PAH<br />

1-Methylnaphthalene NA NA NA NA NA<br />

2-Methylnaphthalene 1.09E-08 1.60E-09 8.44E-10 4.43E-10 2.80E-09<br />

Acenaphthene 9.19E-09 1.35E-09 7.13E-10 3.74E-10 2.36E-09<br />

Acenaphthylene 1.10E-10 1.62E-11 8.54E-12 4.49E-12 2.83E-11<br />

Anthracene 5.31E-10 7.82E-11 4.12E-11 2.16E-11 1.36E-10<br />

Benzo(a)anthracene 1.75E-09 2.57E-10 1.35E-10 7.11E-11 4.49E-10<br />

Benzo(b)fluoranthene a 6.45E-10 9.49E-11 5.00E-11 2.62E-11 1.66E-10<br />

Benzo(k)fluoranthene a<br />

Benzo(ghi)perylene 9.84E-10 1.45E-10 7.63E-11 4.01E-11 2.53E-10<br />

Benzo(a)pyrene 4.09E-10 6.02E-11 3.17E-11 1.67E-11 1.05E-10<br />

Benzo(e)pyrene 4.09E-10 6.02E-11 3.17E-11 1.67E-11 1.05E-10<br />

Chrysene 1.04E-09 1.53E-10 8.04E-11 4.22E-11 2.66E-10<br />

Dibenzo(a,h)anthracene 7.27E-10 1.07E-10 5.64E-11 2.96E-11 1.87E-10<br />

Fluoranthene 2.11E-09 3.10E-10 1.63E-10 8.58E-11 5.41E-10<br />

Fluorene 1.95E-09 2.87E-10 1.51E-10 7.93E-11 5.00E-10<br />

Indeno(1,2,3-cd)pyrene 9.32E-10 1.37E-10 7.23E-11 3.80E-11 2.39E-10<br />

Naphthalene 4.92E-07 7.24E-08 3.82E-08 2.00E-08 1.26E-07<br />

Phenanthrene 4.57E-09 6.73E-10 3.55E-10 1.86E-10 1.17E-09<br />

Pyrene 1.85E-09 2.72E-10 1.44E-10 7.54E-11 4.75E-10<br />

Acid Extractables (Phenolic Compounds)<br />

2,4-Dimethylphenol NA NA NA NA NA<br />

2,4-Dinitrophenol NA NA NA NA NA<br />

Phenol NA NA NA NA NA<br />

2010 Page F-29


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

Table F-3 Total Atmospheric Deposition Rates (g/m 2 /y) <strong>for</strong> Each COPC<br />

(cont’d)<br />

Analytes <strong>Kitimat</strong> 1 <strong>Kitimat</strong> 2 Terminal Clio Bay<br />

Volatile Organic Compounds<br />

Emsley<br />

Point<br />

1,3,5-Trimethylbenzene NA NA NA NA NA<br />

1,2,4-Trichlorobenze NA NA NA NA NA<br />

NOTES:<br />

a benzo(b)fluoranthene and benzo(k)fluoranthene are combined in the atmospheric deposition modelling.<br />

NA – not available<br />

F.4 References<br />

F.4.1 Literature Cited<br />

Canadian Council of Ministers of the Environment. 2007. Canadian water quality guidelines <strong>for</strong> the<br />

protection of aquatic life: Summary table. Updated December, 2007. In: Canadian environmental<br />

quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg.<br />

Canadian Council of Ministers of the Environment (CCME). 2008. Canada-wide Standard <strong>for</strong> Petroleum<br />

Hydrocarbons (PHC) in Soil: Scientific Rationale Supporting Technical Document.<br />

Di Toro, D.M., J.A. McGrath and W.A. Stubblefield. 2007. Predicting the toxicity of neat and weathered<br />

crude oil: toxic potential and the toxicity of saturated mixtures. Environmental Toxicology and<br />

Chemistry 26(1): 24–36.<br />

Mackay, D., W.Y. Shiu and K.-C. Ma. 2000. Physical-Chemical Properties and Environmental Fate<br />

Handbook on CD-ROM. CRC Press. Boca Raton, FL.<br />

Peters, C.A., C.D. Knightes and D.G. Brown. 1999. Long-term composition dynamics of PAH-containing<br />

NAPLs and implications <strong>for</strong> risk assessment. Environmental Science and Technology 33:<br />

4499-4507.<br />

Prausnitz, J.M. 1969. Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice-Hall. Englewood<br />

Cliffs, NJ.<br />

Schwarzenbach, R.P., P.M. Gschwend and D.M. Imboden. 2002. Environmental Organic Chemistry. 2 nd<br />

edition. Wiley-Interscience. Hoboken, NJ.<br />

Shiu, W.Y. and D. Mackay. 1986. A critical review of aqueous solubilities, vapor pressures, Henry’s law<br />

constants, and octanol-water partition coefficients of the polychlorinated biphenyls. Journal of<br />

Physical and Chemical Reference Data 15(2): 911–929.<br />

Sterling, M.C.Jr., J.S. Bonner, C.A. Page, C.B. Fuller, A.N.S. Ernest and R.L. Autenrieth. 2003.<br />

Partitioning of crude oil polycyclic aromatic hydrocarbons in aquatic systems. Environmental<br />

Science and Technology 37: 4429–4434.<br />

Page F-30 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix F: COPC Screening and Weathering<br />

United States Environmental Protection Agency (USEPA). 2004. AERMOD: Description of Model<br />

Formulation. Office of Air Quality Planning and Standards – Emissions Monitoring and Analysis<br />

Division. Research Triangle Park, North Carolina.<br />

F.4.2 Personal Communications<br />

R. Sutter. Colt Engineering. E-mail. November 21, 2008.<br />

F.4.3 Internet sites<br />

Australian and New Zealand Environmental Conservation Council (ANZECC). 2000. Australian and<br />

New Zealand Guidelines <strong>for</strong> Fresh and <strong>Marine</strong> Water Quality. Accessed: October 2008.<br />

Available at: http://www.mincos.gov.au/publications/australian_and_new_zealand_guidelines_<br />

<strong>for</strong>_fresh_and_marine_water_quality<br />

British Columbia Ministry of Environment (BC MOE). 2006. Water Quality Guidelines (Criteria).<br />

Accessed: October 2008. Available at: http://www.env.gov.bc.ca/wat/wq/wq_guidelines.html<br />

Environment Canada. 2006. Canadian Climate Normals or Averages 1971-2000. Accessed: October<br />

2008. Available at: http://www.climate.weatheroffice.ec.gc.ca/climate_normals/index_e.html<br />

United States Environmental Protection Agency (USEPA). 1998. AP 42 – Fifth Edition, Compilation of<br />

Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources – Chapter 1:<br />

External Combustion Sources – 1.3 Fuel Oil Combustion – Supplement E. Accessed: February<br />

2009. Available at: http://www.epa.gov/ttn/chief/ap42/ch01/<br />

United States Environmental Protection Agency (USEPA). 2003. Current National Recommended Water<br />

Quality Criteria. Accessed: October 2008. Available at:<br />

http://www.epa.gov/waterscience/criteria/wqctable/<br />

2010 Page F-31


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix G: Characteristics of Modelled Species<br />

Appendix G Characteristics of Modelled Species<br />

2010 Page G-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix G: Characteristics of Modelled Species<br />

Table of Contents<br />

Appendix G Characteristics of Modelled Species ....................................... G-1<br />

G.1 Wildlife Exposure Factors .................................................................................. G-7<br />

G.2 Ingestion Rates .................................................................................................. G-7<br />

G.2.1 Bird Food Ingestion Rates ............................................................................. G-8<br />

G.2.2 Mammal Food Ingestion Rates ...................................................................... G-8<br />

G.3 Water Ingestion Rates ....................................................................................... G-8<br />

G.3.1 Bird Water Ingestion Rates ............................................................................ G-8<br />

G.3.2 Mammal Water Ingestion Rates .................................................................... G-8<br />

G.4 Ingestion Rates .................................................................................................. G-9<br />

G.4.1 Estimating Sediment Ingestion ...................................................................... G-9<br />

G.5 Characteristics of Species ............................................................................... G-10<br />

G.6 References ...................................................................................................... G-13<br />

G.6.1 Literature Cited ............................................................................................ G-13<br />

List of Tables<br />

Table G-1 Estimated Percent Sediment Contents <strong>for</strong> Each Dietary Component ... G-10<br />

Table G-2 Avian and Mammalian Ingestion Parameters ....................................... G-11<br />

2010 Page G-3


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix G: Characteristics of Modelled Species<br />

Abbreviations<br />

CCME ................................................... Canadian Council of Ministers of the Environment<br />

COPC .............................................................................. contaminants of potential concern<br />

FI .................................................................................................................... food ingestion<br />

FMR ....................................................................................................... field metabolic rate<br />

TDR ...................................................................................................... technical data report<br />

U.S. EPA .................................................. United States Environmental Protection Agency<br />

2010 Page G-5


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix G: Characteristics of Modelled Species<br />

G.1 Wildlife Exposure Factors<br />

The three routes of exposure that may be of concern <strong>for</strong> wildlife near contaminated surface waters and<br />

terrestrial habitats are oral, inhalation and dermal (U.S. EPA 1993). Oral exposures might occur via<br />

ingestion of contaminated food (e.g., aquatic prey) or water, or incidental ingestion of contaminated<br />

media (e.g., soils and sediments) during <strong>for</strong>aging and other activities. Inhalation of gases or particulates<br />

might be a significant route of exposure <strong>for</strong> some animals, but is not expected to be significant <strong>for</strong> routine<br />

operations because the hydrocarbons will normally be contained in tanks, and releases of vapours would<br />

be mitigated to very low levels. Dermal exposures are likely to be most significant <strong>for</strong> burrowing<br />

mammals (i.e., via contact with contaminated soils) and animals that spend considerable amounts of time<br />

submerged in surface waters, but again, these exposures are considered to be of low importance <strong>for</strong><br />

routine operations.<br />

Every ef<strong>for</strong>t was made to select species that are appropriate and representative of ecosystems modelled in<br />

a marine ERA, while generally following Canadian Council of Ministers of the Environment (CCME<br />

1996) and United States Environmental Protection Agency (U.S. EPA 1998) guidance. Wildlife species<br />

were chosen to represent various trophic levels and habitat preferences. Species are categorized into<br />

community resources (aquatic and sediment communities), avian and mammalian resources. Community<br />

resources are used to represent the general health of fish, invertebrate and plant communities, rather than<br />

individual species (as is the case <strong>for</strong> mammals and birds), and their exposure is evaluated based strictly on<br />

the COPC concentration in water or sediment. In contrast, the exposure of avian and mammalian species<br />

considers the daily intakes of water, sediment and food items, as well as other modifying factors such as<br />

the concentrations of COPC in those media, and the body mass of the receptor.<br />

The following mammalian species are identified <strong>for</strong> quantitative risk evaluation:<br />

• coastal-dwelling mink (Mustela vison)<br />

• harbour porpoise (Phocoena phocoena)<br />

• Steller sea lion (Eumetopias jubatus)<br />

The following avian species are identified <strong>for</strong> quantitative risk evaluation:<br />

• Bald Eagle (Haliaeetus leucocephalus)<br />

• Marbled Murrelet (Brachyramphus marmoratus)<br />

• Spotted Sandpiper (Actitis macularia)<br />

• Surf Scoter (Melanitta perspicillata)<br />

G.2 Ingestion Rates<br />

Food ingestion rates vary with many factors including basal and daily (field) metabolic rates, quality and<br />

composition of diet, and environmental conditions. For homeotherms (including birds and mammals),<br />

metabolic rate (normalized to body mass) generally decreases with increasing body mass. Metabolic rates<br />

are typically higher in winter than in summer (although true hibernators lower their metabolic rate during<br />

winter). Birds tend to have higher metabolic rates than mammals of similar body weight due to the<br />

energetic demands of flight and higher body temperatures (Gill 1994).<br />

2010 Page G-7


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix G: Characteristics of Modelled Species<br />

G.2.1 Bird Food Ingestion Rates<br />

For birds, Nagy (1987) calculated food ingestion (FI) rates (as cited in U.S. EPA 1993) in grams dry<br />

matter per day from metabolizable energy (ME, kJ/g or kcal/g in diet) and field metabolic rate (FMR) as a<br />

function of body weight (Wt, grams) as follows:<br />

• FI = 0.648*Wt 0.651 (all birds)<br />

• FI = 0.398*Wt 0.850 (passerines)<br />

• FI = 0.301*Wt 0.751 (non-passerines)<br />

• FI = 0.495*Wt 0.704 (seabirds)<br />

G.2.2 Mammal Food Ingestion Rates<br />

For placental mammals, Nagy (1987) calculated FI rates (as cited in U.S. EPA 1993) in grams dry matter<br />

per day as follows:<br />

• FI = 0.235*Wt 0.822 (all mammals)<br />

• FI = 0.621*Wt 0.564 (rodents)<br />

• FI = 0.577*Wt 0.727 (herbivores)<br />

Herbivores tend to consume more food than carnivores on a dry weight basis due to the lower energy<br />

content of the herbivore diet; on an energy basis (kcal/day), the ingestion rates of herbivores and<br />

carnivores of equivalent size are similar.<br />

G.3 Water Ingestion Rates<br />

Dietary water requirements depend on the rate that animals lose water to the environment from<br />

evaporation and excretion. Loss rates depend on various factors including body size, ambient temperature<br />

and physiological adaptations <strong>for</strong> conserving water. Drinking water is only one way animals meet their<br />

water requirements. Some animals are capable of maintaining their water balance from the water content<br />

of food alone or from water produced as a metabolic byproduct of catabolism. In general, birds drink less<br />

water per day than do mammals, because birds can conserve water by excreting nitrogen as uric acid<br />

instead of urea or ammonia.<br />

G.3.1 Bird Water Ingestion Rates<br />

For birds, Calder and Braun (1983) calculated water ingestion rates (as cited in U.S. EPA 1993) in litres<br />

per day (L/d) based on 21 species ranging from 0.011 to 3.15 kg body weight, as follows:<br />

• FI = 0.059*Wt 0.67 (all birds), where Wt is body weight in kg<br />

G.3.2 Mammal Water Ingestion Rates<br />

For mammals, Calder and Braun (1983) calculated water ingestion rates (as cited in U.S. EPA 1993) in<br />

litres per day (L/d) <strong>for</strong> mammals, as follows:<br />

• FI = 0.099*Wt 0.90 (all mammals), where Wt is body weight in kg<br />

Page G-8 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix G: Characteristics of Modelled Species<br />

G.4 Ingestion Rates<br />

Sediment is ingested by virtually all species of marine wildlife. In most cases, ingestion occurs<br />

incidentally during <strong>for</strong>aging (e.g., adhering to the surface of sediment dwelling invertebrate prey) or<br />

during other aspects of animal behaviour (e.g., burrowing or grooming). Beyer et al. (1994) estimated<br />

dietary percentages of soil ingestion <strong>for</strong> 28 species based on estimates of dietary digestibility, and the acid<br />

insoluble ash content of food, soil and scat. For most risk assessments, percent dietary soil ingestion <strong>for</strong> a<br />

specific ecological receptor is derived using an estimated value from one of these 28 species (the species<br />

most similar to the receptor in both diet and behaviour). Of the species assessed in Beyer et al. (1994),<br />

only the red fox has a diet consisting of a large proportion of meat. No fish-eating species are assessed <strong>for</strong><br />

soil ingestion. Beyer et al. (1994) does not provide data <strong>for</strong> many species and are limited to specific<br />

observations.<br />

G.4.1 Estimating Sediment Ingestion<br />

The approach and data presented in Beyer et al. (1994) are used to determine the dietary composition and<br />

approximate the percent sediment content <strong>for</strong> each dietary component of each species considered. The<br />

percent sediment uses selected species and their respective soil ingestion estimates reported primarily by<br />

Beyer et al. (1994). Various literature sources were reviewed to estimate the dietary composition <strong>for</strong> each<br />

species. Where appropriate, diets are categorized as:<br />

• aquatic plants<br />

• aquatic invertebrates<br />

• fish<br />

Based on knowledge of existing studies, a range of reasonable percentages <strong>for</strong> the sediment content of<br />

each dietary component was derived. Using Monte Carlo sampling techniques (Crystal Ball ® 2000<br />

software), the percentage range <strong>for</strong> the soil or sediment content of each dietary compartment was assigned<br />

a uni<strong>for</strong>m distribution. For each sampling of percent soil or sediment content, the resulting estimate of<br />

ingestion was calculated <strong>for</strong> all species based on their individual dietary compositions. The difference<br />

between this percent soil or sediment estimate and the value reported in the literature was calculated, and<br />

the sum of the squares difference <strong>for</strong> each species was determined. Crystal Ball ® was used to create 1,000<br />

combinations of percent soil or sediment content <strong>for</strong> each dietary component. Based on the sum of<br />

squares difference between the modelled and the measured (Beyer et al. 1994) data the mean percent<br />

sediment content of each dietary component <strong>for</strong> the best 1% (10 combinations) and 5% (50 combinations)<br />

were derived. There was little difference between the two sets of estimates, so the mean values based on<br />

the best 50 combinations as judged by the lowest sum of squares deviations from the original data<br />

provided by Beyer et al. (1994) was selected (see Table G-1). Using these mean soil or sediment values,<br />

and the dietary composition <strong>for</strong> each species, estimates of the dietary percentage of sediment ingestion<br />

were calculated.<br />

2010 Page G-9


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix G: Characteristics of Modelled Species<br />

The estimate of sediment ingestion <strong>for</strong> each species is based on the percent sediment values derived <strong>for</strong><br />

each dietary component. However, certain aspects of animal behaviour may additionally contribute to the<br />

potential <strong>for</strong> sediment ingestion. For example, sandpipers <strong>for</strong>age on shorelines by probing their opened<br />

bills into the substrate to retrieve invertebrates, thereby increasing the opportunity <strong>for</strong> incidental sediment<br />

ingestion. For species that exhibit behaviour that are perceived to confer an additional source of sediment<br />

ingestion, professional judgment is used to adjust their estimated ingestion levels accordingly.<br />

Table G-1 Estimated Percent Sediment Contents <strong>for</strong> Each Dietary<br />

Component<br />

Dietary Component<br />

Sediment Content<br />

(%)<br />

Mammals, Birds 1.06<br />

<strong>Marine</strong> Plants 7.45<br />

<strong>Marine</strong> Invertebrates 9.12<br />

Fish 2.48<br />

G.5 Characteristics of Species<br />

Descriptions of species are based largely on the U.S. EPA Wildlife Exposure Factors Handbook (U.S.<br />

EPA 1993) or similar data acquired from credible sources like the primary literature or selected internet<br />

databases. Following the methods outlined above, the general parameters (e.g., body weight) and food<br />

ingestion rates <strong>for</strong> various exposure pathways <strong>for</strong> each avian and mammalian receptor are presented<br />

(see Table G-2).<br />

Page G-10 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix G: Characteristics of Modelled Species<br />

Table G-2 Avian and Mammalian Ingestion Parameters<br />

General Parameters<br />

Units<br />

Coastaldwelling<br />

Mink<br />

Harbour<br />

Porpoise<br />

Steller<br />

Sea Lion<br />

2010 Page G-11<br />

Bald<br />

Eagle<br />

Marbled<br />

Murrelet<br />

Spotted<br />

Sandpiper<br />

Surf<br />

Scoter<br />

Body weight kg 8.50E-01 5.50E+01 5.66E+02 4.50E+00 2.20E-01 4.71E-02 1.10E+00<br />

Food intake rate kg wet-wt/d 2.20E-01 4.32E+00 4.53E+01 6.48E-01 8.05E-02 2.29E-02 3.13E-01<br />

Water intake rate L/d 9.00E-02 3.65E+00 2.97E+01 1.62E-01 2.14E-02 7.62E-03 3.00E-02<br />

Ingestion of Seawater<br />

Ingestion rate L/d – a 3.65E+00 2.97E+01 – a 2.14E-02 7.62E-03 3.00E-02<br />

Intake factor (IFing-sw) L/kg·d – a 6.64E-02 5.25E-02 – a 9.73E-02 1.62E-01 2.73E-02<br />

Ingestion of <strong>Marine</strong> Sediment<br />

Fraction diet that is dry solid 2.80E-01 2.83E-01 2.78E-01 2.85E-01 2.74E-01 4.59E-01 2.19E-01<br />

Fraction of food intake rate 1.26E-02 1.00E-02 1.81E-02 9.50E-03 3.03E-02 4.31E-02 8.63E-02<br />

Ingestion rate kg dry-wt/d 7.76E-04 1.22E-02 2.28E-01 1.75E-03 6.68E-04 4.54E-04 5.92E-03<br />

Intake factor (IFing-sed) kg/kg·d 9.13E-04 2.22E-04 4.03E-04 3.90E-04 3.04E-03 9.63E-03 5.38E-03<br />

Ingestion of <strong>Marine</strong> Plants<br />

Fraction of food intake rate – a – a – a – a – a 2.00E-02 5.00E-02<br />

Ingestion rate kg wet-wt/d – a – a – a – a – a 4.59E-04 1.57E-02<br />

Intake factor (IFing-ap) kg/kg·d – a – a – a – a – a 9.74E-03 1.42E-02<br />

Ingestion of <strong>Marine</strong> Benthic Invertebrates<br />

Fraction of food intake rate 1.00E-01 5.00E-02 1.00E-01 – a 2.50E-01 4.50E-01 9.00E-01<br />

Ingestion rate kg wet-wt/d 2.20E-02 2.16E-01 4.53E+00 – a 2.01E-02 1.03E-02 2.82E-01<br />

Intake factor (IFing-ai) kg/kg·d 2.59E-02 3.93E-03 8.01E-03 – a 9.15E-02 2.19E-01 2.56E-01


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix G: Characteristics of Modelled Species<br />

Table G-2 Avian and Mammalian Ingestion Parameters (cont’d)<br />

Ingestion of <strong>Marine</strong> Fish<br />

Units<br />

Coastaldwelling<br />

Mink<br />

Harbour<br />

Porpoise<br />

Steller<br />

Sea Lion<br />

Page G-12 2010<br />

Bald<br />

Eagle<br />

Marbled<br />

Murrelet<br />

Spotted<br />

Sandpiper<br />

Surf<br />

Scoter<br />

Fraction of food intake rate 3.50E-01 9.50E-01 9.00E-01 9.50E-01 7.00E-01 6.00E-02 5.00E-02<br />

Ingestion rate kg wet-wt/d 7.70E-02 4.10E+00 4.08E+01 6.16E-01 5.64E-02 1.38E-03 1.57E-02<br />

Intake factor (IFing-fsh) kg/kg·d 9.06E-02 7.46E-02 7.21E-02 1.37E-01 2.56E-01 2.92E-02 1.42E-02<br />

NOTE:<br />

a This pathway-receptor combination is not assessed.


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix G: Characteristics of Modelled Species<br />

G.6 References<br />

G.6.1 Literature Cited<br />

Beyer, W.N., S. Gerould and E.E. Connor. 1994. Estimates of soil ingestion by wildlife. Journal of<br />

Wildlife Management 58: 375-382.<br />

Canadian Council of Ministers of the Environment (CCME). 1996. A Framework <strong>for</strong> <strong>Ecological</strong> <strong>Risk</strong><br />

<strong>Assessment</strong>: General Guidance.<br />

Calder, W.A. and E.J. Braun. 1983. Scaling of osmotic regulation in mammals and birds. American<br />

Journal of Physiology 224: R601-R606.<br />

Gill, F.B. 1994. Ornithology. W.H. Freeman and Company, New York, NY.<br />

Nagy, K.A. 1987. Field metabolic rate and food requirement scaling in mammals and birds. <strong>Ecological</strong><br />

Monographs 57: 111-128.<br />

United States Environmental Protection Agency (U.S. EPA). 1993. Wildlife Exposure Factors Handbook.<br />

Office of Health and Environmental <strong>Assessment</strong>, Office of Research and Development.<br />

Washington, DC.<br />

United States Environmental Protection Agency (U.S. EPA). 1998. Guidelines <strong>for</strong> <strong>Ecological</strong> <strong>Risk</strong><br />

<strong>Assessment</strong>. EPA/630/R-95/002F.<br />

2010 Page G-13


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

Appendix H Uptake Factors from Water and Sediment<br />

to <strong>Marine</strong> Biota<br />

2010 Page H-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

Table of Contents<br />

Appendix H Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota ...... H-1<br />

H.1 Exposure <strong>Assessment</strong> ....................................................................................... H-7<br />

H.2 Biological Uptake Factors .................................................................................. H-8<br />

H.2.1 Seawater to <strong>Marine</strong> Plants, UPMWAP .............................................................. H-8<br />

H.2.2 <strong>Marine</strong> Sediment to Benthic Invertebrates, UPMSBI ...................................... H-15<br />

H.2.3 Seawater to Fish, UPMWF ............................................................................. H-19<br />

H.3 References ...................................................................................................... H-23<br />

H.3.1 Literature Cited ............................................................................................ H-23<br />

List of Tables<br />

Table H-1 Summary of KOW and KOC Values <strong>for</strong> Organic COPC ............................. H-9<br />

Table H-2 Summary of Seawater to <strong>Marine</strong> Plant Uptake Factors <strong>for</strong> Organic<br />

COPC ................................................................................................... H-11<br />

Table H-3 Summary of Seawater to <strong>Marine</strong> Plant Uptake Factors <strong>for</strong> Trace<br />

Elements COPC ................................................................................... H-13<br />

Table H-4 Summary of Sediment to Benthic Invertebrate Uptake Factors <strong>for</strong><br />

Organic COPC ...................................................................................... H-15<br />

Table H-5 Summary of <strong>Marine</strong> Sediment to Benthic Invertebrate Uptake<br />

Factors <strong>for</strong> Trace Element COPC ......................................................... H-18<br />

Table H-6 Summary of Seawater to Fish Uptake Factors <strong>for</strong> Organic COPC ....... H-20<br />

Table H-7 Summary of Seawater to Fish Uptake Factors <strong>for</strong> Trace Elements<br />

COPC ................................................................................................... H-22<br />

2010 Page H-3


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

Abbreviations<br />

BAF .................................................................................................. bioaccumulation factor<br />

BCF .................................................................................................. bioconcentration factor<br />

BSAF ............................................................................. biota sediment accumulation factor<br />

BTEX .............................................................. benzene, toluene, ethylbenzene and xylenes<br />

CCME ................................................... Canadian Council of Ministers of the Environment<br />

COPC ................................................................................... chemicals of potential concern<br />

CWS .................................................................................................. Canada-wide standard<br />

EPC ......................................................................................... exposure point concentration<br />

FMR ....................................................................................................... field metabolic rate<br />

KI ...................................................................................................................... key indicator<br />

MF ............................................................................................................... metabolic factor<br />

PAH ................................................................................ polycyclic aromatic hydrocarbons<br />

PCB ............................................................................................. polychlorinated biphenyls<br />

TDR ...................................................................................................... technical data report<br />

TPH ......................................................................................... total petroleum hydrocarbon<br />

UPMSBI ............................................. marine sediment to benthic invertebrates uptake factor<br />

UPMWAP ................................................................... seawater to marine plants uptake factor<br />

UPMWF ..................................................................................... seawater to fish uptake factor<br />

VOC ......................................................................................... volatile organic compounds<br />

2010 Page H-5


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

H.1 Exposure <strong>Assessment</strong><br />

To evaluate the exposure of each mammalian and avian key indicator (KI) to each of the chemicals of<br />

potential concern (COPC), it is necessary to first estimate the concentration of each COPC in various<br />

media or biological tissues (e.g., water, sediment and representative plant and animal tissues). A baseline<br />

sampling program characterized baseline COPC concentrations in water, sediment and a variety of<br />

biological tissues (including fish and invertebrates—see Appendix D).<br />

To estimate potential environmental effects, a <strong>Marine</strong> Water Quality Model was used to estimate daily<br />

average COPC concentrations in ten sections of <strong>Kitimat</strong> Arm (see Appendix A). The exposure point<br />

concentrations (EPC and measured as mg/L or mg/kg) <strong>for</strong> COPC in water and sediment are calculated<br />

using environmental fate and transport models. The model-estimated EPC are considered additive to the<br />

baseline concentrations when assessed <strong>for</strong> the Application Case scenario (see Section 3.2 of the main<br />

ERA report). The EPC <strong>for</strong> biota (i.e., COPC concentrations in marine plants, invertebrates and fish) are<br />

calculated directly in the model using COPC-specific uptake factors, which describe the relationships<br />

between chemical concentrations in environmental media and concentrations in biota. In the following<br />

sections, details of the equations and methods used to derive EPC <strong>for</strong> biota are discussed.<br />

Uptake factor will be used generically in this report to refer to any of several specific terms, including:<br />

• bioaccumulation factor (BAF), the ratio of a COPC concentration in an organism or biological tissue<br />

(e.g., a sediment invertebrate) to the concentration in a surrounding medium (e.g., sediment)<br />

• bioconcentration factor (BCF), a specific term that refers to the ratio of a COPC concentration in<br />

aquatic plants to the concentration in the surrounding water<br />

• biota sediment accumulation factor (BSAF), a term specifically applied to organic contaminants that<br />

refers to the ratio of the lipid normalized COPC concentration in an aquatic organism to the organic<br />

carbon normalized COPC concentration in sediment<br />

All chemical concentrations use units of mg/L or mg/kg. For water, all chemical concentrations and<br />

intakes use units of mg/L. For sediment, all concentrations are expressed on a dry weight basis (mg/kg<br />

dry weight sediment). For plant and animal tissues, all concentrations are expressed on a wet weight basis<br />

(mg/kg wet weight tissue).<br />

The uptake factor literature is inconsistent, with some uptake factors being expressed on a wet tissue<br />

basis, others on a dry tissue basis and still others (e.g., BSAF) being normalized on the basis of tissue<br />

lipid to sediment organic carbon content. The model requires EPC on a wet tissue basis <strong>for</strong> biota that are<br />

ingested as foods by ecological receptors. There<strong>for</strong>e, where possible, uptake factors are expressed on a<br />

wet tissue basis; where necessary, correction factors are applied in order to convert from dry weight<br />

tissue, lipid- or carbon-normalized units, to a wet tissue basis.<br />

2010 Page H-7


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

H.2 Biological Uptake Factors<br />

The generalized uptake factor equation used to calculate a COPC concentration in an organism or<br />

biological tissue (e.g., sediment invertebrates) from the concentration in a surrounding medium<br />

(e.g., sediment) is as follows:<br />

EPCj = EPCi x UPij<br />

Where: EPCj = exposure point concentration in biological compartment j (e.g., mg/kg<br />

wet weight invertebrate tissue)<br />

EPCi = exposure point concentration in environmental medium i (e.g., mg/kg<br />

dry sediment)<br />

UPij = uptake factor from surrounding medium (in this case sediment) to the<br />

target biological tissue (e.g., mg/kg wet tissue / mg/kg dry sediment)<br />

H.2.1 Seawater to <strong>Marine</strong> Plants, UPMWAP<br />

H.2.1.1 Organics<br />

For organic COPC, marine plant concentrations (representing rockweed or eelgrass) are derived using the<br />

equation of Vanier et al. (1999, 2001) based on an equation developed <strong>for</strong> polychlorinated biphenyls<br />

(PCB):<br />

UPMWAP = fOC x KOC x 0.23<br />

Where: UPMWAP = uptake factor from marine water to marine plants<br />

fOC = fraction of organic carbon present in dry plant tissue (assumed to be<br />

0.35 based on Vanier et al. (1999) where aquatic plant organic matter<br />

was measured as 79% of the dry plant tissue weight, and 44% of<br />

organic matter is carbon)<br />

KOC = organic compound water-organic carbon partitioning coefficient and<br />

0.23 is the conversion factor <strong>for</strong> dry weight to wet weight used in this<br />

particular equation (based on Marsham et al. (2007) where the<br />

average moisture content of aquatic plants was reported as 77%)<br />

Although initially developed <strong>for</strong> PCBs, it is reasonable to assume that this equation is applicable to other<br />

organic compounds having similar log KOW values, and that the relationship will be conservative. The<br />

PCB congeners exhibit a wide range of log KOW (and KOC), and the model represents a simple and<br />

fundamental balance between the tendencies of organic compounds to partition between water and plant<br />

tissues.<br />

Page H-8 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

Various equations <strong>for</strong> estimating KOC from KOW values were evaluated from Gustafson et al. (1997),<br />

Mackay et al. (2000) and U.S. EPA (1999). The equation from Mackay et al. (2000) is used in the model,<br />

although all three equations gave generally similar results:<br />

log KOC = log (0.41 × KOW)<br />

This equation is used to derive log KOC values <strong>for</strong> the organic compounds (see Table H-1). For total<br />

petroleum hydrocarbons (F1, F2, F3), log KOC values were obtained (and extrapolated if necessary) from<br />

Gustafson et al. (1997), and the log KOW values were back-calculated using the <strong>for</strong>mula from Mackay<br />

et al. (2000). For the estimated UPMWAP values <strong>for</strong> organic COPC, see Table H-2.<br />

Table H-1 Summary of KOW and KOC Values <strong>for</strong> Organic COPC<br />

BTEX<br />

COPC Log KOW KOW Log KOC a<br />

2010 Page H-9<br />

KOC<br />

KOW Reference<br />

Benzene 2.10 1.26E+02 1.71 5.10E+01 U.S. EPA (2005)<br />

Ethylbenzene 3.10 1.26E+03 2.71 5.13E+02 Mackay et al. (2000)<br />

Toluene 2.70 5.01E+02 2.31 2.04E+02 Average Mackay et al.<br />

(2000) and<br />

U.S. EPA (1999)<br />

Xylenes<br />

TPH - CCME CWS<br />

3.20 1.59E+03 2.81 6.46E+02 Average <strong>for</strong> m-, o-,<br />

p-xylenes; Mackay et al.<br />

(2000)<br />

Aromatics >C8-C10 3.59 3.89E+03 3.20 1.59E+03 Gustafson et al. (1997) b<br />

Aromatics >C10 - C12 3.79 6.17E+03 3.40 2.51E+03 Gustafson et al. (1997) b<br />

Aromatics >C12 - C16 4.09 1.23E+04 3.70 5.01E+03 Gustafson et al. (1997) b<br />

Aromatics >C16 - C21 4.59 3.89E+04 4.20 1.58E+04 Gustafson et al. (1997) b<br />

Aromatics >C21- C32 5.49 3.09E+05 5.10 1.26E+05 Gustafson et al. (1997) b<br />

Aliphatics >C6 - C8 3.99 9.77E+03 3.60 3.98E+03 Gustafson et al. (1997) b<br />

Aliphatics >C8 - C10 4.89 7.76E+04 4.50 3.16E+04 Gustafson et al. (1997) b<br />

Aliphatics >C10 - C12 5.79 6.17E+05 5.40 2.51E+05 Gustafson et al. (1997) b<br />

Aliphatics >C12 - C16 7.09 1.23E+07 6.70 5.01E+06 Gustafson et al. (1997) b<br />

Aliphatics >C16 - C21 9.19 1.55E+09 8.80 6.31E+08 Gustafson et al. (1997) b<br />

Aliphatics >C21 - C32 9.19 1.55E+09 8.80 6.31E+08 Gustafson et al. (1997) b<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Acenaphthene 3.90 7.94E+03 3.51 3.24E+03 U.S. EPA (2005)<br />

Acenaphthylene 4.00 1.00E+04 3.61 4.07E+03 Mackay et al. (2000)<br />

Anthracene 4.50 3.16E+04 4.11 1.29E+04 U.S. EPA (2005)<br />

Fluorene 4.20 1.58E+04 3.81 6.46E+03 U.S. EPA (2005)


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

Table H-1 Summary of KOW and KOC Values <strong>for</strong> Organic COPC (cont’d)<br />

COPC Log KOW KOW Log KOC a<br />

Low Molecular Weight PAHs (cont’d)<br />

Page H-10 2010<br />

KOC<br />

KOW Reference<br />

1-Methylnaphthalene 3.87 7.41E+03 3.48 3.02E+03 Mackay et al. (2000)<br />

2-Methylnaphthalene 3.86 7.24E+03 3.47 2.95E+03 Mackay et al. (2000)<br />

Naphthalene 3.30 2.00E+03 2.91 8.13E+02 U.S. EPA (2005)<br />

Phenanthrene 4.50 3.16E+04 4.11 1.29E+04 U.S. EPA (2005)<br />

High Molecular Weight PAHs<br />

Fluoranthene 5.00 1.00E+05 4.61 4.07E+04 U.S. EPA (2005)<br />

Benzo(a)anthracene 5.70 5.01E+05 5.31 2.04E+05 U.S. EPA (2005)<br />

Benzo(a)pyrene 6.00 1.00E+06 5.61 4.07E+05 U.S. EPA (2005)<br />

Benzo(e)pyrene 6.44 2.75E+06 6.05 1.12E+06 EpiSuite v3.20 (2007)<br />

Benzo(b)fluoranthene 6.12 1.32E+06 5.74 5.50E+05 U.S. EPA (2005)<br />

Benzo(ghi)perylene 6.50 3.16E+06 6.11 1.29E+06 Mackay et al. (2000)<br />

Benzo(k)fluoranthene 6.10 1.26E+06 5.71 5.13E+05 U.S. EPA (2005)<br />

Chrysene 5.70 5.01E+05 5.31 2.04E+05 U.S. EPA (2005)<br />

Dibenz(a,h)anthracene 6.50 3.16E+06 6.11 1.29E+06 U.S. EPA (2005)<br />

Indeno(1,2,3-cd)pyrene 6.60 3.98E+06 6.21 1.62E+06 U.S. EPA (2005)<br />

Pyrene 4.90 7.94E+04 4.51 3.24E+04 U.S. EPA (2005)<br />

Phenolic Compounds<br />

2,4-dimethylphenol 2.30 2.00E+02 1.91 8.13E+01 U.S. EPA (2005)<br />

2,4-dinitrophenol 1.54 3.47E+01 1.15 1.41E+01 U.S. EPA (2005)<br />

Phenol 1.50 3.16E+01 1.11 1.29E+01 U.S. EPA (2005)<br />

VOCs<br />

1,2,4-trichlorobenzene 4.00 1.00E+04 3.61 4.07E+03 U.S. EPA (2005)<br />

1,3,5-trimethylbenzene 3.42 2.63E+03 3.03 1.07E+03 U.S. EPA (2005)<br />

NOTES:<br />

a Log KOC values <strong>for</strong> all organic compounds, with the exception of PHC fractions, are derived from Log KOW values<br />

using the equation Log KOC = Log(0.41×KOW) from MacKay et al. (2000).<br />

b This reference applies to Log KOC values <strong>for</strong> PHC fractions.


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

Table H-2 Summary of Seawater to <strong>Marine</strong> Plant Uptake Factors <strong>for</strong> Organic<br />

COPC<br />

BTEX<br />

COPC<br />

UPMWAP<br />

mg/kg-wet tissue/mg/L<br />

Reference<br />

Benzene 4.16E+00 Vanier et al. (1999, 2001)<br />

Ethylbenzene 4.16E+01 Vanier et al. (1999, 2001)<br />

Toluene 1.65E+01 Vanier et al. (1999, 2001)<br />

Xylenes 5.23E+01 Vanier et al. (1999, 2001)<br />

TPH - CCME CWS<br />

Aromatics >C8-C10 1.28E+02 Vanier et al. (1999, 2001)<br />

Aromatics >C10 - C12 2.02E+02 Vanier et al. (1999, 2001)<br />

Aromatics >C12 - C16 4.03E+02 Vanier et al. (1999, 2001)<br />

Aromatics >C16 - C21 1.28E+03 Vanier et al. (1999, 2001)<br />

Aromatics >C21- C32 1.01E+04 Vanier et al. (1999, 2001)<br />

Aliphatics >C6 - C8 3.20E+02 Vanier et al. (1999, 2001)<br />

Aliphatics >C8 - C10 2.55E+03 Vanier et al. (1999, 2001)<br />

Aliphatics >C10 - C12 2.02E+04 Vanier et al. (1999, 2001)<br />

Aliphatics >C12 - C16 4.03E+05 Vanier et al. (1999, 2001)<br />

Aliphatics >C16 - C21 Negligible toxicity or bioavailability CCME (2008)<br />

Aliphatics >C21 - C32 Negligible toxicity or bioavailability CCME (2008)<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Acenaphthene 2.62E+02 Vanier et al. (1999, 2001)<br />

Acenaphthylene 3.30E+02 Vanier et al. (1999, 2001)<br />

Anthracene 1.04E+03 Vanier et al. (1999, 2001)<br />

Fluorene 5.23E+02 Vanier et al. (1999, 2001)<br />

1-Methylnaphthalene 2.45E+02 Vanier et al. (1999, 2001)<br />

2-Methylnaphthalene 2.39E+02 Vanier et al. (1999, 2001)<br />

Naphthalene 6.59E+01 Vanier et al. (1999, 2001)<br />

Phenanthrene 1.04E+03 Vanier et al. (1999, 2001)<br />

High Molecular Weight PAHs<br />

Fluoranthene 3.30E+03 Vanier et al. (1999, 2001)<br />

Benzo(a)anthracene 1.65E+04 Vanier et al. (1999, 2001)<br />

Benzo(a)pyrene 3.30E+04 Vanier et al. (1999, 2001)<br />

Benzo(e)pyrene 9.09E+04 Vanier et al. (1999, 2001)<br />

Benzo(b)fluoranthene 4.39E+04 Vanier et al. (1999, 2001)<br />

Benzo(ghi)perylene 1.04E+05 Vanier et al. (1999, 2001)<br />

Benzo(k)fluoranthene 4.16E+04 Vanier et al. (1999, 2001)<br />

2010 Page H-11


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

Table H-2 Summary of Seawater to <strong>Marine</strong> Plant Uptake Factors <strong>for</strong> Organic<br />

COPC (cont’d)<br />

COPC<br />

High Molecular Weight PAHs (cont’d)<br />

UPMWAP<br />

mg/kg-wet tissue / mg/L<br />

Reference<br />

Chrysene 1.65E+04 Vanier et al. (1999, 2001)<br />

Dibenz(a,h)anthracene 1.04E+05 Vanier et al. (1999, 2001)<br />

Indeno(1,2,3-cd)pyrene 1.31E+05 Vanier et al. (1999, 2001)<br />

Pyrene 2.62E+03 Vanier et al. (1999, 2001)<br />

Phenolic Compounds<br />

2,4-dimethylphenol 6.59E+00 Vanier et al. (1999, 2001)<br />

2,4-dinitrophenol 1.14E+00 Vanier et al. (1999, 2001)<br />

Phenol 1.04E+00 Vanier et al. (1999, 2001)<br />

VOCs<br />

1,2,4-trichlorobenzene 3.30E+02 Vanier et al. (1999, 2001)<br />

1.3.5-trimethylbenzene 8.68E+01 Vanier et al. (1999, 2001)<br />

H.2.1.2 Trace Elements<br />

Seawater to marine plant uptake factors <strong>for</strong> inorganic COPC were derived from various published<br />

literature sources. Preference was given to studies reporting measured uptake factor values. For COPC<br />

that had no published uptake factors, values were derived using reported seawater and marine plant COPC<br />

concentrations from the same published source. If multiple values were available, preference was given to<br />

those most representative of the floral communities. <strong>Marine</strong> plant COPC concentrations were frequently<br />

reported in the literature on a dry weight basis. To determine wet weight uptake factors, the dry weight<br />

uptake factor was modified by multiplying by a dry fraction. If the dry fraction was reported in literature<br />

source, it was used; if no value was reported, the dry fraction is assumed to be 0.145 as reported by the<br />

U.S. EPA (1993) <strong>for</strong> algae and aquatic macrophytes.<br />

The uptake factors were calculated as the arithmetic mean of literature-acquired values when the range<br />

did not exceed one order of magnitude, and as the geometric mean if the values varied by more than one<br />

order of magnitude. For uptake factors <strong>for</strong> seawater to marine plants, see Table H-3. A short description<br />

of the uptake factor <strong>for</strong> each trace element is provided below.<br />

Barium<br />

The seawater to marine plant UP <strong>for</strong> barium is 72.5 mg/kg-wet tissue/mg/L. This value is a widely<br />

accepted compendium value (CSA 1987).<br />

Page H-12 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

Table H-3 Summary of Seawater to <strong>Marine</strong> Plant Uptake Factors <strong>for</strong> Trace<br />

Elements COPC<br />

COPC<br />

UPMWAP<br />

mg/kg-wet tissue/mg/L<br />

Barium 7.25E+01 CSA (1987)<br />

Boron 1.65E+00 Gaudry et al. (2007)<br />

Reference<br />

Cadmium 5.88E+02 Multiple References (see text)<br />

Manganese 2.90E+03 CSA (1987)<br />

Molybdenum 1.45E+00 CSA (1987)<br />

Nickel 1.85E+03 Multiple References (see text)<br />

Tin 7.20E+03 Multiple References (see text)<br />

Vanadium 3.83E+02 Hou and Yan (1998); Gaudry et al. (2007)<br />

Zinc 2.22E+03 Multiple References (see text)<br />

Boron<br />

The seawater to marine plant uptake factor <strong>for</strong> boron is 1.65 mg/kg-wet tissue / mg/L. This value is based<br />

on a study reporting calculated uptake factor values (Gaudry et al. 2007). Because this value was obtained<br />

from dry weight measurements, it was multiplied by a dry fraction value of 0.145 to convert to a wet<br />

weight basis.<br />

Cadmium<br />

The seawater to marine plant uptake factor <strong>for</strong> cadmium is 588 mg/kg-wet tissue/mg/L. This value is<br />

based on various studies reporting calculated uptake factors (Vasconcelos and Leal 2001; Conti and<br />

Cecchetti 2003; Gaudry et al. 2007) and one reporting concentrations of cadmium in seawater and algae<br />

(Campanella et al. 2001) from which uptake factors were calculated. The value of 588 is the geometric<br />

mean (the number of individual values, n = 21) wet weight uptake factors; as values were obtained from<br />

dry weight measurements these were multiplied by a dry fraction value of 0.145, except <strong>for</strong> those<br />

obtained from Campanella et al. (2001), which were multiplied by reported dry fraction values of 0.186<br />

and 0.278 to convert to a wet weight basis.<br />

Manganese<br />

The seawater to marine plant uptake factor <strong>for</strong> manganese is 2,900 mg/kg-wet tissue/mg/L. This value is a<br />

widely accepted compendium value (CSA 1987).<br />

Molybdenum<br />

The seawater to marine plant uptake factor <strong>for</strong> molybdenum is 1.45 mg/kg-wet tissue/mg/L. This value is<br />

a widely accepted compendium value (CSA 1987).<br />

2010 Page H-13


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

Nickel<br />

The seawater to marine plant uptake factor <strong>for</strong> nickel is 1,850 mg/kg-wet tissue/mg/L. This value is based<br />

on various studies reporting calculated uptake factor values (Sanchez-Rodriguez et al. 2001; Vasconcelos<br />

and Leal 2001; Gaudry et al. 2007). The value of 1,850 is the geometric mean (n = 5) wet weight uptake<br />

factor; as values were obtained from dry weight measurements these were multiplied by a dry fraction<br />

value of 0.145 to convert to a wet weight basis.<br />

Tin<br />

The seawater to marine plant uptake factor <strong>for</strong> tin is 7,200 mg/kg-wet tissue/mg/L. This value is based on<br />

various studies reporting calculated uptake factor values (Seidel et al. 1980 as cited in ATSDR 2005;<br />

Gaudry et al. 2007). The value of 7,200 is the geometric mean (n = 2) wet weight uptake factor; values<br />

obtained from dry weight measurements (Gaudry et al. 2007) were multiplied by a dry fraction value of<br />

0.145 to convert to a wet weight basis.<br />

Vanadium<br />

The seawater to marine plant uptake factor <strong>for</strong> vanadium is 383 mg/kg-wet tissue/mg/L. This value is<br />

based on various studies reporting calculated uptake factor values (Hou and Yan 1998; Gaudry et al.<br />

2007). The value of 383 is the arithmetic mean (n = 4) wet weight uptake factor; as values were obtained<br />

from dry weight measurements these were multiplied by a dry fraction value of 0.145 to convert to a wet<br />

weight basis.<br />

Zinc<br />

The seawater to marine plant uptake factor <strong>for</strong> zinc is 2,220 mg/kg-wet tissue/mg/L. This value is based<br />

on various studies including studies reporting calculated uptake factor (Hou and Yan 1998; Sanchez-<br />

Rodriguez et al. 2001; Vasconcelos and Leal 2001; Conti and Cecchetti 2003; Gaudry et al. 2007), and<br />

one reporting concentrations of zinc in seawater and algae (Campanella et al. 2001) from which uptake<br />

factors were calculated, and a widely accepted compendium value (CSA 1987). The value of 2,220 is the<br />

geometric mean (n = 21) wet weight uptake factor; as values were obtained from dry weight<br />

measurements these were multiplied by a dry fraction value of 0.145, except <strong>for</strong> those obtained from<br />

Campanella et al. (2001), which were multiplied by reported dry fraction values of 0.186 and 0.278 to<br />

convert to a wet weight basis.<br />

Page H-14 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

H.2.2 <strong>Marine</strong> Sediment to Benthic Invertebrates, UPMSBI<br />

H.2.2.1 Organics<br />

<strong>Marine</strong> sediment to benthic invertebrate uptake factors (UPMSBI) <strong>for</strong> organic compounds (see Table H-4)<br />

were obtained from a BSAF equation derived by DiToro and McGrath (2000):<br />

BSAF = CL/CS,OC<br />

Where: CL = concentration of a chemical in the lipid of a benthic organism (mmol/kg lipid)<br />

CS,OC = concentration of the same chemical in the organic carbon fraction of the<br />

sediment (mmol/kg organic carbon)<br />

Using additional equations presented by DiToro and McGrath (2000), the equation can be simplified to:<br />

BSAF = 10 (-0.038 log(K ow )-0.00028)<br />

This equation yields theoretical BSAF values that range from 0.916 <strong>for</strong> a log KOW value of 1.0, to 0.592<br />

<strong>for</strong> a log KOW value of 6. BSAF can be normalized according to the organic carbon content of the marine<br />

sediment (foc) and lipid content of the invertebrates (flipid) by incorporating an adjustment factor (flipid/foc).<br />

The lipid fraction in invertebrates is set at 0.017, whereas the organic carbon fraction in marine sediment<br />

is set at 0.01. Also applied to Equation 5 was a metabolic factor (MF) between 0.01 (expected to be<br />

metabolized) and 1.0 (not expected to be metabolized), depending on the COPC and based on comparison<br />

to previously collected empirical data (JDAC 2002) to account <strong>for</strong> metabolism of organic COPC that<br />

are expected to be metabolized and a dry weight to wet weight conversion factor (0.24 based on<br />

Gewurtz et al. 2000). The final UPMSBI equation used in the <strong>Marine</strong> ERA model is:<br />

(-0.038 log(Kow)-0.00028)<br />

UPMSBI = MF x 0.24(flipid/foc) x 10<br />

Table H-4 Summary of Sediment to Benthic Invertebrate Uptake Factors <strong>for</strong><br />

Organic COPC<br />

COPC<br />

UPMSBI<br />

mg/kg-wet tissue/mg/kg-dry sed<br />

Reference<br />

BTEX<br />

Benzene 3.39E-03 DiToro and McGrath (2000)<br />

Ethylbenzene 3.11E-03 DiToro and McGrath (2000)<br />

Toluene 3.22E-03 DiToro and McGrath (2000)<br />

Xylenes<br />

TPH - CCME CWS<br />

3.08E-03 DiToro and McGrath (2000)<br />

Aromatics >C8-C10 1.49E-02 DiToro and McGrath (2000)<br />

Aromatics >C10 - C12 1.46E-02 DiToro and McGrath (2000)<br />

Aromatics >C12 - C16 1.43E-02 DiToro and McGrath (2000)<br />

2010 Page H-15


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

Table H-4 Summary of Sediment to Benthic Invertebrate Uptake Factors <strong>for</strong><br />

Organic COPC (cont’d)<br />

COPC<br />

TPH - CCME CWS (cont’d)<br />

UPMSBI<br />

mg/kg-wet tissue/mg/kg-dry sed<br />

Reference<br />

Aromatics >C16 - C21 2.73E-02 DiToro and McGrath (2000)<br />

Aromatics >C21- C32 2.52E-02 DiToro and McGrath (2000)<br />

Aliphatics >C6 - C8 1.44E-02 DiToro and McGrath (2000)<br />

Aliphatics >C8 - C10 1.33E-02 DiToro and McGrath (2000)<br />

Aliphatics >C10 - C12 1.23E-02 DiToro and McGrath (2000)<br />

Aliphatics >C12 - C16 1.10E-02 DiToro and McGrath (2000)<br />

Aliphatics >C16 - C21 Negligible toxicity or bioavailability CCME (2008)<br />

Aliphatics >C21 - C32 Negligible toxicity or bioavailability CCME (2008)<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Acenaphthene 2.90E-02 DiToro and McGrath (2000)<br />

Acenaphthylene 2.87E-02 DiToro and McGrath (2000)<br />

Anthracene 2.75E-02 DiToro and McGrath (2000)<br />

Fluorene 2.82E-02 DiToro and McGrath (2000)<br />

1-Methylnaphthalene 2.91E-02 DiToro and McGrath (2000)<br />

2-Methylnaphthalene 2.91E-02 DiToro and McGrath (2000)<br />

Naphthalene 3.05E-02 DiToro and McGrath (2000)<br />

Phenanthrene 2.75E-02 DiToro and McGrath (2000)<br />

Fluoranthene<br />

High Molecular Weight PAHs<br />

2.63E-02 DiToro and McGrath (2000)<br />

Benzo(a)anthracene 2.48E-02 DiToro and McGrath (2000)<br />

Benzo(a)pyrene 1.21E-01 DiToro and McGrath (2000)<br />

Benzo(e)pyrene 1.16E-01 DiToro and McGrath (2000)<br />

Benzo(b)fluoranthene 2.39E-02 DiToro and McGrath (2000)<br />

Benzo(ghi)perylene 1.15E-01 DiToro and McGrath (2000)<br />

Benzo(k)fluoranthene 2.39E-02 DiToro and McGrath (2000)<br />

Chrysene 2.48E-02 DiToro and McGrath (2000)<br />

Dibenz(a,h)anthracene 1.15E-01 DiToro and McGrath (2000)<br />

Indeno(1,2,3-cd)pyrene 1.14E-01 DiToro and McGrath (2000)<br />

Pyrene 2.66E-02 DiToro and McGrath (2000)<br />

Page H-16 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

Table H-4 Summary of Sediment to Benthic Invertebrate Uptake Factors <strong>for</strong><br />

Organic COPC (cont’d)<br />

COPC<br />

Phenolic Compounds<br />

UPMSBI<br />

mg/kg-wet tissue/mg/kg-dry sed<br />

Reference<br />

2,4-dimethylphenol 3.33E-01 DiToro and McGrath (2000)<br />

2,4-dinitrophenol 3.56E-01 DiToro and McGrath (2000)<br />

Phenol<br />

VOCs<br />

3.58E-01 DiToro and McGrath (2000)<br />

1,2,4-trichlorobenzene 2.87E-01 DiToro and McGrath (2000)<br />

1,3,5-trimethylbenzene 3.02E-01 DiToro and McGrath (2000)<br />

H.2.2.2 Trace Elements<br />

<strong>Marine</strong> sediment to invertebrate uptake factors (UPMSBI) <strong>for</strong> inorganic COPC were derived from<br />

published literature sources. Preference was given to studies reporting measured uptake factors. For<br />

COPC with no published uptake factors, a value was derived using studies reporting concentrations in<br />

both sediment and marine invertebrates. Invertebrate concentrations are frequently reported in the<br />

literature on a dry weight basis. To determine wet weight uptake factors, the dry weight uptake factor was<br />

modified by multiplying by a dry weight fraction. Preference was given to dry fractions reported in<br />

literature sources reporting concentrations of COPC used in the BAF calculations. If this value was not<br />

available, it was selected from dry fraction values reported in the literature (Oshida and Word 1982; U.S.<br />

EPA 1993; Rahman et al. 1996; Lawson et al. 1998; Campanella et al. 2001; Topcuoglu et al. 2002;<br />

Hammerschmidt and Fitzgerald 2006) according to invertebrate species.<br />

The uptake factors used in the model were calculated as the arithmetic mean of literature acquired values<br />

when the range did not exceed one order of magnitude and as the geometric mean if the uptake factor<br />

values acquired varied by more than one order of magnitude. For the uptake factor values used, see<br />

Table H-5. A short description of the uptake factors values <strong>for</strong> each trace element is provided below.<br />

Barium<br />

The uptake factor <strong>for</strong> barium is 4.85E-02 mg/kg-wet tissue/mg/kg-dry sediment. This value is based on<br />

two studies reporting concentrations of barium in sediment and invertebrates (JDAC 2002; Jacques<br />

Whit<strong>for</strong>d 2008) from which wet weight uptake factors were calculated. The value of 4.85E-02 is the<br />

arithmetic mean (n = 4) wet weight uptake factors.<br />

Boron<br />

The uptake factor <strong>for</strong> boron is 3.39E-01 mg/kg-wet tissue/mg/kg-dry sediment. This value is based on a<br />

study reporting concentrations of boron in sediment and invertebrates (Jacques Whit<strong>for</strong>d 2008) from<br />

which wet weight uptake factors were calculated. The value of 3.39E-01 is the arithmetic mean (n = 3)<br />

wet weight uptake factor.<br />

2010 Page H-17


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

Table H-5 Summary of <strong>Marine</strong> Sediment to Benthic Invertebrate Uptake<br />

Factors <strong>for</strong> Trace Element COPC<br />

COPC<br />

Trace Elements<br />

UPMSBI<br />

mg/kg-wet tissue/mg/kg-dry sed<br />

Reference<br />

Barium 4.85E-02 JDAC (2002); Jacques Whit<strong>for</strong>d (2008)<br />

Boron 3.39E-01 Jacques Whit<strong>for</strong>d (2008)<br />

Cadmium 6.29E+01 Multiple References (see text)<br />

Manganese 1.11E-02 Multiple References (see text)<br />

Molybdenum 6.88E-01 Jacques Whit<strong>for</strong>d (2008)<br />

Nickel 4.97E-02 Multiple References (see text)<br />

Tin 1.74E-02 Frithsen (1984); Jacques Whit<strong>for</strong>d (2008)<br />

Vanadium 2.60E-02 Jacques Whit<strong>for</strong>d (2008)<br />

Zinc 2.94E-01 Multiple References (see text)<br />

Cadmium<br />

The BAF <strong>for</strong> cadmium is 6.29E+01 mg/kg-wet tissue/mg/kg-dry sediment. This value is based on several<br />

studies one reporting calculated uptake factors (Frithsen 1984), and studies reporting concentrations of<br />

cadmium in sediment and invertebrates (Phillips 1991; JDAC 2002; Topcuoglu et al. 2002; Jacques<br />

Whit<strong>for</strong>d 2008) from which uptake factors were calculated. The value of 6.29E+01 is the arithmetic mean<br />

(n = 22) wet weight uptake factor; values obtained from dry weight measurements were multiplied by a<br />

dry fraction value corresponding to the invertebrate species considered.<br />

Manganese<br />

The uptake factor <strong>for</strong> manganese is 1.11E-02 mg/kg-wet tissue/mg/kg-dry sediment. This value is based<br />

on several studies including one reporting calculated uptake factors (Frithsen 1984), and studies reporting<br />

concentrations of manganese in sediment and invertebrates (JDAC 2002; Topcuoglu et al. 2002; Beiras et<br />

al. 2003; Jacques Whit<strong>for</strong>d 2008) from which uptake factors were calculated. The value of 1.11E-02 is the<br />

geometric mean (n = 21) wet weight uptake factor; values obtained from dry weight measurements were<br />

multiplied by a dry fraction value corresponding to the invertebrate species considered.<br />

Molybdenum<br />

The uptake factor <strong>for</strong> molybdenum is 6.88E-01 mg/kg-wet tissue/mg/kg-dry sediment. This value is<br />

derived from a study that considered concentrations of molybdenum in sediment and invertebrates<br />

(Jacques Whit<strong>for</strong>d 2008) from which uptake factors were calculated. The value of 6.88E-01 is the<br />

arithmetic mean (n = 2) wet weight uptake factor.<br />

Page H-18 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

Nickel<br />

The uptake factor <strong>for</strong> nickel is 4.97E-02 mg/kg-wet tissue/mg/kg-dry sediment. This value is based on<br />

several studies reporting concentrations of nickel in sediment and invertebrates (Phillips 1991; U.S. EPA<br />

2000; Topcuoglu et al. 2002; Beiras et al. 2003; Jacques Whit<strong>for</strong>d 2008) from which UP were calculated.<br />

The value of 4.97E-02 is the arithmetic mean (n = 18) wet weight uptake factor; values obtained from dry<br />

weight measurements were multiplied by a dry fraction value corresponding to the invertebrate species<br />

considered.<br />

Tin<br />

The uptake factor <strong>for</strong> tin is 1.74E-02 mg/kg-wet tissue/mg/kg-dry sediment. This value is based on two<br />

studies including one reporting calculated uptake factor (Frithsen 1984), and one reporting concentrations<br />

of tin in sediment and invertebrates (Jacques Whit<strong>for</strong>d 2008) from which uptake factors were calculated.<br />

The value of 1.74E-02 is the arithmetic mean wet weight uptake factor calculated from recommended<br />

values <strong>for</strong> mussels (n = 1) and crustaceans (n = 4); values obtained from dry weight measurements were<br />

multiplied by a dry fraction value corresponding to the invertebrate species considered.<br />

Vanadium<br />

The uptake factor <strong>for</strong> vanadium is 2.60E-02 mg/kg-wet tissue/mg/kg-dry sediment. This value is derived<br />

from a study which considered concentrations of vanadium in sediment and invertebrates (Jacques<br />

Whit<strong>for</strong>d 2008) from which uptake factors were calculated. The value of 2.60E-02 is the arithmetic mean<br />

(n = 2) wet weight uptake factor.<br />

Zinc<br />

The uptake factor <strong>for</strong> zinc is 2.94E-01 mg/kg-wet tissue/mg/kg-dry sediment. This value is based on<br />

several studies including one reporting calculated uptake factors (Frithsen 1984), and studies reporting<br />

concentrations of zinc in sediment and invertebrates (Phillips 1991; U.S. EPA 2000; JDAC 2002; Beiras<br />

et al. 2003; Jacques Whit<strong>for</strong>d 2008) from which uptake factors were calculated. The value of 2.94E-01 is<br />

the geometric mean (n = 11) wet weight uptake factors; values obtained from dry weight measurements<br />

were multiplied by a dry fraction value corresponding to the invertebrate species considered.<br />

H.2.3 Seawater to Fish, UPMWF<br />

H.2.3.1 Organics<br />

<strong>Marine</strong> water to fish uptake factors (UPMWF) <strong>for</strong> organic compounds (see Table H-6) are obtained from a<br />

BCF equation derived by Di Toro et al. (2000):<br />

BCF = CF/CW or,<br />

log(BCF) = logCF – logCW<br />

Where: CF = concentration of a chemical in fish (mg/kg wet weight)<br />

CW = concentration of the same chemical in water (mg/L)<br />

2010 Page H-19


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

Table H-6 Summary of Seawater to Fish Uptake Factors <strong>for</strong> Organic COPC<br />

BTEX<br />

COPC<br />

UPMWF<br />

mg/kg-wet tissue/mg/L<br />

Reference<br />

Benzene 6.31E-01 Di Toro et al. (2000)<br />

Ethylbenzene 6.31E+00 Di Toro et al. (2000)<br />

Toluene 2.51E+00 Di Toro et al. (2000)<br />

Xylenes 7.94E+00 Di Toro et al. (2000)<br />

TPH - CCME CWS<br />

Aromatics >C8-C10 1.94E+01 Di Toro et al. (2000)<br />

Aromatics >C10-C12 3.07E+01 Di Toro et al. (2000)<br />

Aromatics >C12-C16 6.13E+01 Di Toro et al. (2000)<br />

Aromatics >C16-C21 1.94E+02 Di Toro et al. (2000)<br />

Aromatics >C21-C34 1.54E+03 Di Toro et al. (2000)<br />

Aliphatics >C6-C8 4.87E+01 Di Toro et al. (2000)<br />

Aliphatics >C8-C10 3.87E+02 Di Toro et al. (2000)<br />

Aliphatics >C10-C12 3.07E+03 Di Toro et al. (2000)<br />

Aliphatics >C12-C16 6.13E+04 Di Toro et al. (2000)<br />

Aliphatics >C16-C21 Negligible toxicity or bioavailability CCME (2008)<br />

Aliphatics >C21-C34 Negligible toxicity or bioavailability CCME (2008)<br />

Low Molecular Weight PAHs<br />

Acenaphthene 3.98E+01 Di Toro et al. (2000)<br />

Acenaphthylene 5.01E+01 Di Toro et al. (2000)<br />

Anthracene 1.58E+02 Di Toro et al. (2000)<br />

Fluorene 7.94E+01 Di Toro et al. (2000)<br />

1-Methylnaphthalene 3.72E+01 Di Toro et al. (2000)<br />

2-Methylnaphthalene 3.63E+01 Di Toro et al. (2000)<br />

Naphthalene 1.00E+01 Di Toro et al. (2000)<br />

Phenanthrene 1.58E+02 Di Toro et al. (2000)<br />

High Molecular Weight PAHs<br />

Fluoranthene 5.01E+02 Di Toro et al. (2000)<br />

Benzo(a)anthracene 2.51E+03 Di Toro et al. (2000)<br />

Benzo(a)pyrene 5.01E+03 Di Toro et al. (2000)<br />

Benzo(e)pyrene 1.38E+04 Di Toro et al. (2000)<br />

Benzo(b)fluoranthene 6.67E+03 Di Toro et al. (2000)<br />

Benzo(ghi)perylene 1.58E+04 Di Toro et al. (2000)<br />

Benzo(k)fluoranthene 6.31E+03 Di Toro et al. (2000)<br />

Page H-20 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

Table H- 6 Summary of Seawater to Fish Uptake Factors <strong>for</strong> Organic COPC<br />

(cont’d)<br />

COPC<br />

UPMWF<br />

mg/kg-wet tissue / mg/L<br />

Reference<br />

Chrysene 2.51E+03 Di Toro et al. (2000)<br />

Dibenz(a,h)anthracene 1.58E+04 Di Toro et al. (2000)<br />

Indeno(1,2,3-cd)pyrene 2.00E+04 Di Toro et al. (2000)<br />

Pyrene 3.98E+02 Di Toro et al. (2000)<br />

Phenolic Compounds<br />

2,4-dimethylphenol 5.00E-01 Di Toro et al. (2000)<br />

2,4-dinitrophenol 8.69E-02 Di Toro et al. (2000)<br />

Phenol 1.58E-01 Di Toro et al. (2000)<br />

VOCs<br />

1,2,4-trichlorobenzene 2.51E+01 Di Toro et al. (2000)<br />

1.3.5-trimethylbenzene 1.32E+01 Di Toro et al. (2000)<br />

Using additional equations presented by Di Toro et al. (2000), the BCF can be linked to the Log KOW<br />

value, a fundamental property of individual organic compounds:<br />

BCF = 10 (log(Kow)-1.3)<br />

This equation yields theoretical BCF values that range from 0.501 <strong>for</strong> a log KOW value of 1.0, to 50,119<br />

<strong>for</strong> a log KOW value of 6. A MF between 0.05 (expected to be metabolized) and 1.0 (not expected to be<br />

metabolized) is also applied to account <strong>for</strong> metabolism of non-persistent organic COPC. This metabolic<br />

factor was determined based on comparison to previously collected empirical data (JDAC 2002). The<br />

final UPWF equation used in the model is:<br />

H.2.3.2 Trace Elements<br />

UPWF = MF x 10 (log(Kow)-1.3)<br />

Seawater to fish uptake factors (UPMWF) <strong>for</strong> trace elements assessed were derived from published<br />

literature sources. Preference was given to studies reporting actual measured uptake factors. For COPC<br />

with no published uptake factors, a value was derived using studies reporting concentrations in both<br />

seawater and marine fish. Fish concentrations are typically reported in the literature on a wet weight basis.<br />

If the fish concentrations were reported as dry weight basis, the wet weight uptake factor was determined<br />

by multiplying the dry weight uptake factor by a dry weight fraction. The dry weight fraction values were<br />

selected as 0.23 and 0.45 <strong>for</strong> fish muscle and liver respectively (Lee et al. 2000; Topcuoglu et al. 2002;<br />

Hammerschmidt and Fitzgerald 2006).<br />

2010 Page H-21


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

The uptake factors used in the model were calculated as the arithmetic mean of literature acquired values<br />

when the range did not exceed one order of magnitude and as the geometric mean if the uptake factor<br />

values acquired varied by more than one order of magnitude. For the uptake factors used in the model,<br />

see Table H-7. A short description of the uptake factor <strong>for</strong> each trace element is provided below.<br />

Table H-7 Summary of Seawater to Fish Uptake Factors <strong>for</strong> Trace Elements<br />

COPC<br />

COPC<br />

UPMWF<br />

mg/kg-wet tissue / mg/L<br />

Reference<br />

Barium 1.83E+01 CSA (1987); Jacques Whit<strong>for</strong>d (2008)<br />

Boron 1.88E-01 Jacques Whit<strong>for</strong>d (2008)<br />

Cadmium 3.89E+02 JDAC (2002); Jacques Whit<strong>for</strong>d (2008)<br />

Manganese 2.74E+03 Multiple References (see text)<br />

Molybdenum 4.64E+00 Jacques Whit<strong>for</strong>d (2008)<br />

Nickel 1.65E+03 Multiple References (see text)<br />

Tin 5.92E+03 Multiple References (see text)<br />

Vanadium 2.61E+02 Miramand et al. (1992); Jacques Whit<strong>for</strong>d (2008)<br />

Zinc 2.00E+03 CSA (1987)<br />

Barium<br />

The uptake factor <strong>for</strong> barium is 1.83E+01 mg/kg-wet tissue/mg/L. This value is derived from a study<br />

reporting concentrations of barium in seawater and fish (Jacques Whit<strong>for</strong>d 2008) from which an uptake<br />

factor was calculated, and a widely accepted compendium value (CSA 1987). The value of 1.83E+01 is<br />

the arithmetic mean (n = 2) wet weight BCF.<br />

Boron<br />

The uptake factor <strong>for</strong> boron is 1.88E-01 mg/kg-wet tissue/mg/L. This value is derived from a study<br />

reporting concentrations of boron in seawater and fish (Jacques Whit<strong>for</strong>d 2008) from which an uptake<br />

factor was calculated.<br />

Cadmium<br />

The uptake factor <strong>for</strong> cadmium is 3.89E+02 mg/kg-wet tissue/mg/L. This value is derived from two<br />

studies reporting concentrations of cadmium in seawater and fish (JDAC 2002; Jacques Whit<strong>for</strong>d 2008)<br />

from which uptake factors were calculated. The value of 3.89E+02 is the arithmetic mean (n = 2) wet<br />

weight uptake factor.<br />

Manganese<br />

The uptake factor <strong>for</strong> manganese is 2.74E+03 mg/kg-wet tissue/mg/L. This value is derived from<br />

concentrations of manganese in seawater and fish (Jacques Whit<strong>for</strong>d 2008) and a second study reporting<br />

concentrations of manganese in seawater and fish (JDAC 2002) from which uptake factors were<br />

Page H-22 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

calculated, as well as a widely accepted compendium value (CSA 1987). The value of 2.74E+03 is the<br />

arithmetic mean (n = 3) wet weight uptake factor.<br />

Molybdenum<br />

The uptake factor <strong>for</strong> molybdenum is 4.64E+00 mg/kg-wet tissue/mg/L. This value is derived from<br />

concentrations of molybdenum in seawater and fish (Jacques Whit<strong>for</strong>d 2008) from which uptake factors<br />

were calculated.<br />

Nickel<br />

The uptake factor <strong>for</strong> nickel is 1.65E+03 mg/kg-wet tissue/mg/L. This value is derived from two studies<br />

reporting concentrations of nickel in seawater and fish (JDAC 2002; Jacques Whit<strong>for</strong>d 2008), as well as a<br />

compendium value (IAEA 1985 as cited in Kumblad et al. 2006). The value of 1.65E+03 is the arithmetic<br />

mean (n = 3) wet weight uptake factor.<br />

Tin<br />

The uptake factor <strong>for</strong> tin is 5.92E+03 mg/kg-wet tissue/mg/L. This value is derived from a study reporting<br />

calculated uptake factors (Eisler 1989), as well as a compendium value (IAEA 1985 as cited in Kumblad<br />

et al. 2006). The value of 5.92E+03 is the geometric mean (n = 3) wet weight uptake factor.<br />

Vanadium<br />

The uptake factor <strong>for</strong> vanadium is 2.61E+02 mg/kg-wet tissue/mg/L. This value is derived from<br />

concentrations of vanadium in seawater and fish (Jacques Whit<strong>for</strong>d 2008) from which uptake factors were<br />

calculated, as well as one study reporting calculated UP (Miramand et al. 1992). The value of 2.61E+02 is<br />

the arithmetic mean (n = 2) wet weight uptake factor.<br />

Zinc<br />

The uptake factor <strong>for</strong> zinc is 2.00E+03 mg/kg-wet tissue/mg/L. This value is a widely accepted<br />

compendium value (CSA 1987).<br />

H.3 References<br />

H.3.1 Literature Cited<br />

Agency <strong>for</strong> Toxic Substances and Disease Registry (ATSDR). 2005. Toxicological Profile <strong>for</strong> Tin and<br />

Tin Compounds. United States Department of Health and Human Services. Public Health<br />

Services. Atlanta, GA.<br />

Beiras, R., J. Bellas, N. Fernandez, J.I. Lorenzo and A. Cobelo-Garcia. 2003. <strong>Assessment</strong> of coastal<br />

marine pollution in Galicia (NW Iberian Peninsula); metal concentrations in seawater, sediments<br />

and mussels (Mytilus galloprovincialis) versus embryo-larval bioassays using Paracentrotus<br />

lividus and Ciona intestinalis. <strong>Marine</strong> Environmental Research 56: 531-553.<br />

2010 Page H-23


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

Canadian Standards Association (CSA). 1987. Guidelines <strong>for</strong> Calculating Derived Release Limits <strong>for</strong><br />

Radioactive Material in Airborne and Liquid Effluents <strong>for</strong> Normal Operation of Nuclear<br />

Facilities. Report No. CAN/CSA-N288.1-M87.<br />

Campanella, L., M.E. Conti, F. Cubadda and C. Sucapane. 2001. Trace metals in seagrass, algae and<br />

mollusks from an uncontaminated area in the Mediterranean. Environmental Pollution 111:<br />

117-126.<br />

Canadian Council of Ministers of the Environment (CCME). 2008. Canada-Wide Standard <strong>for</strong> Petroleum<br />

Hydrocarbons (PHC) in Soil: Scientific Rationale Supporting Technical Document. PN 1399.<br />

Canadian Standards Association (CSA). 1987. Guidelines <strong>for</strong> calculating derived release limits <strong>for</strong><br />

radioactive material in airborne and liquid effluents <strong>for</strong> normal operation of nuclear facilities.<br />

CAN/CSA-N288.1-M87.<br />

Conti, M.E. and G. Cecchetti. 2003. A biomonitoring study: trace metals in algae and molluscs from<br />

Tyrrhenian coastal areas. Environmental Research 93: 99-112.<br />

Di Toro, D.M., J.A. McGrath and D.J. Hansen. 2000. Technical basis <strong>for</strong> narcotic chemicals and<br />

polycyclic aromatic hydrocarbon criteria. I. Water and Tissue. Environmental Toxicology and<br />

Chemistry 19: 1951-1970.<br />

Di Toro, D.M. and J.A. McGrath. 2000. Technical basis <strong>for</strong> narcotic chemicals and polycyclic aromatic<br />

hydrocarbon criteria. II. Mixtures and Sediments. Environmental Toxicology and Chemistry 19:<br />

1971-1982.<br />

Eisler, R. 1989. Tin Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. United States Fish<br />

and Wildlife Service Biological Report 85 (1.15), Laurel, MD.<br />

EpiSuite. 2007. Estimation Programs Interface Suite <strong>for</strong> Microsoft ® Windows. Version 3.20. United<br />

States Environmental Protection Agency. Washington, DC.<br />

Frithsen, J.B. 1984. Metal incorporation by benthic fauna: relationships to sediment inventory. Estuarine,<br />

Coastal and Shelf Science 19: 523-539.<br />

Gaudry, A., S. Zeroual, F. Gaie-Levrel, M. Moskura, F.-Z. Boujrhal, R. Cherkaoui El Moursli, A.<br />

Guessous, A. Mouradi, T. Givernaud and R. Delmas. 2007. Heavy metals pollution of the<br />

Atlantic marine environment by the Moroccan phosphate industry, as observed through their<br />

bioaccumulation in Ulva lactuca. Water, Air and Soil Pollution 178: 267-285.<br />

Gewurtz, S.B., R. Lazar and G.D. Haffner. 2000. Comparison of polycyclic aromatic hydrocarbon and<br />

polychlorinated biphenyl dynamics in benthic invertebrates of Lake Erie, USA. Environmental<br />

Toxicology and Chemistry 19: 2943-2950.<br />

Gustafson, J.B., J. Griffith Tell and D. Orem. 1997. Selection of Representative TPH Fractions Based on<br />

Fate and Transport Considerations. TPHCWG Series, Volume 3.<br />

Hammerschmidt, C.R. and W.F. Fitzgerald. 2006. Bioaccumulation and trophic transfer of<br />

methylmercury in Long Island Sound. Archives of Environmental Contamination and Toxicology<br />

51: 416-424.<br />

Page H-24 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

Hou, X. and X. Yan. 1998. Study on the concentration and seasonal variation of inorganic elements in 35<br />

species of marine algae. The Science of the Total Environment 222: 141-156.<br />

International Atomic Energy Agency (IAEA). 1985. Sediment Kds and Concentration Factors <strong>for</strong><br />

Radionuclides in the <strong>Marine</strong> Environment. Vienna, Austria. Cited in Kumblad, L., U. Kautsky<br />

and B. Næslund. 2006. Transport and Fate of Radionuclides in Aquatic Environments – the Use<br />

of Ecosystem Modeling <strong>for</strong> Exposure <strong>Assessment</strong>s of Nuclear Facilities. Journal of<br />

Environmental Radioactivity 87: 107-129.<br />

Jacques Whit<strong>for</strong>d Limited. 2008. <strong>Marine</strong> Biophysical Environment Technical Study: Project Eider Rock –<br />

Proposed Petroleum Refinery and <strong>Marine</strong> Terminal in Saint John New Brunswick. Prepared <strong>for</strong><br />

Irving Oil Company, Limited. Saint John, NB.<br />

JDAC Environment (JDAC ). 2002. Human Health and <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong>s, North and South<br />

Ponds. Phase II/III Environmental Site <strong>Assessment</strong>, Muggah Creek Watershed. Report to Nova<br />

Scotia Department of Transportation and Public Works.<br />

Kumblad, L., U. Kautsky and B. Næslund. 2006. Transport and Fate of Radionuclides in Aquatic<br />

Environmnents – the Use of Ecosystem Modeling <strong>for</strong> Exposure <strong>Assessment</strong>s of Nuclear<br />

Facilities. Journal of Environmental Radioactivity 87: 107-129.<br />

Lawson, J.W., A.M. Magalhães. and E.H. Miller. 1998. Important prey species of marine vertebrate<br />

predators in the northwest Atlantic: proximate composition and energy density. <strong>Marine</strong><br />

<strong>Ecological</strong> Progress Series 164: 13-20.<br />

Lee, D.-C., C.-J. Park., J.-E. Yang, Y.-H. Jeong and H.-I. Rhee. 2000. Screening of hexavalent chromium<br />

biosorbent from marine algae. Applied Microbiology and Biotechnology 54: 597-600.<br />

Mackay, D., W.Y. Shiu and K.-C. Ma. 2000. Physical-Chemical Properties and Environmental Fate<br />

Handbook on CD-ROM. CRC Press. Boca Raton, FL.<br />

Marsham, S., G.W. Scott and M.L. Tobin. 2007. Comparison of nutritive chemistry of a range of<br />

temperate seaweeds. Food Chemistry 100: 1331-1336.<br />

Miramand, P., S.W. Fowler and J.C. Guary. 1992. Experimental study on vanadium transfer in the<br />

benthic fish Gobius minutes. <strong>Marine</strong> Biology 114: 349-353.<br />

Oshida, P.S. and L.S. Word. 1982. Bioaccumulation of chromium and its effects on reproduction in<br />

Neanthes arenaceodentata (Polychaeta). <strong>Marine</strong> Environmental Research 7: 167-174.<br />

Phillips, D.J.H. 1991. Heavy metals in sediments and shellfish from Cork Harbour, Ireland. <strong>Marine</strong><br />

Pollution Bulletin 22(9): 467-469.<br />

Rahman, M.S., C.O. Perera, X.D. Chen, R.H. Driscoll and P.L. Potluri. 1996. Density, shrinkage and<br />

porosity of Calamari mantle meat during air drying in a cabinet dryer as a function of water<br />

content. Journal of Food Engineering 30: 135-145.<br />

2010 Page H-25


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix H: Uptake Factors from Water and Sediment to <strong>Marine</strong> Biota<br />

Sanchez-Rodriguez, I., M.A. Huerta-Diaz, E. Choumiline, O. Holguin-Quinones and J.A. Zertuche-<br />

Gonzalez. 2001. Elemental concentrations in different species of seaweeds from Loreto Bay, Baja<br />

Cali<strong>for</strong>nia Sur, Mexico: implications <strong>for</strong> the geochemical control of metals in algal tissue.<br />

Environmental Pollution 114: 145-160.<br />

Seidel, S.L., V.F. Hodge and E.D. Goldberg. 1980. Tin as an environmental pollutant. Thalassia<br />

jugoslavica 16 : 209-223. Cited in Agency <strong>for</strong> Toxic Substances and Disease Registry (ATSDR).<br />

2005. Toxicological Profile <strong>for</strong> Tin and Tin Compounds. United States Department of Health and<br />

Human Services. Public Health Services. Atlanta, GA.<br />

Topcuoglu, S., Ç. Kirbasoglu and N. Güngör. 2002. Heavy metals in organisms and sediments from<br />

Turkish Coast of the Black Sea, 1997-1999. Environment International 27: 521-526.<br />

United States Environmental Protection Agency (U.S. EPA). 1993. Wildlife Exposure Factors Handbook.<br />

Office of Health and Environmental <strong>Assessment</strong>, Office of Research and Development.<br />

Washington, DC. EPA/600/R-93/187.<br />

United States Environmental Protection Agency (U.S. EPA). 1999. Screening Level <strong>Ecological</strong> <strong>Risk</strong><br />

<strong>Assessment</strong> Protocol <strong>for</strong> Hazardous Waste Combustion Facilities. Office of Solid Waste and<br />

Emergency Response. Washington, DC.<br />

United States Environmental Protection Agency (U.S. EPA). 2000. Bioaccumulation Testing and<br />

Interpretation <strong>for</strong> the Purpose of Sediment Quality <strong>Assessment</strong>: Status and Needs.<br />

Bioaccumulation Analysis Workgroup. Washington, DC.<br />

United States Environmental Protection Agency (U.S. EPA). 2005. Human Health <strong>Risk</strong> <strong>Assessment</strong><br />

Protocol <strong>for</strong> Hazardous Waste Combustion Facilities (HHRAP), Final. Washington, DC.<br />

EPA530-R-05-006.<br />

Vanier, C., D. Planas and M. Sylvestre. 1999. Empirical relationships between polychlorinated biphenyls<br />

in sediments and submerged rooted macrophytes. Canadian Journal of Fisheries and Aquatic<br />

Sciences 56: 1792-1800.<br />

Vanier, C. and D. Planas. 2001. Equilibrium partition theory applied to PCBs in macrophytes.<br />

Environmental Science and Technology 35: 4830-4833.<br />

Vasconcelos, M.T.S.D. and M.F.C. Leal. 2001. Seasonal variability in the kinetics of Cu, Pb, Cd and Hg<br />

accumulation by macroalgae. <strong>Marine</strong> Chemistry 74: 65-85.<br />

Page H-26 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV)<br />

Effect Magnitude Benchmark Values<br />

Appendix I <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong><br />

Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

2010 Page I-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Table of Contents<br />

Appendix I <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values<br />

(TRV) and Effect Magnitude Benchmark Values ..................................... I-1<br />

I.1 Introduction .......................................................................................................... I-5<br />

I.2 Uncertainty Factors ............................................................................................. I-5<br />

I.2.1 Uncertainty Factors <strong>for</strong> Exposure Duration .................................................... I-6<br />

I.2.2 Uncertainty Factors <strong>for</strong> Toxicity Endpoint ....................................................... I-6<br />

I.2.3 Uncertainty Factors <strong>for</strong> Body Mass ................................................................ I-8<br />

I.2.4 Uncertainty Factors <strong>for</strong> Individual <strong>Risk</strong> ........................................................... I-9<br />

I.3 Oral Reference Dose Values ............................................................................... I-9<br />

I.3.1 Confidence in Reference Dose Values ........................................................... I-9<br />

I.3.2 Reference Dose For Trace Elements ........................................................... I-10<br />

I.3.3 Reference Dose <strong>for</strong> BTEX Compounds ........................................................ I-16<br />

I.3.4 Reference Dose <strong>for</strong> TPH Compounds .......................................................... I-18<br />

I.3.5 Reference Dose For Polycyclic Aromatic Hydrocarbons .............................. I-28<br />

I.3.6 Reference Dose For Other Organic Compounds ......................................... I-30<br />

I.4 Environmental Effect Magnitude ........................................................................ I-33<br />

I.4.1 Review of National Water-Quality Guidelines and Selection of<br />

Benchmarks .................................................................................................. I-34<br />

I.4.2 Evaluation of National Guidelines and Methodologies ................................. I-41<br />

I.4.3 Review of National Sediment Quality Guidelines and Selection of<br />

Benchmarks .................................................................................................. I-47<br />

I.5 References ........................................................................................................ I-57<br />

I.5.1 Literature Cited ............................................................................................. I-57<br />

I.5.2 Internet Sites ................................................................................................. I-65<br />

List of Tables<br />

Table I-1 Breakdown of TPH Compounds Followed in the ERA Model ................ I-19<br />

Table I-2 Toxicity Thresholds <strong>for</strong> TPH Compounds .............................................. I-21<br />

Table I-3 Toxicity Thresholds <strong>for</strong> TPH Compounds .............................................. I-22<br />

Table I-4 Toxicity Thresholds <strong>for</strong> TPH Compounds .............................................. I-24<br />

Table I-5 CWS Tier 1 2008 Updated Soil Quality Guidelines ................................ I-25<br />

Table I-6 Summary of LOAEL-Based Mammalian Reference Dose Values <strong>for</strong><br />

TPH Fractions and Products .................................................................. I-26<br />

Table I-7 Mammalian Reference Dose Values <strong>for</strong> Petroleum Hydrocarbons ........ I-26<br />

Table I-8 Avian Reference Dose Values <strong>for</strong> Petroleum Hydrocarbons ................. I-28<br />

Table I-9 Chemical-Class Correction Factors and Critical Tissue<br />

Concentrations <strong>for</strong> Aquatic Biota ........................................................... I-40<br />

Table I-10 <strong>Marine</strong> Water Effect Magnitude Benchmarks ........................................ I-43<br />

Table I-11 <strong>Marine</strong> Sediment Effect Magnitude Benchmarks ................................... I-51<br />

2010 Page I-3


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

List of Figures<br />

Figure I-1 Tiered Approach <strong>for</strong> the Application of Uncertainty Factors in ERA ......... I-7<br />

Figure I-2 Conceptual Model of Environmental Effect Magnitude ........................... I-33<br />

Page I-4 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

I.1 Introduction<br />

This document outlines the methods used to determine oral toxicity reference values (TRV) <strong>for</strong> mammals<br />

and birds and water and sediment toxicity benchmarks <strong>for</strong> aquatic plants, invertebrates and fish. Oral<br />

reference doses, the basis <strong>for</strong> TRV derivation, and toxicity benchmarks were obtained from toxicological<br />

studies found in the primary scientific literature and published government documents (e.g., Ontario<br />

Ministry of the Environment (OMOE), United States Environmental Protection Agency (U.S. EPA),<br />

Canadian Council of Ministers of the Environment (CCME), and Oak Ridge National Laboratory<br />

(ORNL)). The TRV data are used as benchmark against which toxicological effects of chemicals of<br />

potential concern (COPC) can be judged. No preference was given to any single source of data; rather,<br />

sources and studies were evaluated <strong>for</strong> reliability (i.e., scientific confidence) and suitability <strong>for</strong> the ERA<br />

through scientific scrutiny and professional judgment.<br />

I.2 Uncertainty Factors<br />

The preferred toxicological database that would support a TRV <strong>for</strong> a KI should include chronic or multigenerational<br />

exposure studies of relevant test species (e.g., the KI of interest or a phylogenetically similar<br />

species) to appropriate chemical <strong>for</strong>ms of the COPC of interest. One or more relevant biological<br />

endpoints such as growth, reproductive effects, or survival should be evaluated. Databases that meet these<br />

requirements are available <strong>for</strong> some chemicals, but in most cases toxicity of COPC to wildlife is generally<br />

based on dose-response studies conducted using laboratory animals such as mice, rats, chickens and ducks<br />

where acute (e.g., LD50, LC50) and chronic (e.g., NOAEL, LOEAL) toxicity endpoints are measured. In<br />

ecological risk assessments, it is wildlife species (rather than laboratory animals) that are evaluated <strong>for</strong><br />

exposure to chemicals. Because it is impractical to evaluate the toxicity of all possible COPC in the<br />

environment to all possible wildlife species, it is standard practice, and a fundamental step in the ERA<br />

process, to apply uncertainty factors (UF; also known as safety factors) to laboratory-generated<br />

toxicological data to make them applicable to other mammalian and avian wildlife species.<br />

In the toxicological literature, UF are often applied as factors of 10; however, there is no well-defined<br />

scientific basis <strong>for</strong> this practice. As applied in human toxicology, UF can build upon each other to levels<br />

that would be unreasonable <strong>for</strong> ERA. For example, the U.S. EPA (1994a) uses a modification of<br />

guidelines <strong>for</strong> human toxicology proposed by the National Academy of Sciences (NAS 1977; 1980) as<br />

follows:<br />

• use 10X when extrapolating from studies using healthy humans, to account <strong>for</strong> variation in sensitivity<br />

among members of the human population<br />

• use an additional 10X when extrapolating from long-term animal studies to humans<br />

• use an additional 10X when extrapolating from less than chronic studies on animals (less than chronic<br />

no-observed adverse effect level (NOAEL) to chronic NOAEL)<br />

• use an additional 10X when deriving a reference dose from a lowest observed adverse effect level<br />

(LOAEL) instead of a NOAEL, to account <strong>for</strong> the extrapolating uncertainty<br />

• use professional judgment to determine another uncertainty factor between 0 and 10, depending upon<br />

the overall scientific uncertainty of the study<br />

2010 Page I-5


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

There<strong>for</strong>e, UF in human toxicology can range up to 10 5 . More recent documentation relevant to ERA<br />

practice (U.S. EPA 2002a) recommends that UF should range between 1 and 10, with “preferred” values<br />

of 1, 3 or 10 (the number 3 is identified as approximating half an order of magnitude on a log scale).<br />

In ERA, toxicological extrapolations can include those between species, those that address the difference<br />

between short-term studies and chronic exposures, those related to the selection of toxicological<br />

endpoints, along with other factors that may need to be addressed based upon the professional judgment<br />

of the practitioner. The Canadian Council of Ministers of the Environment (CCME 1997) speaks to the<br />

important role of professional judgment in ERA.<br />

The use of chronic LOAEL data derived from studies that determine reproductive, survival, or growth<br />

endpoints was chosen as the basis <strong>for</strong> predicting KI population-level responses to COPC. The LOAELbased<br />

benchmark represents a threshold level at which adverse effects are likely to become evident<br />

(Sample et al. 1996). The use of the LOAEL is appropriate since a TRV based on the LOAEL is used as<br />

the denominator in the hazard quotient (HQ) calculation, and HQ values equal to or greater than is<br />

considered indicative of potential adverse effects. In cases where no chronic LOAEL value is available, a<br />

NOAEL toxicity value may be selected, or UF may be applied to other existing exposure and<br />

toxicological data using a tiered process to derive suitable ecological TRV (Figure I-1). When TRV are<br />

based on U.S. EPA <strong>Ecological</strong> Soil Screening Levels (EcoSSL), NOAEL are often the selected endpoint,<br />

but this selection can vary depending on the chemical (Section 4.0).<br />

The UF scheme outlined in Figure I-1 is based on guidance provided by Ohio EPA (2003), U.S. EPA<br />

(2002a) and Sample and Arenal (1999).<br />

I.2.1 Uncertainty Factors <strong>for</strong> Exposure Duration<br />

In cases where a search of scientific data indicates a lack of chronic studies <strong>for</strong> any particular COPC, UF<br />

may be applied to adjust toxicity data to a chronic exposure basis. Acute studies are of short duration,<br />

generally less than one week. Subchronic exposures are of longer duration (generally less than 90 days)<br />

but may be considered equivalent to a chronic study if a critical life stage (such as the gestational period)<br />

is included. Chronic exposures would generally be greater than 90 days, exceeding 50% of the animal’s<br />

lifespan or including a reproductive period. An UF of 3.0 (half an order of magnitude on a log scale) is<br />

used to adjust from subchronic to chronic, and an UF of 10.0 is used to adjust from acute to chronic. It<br />

should be noted that preference is given to longer duration exposure studies in cases where published data<br />

are available; acute data are used otherwise.<br />

I.2.2 Uncertainty Factors <strong>for</strong> Toxicity Endpoint<br />

When a search of scientific data indicates the absence of reproductive or other per<strong>for</strong>mance-based toxicity<br />

endpoints indicating a potential <strong>for</strong> adverse effects at the population level, other less sensitive toxicity<br />

endpoints may be considered. Where only a lethal dose (LD50) is available, an UF of 10.0 (an order of<br />

magnitude) is applied to estimate a LOAEL from LD50 data. Preference is always given to sub-lethal data,<br />

and lethal data are used otherwise.<br />

Page I-6 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

NOTES:<br />

* A NOAEL can be used if no appropriate LOAEL is available, but the resultant RfD should be considered more<br />

conservative than if it was derived using the LOAEL. Refer to document text <strong>for</strong> details.<br />

** No inter-class UF is used to derive TRV (i.e., mammalian data are not used as the basis to derive avian TRV).<br />

*** An UF of 3.0 is not required if the RfD <strong>for</strong> an endangered species is based on a NOAEL. Refer to document text<br />

<strong>for</strong> details.<br />

Figure I-1 Tiered Approach <strong>for</strong> the Application of Uncertainty Factors in<br />

ERA<br />

2010 Page I-7


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

NOAEL values were not adjusted upwards to estimate LOAEL values. Where the only chronic endpoint<br />

available is a NOAEL, it is used directly and reported as such in the discussion of uncertainties. Hazard<br />

quotient values based on the NOAEL may be permitted to slightly exceed a value of 1.0 because the<br />

NOAEL does not signify toxicological effects.<br />

I.2.3 Uncertainty Factors <strong>for</strong> Body Mass<br />

Laboratory data used to develop TRV <strong>for</strong> wildlife species are often modified to account <strong>for</strong> taxonomic<br />

(e.g., genus, family, order) or body mass differences between the test species and the wildlife species.<br />

Such modifications typically involve the application of UF of values 1.0, 3.0 or 10.0 (U.S. EPA 1995;<br />

Duke and Taggart 2000; Ohio EPA 2003). Aside from the use of UF, a number of other methods have<br />

been used to extrapolate toxicity data (both acute and chronic) between species with different body<br />

masses. The application of acute-based extrapolation factors (derived using LD50, HD5 and standard<br />

deviation) to reproductive toxicity data (Luttik et al. 2005), interspecies correlation estimation (ICE)<br />

models (Raimondo et al. 2007) and allometric scaling (Travis and White 1988; Chappell 1992; Mineau<br />

et al. 1996; Sample and Arenal 1999) have all been used. These methods are not exclusive of one another<br />

and combinations of methods can be applied. Each of these methods has advantages and disadvantages,<br />

and none is ideal. For example, uncertainty factors between 1 and 10 are often arbitrarily assigned with no<br />

scientific basis; extrapolation factors require large statistical data sets; ICE models are restrained by<br />

limited chronic wildlife data; and there is incomplete chemical-specific data to support scaling factors <strong>for</strong><br />

allometric relationships, especially <strong>for</strong> chemicals with daughter compounds that may be more toxic than<br />

the parent (Chappell 1992). Ultimately, the choice in method <strong>for</strong> use in ERA comes to scientific<br />

defensibility, practicality, and professional judgment.<br />

The rationale to apply allometric scaling to toxicity is that numerous physiological processes directly<br />

associated with metabolism (e.g., uptake, distribution and biotrans<strong>for</strong>mation) follow a predictable<br />

relationship with body mass (Travis and White 1988; Chappell 1992; Mineau et al. 1996; Sample and<br />

Arenal 1999). The slope of the line linking chemical toxicity to body mass is equivocal, and<br />

extrapolations based on body mass raised to the power of values between 0.6 and 1.5 have all been<br />

suggested <strong>for</strong> use in toxicity scaling among species with different mass (Davidson et al. 1986; Travis and<br />

White 1988; Chappell 1992; Mineau et al. 1996; Sample et al. 1996; Sample and Arenal 1999). There are<br />

undoubtedly circumstances where individual species sensitivity to toxicants will vary in ways that run<br />

counter to a generalized allometric model. Data from numerous sources support an allometric exponent<br />

<strong>for</strong> mammals that lies between 0.60 and 0.80 (Chappell 1992); however, the data underlying this<br />

relationship are mainly derived from acute exposure studies.<br />

Unlike the case <strong>for</strong> mammals, only one study has explicitly evaluated scaling factors in avian toxicity<br />

(Mineau et al. 1996). The “Mineau scaling factor” (U.S. EPA 2005a) of 1.15 has been applied by U.S.<br />

EPA in their T-REX model, and by Sample et al. (1996) <strong>for</strong> the assessment of interspecies avian acute<br />

toxicity. Mineau et al. (1996) cautioned against applying acute scaling factors to chronic toxicity.<br />

However, both the U.S. EPA and Environment Canada use this scaling factor with acute and chronic data<br />

(U.S. EPA 2005a; Canada Gazette 2008). Based on the Kleiber Power Law (Kleiber 1932) and given that<br />

bird species with a wide range of body weights were used to derive this factor (along with various<br />

mammals), there is no apparent reason to exclude birds from body mass scaling with an exponent of 0.75.<br />

Page I-8 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Based on the evidence supporting an allometric scaling relationship of body mass raised to 0.75, toxicity<br />

reference values (TRV) <strong>for</strong> mammalian and avian wildlife resources are estimated from laboratory data<br />

generated with species of different body weight (BW) using the following equation:<br />

(1 - 0.75)<br />

TRVKI = TRVtest species x (BWtest species / BWKI)<br />

I.2.4 Uncertainty Factors <strong>for</strong> Individual <strong>Risk</strong><br />

The focus of an ecological risk assessment is normally to provide protection <strong>for</strong> wildlife at the population<br />

level. This focus differs from human toxicology and human health risk assessment, where protection of<br />

individuals is of paramount concern. However, an exception, which has regulatory <strong>for</strong>ce through federal<br />

legislation such as the Species at <strong>Risk</strong> Act (SARA) and equivalent legislation in most provinces, occurs<br />

when species that are <strong>for</strong>mally protected are evaluated. In order to af<strong>for</strong>d endangered species an<br />

appropriate level of protection in ERA, TRV were based on either NOAEL, or LOAEL divided by an UF<br />

of 3.0. This is value is based on professional judgment and is expected to be protective yet realistic. These<br />

two approaches are considered to be equivalent and are intended to protect endangered wildlife resources<br />

from exposure to doses of COPC that would cause an adverse effect at the individual level.<br />

I.3 Oral Reference Dose Values<br />

The following sections present the reference doses (expressed as milligrams COPC ingested, per kilogram<br />

body weight, each day, or mg/kg/d) selected <strong>for</strong> use in the ERA model <strong>for</strong> each COPC <strong>for</strong> mammalian<br />

and avian KI. For each reference dose, the supporting studies are discussed, a level of confidence in the<br />

reference dose is assigned, and, where appropriate, the promulgating agency is identified.<br />

I.3.1 Confidence in Reference Dose Values<br />

Depending upon the number of studies reviewed, the test species evaluated, and the toxicity endpoints<br />

reported, the scientific confidence in each reference dose value identified is ranked as being high, medium<br />

or low. High confidence exists where the reference dose is based upon a large number of scientific<br />

studies, with several test species, and with chronic toxicity data that represent growth, reproductive, or<br />

survival endpoints. In general, these reference dose values would include datasets such as those reported<br />

by the U.S. EPA in the EcoSSL series of reports. High confidence is also assigned to reference dose<br />

values that have gained general acceptance in the risk assessment community over a number of years,<br />

such as those presented in the Oak Ridge National Laboratory (ORNL) series of reports. A medium level<br />

of confidence would generally be assigned to reference dose values that are based on three or more<br />

studies, although the reported exposures may not have all been of chronic duration, exposure routes may<br />

not have been via food ingestion, or the toxicity endpoints may not have been optimal. A low level of<br />

confidence would be assigned to reference dose values that are based on fewer than three studies, studies<br />

of short duration, or studies that report relatively insensitive toxicological endpoints. A higher overall UF<br />

is applied to such studies in order to estimate the reference dose value.<br />

2010 Page I-9


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

I.3.2 Reference Dose For Trace Element<br />

I.3.2.1 Barium<br />

The U.S. EPA has recently conducted an in-depth review of the toxicological literature pertaining to the<br />

risk effects of barium on birds and mammals (U.S. EPA 2005b). Of 837 studies examined, ten studies met<br />

rigorous screening criteria and addressed risk effects on mammals, and one addressed risk effects on<br />

birds.<br />

Mammals<br />

The <strong>Marine</strong> ERA model uses the same TRV as the U.S. EPA (2005b) uses <strong>for</strong> deriving an EcoSSL that is<br />

protective of barium risk effects on mammals. Using the ten studies addressing risk effects on mammals,<br />

the U.S. EPA (2005b) applies the geometric mean of NOAEL from studies that monitored growth or<br />

reproductive endpoints as the EcoSSL TRV. This value (51.8 mg/kg/d) is lower than any bounded<br />

LOAEL <strong>for</strong> studies monitoring growth, reproductive, or survival endpoints. The chemical <strong>for</strong>m of barium<br />

administered, however, is typically barium chloride or barium acetate, which would be considerably more<br />

bioavailable than most <strong>for</strong>ms of barium found in the environment (some <strong>for</strong>ms of barium, such as barium<br />

sulphate, have very low bioavailability when orally administered). The toxicological literature from which<br />

this geometric mean was calculated contained studies using various exposure durations (i.e., subchronic<br />

and chronic) and was there<strong>for</strong>e considered conservatively representative of chronic exposure without the<br />

application of uncertainty factors. Either rats or mice were the test subjects in each toxicological study<br />

considered <strong>for</strong> this geometric mean value. There<strong>for</strong>e, body- weight-based scaling factors are not applied<br />

since this dose is considered representative of small mammals and conservative <strong>for</strong> larger mammals. This<br />

reference dose is assigned a high level of confidence, although it may be highly conservative <strong>for</strong> some<br />

<strong>for</strong>ms of barium commonly found in the environment.<br />

Birds<br />

The U.S. EPA review and evaluation of primary toxicological literature pertaining to exposure of barium<br />

to birds identified only one study considered appropriate <strong>for</strong> the derivation of an avian EcoSSL (U.S.<br />

EPA 2005b). An avian TRV was not established because the U.S. EPA requires at least three studies from<br />

two species as a minimum <strong>for</strong> deriving EcoSSL values. The literature review <strong>for</strong> EcoSSL TRV is<br />

typically very thorough and the results generally provide a good representation of current toxicological<br />

knowledge <strong>for</strong> the chemical being reviewed. Sample et al. (1996) provide the results of one toxicological<br />

study addressing the risk effects of barium on birds. This study, by Johnson et al. (1960), was also<br />

identified by the U.S. EPA in the EcoSSL avian toxicity review <strong>for</strong> barium (U.S. EPA 2005b). Johnson et<br />

al. (1960) provided barium to one-day-old chicks as barium hydroxide. Chicks were provided barium in<br />

the diet <strong>for</strong> four weeks (subchronic duration) at eight dose levels (doses successively doubled from 250 to<br />

32,000 ppm). Based on observations of mortality (5%), 4,000 ppm was considered the subchronic<br />

LOAEL <strong>for</strong> this study. Based on both the estimated food consumption <strong>for</strong> two-week-old chicks (U.S.<br />

EPA 1988 as cited in Sample et al. 1996) and the mean body weight <strong>for</strong> chicks in the study (at day 14),<br />

this dose corresponds to a subchronic LOAEL of 416.53 mg/kg/d. This value is used in the <strong>Marine</strong> ERA<br />

model as the reference dose <strong>for</strong> TRV determination. Because of the paucity of toxicological in<strong>for</strong>mation<br />

Page I-10 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

about the risk effects of barium on birds, a comparison of interspecies sensitivity differences or additional<br />

endpoints was not possible. Consequently, this reference dose is assigned a low level of confidence.<br />

I.3.2.2 Boron<br />

Mammals<br />

The boron TRV selected <strong>for</strong> the <strong>Marine</strong> ERA model <strong>for</strong> mammals is based on the chronic LOAEL<br />

determined from studies per<strong>for</strong>med by Weir and Fisher (1972), as cited in Sample et al. (1996). The study<br />

was based on oral exposure of rats to boric acid or borax in food. The study endpoint was reproductive.<br />

Rats exposed to doses of 1,170 ppm boron as boric acid or borax became sterile; however, no adverse<br />

effects were observed at doses of 117 or 350 ppm. Because the study duration extended over three<br />

generations and incorporated all life stages, the 1,170 ppm dose (93.6 mg/kg/d) was considered to be a<br />

chronic LOAEL, while 350 ppm (28 mg/kg/d) was considered a chronic NOAEL. The LOAEL of<br />

93.6 mg/kg/d is selected <strong>for</strong> use as the daily dose <strong>for</strong> mammal species <strong>for</strong> this model.<br />

Birds<br />

The boron TRV selected <strong>for</strong> the <strong>Marine</strong> ERA model <strong>for</strong> bird species is based on the chronic LOAEL<br />

determined from studies per<strong>for</strong>med by Smith and Anders (1989), as cited in Sample et al. (1996). The<br />

study was based on oral exposure of mallard ducks to boric acid in their diet. The study endpoint was<br />

reproductive. Ducks exposed to doses of 1,000 ppm boric acid exhibited reduced egg fertility and<br />

duckling growth, increased duckling mortality and embryo mortality; however, no adverse reproductive<br />

effects were observed at lower dose levels. Because the study considered exposure throughout<br />

reproduction, the 1,000 ppm boron dose (100 mg/kg/d) was considered to be a chronic LOAEL, while<br />

288 ppm boron (28.8 mg/kg/d) was considered a chronic NOAEL. The LOAEL of 100 mg/kg/d is<br />

selected <strong>for</strong> the daily dose <strong>for</strong> bird species in the <strong>Marine</strong> ERA model.<br />

I.3.2.3 Cadmium<br />

The U.S. EPA has conducted an in-depth review of the toxicological literature pertaining to the risk<br />

effects of cadmium on birds and mammals (U.S. EPA 2005c). Of 1,953 studies examined through a<br />

rigorous screening procedure, 145 studies addressed risk effects on mammals, and 35 addressed risk<br />

effects on birds. These studies were considered in the selection of a TRV <strong>for</strong> cadmium.<br />

Mammals<br />

The U.S. EPA (2005c) uses a NOAEL value corresponding to the study with the lowest LOAEL of<br />

studies reporting values based on reproduction, growth, or survival endpoints as the EcoSSL TRV. Only<br />

studies presenting both a NOAEL and LOAEL value are considered <strong>for</strong> this selection. The <strong>Marine</strong> ERA<br />

model is based on LOAEL values when toxicological data permit. There<strong>for</strong>e, the lowest LOAEL from<br />

these studies is selected as the reference value <strong>for</strong> TRV determination in the <strong>Marine</strong> ERA model. This<br />

value (1.0 mg/kg/d) was derived from a study by Merali and Singhal (1980) in which rats were exposed to<br />

cadmium (as cadmium chloride) via oral gavage at doses of 0, 0.1, or 1.0 mg/kg/d <strong>for</strong> 7 days. Adverse<br />

effects on growth (i.e., body weight) were first observed at the 1.0 mg/kg/d dose rate. The toxicological<br />

2010 Page I-11


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

literature from which this LOAEL was selected contained studies using several types of test animals (e.g.,<br />

mouse, rat, dog, sheep) and different exposure durations (i.e., acute, subchronic, chronic); there<strong>for</strong>e, this<br />

LOAEL value has a high level of confidence and can be used <strong>for</strong> a variety of mammal species without<br />

additional uncertainty factors being applied.<br />

Birds<br />

The U.S. EPA (2005c) uses the geometric mean of NOAEL values from studies that monitored growth<br />

and reproductive endpoints. This value (1.47 mg/kg/d) is lower than any of the reported LOAEL <strong>for</strong> these<br />

endpoints and mortality and is used <strong>for</strong> TRV determination in the <strong>Marine</strong> ERA model. The test animals in<br />

the studies used towards calculation of the geometric mean included chicken, mallard, quail, and wood<br />

duck. The LOAEL carries a high level of confidence.<br />

I.3.2.4 Manganese<br />

The U.S. EPA has recently conducted an in-depth review of the toxicological literature pertaining to the<br />

risk effects of manganese on birds and mammals (U.S. EPA 2007a). Of 3,618 studies examined through a<br />

rigorous screening procedure, 58 studies addressed risk effects on mammals, and 21 addressed risk effects<br />

on birds. These studies were considered in the selection of a TRV <strong>for</strong> manganese.<br />

Mammals<br />

The <strong>Marine</strong> ERA model uses the same TRV as the U.S. EPA <strong>for</strong> deriving an EcoSSL that is protective of<br />

manganese risk effects on mammals. Using the 58 studies addressing risk effects on mammals, the<br />

U.S. EPA (2007a) applied the geometric mean of NOAEL from studies that monitored growth or<br />

reproductive endpoints as the EcoSSL TRV. This value (51.5 mg/kg/d) is lower than any bounded<br />

LOAEL <strong>for</strong> studies monitoring growth, reproductive, or survival endpoints (bounded LOAEL refers to a<br />

LOAEL from a study that reports both a NOAEL and LOAEL value). The collection of toxicological<br />

literature from which this geometric mean was calculated contained studies using several types of test<br />

animals (e.g., rat, pig, mouse, cattle and sheep), and exposure durations (i.e., acute, subchronic, and<br />

chronic); there<strong>for</strong>e, this NOAEL value can be used <strong>for</strong> a variety of mammal species without additional<br />

uncertainty factors being applied. This reference dose is assigned a high level of confidence.<br />

Birds<br />

Using the 21 studies addressing risk effects on birds, the U.S. EPA (2007a) applied the geometric mean of<br />

NOAEL from studies that monitored growth or reproductive endpoints as the EcoSSL TRV. This value<br />

(179 mg/kg/d) is lower than any LOAEL <strong>for</strong> studies monitoring growth, reproductive, or survival<br />

endpoints in the U.S. EPA database, and is used as the TRV <strong>for</strong> risk effects of manganese on bird species<br />

in the <strong>Marine</strong> ERA model. The collection of toxicological literature from which this geometric mean was<br />

calculated contained studies using large bird species as test animals (i.e., mallard, chicken, and Japanese<br />

quail) and primarily examined acute or subchronic exposures; however, it also included several of<br />

reproductive endpoints that had higher NOAEL values than the geometric mean NOAEL value.<br />

There<strong>for</strong>e, the geometric mean NOAEL value can be used as the reference dose <strong>for</strong> a variety of avian<br />

Page I-12 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

species without additional uncertainty factors being applied. This reference dose is assigned a high level<br />

of confidence.<br />

I.3.2.5 Molybdenum<br />

Mammals<br />

The molybdenum reference dose selected <strong>for</strong> mammal species is based on the chronic LOAEL<br />

determined from studies per<strong>for</strong>med by Schroeder and Mitchener (1971), as cited in Sample et al. (1996).<br />

The study was based on oral exposure of mice to molybdate (MoO4) in the diet and drinking water. The<br />

study endpoint was reproductive. Mice were exposed to molybdenum at 10 mg/L in drinking water and<br />

0.45 mg/kg in diet over a period of 3 generations. A reduction in reproductive success and a high<br />

incidence of runts were observed from molybdenum-exposed mice. This dose corresponds to a daily dose<br />

rate of 2.60 mg/kg/d based on estimated body weight and measured food and water ingestion rates and is<br />

selected <strong>for</strong> use as the reference dose <strong>for</strong> mammalian species in the <strong>Marine</strong> ERA model. This reference<br />

dose is assigned a medium level of confidence.<br />

Birds<br />

The molybdenum reference dose selected <strong>for</strong> the <strong>Marine</strong> ERA model <strong>for</strong> avian species is based on a<br />

LOAEL determined from studies per<strong>for</strong>med by Lepore and Miller (1965), as cited in Sample et al. (1996).<br />

The study was based on exposure of chickens to molybdenum in the diet. The study endpoint was<br />

reproductive. Chickens were exposed to molybdenum as sodium molybdate at concentrations of 500,<br />

1,000, or 2,000 ppm molybdenum in diet over a period of 21 days. Adverse reproductive effects (reduced<br />

embryonic viability) were observed at all concentrations tested. There<strong>for</strong>e, the lowest concentration<br />

(500 ppm) is considered the LOAEL. The LOAEL diet was converted to a daily dose rate of 35.3 mg/kg/d<br />

based on estimated body weight and food ingestion rate and is selected <strong>for</strong> use as the reference dose <strong>for</strong><br />

avian species in the <strong>Marine</strong> ERA model. Although exposure in this study was less than 90 days in<br />

duration (i.e., subchronic), it is considered chronic because it was administered during a critical lifestage<br />

(i.e., gestation). This reference dose is assigned a medium level of confidence.<br />

I.3.2.6 Nickel<br />

The U.S. EPA has recently conducted an in-depth review of the toxicological literature pertaining to the<br />

risk effects of nickel on birds and mammals (U.S. EPA 2007b). Of 1,169 studies examined through a<br />

rigorous screening procedure, 52 studies addressed risk effects on mammals, and 11 addressed risk effects<br />

on birds. These studies were considered in the selection of a TRV <strong>for</strong> nickel.<br />

Mammals<br />

The lowest LOAEL from these studies is selected as the reference value <strong>for</strong> TRV determination in the<br />

<strong>Marine</strong> ERA model. This value (2.71 mg/kg/d) was derived from a study by Pandey and Srivastava<br />

(2000), in which mice were exposed to nickel (as nickel sulfate) via oral gavage at dose rates of 0, 3.57,<br />

7.14 and 14.29 mg/kg/d <strong>for</strong> 7 weeks (5 days/week). Adverse effects on reproduction (reduced sperm cell<br />

count) were first observed at 14.29 mg/kg/d. The equivalent dose, adjusted to 7 days/week is<br />

2010 Page I-13


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

10.2 mg/kg/d, and is used as the reference dose <strong>for</strong> TRV determination in the <strong>Marine</strong> ERA model. The<br />

collection of toxicological literature from which this LOAEL was selected contained studies using several<br />

types of test animals (e.g., mouse, rat, meadow vole, cattle) and exposure durations (i.e., acute,<br />

subchronic, chronic); there<strong>for</strong>e, this LOAEL value can be used <strong>for</strong> a variety of mammal species without<br />

additional uncertainty factors being applied. This reference dose is assigned a high level of confidence.<br />

Birds<br />

The <strong>Marine</strong> ERA model uses the same TRV as the U.S. EPA <strong>for</strong> deriving an EcoSSL that is protective of<br />

nickel risk effects on birds. Using the 11 studies addressing risk effects on birds, the U.S. EPA (2007b)<br />

applies the geometric mean of NOAEL from studies that monitored growth or reproductive endpoints as<br />

the EcoSSL TRV. This value (6.71 mg/kg/d) is lower than any LOAEL <strong>for</strong> studies monitoring growth,<br />

reproductive, or survival endpoints in the U.S. EPA database. The collection of toxicological literature<br />

from which this geometric mean was calculated contained studies using mallards and chickens as test<br />

animals and primarily acute or subchronic exposures, but it also included two studies of reproductive<br />

endpoints that had higher NOAEL and/or LOAEL values than the geometric mean NOAEL value.<br />

There<strong>for</strong>e, the value of 6.71 mg/kg/d is treated as equivalent to a chronic NOAEL. This reference dose is<br />

assigned a high level of confidence.<br />

I.3.2.7 Tin (inorganic)<br />

Mammals<br />

The reference dose selected <strong>for</strong> this ERA (44 mg/kg/day) is based on the average NOAEL from two<br />

subchronic dosing studies (FDA 1972 and Theuer et al. 1971, as cited in ATSDR 2005a) where female<br />

rats, mice and hamsters were given either stannous chloride, tin fluoride or sodium pentachlorostannite in<br />

food (available ad libitum) or water (gavage) during gestational days 0-20. A NOAEL of 31 mg/kg/day<br />

(stannous chloride) based on absence of reproductive effects (i.e., number of corpora lutea and<br />

implantation and resorption sites) in rats, mice and hamsters were identified in the FDA (1972) study.<br />

This dose was also identified as the NOAEL <strong>for</strong> developmental effects based on the lack of significant<br />

changes on fetal weight, the number of live or dead fetuses, and the incidence of external and internal<br />

mal<strong>for</strong>mations. In the Theuer et al. study, exposure of rats of up to approximately 45 mg tin/kg/day<br />

(sodium pentachlorostannite) or 56 mg tin/kg/day (tin fluoride) in the diet had no significant effect on the<br />

number of resorptions, placental weight, average fetal weight, or the number of live fetuses per litter.<br />

Though these studies were sub chronic in nature, they were conducted during a reproductive period and<br />

are there<strong>for</strong>e considered chronic because exposure was received during a critical lifestage. This reference<br />

dose is assigned a medium level of confidence.<br />

Birds<br />

No acceptable avian toxicological studies were identified <strong>for</strong> use in the derivation of a TRV; there<strong>for</strong>e, no<br />

avian reference dose can be established <strong>for</strong> this COPC.<br />

Page I-14 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

I.3.2.8 Vanadium<br />

The U.S. EPA has conducted an in-depth review of the toxicological literature pertaining to the risk<br />

effects of vanadium on birds and mammals (U.S. EPA 2005d). Of 916 studies examined through a<br />

rigorous screening procedure, 48 studies addressed risk effects on mammals, and 36 addressed risk effects<br />

on birds. These studies were considered in the selection of a TRV <strong>for</strong> vanadium.<br />

Mammals<br />

The <strong>Marine</strong> ERA model is based on LOAEL values when toxicological data permits. There<strong>for</strong>e, the<br />

lowest LOAEL from these studies is selected as the reference dose <strong>for</strong> TRV determination in the <strong>Marine</strong><br />

ERA model. This value (5.11 mg/kg/d) was derived from a study by Daniel and Lillie (1938), in which<br />

rats were exposed to vanadium (as sodium metavanadate) in the diet at doses of 0, 0.44, 1.03, 5.11, 9.78<br />

and 19.0 mg/kg/d <strong>for</strong> 10 weeks. Adverse effects on growth (reduced body weight) were first observed at<br />

the 5.11 mg/kg/d dose. The collection of toxicological literature from which this LOAEL was selected<br />

included studies using rats and mice, and primarily acute and subchronic exposures, although some<br />

studies included a reproductive period and are there<strong>for</strong>e considered chronic because exposure was<br />

received during a critical life stage. This reference dose is assigned a high level of confidence.<br />

Birds<br />

The vanadium reference dose selected <strong>for</strong> the <strong>Marine</strong> ERA model <strong>for</strong> bird species is based on the chronic<br />

NOAEL determined from studies per<strong>for</strong>med by White and Dieter (1978), as cited in Sample et al. (1996).<br />

The study was based on oral exposure of mallards to vanadyl sulphate in the diet at concentrations of<br />

2.84, 10.36, and 110 mg/kg in food over a period of 12 weeks. The study endpoints considered were<br />

mortality, body weight, and blood chemistry changes. No adverse effects were observed at any dose level.<br />

Based on food consumption and body mass of the studied mallards, the maximum concentration of<br />

110 mg/kg was converted to a chronic NOAEL of 11.4 mg/kg/d. This reference dose is assigned a high<br />

level of confidence.<br />

I.3.2.9 Zinc<br />

Mammals<br />

The zinc reference dose used in the <strong>Marine</strong> ERA model <strong>for</strong> mammalian species is based on the chronic<br />

LOAEL determined from studies undertaken by Schlicker and Cox (1968), cited in Sample et al. (1996).<br />

The study was based on oral exposure of rats to zinc oxide. The study endpoint was reproductive. Rats<br />

were exposed to zinc oxide at concentrations of 2,000 and 4,000 mg/kg throughout days 1 to 16 of<br />

gestation. While rats exposed to zinc at 4,000 mg/kg displayed increased rates of fetal resorption and<br />

reduced fetal growth rates, no risk effects were observed from rats exposed to 2,000 mg/kg. There<strong>for</strong>e, the<br />

4,000 mg/kg and the 2,000 mg/kg doses are considered to be a chronic LOAEL and NOAEL,<br />

respectively. A chronic LOAEL of 320 mg/kg/d was estimated from the 4,000 mg/kg concentration in<br />

feed based on body weight and feeding rate and is selected <strong>for</strong> use as the reference dose <strong>for</strong> mammalian<br />

species in the <strong>Marine</strong> ERA model. This reference dose is assigned a high level of confidence.<br />

2010 Page I-15


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Birds<br />

The zinc reference dose used in the <strong>Marine</strong> ERA model <strong>for</strong> avian species is based on the chronic LOAEL<br />

determined from studies per<strong>for</strong>med by Stahl et al. (1990), as cited in Sample et al. (1996). The study was<br />

based on oral exposure of White Leghorn hens to zinc sulphate in diet. The study endpoint was<br />

reproductive. Hens were exposed to zinc sulphate at concentrations of 20, 200, and 2,000 mg/kg<br />

supplemental zinc plus 28 mg/kg zinc in diet over a period of 44 weeks. Hens exposed to 2,028 mg/kg<br />

zinc in diet exhibited a 20% reduction in egg hatchability, while exposure to 48 and 228 mg/kg zinc in<br />

diet resulted in no adverse effects. There<strong>for</strong>e, the 2,028 and 228 mg/kg zinc concentrations are considered<br />

to be a chronic LOAEL and NOAEL, respectively. A chronic LOAEL of 131 mg/kg/d was estimated<br />

from the 2,028 mg/kg concentration in feed based on the body weight and feeding rate and is selected <strong>for</strong><br />

use as the reference dose <strong>for</strong> avian species in the <strong>Marine</strong> ERA model. This reference dose is assigned a<br />

high level of confidence.<br />

I.3.3 Reference Dose <strong>for</strong> BTEX Compounds<br />

I.3.3.1 Benzene<br />

Mammals<br />

A chronic LOAEL was determined from studies per<strong>for</strong>med by Nawrot and Staples (1979), cited in<br />

Sample et al. (1996). The study was based on exposure of mice to benzene by gavage. The study endpoint<br />

was reproductive. Mice were exposed to benzene at doses of 0.3, 0.5 and 1 mL/kg bw/day on days 6-12 of<br />

gestation. Mice exposed to the 0.5 and the 1.0 mL/kg-bw/day dose levels showed increased maternal<br />

mortality and embryonic resorption, while fetal weights were reduced at all three dose levels. There<strong>for</strong>e,<br />

the dose of 263.6 mg/kg/d (0.3 mL/kg/day converted based on the density of benzene) was considered by<br />

Sample et al. (1996) to be a chronic LOAEL.<br />

The ATSDR (2005b) reviewed numerous studies of short-, intermediate-, and long-term exposures of<br />

mammals (mainly rats and mice) to benzene via oral exposure. No chronic effects were observed at dose<br />

levels below 10 mg/kg/d. Minor risk effects on reproduction (ovarian hyperplasia in female mice and<br />

preputial gland hyperplasia in male mice) were observed at a dose rate of 25 mg/kg/d, and more serious<br />

risk effects (endometrial polyps) were observed in female rats at a dose rate of 100 mg/kg/d. Chronic<br />

effects on survival and body weight in mice and rates were also noted at dose rates between 100 and<br />

200 mg/kg/d. Based upon the ATSDR (2005b) review, a dose rate of 100 mg/kg/d is selected, in<br />

preference to the value reported by Sample et al. (1996), as a LOAEL <strong>for</strong> use as the reference dose <strong>for</strong><br />

mammal species in the <strong>Marine</strong> ERA model. This reference dose is assigned a high level of confidence.<br />

Birds<br />

No acceptable avian toxicological studies were identified <strong>for</strong> use in the derivation of a TRV; there<strong>for</strong>e, no<br />

avian reference dose can be established <strong>for</strong> this COPC.<br />

Page I-16 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

I.3.3.2 Toluene<br />

Mammals<br />

Studies per<strong>for</strong>med by Nawrot and Staples (1979), cited in Sample et al. (1996), involved oral exposure of<br />

mice to toluene by oral gavage. The study endpoint was reproductive. Mice were exposed to toluene at<br />

doses ranging from 0.3 to 1 mL/kg/bw during days 6-12 of gestation. The reported LOAEL <strong>for</strong> mice was<br />

an exposure concentration of 0.5 and 1 mL/kg-bw/day showed significantly reduced fetal weights.<br />

There<strong>for</strong>e, the 0.3 mL/kg-bw/day dose was considered to be the chronic LOAEL. Using a density of<br />

0.866 g/mL (Sample et al. 1996), the LOAEL dose was converted to 260 mg/kg/d. Although the duration<br />

of the study was short, it was conducted during a critical life stage. There<strong>for</strong>e, the study was considered a<br />

chronic exposure study.<br />

Based on the above considerations, a reference dose of 260 mg/kg/d was identified based on the LOAEL<br />

<strong>for</strong> significant reduction in fetal body weights at higher doses. This reference dose is assigned a low level<br />

of confidence as no other studies were found to confirm the results.<br />

Birds<br />

No acceptable avian toxicological studies were identified <strong>for</strong> use in the derivation of a TRV; there<strong>for</strong>e, no<br />

avian reference dose can be established <strong>for</strong> this COPC.<br />

I.3.3.3 Ethylbenzene<br />

Mammals<br />

The ethylbenzene reference dose selected <strong>for</strong> the <strong>Marine</strong> ERA model is based on several sources. Studies<br />

per<strong>for</strong>med by Wolf et al. (1956), cited in ATSDR (2007), involved oral exposure of rats to ethylbenzene<br />

by oral gavage. The study endpoint considered was hepatotoxicity. Mice were exposed to the<br />

ethylbenzene at doses ranging from control (0) to 1000 mg/kg/d, 5 days per week, <strong>for</strong> a period of 182<br />

days. The reported LOAEL <strong>for</strong> rats was an exposure concentration of 291 mg/kg/d or greater, which<br />

showed a significant increase in the absolute and relative liver weight. There<strong>for</strong>e, the 291 mg/kg/d dose<br />

was considered to be the chronic LOAEL. Because of the non-continuous dosing of the reference study,<br />

an UF of 3.0 was applied to this LOAEL.<br />

One other study on rats per<strong>for</strong>med by Mellert et al. (2007) and reported by ATSDR (2007) reported<br />

similar results. <strong>Risk</strong> effects consistent with hepatotoxicity include increased absolute and relative liver<br />

weights (greater than or equal to 250 mg/kg/d in males and 750 mg/kg/d in females), increased incidence<br />

of hepatocyte centrilobular (greater than or equal to250 mg/kg/d in males and 750 mg/kg/d in females),<br />

and increased serum liver enzyme activity (750 mg/kg/d in males and females). In this study, groups of<br />

ten male and ten female Wister rats were administered ethylbenzene (no vehicle) by oral gavage at doses<br />

of 0, 75, 250, or 750 mg/kg/d <strong>for</strong> 13 weeks.<br />

Based on the above considerations, a reference dose of 291 mg/kg/d was identified based on the LOAEL<br />

<strong>for</strong> significant effects on the liver in rats. This reference dose is assigned a medium level of confidence.<br />

2010 Page I-17


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Birds<br />

No acceptable avian toxicological studies were identified <strong>for</strong> use in the derivation of a TRV; there<strong>for</strong>e, no<br />

avian reference dose can be established <strong>for</strong> this COPC.<br />

I.3.3.4 Xylenes<br />

Mammals<br />

Studies per<strong>for</strong>med by Marks et al. (1980), cited in ATSDR (2005c), involved oral exposure of mice to a<br />

xylene mixture (60.2% m-xylene, 9.1% o-xylene, 13.6% p-xylene, and 17.0% ethyl benzene) by oral<br />

gavage. The study endpoint was reproductive. Mice were exposed to the xylene mixture at doses of 520,<br />

1,030, 2,060, 2,580, 3,100, and 4,130 mg/kg/d on days 6 to 15 of gestation. Mice exposed to<br />

2,580 mg/kg/d or greater showed significantly reduced fetal weights and increased incidence of fetal<br />

mal<strong>for</strong>mities. There<strong>for</strong>e, the highest dose that produced no adverse effects, 2,060 mg/kg/d, was<br />

considered the chronic NOAEL, and the 2,580 mg/kg/d dose was considered to be the chronic LOAEL.<br />

Other studies reported by ATSDR (2005c) report 15% decreases in body weight gain among rats<br />

chronically exposed to xylenes at 800 and 1,000 mg/kg/d. Mice exposed to xylene at 500 mg/kg/d <strong>for</strong><br />

5 days per week over 103 weeks exhibited a 5 to 8% decrease in body weight at week 59. However, the<br />

majority of studies show no risk effects on physiological, developmental, reproductive, or survival<br />

endpoints at a dose rate of 1,000 mg/kg/d (ATSDR 2005c).<br />

Based on the above considerations, a reference dose of 500 mg/kg/d was identified based on the LOAEL<br />

<strong>for</strong> significant reductions in body weight of rats. This reference dose is assigned a high level of<br />

confidence.<br />

Birds<br />

No acceptable avian toxicological studies were identified <strong>for</strong> use in the derivation of a TRV; there<strong>for</strong>e, no<br />

avian reference dose can be established <strong>for</strong> this COPC.<br />

I.3.4 Reference Dose <strong>for</strong> TPH Compounds<br />

Total petroleum hydrocarbon (TPH) is a loosely defined aggregate measure of hydrocarbon compounds<br />

that depends on the method of analysis, as well as contaminating or interfering materials present, and<br />

represents the total mass of hydrocarbons (and in some cases other organic compounds) without<br />

identifying individual compounds. In general, indicator compounds or special hydrocarbon products are<br />

used to provide surrogate in<strong>for</strong>mation <strong>for</strong> the whole class of compounds that falls within each TPH<br />

fraction. The fractions are defined based on the number or range of carbon atoms present and on whether<br />

the compounds are considered aromatic (consisting of carbon ring structures) or aliphatic (straight chain<br />

or branched compounds).<br />

Page I-18 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

The compounds most commonly encountered in risk assessments include crude oil, as well as refined<br />

products such as lubricating oils, fuel oil or diesel oil (similar products, although diesel fuels contain<br />

additives not present in fuel oil) and gasoline. Petroleum products in the environment are subject to<br />

weathering, which results in the preferential loss of the lighter and more soluble products and thus in a<br />

general shift towards the heavier fractions in the residue. Fuel oils are complex mixtures comprising 80 to<br />

90% aliphatics, with 10 to 20% aromatics. The composition of gasoline varies widely according to the<br />

composition of the crude oil from which it was refined and the refining process (ATSDR 1999).<br />

A variety of different fractionations are used to represent the petroleum hydrocarbons, depending upon<br />

which agency is being cited. In Canada, there are two widely followed sets of guidance, namely:<br />

• the Atlantic <strong>Risk</strong> Based Corrective Action (ARBCA) methodology<br />

• the Canada Wide Standards (CWS) methodology, which describes four fractions<br />

(F1, C6-C10; F2, >C10-C16; F3, >C16-C34; and F4, >C34), with the aromatics and aliphatics being<br />

combined<br />

The TPH fractionation scheme presented in Table I-1, with the assumption that the BTEX compounds are<br />

subtracted from the TPH and evaluated separately. The F4 fractions are not assessed because they are<br />

assumed to be highly insoluble and not bioavailable, with negligible toxicity as a consequence. The F3<br />

aliphatic compounds are not considered to be sufficiently soluble in water to cause chronic effects on<br />

aquatic biota (marine plants, benthic invertebrates or fish), and the carbon chain length limits the<br />

bioavailability of these compounds. However, the oral toxicity of the F3 aliphatic fraction is considered<br />

<strong>for</strong> marine mammals and birds.<br />

Table I-1 Breakdown of TPH Compounds Followed in the ERA Model<br />

Fraction 1 (F1) Fraction 2 (F2) Fraction 3 (F3) Fraction 4 (F4)<br />

Aliphatics<br />

Aromatics<br />

Aliphatics C6-C8<br />

Aliphatics >C8-C10<br />

(BTEX not included)<br />

Aliphatics >C10-C12<br />

Aliphatics >C12-C16<br />

Aromatics >C10-C12<br />

Aliphatics >C16-C21<br />

Aliphatics >C21-C34<br />

Aromatics >C16-C21<br />

Not assessed<br />

because they are<br />

assumed to be highly<br />

insoluble and not<br />

Aromatics >C8-C10 Aromatics >C12-C16 Aromatics >C21-C34 bioavailable.<br />

The bioavailability of TPH compounds to mammals and birds varies according to the fractions present<br />

and the manner in which they are administered. Absorption via the digestive tract generally decreases<br />

with increasing molecular weight from about 80 to 97% <strong>for</strong> the BTEX range, to about 80% <strong>for</strong> the<br />

naphthalenes, although even the heavier aromatic compounds may be quite readily absorbed. The key<br />

factors in absorption include the lipophilicity of the compounds (represented by the log K OW value) which<br />

can increase absorption, as well as the molecular size, which can hinder absorption. The lighter aliphatic<br />

compounds are also readily absorbed; however, above the C16 fraction, compounds may be poorly<br />

absorbed (ranging from about 60% <strong>for</strong> C14 hydrocarbons to 5% <strong>for</strong> C28 hydrocarbons, with essentially no<br />

absorption above C32) because of their very low solubility and increasing molecular size (ATSDR 1999).<br />

2010 Page I-19


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

After absorption, the aromatic compounds are metabolized usually via oxidative metabolic pathways<br />

involving cytochrome P-450 oxidase enzymes and conjugation reactions to more water-soluble<br />

metabolites that are excreted in urine. The lighter aliphatic compounds are oxidatively metabolized and/or<br />

excreted. Hydrocarbons in the aliphatic C>8-C16 fraction may be metabolized slowly, especially following<br />

distribution in fatty tissues. The heavier aliphatic hydrocarbons, although poorly absorbed, are poorly<br />

metabolized, being preferentially distributed to the liver and fatty tissues where they may be deposited as<br />

granulomas (ATDSR 1999). There<strong>for</strong>e, bioaccumulation of TPH compounds can occur, particularly <strong>for</strong><br />

the heavier aromatics, as well as the middle and heavier range (F2 and F3) aliphatic compounds.<br />

The petroleum hydrocarbon fraction reference doses selected <strong>for</strong> the <strong>Marine</strong> ERA model <strong>for</strong> mammal<br />

species are based on a weight-of-evidence approach that combines data from numerous studies and<br />

compiled data sources. Four main reference documents were used as sources <strong>for</strong> the derivation of the<br />

daily doses used in the <strong>Marine</strong> ERA model:<br />

• Agency <strong>for</strong> Toxic Substances and Disease Registry toxicological profile <strong>for</strong> Total Petroleum<br />

Hydrocarbons (ATSDR 1999)<br />

• Total Petroleum Hydrocarbon Criteria Working Group Series Volume 4 (TPHCWG 1997)<br />

• Massachusetts Department of Environmental Protection (MADEP) petroleum hydrocarbon toxicity<br />

values (MADEP 2003)<br />

• CWS <strong>for</strong> Petroleum Hydrocarbons in Soil (CCME 2000, 2008)<br />

Each source provides reference doses, or a range of reference doses <strong>for</strong> one or more subsets of petroleum<br />

hydrocarbons; however, only the CWS provide reference dose values and criteria that are specifically<br />

intended to be used <strong>for</strong> mammalian and avian KI.<br />

I.3.4.1 ATSDR Toxicological Profile<br />

The ATSDR (1999) toxicological profile provides summaries of LOAEL values <strong>for</strong> mammals taken from<br />

numerous supporting studies with various endpoints <strong>for</strong> various fractions of the aliphatic and aromatic<br />

hydrocarbons. The LOAEL values follow a general trend of decreasing toxicity with increasing carbon<br />

number, while the aromatic compounds have generally higher toxicity (lower LOAEL values) than those<br />

of the aliphatic compounds within the same range of carbon numbers.<br />

The ATSDR (1999) defines the TPH fractions as outlined in Table I-2, and relevant LOAEL values are<br />

identified in the table as those presented by ATSDR that reference levels of risk effects that relate to<br />

organism growth, body weight, survival, or reproductive endpoints (many of the reported biological<br />

endpoints reference histological, hematological, cancer, or other endpoints <strong>for</strong> which the population-level<br />

relevance to wildlife species is unclear).<br />

Page I-20 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Table I-2 Toxicity Thresholds <strong>for</strong> TPH Compounds<br />

TPH Fraction<br />

Aromatics<br />

C5-C9<br />

Aromatics<br />

>C9-C16<br />

Aromatics<br />

>C16-C35<br />

Aliphatics<br />

C5-C8<br />

Aliphatics<br />

>C8-C16<br />

Aliphatics<br />

>C16-C35<br />

SOURCE: ATSDR (1999)<br />

Background and Reported <strong>Risk</strong>s<br />

The BTEX compounds are used as surrogates <strong>for</strong> the toxicity of this<br />

fraction. The BTEX compounds cause neurological effects,<br />

generally central nervous system depression, when administered<br />

orally. The lower range of relevant LOAEL values is between 10 and<br />

100 mg/kg/d <strong>for</strong> benzene, and greater than 100 mg/kg/d <strong>for</strong> toluene,<br />

ethylbenzene and xylenes.<br />

The oral toxicity of naphthalene (>C10-C12) is used as a surrogate<br />

<strong>for</strong> this fraction. The most common risk effects of naphthalene<br />

exposure are cataract <strong>for</strong>mation and retinal damage; neurological<br />

effects and mild hepatic effects also occur. The lowest reliable<br />

LOAEL <strong>for</strong> population-level effects indicators begins at dose levels<br />

of around 100 mg/kg/d.<br />

The oral toxicities of fluorene and fluoranthene are used as<br />

surrogates <strong>for</strong> this fraction, although the fraction consists entirely of<br />

PAH, including anthracene, fluorene, phenanthrene and pyrene in<br />

the >C16-C21 range, and others, including fluoranthene,<br />

benz(a)anthracene, benzofluoranthenes and benzo(a)pyrene in the<br />

>C21-C35 range. The lowest reliable LOAEL <strong>for</strong> fluorene and<br />

fluoranthene occurs at dose levels around 100 mg/kg/d.<br />

The toxicity of n-hexane is used as a surrogate <strong>for</strong> this fraction.<br />

Effects on body weight as well as neurological responses are<br />

reported at a dose level of around 100 mg/kg/d.<br />

The oral toxicity of JP-8 fuel is used as a surrogate <strong>for</strong> this fraction;<br />

other similar products include JP-5, JP-7 and kerosene (fuel oil #1).<br />

The lowest reliable LOAEL <strong>for</strong> relevant endpoints included effects<br />

on development and body weight beginning at dose levels of around<br />

1,000 mg/kg/d.<br />

The health-effects data <strong>for</strong> mineral oils are used as surrogates <strong>for</strong><br />

this fraction. Most health effects are related to hepatic deposits of<br />

fatty materials, as well as effects on mesenteric lymph nodes, both<br />

of which relate to the metabolic processing of these oils, which<br />

otherwise have low apparent bioavailability and toxicity.<br />

Toxicity<br />

Threshold<br />

(mg/kg/d)<br />

100<br />

2010 Page I-21<br />

100<br />

100<br />

100<br />

1,000<br />

>1,000


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

I.3.4.2 TPHCWG Reference Doses<br />

The TPHCWG was <strong>for</strong>med to develop scientifically defensible in<strong>for</strong>mation <strong>for</strong> establishing soil cleanup<br />

levels that are protective of human health at hydrocarbon-contaminated sites. Toxicity criteria were<br />

developed <strong>for</strong> specific hydrocarbon fractions, with the intention of supporting risk assessment methods. A<br />

reference dose (RfD) was defined, following U.S. EPA risk assessment guidance, as "an estimate of daily<br />

exposure to the human population, including sensitive subgroups, that is likely to be without appreciable<br />

risk of deleterious risk effects during a lifetime". The RfD was developed by first choosing a critical study<br />

to determine the NOAEL, or if a NOAEL was not available, then a LOAEL was selected. The most<br />

appropriate sources <strong>for</strong> the NOAEL and LOAEL were considered to be chronic oral studies using<br />

laboratory animals, with subchronic oral data being accepted where chronic studies were not available.<br />

Uncertainty and modifying factors were used to make adjustments where chronic NOAEL values were<br />

not available and so that RfD values based on studies of laboratory animals are adequately protective of<br />

humans. There<strong>for</strong>e, although the TPHCWG values are designed to be protective of humans, they are<br />

based on animal studies, and the underlying animal studies may be in<strong>for</strong>mative <strong>for</strong> the process of<br />

developing ecological reference dose values. A summary of the animal data upon which the TPHCWG<br />

RfD values are based is provided in Table I-3, although the suggested toxicity threshold values are based<br />

on professional judgment; they are not in TPHCWG document.<br />

Table I-3 Toxicity Thresholds <strong>for</strong> TPH Compounds<br />

TPH Fraction<br />

Aromatics<br />

>C5-C8<br />

Aromatics<br />

>C8-C16<br />

Background and Reported <strong>Risk</strong>s<br />

Based on the BTEX compounds and styrene, TPHCWG (1997)<br />

identifies a human RfD of 0.2 mg/kg/d. The animal studies and<br />

chemicals upon which this RfD was based included rats exposed<br />

to toluene (NOAEL = 223 mg/kg/d, LOAEL = 439 mg/kg/d based<br />

on liver and kidney weight changes); rats exposed to ethylbenzene<br />

(NOAEL = 97.1 mg/kg/d, LOAEL = 291 mg/kg/d based on<br />

histopathologic changes in liver and kidney); rats and mice<br />

exposed to xylenes (NOAEL = 179 mg/kg/d); and dogs exposed to<br />

styrene (NOAEL = 200 mg/kg/d, LOAEL = 400 mg/kg/d based on<br />

hematological changes). Based on the above, an appropriate<br />

toxicity threshold <strong>for</strong> light aromatic compounds is approximately<br />

300 mg/kg/d.<br />

TPHCWG (1997) refers to two studies of rats exposed to<br />

naphthalene and methylnaphthalenes. NOAEL values ranged from<br />

150 to 300 mg/kg/d. A LOAEL of 1,000 mg/kg/d was reported <strong>for</strong><br />

decreased body weight in male rats after 13 weeks exposure, and<br />

a LOAEL of 300 mg/kg/d was reported <strong>for</strong> other histopathologic<br />

changes. A developmental NOAEL of >450 mg/kg/d was reported<br />

<strong>for</strong> fetal development with maternal exposure during days 6 to 15<br />

of gestation. Based on the above, an appropriate toxicity threshold<br />

<strong>for</strong> the >C8 to C16 aromatic fraction is approximately 500 mg/kg/d.<br />

Toxicity<br />

Threshold<br />

(mg/kg/d)<br />

300<br />

Page I-22 2010<br />

500


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Table I-3 Toxicity Thresholds <strong>for</strong> TPH Compounds (cont’d)<br />

TPH Fraction<br />

Aromatics<br />

>C16-C35<br />

Aliphatics<br />

>C5-C8<br />

Aliphatics<br />

>C8-C16<br />

Aliphatics<br />

>C16-C35<br />

Aliphatic<br />

SOURCE: TPHCWG (1997)<br />

Background and Reported <strong>Risk</strong>s<br />

TPHCWG (1997) found no available data from which to develop an<br />

RfD, so the RfD <strong>for</strong> pyrene is used as a surrogate <strong>for</strong> the fraction.<br />

The RfD value <strong>for</strong> pyrene is based on the IRIS value, which in turn<br />

is based on a 13-week oral gavage study in mice. Nephropathy<br />

and decreased kidney weight were observed in male and female<br />

mice. The NOAEL was 75 mg/kg/d and the LOAEL was 125<br />

mg/kg/d. Reproductive endpoints were not examined, and it is<br />

unclear whether effects on growth, survival or reproduction would<br />

occur at a higher or lower dose than the recommended toxicity<br />

threshold of 125 mg/kg/d.<br />

The Oral RfD <strong>for</strong> humans was calculated by TPHCWG (1997) from<br />

the inhalation toxicity of commercial hexane.<br />

The TPHCWG (1997) used studies on de-aromatized petroleum<br />

streams and JP-8 (predominantly C9-C16) to address this fraction.<br />

Reported risk effects included:<br />

• decreased body weight in rats dosed orally <strong>for</strong> 90 days at<br />

2,500 mg/kg/d and microscopic effects on kidney at all dose<br />

levels<br />

• testicular effects on rats exposed <strong>for</strong> 13 weeks to<br />

1,000 mg/kg/d<br />

• effects on kidney and liver weights at 500 mg/kg/d<br />

• decreased body weight in rats exposed to JP-8 <strong>for</strong> 90 days at<br />

1,500 mg/kg/d (no effect at 750 mg/kg/d)<br />

• significant maternal or developmental toxicity in rats exposed<br />

to 1,000 mg/kg/d during gestational days 6 to 15<br />

Based on the above, a threshold <strong>for</strong> effects on reproduction and<br />

growth is around 1,000 mg/kg/d.<br />

Higher-molecular-weight aliphatic mineral oils are poorly absorbed<br />

by mammals. Rats fed up to 2,000 mg/kg/d showed no effect on<br />

body weight, clinical signs, or mortality (TPHCWG 1997), and liver<br />

granulomas were reported only at a dose of 2,000 mg/kg/d in rats<br />

exposed to the lighter end of the fraction. There<strong>for</strong>e, <strong>for</strong> higher<br />

molecular weight aliphatic hydrocarbons, the threshold <strong>for</strong> risk<br />

effects is 2,000 mg/kg/d.<br />

Toxicity<br />

Threshold<br />

(mg/kg/d)<br />

125<br />

Not Available<br />

1,000<br />

2,000<br />

2010 Page I-23


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

I.3.4.3 MADEP Toxicity Values<br />

In 2003, MADEP updated its earlier (1994) approach to the evaluation of human health risks from<br />

ingestion exposures to complex hydrocarbon mixtures. MADEP (2003) states that the acute effects of<br />

volatile hydrocarbons are basically narcotic, with central nervous system disruption produced by<br />

hydrocarbons of diverse structures due to a physical interaction of the solvents with the cells of the central<br />

nervous system. After prolonged exposure, neurobehavioural effects are manifested as sensory, cognitive,<br />

affective, or motor abnormalities. Distinct from the general effects of hydrocarbons on the central nervous<br />

system are their associated specific organ toxicities (e.g., the hematopoietic toxicity of benzene or the<br />

neurodegenerative toxicity of n-hexane).<br />

Critical toxicity thresholds derived from the studies cited by MADEP (2003) are summarized in Table I-4<br />

<strong>for</strong> various aromatic and aliphatic fractions of petroleum hydrocarbon.<br />

Table I-4 Toxicity Thresholds <strong>for</strong> TPH Compounds<br />

TPH Fraction<br />

Aromatics<br />

C9-C32<br />

Aliphatics<br />

C5-C8<br />

Aliphatics<br />

C9-C18<br />

Aliphatics<br />

C19-C34<br />

SOURCE: MADEP (2003)<br />

Background and Reported <strong>Risk</strong>s<br />

MADEP (2003) combines the entire range of C9-C32 aromatic<br />

hydrocarbons and provides a toxicity value based on that of pyrene<br />

(a NOAEL of 75 mg/kg/d is cited, based on kidney effects in the<br />

rat).<br />

MADEP (2003) references a study by Krasavage et al. (1980)<br />

where rats were gavaged with practical grade hexane, or various<br />

isomers or metabolites of hexane. Numerous histological effects<br />

were identified on nerve cells, and effects on body weight generally<br />

paralleled the neurotoxic potency of each compound Atrophy of<br />

testicular germinal epithelium was also observed in some animals.<br />

Based on n-hexane, a LOAEL of 407 mg/kg/d was identified.<br />

Several studies are cited by MADEP (2003), although not all were<br />

fully satisfactory due to the presence of significant aromatic<br />

fractions in some of the substances tested. LOAEL values <strong>for</strong> rats<br />

exposed <strong>for</strong> 90 days or 13 weeks were generally in the range of 500<br />

to 750 mg/kg/d based on effects that included body weight, organ<br />

weights, changes in serum chemistry, and hematological effects.<br />

MADEP (2003) references studies with food-grade white mineral<br />

oils and waxes. For the C19-C32 aliphatic range, based on a 13<br />

weeks exposure, the LOAEL was 2,000 mg/kg/d, based on effects<br />

on liver granuloma <strong>for</strong>mation, organ weights, decreased red blood<br />

cell and increased white blood cell counts. For the C>34 aliphatic<br />

fraction no risk effects were seen (NOAEL of greater than<br />

2,000 mg/kg/d).<br />

Toxicity<br />

Threshold<br />

(mg/kg/d)<br />

>75<br />

Page I-24 2010<br />

407<br />

500<br />

2,000


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

I.3.4.4 Canada-Wide Standard<br />

The CWS (CCME 2000; 2008) has developed Tier 1 (generic) ecologically protective soil quality levels<br />

that are intended to be sufficiently protective when applied to the majority of terrestrial sites within<br />

Canada at which petroleum hydrocarbon releases might be encountered. However, the greatest emphasis<br />

has been placed on direct contact between petroleum hydrocarbons in soil with plant roots or soil<br />

invertebrates, with very little emphasis on or consideration of aquatic resources or mammalian and avian<br />

wildlife species. This approach is based on the goal of preserving the principal ecological functions<br />

per<strong>for</strong>med by the soil resource.<br />

An important point to note with respect to the CWS is that guideline values are set within the risk effects<br />

range (meaning that at the guideline level, some level of risk effects may be seen in sensitive species or<br />

endpoints). The CWS (CCME 2008) Tier 1 soil quality guidelines <strong>for</strong> the F1 to F4 fractions are presented<br />

in Table I-5.<br />

Table I-5 CWS Tier 1 2008 Updated Soil Quality Guidelines<br />

TPH<br />

Fraction<br />

Agricultural/Residential Soils<br />

(mg/kg)<br />

Commercial/Industrial Soils<br />

(mg/kg)<br />

Fine-grained Coarse-grained Fine-grained Coarse-grained<br />

F1 210 210 320 320<br />

F2 150 150 260 260<br />

F3 1,300 300 2,500 1,700<br />

SOURCE: CCME 2008<br />

Although the CWS (CCME 2008) guidelines do not address acceptable mammalian or avian ingested<br />

dose rates, a calculation is per<strong>for</strong>med within the CWS to estimate TPH toxicity to livestock based on<br />

drinking water uptake. Based on the study of Coppock and Campbell (1997), CWS (CCME 2008) selects<br />

a lowest identified exposure dose exhibiting an risk effect in cattle (i.e., LOAEL = 2,100 mg unweathered<br />

crude oil/kg/day). In the absence of appropriate data on the toxicity of different TPH fractions, CWS<br />

(CCME 2008) apportions the dose between the fractions based on the composition of fresh crude oil.<br />

However, it is important to understand that the value of 2,100 mg/kg/d used by CWS (CCME 2008)<br />

relates to the whole suite of hydrocarbon fractions present in crude oil and is thus not directly comparable<br />

to the unique fraction toxicity thresholds presented above based on ATSDR, TPHCWG, and MADEP.<br />

I.3.4.5 Oral TPH Toxicity Reference Values Selected <strong>for</strong> the ERA Model<br />

Assuming that the TPH fractions advocated by the various agencies are roughly comparable to the F1 to<br />

F4 fractions followed by CWS and ARBCA, the LOAEL-based reference dose values extracted from the<br />

literature are summarized in Table I-6, along with the mammalian reference dose values selected, by<br />

professional judgment, <strong>for</strong> use in this study. Each value represents the approximate effect-threshold dose<br />

<strong>for</strong> a particular hydrocarbon fraction (or fresh crude oil).<br />

2010 Page I-25


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Table I-6 Summary of LOAEL-Based Mammalian Reference Dose Values <strong>for</strong><br />

TPH Fractions and Products<br />

Fraction /<br />

Agency<br />

Aliphatic<br />

ATSDR<br />

(1999)<br />

(mg/kg/d)<br />

TPHCWG<br />

(1997)<br />

(mg/kg/d)<br />

MADEP<br />

(2003)<br />

(mg/kg/d)<br />

CWS (CCME<br />

2000)<br />

(mg/kg/d)<br />

Selected<br />

Values<br />

F1 100 NA 407 NA 100<br />

F2 1,000 1,000 500 NA 500<br />

F3 >1,000 2,000 2,000 NA 2,000<br />

F4 NA NA NA NA Nontoxic<br />

Aromatic<br />

F1 100 300 >75 NA 100<br />

F2 100 500 NA NA 100<br />

F3 100 125 NA NA 100<br />

Crude Oil NA NA NA 2,100 NA<br />

NOTE:<br />

NA – data not available<br />

SOURCE: based on CCME (2008)<br />

The fraction-based (F1 to F4) reference doses listed in Table I-6 can be further subdivided into the<br />

aliphatic and aromatic sub-fractions, as outlined in Table I-7. These reference dose values cover the range<br />

of F1 to F3, and are assigned a medium level of confidence.<br />

Table I-7 Mammalian Reference Dose Values <strong>for</strong> Petroleum Hydrocarbons<br />

TPH Fraction<br />

TPH Subdivision<br />

Percent of TPH Fraction<br />

Daily Dose<br />

(mg/kg/d)<br />

F1 Aliphatics Aliphatics >C6-C8 – F1 50% 50<br />

Aliphatics >C8-C10 – F1 50% 50<br />

F1 Aromatics Aromatics >C8-C10 – F1 100% 100<br />

F2 Aliphatics Aliphatics >C10-C12 – F2 50% 250<br />

Aliphatics >C12-C16 – F2 50% 250<br />

F2 Aromatics Aromatics >C10-C12 – F2 50% 50<br />

Aromatics >C12-C16 – F2 50% 50<br />

F3 Aliphatics Aliphatics >C16-C21 – F3 50% 1,000<br />

Aliphatics >C21-C34 – F3 50% 1,000<br />

F3 Aromatics Aromatics >C16-C21 – F3 50% 50<br />

SOURCE: Based on CCME (2008)<br />

Aromatics >C21-C34 – F3 50% 50<br />

Page I-26 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

The toxicological literature provides significantly less in<strong>for</strong>mation on which to base avian reference dose<br />

values than <strong>for</strong> mammalian species. However, assuming that the general trends of higher toxicity of<br />

aromatic compounds than aliphatic compounds and decreasing bioavailability and toxicity with increasing<br />

molecular weight <strong>for</strong> aliphatic compounds can be generalized from mammals to birds, the following<br />

discussion outlines the development of a reference dose <strong>for</strong> avian species.<br />

The primary data sources used in the derivation of the avian species petroleum hydrocarbon fraction<br />

reference dose are papers by Szaro et al. (1978), Coon and Dieter (1981) and Stubblefield et al. (1995).<br />

In the study conducted by Szaro et al. (1978), ducklings were exposed to concentrations of 0.025, 0.25,<br />

2.5 and 5.0% South Louisiana Crude Oil in their diet from hatching to eight weeks of age. Birds receiving<br />

0.25, 2.5 and 5.0% crude oil showed depressed growth rates, but no mortalities resulted. At doses of 2.5<br />

and 5.0% crude oil in diet, liver hypertrophy and splenic atrophy were evidence of the gross pathological<br />

effects. These general observations are consistent with risk effects seen in mammalian test animals,<br />

supporting the assumption that the generalized mechanisms of hydrocarbon toxicity in birds are similar to<br />

those in mammals. There<strong>for</strong>e, the 2.5% crude oil in diet is considered to be a subchronic effects threshold<br />

<strong>for</strong> endpoints that may be relevant to population-level responses. The ducks were reported to consume<br />

3.28 kg dry feed over the 56-day study (average 58 g/day), and the final weights of the ducks averaged<br />

about 1,100 g, indicating that the mean weight of ducks throughout the study was about 550 g. On this<br />

basis, the average crude oil dose to ducks in the 2.5% crude oil in diet group would have been<br />

approximately 2,730 mg/kg/d.<br />

Coon and Dieter (1981) exposed young adult mallard ducks to South Louisiana Crude Oil <strong>for</strong> 26 weeks,<br />

during which the females were laying eggs. Crude oil was dosed to the ducks at 0.25 and 2.5% of the diet,<br />

and in a third treatment, ducks were fed a diet containing 1% of a paraffin mixture (predominantly<br />

aliphatic hydrocarbons). It is unclear whether the diet was dry or wet, and feeding rates are not explicitly<br />

given, leading to some uncertainty about the true hydrocarbon dose rates. However, the duck feed is<br />

referred to as a "mash", suggesting that hydrocarbons were introduced into a wet feed. No birds died<br />

during the study, nor were body weights significantly depressed. Ducks on oil-treated diets laid fewer<br />

eggs than control ducks; however, the hatchability of eggs was not affected by oil treatment. Oviduct<br />

weight at necropsy was lower in ducks fed 0.25 and 2.5% crude oil. Ducks fed the paraffin mixture did<br />

not show the same types of risk effects that crude oil elicited, suggesting that the active fraction in the<br />

crude oil may be in the aromatic or light aliphatic groups. Based on reduced egg production and effects on<br />

the oviduct, the 0.25% crude oil treatment is considered to be the risk effects threshold. Assuming a food<br />

ingestion rate of 0.61 kg/day (wet weight), and a stated mean duck weight of 1.27 kg, the 0.25% oil<br />

treatment would represent a crude oil dose rate of 1,200 mg/kg/d.<br />

The paper by Stubblefield et al. (1995) is the best documented, but it deals with weathered Alaskan north<br />

slope crude oil (i.e., most of the C


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

treatment is considered to be the risk effects threshold. Based on the reported food consumption rate of<br />

0.135 kg ration per day and the mean bird weight of 1,250 g, the crude oil dose rate is 2,160 mg/kg/d.<br />

The toxicity threshold values <strong>for</strong> ducks are similar to toxicity thresholds <strong>for</strong> other avian species, as<br />

reviewed by Stubblefield et al. (1995). Differences between and within studies are likely partially<br />

attributable to differences in the chemical makeup of the different crude and weathered crude oils.<br />

However, as with mammals, the extrapolation of whole product toxicity values to fraction-based toxicity<br />

values is problematic.<br />

There<strong>for</strong>e, the lowest value from the three studies (1,200 mg/kg/day) is selected <strong>for</strong> comparison to the<br />

value of 2,100 mg/kg/day provided <strong>for</strong> cattle by Coppock and Campbell (1997). Based on this<br />

comparison, the avian reference dose values <strong>for</strong> hydrocarbon fractions are set at approximately 60% of<br />

the mammalian values, as outlined in Table I-8. These reference dose values are assigned a medium level<br />

of confidence.<br />

Table I-8 Avian Reference Dose Values <strong>for</strong> Petroleum Hydrocarbons<br />

TPH Fraction<br />

Reference Dose<br />

(mg/kg/d)<br />

Aliphatics >C6-C08 – F1 30<br />

Aliphatics >C8-C10 – F1 30<br />

Aromatics >C8-C10 – F1 60<br />

Aliphatics >C10-C12 – F2 150<br />

Aliphatics >C12-C16 – F2 150<br />

Aromatics >C10-C12 – F2 30<br />

Aromatics >C12-C16 – F2 30<br />

Aliphatics >C16-C21 – F3 600<br />

Aliphatics >C21-C34 – F3 600<br />

Aromatics >C16-C21 – F3 30<br />

Aromatics >C21-C34 – F3 30<br />

SOURCE: based on Coon and Dieter (1981)<br />

I.3.5 Reference Dose For Polycyclic Aromatic Hydrocarbons<br />

Polycyclic aromatic hydrocarbons (PAH) are a class of compounds consisting of two or more aromatic<br />

ring structures. The primary source of PAH in the environment is from the extraction, refinement and<br />

combustion of petroleum or petroleum products (U.S. EPA 2007c). PAH typically exist in the<br />

environment as complex mixtures. Isolation and characterization of the individual compounds comprising<br />

the mixture is often very difficult.<br />

PAH may be categorized into two groups: low-molecular-weight compounds consisting of two or three<br />

aromatic rings, and high-molecular-weight compounds consisting of four or more aromatic rings. Health<br />

Canada acknowledges this categorization but assesses human health risks <strong>for</strong> PAH compounds<br />

individually. Human health risk assessment, particularly carcinogenic risk from PAH exposure, is<br />

Page I-28 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

typically done using a relative potency approach where each compound is assigned a carcinogenic<br />

potency relative to benzo(a)pyrene, one of the most toxic PAH. However, this approach is not appropriate<br />

<strong>for</strong> wildlife species.<br />

The U.S. EPA (2007c) developed toxicological benchmarks <strong>for</strong> mammals and birds using the low- and<br />

high-molecular-weight categorization, rather than following an individual compound approach. The U.S.<br />

EPA acknowledges that the optimal approach may be to use a toxic equivalency scheme but states that<br />

current data limitations preclude this approach. Evaluating PAH as two groups of compounds (low and<br />

high molecular weight) also has significant benefits. This approach simplifies the inclusion of less-wellknown<br />

PAH <strong>for</strong> which compound-specific data are not available.<br />

To derive EcoSSL <strong>for</strong> terrestrial wildlife, the U.S. EPA considers toxicological data <strong>for</strong> constituents of<br />

each grouping, but the grouping process leads to a focus on the more toxic compounds. Also, the overall<br />

process is influenced by the availability of data <strong>for</strong> a relatively small number of compounds (particularly<br />

naphthalene in the low-molecular-weight range and benzo(a)pyrene in the high-molecular-weight range).<br />

I.3.5.1 Toxicity of PAH to Mammals<br />

Low-Molecular-Weight PAH<br />

The U.S. EPA (2007c) identified 76 toxicological results from studies that met stringent criteria <strong>for</strong><br />

deriving EcoSSL. For results based on reproductive or growth endpoints, the geometric mean of NOAEL<br />

was calculated as 170 mg/kg/d. This value was higher than the lowest bounded LOAEL <strong>for</strong> these<br />

endpoints and, consequently, the U.S. EPA (2007c) adopted a value of 65.5 mg/kg/d, the highest bounded<br />

NOAEL that is below the lowest bounded LOAEL <strong>for</strong> growth, reproduction, or survival as the TRV. This<br />

approach is too strongly influenced by a single study in the context of a large data set and a weight-ofevidence<br />

approach. The value selected by the U.S. EPA is also specific <strong>for</strong> the chemical 1naphthalenacetic<br />

acid, which is not a mainstream PAH compound. There<strong>for</strong>e, the U.S. EPA value is too<br />

conservative to be representative of all low-molecular-weight PAH. Instead, the geometric mean of<br />

NOAEL values (i.e., 170 mg/kg/d) is selected as the reference dose in the <strong>Marine</strong> ERA model. The<br />

collection of toxicological literature from which this NOAEL is selected included studies using rabbits,<br />

mice and rats, and primarily subchronic exposures, although some studies included a reproductive period<br />

and are there<strong>for</strong>e considered chronic because exposure was received during a critical life stage. There<strong>for</strong>e,<br />

this NOAEL value is used <strong>for</strong> a variety of mammal species without additional uncertainty factors being<br />

applied. This reference dose value is assigned a high level of confidence.<br />

High Molecular Weight PAH<br />

The U.S. EPA (2007c) identified 45 toxicological results based on various endpoints that met criteria <strong>for</strong><br />

high-molecular-weight PAH. The geometric mean NOAEL <strong>for</strong> growth and reproduction endpoints was<br />

18 mg/kg/d. This value is higher than the lowest bounded LOAEL <strong>for</strong> these endpoints and, consequently,<br />

the U.S. EPA adopted a value of 0.615 mg/kg/d based on a study of benzo(a)pyrene, the highest bounded<br />

NOAEL that is below the lowest bounded LOAEL <strong>for</strong> growth, reproduction, or survival. However, this<br />

study was based on tumour induction. However, tumour induction is not a relevant endpoint <strong>for</strong> wildlife<br />

receptors; this value may be too conservative to be representative of all high-molecular-weight PAH<br />

2010 Page I-29


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

(i.e., those having four or more rings). Instead, the geometric mean of NOAEL values (i.e., 18 mg/kg/d) is<br />

selected as the reference dose <strong>for</strong> the <strong>Marine</strong> ERA model. The collection of toxicological literature from<br />

which this NOAEL was selected included studies using mice, rats and guinea pigs and primarily<br />

subchronic and chronic exposures. There<strong>for</strong>e, this NOAEL value is used <strong>for</strong> a variety of mammal species<br />

without additional uncertainty factors being applied. This reference dose value is assigned a high level of<br />

confidence.<br />

I.3.5.2 Toxicity of PAH to Birds<br />

The U.S. EPA (2007c) identified nearly 5,500 papers with possible toxicity data <strong>for</strong> either birds or<br />

mammals; of those meeting EcoSSL acceptability criteria (46 papers), only two contained data<br />

concerning avian species. To derive TRV, the U.S. EPA requires at least three studies and at least two<br />

species. There<strong>for</strong>e, EcoSSL were not derived <strong>for</strong> birds due to data limitations. However, during the<br />

EcoSSL literature review, it was observed that <strong>for</strong> the compounds that had toxicological results <strong>for</strong> bird<br />

species, mammals were always more sensitive (Kapustka 2004). On the basis of this observation, it has<br />

been suggested, and followed in this study, that mammalian TRV can be assumed to be protective of<br />

avian species also (Kapustka 2004).<br />

I.3.6 Reference Dose For Other Organic Compounds<br />

I.3.6.1 1,2,4-trichlorobenzene<br />

Mammals<br />

The mammalian reference dose <strong>for</strong> 1,2,4-trichlorobenzene is based on a multi-generation reproduction<br />

study with rats by Robinson et al. (1981) as cited in IRIS (2008a). In this study, the F0 generation was<br />

randomly reduced to four males and four females at birth, and both male and female progeny were<br />

administered 0.0, 25, 100 or 400 ppm 1,2,4-trichlorobenzene via drinking water. The study extended a<br />

similar procedure <strong>for</strong> the F1 and F2 generations ending at day 32 of the F2 generation. Fertility of both<br />

the F0 and F1 generations was not affected by the treatment. However, an increase in adrenal gland<br />

weights was observed <strong>for</strong> the high-dose group <strong>for</strong> both females and males of the F0 and F1 generations.<br />

The reported chronic LOAEL <strong>for</strong> 1,2,4-trichlorobenzene <strong>for</strong> this study is 53.6 mg/kg/d (Robinson et al.<br />

1981, as cited by US EPA Integrated <strong>Risk</strong> In<strong>for</strong>mation System (IRIS)). This reference dose is assigned a<br />

medium level of confidence.<br />

Birds<br />

No acceptable avian toxicological studies were identified <strong>for</strong> use in the derivation of a TRV; there<strong>for</strong>e, no<br />

avian reference dose can be established <strong>for</strong> this COPC.<br />

Page I-30 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

I.3.6.2 1,3,5-trimethylbenzene<br />

Mammals<br />

The mammalian reference dose <strong>for</strong> 1,3,5-trimethylbenzene was obtained from IITRI (1995) in which<br />

groups of Spraque-Dawley rats (10/sex/dose group) were administered 1,3,5-trimethylbenzene via oral<br />

gavage (in oil) <strong>for</strong> 90 days. Additional high-dose animals were tested and retained <strong>for</strong> 28 days post<br />

treatment <strong>for</strong> recovery be<strong>for</strong>e sacrifice. Significant increases in liver and kidney weights were observed in<br />

the high-dose group. These results did not persist, according to examinations of the recovery group.<br />

However, alkaline phosphatase and phosphorous levels associated with the high-dose group remained<br />

elevated in both sexes.<br />

The subchronic LOAEL of 429 mg/kg/d <strong>for</strong> 1,3,5-trimethylbenzene reported by IITRI (1995) and based<br />

on changes in blood serum chemistry is used as the reference dose <strong>for</strong> TRV determination in the ERA. A<br />

limitation of this study is that reproductive, growth or survival endpoints were not affected and there<strong>for</strong>e<br />

the selected LOAEL value may be conservative with respect to ecologically relevant endpoints. This<br />

reference dose is assigned a medium level of confidence.<br />

Birds<br />

No acceptable avian toxicological studies were identified <strong>for</strong> use in the derivation of a TRV; there<strong>for</strong>e, no<br />

avian reference dose can be established <strong>for</strong> this COPC.<br />

I.3.6.3 2,4-dimethylphenol<br />

Mammals<br />

The U.S. EPA (1989) conducted a subchronic (90-day) gavage study in Albino mice using<br />

2,4-dimethylphenol and has based its human reference dose on this study (IRIS 2008b). Groups of albino<br />

mice (30/sex/dose group) were administered 5.0, 50 or 250 mg/kg/d 2,4-dimethylphenol via oral gavage.<br />

Squinting, lethargy, prostration and ataxia were observed in the high-dose group after week six. Lower<br />

mean corpuscular volume and hemoglobin concentration were observed in the high-dose group females at<br />

study termination. No significant differences were identified in mean body weights, body weight gains,<br />

food consumption or eye examinations at any dosage between the treated and control groups. A LOAEL<br />

of 250 mg/kg/d and a NOAEL of 50 mg/kg/d were reported from this study (IRIS).<br />

A more recent study was conducted (Daniel 1993) using a different dosing regime which allowed <strong>for</strong> a<br />

more accurate LOAEL to be derived. In this study, groups of Sprague-Dawley rats (10/sex/dose group)<br />

were administered 60, 180 and 540 mg/kg/d 2,4-dimethylphenol via oral gavage <strong>for</strong> 90 consecutive days,<br />

starting when the rats were 80 days old. Lethality was confined to the high-dose group. Other<br />

observations <strong>for</strong> this group includes a significant decrease in weight gain, a decrease in absolute lung<br />

weight, and reduced organ-to-body weight ratios <strong>for</strong> brain, kidney and testes. Furthermore, changes in<br />

hematology and clinical chemistry were also noted <strong>for</strong> the high-dose group. A subchronic LOAEL of<br />

180 mg/kg/d was established with a NOAEL of 60 mg/kg/d (Daniel et al. 1993). This subchronic LOAEL<br />

is used in the <strong>Marine</strong> ERA and is assigned a medium level of confidence.<br />

2010 Page I-31


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Birds<br />

No acceptable avian toxicological studies were identified <strong>for</strong> use in the derivation of a TRV; there<strong>for</strong>e, no<br />

avian reference dose can be established <strong>for</strong> this COPC.<br />

I.3.6.4 2,4-dinitrophenol<br />

Mammals<br />

The ATSDR (1995) cites a study by Tainter (1938) on chronic oral toxicity <strong>for</strong> mammals. In this study,<br />

groups of 5 or 6 white rats were administered 2,4-dinitrophenol in their diet at concentrations of 0, 0.005,<br />

0.01, 0.02, 0.04, 0.06, 0.08, 0.12 and 0.24% <strong>for</strong> the entire lifespan of the rats, starting shortly after<br />

weaning when they weighed approximately 30 g. Groups fed diets treated with 0.04% 2,4-dinitrophenol<br />

were unaffected by the chemical in terms of growth or survival, while groups fed between 0.06 to 0.24%<br />

2,4-dinitrophenol demonstrated reduced growth, lower final body weight or decreased survival. These<br />

observations revealed a LOAEL concentration of 0.06% 2,4-dinitrophenol in feed (48 mg/kg/d).<br />

In a more recent study (Takahashi et al. 2009), groups of rats (12/sex/dose group) were administered 3, 10<br />

or 30 mg/kg/d 2,4-dinitrophenol via gavage starting when the rats were 10 weeks old. Males were dosed<br />

<strong>for</strong> 46 days starting 14 days prior to mating, whereas females were dosed <strong>for</strong> 40-47 days, also starting 14<br />

days prior to mating, to day 3 of lactation. Lethality was not observed in any group. In the high-dose<br />

group, a significant decrease in body weight gain was observed, as well as significant increases in the<br />

relative weight of the liver in males, in the absolute and relative weights of the liver in females, in the<br />

relative weights of the kidneys in both males and females, and in the relative weight of the heart in<br />

females. Although no effects were noted <strong>for</strong> the reproductive parameters, developmental effects were<br />

noted in the high-dose group: these effects included decreases in live birth index, decreases in the<br />

numbers of live pups on postnatal days 0 and 4 and reduced body weights of live pups on postnatal days 0<br />

and 4. As such, a LOAEL of 30 mg/kg/d <strong>for</strong> 2,4-dinitrophenol, based on general and<br />

reproductive/developmental toxicity, was reported and used in this ERA. Although exposure in this study<br />

was less than 90 days in duration (i.e., subchronic), the LOAEL is considered chronic because it was<br />

administered during a critical lifestage (i.e., gestation) and the endpoints are based in part on<br />

reproduction. This reference dose is assigned a medium level of confidence.<br />

Birds<br />

No acceptable avian toxicological studies were identified <strong>for</strong> use in the derivation of a TRV; there<strong>for</strong>e, no<br />

avian reference dose can be established <strong>for</strong> this COPC.<br />

I.3.6.5 Phenol<br />

Mammals<br />

The mammalian reference dose <strong>for</strong> phenol is based on a study by Ryan et al. (2001) as cited in ATSDR<br />

(2006). A two-generation reproductive study was conducted in which phenol was given to the parental<br />

generation in drinking water at doses up to 301-321 mg/kg/d. Administration of 301-321 mg/kg/d to<br />

parents resulted in a significant reduction in F1 pup weight (30% by post-natal day 21 relative to controls)<br />

Page I-32 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

and F2 pup weight (37% by post-natal day 21 relative to controls). There was also a decrease in percent<br />

live pups on day 4 in both generations and <strong>for</strong> days 7–21 in the F2 generation at the high-dose level. A<br />

developmental LOAEL and a bounded NOAEL were determined based on decreased pup weight and<br />

reduced viability; the chronic LOAEL of 321 mg/kg/d is used in the <strong>Marine</strong> ERA and is assigned a high<br />

level of confidence.<br />

Birds<br />

No acceptable avian toxicological studies were identified <strong>for</strong> use in the derivation of a TRV; there<strong>for</strong>e, no<br />

avian reference dose can be established <strong>for</strong> this COPC.<br />

I.4 Environmental Effect Magnitude<br />

A four-tier approach is used to evaluate environmental effect magnitude benchmarks <strong>for</strong> substances added<br />

to the marine environment. The four benchmarks (Figure I-2) are<br />

• negligible<br />

• low<br />

• moderate<br />

• high<br />

The negligible benchmark is defined as the concentration of a substance that falls below the routine<br />

analytical limit of detection <strong>for</strong> that environmental medium (water or sediment) (Figure I-2). If the<br />

concentration of the substance cannot be detected in the environment using current laboratory standards,<br />

it is deemed to have a negligible effect magnitude.<br />

Figure I-2 Conceptual Model of Environmental Effect Magnitude<br />

2010 Page I-33


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

The low benchmark is bounded at the lower limit by the analytical limit of detection and bounded at the<br />

upper limit by the CHC5 (“chronically hazardous concentration – 5 th percentile”). The CHC5 is defined as<br />

the 5 th percentile of the species sensitivity distribution (SSD) of chronic no observed effect concentrations<br />

(chronic NOEC) <strong>for</strong> all available data. This value <strong>for</strong> any particular substance is the concentration at<br />

which 95% of species tested would show no observable effect on any tested endpoint (typically growth,<br />

reproduction, and survival) during long-term exposure. There<strong>for</strong>e, this value is likely to be protective of<br />

more than 95% of species in the environment and is likely protective of the integrity of the ecosystem.<br />

The moderate benchmark is bounded at the lower end by the CHC5 and at the upper end by the CHC50<br />

(“chronically hazardous concentration – 50 th percentile”). The CHC50 is similar to the CHC5, but instead<br />

uses the median or 50 th percentile of the species NOEC distributions. Effectively, at the CHC50 level, 50%<br />

of species are showing some level of risk effect on one or more of the tested endpoints, but equally 50%<br />

of species are showing no adverse effects. Note that this level of risk effects is still anticipated to be<br />

below any acute lethality threshold. The high environmental effect magnitude benchmark begins at the<br />

CHC50 level.<br />

The environmental effect magnitude benchmarks are intended to lie below any acute lethality threshold. It<br />

is also important to note that the benchmarks are intended to be protective based upon chronic or longterm<br />

exposure and there<strong>for</strong>e would be highly protective of short-term or acute exposures. It is generally<br />

anticipated that the existing CCME Guidelines <strong>for</strong> the protection of freshwater or marine aquatic life<br />

would lie in the low range of environmental effect magnitude benchmarks.<br />

I.4.1 Review of National Water-Quality Guidelines and Selection of<br />

Benchmarks<br />

Various published national water-quality guidelines were consulted to determine the most appropriate<br />

values to use as the CHC5 and CHC50 benchmarks <strong>for</strong> the aquatic environment.<br />

Canada<br />

In Canada, CCME (2007) released a new protocol <strong>for</strong> the derivation of water-quality guidelines <strong>for</strong> the<br />

protection of aquatic life (CCME 2007). Under this new protocol, three types of guidelines are proposed:<br />

A, B-1, and B-2. To date, no guidelines have been published following the new protocols; however, the<br />

approach to benchmark development outlined in this study is generally similar to the approach proposed<br />

by CCME.<br />

Type A water quality guidelines are derived using a statistical extrapolation of the species-sensitivity<br />

distribution using an approach described in Zajdlik (2005), based on the Aldenberg and Slob (1993)<br />

technique. The guideline value is calculated as the 5 th percentile of the SSD with a 50% confidence level.<br />

As only one value per species is used in the distribution, the order of preference <strong>for</strong> reported chronic<br />

effects is as follows: ECx representing a no-effect threshold, EC11-25, MATC, NOEC, LOEC, nonlethal<br />

EC26-49, and nonlethal EC50. Acceptable study endpoints are traditional endpoints (e.g., growth,<br />

reproduction, and survival) as well as non-traditional endpoints (e.g., behaviour and physiological<br />

changes), if the latter can be demonstrated to have ecological relevance. Where studies report multiple<br />

endpoints <strong>for</strong> a given species, the most sensitive of a given study is selected, and the geometric mean of<br />

the most sensitive values from various studies is used. The minimum data requirements to derive the<br />

Page I-34 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

freshwater type A guidelines are three studies on fish (at least one salmonid and one non-salmonid), three<br />

aquatic invertebrate studies (at least one planktonic crustacean), and one vascular plant or algae species (if<br />

the substance is considered phytotoxic, then at least three studies on freshwater plants or algae are<br />

required). For the marine type A guidelines, the minimum data requirements are three fish studies (at least<br />

one temperate species), two studies on two or more species of aquatic invertebrates (at least one<br />

temperate species), one study on temperate marine vascular plant or algae (if the substance is considered<br />

phytotoxic, then at least three studies on marine plants or algae are required).<br />

Type B-1 guidelines are derived using a risk assessment-factor approach modified from the earlier CCME<br />

protocol (see below <strong>for</strong> details). This guideline is derived when the minimum data requirements <strong>for</strong> the<br />

type A guidelines are not met. The approach to determining this guideline is to apply a factor of 10<br />

against the lowest appropriate ECx value. The preferred risk effects threshold <strong>for</strong> the ECx value is one<br />

that has been derived by regression analysis of the toxicological data and has been demonstrated to be at<br />

or near the low effect threshold. When this value is not available, other chronic effects thresholds may be<br />

used in the following order of preference: ECx representing a low-effect threshold, EC11-25, LOEC,<br />

MATC, nonlethal EC26-49, and nonlethal EC50. The endpoints used in the derivation of this guideline are<br />

similar to the type A guidelines. The data requirements <strong>for</strong> the type B-1 guidelines are similar to the type<br />

A guidelines; the only difference is the risk effects threshold reported.<br />

Type B-2 guidelines are derived using a risk assessment factor approach modified from the earlier CCME<br />

protocol. This guideline is derived when the minimum data requirements <strong>for</strong> the type A and type B-1<br />

guidelines are not met. The approach to determining this guideline is to apply a factor of 20 or 100 against<br />

the lowest appropriate ECx value. The AF of 20 is used <strong>for</strong> non-persistent substances while the value of<br />

100 is applied to persistent substances. The preferred risk effects threshold <strong>for</strong> the ECx value is one that<br />

has been derived by regression analysis of the toxicological data and has been demonstrated to be at or<br />

near the low effect threshold. When this value is not available, other chronic effects thresholds may be<br />

used in the following order of preference: ECx representing a low-effect threshold, EC11-25, LOEC,<br />

MATC, EC26-49, nonlethal EC50, and LC50. The endpoints used in the derivation of this guideline are<br />

similar to the type A guidelines. The data requirements <strong>for</strong> the type B-2 freshwater guidelines are as<br />

follows: studies on two fish species (one salmonid and one non-salmonid) and two aquatic or semiaquatic<br />

invertebrates (at least one planktonic invertebrate).<br />

Under the 2007 protocol, CCME will report separate freshwater and marine water quality guidelines <strong>for</strong><br />

the protection of aquatic life only where there is a statistical difference in the distribution of toxicity data<br />

between freshwater and marine organisms.<br />

Australia/New Zealand<br />

Australia and New Zealand developed benchmarks (called trigger values or TV) <strong>for</strong> freshwater and<br />

marine quality (ANZECC 2000). ANZECC (2000) reports three reliability levels <strong>for</strong> TV: High, Moderate,<br />

and Low. The high-reliability TV is based on statistical extrapolation of the SSD using the Aldenberg and<br />

Slob (1993) approach. This TV uses the distribution of chronic or subchronic NOEC data primarily from<br />

the U.S. EPA (1994b) ACQUIRE database. The database was screened <strong>for</strong> studies that received quality<br />

scores of 1 or 2 out of a 5-point scale and was examined <strong>for</strong> outlying data points that were individually<br />

reviewed and removed where appropriate. The protection level chosen was a 50% confidence level of the<br />

2010 Page I-35


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

5 th percentile (“95% protection”; 50/95) based on a review by Warne (1998) and on consistency with the<br />

Dutch approach (see below). Where there were chronic NOEC values <strong>for</strong> keystone or particularly<br />

important species, this value was required to fall below the reported NOEC. If it failed to do so, the 50%<br />

CL of the 1 st percentile (“99% protection”) was chosen. The data requirement <strong>for</strong> the statistical<br />

extrapolation method is a minimum of NOEC data <strong>for</strong> at least five different species from at least four<br />

different taxonomic groups. For chronic studies, ANZECC (2000) classifies endpoints into three<br />

categories:<br />

• functions of life endpoints, which include mortality, reproductive impairment, hatchability,<br />

immobilization, and inhibition of growth<br />

• behavioural endpoints, which include mobility, motility, burial rate, ventilation rates, swimming rate,<br />

phototactic responses, and feeding rate<br />

• biochemical endpoints, which include inhibition of bioluminescence, induction and activity of a range<br />

of enzymes including cytochrome P-450, EROD, acetylcholinesterase, and metallothionein, changes<br />

in DNA, histopathological lesions, and immune system dysfunction<br />

There is currently much debate about the appropriateness of these three types of endpoints and in order to<br />

adhere to scientific validity, ANZECC limited data used to studies that reported functions of life<br />

endpoints. This approach is supported by the OECD (1992).<br />

The moderate reliability TV is also based on the 50/95 statistical extrapolation of species sensitivity<br />

distributions, but instead of the chronic NOEC data, it uses the acute LC50 or EC50 data. This value was<br />

then converted to a moderate-reliability trigger value by applying an empirically derived acute-to-chronic<br />

ratio (ACR) or a default ACR of 10.0. The data requirements <strong>for</strong> the moderate reliability TV are similar to<br />

the high-reliability TV with the exception of E(L)C50 data instead of NOEC.<br />

When datasets were too small or did not satisfy reporting quality requirements <strong>for</strong> the high- or moderatereliability<br />

TVs, a low-reliability TV, or ecological concern level (ECL) was calculated as follows using a<br />

risk assessment-factor approach. The lowest of at least three chronic NOEC values was divided by 20 or<br />

the lowest of at least three acute E(L)C50 values was divided by 100 following the OECD (1992)<br />

recommendations. If there were not sufficient data to satisfy the OECD MPD requirements, a factor of<br />

1000 was applied to the lowest acute E(L)C50 value. For essential elements, the first factor applied was 2,<br />

instead of 10, resulting in an overall factor of 20 <strong>for</strong> acute MPD data and 200 when there were data <strong>for</strong><br />

only one or two species.<br />

Netherlands<br />

The Dutch National Institute of Public Health and the Environment (RIVM; Crommentuijn et al. 1997;<br />

van de Plassche et al. 1999; Verbruggen et al. 2001; van Vlaardingen et al. 2005) outlines two guideline<br />

values that are considered relevant as potential benchmark values: the serious risk concentration (SRC)<br />

and the maximum permissible concentration (MPC). These guidelines are the sum of the serious risk<br />

addition (SRA) and maximum permissible addition (MPA) added to the background concentrations (Cb)<br />

in an added-risk approach (Struijs et al. 1997). While Cb are measured concentrations, the SRA and MPA<br />

are calculated according to methods discussed below.<br />

Page I-36 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Prior to 2003, MPA and SRA guidelines from the Netherlands were based on methods determined by<br />

RIVM. Since 2003, and the adoption of the EU directive and accompanying technical guidance document<br />

(TGD; ECB 2003), MPA guidelines have been calculated using methods outlined in the TGD. SRA<br />

guidelines are derived specifically within the Dutch national framework of environmental standards, and<br />

are, there<strong>for</strong>e, not subject to methods outlined in the TGD. The pre-2003 methods apply to values<br />

reported in Crommentuijn et al. (1997), van de Plassche et al. (1999), Verbruggen et al. (2001), and<br />

Lijzen et al. (2001). The methods outlined in the TGD apply to MPA values reported in van Vlaardingen<br />

et al. (2005) and the protocol described in van Vlaardingen and Verbruggen (2007).<br />

RIVM has developed two approaches to calculating the SRA and MPA values: the refined riskassessment<br />

and the preliminary risk-assessment methods. The refined risk-assessment approach used a<br />

statistical extrapolation of the SSD of the chronic NOEC data using the Aldenberg and Slob (1993)<br />

approach. Where multiple studies on the same species and using the same endpoint were available, the<br />

geometric mean of the reported values was used. When more than one toxicity endpoint was available, the<br />

lowest value or geometric mean of multiple values <strong>for</strong> the same endpoint was used <strong>for</strong> the given species.<br />

The SRA values are based on the 50 th percentile of the NOEC distribution (equivalent to the geometric<br />

mean of the log-distributed data), while the MPA is based on the 5 th percentile, each with a 50%<br />

confidence level. Prior to 2003 and the adoption of the EU directive, the minimum data requirement <strong>for</strong><br />

both the SRA and MPA guidelines, derived using the refined risk-assessment approach, was 4 NOEC<br />

values of species from different taxonomic groups.<br />

Under the EU directive, the requirement <strong>for</strong> using the statistical extrapolation method of the SSD when<br />

calculating the MPA is a minimum of ten species representing eight taxonomic groups. Taxonomic<br />

groups should include fish, crustaceans, insects, algae and higher plants. As the SRA guideline is only<br />

derived within the Dutch framework, the data requirements <strong>for</strong> calculating the SRA became a minimum<br />

of studies on three taxonomic groups, which should represent the three specified trophic levels from the<br />

base set of the TGD: algae, Daphnia, and fish.<br />

Prior to adopting the EU directive methods, the preliminary risk assessment approach was used to derive<br />

SRA and MPA values when NOEC values were available <strong>for</strong> fewer than four taxonomic groups. This<br />

approach uses the application of various factors against available data. To calculate the SRA, when no<br />

NOEC values were available, a factor of 10 (the default acute-to-chronic ratio) was applied to the<br />

geometric mean E(L)C50 value. When greater than one NOEC value was available, the lesser of the<br />

geometric mean NOEC value and the geometric mean E(L)C50 value/10 was used.<br />

RIVM report guidelines <strong>for</strong> both fresh and marine water together as a surface-water-quality guideline,<br />

unless there is evidence that distributions of toxicity data are statistically different <strong>for</strong> organisms from<br />

each environment. This approach is supported by the Fraunhofer Institute and the EU Technical Guidance<br />

Document (van Vlaardingen and Verbruggen 2007) and is consistent with the CCME approach.<br />

United States<br />

The U.S. EPA (1986, 2002b) provides two water-quality criteria <strong>for</strong> the protection of aquatic life: the<br />

criterion continuous concentration (CCC) and the criterion maximum concentration (CMC). The CCC is<br />

equal to the lowest of the final chronic value (FCV), the final plant value (FPV), and the final residue<br />

2010 Page I-37


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

value (FRV), while the CMC is equal to one-half the final acute value (FAV). U.S. EPA uses a variety of<br />

data sources to calculate these criteria; the most recent update to the criteria was in 2002.<br />

The FAV is calculated using E(L)C50 data from a minimum of one study <strong>for</strong> freshwater animals in at least<br />

eight different families (including requirements <strong>for</strong> fish, crustaceans, insects, and other invertebrates).<br />

Where multiple values are reported <strong>for</strong> a particular species, the geometric mean of values is used in the<br />

calculation. The FAV is calculated as “the concentration of the material corresponding to a cumulative<br />

probability of 0.05 in the acute toxicity values <strong>for</strong> the genera with which acceptable acute tests have been<br />

conducted on the material” (Stephan et al. 1985). This concentration corresponds approximately to the 5 th<br />

percentile of the SSD of the acute toxicity data. The FAV is there<strong>for</strong>e similar to the ANZECC moderate<br />

reliability TV prior to applying the ACR. The FCV can be calculated using two separate methods. If<br />

sufficient chronic data are available, the FCV can be calculated using the same approach as the FAV. The<br />

chronic data used are the mean of the NOEC and LOEC values reported in studies <strong>for</strong> the same species<br />

(equivalent to the maximum acceptable toxicity value; MATC). Otherwise, the FCV can be calculated<br />

from the FAV using an acute-to-chronic ratio (ACR). Where the ACR is less than 2.0, an ACR value of<br />

2.0 is applied so that the CCC is not less than the CMC. The FPV is calculated as the lowest value <strong>for</strong><br />

which an adverse effect is observed in aquatic plant toxicity testing (chronic or acute). The FRV is<br />

obtained by dividing the maximum permissible tissue concentration (FDA action levels or maximum<br />

acceptable dietary intake <strong>for</strong> non-human consumers) by the bioaccumulation or bioconcentration factors.<br />

Should the FAV or FCV be greater than the mean acute value or mean chronic value, respectively, <strong>for</strong> a<br />

commercially or recreationally important species, the latter values are used as the FAV or FCV,<br />

respectively. The U.S. EPA (2002b) reports CCC and CMC values separately <strong>for</strong> freshwater and saltwater<br />

environments.<br />

I.4.1.1 The Target-Lipid-Model Framework <strong>for</strong> Non-Polar Organic Compounds<br />

For many organic compounds (i.e., those that meet the criteria to be classified as having Type 1 non-polar<br />

narcotic mode of action, Bradbury et al. 1989) a general approach to developing water-quality criteria,<br />

consistent with the U.S. EPA and species-sensitivity-distribution approaches, was proposed by Di Toro et<br />

al. (2000). This approach (also known as the Target Lipid Model) has been applied and validated <strong>for</strong> the<br />

development of water and sediment benchmarks <strong>for</strong> PAH, crude oil, and gasolines (Di Toro and McGrath<br />

2000; Di Toro et al. 2007; McGrath et al. 2004, 2005). The Target-Lipid Model has been shown to be<br />

applicable to algae, protozoa, invertebrates and fish. In its published applications, it follows a speciessensitivity-distribution-based<br />

approach to estimate FAV and FCV values that reflect the sensitivity of a 5 th<br />

percentile species in the species sensitivity distribution. Thus, the FCV represents an endpoint consistent<br />

with the CHC5 value.<br />

The toxicity of Type 1 narcotic chemicals, which include BTEX, PAH and other chemicals, should be<br />

treated as additive (Bradbury et al. 1989; Hermens 1989; Verhaar et al. 1992; Di Toro et al. 2000; Di Toro<br />

and McGrath 2000; Di Toro et al. 2007). The following sections demonstrate how this additive toxicity<br />

can be evaluated <strong>for</strong> aquatic biota, based on the concept of Toxic Units (TU; Di Toro et al. 2007).<br />

Page I-38 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

The relationship between the LC50 <strong>for</strong> Type 1 narcotic chemicals (mmol/L) and the KOW value <strong>for</strong> fish is<br />

approximately (Di Toro et al. 2000 Equation 1):<br />

log(LC50) ≈ – log(KOW) + 1.7<br />

From Di Toro et al. (2000 Equation 3), the critical body burden corresponding to lethality is:<br />

C*Org = BCF × LC50<br />

The BCF varies with KOW, so that (Di Toro et al. 2000 Equation 4):<br />

log(BCF) = log(KOW) – 1.3<br />

There<strong>for</strong>e, the critical body burden corresponding to the LC50 can be calculated by combining the toxicity<br />

and the bioaccumulation equations as:<br />

Or,<br />

log(C*Org) = log(BCF) + log(LC50)<br />

= log(KOW) – 1.3 – log(KOW) + 1.7<br />

= 0.4<br />

C*Org = 2.5 mmol/kg wet weight (Di Toro et al. 2000 Equation 6).<br />

Assuming that the lipid fraction of fish and invertebrates is approximately 5%, then,<br />

C*Org = 50 mmol/kg lipid (which can also be defined as C*L)<br />

Note that although initially based on fish, this result is in principle a universal concentration applicable to<br />

all aquatic biota and broadly validated <strong>for</strong> protozoa, coelenterates, polychaetes, crustaceans, molluscs,<br />

insects, fish and amphibians <strong>for</strong> a variety of Type 1 narcotic chemicals (Di Toro et al. 2000).<br />

From this concentration, and from considerations of multi-component organic compound solubility in<br />

water and sediment pore water, it is possible to derive models that can account <strong>for</strong> the toxicity of<br />

hydrocarbon mixtures in water and sediment <strong>for</strong> a broad range of aquatic biota. This approach is carried<br />

out and validated by Di Toro et al. (2000), Di Toro and McGrath (2000), McGrath et al. (2005), and<br />

Di Toro et al. (2007). Di Toro et al. (2007 Equation 1) note that:<br />

log(LC50) = m log(KOW) + b,<br />

where m has the value of approximately -1 and b has the value of approximately 1.7 <strong>for</strong> fish. It has been<br />

further shown that:<br />

• the slope (m) of approximately -1 (actually defined as -0.945 ± 0.014 by Di Toro et al. 2000) is<br />

universal across KOW values (i.e., <strong>for</strong> a broad range of narcotic chemicals) and independent of<br />

organism identity<br />

• the intercept (b), which varies according to individual species sensitivity and toxic endpoint, can be<br />

interpreted as the lipid-normalized critical body burden, C*L, that corresponds to an observed<br />

endpoint such as 50% mortality or LC50 (Di Toro et al. 2007)<br />

2010 Page I-39


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Families of lines can be defined, each having the same slope (-0.945), but having different intercepts, to<br />

represent different endpoints (such as acute or chronic lethality) <strong>for</strong> different organisms. Di Toro et al.<br />

(2000) evaluate a variety of different species in order to define the 5 th percentile of sensitivity (as required<br />

by U.S. EPA, and as recently recommended by CCME in estimating water-quality criteria). Based upon<br />

multi-species evaluation (including protozoa, coelenterates, polychaetes, crustaceans, molluscs, insects,<br />

fish and amphibians), critical lipid concentrations <strong>for</strong> the more sensitive (5 th percentile) resources are<br />

defined as follows:<br />

C*L, FAV, 5% = 35.3 mmol/kg lipid<br />

C*L, FCV, 5% = 6.94 mmol/kg lipid<br />

An acute: chronic ratio (ACR) of 5.09 is assumed.<br />

Using this approach and data presented in Di Toro et al. (2000), the 50 th percentile of species sensitivity<br />

distribution (SSD) was also derived and the corresponding critical lipid concentrations are defined as:<br />

C*L, FAV, 50% = 144 mmol/kg lipid<br />

C*L, FCV, 50% = 28.3 mmol/kg lipid, where the same ACR of 5.09 is used<br />

The analysis presented in Di Toro et al. (2000) also showed that some classes of narcotic chemicals are<br />

systematically considered to have a greater toxic potency than others and correction factors are listed in<br />

Table I-9.<br />

Table I-9 Chemical-Class Correction Factors and Critical Tissue<br />

Concentrations <strong>for</strong> Aquatic Biota<br />

Chemical Class<br />

Chemical-Class<br />

Correction Factor<br />

5 th Percentile SSD<br />

(mmol/kg lipid)<br />

50 th Percentile SSD<br />

(mmol/kg lipid)<br />

cl log cl FAV FCV FAV FCV<br />

Baseline a 1 0 35.3 6.94 144 28.3<br />

Halogenated 0.570 -0.244 20.1 3.96 82.1 16.1<br />

Ketones 0.569 -0.245 20.1 3.95 81.9 16.1<br />

Halogenated<br />

Ketones<br />

0.324 -0.489 11.4 2.25 46.7 9.17<br />

PAH 0.546 -0.263 19.3 3.79 78.6 15.5<br />

Halogenated PAH 0.311 -0.507 11.0 2.16 44.8 8.80<br />

NOTE:<br />

a<br />

Baseline narcotic chemicals include aliphatics, ethers, alcohols and most aromatic compounds (e.g.,<br />

BTEX and aromatic TPH).<br />

For each substance (j), the critical water concentration at which an adverse effect will occur is:<br />

log(C*W,j) = -0.945 log(KOW,j) + (log(C*L) + Δcj),<br />

where KOW,j is the octanol-water partition coefficient <strong>for</strong> substance j, and the term (log(C*L) + Δcj) is the<br />

critical effects concentration in the organism lipid fraction (mmol/kg lipid) from Table I-9.<br />

Page I-40 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

The 5 th percentile in a SSD can be considered generally protective of aquatic resources, in a manner<br />

consistent with a recently published methodology <strong>for</strong> the development of Canadian Water-Quality<br />

Guidelines <strong>for</strong> the protection of aquatic life (CCME 2007).<br />

The critical water concentrations <strong>for</strong> chronic exposures <strong>for</strong> the 5 th percentile SSD are based on the<br />

following equations:<br />

log(C*W,j,5) = -0.945 log(KOW,j) + 0.841 <strong>for</strong> BTEX and TPH<br />

log(C*W,j,5) = -0.945 log(KOW,j) + 0.578 <strong>for</strong> PAH<br />

log(C*W,j,5) = -0.945 log(KOW,j) + 0.597 <strong>for</strong> chlorinated baseline compounds<br />

The critical water concentrations <strong>for</strong> chronic exposures of 50 th percentile SSD are based on the following<br />

equations:<br />

log(C*W,j,50) = -0.945 log(KOW,j) + 1.451 <strong>for</strong> BTEX and TPH<br />

log(C*W,j,50) = -0.945 log(KOW,j) + 1.188 <strong>for</strong> PAH<br />

log(C*W,j,50) = -0.945 log(KOW,j) + 1.207 <strong>for</strong> chlorinated baseline compounds<br />

Critical water concentrations of the 5 th and 50 th percentile SSD <strong>for</strong> chronic effects are presented in<br />

Table I-10 as the chronic hazardous concentration–5 th percentile and 50 th percentile benchmarks<br />

respectively (CHC5 and CHC50). Table I-10 also includes a negligible benchmark based on the analytical<br />

detection limit <strong>for</strong> water as reported by RPC Laboratories.<br />

I.4.2 Evaluation of National Guidelines and Methodologies<br />

In an extensive review of methods used to derive water quality guidelines (WQGs), Warne (1998)<br />

provided the following brief summary:<br />

There are two principal approaches to determining WQGs. The original method called<br />

the assessment factor method divided the lowest toxicity value by an assessment factor,<br />

the magnitude of which was based on the number, character and quality of the available<br />

toxicity data. The more data, and the more realistic they were, the lower the magnitude of<br />

the assessment factor. Typical assessment factors used are 10, 100 and 1000. The aim of<br />

such methods is to protect all species from lifetime exposures to toxicants. This type of<br />

approach is used by a variety of countries including Australia, New Zealand, USA,<br />

Canada, Denmark, The Netherlands and South Africa and the OECD has recommended<br />

it. A new approach—statistical extrapolation methods—has been developed since 1986.<br />

They use toxicity <strong>for</strong> all species that are available and fit a particular distribution to the<br />

data and from this calculate the concentration that should protect any percentage of<br />

species. This type of approach has also been adopted by many countries—in fact all the<br />

above mentioned countries except Australia, New Zealand and Canada use both the<br />

assessment factor and statistical extrapolation techniques. The USA, The Netherlands,<br />

OECD and South Africa use the statistical extrapolation techniques in preference to the<br />

AF methods unless there is insufficient data whereas Denmark prefers the AF method to<br />

the statistical extrapolation techniques” (Warne 1998).<br />

2010 Page I-41


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

It should be noted as described above in a review of the national guideline development methods that<br />

Australia and New Zealand adopted the statistical extrapolation approach in 2000 and Canada followed<br />

suit in 2007. With the recent adoption of the statistical extrapolation of the SSD approach by CCME, all<br />

four national guidelines reviewed above now estimate guideline values using this method as a primary<br />

means and the AF approach as a secondary means (except U.S. EPA, which does not use a similar<br />

AF approach).<br />

One important consideration in reviewing the above guidelines is the use of NOEC data versus alternative<br />

risk effect concentrations <strong>for</strong> use in the species-sensitivity distributions. The use of NOEC values has<br />

been heavily criticized in peer-reviewed literature, as they are meant to represent the concentration at<br />

which there was no risk effect and because calculation methods vary and produce inconsistent results<br />

(Jager et al. 2006; Crane and Newman 2000; Chapman et al. 1996). Crane and Newman (2000)<br />

demonstrated that NOEC values actually may represent a risk effect ranging from 0% to 37% with a mean<br />

of approximately a 10% risk effect level. The U.S. EPA uses the geometric mean of NOEC and LOEC<br />

values (defined as the MATC value; Crane and Newman 2000) to determine appropriate risk effects<br />

thresholds which is higher than the NOEC and had an averaged response of approximately 28% (Crane<br />

and Newman 2000). There<strong>for</strong>e, while the 95 th percentile of the NOEC distribution is assumed to be<br />

protective of 95% of species, this assumption would be premised on the assumption that a 10% risk effect<br />

level would not result in a population-level effect. There<strong>for</strong>e, given the analysis conducted by Crane and<br />

Newman (2000), preference is given to guidelines derived using NOEC values (CCME, Australia/New<br />

Zealand, and the Netherlands) and not the U.S. EPA MATC values, though the latter are preferred over<br />

the AF approach.<br />

Given the various statistical techniques and data requirements, the following order of preference has been<br />

determined <strong>for</strong> selecting water quality guidelines used in ERA, where SE refers to statistical extrapolation<br />

approach and AF refers to the risk assessment-factor approach:<br />

1. CCME type A (SE)<br />

2. RIVM derived using the EU TGD (SE)<br />

3. ANZECC high reliability (SE)<br />

4. RIVM pre-TGD (SE)<br />

5. ANZECC moderate reliability (SE)<br />

6. U.S. EPA (SE)<br />

7. CCME type B-1 (AF)<br />

8. RIVM guidelines (AF)<br />

9. ANZECC low reliability (AF)<br />

10. CCME type B-2 (AF)<br />

11. CCME (1991) guidelines (AF)<br />

Table I-10 provides the selected benchmark values <strong>for</strong> determination of effect magnitude <strong>for</strong> the marine<br />

environment (water).<br />

Page I-42 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Table I-10 <strong>Marine</strong> Water Effect Magnitude Benchmarks<br />

Trace Elements<br />

Concentration<br />

(mg/L)<br />

DL Fresh a<br />

CHC5<br />

2010 Page I-43<br />

Reference<br />

Barium 2.0E-05 5.8E-03 MPA b 1.5E+01 SRAeco b<br />

Boron 2.0E-04 5.1E+00 ANZECC 9.8E+00 c<br />

Cadmium 5.0E-07 5.5E-03 ANZECC 2.7E-02 SRAeco d<br />

Manganese 2.0E-05 8.0E-02 ANZECC 3.6E+00 e<br />

Molybdenum 2.0E-05 2.3E-02 ANZECC 5.4E+01 SRAeco d<br />

Nickel 2.0E-05 7.0E-02 ANZECC 5.0E-01 SRAeco d<br />

Tin 2.0E-05 1.0E-02 ANZECC 4.0E-01 SRAeco b<br />

Vanadium 2.0E-05 1.0E-01 ANZECC 3.0E-01 f<br />

Zinc 2.0E-04 1.5E-02 ANZECC 8.9E-02 SRAeco d<br />

BTEX<br />

Benzene 5.0E-04 5.6E+00 Di Toro et al. 2000 2.3E+01 Di Toro et al. 2000<br />

EthylBenzene 5.0E-04 8.7E-01 3.5E+00<br />

Toluene 5.0E-04 1.8E+00 7.3E+00<br />

Xylenes (tot) 5.0E-04 7.0E-01 2.8E+00<br />

PAH<br />

Negligible<br />

Low<br />

1-Methylnaphthalene 1.0E-05 1.2E-01 Di Toro et al. 2000 4.8E-01 Di Toro et al. 2000<br />

2-Methylnaphthalene 1.0E-05 1.2E-01 4.9E-01<br />

Acenaphthene 1.0E-05 1.2E-01 4.9E-01<br />

Acenaphthylene 1.0E-05 9.4E-02 3.9E-01<br />

Anthracene 1.0E-05 3.8E-02 1.5E-01<br />

Benzo(a)anthracene 1.0E-05 3.5E-03 1.4E-02<br />

Benzo(b)fluoranthene 1.0E-05 1.6E-03 6.4E-03<br />

Benzo(k)fluoranthene 1.0E-05 1.6E-03 6.7E-03<br />

Benzo(ghi)perylene 1.0E-05 7.5E-04 3.1E-03<br />

Benzo(a)pyrene 1.0E-05 2.0E-03 8.3E-03<br />

Benzo(e)pyrene 1.0E-05 7.8E-04 3.2E-03<br />

Chrysene 1.0E-05 3.5E-03 1.4E-02<br />

Dibenzo(a,h)anthracene 1.0E-05 7.6E-04 3.1E-03<br />

Fluoranthene 1.0E-05 1.4E-02 5.9E-02<br />

Fluorene 1.0E-05 6.8E-02 2.8E-01<br />

Indeno(123-cd)pyrene 1.0E-05 6.1E-04 2.5E-03<br />

Naphthalene 5.0E-05 3.7E-01 1.5E+00<br />

Moderate<br />

CHC50<br />

Reference<br />

High


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Table I-10 <strong>Marine</strong> Water Effect Magnitude Benchmarks (cont’d)<br />

Phenanthrene<br />

Concentration<br />

(mg/L)<br />

DL Fresh a<br />

1.0E-05<br />

CHC5<br />

2010 Page I-45<br />

Reference<br />

Pyrene 1.0E-05 1.8E-02 7.3E-02<br />

Phenolic Compounds<br />

2,4-Dimethylphenol 1.0E-04 5.7E+00 Di Toro et al. 2000 2.3E+01 Di Toro et al. 2000<br />

2,4-Dinitrophenol 1.0E-04 4.5E+01 1.8E+02<br />

Phenol 5.0E-02 2.5E+01 1.0E+02<br />

TPH Fractions<br />

Aliphatics >C6-C8 5.0E-03 1.2E-01 Di Toro et al. 2000 4.8E-01 Di Toro et al. 2000<br />

Aliphatics >C8-C10 5.0E-03 2.2E-02 8.9E-02<br />

Aliphatics >C10-C12 1.0E-02 3.8E-03 1.5E-02<br />

Aliphatics >C12-C16 1.0E-02 2.8E-04 1.1E-03<br />

Aliphatics >C16-C21 1.0E-02 --- –<br />

Aliphatics >C21-C32 2.0E-02 --- –<br />

Aromatics >C8-C10 5.0E-03 3.4E-01 1.4E+00<br />

Aromatics >C10-C12 1.0E-02 2.4E-01 9.7E-01<br />

Aromatics >C12-C16 1.0E-02 1.4E-01 5.8E-01<br />

Aromatics >C16-C21 1.0E-02 6.1E-02 2.5E-01<br />

Aromatics >C21-C32 2.0E-02 1.1E-02 4.4E-02<br />

VOCs<br />

1,2,4-Trichlorobenzene 1.0E-03 1.2E-01 Di Toro et al. 2000 4.9E-01 Di Toro et al. 2000<br />

1,3,5-Trimethylbenzene 1.0E-03 2.8E-01 1.1E+00<br />

NOTES:<br />

“–” Not considered because of negligible solubility and bioavailability.<br />

CHC – Chronic Hazardous Concentration<br />

DL – Detection Limit<br />

MPA – Maximum Permissible Addition concentration (as described by the RIVM; van Vlaardingen et al. 2005)<br />

SRAeco – Ecotoxicological Serious <strong>Risk</strong> Addition concentration (as described by the RIVM; Verbruggen et al. 2001; van Vlaardingen et al. 2005).<br />

ANZECC – Australian and New Zealand Environmental Conservation Council. 2000. Australian and New Zealand Guidelines <strong>for</strong> Fresh and <strong>Marine</strong> Water Quality.<br />

a<br />

Freshwater detection limits as provided by RPC Laboratories.<br />

b<br />

van Vlaardingen et al. 2005. (RIVM)<br />

c<br />

Geometric mean of chronic toxicity data (NOAEL) <strong>for</strong> freshwater species (marine chronic data not available, but acute marine and freshwater data were not significantly different).<br />

3.8E-02<br />

d Verbruggen et al. 2001. (RIVM)<br />

e Geometric mean of acute toxicity data (LC50 and EC50) <strong>for</strong> aquatic species divided by an uncertainty factor of 10.<br />

f Reliable CHC50 not available. Assumed to be three times the CHC5.<br />

CHC50<br />

1.5E-01<br />

Reference


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

I.4.3 Review of National Sediment Quality Guidelines and Selection of<br />

Benchmarks<br />

There are currently two common approaches to determining sediment-quality guidelines: co-occurrence<br />

and mechanistic.<br />

Co-occurrence SQG approaches are based on the statistical analysis of large databases of synoptic<br />

sediment chemistry and toxicity data to identify chemical concentrations associated with various levels of<br />

biological effects. Examples of this type of SQG include the effects range–low (ERL) and effects range–<br />

median (ERM) values, which are concentrations corresponding to the 10 th and 50 th percentiles of the<br />

distribution observed in toxic samples, respectively. Variations in chemical speciation and bioavailability<br />

are not directly addressed in co-occurrence SQG. Such risk effects are indirectly incorporated into the<br />

guidelines through the use of a database containing samples from diverse locations and sediment types.<br />

Co-occurrence SQG have two major practical advantages: they can be calculated <strong>for</strong> a large number of<br />

contaminants, and only routine chemical-analysis data are needed <strong>for</strong> their application.<br />

Co-occurrence-based SQG have been criticized in the literature <strong>for</strong> their lack of ability to properly<br />

determine a toxicity threshold because of interference caused by sediment containing multiple elements<br />

and the inability to determine which elements are responsible <strong>for</strong> the observed toxicity (von Stackelberg<br />

and Menzie 2002; Borgmann 2003; Jones-Lee and Lee 2005; Di Toro 2008). In essence, as the<br />

concentrations of many trace elements and other organic contaminants (petroleum hydrocarbons) are<br />

frequently correlated due to mutual sources of contamination, the relationship between concentrations of<br />

one contaminant and the apparent toxicity of the sediment become auto-correlated and do not represent a<br />

true concentration-response curve. Furthermore, it is frequently suggested that when determining cooccurrence<br />

SQG, the data should be pre-screened using various protocols (Field et al. 1999, 2002), which<br />

effectively inserts bias to the dataset and critically limits the ability to determine whether the resulting<br />

values can be applied to field data (Di Toro 2008).<br />

More recently, several studies have used a statistical extrapolation from species-sensitivity distributions to<br />

determine sediment-quality guidelines (Leung et al. 2005; Bjørgesæter 2006; Kwok et al. 2008). Leung et<br />

al. (2005) and Bjørgesæter (2006) report SQG <strong>for</strong> several contaminants measured in Norwegian Shelf<br />

sediment based on SSD <strong>for</strong> 2,200 benthic species and 4,200 sampling locations. While an improvement<br />

over the currently used co-occurrence databases used in Canada and previously in the United States<br />

(Leung et al. 2005), it is still subject to the problem of auto-correlation between contaminants, and species<br />

presence-absence because of the correlation between contaminants originating from a mutual source. This<br />

statistical defect of the current empirical approaches renders them unreliable <strong>for</strong> use as environmental<br />

effect magnitude benchmarks.<br />

Mechanistic models estimate the fraction of a contaminant that is bioavailable in sediment, and relates<br />

this concentration to known aquatic toxicity levels. For organic substances, these models use the<br />

Equilibrium Partition Model (EqP; Di Toro et al. 1990) as their general framework and apply empirical<br />

toxicity data to predict the toxicity of single chemicals or chemical mixtures. These models have been<br />

validated using large datasets of spiked sediments (Berry et al. 1996) and field datasets (Hansen et al.<br />

1996). Work by Di Toro and co-workers has recently applied these concepts to hydrocarbons and PAH in<br />

sediments.<br />

2010 Page I-47


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

The toxicity of metals in sediment is complicated by the presence of:<br />

• relatively immobile and non-available metals in the mineral lattice structures of mineral particles<br />

• more labile metal fractions associated with a variety of geochemical phases, including sorbed (readily<br />

exchangeable) metals<br />

• metals that may be associated with organic matter, carbonates, iron and manganese oxides, sulphides,<br />

and potentially other phases in the sediment<br />

Much work has focused on the role of acid-volatile sulphide (AVS) in sediment (Ankley et al. 1991), and<br />

<strong>for</strong> some metals, the ratio of AVS to simultaneously extractable metals (SEM) has been demonstrated to<br />

be a reliable predictor of sediment toxicity.<br />

Mechanistic SQG often require extensive geochemical data to apply, and as a result simpler models based<br />

on partition coefficients (KOW, KOC or KD values) are more suitable <strong>for</strong> use in large-scale risk assessments.<br />

Sediment quality guidelines based on equilibrium partitioning (EqP) <strong>for</strong> organics assume that non-ionic<br />

chemicals in sediment partition according to well defined KOC values between the organic carbon present<br />

in the sediment as well as in the interstitial (pore) water and the benthic organisms living on the sediment.<br />

For metals, a similar partitioning between the bulk sediment and water phases is assumed based upon KD<br />

values, although such values are inherently less well defined than KOW and KOC values. For this reason, in<br />

this study, high-quality KD values have been selected from major compilations representing coastal waters<br />

(Balls 1989, U.S. EPA 2005, IAEA 2004). To be conservative, these values have been divided by 10<br />

be<strong>for</strong>e using them in the <strong>Marine</strong> ERA sediment toxicity model.<br />

I.4.3.1 Toxicity of Type 1 Narcotic Chemicals in <strong>Marine</strong> Sediment<br />

The evaluation of organic COPC toxicity to marine sediment-dwelling organisms follows a similar<br />

approach to that applied to water (Di Toro and McGrath 2000), since it is the concentration of organic<br />

substances in sediment pore water that is considered to be available and potentially toxic to sediment life<br />

(i.e., the equilibrium partitioning or EqP approach). Sediment narcotic chemical concentrations are based<br />

on organic carbon (OC) normalization, where typical sediment organic carbon fractions may range from<br />

0.001 to 0.05 (and can be defined by the user, provided data are available to support a specific selection),<br />

with a default value of 0.01 (1% organic carbon).<br />

Two simple relationships can be exploited as follows. First, from Di Toro and McGrath (2000), Equations<br />

6 and 7:<br />

CS,OC = KOC × CW, where log(KOC) = 0.00028 + 0.983 log(KOW).<br />

Second, from Di Toro and McGrath (2000), Equations 9 and 10):<br />

log(CSQG) = log(KOC) + log(FCV), where log(FCV) = log(C*L) – 0.945 log(KOW).<br />

Then by substitution and simplification (Di Toro and McGrath, 2000, Equation 12):<br />

log(CSQG) = 0.00028 + log(C*L) + 0.038 log(KOW).<br />

Page I-48 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

This is the desired equation, which provides a critical sediment concentration (CSQG, mmol/kg OC), based<br />

on C*L (as <strong>for</strong> water above) and KOW (a fundamental property of each substance). As stated previously,<br />

critical water concentrations <strong>for</strong> baseline hydrocarbons chronic exposures of the 5 th and 50 th percentile<br />

SSD are based on a C*L values of 6.9 and 28.3 mmol/kg lipid respectively, which are adjusted using<br />

correction factors to reflect higher toxicity of other chemical classes, such as PAH.<br />

I.4.3.2 Toxicity of Trace Elements in Sediment<br />

To derive sediment benchmarks <strong>for</strong> trace elements, the equilibrium partitioning theory was also used by<br />

assuming a similar partitioning between the bulk sediment and water phases. This approach takes into<br />

account the aquatic benchmarks developed herein and is similar to that used by the RIVM to define<br />

sediment guidelines (Lijzen et al. 2001) and has also been recommended by others (Leung et al. 2005).<br />

On the other hand, this approach requires KD values, which are inherently less well defined than KOW and<br />

KOC values. Although the highest quality reported KD values are used (see Appendix B), these values<br />

were conservatively divided by a factor of 10 be<strong>for</strong>e applying them in the derivation of sediment<br />

benchmarks. As such, sediment benchmarks values are derived using these equations:<br />

Sediment CHC5 Benchmark (mg/kg dw) = Water CHC5 Benchmark × KD / 10<br />

Sediment CHC50 Benchmark (mg/kg dw) = Water CHC50 Benchmark × KD /10<br />

The water benchmarks (CHC5 and CHC50, mg/L) are those listed previously in this Appendix, and KD is<br />

the water/sediment partition coefficient (L/kg) as found in Appendix B.<br />

Empirical measurements of trace element concentrations in sediment samples collected within <strong>Kitimat</strong><br />

Arm (both near-shore and sub-tidal) were used to identify baseline concentrations of trace elements in<br />

sediment. The median reported values were selected, based on professional judgment, to represent a<br />

natural baseline concentration, and this concentration represents the expected concentrations in areas in<br />

<strong>Kitimat</strong> Arm and Douglas Channel that are remote from industrial or other significant human activity (<strong>for</strong><br />

example, Clio Bay). The maximum detected values are used to represent expected concentrations in areas<br />

considered to be affected by or proximal to areas of industrial or other significant human activity<br />

(compartments located adjacent to or inland from the <strong>Kitimat</strong> Terminal). It is considered conservative to<br />

use the maximum reported value to represent baseline conditions <strong>for</strong> these areas.<br />

Table I-11 presents selected benchmark values <strong>for</strong> determination of environmental effect magnitude <strong>for</strong><br />

the marine sediments, and selected baseline concentrations <strong>for</strong> trace elements in sediment.<br />

2010 Page I-49


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Table I-11 <strong>Marine</strong> Sediment Effect Magnitude Benchmarks<br />

Trace Elements<br />

Concentration<br />

(mg/kg dw)<br />

Baseline Concentrations <strong>for</strong> Model Compartments a<br />

CB and EP K1, K2 and T<br />

Near-shore Sub-tidal Near-shore Sub-tidal<br />

Incremental <strong>Marine</strong> Sediment Effect Magnitude Benchmarks<br />

2010 Page I-51<br />

Negligible<br />

DL b<br />

Low<br />

CHC5 Ref.<br />

Moderate<br />

CHC50 Ref.<br />

Barium 2.9E+01 1.3E+02 3.6E+01 1.5E+02 2.0E-02 5.8E+00 EqP c 1.5E+04 EqP c<br />

Boron --- 3.9E+01 --- 5.8E+01 8.0E-04 2.0E+01 3.9E+01<br />

Cadmium < 1.0E-01 < 5.0E-02 1.0E-01 9.0E-02 5.0E-03 5.5E+01 2.7E+02<br />

Manganese --- 5.5E+02 --- 7.0E+02 1.5E+00 6.0E+03 2.7E+05<br />

Molybdenum 3.8E-01 < 5.0E-01 5.4E-01 < 5.0E-01 5.0E-02 5.8E+01 1.4E+05<br />

Nickel 8.2E+00 2.1E+01 9.4E+00 2.4E+01 6.3E-02 2.2E+02 1.6E+03<br />

Tin < 5.0E+00 < 2.0E+00 < 5.0E+00 < 2.0E+00 1.6E-01 7.9E+01 3.2E+03<br />

Vanadium d 4.4E+01 1.3E+02 5.4E+01 1.4E+02 1.0E-02 5.0E+01 1.5E+02<br />

Zinc 3.4E+01 8.0E+01 3.8E+01 8.6E+01 2.0E+00 1.5E+02 8.9E+02<br />

BTEX<br />

Benzene < 3.0E-02 < 8.0E-02 < 3.0E-02 < 8.0E-02 8.0E-02 6.5E+00 Di Toro and<br />

2.7E+01 Di Toro and<br />

EthylBenzene < 3.0E-02 < 1.0E-01 < 3.0E-02 < 1.0E-01 1.0E-01 9.7E+00<br />

McGrath 2000<br />

3.9E+01<br />

McGrath 2000<br />

Toluene < 3.0E-02 < 1.0E-01 < 3.0E-02 < 1.0E-01 1.0E-01 8.1E+00 3.3E+01<br />

Xylenes (tot)<br />

PAH<br />

< 5.0E-02 < 2.0E-01 < 5.0E-02 < 2.0E-01 2.0E-01 9.8E+00 4.0E+01<br />

1-Methylnaphthalene --- --- --- --- --- 7.6E+00 Di Toro and<br />

3.1E+01 Di Toro and<br />

2-Methylnaphthalene < 1.0E-02 < 5.0E-02 1.0E-02 < 5.0E-02 5.0E-02 7.6E+00<br />

McGrath 2000<br />

3.1E+01<br />

McGrath 2000<br />

Acenaphthene < 5.0E-03 < 5.0E-02 8.5E-03 < 5.0E-02 5.0E-02 8.2E+00 3.4E+01<br />

Acenaphthylene < 5.0E-03 < 5.0E-02 < 5.0E-03 < 5.0E-02 5.0E-02 8.1E+00 3.3E+01<br />

Anthracene < 5.0E-03 < 5.0E-02 1.4E-02 < 5.0E-02 5.0E-02 1.0E+01 4.1E+01<br />

Benzo(a)anthracene 7.5E-03 < 5.0E-02 2.0E-02 2.7E-01 5.0E-02 1.4E+01 5.8E+01<br />

Benzo(b)fluoranthene 1.4E-02 7.5E-02 2.9E-02 7.0E-01 5.0E-02 1.6E+01 6.7E+01<br />

Benzo(k)fluoranthene < 1.0E-02 < 5.0E-02 < 1.0E-02 < 5.0E-02 5.0E-02 1.6E+01 6.7E+01<br />

Benzo(ghi)perylene < 1.0E-02 < 5.0E-02 < 1.0E-02 2.3E-01 5.0E-02 1.9E+01 7.5E+01<br />

Benzo(a)pyrene < 1.0E-02 < 5.0E-02 < 1.0E-02 3.6E-01 5.0E-02 1.6E+01 6.6E+01<br />

Benzo(e)pyrene --- --- --- --- --- 1.7E+01 6.9E+01<br />

Chrysene 1.1E-02 < 5.0E-02 2.8E-02 3.2E-01 5.0E-02 1.4E+01 5.8E+01<br />

Dibenzo(a,h)anthracene < 5.0E-03 < 5.0E-02 < 5.0E-03 6.0E-02 5.0E-02 1.9E+01 7.6E+01<br />

Fluoranthene 1.5E-02 4.3E-02 6.0E-02 3.9E-01 5.0E-02 1.2E+01 4.8E+01<br />

High


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Table I-11 <strong>Marine</strong> Sediment Effect Magnitude Benchmarks (cont’d)<br />

Concentration<br />

(mg/kg dw)<br />

Baseline Concentrations <strong>for</strong> Model Compartments a<br />

CB and EP K1, K2 and T<br />

Near-shore Sub-tidal Near-shore Sub-tidal<br />

Fluorene < 1.0E-02 < 5.0E-02 < 1.0E-02 < 5.0E-02<br />

Incremental <strong>Marine</strong> Sediment Effect Magnitude Benchmarks<br />

2010 Page I-53<br />

DL b<br />

5.0E-02<br />

CHC5 Ref.<br />

Indeno(123-cd)pyrene < 1.0E-02 < 5.0E-02 < 1.0E-02 2.5E-01 5.0E-02 1.9E+01 7.6E+01<br />

Naphthalene < 1.0E-02 < 5.0E-02 3.0E-02 < 5.0E-02 5.0E-02 6.5E+00 2.6E+01<br />

Phenanthrene 9.0E-03 < 5.0E-02 8.7E-02 1.8E-01 5.0E-02 1.0E+01 4.1E+01<br />

Pyrene 1.0E-02 4.3E-02 3.6E-02 4.0E-01 5.0E-02 1.2E+01 4.8E+01<br />

Phenolic Compunds<br />

9.1E+00<br />

CHC50 Ref.<br />

2,4-Dimethylphenol --- --- --- --- --- 1.0E+01 Di Toro and<br />

4.2E+01 Di Toro and<br />

2,4-Dinitrophenol --- --- --- --- --- 1.5E+01<br />

McGrath 2000<br />

6.0E+01<br />

McGrath 2000<br />

Phenol<br />

TPH Fractions<br />

--- --- --- --- --- 7.5E+00 3.0E+01<br />

Al >C6-C8 < 2.0E-01 --- < 2.0E-01 --- 2.0E-01 9.8E+00 Di Toro and<br />

4.0E+01 Di Toro and<br />

Al >C8-C10 < 4.0E-01 --- < 4.0E-01 --- 4.0E-01 1.4E+01<br />

McGrath 2000<br />

5.6E+01<br />

McGrath 2000<br />

Al >C10-C12 < 8.0E+00 --- < 8.0E+00 --- 8.0E+00 1.8E+01 7.5E+01<br />

Al >C12-C16 < 1.5E+01 --- < 1.5E+01 --- 1.5E+01 2.6E+01 1.1E+02<br />

Al >C16-C21 < 1.5E+01 --- < 1.5E+01 --- 1.5E+01 -- e --- e<br />

Al >C21-C32 < 1.5E+01 --- < 1.5E+01 --- 1.5E+01 --- e --- e<br />

Ar >C8-C10 < 3.0E-01 --- 4.0E-01 --- 3.0E-01 1.1E+01 4.6E+01<br />

Ar >C10-C12 < 5.0E+00 --- 6.3E+00 --- 5.0E+00 1.3E+01 5.1E+01<br />

Ar >C12-C16 < 1.5E+01 --- < 1.5E+01 --- 1.5E+01 1.5E+01 6.1E+01<br />

Ar >C16-C21 < 1.5E+01 --- < 1.5E+01 --- 1.5E+01 2.0E+01 8.0E+01<br />

Ar >C21-C32<br />

VOCs<br />

< 1.5E+01 --- 2.3E+01 --- 1.5E+01 2.7E+01 1.1E+02<br />

3.7E+01


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Table I-11 <strong>Marine</strong> Sediment Effect Magnitude Benchmarks (cont’d)<br />

Baseline Concentrations <strong>for</strong> Model Compartments a<br />

Incremental <strong>Marine</strong> Sediment Effect Magnitude Benchmarks<br />

Concentration<br />

CB and EP K1, K2 and T<br />

(mg/kg dw)<br />

DL b<br />

Near-shore Sub-tidal Near-shore Sub-tidal<br />

CHC5 Ref.<br />

CHC50 Ref.<br />

1,2,4-Trichlorobenzene --- --- --- ---<br />

---<br />

1.0E+01 Di Toro and<br />

4.2E+01 Di Toro and<br />

1,3,5-Trimethylbenzene --- --- --- --- --- 6.4E+00<br />

McGrath 2000<br />

2.6E+01<br />

McGrath 2000<br />

NOTES:<br />

“---” Indicates results not reported by the laboratory or analysis not requested.<br />

CHC - Chronic Hazardous Concentration<br />

DL - Detection Limit<br />

dw - dry weight<br />

EqP - Equilibrium Partitioning<br />

Ref. - Reference<br />

Model Compartments<br />

CB - Clio Bay<br />

EP - Emsley Point<br />

K1 - <strong>Kitimat</strong> 1<br />

K2 - <strong>Kitimat</strong> 2<br />

T - Terminal<br />

a Reported concentrations <strong>for</strong> samples collected in compartments K1, K2 and T. For near-shore sediments, maximum concentrations are assigned to K1, K2 and T compartments<br />

whereas median concentrations were assigned to CB and EP. For offshore sediments, maximum concentrations of samples collected near the marine terminal are assigned to K1,<br />

K2 and T compartments whereas average concentrations of samples collected at a reference locations situated on the opposite shore are assigned to compartments CB and EP.<br />

Concentration of organics in sediments is assumed to be negligible in the derivation of benchmarks.<br />

b For trace elements, derived detection limit based on the equilibrium partitioning approach using the freshwater water detection limits and compound specific Kd values.<br />

c CHC5 and CHC50 benchmarks <strong>for</strong> trace elements are derived using the equilibrium-partitioning approach using corresponding seawater benchmarks and compound specific Kd values.<br />

d Total baseline vanadium sediment concentrations are reported although the bioavailable fraction, is assumed to represent 10% of the total vanadium concentration.<br />

e Not considered because of negligible solubility and bioavailability.<br />

2010 Page I-55


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

I.5 References<br />

I.5.1 Literature Cited<br />

Agency <strong>for</strong> Toxic Substances and Disease Registry (ATSDR). 1995. Toxicological Profile <strong>for</strong><br />

Dinitrophenols. United States Department of Health and Human Services, Public Health Service.<br />

Atlanta, GA.<br />

Agency <strong>for</strong> Toxic Substances and Disease Registry (ATSDR). 2007. Toxicological Profile <strong>for</strong><br />

Ethylbenzene. United States Department of Health and Human Services, Public Health Service.<br />

Atlanta, GA.<br />

Agency <strong>for</strong> Toxic Substances and Disease Registry (ATSDR). 1999. Toxicological Profile <strong>for</strong> Total<br />

Petroleum Hydrocarbons. United States Department of Health and Human Services, Public<br />

Health Service. Atlanta, GA.<br />

Agency <strong>for</strong> Toxic Substances and Disease Registry (ATSDR). 2005a. Toxicological Profile <strong>for</strong> Tin and<br />

Tin. United States Department of Health and Human Services, Public Health Service,<br />

Compounds. Atlanta, GA.<br />

Agency <strong>for</strong> Toxic Substances and Disease Registry (ATSDR). 2005b. Toxicological Profile <strong>for</strong> Benzene.<br />

United States Department of Health and Human Services, Public Health Service. Atlanta, GA.<br />

Agency <strong>for</strong> Toxic Substances and Disease Registry (ATSDR). 2005c. Draft Toxicological Profile <strong>for</strong><br />

Xylene. United States Department of Health and Human Services, Public Health Service. Atlanta,<br />

GA.<br />

Agency <strong>for</strong> Toxic Substances and Disease Registry (ATSDR). 2006. Toxicological Profile <strong>for</strong> Phenol,<br />

Draft. United States Department of Health and Human Services, Public Health Service. Atlanta,<br />

GA.<br />

Aldenberg, T. and W. Slob. 1993. Confidence limits <strong>for</strong> hazardous concentrations based on logistically<br />

distributed NOEC data. Ecotoxicology and Environmental Safety 25: 48–63.<br />

Ankley, G.T., G.L. Phipps, E.N. Leonard, D.A. Benoit, V.R. Mattson, P.A. Kosian, A.M. Cotter,<br />

J.R. Dierkes, D.J. Hansen and J.D. Mahony. 1991. Acid-volatile sulfide as a factor mediating<br />

cadmium and nickel bioavailability in contaminated sediments. Environmental Toxicology and<br />

Chemistry 10(10): 1299–1307.<br />

Balls, P.W. 1989. The partition of trace metals between dissolved and particulate phases in European<br />

coastal waters: a compilation of field data and comparison with laboratory studies. Netherlands<br />

Journal of Sea Research 23: 7–14.<br />

Berry, W.J., D.J. Hansen, J.D. Mahony, D.L. Robson, D.M. Di Toro, B.P. Shipley, B. Rogers, J.M. Corbin<br />

and W.S. Boothman. 1996. Predicting the toxicity of metal-spiked laboratory sediments using<br />

acid-volatile sulfide and interstitial water normalizations. Environmental Toxicology and<br />

Chemistry 15(12): 2067–2079.<br />

2010 Page I-57


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Bjørgesæter, A. 2006. Field Based Predicted No Effect Concentrations (F-PNECs) <strong>for</strong> macro benthos on<br />

the Norwegian Continental Shelf. Environmental <strong>Risk</strong> Management System Report No 15.<br />

Borgmann, U. 2003. Derivation of cause-effect based sediment quality guidelines. Canadian Journal of<br />

Fisheries and Aquatic Sciences 60: 352–360.<br />

Bradbury, S., R. Carlson and T. Henry. 1989. Polar narcosis in aquatic organisms. Aquatic Toxicology and<br />

Hazard <strong>Assessment</strong> 12: 59–73.<br />

Canadian Council of Ministers of the Environment (CCME). 1997. A Framework <strong>for</strong> <strong>Ecological</strong> <strong>Risk</strong><br />

<strong>Assessment</strong>: Technical Appendices. The National Contaminated Sites Program. Winnipeg, MB.<br />

Canadian Council of Ministers of the Environment (CCME). 2007. A Protocol <strong>for</strong> the Derivation of Water<br />

Quality Guidelines <strong>for</strong> the Protection of Aquatic Life 2007. In: Canadian Environmental Quality<br />

Guidelines 1999. Winnipeg, MB.<br />

Canadian Council of Ministers of the Environment (CCME). 2008. Canada-Wide Standard <strong>for</strong> Petroleum<br />

Hydrocarbons (PHCs) in Soil: Scientific Rationale. Supporting Technical Document. Draft.<br />

Winnipeg, MB.<br />

Canadian Council of the Ministers of the Environment (CCME). 1999. Canadian Environmental Quality<br />

Guidelines. Winnipeg, MB.<br />

Canadian Council of the Ministers of the Environment (CCME). 2000. Canada-Wide Standards <strong>for</strong><br />

Petroleum Hydrocarbons (PHCs) in Soil: Scientific Rationale. Supporting Technical Document.<br />

Winnipeg, MB.<br />

Canadian Environmental Protection Act (CEPA). 1993. Priority Substances List <strong>Assessment</strong> Report.<br />

Styrene. Health Canada, Ottawa, ON.<br />

Chapman, P.M., R.S. Cardwell and P.F. Chapman. 1996. A warning: NOECs are inappropriate <strong>for</strong><br />

regulatory use. Environmental Toxicology and Chemistry 15: 77–79.<br />

Chappell, W.R. 1992. Scaling toxicity data across species. Environmental Geochemistry and Health<br />

14(3): 71–80.<br />

Coon, N.C. and M.P. Dieter. 1981. Responses of adult mallard ducks to ingested south Louisiana crude<br />

oil. Environmental Research 24: 309–314.<br />

Coppock, R.W and C.A.J. Campbell. 1997. <strong>Risk</strong> <strong>Assessment</strong>. In G.E. Chalmers (ed.). A Literature Review<br />

and Discussion of the Toxicological Hazards of Oilfield Pollutants in Cattle. Alberta Research<br />

Council, Vegreville, AB. 363–381.<br />

Crane, M. and M.C. Newman. 2000. What level of effect is a no observed effect? Environmental<br />

Toxicology and Chemistry 19(2): 516–519.<br />

Crommentuijn, T., D.F. Kalf, M.D. Polder, R. Posthumus and E.J. van de Plassche. 1997. Maximum<br />

Permissible Concentrations and Negligible Concentrations <strong>for</strong> Pesticides. National Institute of<br />

Public Health and the Environment. RIVM Report No 601501 002. Bilthoven, The Netherlands.<br />

Page I-58 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Daniel, E.P. and R.D. Lillie. 1938. Experimental vanadium poisoning in the white rat. Public Health<br />

Reports 53: 765–777.<br />

Daniel, F.B. M. Robinson, G.R. Olson, R.G. York and L.W. Condie. 1993. Ten and ninety-day toxicity<br />

studies of 2,4-dimethylphenol in Sprague-Dawley rats. Drug and Chemical Toxicology 16(4):<br />

351–368.<br />

Davidson, I.W.F., J.C. Parker and R.P. Beliles. 1986. Biological basis <strong>for</strong> extrapolation across mammalian<br />

species. Regulatory Toxicology and Pharmacology 6: 211–237.<br />

Di Toro D.M., J.D. Mahony, D.J. Hansen, K.J. Scott, M.B. Hicks, S.M. Mayr and M.S. Redmond. 1990.<br />

Toxicity of cadmium in sediments: the role of acid volatile sulfide. Environmental Toxicology and<br />

Chemistry 9: 1487–1502.<br />

Di Toro, D.M. and J.A. McGrath. 2000. Technical basis <strong>for</strong> narcotic chemicals and polycyclic aromatic<br />

hydrocarbon criteria. II. Mixtures and sediments. Environmental Toxicology and Chemistry 19(8):<br />

1971–1982.<br />

Di Toro, D.M., J.A. McGrath and D.J. Hansen. 2000. Technical basis <strong>for</strong> narcotic chemicals and<br />

polycyclic aromatic hydrocarbon criteria. I. Water and tissue. Environmental Toxicology and<br />

Chemistry 19(8): 1951–1970.<br />

Di Toro, D.M., J.A. McGrath and W.A. Stubblefield. 2007. Predicting the toxicity of neat and weathered<br />

crude oil: Toxic potential and the toxicity of saturated mixtures. Environmental Toxicology and<br />

Chemistry 26(1): 24–36.<br />

Di Toro, D.M. 2008. Review of Sediment Quality Objectives <strong>for</strong> Enclosed Bays and Estuaries of<br />

Cali<strong>for</strong>nia. Peer review document <strong>for</strong>: Cali<strong>for</strong>nia Environmental Protection Agency. 2008. Water<br />

Quality Control Plan <strong>for</strong> Enclosed Bays and Estuaries. Part 1. Sediment Quality. State Water<br />

Resources Control Board.<br />

Di Toro, D.M., C.S. Zarba, D.J. Hansen, W.J. Berry, R.C. Swartz, C.E. Cowan, S.P. Pavlou, H.E. Allen,<br />

N.A. Thomas and P.R. Paquin. 1991. Technical basis <strong>for</strong> establishing sediment quality criteria <strong>for</strong><br />

nonionic organic chemicals using equilibrium partitioning. Environmental Toxicology and<br />

Chemistry 10: 1541–1583.<br />

Di Toro, D.M., J.A. McGrath, D.J. Hansen, W.J. Berry, P.R. Paquin, R. Mathew, K.B. Wu and<br />

R.C. Santore. 2005. Predicting sediment metal toxicity using a sediment biotic ligand model:<br />

methodology and initial application. Environmental Toxicology and Chemistry 24: 2410–2427.<br />

Duke, L.D. and M. Taggart. 2000. Uncertainty factors in screening ecological assessments. Environmental<br />

Toxicology and Chemistry 19(6): 1668–1680.<br />

European Chemicals Bureau (ECB). 2003. Technical Guidance Document in Support of Commission<br />

Directive 93/67/EEC on <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> New Notified Substances, Commission Regulation<br />

(EC) No 1488/94 on <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> Existing Substances and Directive 98/9/EC of the<br />

European Parliament and of the Council Concerning the Placing of Biocidal Products on the<br />

Market. Ispra, Italy.<br />

2010 Page I-59


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

FDA. 1972. Teratologic evaluation of FDA 71-33 (stannous chloride). Washington, DC: U.S. Food & and<br />

Drug Administration. PB221780.<br />

Field, L.J., D.D. MacDonald, S.B. Norton, C.G. Ingersoll, C.G. Severn, D. Smorong and R. Lindskoog.<br />

2002. Predicting amphipod toxicity from sediment chemistry using logistic regression models.<br />

Environmental Toxicology and Chemistry 21(9): 1993–2005.<br />

Field, L.J., D.D. MacDonald, S.B. Norton, C.G. Severn and C.G. Ingersoll. 1999. Evaluating sediment<br />

chemistry and toxicity data using logistic regression modeling. Environmental Toxicology and<br />

Chemistry 18: 1311–1322.<br />

Hansen, D.J., W.J. Berry, J.D. Mahony, W.S. Boothman, D.M. Di Toro, D.L. Robson, G.T. Ankley, D. Ma,<br />

Q. Yan and C.E. Pesch. 1996. Predicting the toxicity of metals-contaminated field sediments<br />

using interstitial concentrations of metal and acid volatile sulphide normalizations. Environmental<br />

Toxicology and Chemistry 15(12): 2080–2094.<br />

Hermens, J. 1989. Quantitative structure-activity relationships in environmental pollutants. In<br />

O. Hutzinger (ed.). Handbook of Environmental Chemistry. Volume 2E Reactions and Processes.<br />

Springer-Verlag. Berlin, Germany. 111–162.<br />

IIT Research Institute (IITRI). 1995. 90-Day Oral Gavage Toxicity Study of 1,3,5-Trimethylbenzene in<br />

Rats with a Recovery Group. Industry Institute of Toxicology Research Institute. Study conducted<br />

<strong>for</strong> Koch Industries Inc., Wichita, KS.<br />

International Atomic Energy Agency (IAEA). 2004. Sediment Distribution Coefficients and<br />

Concentration Factors <strong>for</strong> Biota in the <strong>Marine</strong> Environment. Technical Report Series No. 422.<br />

Jager, T., E.H.W. Heugens and S.A.L.M. Kooijman. 2006. Making sense of ecotoxicological test results:<br />

towards application of process-based models. Ecotoxicology 15: 305–314.<br />

Johnson, D., A.L. Mehring and H.W. Titus. 1960. Tolerance of chickens <strong>for</strong> barium. Proceedings of the<br />

Society <strong>for</strong> Experimental Biology and Medicine 104: 436-438. Cited in B.E. Sample,<br />

D.M. Opresko and G.W. Suter II. 1996. Toxicological Benchmarks <strong>for</strong> Wildlife: 1996 Revision.<br />

Oak Ridge National Laboratory, Oak Ridge, TN. ES/ER/TM-86/.<br />

Jones-Lee, A. and G.F. Lee. 2005. Unreliability of co-occurrence-based sediment quality guidelines <strong>for</strong><br />

contaminated sediment evaluations at superfund/hazardous chemical sites. Remediation 15(2):<br />

19–33.<br />

Kapustka, L.A. 2004. Establishing EcoSSL <strong>for</strong> PAH: Lessons revealed from a review of literature in<br />

exposure and effects to terrestrial receptors. Human and <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> 10(2):<br />

185-205.<br />

Kleiber, M. 1932. Body size and metabolism. Hilgardia 6: 315–332.<br />

Krasavage, W.J., J.L. O'Donoghue, G.D. Divencenzo and T. Erhaar. 1980. Relative neurotoxicity of MBK,<br />

n-hexane, and their metabolites. Toxicology and Applied Pharmacology 52: 433–441.<br />

Page I-60 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Kwok, K.W.H., A. Bjørgesæter, K.M.Y. Leung, G.C.S. Lui, J.S. Gray, P.K.S. Shin and P.K.S. Lam. 2008.<br />

Deriving site-specific sediment quality guidelines <strong>for</strong> Hong Kong marine environments using<br />

field-based species sensitivity distributions. Environmental Toxicology and Chemistry 27(1):<br />

226-234.<br />

Lepore, P.D. and R.F. Miller. 1965. Embryonic viability as influenced by excess molybdenum in chicken<br />

breeder diets. Proceedings of the Society <strong>for</strong> Experimental Biology and Medicine 118: 155–157.<br />

Cited in B.E. Sample, D.M. Opresko and G.W. Suter II. 1996. Toxicological Benchmarks <strong>for</strong><br />

Wildlife: 1996 Revision. Oak Ridge National Laboratory, Oak Ridge, TN. ES/ER/TM-86/.<br />

Leung, K.M.Y., A. Bjørgsæter, J.S. Gray, W.K. Li, G.C.S. Lui, Y. Wang and P.K.S. Lam. 2005. Deriving<br />

sediment quality guidelines from field-based species sensitivity distributions. Environmental<br />

Science and Technology 39: 5148–5156.<br />

Lijzen, J.P.A., A.J. Baars, P.F. Otte, M.G.J. Rikken, F.A. Swartjes, E.M.J. Verbruggen and A.P. van Wezel.<br />

2001. Technical Evaluation of the Intervention Values <strong>for</strong> Soil/Sediment and Groundwater.<br />

National Institute of Public Health and the Environment, RIVM report No. 711701 023.<br />

Luttik, R., P. Mineau and W. Roelofs. 2005. A review of interspecies toxicity extrapolation in birds and<br />

mammals and a proposal <strong>for</strong> long-term toxicity data. Ecotoxicology 14: 817–832.<br />

Marks T.A., P.W. Fisher and R.E. Staples. 1980. Influence of n-hexane on embryo and fetal development<br />

in mice. Drug and Chemical Toxicology 3(4): 393–406.<br />

Massachusetts Department of Environmental Protection (MADEP). 1994. Interim Final Petroleum<br />

Report: Development of Health-Based Alternative to the Total Petroleum Hydrocarbon (TPH)<br />

Parameter. Office of Research and Standards. Boston, MA.<br />

Massachusetts Department of Environmental Protection (MADEP). 2003. Updated Petroleum<br />

Hydrocarbon Fraction Toxicity Values <strong>for</strong> the VPH/EPH/APH Methodology. Bureau of Waste Site<br />

Cleanup, Boston, MA.<br />

McGrath, J.A., T.F. Parkerton, F.L. Hellweger and D.M. Di Toro. 2005. Validation of the narcosis target<br />

lipid model <strong>for</strong> petroleum products: gasoline as a case study. Environmental Toxicology and<br />

Chemistry 24: 2382–2394.<br />

McGrath,J.A., T.F. Parkerton and D.M. Di Toro. 2004. Application of the narcosis target lipid model to<br />

algal toxicity and deriving predicted-no-effect concentrations. Environmental Toxicology and<br />

Chemistry 23: 2503–2517.<br />

Mellert, W., K. Deckardt, W. Kaufmann and B. van Ravenzwaay. 2007. Ethylbenzene: 4- and 13-week rat<br />

oral toxicity. Archives of Toxicology 81(5): 361–370.<br />

Merali, Z. and R.L. Singhal. 1980. Diabetogenic effects of chronic oral cadmium administration to<br />

neonatal rats. British Journal of Pharmacology 69(1): 151–157.<br />

Mineau, P., B.T. Collins and A. Baril. 1996. On the use of scaling factors to improve interspecies<br />

extrapolation of acute toxicity in birds. Regulatory Toxicology and Pharmacology 24: 24–29.<br />

2010 Page I-61


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

National Academy of Sciences (NAS). 1977. Drinking Water and Health, Vol. 1. National Research<br />

Council. Washington, DC.<br />

National Academy of Sciences (NAS). 1980. Drinking Water and Health, Vol. 3. National Research<br />

Council Washington, DC.<br />

Nawrot, P.S. and R.E. Staples. 1979. Embryofetal Toxicity and teratogenicity of benzene and toluene in<br />

the mouse. Teratology 19: 41A.<br />

Ohio EPA. 2003. <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Guidance Document. State of Ohio EPA DERR-00-RR-031.<br />

Revised 2008.<br />

Organisation <strong>for</strong> Economic Co-operation and Development (OECD). 1992. Report of the OECD<br />

Workshop on Extrapolation of Laboratory Aquatic Toxicity Data to the Real Environment. OECD<br />

Environment Monographs 59. Paris, France.<br />

Pandey, R. and S.P. Srivastava. 2000. Spermatotoxic effects of nickel in mice. Bulletin of Environmental<br />

Contamination and Toxicology 64(2): 161–167.<br />

Raimondo, S., P. Mineau and M.G. Barron. 2007. Estimation of chemical toxicity to wildlife species using<br />

interspecies correlation models. Environmental Science and Technology 41: 5888–5894.<br />

Ryan, B.M., R. Selby, R. Gingell, J.M. Waechter, J.H. Butala, S.S. Dimond, B.J. Dunn, R. House and<br />

R. Morrissey. 2001. Two-generation reproduction study and immunotoxicity screen in rats dosed<br />

with phenol via the drinking water. International Journal of Toxicology 20(3): 121–142.<br />

Sample, B.E. and C.A. Arenal. 1999. Allometric models <strong>for</strong> interspecies extrapolation of wildlife<br />

toxicological data. Bulletin of Environmental Contamination and Toxicology 62: 653–663.<br />

Sample, B.E., D.M. Opresko and G.W. Suter II. 1996. Toxicological Benchmarks <strong>for</strong> Wildlife: 1996<br />

Revision. Oak Ridge National Laboratory, Oak Ridge, TN. ES/ER/TM-86/.<br />

Schlicker, S.A. and D.H. Cox. 1968. Maternal dietary zinc, and development and zinc, iron, and copper<br />

content of the rat fetus. Journal of Nutrition 95: 287–294. Cited in B.E. Sample, D.M. Opresko<br />

and G.W. Suter II. 1996. Toxicological Benchmarks <strong>for</strong> Wildlife: 1996 Revision. Oak Ridge<br />

National Laboratory, Oak Ridge, TN. ES/ER/TM-86/.<br />

Schroeder, H.A and M. Mitchener. 1971. Toxic effects of trace elements on the reproduction of mice and<br />

rats. Archives of Environmental Health 23: 102–106. Cited in B.E. Sample, D.M. Opresko and<br />

G.W. Suter II. 1996. Toxicological Benchmarks <strong>for</strong> Wildlife: 1996 Revision. Oak Ridge National<br />

Laboratory, Oak Ridge, TN. ES/ER/TM-86/.<br />

Smith, G.J. and V.P. Anders. 1989. Toxic effects of boron on mallard reproduction. Environmental<br />

Toxicology and Chemistry 8: 943–950. Cited in B.E. Sample, D.M. Opresko and G.W. Suter II.<br />

1996. Toxicological Benchmarks <strong>for</strong> Wildlife: 1996 Revision. Oak Ridge National Laboratory,<br />

Oak Ridge, TN. ES/ER/TM-86/.<br />

Page I-62 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Stahl, J.L., J.L. Greger and M.E. Cook. 1990. Breeding-hen and progeny per<strong>for</strong>mance when hens are fed<br />

excessive dietary zinc. Poultry Science 69: 259–263. Cited in B.E. Sample, D.M. Opresko and<br />

G.W. Suter II. 1996. Toxicological Benchmarks <strong>for</strong> Wildlife: 1996 Revision. Oak Ridge National<br />

Laboratory, Oak Ridge, TN. ES/ER/TM-86/.<br />

Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. 1985. Guidelines<br />

<strong>for</strong> Deriving Numerical National Water Quality Guidelines <strong>for</strong> the Protection of Aquatic<br />

Organisms and their Uses. United States Environmental Protection Agency – Office of Research<br />

and Development Environmental Research Laboratories.<br />

Struijs, J., D. Van de Meent, W.J.G.M. Peijnenburg, M.A.G.T. Van den Hoop and T. Crommentuijn. 1997.<br />

Added risk approach to derive maximum permissible concentrations <strong>for</strong> heavy metals: How to<br />

take natural background levels into account? Ecotoxicology and Environmental Safety 37:<br />

112-118.<br />

Stubblefield, W.A., G.A. Hancock, H.H. Prince and R.K. Ringer. 1995. Effects of naturally weathered<br />

Exxon Valdez crude oil on mallard reproduction. Environmental Toxicology and Chemistry 14:<br />

1951-1960.<br />

Szaro, R.C., M.P. Dieter, G.H. Heinz and J.F. Ferreli. 1978. Effects of chronic ingestion of South<br />

Louisiana crude oil on mallard ducklings. Environmental Research 17: 426–436.<br />

Tainter, M.L. 1938. Growth, life-span and food intake of white rats fed dinitrophenol throughout life.<br />

Journal of Pharmacology and Experimental Therapeutics 63: 51–57.<br />

Takahashi, M., M. Sunaga, M. Hirata-Koizumi, A. Hirose, E. Kamata and M. Ema. 2009. Reproductive<br />

and developmental toxicity screening study of 2,4-dinitrophenol in rats. Environmental<br />

Toxicology 24(1): 74–81.<br />

Theuer R.C., A.W. Mahoney, H.P. Sarett. 1971. Placental transfer of fluoride and tin in rats given various<br />

fluoride and tin salts. Journal of Nutrition 101:525–532.<br />

Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG). 1997. Total Petroleum Hydrocarbon<br />

Criteria Working Group Series, Volume 4. Development of Fraction Specific Reference Doses<br />

(RfDs) and Reference Concentrations (RfCs) <strong>for</strong> Total Petroleum Hydrocrabons (TPH). Amherst<br />

Scientific Publishers. Amherst, MA.<br />

Travis, C.C. and R.K. White. 1988. Interspecific scaling of toxicity data. <strong>Risk</strong> Analysis 8: 119–125.<br />

United States Environmental Protection Agency (U.S. EPA). 1986. Quality Criteria <strong>for</strong> Water: 1986.<br />

EPA-440-5-86-001. Washington, DC.<br />

United States Environmental Protection Agency (US EPA). 1988. Recommendations <strong>for</strong> and<br />

Documentation of Biological Values <strong>for</strong> Use in <strong>Risk</strong> <strong>Assessment</strong>. Environmental Criteria and<br />

<strong>Assessment</strong> Office. EPA/600/6-87/008. Cited in B.E. Sample, D.M. Opresko and G.W. Suter II.<br />

1996. Toxicological Benchmarks <strong>for</strong> Wildlife: 1996 Revision. Oak Ridge National Laboratory,<br />

Oak Ridge, TN. ES/ER/TM-86/.<br />

2010 Page I-63


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

United States Environmental Protection Agency (US EPA). 1989. Ninety-day Gavage Study in Albino<br />

Mice using 2,4-Dimethylphenol. Office of Solid Waste and Emergency Response. Washington,<br />

DC.<br />

United States Environmental Protection Agency (U.S. EPA). 1994a. Aquatic Toxicity In<strong>for</strong>mation<br />

Retrieval Database (AQUIRE) Standard Operation Procedures. Washington, DC.<br />

United States Environmental Protection Agency (U.S. EPA). 1994b. The Use of the Benchmark Dose<br />

Approach in Health <strong>Risk</strong> <strong>Assessment</strong>. Office of Research and Development. EPA/630/R-94/007.<br />

United States Environmental Protection Agency (U.S. EPA). 1995. Great Lakes Water Quality Initiative<br />

Technical Support Document <strong>for</strong> Wildlife Criteria. Office of Water. EPA/820/B-95/009.<br />

United States Environmental Protection Agency (U.S. EPA). 2002a. A Review of the Reference Dose and<br />

Reference Concentration Processes. <strong>Risk</strong> <strong>Assessment</strong> Forum. EPA/630/P-02/002F.<br />

United States Environmental Protection Agency (U.S. EPA). 2002b. Revision of National Recommended<br />

Water Quality Criteria: 2002. EPA-822-R-02-047. Washington, DC.<br />

United States Environmental Protection Agency (U.S. EPA). 2005. Partition coefficients <strong>for</strong> metals in<br />

surface water, soil, and waste. Research and Development Report No. 600/R-05/074.<br />

van de Plassche, E., M. v.d. Hoop., R. Posthumus and T. Crommentuijn. 1999. <strong>Risk</strong> Limits <strong>for</strong> Boron,<br />

Silver, Titanium, Tellurium, Uranium, and Organosilicon Compounds in the Framework of EU<br />

Directive 76/464/EEC. Institute of Public Health and the Environment, RIVM report No. 601501<br />

005.<br />

van Vlaardingen, P.L.A. and E.M.J. Verbruggen. 2007. Guidance <strong>for</strong> the Derivation of Environmental<br />

<strong>Risk</strong> Limits within the Framework of ‘International and National Environmental Quality<br />

Standards <strong>for</strong> Substances in the Netherlands’ (INS) – Revision 2007. National Institute of Public<br />

Health and the Environment. RIVM Report No 601782 001. Bilthoven, The Netherlands.<br />

van Vlaardingen, P.L.A., R. Posthumus and C.J.A.M. Posthuma-Doodeman. 2005. Environmental <strong>Risk</strong><br />

Limits <strong>for</strong> Nine Trace Elements. Institute of Public Health and the Environment, RIVM report<br />

No. 601501 029.<br />

Verbruggen, E.M.J., R. Posthumus and A.P. van Wezel. 2001. Ecotoxicological Serious <strong>Risk</strong><br />

Concentrations <strong>for</strong> Soil, Sediment and (Ground)Water: updated proposals <strong>for</strong> first series of<br />

compounds. Institute of Public Health and the Environment, RIVM report No. 711701 020.<br />

Verhaar, H., C. Van Leeuwen and J. Hermens. 1992. Classifying environmental pollutants. 1.<br />

Structure-activity relationships <strong>for</strong> prediction of aquatic toxicity. Chemosphere 25: 471–491.<br />

Von Stackelberg, K. and C.A. Menzie. 2002 A cautionary note on using species presence and absence data<br />

in deriving sediment criteria. Environmental Toxicology and Chemistry 21: 466:472.<br />

Warne, M.St.J. 1998. Critical Review of Methods to Derive Water Quality Guidelines <strong>for</strong> Toxicants and a<br />

Proposal <strong>for</strong> a New Framework. Supervising Scientist Report No 135.<br />

Page I-64 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

Weir, R.J. and R.S. Fisher. 1972. Toxicologica studies on borax and boric acid. Toxicology and Applied<br />

Pharmacology 23: 351–364. Cited in Sample, B.E., D.M. Opresko and G.W. Suter II. 1996.<br />

Toxicological Benchmarks <strong>for</strong> Wildlife: 1996 Revision. Oak Ridge National Laboratory, Oak<br />

Ridge, TN. ES/ER/TM-86/.<br />

White, D.H. and M.P. Dieter. 1978. Effects of dietary vanadium in mallard ducks. Journal of Toxicology<br />

and Environmental Health 4: 43–50. Cited in Sample, B.E., D.M. Opresko and G.W. Suter II.<br />

1996. Toxicological Benchmarks <strong>for</strong> Wildlife: 1996 Revision. Oak Ridge National Laboratory,<br />

Oak Ridge, TN. ES/ER/TM-86/.<br />

Wolf, M.A., V.K. Rowe, D.D. McCollister, R.L. Hollingsworth and F. Oyen. 1956. Toxicological studies<br />

of certain alkylated benzenes and benzene. Archives of Industrial Health 14: 387–398.<br />

Zajdlik, B. 2005. Statistical analysis of the SSD approach <strong>for</strong> development of Canadian water quality<br />

guidelines. Report <strong>for</strong> CCME Project Number 354-2005.<br />

I.5.2 Internet Sites<br />

Australian and New Zealand Environmental Conservation Council (ANZECC). 2000. Australian and<br />

New Zealand Guidelines <strong>for</strong> Fresh and <strong>Marine</strong> Water Quality. Accessed: March 2009. Available<br />

at: http://www.mincos.gov.au/publications/australian_and_new_zealand_guidelines_<strong>for</strong>_fresh_<br />

and_marine_water_quality<br />

Canada Gazette. 2008. Draft Screening <strong>Assessment</strong> <strong>for</strong> 4,4’-(1-methylethylidene)bisphenol (80-05-7).<br />

Part I, 142(16) Accessed: November 2008. Available at:<br />

http://www.chemicalsubstanceschimiques.gc.ca/challenge-defi/batch-lot_2_e.html<br />

Canadian Council of Ministers of the Environment. 1991. A protocol <strong>for</strong> the derivation of water quality<br />

guidelines <strong>for</strong> the protection of aquatic life. Originally published as Appendix IX of Canadian<br />

Water Quality Guidelines (Canadian Council of Resource and Environment Ministers 1987).<br />

Accessed online on March 9, 2009 from: http://www.ccme.ca/assets/pdf/wqg_aql_protocol.pdf<br />

Integrated <strong>Risk</strong> In<strong>for</strong>mation System (IRIS). 2008a. 1,2,4-Trichlorobenzene – Reference Dose <strong>for</strong> Chronic<br />

Oral Exposure (RfD). National Centre <strong>for</strong> Environmental <strong>Assessment</strong>. Washington, DC.<br />

Accessed: November 2008. Available at: http://www.epa.gov/ncea/iris/subst/0466.htm<br />

Integrated <strong>Risk</strong> In<strong>for</strong>mation System (IRIS). 2008b. 2,4-Dimethylphenol – Reference Dose <strong>for</strong> Chronic<br />

Oral Exposure (RfD). National Centre <strong>for</strong> Environmental <strong>Assessment</strong>. Washington, DC.<br />

Accessed: November 2008. Available at: http://www.epa.gov/ncea/iris/subst/0466.htm<br />

Robinson, K.S., R.J. Kavlock, N. Chernoff and E. Gray. 1981. Multi-generation study of 1,2,4trichlorobenzene<br />

in rats. Journal of Toxicology and Environmental Health 8: 489-500. Cited in<br />

Integrated <strong>Risk</strong> In<strong>for</strong>mation System (IRIS). 2008. 1,2,4-Trichlorobenzene – Reference Dose <strong>for</strong><br />

Chronic Oral Exposure (RfD). National Centre <strong>for</strong> Environmental <strong>Assessment</strong>. Washington, DC.<br />

Accessed: November 2008. Available at: http://www.epa.gov/ncea/iris/subst/0466.htm<br />

2010 Page I-65


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix I: <strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> Toxicity Reference Values (TRV) and<br />

Effect Magnitude Benchmark Values<br />

United States Environmental Protection Agency (U.S. EPA). 2005a. User's Guide T-REX Version 1.2.3<br />

(Terrestrial Residue EXposure model). Accessed: November 2008. Available at:<br />

http://www.epa.gov/oppefed1/models/terrestrial/trex/trex_usersguide.htm<br />

United States Environmental Protection Agency (U.S. EPA). 2005b. <strong>Ecological</strong> Soil Screening Levels <strong>for</strong><br />

Barium, Interim Final. Office of Solid Waste and Emergency Response. Washington, DC.<br />

Accessed: November 2008. Available at: http://www.epa.gov/ecotox/ecossl/<br />

United States Environmental Protection Agency (U.S. EPA). 2005c. <strong>Ecological</strong> Soil Screening Levels <strong>for</strong><br />

Cadmium, Interim Final. Office of Solid Waste and Emergency Response. Washington, DC.<br />

Accessed: November 2008. Available at: http://www.epa.gov/ecotox/ecossl/<br />

United States Environmental Protection Agency (U.S. EPA). 2005d. <strong>Ecological</strong> Soil Screening Levels <strong>for</strong><br />

Vanadium, Interim Final. Office of Solid Waste and Emergency Response. Washington, DC.<br />

Accessed: November 2008. Available at: http://www.epa.gov/ecotox/ecossl/<br />

United States Environmental Protection Agency (U.S. EPA). 2007a. <strong>Ecological</strong> Soil Screening Levels <strong>for</strong><br />

Manganese, Interim Final. Office of Solid Waste and Emergency Response. Washington, DC.<br />

Accessed: November 2008. Available at: http://www.epa.gov/ecotox/ecossl/<br />

United States Environmental Protection Agency (U.S. EPA). 2007b. <strong>Ecological</strong> Soil Screening Levels <strong>for</strong><br />

Nickel, Interim Final. Office of Solid Waste and Emergency Response. Washington, DC.<br />

Accessed: November 2008. Available at: http://www.epa.gov/ecotox/ecossl/<br />

United States Environmental Protection Agency (U.S. EPA). 2007c. <strong>Ecological</strong> Soil Screening Levels <strong>for</strong><br />

Polycyclic Aromatic Hydrocarbons (PAH). Interim Final. Office of Solid Waste and Emergency<br />

Response. Washington, DC. Accessed: November 2008. Available at:<br />

http://www.epa.gov/ecotox/ecossl/<br />

Page I-66 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Appendix J Estimated Hazard Indices and Hazard<br />

Quotients <strong>for</strong> Selected Species<br />

2010 Page J-1


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table of Contents<br />

Appendix J Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected<br />

Species .................................................................................................. J-1<br />

J.1 Linking Species to Water and Sediment Model Compartments ......................... J-5<br />

J.2 Effect Magnitude Estimates <strong>for</strong> Community Receptors ...................................... J-5<br />

List of Tables<br />

Table J-1 <strong>Marine</strong> Species – Compartment Selection Matrix ..................................... J-5<br />

Table J-2 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level<br />

Receptors Exposed to COPC in <strong>Kitimat</strong> 1 ............................................... J-6<br />

Table J-3 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level<br />

Receptors Exposed to COPC in <strong>Kitimat</strong> 1 ............................................. J-10<br />

Table J-4 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level<br />

Receptors Exposed to COPC in <strong>Kitimat</strong> 1 ............................................. J-14<br />

Table J-5 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level<br />

Receptors Exposed to COPC in <strong>Kitimat</strong> 2 ............................................. J-18<br />

Table J-6 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level<br />

Receptors Exposed to COPC in <strong>Kitimat</strong> 2 ............................................. J-22<br />

Table J-7 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level<br />

Receptors Exposed to COPC in <strong>Kitimat</strong> 2 ............................................. J-26<br />

Table J-8 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level<br />

Receptors Exposed to COPC in Terminal ............................................. J-30<br />

Table J-9 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level<br />

Receptors Exposed to COPC in Terminal ............................................. J-34<br />

Table J-10 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level<br />

Receptors Exposed to COPC in Terminal ............................................. J-38<br />

Table J-11 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level<br />

Receptors Exposed to COPC in Clio Bay .............................................. J-42<br />

Table J-12 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level<br />

Receptors Exposed to COPC in Clio Bay .............................................. J-46<br />

Table J-13 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level<br />

Receptors Exposed to COPC in Clio Bay .............................................. J-50<br />

Table J-14 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level<br />

Receptors Exposed to COPC in Emsley Point ...................................... J-54<br />

Table J-15 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level<br />

Receptors Exposed to COPC in Emsley Point ...................................... J-58<br />

Table J-16 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level<br />

Receptors Exposed to COPC in Emsley Point ...................................... J-62<br />

2010 Page J-3


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-17 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in<br />

<strong>Kitimat</strong> 1 ................................................................................................ J-66<br />

Table J-18 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in<br />

<strong>Kitimat</strong> 2 ................................................................................................ J-70<br />

Table J-19 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in<br />

Terminal ................................................................................................ J-73<br />

Table J-20 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in<br />

Clio Bay ................................................................................................. J-76<br />

Table J-21 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in<br />

Emsley Point ......................................................................................... J-79<br />

Table J-22 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in<br />

<strong>Kitimat</strong> 1 ................................................................................................ J-82<br />

Table J-23 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in<br />

<strong>Kitimat</strong> 2 ................................................................................................ J-85<br />

Table J-24 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in<br />

Terminal ................................................................................................ J-88<br />

Table J-25 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in<br />

Clio Bay ................................................................................................. J-91<br />

Table J-26 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected<br />

Species in Emsley Point ........................................................................ J-94<br />

Table J-27 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected<br />

Species in <strong>Kitimat</strong> 1 ............................................................................... J-97<br />

Table J-28 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected<br />

Species in <strong>Kitimat</strong> 2 ............................................................................. J-100<br />

Table J-29 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected<br />

Species in Terminal ............................................................................. J-103<br />

Table J-30 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected<br />

Species in Clio Bay ............................................................................. J-106<br />

Table J-31 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in<br />

Emsley Point ....................................................................................... J-109<br />

Page J-4 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

J.1 Linking Species to Water and Sediment Model Compartments<br />

Individual species are modelled according to their respective life strategies, diets and characteristics. At<br />

the same time, water and sediment quality are modeled spatially, with major model compartments<br />

representing different areas (K1, K2, T, CB and EP), and sub-compartments within these major<br />

compartments representing surface and deep water, and nearshore and offshore sediments. It is assumed<br />

that each species may live out its life cycle within each of the major model compartments. However, it is<br />

also important to explicitly link a species to the specific water and sediment compartments to which they<br />

may be exposed (see Table J-1). Where the species are modelled as ingesting food items, those food items<br />

are also assumed to be sourced from the identified water and sediment compartments.<br />

Table J-1 <strong>Marine</strong> Species – Compartment Selection Matrix<br />

Species<br />

Water Sediments<br />

Surface Deep Near-shore Off-shore<br />

Sediment Community X X<br />

Aquatic Community X X<br />

Spotted Sandpiper X X<br />

Surf Scoter X X<br />

Marbled Murrelet X X<br />

Bald Eagle X X<br />

Coastal-dwelling Mink X X<br />

Steller Sea Lion X X<br />

Harbor Porpoise X X<br />

J.2 Effect Magnitude Estimates <strong>for</strong> Community Receptors<br />

For the effect magnitude estimates <strong>for</strong> water and sediment community receptors <strong>for</strong> the Base Case,<br />

Project Case and Application Case, see Tables J-2 to J-16.<br />

For the hazard quotients <strong>for</strong> avian and mammalian species <strong>for</strong> the Base Case, Project Case and<br />

Application Case, see Tables J-17 to J-31.<br />

2010 Page J-5


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-2 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

<strong>Kitimat</strong> 1<br />

BTEX<br />

Constituent<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Benzene Negligible (DL) Negligible (DL) Negligible Negligible<br />

Ethylbenzene Negligible (DL) Negligible (DL) Negligible Negligible<br />

Toluene Negligible (DL) Negligible (DL) Negligible Negligible<br />

Xylenes Negligible (DL) Negligible (DL) Negligible Negligible<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 – a<br />

Aliph>C08-C10 - F1 – a<br />

Arom>C08-C10 - F1 – a<br />

Aliph>C10-C12 - F2 – a<br />

Aliph>C12-C16 - F2 – a<br />

Arom>C10-C12 - F2 – a<br />

Arom>C12-C16 - F2 – a<br />

Aliph>C16-C21 - F3 – a,b<br />

Aliph>C21-C34 - F3 – a,b<br />

Arom>C16-C21 - F3 – a<br />

Arom>C21-C34 - F3 – a<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a,b<br />

– a,b<br />

– a<br />

– a<br />

Negligible – a<br />

Negligible – a<br />

Low – a<br />

Negligible – a<br />

Negligible – a<br />

Low – a<br />

Negligible – a<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-6 2010<br />

– a,b<br />

– a,b<br />

– a,b<br />

– a,b<br />

Negligible – a<br />

Low – a


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-2 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

<strong>Kitimat</strong> 1 (cont’d)<br />

Constituent<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Acenaphthene Low (DL) Low (DL) Low Negligible<br />

Acenaphthylene Low (DL) Low (DL) Negligible Negligible<br />

Anthracene Low (DL) Low (DL) Low Negligible<br />

Fluorene Low (DL) Low (DL) Negligible Negligible<br />

1-Methylnaphthalene – a<br />

– a<br />

– a<br />

– a<br />

2-Methylnaphthalene Low (DL) Low (DL) Low Negligible<br />

Naphthalene Low (DL) Low (DL) Low Negligible<br />

Phenanthrene Low (DL) Low (DL) Low Low<br />

High Molecular Weight PAHs<br />

Fluoranthene Low (DL) Low (DL) Low Low<br />

Benz(a)anthracene Low (DL) Low (DL) Low Low<br />

Benzo(a)pyrene Low (DL) Low (DL) Negligible Low<br />

Benzo(e)pyrene – a<br />

– a<br />

– a<br />

– a<br />

Benzo(b)fluoranthene Moderate c<br />

Moderate c<br />

Low Low<br />

Benzo(g,h,i)perylene Low (DL) Low (DL) Negligible Low<br />

Benzo(k)fluoranthene Low (DL) Low (DL) Negligible Negligible<br />

Chrysene Low (DL) Low (DL) Low Low<br />

Dibenz(a,h)anthracene Low (DL) Low (DL) Negligible Low<br />

Indeno(1,2,3-cd)pyrene Low (DL) Low (DL) Negligible Low<br />

Pyrene Low (DL) Low (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-7


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-2 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

<strong>Kitimat</strong> 1 (cont’d)<br />

Constituent<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene – a<br />

1,3,5-Trimethylbenzene – a<br />

Phenolic Compounds<br />

Phenol – a<br />

2,4-Dimethylphenol – a<br />

2,4-Dinitrophenol – a<br />

Trace Elements<br />

Barium Moderate c<br />

Surface Sea Water Effect<br />

Magnitude<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

Deep Sea Water Effect<br />

Magnitude<br />

Moderate c<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-8 2010<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

Moderate d<br />

Boron Low (DL) Low (DL) Negligible Low<br />

Cadmium Low (DL) Low (DL) Low Low<br />

Manganese Moderate c<br />

Moderate c<br />

Negligible Low<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

Moderate d<br />

Molybdenum Low (DL) Low (DL) Low Negligible<br />

Nickel Low (DL) Low (DL) Low Low<br />

Tin Low (DL) Low (DL) Negligible Negligible


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-2 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

<strong>Kitimat</strong> 1 (cont’d)<br />

Constituent<br />

Trace Elements (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Vanadium Low (DL) Low (DL) Low Low<br />

Zinc Moderate d<br />

Moderate d<br />

Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

NOTES:<br />

Highlighted cells (grey) indicate moderate or higher effect magnitude.<br />

DL - Detection Limit<br />

a Effects magnitude not determined as empirical measurements were either not reported by the laboratory or analysis was not requested.<br />

b F3 aliphatics are insufficiently soluble in water to pose a risk to aquatic and sediment receptors.<br />

c Sample collected in <strong>Kitimat</strong> 2 compartment.<br />

d Sample collected in Terminal compartment.<br />

2010 Page J-9


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-3 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

<strong>Kitimat</strong> 1<br />

BTEX<br />

Constituent<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Benzene Negligible (DL) Negligible (DL) Low Low<br />

Ethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Toluene Negligible (DL) Negligible (DL) Low Low<br />

Xylenes Negligible (DL) Negligible (DL) Low Low<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C10-C12 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Aliph>C12-C16 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Arom>C10-C12 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C12-C16 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C16-C21 - F3 – a<br />

Aliph>C21-C34 - F3 – a<br />

– a<br />

– a<br />

Arom>C16-C21 - F3 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C21-C34 - F3 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-10 2010<br />

– a<br />

– a<br />

– a<br />

– a


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-3 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

<strong>Kitimat</strong> 1 (cont’d)<br />

Constituent<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Acenaphthene Negligible (DL) Negligible (DL) Low Low<br />

Acenaphthylene Negligible (DL) Negligible (DL) Low Low<br />

Anthracene Negligible (DL) Negligible (DL) Low Low<br />

Fluorene Negligible (DL) Negligible (DL) Low Low<br />

1-Methylnaphthalene Negligible (DL) Negligible (DL) Low Low<br />

2-Methylnaphthalene Negligible (DL) Negligible (DL) Low Low<br />

Naphthalene Negligible (DL) Negligible (DL) Low Low<br />

Phenanthrene Negligible (DL) Negligible (DL) Low Low<br />

High Molecular Weight PAHs<br />

Fluoranthene Negligible (DL) Negligible (DL) Low Low<br />

Benz(a)anthracene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(a)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(e)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(b)fluoranthene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(g,h,i)perylene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(k)fluoranthene Negligible (DL) Negligible (DL) Low Low<br />

Chrysene Negligible (DL) Negligible (DL) Low Low<br />

Dibenz(a,h)anthracene Negligible (DL) Negligible (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-11


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-3 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

<strong>Kitimat</strong> 1 (cont’d)<br />

Constituent<br />

High Molecular Weight PAHs (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Indeno(1,2,3-cd)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Pyrene Negligible (DL) Negligible (DL) Low Low<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene Negligible (DL) Negligible (DL) Low Low<br />

1,3,5-Trimethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Phenolic Compounds<br />

Phenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dimethylphenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dinitrophenol Negligible (DL) Negligible (DL) Low Low<br />

Trace Elements<br />

Barium Negligible (DL) Negligible (DL) Low Low<br />

Boron Negligible (DL) Negligible (DL) Low Low<br />

Cadmium Negligible (DL) Negligible (DL) Low Low<br />

Manganese Negligible (DL) Negligible (DL) Low Low<br />

Molybdenum Negligible (DL) Negligible (DL) Low Low<br />

Nickel Negligible (DL) Negligible (DL) Low Low<br />

Tin Negligible (DL) Negligible (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-12 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-3 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

<strong>Kitimat</strong> 1 (cont’d)<br />

Constituent<br />

Trace Elements (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Vanadium Negligible (DL) Negligible (DL) Low Low<br />

Zinc Negligible (DL) Negligible (DL) Low Low<br />

NOTES:<br />

Highlighted cells (grey) indicate moderate or higher effect magnitude.<br />

DL - Detection Limit<br />

CHC5/3 - CHC5 divided by a factor of three.<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-13


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-4 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in <strong>Kitimat</strong> 1<br />

BTEX<br />

Constituent<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Benzene Negligible (DL) Negligible (DL) Low Low<br />

Ethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Toluene Low (DL) Low (DL) Low Low<br />

Xylenes Low (DL) Low (DL) Low Low<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C10-C12 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Aliph>C12-C16 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Arom>C10-C12 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C12-C16 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C16-C21 - F3 – a<br />

Aliph>C21-C34 - F3 – a<br />

– a<br />

– a<br />

Arom>C16-C21 - F3 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C21-C34 - F3 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-14 2010<br />

– a<br />

– a<br />

– a<br />

– a


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-4 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in <strong>Kitimat</strong> 1 (cont’d)<br />

Constituent<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Acenaphthene Low (DL) Low (DL) Low Low<br />

Acenaphthylene Low (DL) Low (DL) Low Low<br />

Anthracene Low (DL) Low (DL) Low Low<br />

Fluorene Low (DL) Low (DL) Low Low<br />

1-Methylnaphthalene Negligible (DL) Negligible (DL) Low Low<br />

2-Methylnaphthalene Low (DL) Low (DL) Low Low<br />

Naphthalene Low (DL) Low (DL) Low Low<br />

Phenanthrene Low (DL) Low (DL) Low Low<br />

High Molecular Weight PAHs<br />

Fluoranthene Low (DL) Low (DL) Low Low<br />

Benz(a)anthracene Low (DL) Low (DL) Low Low<br />

Benzo(a)pyrene Low (DL) Low (DL) Low Low<br />

Benzo(e)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(b)fluoranthene Moderate Moderate Low Low<br />

Benzo(g,h,i)perylene Low (DL) Low (DL) Low Low<br />

Benzo(k)fluoranthene Low (DL) Low (DL) Low Low<br />

Chrysene Low (DL) Low (DL) Low Low<br />

Dibenz(a,h)anthracene Low (DL) Low (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-15


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-4 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in <strong>Kitimat</strong> 1 (cont’d)<br />

Constituent<br />

High Molecular Weight PAHs (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Indeno(1,2,3-cd)pyrene Low (DL) Low (DL) Low Low<br />

Pyrene Low (DL) Low (DL) Low Low<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene Negligible (DL) Negligible (DL) Low Low<br />

1,3,5-Trimethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Phenolic Compounds<br />

Phenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dimethylphenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dinitrophenol Negligible (DL) Negligible (DL) Low Low<br />

Trace Elements<br />

Barium Moderate Moderate Moderate Moderate<br />

Boron Low (DL) Low (DL) Low Low<br />

Cadmium Low (DL) Low (DL) Low Low<br />

Manganese Moderate Moderate Low Low<br />

Molybdenum Low (DL) Low (DL) Low Low<br />

Nickel Low (DL) Low (DL) Low Low<br />

Tin Low (DL) Low (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-16 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-4 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in <strong>Kitimat</strong> 1 (cont’d)<br />

Constituent<br />

Trace Elements (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Vanadium Low (DL) Low (DL) Low Low<br />

Zinc Moderate Moderate Low I Low<br />

NOTES:<br />

Highlighted cells (grey) indicate moderate or higher effect magnitude.<br />

DL - Detection Limit<br />

CHC5/3 - CHC5 divided by a factor of three.<br />

a F3 aliphatics are insufficiently soluble in water to pose a risk to aquatic and sediment receptors.<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-17


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-5 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

<strong>Kitimat</strong> 2<br />

BTEX<br />

Constituent<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Benzene Negligible (DL) Negligible (DL) Negligible Negligible<br />

Ethylbenzene Negligible (DL) Negligible (DL) Negligible Negligible<br />

Toluene Negligible (DL) Negligible (DL) Negligible Negligible<br />

Xylenes Negligible (DL) Negligible (DL) Negligible Negligible<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 – a<br />

Aliph>C08-C10 - F1 – a<br />

Arom>C08-C10 - F1 – a<br />

Aliph>C10-C12 - F2 – a<br />

Aliph>C12-C16 - F2 – a<br />

Arom>C10-C12 - F2 – a<br />

Arom>C12-C16 - F2 – a<br />

Aliph>C16-C21 - F3 – a,b<br />

Aliph>C21-C34 - F3 – a,b<br />

Arom>C16-C21 - F3 – a<br />

Arom>C21-C34 - F3 – a<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a,b<br />

– a,b<br />

– a<br />

– a<br />

Negligible – a<br />

Negligible – a<br />

Low – a<br />

Negligible – a<br />

Negligible – a<br />

Low – a<br />

Negligible – a<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-18 2010<br />

– a,b<br />

– a,b<br />

– a,b<br />

– a,b<br />

Negligible – a<br />

Low – a


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-5 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

<strong>Kitimat</strong> 2 (cont’d)<br />

Constituent<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Acenaphthene Low (DL) Low (DL) Low Negligible<br />

Acenaphthylene Low (DL) Low (DL) Negligible Negligible<br />

Anthracene Low (DL) Low (DL) Low Negligible<br />

Fluorene Low (DL) Low (DL) Negligible Negligible<br />

1-Methylnaphthalene – a<br />

– a<br />

2-Methylnaphthalene Low (DL) Low (DL) Low Negligible<br />

Naphthalene Low (DL) Low (DL) Low Negligible<br />

Phenanthrene Low (DL) Low (DL) Low Low<br />

High Molecular Weight PAHs<br />

Fluoranthene Low (DL) Low (DL) Low Low<br />

Benz(a)anthracene Low (DL) Low (DL) Low Low<br />

Benzo(a)pyrene Low (DL) Low (DL) Negligible Low<br />

Benzo(e)pyrene – a<br />

Benzo(b)fluoranthene Moderate c<br />

– a<br />

Moderate c<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-19<br />

– a<br />

– a<br />

– a<br />

– a<br />

Low Low<br />

Benzo(g,h,i)perylene Low (DL) Low (DL) Negligible Low<br />

Benzo(k)fluoranthene Low (DL) Low (DL) Negligible Negligible<br />

Chrysene Low (DL) Low (DL) Low Low<br />

Dibenz(a,h)anthracene Low (DL) Low (DL) Negligible Low


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-5 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

<strong>Kitimat</strong> 2 (cont’d)<br />

Constituent<br />

High Molecular Weight PAHs (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Indeno(1,2,3-cd)pyrene Low (DL) Low (DL) Negligible Low<br />

Pyrene Low (DL) Low (DL) Low Low<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene – a<br />

1,3,5-Trimethylbenzene – a<br />

Phenolic Compounds<br />

Phenol – a<br />

2,4-Dimethylphenol – a<br />

2,4-Dinitrophenol – a<br />

Trace Elements<br />

Barium Moderate c<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

Moderate c<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-20 2010<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

Moderate d<br />

Boron Low (DL) Low (DL) Negligible Low<br />

Cadmium Low (DL) Low (DL) Low Low<br />

Manganese Moderate c<br />

Moderate c<br />

– a<br />

– a<br />

– a<br />

– a<br />

– a<br />

Negligible Low<br />

Moderate d<br />

Molybdenum Low (DL) Low (DL) Low Negligible<br />

Nickel Low (DL) Low (DL) Low Low<br />

Tin Low (DL) Low (DL) Negligible Negligible


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-5 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

<strong>Kitimat</strong> 2 (cont’d)<br />

Constituent<br />

Trace Elements (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Vanadium Low (DL) Low (DL) Low Low<br />

Zinc Moderate d<br />

Moderate d<br />

Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

NOTES:<br />

Highlighted cells (grey) indicate moderate or higher effect magnitude.<br />

DL - Detection Limit<br />

a Effects magnitude not determined as empirical measurements were either not reported by the laboratory or analysis was not requested.<br />

b F3 aliphatics are insufficiently soluble in water to pose a risk to aquatic and sediment receptors.<br />

c Sample collected in <strong>Kitimat</strong> 2 compartment.<br />

2010 Page J-21


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-6 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

<strong>Kitimat</strong> 2<br />

BTEX<br />

Constituent<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Benzene Negligible (DL) Negligible (DL) Low Low<br />

Ethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Toluene Negligible (DL) Negligible (DL) Low Low<br />

Xylenes Negligible (DL) Negligible (DL) Low Low<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C10-C12 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Aliph>C12-C16 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Arom>C10-C12 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C12-C16 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C16-C21 - F3 – a<br />

Aliph>C21-C34 - F3 – a<br />

– a<br />

– a<br />

Arom>C16-C21 - F3 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C21-C34 - F3 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-22 2010<br />

– a<br />

– a<br />

– a<br />

– a


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-6 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

<strong>Kitimat</strong> 2 (cont’d)<br />

Constituent<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Acenaphthene Negligible (DL) Negligible (DL) Low Low<br />

Acenaphthylene Negligible (DL) Negligible (DL) Low Low<br />

Anthracene Negligible (DL) Negligible (DL) Low Low<br />

Fluorene Negligible (DL) Negligible (DL) Low Low<br />

1-Methylnaphthalene Negligible (DL) Negligible (DL) Low Low<br />

2-Methylnaphthalene Negligible (DL) Negligible (DL) Low Low<br />

Naphthalene Negligible (DL) Negligible (DL) Low Low<br />

Phenanthrene Negligible (DL) Negligible (DL) Low Low<br />

High Molecular Weight PAHs<br />

Fluoranthene Negligible (DL) Negligible (DL) Low Low<br />

Benz(a)anthracene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(a)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(e)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(b)fluoranthene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(g,h,i)perylene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(k)fluoranthene Negligible (DL) Negligible (DL) Low Low<br />

Chrysene Negligible (DL) Negligible (DL) Low Low<br />

Dibenz(a,h)anthracene Negligible (DL) Negligible (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-23


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-6 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

<strong>Kitimat</strong> 2 (cont’d)<br />

Constituent<br />

High Molecular Weight PAHs (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Indeno(1,2,3-cd)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Pyrene Negligible (DL) Negligible (DL) Low Low<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene Negligible (DL) Negligible (DL) Low Low<br />

1,3,5-Trimethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Phenolic Compounds<br />

Phenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dimethylphenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dinitrophenol Negligible (DL) Negligible (DL) Low Low<br />

Trace Elements<br />

Barium Negligible (DL) Negligible (DL) Low Low<br />

Boron Negligible (DL) Negligible (DL) Low Low<br />

Cadmium Negligible (DL) Negligible (DL) Low Low<br />

Manganese Negligible (DL) Negligible (DL) Low Low<br />

Molybdenum Negligible (DL) Negligible (DL) Low Low<br />

Nickel Negligible (DL) Negligible (DL) Low Low<br />

Tin Negligible (DL) Negligible (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-24 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-6 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

<strong>Kitimat</strong> 2 (cont’d)<br />

Constituent<br />

Trace Elements (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Vanadium Negligible (DL) Negligible (DL) Low Low<br />

Zinc Negligible (DL) Negligible (DL) Low Low<br />

NOTES:<br />

Highlighted cells (grey) indicate moderate or higher effect magnitude.<br />

DL - Detection Limit<br />

CHC5/3 - CHC5 divided by a factor of three.<br />

a F3 aliphatics are insufficiently soluble in water to pose a risk to aquatic and sediment receptors.<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-25


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-7 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in <strong>Kitimat</strong> 2<br />

BTEX<br />

Constituent<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Benzene Negligible (DL) Negligible (DL) Low Low<br />

Ethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Toluene Low (DL) Low (DL) Low Low<br />

Xylenes Low (DL) Low (DL) Low Low<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C10-C12 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Aliph>C12-C16 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Arom>C10-C12 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C12-C16 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C16-C21 - F3 – a<br />

Aliph>C21-C34 - F3 – a<br />

– a<br />

– a<br />

Arom>C16-C21 - F3 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C21-C34 - F3 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-26 2010<br />

– a<br />

– a<br />

– a<br />

– a


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-7 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in <strong>Kitimat</strong> 2 (cont’d)<br />

Constituent<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Acenaphthene Low (DL) Low (DL) Low Low<br />

Acenaphthylene Low (DL) Low (DL) Low Low<br />

Anthracene Low (DL) Low (DL) Low Low<br />

Fluorene Low (DL) Low (DL) Low Low<br />

1-Methylnaphthalene Negligible (DL) Negligible (DL) Low Low<br />

2-Methylnaphthalene Low (DL) Low (DL) Low Low<br />

Naphthalene Low (DL) Low (DL) Low Low<br />

Phenanthrene Low (DL) Low (DL) Low Low<br />

High Molecular Weight PAHs<br />

Fluoranthene Low (DL) Low (DL) Low Low<br />

Benz(a)anthracene Low (DL) Low (DL) Low Low<br />

Benzo(a)pyrene Low (DL) Low (DL) Low Low<br />

Benzo(e)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(b)fluoranthene Moderate Moderate Low Low<br />

Benzo(g,h,i)perylene Low (DL) Low (DL) Low Low<br />

Benzo(k)fluoranthene Low (DL) Low (DL) Low Low<br />

Chrysene Low (DL) Low (DL) Low Low<br />

Dibenz(a,h)anthracene Low (DL) Low (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-27


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-7 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in <strong>Kitimat</strong> 2 (cont’d)<br />

Constituent<br />

High Molecular Weight PAHs (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Indeno(1,2,3-cd)pyrene Low (DL) Low (DL) Low Low<br />

Pyrene Low (DL) Low (DL) Low Low<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene Negligible (DL) Negligible (DL) Low Low<br />

1,3,5-Trimethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Phenolic Compounds<br />

Phenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dimethylphenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dinitrophenol Negligible (DL) Negligible (DL) Low Low<br />

Trace Elements<br />

Barium Moderate Moderate Moderate Moderate<br />

Boron Low (DL) Low (DL) Low Low<br />

Cadmium Low (DL) Low (DL) Low Low<br />

Manganese Moderate Moderate Low Low<br />

Molybdenum Low (DL) Low (DL) Low Low<br />

Nickel Low (DL) Low (DL) Low Low<br />

Tin Low (DL) Low (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-28 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-7 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in <strong>Kitimat</strong> 2 (cont’d)<br />

Constituent<br />

Trace Elements (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Vanadium Low (DL) Low (DL) Low Low<br />

Zinc Moderate Moderate Low Low<br />

NOTES:<br />

Highlighted cells (grey) indicate moderate or higher effect magnitude.<br />

DL - Detection Limit<br />

CHC5/3 - CHC5 divided by a factor of three.<br />

a F3 aliphatics are insufficiently soluble in water to pose a risk to aquatic and sediment receptors.<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-29


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-8 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Terminal<br />

BTEX<br />

Constituent<br />

Surface Sea Water<br />

Effect Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Benzene Negligible (DL) Negligible (DL) Negligible Negligible<br />

Ethylbenzene Negligible (DL) Negligible (DL) Negligible Negligible<br />

Toluene Negligible (DL) Negligible (DL) Negligible Negligible<br />

Xylenes Negligible (DL) Negligible (DL) Negligible Negligible<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 – a – a Negligible – a<br />

Aliph>C08-C10 - F1 – a – a Negligible – a<br />

Arom>C08-C10 - F1 – a – a Low – a<br />

Aliph>C10-C12 - F2 – a – a Negligible – a<br />

Aliph>C12-C16 - F2 – a – a Negligible – a<br />

Arom>C10-C12 - F2 – a – a Low – a<br />

Arom>C12-C16 - F2 – a – a Negligible – a<br />

Aliph>C16-C21 - F3 – a,b – a,b – a,b – a,b<br />

Aliph>C21-C34 - F3 – a,b – a,b – a,b – a,b<br />

Arom>C16-C21 - F3 – a – a Negligible – a<br />

Arom>C21-C34 - F3 – a – a Low – a<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-30 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-8 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Terminal (cont’d)<br />

Constituent<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Surface Sea Water<br />

Effect Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Acenaphthene Low (DL) Low (DL) Low Negligible<br />

Acenaphthylene Low (DL) Low (DL) Negligible Negligible<br />

Anthracene Low (DL) Low (DL) Low Negligible<br />

Fluorene Low (DL) Low (DL) Negligible Negligible<br />

1-Methylnaphthalene – a – a – a – a<br />

2-Methylnaphthalene Low (DL) Low (DL) Low Negligible<br />

Naphthalene Low (DL) Low (DL) Low Negligible<br />

Phenanthrene Low (DL) Low (DL) Low Low<br />

High Molecular Weight PAHs<br />

Fluoranthene Low (DL) Low (DL) Low Low<br />

Benz(a)anthracene Low (DL) Low (DL) Low Low<br />

Benzo(a)pyrene Low (DL) Low (DL) Negligible Low<br />

Benzo(e)pyrene – a – a – a – a<br />

Benzo(b)fluoranthene Moderate c Moderate c Low Low<br />

Benzo(g,h,i)perylene Low (DL) Low (DL) Negligible Low<br />

Benzo(k)fluoranthene Low (DL) Low (DL) Negligible Negligible<br />

Chrysene Low (DL) Low (DL) Low Low<br />

Dibenz(a,h)anthracene Low (DL) Low (DL) Negligible Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-31


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-8 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Terminal (cont’d)<br />

Constituent<br />

High Molecular Weight PAHs (cont’d)<br />

Surface Sea Water<br />

Effect Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Indeno(1,2,3-cd)pyrene Low (DL) Low (DL) Negligible Low<br />

Pyrene Low (DL) Low (DL) Low Low<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene – a – a – a – a<br />

1,3,5-Trimethylbenzene – a – a – a – a<br />

Phenolic Compounds<br />

Phenol – a – a – a – a<br />

2,4-Dimethylphenol – a – a – a – a<br />

2,4-Dinitrophenol – a – a – a – a<br />

Trace Elements<br />

Barium Moderate c Moderate c Moderate d Moderate d<br />

Boron Low (DL) Low (DL) Negligible Low<br />

Cadmium Low (DL) Low (DL) Low Low<br />

Manganese Moderate c Moderate c Negligible Low<br />

Molybdenum Low (DL) Low (DL) Low Negligible<br />

Nickel Low (DL) Low (DL) Low Low<br />

Tin Low (DL) Low (DL) Negligible Negligible<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-32 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-8 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Terminal (cont’d)<br />

Constituent<br />

Trace Elements (cont’d)<br />

Surface Sea Water<br />

Effect Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Vanadium Low (DL) Low (DL) Low Low<br />

Zinc Moderate d Moderate d Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

NOTES:<br />

Highlighted cells (grey) indicate moderate or higher effect magnitude.<br />

DL - Detection Limit<br />

a Effects magnitude not determined as empirical measurements were either not reported by the laboratory or analysis was not requested.<br />

b F3 aliphatics are insufficiently soluble in water to pose a risk to aquatic and sediment receptors.<br />

c Sample collected in <strong>Kitimat</strong> 2 compartment.<br />

d Sample collected in Terminal compartment.<br />

2010 Page J-33


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-9 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Terminal<br />

BTEX<br />

Constituent<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Benzene Negligible (DL) Negligible (DL) Low Low<br />

Ethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Toluene Negligible (DL) Negligible (DL) Low Low<br />

Xylenes Negligible (DL) Negligible (DL) Low Low<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C10-C12 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Aliph>C12-C16 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Arom>C10-C12 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C12-C16 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C16-C21 - F3 – a – a – a – a<br />

Aliph>C21-C34 - F3 – a – a – a – a<br />

Arom>C16-C21 - F3 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C21-C34 - F3 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-34 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-9 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Terminal (cont’d)<br />

Constituent<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Acenaphthene Negligible (DL) Negligible (DL) Low Low<br />

Acenaphthylene Negligible (DL) Negligible (DL) Low Low<br />

Anthracene Negligible (DL) Negligible (DL) Low Low<br />

Fluorene Negligible (DL) Negligible (DL) Low Low<br />

1-Methylnaphthalene Negligible (DL) Negligible (DL) Low Low<br />

2-Methylnaphthalene Negligible (DL) Negligible (DL) Low Low<br />

Naphthalene Negligible (DL) Negligible (DL) Low Low<br />

Phenanthrene Negligible (DL) Negligible (DL) Low Low<br />

High Molecular Weight PAHs<br />

Fluoranthene Negligible (DL) Negligible (DL) Low Low<br />

Benz(a)anthracene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(a)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(e)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(b)fluoranthene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(g,h,i)perylene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(k)fluoranthene Negligible (DL) Negligible (DL) Low Low<br />

Chrysene Negligible (DL) Negligible (DL) Low Low<br />

Dibenz(a,h)anthracene Negligible (DL) Negligible (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-35


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-9 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Terminal (cont’d)<br />

Constituent<br />

High Molecular Weight PAHs (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Indeno(1,2,3-cd)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Pyrene Negligible (DL) Negligible (DL) Low Low<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene Negligible (DL) Negligible (DL) Low Low<br />

1,3,5-Trimethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Phenolic Compounds<br />

Phenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dimethylphenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dinitrophenol Negligible (DL) Negligible (DL) Low Low<br />

Trace Elements<br />

Barium Negligible (DL) Negligible (DL) Low Low<br />

Boron Negligible (DL) Negligible (DL) Low Low<br />

Cadmium Negligible (DL) Negligible (DL) Low Low<br />

Manganese Negligible (DL) Negligible (DL) Low Low<br />

Molybdenum Negligible (DL) Negligible (DL) Low Low<br />

Nickel Negligible (DL) Negligible (DL) Low Low<br />

Tin Negligible (DL) Negligible (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-36 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-9 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Terminal (cont’d)<br />

Constituent<br />

Trace Elements (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Vanadium Negligible (DL) Negligible (DL) Low Low<br />

Zinc Negligible (DL) Negligible (DL) Low Low<br />

NOTES:<br />

Highlighted cells (grey) indicate moderate or higher effect magnitude.<br />

DL - Detection Limit<br />

CHC5/3 - CHC5 divided by a factor of three.<br />

a F3 aliphatics are insufficiently soluble in water to pose a risk to aquatic and sediment receptors.<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-37


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-10 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in Terminal<br />

BTEX<br />

Constituent<br />

Surface Sea Water<br />

Effect Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Benzene Negligible (DL) Negligible (DL) Low Low<br />

Ethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Toluene Low (DL) Low (DL) Low Low<br />

Xylenes Low (DL) Low (DL) Low Low<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C10-C12 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Aliph>C12-C16 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Arom>C10-C12 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C12-C16 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C16-C21 - F3 – a – a – a – a<br />

Aliph>C21-C34 - F3 – a – a – a – a<br />

Arom>C16-C21 - F3 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C21-C34 - F3 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-38 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-10 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in Terminal (cont’d)<br />

Constituent<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Surface Sea Water<br />

Effect Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Acenaphthene Low (DL) Low (DL) Low Low<br />

Acenaphthylene Low (DL) Low (DL) Low Low<br />

Anthracene Low (DL) Low (DL) Low Low<br />

Fluorene Low (DL) Low (DL) Low Low<br />

1-Methylnaphthalene Negligible (DL) Negligible (DL) Low Low<br />

2-Methylnaphthalene Low (DL) Low (DL) Low Low<br />

Naphthalene Low (DL) Low (DL) Low Low<br />

Phenanthrene Low (DL) Low (DL) Low Low<br />

High Molecular Weight PAHs<br />

Fluoranthene Low (DL) Low (DL) Low Low<br />

Benz(a)anthracene Low (DL) Low (DL) Low Low<br />

Benzo(a)pyrene Low (DL) Low (DL) Low Low<br />

Benzo(e)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(b)fluoranthene Moderate Moderate Low Low<br />

Benzo(g,h,i)perylene Low (DL) Low (DL) Low Low<br />

Benzo(k)fluoranthene Low (DL) Low (DL) Low Low<br />

Chrysene Low (DL) Low (DL) Low Low<br />

Dibenz(a,h)anthracene Low (DL) Low (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-39


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-10 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in Terminal (cont’d)<br />

Constituent<br />

High Molecular Weight PAHs (cont’d)<br />

Surface Sea Water<br />

Effect Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Indeno(1,2,3-cd)pyrene Low (DL) Low (DL) Low Low<br />

Pyrene Low (DL) Low (DL) Low Low<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene Negligible (DL) Negligible (DL) Low Low<br />

1,3,5-Trimethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Phenolic Compounds<br />

Phenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dimethylphenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dinitrophenol Negligible (DL) Negligible (DL) Low Low<br />

Trace Elements<br />

Barium Moderate Moderate Moderate Moderate<br />

Boron Low (DL) Low (DL) Low Low<br />

Cadmium Low (DL) Low (DL) Low Low<br />

Manganese Moderate Moderate Low Low<br />

Molybdenum Low (DL) Low (DL) Low Low<br />

Nickel Low (DL) Low (DL) Low Low<br />

Tin Low (DL) Low (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-40 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-10 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in Terminal (cont’d)<br />

Constituent<br />

Trace Elements (cont’d)<br />

Surface Sea Water<br />

Effect Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Vanadium Low (DL) Low (DL) Low Low<br />

Zinc Moderate Moderate Low Low<br />

NOTES:<br />

Highlighted cells (grey) indicate moderate or higher effect magnitude.<br />

DL - Detection Limit<br />

CHC5/3 - CHC5 divided by a factor of three.<br />

a F3 aliphatics are insufficiently soluble in water to pose a risk to aquatic and sediment receptors.<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-41


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-11 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in Clio<br />

Bay<br />

BTEX<br />

Constituent<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Benzene Negligible (DL) Negligible (DL) Negligible Negligible<br />

Ethylbenzene Negligible (DL) Negligible (DL) Negligible Negligible<br />

Toluene Negligible (DL) Negligible (DL) Negligible Negligible<br />

Xylenes Negligible (DL) Negligible (DL) Negligible Negligible<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 – a – a Negligible – a<br />

Aliph>C08-C10 - F1 – a – a Negligible – a<br />

Arom>C08-C10 - F1 – a – a Negligible – a<br />

Aliph>C10-C12 - F2 – a – a Negligible – a<br />

Aliph>C12-C16 - F2 – a – a Negligible – a<br />

Arom>C10-C12 - F2 – a – a Negligible – a<br />

Arom>C12-C16 - F2 – a – a Negligible – a<br />

Aliph>C16-C21 - F3 – a,b – a,b – a,b – a,b<br />

Aliph>C21-C34 - F3 – a,b – a,b – a,b – a,b<br />

Arom>C16-C21 - F3 – a – a Negligible – a<br />

Arom>C21-C34 - F3 – a – a Negligible – a<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-42 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-11 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in Clio<br />

Bay (cont’d)<br />

Constituent<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Acenaphthene Low (DL) Low (DL) Negligible Negligible<br />

Acenaphthylene Low (DL) Low (DL) Negligible Negligible<br />

Anthracene Low (DL) Low (DL) Negligible Negligible<br />

Fluorene Low (DL) Low (DL) Negligible Negligible<br />

1-Methylnaphthalene – a – a – a – a<br />

2-Methylnaphthalene Low (DL) Low (DL) Negligible Negligible<br />

Naphthalene Negligible (DL) Negligible (DL) Negligible Negligible<br />

Phenanthrene Low (DL) Low (DL) Negligible Negligible<br />

High Molecular Weight PAHs<br />

Fluoranthene Low (DL) Low (DL) Negligible Negligible<br />

Benz(a)anthracene Low (DL) Low (DL) Negligible Negligible<br />

Benzo(a)pyrene Low (DL) Low (DL) Negligible Negligible<br />

Benzo(e)pyrene – a – a – a – a<br />

Benzo(b)fluoranthene Low (DL) Low (DL) Negligible Negligible<br />

Benzo(g,h,i)perylene Low (DL) Low (DL) Negligible Negligible<br />

Benzo(k)fluoranthene Low (DL) Low (DL) Negligible Negligible<br />

Chrysene Low (DL) Low (DL) Negligible Negligible<br />

Dibenz(a,h)anthracene Low (DL) Low (DL) Negligible Negligible<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-43


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-11 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in Clio<br />

Bay (cont’d)<br />

Constituent<br />

High Molecular Weight PAHs (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Indeno(1,2,3-cd)pyrene Low (DL) Low (DL) Negligible Negligible<br />

Pyrene Low (DL) Low (DL) Negligible Negligible<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene – a – a – a – a<br />

1,3,5-Trimethylbenzene – a – a – a – a<br />

Phenolic Compounds<br />

Phenol – a – a – a – a<br />

2,4-Dimethylphenol – a – a – a – a<br />

2,4-Dinitrophenol – a – a – a – a<br />

Trace Elements<br />

Barium Moderate Moderate Negligible Negligible<br />

Boron Low (DL) Low (DL) Negligible Negligible<br />

Cadmium Low (DL) Low (DL) Negligible Negligible<br />

Manganese Low (DL) Low (DL) Negligible Negligible<br />

Molybdenum Low (DL) Low (DL) Negligible Negligible<br />

Nickel Low (DL) Low (DL) Negligible Negligible<br />

Tin Low (DL) Low (DL) Negligible Negligible<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-44 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-11 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in Clio<br />

Bay (cont’d)<br />

Constituent<br />

Trace Elements (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Vanadium Low (DL) Low (DL) Negligible Negligible<br />

Zinc Low (DL) Low (DL) Negligible Negligible<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

NOTES:<br />

Highlighted cells (grey) indicate moderate or higher effect magnitude.<br />

DL - Detection Limit<br />

a Effects magnitude not determined as empirical measurements were either not reported by the laboratory or analysis was not requested.<br />

b F3 aliphatics are insufficiently soluble in water to pose a risk to aquatic and sediment receptors.<br />

2010 Page J-45


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-12 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Clio Bay<br />

BTEX<br />

Constituent<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Benzene Negligible (DL) Negligible (DL) Low Low<br />

Ethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Toluene Negligible (DL) Negligible (DL) Low Low<br />

Xylenes Negligible (DL) Negligible (DL) Low Low<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C10-C12 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Aliph>C12-C16 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Arom>C10-C12 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C12-C16 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C16-C21 - F3 – a – a – a – a<br />

Aliph>C21-C34 - F3 – a – a – a – a<br />

Arom>C16-C21 - F3 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C21-C34 - F3 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-46 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-12 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Clio Bay (cont’d)<br />

Constituent<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Acenaphthene Negligible (DL) Negligible (DL) Low Low<br />

Acenaphthylene Negligible (DL) Negligible (DL) Low Low<br />

Anthracene Negligible (DL) Negligible (DL) Low Low<br />

Fluorene Negligible (DL) Negligible (DL) Low Low<br />

1-Methylnaphthalene Negligible (DL) Negligible (DL) Low Low<br />

2-Methylnaphthalene Negligible (DL) Negligible (DL) Low Low<br />

Naphthalene Negligible (DL) Negligible (DL) Low Low<br />

Phenanthrene Negligible (DL) Negligible (DL) Low Low<br />

High Molecular Weight PAHs<br />

Fluoranthene Negligible (DL) Negligible (DL) Low Low<br />

Benz(a)anthracene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(a)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(e)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(b)fluoranthene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(g,h,i)perylene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(k)fluoranthene Negligible (DL) Negligible (DL) Low Low<br />

Chrysene Negligible (DL) Negligible (DL) Low Low<br />

Dibenz(a,h)anthracene Negligible (DL) Negligible (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-47


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-12 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Clio Bay (cont’d)<br />

Constituent<br />

High Molecular Weight PAHs (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Indeno(1,2,3-cd)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Pyrene Negligible (DL) Negligible (DL) Low Low<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene Negligible (DL) Negligible (DL) Low Low<br />

1,3,5-Trimethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Phenolic Compounds<br />

Phenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dimethylphenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dinitrophenol Negligible (DL) Negligible (DL) Low Low<br />

Trace Elements<br />

Barium Negligible (DL) Negligible (DL) Low Low<br />

Boron Negligible (DL) Negligible (DL) Low Low<br />

Cadmium Negligible (DL) Negligible (DL) Low Low<br />

Manganese Negligible (DL) Negligible (DL) Low Low<br />

Molybdenum Negligible (DL) Negligible (DL) Low Low<br />

Nickel Negligible (DL) Negligible (DL) Low Low<br />

Tin Negligible (DL) Negligible (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-48 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-12 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Clio Bay (cont’d)<br />

Constituent<br />

Trace Elements (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Vanadium Negligible (DL) Negligible (DL) Low Low<br />

Zinc Negligible (DL) Negligible (DL) Low Low<br />

NOTES:<br />

Highlighted cells (grey) indicate moderate or higher effect magnitude.<br />

DL - Detection Limit<br />

CHC5/3 - CHC5 divided by a factor of three.<br />

a F3 aliphatics are insufficiently soluble in water to pose a risk to aquatic and sediment receptors.<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-49


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-13 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in Clio Bay<br />

BTEX<br />

Constituent<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Benzene Negligible (DL) Negligible (DL) Low Low<br />

Ethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Toluene Negligible (DL) Negligible (DL) Low Low<br />

Xylenes Negligible (DL) Negligible (DL) Low Low<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C10-C12 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Aliph>C12-C16 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Arom>C10-C12 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C12-C16 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C16-C21 - F3 – a – a – a – a<br />

Aliph>C21-C34 - F3 – a – a – a – a<br />

Arom>C16-C21 - F3 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C21-C34 - F3 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-50 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-13 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in Clio Bay (cont’d)<br />

Constituent<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Acenaphthene Low (DL) Low (DL) Low Low<br />

Acenaphthylene Low (DL) Low (DL) Low Low<br />

Anthracene Low (DL) Low (DL) Low Low<br />

Fluorene Low (DL) Low (DL) Low Low<br />

1-Methylnaphthalene Negligible (DL) Negligible (DL) Low Low<br />

2-Methylnaphthalene Low (DL) Low (DL) Low Low<br />

Naphthalene Negligible (DL) Negligible (DL) Low Low<br />

Phenanthrene Low (DL) Low (DL) Low Low<br />

High Molecular Weight PAHs<br />

Fluoranthene Low (DL) Low (DL) Low Low<br />

Benz(a)anthracene Low (DL) Low (DL) Low Low<br />

Benzo(a)pyrene Low (DL) Low (DL) Low Low<br />

Benzo(e)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(b)fluoranthene Low (DL) Low (DL) Low Low<br />

Benzo(g,h,i)perylene Low (DL) Low (DL) Low Low<br />

Benzo(k)fluoranthene Low (DL) Low (DL) Low Low<br />

Chrysene Low (DL) Low (DL) Low Low<br />

Dibenz(a,h)anthracene Low (DL) Low (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-51


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-13 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in Clio Bay (cont’d)<br />

Constituent<br />

High Molecular Weight PAHs (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Indeno(1,2,3-cd)pyrene Low (DL) Low (DL) Low Low<br />

Pyrene Low (DL) Low (DL) Low Low<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene Negligible (DL) Negligible (DL) Low Low<br />

1,3,5-Trimethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Phenolic Compounds<br />

Phenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dimethylphenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dinitrophenol Negligible (DL) Negligible (DL) Low Low<br />

Trace Elements<br />

Barium Moderate Moderate Low Low<br />

Boron Low (DL) Low (DL) Low Low<br />

Cadmium Low (DL) Low (DL) Low Low<br />

Manganese Low (DL) Low (DL) Low Low<br />

Molybdenum Low (DL) Low (DL) Low Low<br />

Nickel Low (DL) Low (DL) Low Low<br />

Tin Low (DL) Low (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-52 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-13 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in Clio Bay (cont’d)<br />

Constituent<br />

Trace Elements (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Vanadium Low (DL) Low (DL) Low Low<br />

Zinc Low (DL) Low (DL) Low Low<br />

NOTES:<br />

Highlighted cells (grey) indicate moderate or higher effect magnitude.<br />

DL - Detection Limit<br />

CHC5/3 - CHC5 divided by a factor of three.<br />

a F3 aliphatics are insufficiently soluble in water to pose a risk to aquatic and sediment receptors.<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-53


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-14 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Emsley Point<br />

BTEX<br />

Constituent<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Benzene Negligible (DL) Negligible (DL) Negligible Negligible<br />

Ethylbenzene Negligible (DL) Negligible (DL) Negligible Negligible<br />

Toluene Negligible (DL) Negligible (DL) Negligible Negligible<br />

Xylenes Negligible (DL) Negligible (DL) Negligible Negligible<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 – a – a Negligible – a<br />

Aliph>C08-C10 - F1 – a – a Negligible – a<br />

Arom>C08-C10 - F1 – a – a Negligible – a<br />

Aliph>C10-C12 - F2 – a – a Negligible – a<br />

Aliph>C12-C16 - F2 – a – a Negligible – a<br />

Arom>C10-C12 - F2 – a – a Negligible – a<br />

Arom>C12-C16 - F2 – a – a Negligible – a<br />

Aliph>C16-C21 - F3 – a,b – a,b – a,b – a,b<br />

Aliph>C21-C34 - F3 – a,b – a,b – a,b – a,b<br />

Arom>C16-C21 - F3 – a – a Negligible – a<br />

Arom>C21-C34 - F3 – a – a Negligible – a<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-54 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-14 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Emsley Point (cont’d)<br />

Constituent<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Acenaphthene Low (DL) Low (DL) Negligible Negligible<br />

Acenaphthylene Low (DL) Low (DL) Negligible Negligible<br />

Anthracene Low (DL) Low (DL) Negligible Negligible<br />

Fluorene Low (DL) Low (DL) Negligible Negligible<br />

1-Methylnaphthalene – a – a – a – a<br />

2-Methylnaphthalene Low (DL) Low (DL) Negligible Negligible<br />

Naphthalene Negligible (DL) Negligible (DL) Negligible Negligible<br />

Phenanthrene Low (DL) Low (DL) Negligible Negligible<br />

High Molecular Weight PAHs<br />

Fluoranthene Low (DL) Low (DL) Negligible Negligible<br />

Benz(a)anthracene Low (DL) Low (DL) Negligible Negligible<br />

Benzo(a)pyrene Low (DL) Low (DL) Negligible Negligible<br />

Benzo(e)pyrene – a – a – a – a<br />

Benzo(b)fluoranthene Low (DL) Low (DL) Negligible Negligible<br />

Benzo(g,h,i)perylene Low (DL) Low (DL) Negligible Negligible<br />

Benzo(k)fluoranthene Low (DL) Low (DL) Negligible Negligible<br />

Chrysene Low (DL) Low (DL) Negligible Negligible<br />

Dibenz(a,h)anthracene Low (DL) Low (DL) Negligible Negligible<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-55


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-14 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Emsley Point (cont’d)<br />

Constituent<br />

High Molecular Weight PAHs (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Indeno(1,2,3-cd)pyrene Low (DL) Low (DL) Negligible Negligible<br />

Pyrene Low (DL) Low (DL) Negligible Negligible<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene – a – a – a – a<br />

1,3,5-Trimethylbenzene – a – a – a – a<br />

Phenolic Compounds<br />

Phenol – a – a – a – a<br />

2,4-Dimethylphenol – a – a – a – a<br />

2,4-Dinitrophenol – a – a – a – a<br />

Trace Elements<br />

Barium Moderate Moderate Negligible Negligible<br />

Boron Low (DL) Low (DL) Negligible Negligible<br />

Cadmium Low (DL) Low (DL) Negligible Negligible<br />

Manganese Low (DL) Low (DL) Negligible Negligible<br />

Molybdenum Low (DL) Low (DL) Negligible Negligible<br />

Nickel Low (DL) Low (DL) Negligible Negligible<br />

Tin Low (DL) Low (DL) Negligible Negligible<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-56 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-14 Base Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Emsley Point (cont’d)<br />

Constituent<br />

Trace Elements (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Vanadium Low (DL) Low (DL) Negligible Negligible<br />

Zinc Low (DL) Low (DL) Negligible Negligible<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

NOTES:<br />

Highlighted cells (grey) indicate moderate or higher effect magnitude.<br />

DL - Detection Limit<br />

a Effects magnitude not determined as empirical measurements were either not reported by the laboratory or analysis was not requested.<br />

b F3 aliphatics are insufficiently soluble in water to pose a risk to aquatic and sediment receptors.<br />

2010 Page J-57


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-15 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Emsley Point<br />

BTEX<br />

Constituent<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Benzene Negligible (DL) Negligible (DL) Low Low<br />

Ethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Toluene Negligible (DL) Negligible (DL) Low Low<br />

Xylenes Negligible (DL) Negligible (DL) Low Low<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C10-C12 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Aliph>C12-C16 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Arom>C10-C12 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C12-C16 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C16-C21 - F3 – a – a – a – a<br />

Aliph>C21-C34 - F3 – a – a – a – a<br />

Arom>C16-C21 - F3 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C21-C34 - F3 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-58 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-15 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Emsley Point (cont’d)<br />

Constituent<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Acenaphthene Negligible (DL) Negligible (DL) Low Low<br />

Acenaphthylene Negligible (DL) Negligible (DL) Low Low<br />

Anthracene Negligible (DL) Negligible (DL) Low Low<br />

Fluorene Negligible (DL) Negligible (DL) Low Low<br />

1-Methylnaphthalene Negligible (DL) Negligible (DL) Low Low<br />

2-Methylnaphthalene Negligible (DL) Negligible (DL) Low Low<br />

Naphthalene Negligible (DL) Negligible (DL) Low Low<br />

Phenanthrene Negligible (DL) Negligible (DL) Low Low<br />

High Molecular Weight PAHs<br />

Fluoranthene Negligible (DL) Negligible (DL) Low Low<br />

Benz(a)anthracene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(a)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(e)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(b)fluoranthene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(g,h,i)perylene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(k)fluoranthene Negligible (DL) Negligible (DL) Low Low<br />

Chrysene Negligible (DL) Negligible (DL) Low Low<br />

Dibenz(a,h)anthracene Negligible (DL) Negligible (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-59


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-15 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Emsley Point (cont’d)<br />

Constituent<br />

High Molecular Weight PAHs (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Indeno(1,2,3-cd)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Pyrene Negligible (DL) Negligible (DL) Low Low<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene Negligible (DL) Negligible (DL) Low Low<br />

1,3,5-Trimethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Phenolic Compounds<br />

Phenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dimethylphenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dinitrophenol Negligible (DL) Negligible (DL) Low Low<br />

Trace Elements<br />

Barium Negligible (DL) Negligible (DL) Low Low<br />

Boron Negligible (DL) Negligible (DL) Low Low<br />

Cadmium Negligible (DL) Negligible (DL) Low Low<br />

Manganese Negligible (DL) Negligible (DL) Low Low<br />

Molybdenum Negligible (DL) Negligible (DL) Low Low<br />

Nickel Negligible (DL) Negligible (DL) Low Low<br />

Tin Negligible (DL) Negligible (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-60 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-15 Project Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC in<br />

Emsley Point (cont’d)<br />

Constituent<br />

Trace Elements (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Vanadium Negligible (DL) Negligible (DL) Low Low<br />

Zinc Negligible (DL) Negligible (DL) Low Low<br />

NOTES:<br />

Highlighted cells (grey) indicate moderate or higher effect magnitude.<br />

DL - Detection Limit<br />

CHC5/3 - CHC5 divided by a factor of three.<br />

a F3 aliphatics are insufficiently soluble in water to pose a risk to aquatic and sediment receptors.<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-61


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-16 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in Emsley Point<br />

BTEX<br />

Constituent<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Benzene Negligible (DL) Negligible (DL) Low Low<br />

Ethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Toluene Negligible (DL) Negligible (DL) Low Low<br />

Xylenes Negligible (DL) Negligible (DL) Low Low<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C08-C10 - F1 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C10-C12 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Aliph>C12-C16 - F2 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Arom>C10-C12 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C12-C16 - F2 Negligible (DL) Negligible (DL) Low Low<br />

Aliph>C16-C21 - F3 – a – a – a – a<br />

Aliph>C21-C34 - F3 – a – a – a – a<br />

Arom>C16-C21 - F3 Negligible (DL) Negligible (DL) Low Low<br />

Arom>C21-C34 - F3 Negligible (CHC5/3) Negligible (CHC5/3) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-62 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-16 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in Emsley Point (cont’d)<br />

Constituent<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Acenaphthene Low (DL) Low (DL) Low Low<br />

Acenaphthylene Low (DL) Low (DL) Low Low<br />

Anthracene Low (DL) Low (DL) Low Low<br />

Fluorene Low (DL) Low (DL) Low Low<br />

1-Methylnaphthalene Negligible (DL) Negligible (DL) Low Low<br />

2-Methylnaphthalene Low (DL) Low (DL) Low Low<br />

Naphthalene Negligible (DL) Negligible (DL) Low Low<br />

Phenanthrene Low (DL) Low (DL) Low Low<br />

High Molecular Weight PAHs<br />

Fluoranthene Low (DL) Low (DL) Low Low<br />

Benz(a)anthracene Low (DL) Low (DL) Low Low<br />

Benzo(a)pyrene Low (DL) Low (DL) Low Low<br />

Benzo(e)pyrene Negligible (DL) Negligible (DL) Low Low<br />

Benzo(b)fluoranthene Low (DL) Low (DL) Low Low<br />

Benzo(g,h,i)perylene Low (DL) Low (DL) Low Low<br />

Benzo(k)fluoranthene Low (DL) Low (DL) Low Low<br />

Chrysene Low (DL) Low (DL) Low Low<br />

Dibenz(a,h)anthracene Low (DL) Low (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-63


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-16 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in Emsley Point (cont’d)<br />

Constituent<br />

High Molecular Weight PAHs (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Indeno(1,2,3-cd)pyrene Low (DL) Low (DL) Low Low<br />

Pyrene Low (DL) Low (DL) Low Low<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene Negligible (DL) Negligible (DL) Low Low<br />

1,3,5-Trimethylbenzene Negligible (DL) Negligible (DL) Low Low<br />

Phenolic Compounds<br />

Phenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dimethylphenol Negligible (DL) Negligible (DL) Low Low<br />

2,4-Dinitrophenol Negligible (DL) Negligible (DL) Low Low<br />

Trace Elements<br />

Barium Moderate Moderate Low Low<br />

Boron Low (DL) Low (DL) Low Low<br />

Cadmium Low (DL) Low (DL) Low Low<br />

Manganese Low (DL) Low (DL) Low Low<br />

Molybdenum Low (DL) Low (DL) Low Low<br />

Nickel Low (DL) Low (DL) Low Low<br />

Tin Low (DL) Low (DL) Low Low<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Page J-64 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-16 Application Case Effect Magnitude <strong>for</strong> the <strong>Marine</strong> Community-level Receptors Exposed to COPC<br />

in Emsley Point (cont’d)<br />

Constituent<br />

Trace Elements (cont’d)<br />

Surface Sea Water Effect<br />

Magnitude<br />

Deep Sea Water Effect<br />

Magnitude<br />

Near-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

Vanadium Low (DL) Low (DL) Low Low<br />

Zinc Low (DL) Low (DL) Low Low<br />

NOTES:<br />

Highlighted cells (grey) indicate moderate or higher effect magnitude.<br />

DL - Detection Limit<br />

CHC5/3 - CHC5 divided by a factor of three.<br />

a F3 aliphatics are insufficiently soluble in water to pose a risk to aquatic and sediment receptors.<br />

Off-shore <strong>Marine</strong><br />

Sediment Effect<br />

Magnitude<br />

2010 Page J-65


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-17 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 1<br />

BTEX<br />

COPC<br />

Coastal<br />

Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Benzene 6.76E-07 3.63E-06 2.47E-06 – – – –<br />

Ethylbenzene 2.03E-06 8.70E-06 5.32E-06 – – – –<br />

Toluene 1.14E-06 5.56E-06 3.49E-06 – – – –<br />

Xylenes 1.77E-06 7.57E-06 4.62E-06 – – – –<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 3.21E-06 6.57E-06 – 4.26E-05 3.09E-05 – 1.89E-06<br />

Aliph>C08-C10 - F1 6.28E-06 1.29E-05 – 8.36E-05 6.00E-05 – 3.79E-06<br />

Arom>C08-C10 - F1 6.48E-06 1.32E-05 – 8.60E-05 6.28E-05 – 3.79E-06<br />

F1 - Total 1.60E-05 3.27E-05 – 2.12E-04 1.54E-04 – 9.46E-06<br />

Aliph>C10-C12 - F2 2.46E-05 5.09E-05 – 3.29E-04 2.33E-04 – 1.51E-05<br />

Aliph>C12-C16 - F2 4.48E-05 9.34E-05 – 6.02E-04 4.19E-04 – 2.84E-05<br />

Arom>C10-C12 - F2 2.03E-04 4.16E-04 – 2.70E-03 1.96E-03 – 1.19E-04<br />

Arom>C12-C16 - F2 2.40E-04 4.92E-04 – 3.19E-03 2.31E-03 – 1.42E-04<br />

F2 - Total 5.13E-04 1.05E-03 – 6.81E-03 4.93E-03 – 3.05E-04<br />

Aliph>C16-C21 - F3 8.55E-06 1.92E-05 – 1.20E-04 6.88E-05 – 7.10E-06<br />

Aliph>C21-C34 - F3 8.55E-06 1.92E-05 – 1.20E-04 6.88E-05 – 7.10E-06<br />

Arom>C16-C21 - F3 3.03E-04 5.91E-04 – 3.90E-03 3.17E-03 – 1.42E-04<br />

Arom>C21-C34 - F3 8.99E-04 1.76E-03 – 1.16E-02 9.29E-03 – 4.35E-04<br />

F3 - Total 1.22E-03 2.39E-03 – 1.58E-02 1.26E-02 – 5.92E-04<br />

Total TPH HQ = 1.75E-03 3.48E-03 – 2.28E-02 1.77E-02 – 9.06E-04<br />

Page J-66 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-17 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 1 (cont’d)<br />

COPC<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Coastal<br />

Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Acenaphthene 3.47E-06 2.39E-06 2.36E-06 – – – –<br />

Acenaphthylene 3.44E-06 2.39E-06 2.37E-06 – – – –<br />

Anthracene 3.50E-06 2.40E-06 2.39E-06 – – – –<br />

Fluorene 3.45E-06 2.40E-06 2.39E-06 – – – –<br />

1-Methylnaphthalene – – – – – – –<br />

2-Methylnaphthalene 4.16E-06 3.33E-06 3.48E-06 – – – –<br />

Naphthalene 3.59E-06 2.46E-06 2.42E-06 – – – –<br />

Phenanthrene 1.20E-05 6.48E-06 4.98E-06 – – – –<br />

Total LPAH HQ = 3.37E-05 2.19E-05 2.04E-05 – – – –<br />

High Molecular Weight PAHs<br />

Fluoranthene 6.34E-06 3.63E-06 3.24E-06 – – – –<br />

Benz(a)anthracene 3.34E-05 2.70E-05 3.06E-05 – – – –<br />

Benzo(a)pyrene 3.26E-05 2.49E-05 2.95E-05 – – – –<br />

Benzo(e)pyrene – – – – – – –<br />

Benzo(b)fluoranthene 4.10E-05 3.88E-05 4.77E-05 – – – –<br />

Benzo(g,h,i)perylene 3.26E-05 2.31E-05 2.56E-05 – – – –<br />

Benzo(k)fluoranthene 3.26E-05 2.25E-05 2.23E-05 – – – –<br />

Chrysene 4.67E-05 3.26E-05 3.31E-05 – – – –<br />

Dibenz(a,h)anthracene 3.25E-05 2.25E-05 2.29E-05 – – – –<br />

2010 Page J-67


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-17 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 1 (cont’d)<br />

COPC<br />

High Molecular Weight PAHs (cont’d)<br />

Coastal<br />

Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Indeno(1,2,3-cd)pyrene 3.26E-05 2.38E-05 2.67E-05 – – – –<br />

Pyrene 4.71E-05 2.99E-05 3.03E-05 – – – –<br />

Total HPAH HQ = 3.37E-04 2.49E-04 2.72E-04 – – – –<br />

Total PAH HQ = 3.71E-04 2.70E-04 2.92E-04 – – – –<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene – – – – – – –<br />

1,3,5-Trimethylbenzene – – – – – – –<br />

Phenolic Compounds<br />

Phenol – – – – – – –<br />

2,4-Dimethylphenol – – – – – – –<br />

2,4-Dinitrophenol – – – – – – –<br />

Trace Elements<br />

Barium 5.33E-04 3.13E-04 3.07E-04 1.20E-03 2.21E-03 8.31E-04 3.75E-04<br />

Boron 8.86E-04 1.74E-02 1.53E-02 7.15E-03 2.13E-03 2.54E-02 1.46E-03<br />

Cadmium 1.11E-02 2.17E-02 6.98E-03 4.63E-02 5.42E-02 1.60E-02 1.40E-03<br />

Manganese 1.76E-03 2.62E-03 3.21E-03 3.02E-03 2.16E-03 3.21E-03 5.10E-04<br />

Molybdenum 5.64E-02 2.17E-01 1.23E-01 2.08E-03 1.94E-03 5.21E-03 3.24E-03<br />

Nickel 3.66E-02 2.74E-02 2.79E-02 6.97E-02 6.27E-02 1.65E-01 7.58E-02<br />

Tin 6.61E-04 2.07E-03 9.21E-04 2.88E-03 3.93E-03 1.36E-03 1.21E-03<br />

Vanadium 1.49E-02 5.42E-02 3.04E-02 1.49E-01 1.34E-01 1.61E-01 5.81E-02<br />

Page J-68 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-17 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 1 (cont’d)<br />

COPC<br />

Trace Elements (cont’d)<br />

Coastal<br />

Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Zinc 9.68E-03 3.06E-02 1.63E-02 6.28E-02 6.92E-02 6.23E-02 2.38E-02<br />

Max HQ 5.64E-02 2.17E-01 1.23E-01 1.49E-01 1.34E-01 1.65E-01 7.58E-02<br />

2010 Page J-69


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-18 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 2<br />

BTEX<br />

COPC<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Benzene 6.76E-07 3.63E-06 2.47E-06 – – – –<br />

Ethylbenzene 2.03E-06 8.70E-06 5.32E-06 – – – –<br />

Toluene 1.14E-06 5.56E-06 3.49E-06 – – – –<br />

Xylenes 1.77E-06 7.57E-06 4.62E-06 – – – –<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 3.21E-06 6.57E-06 – 4.26E-05 3.09E-05 – 1.89E-06<br />

Aliph>C08-C10 - F1 6.28E-06 1.29E-05 – 8.36E-05 6.00E-05 – 3.79E-06<br />

Arom>C08-C10 - F1 6.48E-06 1.32E-05 – 8.60E-05 6.28E-05 – 3.79E-06<br />

F1 - Total 1.60E-05 3.27E-05 – 2.12E-04 1.54E-04 – 9.46E-06<br />

Aliph>C10-C12 - F2 2.46E-05 5.09E-05 – 3.29E-04 2.33E-04 – 1.51E-05<br />

Aliph>C12-C16 - F2 4.48E-05 9.34E-05 – 6.02E-04 4.19E-04 – 2.84E-05<br />

Arom>C10-C12 - F2 2.03E-04 4.16E-04 – 2.70E-03 1.96E-03 – 1.19E-04<br />

Arom>C12-C16 - F2 2.40E-04 4.92E-04 – 3.19E-03 2.31E-03 – 1.42E-04<br />

F2 - Total 5.13E-04 1.05E-03 – 6.81E-03 4.93E-03 – 3.05E-04<br />

Aliph>C16-C21 - F3 8.55E-06 1.92E-05 – 1.20E-04 6.88E-05 – 7.10E-06<br />

Aliph>C21-C34 - F3 8.55E-06 1.92E-05 – 1.20E-04 6.88E-05 – 7.10E-06<br />

Arom>C16-C21 - F3 3.03E-04 5.91E-04 – 3.90E-03 3.17E-03 – 1.42E-04<br />

Arom>C21-C34 - F3 8.99E-04 1.76E-03 – 1.16E-02 9.29E-03 – 4.35E-04<br />

F3 - Total 1.22E-03 2.39E-03 – 1.58E-02 1.26E-02 – 5.92E-04<br />

Total TPH HQ = 1.75E-03 3.48E-03 – 2.28E-02 1.77E-02 – 9.06E-04<br />

Page J-70 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-18 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 2 (cont’d)<br />

COPC<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Acenaphthene 3.47E-06 2.39E-06 2.36E-06 – – – –<br />

Acenaphthylene 3.44E-06 2.39E-06 2.37E-06 – – – –<br />

Anthracene 3.50E-06 2.40E-06 2.39E-06 – – – –<br />

Fluorene 3.45E-06 2.40E-06 2.39E-06 – – – –<br />

1-Methylnaphthalene – – – – – – –<br />

2-Methylnaphthalene 4.16E-06 3.33E-06 3.48E-06 – – – –<br />

Naphthalene 3.59E-06 2.46E-06 2.42E-06 – – – –<br />

Phenanthrene 1.20E-05 6.48E-06 4.98E-06 – – – –<br />

Total LPAH HQ = 3.37E-05 2.19E-05 2.04E-05 – – – –<br />

High Molecular Weight PAHs<br />

Fluoranthene 6.34E-06 3.63E-06 3.24E-06 – – – –<br />

Benz(a)anthracene 3.34E-05 2.70E-05 3.06E-05 – – – –<br />

Benzo(a)pyrene 3.26E-05 2.49E-05 2.95E-05 – – – –<br />

Benzo(e)pyrene – – – – – – –<br />

Benzo(b)fluoranthene 4.10E-05 3.88E-05 4.77E-05 – – – –<br />

Benzo(g,h,i)perylene 3.26E-05 2.31E-05 2.56E-05 – – – –<br />

Benzo(k)fluoranthene 3.26E-05 2.25E-05 2.23E-05 – – – –<br />

Chrysene 4.67E-05 3.26E-05 3.31E-05 – – – –<br />

Dibenz(a,h)anthracene 3.25E-05 2.25E-05 2.29E-05 – – – –<br />

Indeno(1,2,3-cd)pyrene 3.26E-05 2.38E-05 2.67E-05 – – – –<br />

2010 Page J-71


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-18 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 2 (cont’d)<br />

COPC<br />

High Molecular Weight PAHs (cont’d)<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Pyrene 4.71E-05 2.99E-05 3.03E-05 – – – –<br />

Total HPAH HQ = 3.37E-04 2.49E-04 2.72E-04 – – – –<br />

Total PAH HQ = 3.71E-04 2.70E-04 2.92E-04 – – – –<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene – – – – – – –<br />

1,3,5-Trimethylbenzene – – – – – – –<br />

Phenolic Compounds<br />

Phenol – – – – – – –<br />

2,4-Dimethylphenol – – – – – – –<br />

2,4-Dinitrophenol – – – – – – –<br />

Trace Elements<br />

Barium 5.33E-04 3.13E-04 3.07E-04 1.20E-03 2.21E-03 8.31E-04 3.75E-04<br />

Boron 8.86E-04 1.74E-02 1.53E-02 7.15E-03 2.13E-03 2.54E-02 1.46E-03<br />

Cadmium 1.11E-02 2.17E-02 6.98E-03 4.63E-02 5.42E-02 1.60E-02 1.40E-03<br />

Manganese 1.76E-03 2.62E-03 3.21E-03 3.02E-03 2.16E-03 3.21E-03 5.10E-04<br />

Molybdenum 5.64E-02 2.17E-01 1.23E-01 2.08E-03 1.94E-03 5.21E-03 3.24E-03<br />

Nickel 3.66E-02 2.74E-02 2.79E-02 6.97E-02 6.27E-02 1.65E-01 7.58E-02<br />

Tin 6.61E-04 2.07E-03 9.21E-04 2.88E-03 3.93E-03 1.36E-03 1.21E-03<br />

Vanadium 1.49E-02 5.42E-02 3.04E-02 1.49E-01 1.34E-01 1.61E-01 5.81E-02<br />

Zinc 9.68E-03 3.06E-02 1.63E-02 6.28E-02 6.92E-02 6.23E-02 2.38E-02<br />

Max HQ 5.64E-02 2.17E-01 1.23E-01 1.49E-01 1.34E-01 1.65E-01 7.58E-02<br />

Page J-72 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-19 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in Terminal<br />

BTEX<br />

COPC<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Benzene 6.76E-07 3.63E-06 2.47E-06 – – – –<br />

Ethylbenzene 2.03E-06 8.70E-06 5.32E-06 – – – –<br />

Toluene 1.14E-06 5.56E-06 3.49E-06 – – – –<br />

Xylenes 1.77E-06 7.57E-06 4.62E-06 – – – –<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 3.21E-06 6.57E-06 – 4.26E-05 3.09E-05 – 1.89E-06<br />

Aliph>C08-C10 - F1 6.28E-06 1.29E-05 – 8.36E-05 6.00E-05 – 3.79E-06<br />

Arom>C08-C10 - F1 6.48E-06 1.32E-05 – 8.60E-05 6.28E-05 – 3.79E-06<br />

F1 - Total 1.60E-05 3.27E-05 – 2.12E-04 1.54E-04 – 9.46E-06<br />

Aliph>C10-C12 - F2 2.46E-05 5.09E-05 – 3.29E-04 2.33E-04 – 1.51E-05<br />

Aliph>C12-C16 - F2 4.48E-05 9.34E-05 – 6.02E-04 4.19E-04 – 2.84E-05<br />

Arom>C10-C12 - F2 2.03E-04 4.16E-04 – 2.70E-03 1.96E-03 – 1.19E-04<br />

Arom>C12-C16 - F2 2.40E-04 4.92E-04 – 3.19E-03 2.31E-03 – 1.42E-04<br />

F2 - Total 5.13E-04 1.05E-03 – 6.81E-03 4.93E-03 – 3.05E-04<br />

Aliph>C16-C21 - F3 8.55E-06 1.92E-05 – 1.20E-04 6.88E-05 – 7.10E-06<br />

Aliph>C21-C34 - F3 8.55E-06 1.92E-05 – 1.20E-04 6.88E-05 – 7.10E-06<br />

Arom>C16-C21 - F3 3.03E-04 5.91E-04 – 3.90E-03 3.17E-03 – 1.42E-04<br />

Arom>C21-C34 - F3 8.99E-04 1.76E-03 – 1.16E-02 9.29E-03 – 4.35E-04<br />

F3 - Total 1.22E-03 2.39E-03 – 1.58E-02 1.26E-02 – 5.92E-04<br />

Total TPH HQ = 1.75E-03 3.48E-03 – 2.28E-02 1.77E-02 – 9.06E-04<br />

2010 Page J-73


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-19 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in Terminal (cont’d)<br />

COPC<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Acenaphthene 3.47E-06 2.39E-06 2.36E-06 – – – –<br />

Acenaphthylene 3.44E-06 2.39E-06 2.37E-06 – – – –<br />

Anthracene 3.50E-06 2.40E-06 2.39E-06 – – – –<br />

Fluorene 3.45E-06 2.40E-06 2.39E-06 – – – –<br />

1-Methylnaphthalene – – – – – – –<br />

2-Methylnaphthalene 4.16E-06 3.33E-06 3.48E-06 – – – –<br />

Naphthalene 3.59E-06 2.46E-06 2.42E-06 – – – –<br />

Phenanthrene 1.20E-05 6.48E-06 4.98E-06 – – – –<br />

Total LPAH HQ = 3.37E-05 2.19E-05 2.04E-05 – – – –<br />

High Molecular Weight PAHs<br />

Fluoranthene 6.34E-06 3.63E-06 3.24E-06 – – – –<br />

Benz(a)anthracene 3.34E-05 2.70E-05 3.06E-05 – – – –<br />

Benzo(a)pyrene 3.26E-05 2.49E-05 2.95E-05 – – – –<br />

Benzo(e)pyrene – – – – – – –<br />

Benzo(b)fluoranthene 4.10E-05 3.88E-05 4.77E-05 – – – –<br />

Benzo(g,h,i)perylene 3.26E-05 2.31E-05 2.56E-05 – – – –<br />

Benzo(k)fluoranthene 3.26E-05 2.25E-05 2.23E-05 – – – –<br />

Chrysene 4.67E-05 3.26E-05 3.31E-05 – – – –<br />

Dibenz(a,h)anthracene 3.25E-05 2.25E-05 2.29E-05 – – – –<br />

Indeno(1,2,3-cd)pyrene 3.26E-05 2.38E-05 2.67E-05 – – – –<br />

Page J-74 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-19 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in Terminal (cont’d)<br />

COPC<br />

High Molecular Weight PAHs (cont’d)<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Pyrene 4.71E-05 2.99E-05 3.03E-05 – – – –<br />

Total HPAH HQ = 3.37E-04 2.49E-04 2.72E-04 – – – –<br />

Total PAH HQ = 3.71E-04 2.70E-04 2.92E-04 – – – –<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene – – – – – – –<br />

1,3,5-Trimethylbenzene – – – – – – –<br />

Phenolic Compounds<br />

Phenol – – – – – – –<br />

2,4-Dimethylphenol – – – – – – –<br />

2,4-Dinitrophenol – – – – – – –<br />

Trace Elements<br />

Barium 5.33E-04 3.13E-04 3.07E-04 1.20E-03 2.21E-03 8.31E-04 3.75E-04<br />

Boron 8.86E-04 1.74E-02 1.53E-02 7.15E-03 2.13E-03 2.54E-02 1.46E-03<br />

Cadmium 1.11E-02 2.17E-02 6.98E-03 4.63E-02 5.42E-02 1.60E-02 1.40E-03<br />

Manganese 1.76E-03 2.62E-03 3.21E-03 3.02E-03 2.16E-03 3.21E-03 5.10E-04<br />

Molybdenum 5.64E-02 2.17E-01 1.23E-01 2.08E-03 1.94E-03 5.21E-03 3.24E-03<br />

Nickel 3.66E-02 2.74E-02 2.79E-02 6.97E-02 6.27E-02 1.65E-01 7.58E-02<br />

Tin 6.61E-04 2.07E-03 9.21E-04 2.88E-03 3.93E-03 1.36E-03 1.21E-03<br />

Vanadium 1.49E-02 5.42E-02 3.04E-02 1.49E-01 1.34E-01 1.61E-01 5.81E-02<br />

Zinc 9.68E-03 3.06E-02 1.63E-02 6.28E-02 6.92E-02 6.23E-02 2.38E-02<br />

Max HQ 5.64E-02 2.17E-01 1.23E-01 1.49E-01 1.34E-01 1.65E-01 7.58E-02<br />

2010 Page J-75


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-20 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in Clio Bay<br />

BTEX<br />

COPC<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Benzene 4.12E-07 1.33E-06 9.87E-07 – – – –<br />

Ethylbenzene 5.59E-07 2.07E-06 1.41E-06 – – – –<br />

Toluene 2.34E-07 8.17E-07 6.15E-07 – – – –<br />

Xylenes 2.81E-07 9.83E-07 7.38E-07 – – – –<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 3.21E-06 6.57E-06 – 4.26E-05 3.09E-05 – 1.89E-06<br />

Aliph>C08-C10 - F1 6.28E-06 1.29E-05 – 8.36E-05 6.00E-05 – 3.79E-06<br />

Arom>C08-C10 - F1 2.43E-06 4.97E-06 – 3.22E-05 2.35E-05 – 1.42E-06<br />

F1 - Total 1.19E-05 2.45E-05 – 1.58E-04 1.14E-04 – 7.10E-06<br />

Aliph>C10-C12 - F2 2.46E-05 5.09E-05 – 3.29E-04 2.33E-04 – 1.51E-05<br />

Aliph>C12-C16 - F2 4.48E-05 9.34E-05 – 6.02E-04 4.19E-04 – 2.84E-05<br />

Arom>C10-C12 - F2 8.06E-05 1.65E-04 – 1.07E-03 7.79E-04 – 4.73E-05<br />

Arom>C12-C16 - F2 2.40E-04 4.92E-04 – 3.19E-03 2.31E-03 – 1.42E-04<br />

F2 - Total 3.90E-04 8.01E-04 – 5.19E-03 3.74E-03 – 2.33E-04<br />

Aliph>C16-C21 - F3 8.55E-06 1.92E-05 – 1.20E-04 6.88E-05 – 7.10E-06<br />

Aliph>C21-C34 - F3 8.55E-06 1.92E-05 – 1.20E-04 6.88E-05 – 7.10E-06<br />

Arom>C16-C21 - F3 3.03E-04 5.91E-04 – 3.90E-03 3.17E-03 – 1.42E-04<br />

Arom>C21-C34 - F3 2.93E-04 5.75E-04 – 3.79E-03 3.03E-03 – 1.42E-04<br />

F3 - Total 6.14E-04 1.20E-03 – 7.93E-03 6.34E-03 – 2.98E-04<br />

Total TPH HQ = 1.02E-03 2.03E-03 – 1.33E-02 1.02E-02 – 5.38E-04<br />

Page J-76 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-20 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in Clio Bay (cont’d)<br />

COPC<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Acenaphthene 3.44E-06 2.37E-06 2.35E-06 – – – –<br />

Acenaphthylene 3.44E-06 2.37E-06 2.35E-06 – – – –<br />

Anthracene 3.44E-06 2.37E-06 2.35E-06 – – – –<br />

Fluorene 3.45E-06 2.37E-06 2.35E-06 – – – –<br />

1-Methylnaphthalene – – – – – – –<br />

2-Methylnaphthalene 5.81E-07 4.50E-07 4.98E-07 – – – –<br />

Naphthalene 3.45E-06 2.37E-06 2.35E-06 – – – –<br />

Phenanthrene 4.24E-06 2.62E-06 2.42E-06 – – – –<br />

Total LPAH HQ = 2.20E-05 1.49E-05 1.47E-05 – – – –<br />

High Molecular Weight PAHs<br />

Fluoranthene 3.51E-06 2.43E-06 2.41E-06 – – – –<br />

Benz(a)anthracene 3.27E-05 2.25E-05 2.23E-05 – – – –<br />

Benzo(a)pyrene 3.26E-05 2.25E-05 2.23E-05 – – – –<br />

Benzo(e)pyrene – – – – – – –<br />

Benzo(b)fluoranthene 3.31E-05 2.32E-05 2.36E-05 – – – –<br />

Benzo(g,h,i)perylene 3.26E-05 2.25E-05 2.23E-05 – – – –<br />

Benzo(k)fluoranthene 3.26E-05 2.24E-05 2.22E-05 – – – –<br />

Chrysene 3.29E-05 2.26E-05 2.23E-05 – – – –<br />

Dibenz(a,h)anthracene 3.25E-05 2.24E-05 2.22E-05 – – – –<br />

Indeno(1,2,3-cd)pyrene 3.26E-05 2.25E-05 2.23E-05 – – – –<br />

2010 Page J-77


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-20 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in Clio Bay (cont’d)<br />

COPC<br />

High Molecular Weight PAHs (cont’d)<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Pyrene 3.29E-05 2.27E-05 2.26E-05 – – – –<br />

Total HPAH HQ = 2.98E-04 2.06E-04 2.04E-04 – – – –<br />

Total PAH HQ = 3.20E-04 2.21E-04 2.19E-04 – – – –<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene – – – – – – –<br />

1,3,5-Trimethylbenzene – – – – – – –<br />

Phenolic Compounds<br />

Phenol – – – – – – –<br />

2,4-Dimethylphenol – – – – – – –<br />

2,4-Dinitrophenol – – – – – – –<br />

Trace Elements<br />

Barium 2.94E-04 2.07E-04 2.37E-04 5.16E-04 8.69E-04 5.93E-04 3.07E-04<br />

Boron 8.18E-04 1.61E-02 1.33E-02 6.60E-03 1.97E-03 1.86E-02 1.35E-03<br />

Cadmium 9.21E-03 1.85E-02 5.66E-03 3.77E-02 4.44E-02 1.10E-02 1.33E-03<br />

Manganese 9.18E-04 6.33E-04 8.30E-04 7.37E-04 8.49E-04 1.54E-03 3.04E-04<br />

Molybdenum 1.97E-02 7.60E-02 4.26E-02 8.98E-04 8.26E-04 1.75E-03 1.10E-03<br />

Nickel 1.47E-02 1.09E-02 1.11E-02 3.47E-02 2.94E-02 6.67E-02 2.98E-02<br />

Tin 5.28E-04 1.84E-03 9.03E-04 1.91E-03 2.06E-03 1.31E-03 1.20E-03<br />

Vanadium 9.14E-03 3.47E-02 1.99E-02 9.60E-02 7.93E-02 1.05E-01 3.59E-02<br />

Zinc 7.11E-03 2.61E-02 1.56E-02 2.29E-02 2.27E-02 5.63E-02 2.31E-02<br />

Max HQ 1.97E-02 7.60E-02 4.26E-02 9.60E-02 7.93E-02 1.05E-01 3.59E-02<br />

Page J-78 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-21 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in Emsley Point<br />

BTEX<br />

COPC<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Benzene 4.12E-07 1.33E-06 9.87E-07 – – – –<br />

Ethylbenzene 5.59E-07 2.07E-06 1.41E-06 – – – –<br />

Toluene 2.34E-07 8.17E-07 6.15E-07 – – – –<br />

Xylenes 2.81E-07 9.83E-07 7.38E-07 – – – –<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 3.21E-06 6.57E-06 – 4.26E-05 3.09E-05 – 1.89E-06<br />

Aliph>C08-C10 - F1 6.28E-06 1.29E-05 – 8.36E-05 6.00E-05 – 3.79E-06<br />

Arom>C08-C10 - F1 2.43E-06 4.97E-06 – 3.22E-05 2.35E-05 – 1.42E-06<br />

F1 - Total 1.19E-05 2.45E-05 – 1.58E-04 1.14E-04 – 7.10E-06<br />

Aliph>C10-C12 - F2 2.46E-05 5.09E-05 – 3.29E-04 2.33E-04 – 1.51E-05<br />

Aliph>C12-C16 - F2 4.48E-05 9.34E-05 – 6.02E-04 4.19E-04 – 2.84E-05<br />

Arom>C10-C12 - F2 8.06E-05 1.65E-04 – 1.07E-03 7.79E-04 – 4.73E-05<br />

Arom>C12-C16 - F2 2.40E-04 4.92E-04 – 3.19E-03 2.31E-03 – 1.42E-04<br />

F2 - Total 3.90E-04 8.01E-04 – 5.19E-03 3.74E-03 – 2.33E-04<br />

Aliph>C16-C21 - F3 8.55E-06 1.92E-05 – 1.20E-04 6.88E-05 – 7.10E-06<br />

Aliph>C21-C34 - F3 8.55E-06 1.92E-05 – 1.20E-04 6.88E-05 – 7.10E-06<br />

Arom>C16-C21 - F3 3.03E-04 5.91E-04 – 3.90E-03 3.17E-03 – 1.42E-04<br />

Arom>C21-C34 - F3 2.93E-04 5.75E-04 – 3.79E-03 3.03E-03 – 1.42E-04<br />

F3 - Total 6.14E-04 1.20E-03 – 7.93E-03 6.34E-03 – 2.98E-04<br />

Total TPH HQ = 1.02E-03 2.03E-03 – 1.33E-02 1.02E-02 – 5.38E-04<br />

2010 Page J-79


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-21 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in Emsley Point (cont’d)<br />

COPC<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Acenaphthene 3.44E-06 2.37E-06 2.35E-06 – – – –<br />

Acenaphthylene 3.44E-06 2.37E-06 2.35E-06 – – – –<br />

Anthracene 3.44E-06 2.37E-06 2.35E-06 – – – –<br />

Fluorene 3.45E-06 2.37E-06 2.35E-06 – – – –<br />

1-Methylnaphthalene – – – – – – –<br />

2-Methylnaphthalene 5.81E-07 4.50E-07 4.98E-07 – – – –<br />

Naphthalene 3.45E-06 2.37E-06 2.35E-06 – – – –<br />

Phenanthrene 4.24E-06 2.62E-06 2.42E-06 – – – –<br />

Total LPAH HQ = 2.20E-05 1.49E-05 1.47E-05 – – – –<br />

High Molecular Weight PAHs<br />

Fluoranthene 3.51E-06 2.43E-06 2.41E-06 – – – –<br />

Benz(a)anthracene 3.27E-05 2.25E-05 2.23E-05 – – – –<br />

Benzo(a)pyrene 3.26E-05 2.25E-05 2.23E-05 – – – –<br />

Benzo(e)pyrene – – – – – – –<br />

Benzo(b)fluoranthene 3.31E-05 2.32E-05 2.36E-05 – – – –<br />

Benzo(g,h,i)perylene 3.26E-05 2.25E-05 2.23E-05 – – – –<br />

Benzo(k)fluoranthene 3.26E-05 2.24E-05 2.22E-05 – – – –<br />

Chrysene 3.29E-05 2.26E-05 2.23E-05 – – – –<br />

Dibenz(a,h)anthracene 3.25E-05 2.24E-05 2.22E-05 – – – –<br />

Indeno(1,2,3-cd)pyrene 3.26E-05 2.25E-05 2.23E-05 – – – –<br />

Page J-80 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-21 Hazard Quotients Summary (Base Case) <strong>for</strong> Selected Species in Emsley Point (cont’d)<br />

COPC<br />

High Molecular Weight PAHs (cont’d)<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Pyrene 3.29E-05 2.27E-05 2.26E-05 – – – –<br />

Total HPAH HQ = 2.98E-04 2.06E-04 2.04E-04 – – – –<br />

Total PAH HQ = 3.20E-04 2.21E-04 2.19E-04 – – – –<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene – – – – – – –<br />

1,3,5-Trimethylbenzene – – – – – – –<br />

Phenolic Compounds<br />

Phenol – – – – – – –<br />

2,4-Dimethylphenol – – – – – – –<br />

2,4-Dinitrophenol – – – – – – –<br />

Trace Elements<br />

Barium 2.94E-04 2.07E-04 2.37E-04 5.16E-04 8.69E-04 5.93E-04 3.07E-04<br />

Boron 8.18E-04 1.61E-02 1.33E-02 6.60E-03 1.97E-03 1.86E-02 1.35E-03<br />

Cadmium 9.21E-03 1.85E-02 5.66E-03 3.77E-02 4.44E-02 1.10E-02 1.33E-03<br />

Manganese 9.18E-04 6.33E-04 8.30E-04 7.37E-04 8.49E-04 1.54E-03 3.04E-04<br />

Molybdenum 1.97E-02 7.60E-02 4.26E-02 8.98E-04 8.26E-04 1.75E-03 1.10E-03<br />

Nickel 1.47E-02 1.09E-02 1.11E-02 3.47E-02 2.94E-02 6.67E-02 2.98E-02<br />

Tin 5.28E-04 1.84E-03 9.03E-04 1.91E-03 2.06E-03 1.31E-03 1.20E-03<br />

Vanadium 9.14E-03 3.47E-02 1.99E-02 9.60E-02 7.93E-02 1.05E-01 3.59E-02<br />

Zinc 7.11E-03 2.61E-02 1.56E-02 2.29E-02 2.27E-02 5.63E-02 2.31E-02<br />

Max HQ 1.97E-02 7.60E-02 4.26E-02 9.60E-02 7.93E-02 1.05E-01 3.59E-02<br />

2010 Page J-81


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-22 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 1<br />

BTEX<br />

COPC<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Benzene 1.10E-08 9.60E-08 6.21E-08 – – – –<br />

Ethylbenzene 3.21E-08 1.44E-07 8.54E-08 – – – –<br />

Toluene 4.68E-08 2.44E-07 1.48E-07 – – – –<br />

Xylenes 7.39E-08 3.26E-07 1.92E-07 – – – –<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 1.31E-05 5.35E-05 3.10E-05 1.91E-05 2.17E-05 4.97E-05 3.83E-05<br />

Aliph>C08-C10 - F1 1.36E-05 5.50E-05 3.18E-05 1.93E-05 2.25E-05 5.14E-05 3.99E-05<br />

Arom>C08-C10 - F1 3.18E-07 1.33E-06 7.75E-07 4.89E-07 5.33E-07 1.22E-06 9.32E-07<br />

F1 - Total 2.70E-05 1.10E-04 6.36E-05 3.89E-05 4.48E-05 1.02E-04 7.91E-05<br />

Aliph>C10-C12 - F2 1.86E-05 7.51E-05 4.34E-05 2.61E-05 3.07E-05 7.02E-05 5.46E-05<br />

Aliph>C12-C16 - F2 7.23E-04 2.92E-03 1.69E-03 9.98E-04 1.18E-03 2.73E-03 2.12E-03<br />

Arom>C10-C12 - F2 1.17E-06 4.84E-06 2.80E-06 1.82E-06 2.01E-06 4.48E-06 3.43E-06<br />

Arom>C12-C16 - F2 2.59E-06 1.05E-05 6.05E-06 4.22E-06 4.61E-06 9.80E-06 7.50E-06<br />

F2 - Total 7.45E-04 3.01E-03 1.74E-03 1.03E-03 1.22E-03 2.81E-03 2.19E-03<br />

Aliph>C16-C21 - F3 7.09E-08 1.69E-07 3.81E-08 1.01E-06 5.72E-07 2.06E-07 5.89E-08<br />

Aliph>C21-C34 - F3 2.82E-07 6.48E-07 1.36E-07 3.99E-06 2.28E-06 8.13E-07 2.34E-07<br />

Arom>C16-C21 - F3 9.10E-06 3.65E-05 2.10E-05 1.49E-05 1.66E-05 3.43E-05 2.62E-05<br />

Arom>C21-C34 - F3 1.33E-04 5.31E-04 3.05E-04 2.11E-04 2.38E-04 4.99E-04 3.83E-04<br />

F3 - Total 1.42E-04 5.68E-04 3.26E-04 2.31E-04 2.57E-04 5.34E-04 4.10E-04<br />

Total TPH HQ = 9.14E-04 3.69E-03 2.13E-03 1.30E-03 1.52E-03 3.45E-03 2.68E-03<br />

Page J-82 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-22 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 1 (cont’d)<br />

COPC<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Acenaphthene 2.77E-13 2.23E-13 2.31E-13 – – – –<br />

Acenaphthylene 4.18E-15 3.35E-15 3.47E-15 – – – –<br />

Anthracene 3.65E-10 2.90E-10 3.00E-10 – – – –<br />

Fluorene 4.16E-10 3.32E-10 3.44E-10 – – – –<br />

1-Methylnaphthalene 2.24E-09 1.82E-09 1.89E-09 – – – –<br />

2-Methylnaphthalene 1.69E-09 1.37E-09 1.42E-09 – – – –<br />

Naphthalene 9.75E-10 8.30E-10 8.71E-10 – – – –<br />

Phenanthrene 5.65E-10 4.49E-10 4.64E-10 – – – –<br />

Total LPAH HQ = 6.26E-09 5.09E-09 5.29E-09 – – – –<br />

High Molecular Weight PAHs<br />

Fluoranthene 8.08E-13 6.37E-13 6.55E-13 – – – –<br />

Benz(a)anthracene 2.46E-08 1.94E-08 2.00E-08 – – – –<br />

Benzo(a)pyrene 4.00E-10 3.12E-10 3.19E-10 – – – –<br />

Benzo(e)pyrene 4.08E-11 3.21E-11 3.30E-11 – – – –<br />

Benzo(b)fluoranthene 3.08E-11 2.43E-11 2.51E-11 – – – –<br />

Benzo(g,h,i)perylene 1.13E-10 8.85E-11 9.11E-11 – – – –<br />

Benzo(k)fluoranthene 2.91E-11 2.30E-11 2.37E-11 – – – –<br />

Chrysene 1.87E-11 1.48E-11 1.52E-11 – – – –<br />

Dibenz(a,h)anthracene 8.32E-11 6.54E-11 6.73E-11 – – – –<br />

Indeno(1,2,3-cd)pyrene 1.34E-10 1.05E-10 1.09E-10 – – – –<br />

2010 Page J-83


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-22 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 1 (cont’d)<br />

COPC<br />

High Molecular Weight PAHs (cont’d)<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Pyrene 1.64E-08 1.29E-08 1.33E-08 – – – –<br />

Total HPAH HQ = 4.18E-08 3.29E-08 3.39E-08 – – – –<br />

Total PAH HQ = 4.80E-08 3.80E-08 3.92E-08 – – – –<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 1.62E-07 6.25E-07 3.50E-07 – – – –<br />

1,3,5-Trimethylbenzene 1.69E-08 7.09E-08 4.12E-08 – – – –<br />

Phenolic Compounds<br />

Phenol 1.58E-14 3.56E-13 2.43E-13 – – – –<br />

2,4-Dimethylphenol 7.93E-13 7.83E-12 5.12E-12 – – – –<br />

2,4-Dinitrophenol 1.09E-12 3.94E-11 2.72E-11 – – – –<br />

Trace Elements<br />

Barium 5.15E-11 2.53E-11 1.57E-11 1.55E-10 2.33E-10 5.21E-11 1.92E-11<br />

Boron 1.78E-12 5.81E-12 2.62E-12 1.18E-11 1.22E-11 3.77E-12 3.36E-13<br />

Cadmium 8.26E-06 1.30E-05 2.14E-06 3.80E-05 4.44E-05 9.48E-06 1.04E-08<br />

Manganese 1.30E-09 9.85E-10 9.83E-10 5.23E-10 3.64E-10 1.03E-09 5.20E-10<br />

Molybdenum 1.82E-06 2.94E-06 5.31E-07 4.96E-07 5.62E-07 1.32E-07 1.93E-09<br />

Nickel 2.54E-06 1.89E-06 1.88E-06 5.70E-06 4.83E-06 1.06E-05 5.24E-06<br />

Tin 1.50E-07 5.97E-07 3.41E-07 1.06E-07 1.31E-07 4.17E-07 4.63E-07<br />

Vanadium 3.12E-06 1.18E-05 6.56E-06 1.70E-05 1.34E-05 2.95E-05 1.46E-05<br />

Zinc 2.22E-08 6.70E-08 3.23E-08 1.72E-07 1.84E-07 1.09E-07 4.98E-08<br />

Max HQ 9.14E-04 3.69E-03 2.13E-03 1.30E-03 1.52E-03 3.45E-03 2.68E-03<br />

Page J-84 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-23 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 2<br />

BTEX<br />

COPC<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Benzene 1.23E-08 1.07E-07 6.90E-08 – – – –<br />

Ethylbenzene 3.56E-08 1.60E-07 9.48E-08 – – – –<br />

Toluene 5.20E-08 2.71E-07 1.64E-07 – – – –<br />

Xylenes 8.21E-08 3.62E-07 2.13E-07 – – – –<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 1.45E-05 5.94E-05 3.44E-05 2.12E-05 2.41E-05 5.51E-05 4.25E-05<br />

Aliph>C08-C10 - F1 1.51E-05 6.11E-05 3.53E-05 2.14E-05 2.50E-05 5.71E-05 4.43E-05<br />

Arom>C08-C10 - F1 3.53E-07 1.48E-06 8.61E-07 5.43E-07 5.92E-07 1.36E-06 1.03E-06<br />

F1 - Total 3.00E-05 1.22E-04 7.06E-05 4.32E-05 4.98E-05 1.14E-04 8.78E-05<br />

Aliph>C10-C12 - F2 2.07E-05 8.35E-05 4.82E-05 2.90E-05 3.41E-05 7.80E-05 6.06E-05<br />

Aliph>C12-C16 - F2 8.03E-04 3.24E-03 1.88E-03 1.11E-03 1.31E-03 3.03E-03 2.36E-03<br />

Arom>C10-C12 - F2 1.30E-06 5.38E-06 3.11E-06 2.03E-06 2.23E-06 4.97E-06 3.81E-06<br />

Arom>C12-C16 - F2 2.88E-06 1.17E-05 6.71E-06 4.68E-06 5.12E-06 1.08E-05 8.33E-06<br />

F2 - Total 8.28E-04 3.34E-03 1.93E-03 1.14E-03 1.35E-03 3.12E-03 2.43E-03<br />

Aliph>C16-C21 - F3 7.82E-08 1.86E-07 3.23E-08 1.11E-06 6.31E-07 1.64E-07 6.49E-08<br />

Aliph>C21-C34 - F3 3.13E-07 7.19E-07 1.11E-07 4.42E-06 2.52E-06 6.45E-07 2.60E-07<br />

Arom>C16-C21 - F3 1.01E-05 4.05E-05 2.33E-05 1.66E-05 1.85E-05 3.79E-05 2.91E-05<br />

Arom>C21-C34 - F3 1.47E-04 5.90E-04 3.39E-04 2.35E-04 2.64E-04 5.51E-04 4.26E-04<br />

F3 - Total 1.58E-04 6.31E-04 3.62E-04 2.57E-04 2.86E-04 5.90E-04 4.55E-04<br />

Total TPH HQ = 1.02E-03 4.10E-03 2.37E-03 1.44E-03 1.69E-03 3.83E-03 2.97E-03<br />

2010 Page J-85


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-23 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 2 (cont’d)<br />

COPC<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Acenaphthene 2.43E-13 1.96E-13 2.03E-13 – – – –<br />

Acenaphthylene 3.66E-15 2.94E-15 3.04E-15 – – – –<br />

Anthracene 4.06E-10 3.22E-10 3.33E-10 – – – –<br />

Fluorene 4.62E-10 3.69E-10 3.81E-10 – – – –<br />

1-Methylnaphthalene 2.49E-09 2.02E-09 2.09E-09 – – – –<br />

2-Methylnaphthalene 1.88E-09 1.52E-09 1.58E-09 – – – –<br />

Naphthalene 1.08E-09 9.22E-10 9.67E-10 – – – –<br />

Phenanthrene 6.28E-10 4.99E-10 5.15E-10 – – – –<br />

Total LPAH HQ = 6.95E-09 5.65E-09 5.87E-09 – – – –<br />

High Molecular Weight PAHs<br />

Fluoranthene 7.09E-13 5.58E-13 5.74E-13 – – – –<br />

Benz(a)anthracene 2.73E-08 2.15E-08 2.21E-08 – – – –<br />

Benzo(a)pyrene 3.51E-10 2.73E-10 2.80E-10 – – – –<br />

Benzo(e)pyrene 3.58E-11 2.81E-11 2.89E-11 – – – –<br />

Benzo(b)fluoranthene 2.70E-11 2.13E-11 2.20E-11 – – – –<br />

Benzo(g,h,i)perylene 9.87E-11 7.76E-11 7.98E-11 – – – –<br />

Benzo(k)fluoranthene 2.55E-11 2.02E-11 2.08E-11 – – – –<br />

Chrysene 1.64E-11 1.30E-11 1.33E-11 – – – –<br />

Dibenz(a,h)anthracene 7.29E-11 5.74E-11 5.90E-11 – – – –<br />

Indeno(1,2,3-cd)pyrene 1.17E-10 9.24E-11 9.52E-11 – – – –<br />

Page J-86 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-23 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 2 (cont’d)<br />

COPC<br />

High Molecular Weight PAHs (cont’d)<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Pyrene 1.82E-08 1.43E-08 1.47E-08 – – – –<br />

Total HPAH HQ = 4.62E-08 3.64E-08 3.75E-08 – – – –<br />

Total PAH HQ = 5.32E-08 4.21E-08 4.33E-08 – – – –<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 1.80E-07 6.94E-07 3.87E-07 – – – –<br />

1,3,5-Trimethylbenzene 1.87E-08 7.88E-08 4.58E-08 – – – –<br />

Phenolic Compounds<br />

Phenol 1.75E-14 3.95E-13 2.70E-13 – – – –<br />

2,4-Dimethylphenol 8.81E-13 8.70E-12 5.69E-12 – – – –<br />

2,4-Dinitrophenol 1.21E-12 4.38E-11 3.03E-11 – – – –<br />

Trace Elements<br />

Barium 5.03E-11 2.47E-11 1.43E-11 1.51E-10 2.27E-10 4.32E-11 1.87E-11<br />

Boron 1.97E-12 6.45E-12 2.76E-12 1.31E-11 1.36E-11 3.31E-12 3.73E-13<br />

Cadmium 7.34E-06 1.16E-05 1.65E-06 3.38E-05 3.95E-05 7.31E-06 9.21E-09<br />

Manganese 1.21E-09 9.20E-10 9.15E-10 4.89E-10 3.40E-10 9.48E-10 4.85E-10<br />

Molybdenum 2.01E-06 3.24E-06 4.25E-07 5.48E-07 6.20E-07 1.04E-07 2.13E-09<br />

Nickel 2.62E-06 1.95E-06 1.94E-06 5.89E-06 4.99E-06 1.07E-05 5.40E-06<br />

Tin 1.67E-07 6.63E-07 3.78E-07 1.18E-07 1.46E-07 4.59E-07 5.15E-07<br />

Vanadium 3.16E-06 1.20E-05 6.63E-06 1.73E-05 1.36E-05 2.93E-05 1.48E-05<br />

Zinc 1.95E-08 5.89E-08 2.82E-08 1.51E-07 1.62E-07 9.17E-08 4.38E-08<br />

Max HQ 1.02E-03 4.10E-03 2.37E-03 1.44E-03 1.69E-03 3.83E-03 2.97E-03<br />

2010 Page J-87


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-24 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in Terminal<br />

BTEX<br />

COPC<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Benzene 1.14E-08 9.92E-08 6.41E-08 – – – –<br />

Ethylbenzene 3.31E-08 1.49E-07 8.82E-08 – – – –<br />

Toluene 4.83E-08 2.52E-07 1.53E-07 – – – –<br />

Xylenes 7.64E-08 3.36E-07 1.98E-07 – – – –<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 1.35E-05 5.53E-05 3.20E-05 1.97E-05 2.25E-05 5.13E-05 3.95E-05<br />

Aliph>C08-C10 - F1 1.41E-05 5.68E-05 3.28E-05 1.99E-05 2.33E-05 5.30E-05 4.12E-05<br />

Arom>C08-C10 - F1 3.29E-07 1.38E-06 8.00E-07 5.05E-07 5.51E-07 1.26E-06 9.62E-07<br />

F1 - Total 2.79E-05 1.13E-04 6.56E-05 4.02E-05 4.63E-05 1.06E-04 8.17E-05<br />

Aliph>C10-C12 - F2 1.92E-05 7.76E-05 4.48E-05 2.70E-05 3.17E-05 7.25E-05 5.63E-05<br />

Aliph>C12-C16 - F2 7.47E-04 3.02E-03 1.74E-03 1.03E-03 1.22E-03 2.82E-03 2.19E-03<br />

Arom>C10-C12 - F2 1.21E-06 5.00E-06 2.89E-06 1.88E-06 2.07E-06 4.62E-06 3.54E-06<br />

Arom>C12-C16 - F2 2.68E-06 1.08E-05 6.24E-06 4.35E-06 4.76E-06 1.01E-05 7.75E-06<br />

F2 - Total 7.70E-04 3.11E-03 1.80E-03 1.06E-03 1.26E-03 2.91E-03 2.26E-03<br />

Aliph>C16-C21 - F3 7.20E-08 1.72E-07 2.64E-08 1.02E-06 5.82E-07 1.29E-07 5.98E-08<br />

Aliph>C21-C34 - F3 2.90E-07 6.67E-07 8.84E-08 4.10E-06 2.34E-06 5.05E-07 2.41E-07<br />

Arom>C16-C21 - F3 9.40E-06 3.77E-05 2.16E-05 1.54E-05 1.72E-05 3.51E-05 2.71E-05<br />

Arom>C21-C34 - F3 1.37E-04 5.48E-04 3.15E-04 2.18E-04 2.45E-04 5.12E-04 3.96E-04<br />

F3 - Total 1.47E-04 5.87E-04 3.36E-04 2.39E-04 2.66E-04 5.48E-04 4.23E-04<br />

Total TPH HQ = 9.44E-04 3.81E-03 2.20E-03 1.34E-03 1.57E-03 3.56E-03 2.76E-03<br />

Page J-88 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-24 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in Terminal (cont’d)<br />

COPC<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Acenaphthene 2.00E-13 1.61E-13 1.67E-13 – – – –<br />

Acenaphthylene 3.02E-15 2.43E-15 2.51E-15 – – – –<br />

Anthracene 3.77E-10 3.00E-10 3.09E-10 – – – –<br />

Fluorene 4.30E-10 3.43E-10 3.55E-10 – – – –<br />

1-Methylnaphthalene 2.32E-09 1.88E-09 1.95E-09 – – – –<br />

2-Methylnaphthalene 1.75E-09 1.42E-09 1.47E-09 – – – –<br />

Naphthalene 1.01E-09 8.57E-10 8.99E-10 – – – –<br />

Phenanthrene 5.84E-10 4.64E-10 4.79E-10 – – – –<br />

Total LPAH HQ = 6.46E-09 5.25E-09 5.46E-09 – – – –<br />

High Molecular Weight PAHs<br />

Fluoranthene 5.85E-13 4.61E-13 4.73E-13 – – – –<br />

Benz(a)anthracene 2.54E-08 2.00E-08 2.06E-08 – – – –<br />

Benzo(a)pyrene 2.90E-10 2.26E-10 2.31E-10 – – – –<br />

Benzo(e)pyrene 2.96E-11 2.32E-11 2.39E-11 – – – –<br />

Benzo(b)fluoranthene 2.23E-11 1.76E-11 1.81E-11 – – – –<br />

Benzo(g,h,i)perylene 8.14E-11 6.40E-11 6.59E-11 – – – –<br />

Benzo(k)fluoranthene 2.11E-11 1.67E-11 1.72E-11 – – – –<br />

Chrysene 1.36E-11 1.07E-11 1.10E-11 – – – –<br />

Dibenz(a,h)anthracene 6.02E-11 4.73E-11 4.87E-11 – – – –<br />

Indeno(1,2,3-cd)pyrene 9.68E-11 7.62E-11 7.85E-11 – – – –<br />

2010 Page J-89


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-24 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in Terminal (cont’d)<br />

COPC<br />

High Molecular Weight PAHs (cont’d)<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Pyrene 1.69E-08 1.33E-08 1.37E-08 – – – –<br />

Total HPAH HQ = 4.29E-08 3.38E-08 3.48E-08 – – – –<br />

Total PAH HQ = 4.93E-08 3.91E-08 4.02E-08 – – – –<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 1.67E-07 6.45E-07 3.60E-07 – – – –<br />

1,3,5-Trimethylbenzene 1.74E-08 7.32E-08 4.25E-08 – – – –<br />

Phenolic Compounds<br />

Phenol 1.63E-14 3.68E-13 2.51E-13 – – – –<br />

2,4-Dimethylphenol 8.19E-13 8.09E-12 5.29E-12 – – – –<br />

2,4-Dinitrophenol 1.13E-12 4.07E-11 2.81E-11 – – – –<br />

Trace Elements<br />

Barium 4.41E-11 2.16E-11 1.22E-11 1.32E-10 1.99E-10 3.48E-11 1.64E-11<br />

Boron 1.84E-12 6.00E-12 2.51E-12 1.22E-11 1.26E-11 2.76E-12 3.47E-13<br />

Cadmium 6.11E-06 9.63E-06 1.28E-06 2.82E-05 3.29E-05 5.67E-06 7.66E-09<br />

Manganese 1.04E-09 7.87E-10 7.82E-10 4.18E-10 2.91E-10 8.06E-10 4.15E-10<br />

Molybdenum 1.86E-06 3.01E-06 3.34E-07 5.09E-07 5.76E-07 8.16E-08 1.97E-09<br />

Nickel 2.36E-06 1.76E-06 1.74E-06 5.30E-06 4.49E-06 9.56E-06 4.86E-06<br />

Tin 1.55E-07 6.17E-07 3.51E-07 1.10E-07 1.36E-07 4.26E-07 4.79E-07<br />

Vanadium 2.82E-06 1.07E-05 5.91E-06 1.55E-05 1.22E-05 2.59E-05 1.32E-05<br />

Zinc 1.61E-08 4.87E-08 2.32E-08 1.25E-07 1.34E-07 7.43E-08 3.62E-08<br />

Max HQ 9.44E-04 3.81E-03 2.20E-03 1.34E-03 1.57E-03 3.56E-03 2.76E-03<br />

Page J-90 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-25 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in Clio Bay<br />

BTEX<br />

COPC<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Benzene 1.13E-08 9.81E-08 6.34E-08 – – – –<br />

Ethylbenzene 3.28E-08 1.48E-07 8.72E-08 – – – –<br />

Toluene 4.78E-08 2.49E-07 1.51E-07 – – – –<br />

Xylenes 7.56E-08 3.33E-07 1.96E-07 – – – –<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 1.34E-05 5.47E-05 3.17E-05 1.95E-05 2.22E-05 5.08E-05 3.91E-05<br />

Aliph>C08-C10 - F1 1.39E-05 5.62E-05 3.25E-05 1.97E-05 2.30E-05 5.25E-05 4.07E-05<br />

Arom>C08-C10 - F1 3.25E-07 1.36E-06 7.92E-07 5.00E-07 5.45E-07 1.25E-06 9.52E-07<br />

F1 - Total 2.76E-05 1.12E-04 6.50E-05 3.98E-05 4.58E-05 1.05E-04 8.08E-05<br />

Aliph>C10-C12 - F2 1.90E-05 7.68E-05 4.44E-05 2.67E-05 3.13E-05 7.18E-05 5.57E-05<br />

Aliph>C12-C16 - F2 7.39E-04 2.98E-03 1.73E-03 1.02E-03 1.21E-03 2.79E-03 2.17E-03<br />

Arom>C10-C12 - F2 1.20E-06 4.95E-06 2.87E-06 1.86E-06 2.05E-06 4.57E-06 3.50E-06<br />

Arom>C12-C16 - F2 2.65E-06 1.07E-05 6.18E-06 4.31E-06 4.71E-06 1.00E-05 7.67E-06<br />

F2 - Total 7.62E-04 3.08E-03 1.78E-03 1.05E-03 1.24E-03 2.87E-03 2.24E-03<br />

Aliph>C16-C21 - F3 7.13E-08 1.70E-07 3.44E-08 1.01E-06 5.75E-07 1.81E-07 5.92E-08<br />

Aliph>C21-C34 - F3 2.87E-07 6.60E-07 1.21E-07 4.06E-06 2.32E-06 7.15E-07 2.39E-07<br />

Arom>C16-C21 - F3 9.30E-06 3.73E-05 2.14E-05 1.53E-05 1.70E-05 3.49E-05 2.68E-05<br />

Arom>C21-C34 - F3 1.35E-04 5.43E-04 3.12E-04 2.16E-04 2.43E-04 5.08E-04 3.92E-04<br />

F3 - Total 1.45E-04 5.81E-04 3.33E-04 2.36E-04 2.63E-04 5.44E-04 4.19E-04<br />

Total TPH HQ = 9.34E-04 3.77E-03 2.18E-03 1.33E-03 1.55E-03 3.52E-03 2.74E-03<br />

2010 Page J-91


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-25 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in Clio Bay (cont’d)<br />

COPC<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Acenaphthene 1.99E-13 1.60E-13 1.66E-13 – – – –<br />

Acenaphthylene 3.01E-15 2.41E-15 2.50E-15 – – – –<br />

Anthracene 3.73E-10 2.97E-10 3.06E-10 – – – –<br />

Fluorene 4.25E-10 3.40E-10 3.51E-10 – – – –<br />

1-Methylnaphthalene 2.29E-09 1.86E-09 1.93E-09 – – – –<br />

2-Methylnaphthalene 1.73E-09 1.40E-09 1.45E-09 – – – –<br />

Naphthalene 9.95E-10 8.48E-10 8.90E-10 – – – –<br />

Phenanthrene 5.77E-10 4.59E-10 4.74E-10 – – – –<br />

Total LPAH HQ = 6.39E-09 5.20E-09 5.40E-09 – – – –<br />

High Molecular Weight PAHs<br />

Fluoranthene 5.81E-13 4.58E-13 4.71E-13 – – – –<br />

Benz(a)anthracene 2.51E-08 1.98E-08 2.04E-08 – – – –<br />

Benzo(a)pyrene 2.88E-10 2.24E-10 2.30E-10 – – – –<br />

Benzo(e)pyrene 2.94E-11 2.31E-11 2.37E-11 – – – –<br />

Benzo(b)fluoranthene 2.21E-11 1.75E-11 1.80E-11 – – – –<br />

Benzo(g,h,i)perylene 8.09E-11 6.36E-11 6.55E-11 – – – –<br />

Benzo(k)fluoranthene 2.09E-11 1.66E-11 1.71E-11 – – – –<br />

Chrysene 1.35E-11 1.06E-11 1.09E-11 – – – –<br />

Dibenz(a,h)anthracene 5.98E-11 4.70E-11 4.84E-11 – – – –<br />

Indeno(1,2,3-cd)pyrene 9.62E-11 7.58E-11 7.81E-11 – – – –<br />

Page J-92 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-25 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in Clio Bay (cont’d)<br />

COPC<br />

High Molecular Weight PAHs (cont’d)<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Pyrene 1.67E-08 1.32E-08 1.35E-08 – – – –<br />

Total HPAH HQ = 4.24E-08 3.35E-08 3.44E-08 – – – –<br />

Total PAH HQ = 4.88E-08 3.87E-08 3.98E-08 – – – –<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 1.66E-07 6.38E-07 3.57E-07 – – – –<br />

1,3,5-Trimethylbenzene 1.72E-08 7.25E-08 4.21E-08 – – – –<br />

Phenolic Compounds<br />

Phenol 1.61E-14 3.64E-13 2.49E-13 – – – –<br />

2,4-Dimethylphenol 8.10E-13 8.00E-12 5.23E-12 – – – –<br />

2,4-Dinitrophenol 1.11E-12 4.03E-11 2.78E-11 – – – –<br />

Trace Elements<br />

Barium 4.37E-11 2.15E-11 1.32E-11 1.31E-10 1.97E-10 4.35E-11 1.63E-11<br />

Boron 1.82E-12 5.94E-12 2.62E-12 1.21E-11 1.25E-11 3.47E-12 3.44E-13<br />

Cadmium 6.07E-06 9.56E-06 1.70E-06 2.80E-05 3.27E-05 7.55E-06 7.61E-09<br />

Manganese 1.03E-09 7.81E-10 7.80E-10 4.15E-10 2.89E-10 8.17E-10 4.12E-10<br />

Molybdenum 1.85E-06 2.98E-06 4.68E-07 5.03E-07 5.70E-07 1.16E-07 1.95E-09<br />

Nickel 2.34E-06 1.74E-06 1.73E-06 5.25E-06 4.45E-06 9.71E-06 4.82E-06<br />

Tin 1.54E-07 6.10E-07 3.48E-07 1.09E-07 1.34E-07 4.24E-07 4.74E-07<br />

Vanadium 2.80E-06 1.06E-05 5.89E-06 1.53E-05 1.21E-05 2.63E-05 1.31E-05<br />

Zinc 1.60E-08 4.84E-08 2.35E-08 1.24E-07 1.33E-07 8.15E-08 3.60E-08<br />

Max HQ 9.34E-04 3.77E-03 2.18E-03 1.33E-03 1.55E-03 3.52E-03 2.74E-03<br />

2010 Page J-93


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-26 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected Species in Emsley Point<br />

BTEX<br />

COPC<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Benzene 4.19E-07 1.39E-06 1.03E-06 – – – –<br />

Ethylbenzene 5.80E-07 2.17E-06 1.46E-06 – – – –<br />

Toluene 2.64E-07 9.74E-07 7.11E-07 – – – –<br />

Xylenes 3.28E-07 1.19E-06 8.62E-07 – – – –<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 1.17E-05 4.12E-05 2.00E-05 5.50E-05 4.50E-05 3.21E-05 2.66E-05<br />

Aliph>C08-C10 - F1 1.51E-05 4.85E-05 2.05E-05 9.61E-05 7.45E-05 3.32E-05 2.96E-05<br />

Arom>C08-C10 - F1 2.64E-06 5.83E-06 5.01E-07 3.26E-05 2.39E-05 7.90E-07 2.02E-06<br />

F1 - Total 2.94E-05 9.55E-05 4.11E-05 1.84E-04 1.43E-04 6.61E-05 5.82E-05<br />

Aliph>C10-C12 - F2 3.66E-05 9.94E-05 2.81E-05 3.46E-04 2.53E-04 4.54E-05 5.04E-05<br />

Aliph>C12-C16 - F2 5.12E-04 1.98E-03 1.09E-03 1.25E-03 1.18E-03 1.76E-03 1.40E-03<br />

Arom>C10-C12 - F2 8.14E-05 1.68E-04 1.81E-06 1.07E-03 7.80E-04 2.89E-06 4.95E-05<br />

Arom>C12-C16 - F2 2.42E-04 4.99E-04 3.91E-06 3.19E-03 2.31E-03 6.30E-06 1.47E-04<br />

F2 - Total 8.72E-04 2.75E-03 1.12E-03 5.85E-03 4.53E-03 1.82E-03 1.65E-03<br />

Aliph>C16-C21 - F3 8.59E-06 1.93E-05 1.74E-08 1.21E-04 6.92E-05 8.65E-08 7.14E-06<br />

Aliph>C21-C34 - F3 8.73E-06 1.96E-05 5.91E-08 1.23E-04 7.03E-05 3.40E-07 7.25E-06<br />

Arom>C16-C21 - F3 3.09E-04 6.15E-04 1.35E-05 3.91E-03 3.18E-03 2.20E-05 1.59E-04<br />

Arom>C21-C34 - F3 3.79E-04 9.19E-04 1.97E-04 3.93E-03 3.18E-03 3.21E-04 3.90E-04<br />

F3 - Total 7.05E-04 1.57E-03 2.11E-04 8.08E-03 6.50E-03 3.43E-04 5.63E-04<br />

Total TPH HQ = 1.61E-03 4.41E-03 1.38E-03 1.41E-02 1.12E-02 2.23E-03 2.27E-03<br />

Page J-94 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-26 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected Species in Emsley Point (cont’d)<br />

COPC<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Acenaphthene 3.44E-06 2.37E-06 2.35E-06 – – – –<br />

Acenaphthylene 3.44E-06 2.37E-06 2.35E-06 – – – –<br />

Anthracene 3.44E-06 2.37E-06 2.35E-06 – – – –<br />

Fluorene 3.45E-06 2.37E-06 2.35E-06 – – – –<br />

1-Methylnaphthalene 1.45E-09 1.17E-09 1.22E-09 – – – –<br />

2-Methylnaphthalene 5.82E-07 4.51E-07 4.99E-07 – – – –<br />

Naphthalene 3.45E-06 2.38E-06 2.35E-06 – – – –<br />

Phenanthrene 4.24E-06 2.62E-06 2.42E-06 – – – –<br />

Total LPAH HQ = 2.20E-05 1.49E-05 1.47E-05 – – – –<br />

High Molecular Weight PAHs<br />

Fluoranthene 3.51E-06 2.43E-06 2.41E-06 – – – –<br />

Benz(a)anthracene 3.27E-05 2.26E-05 2.23E-05 – – – –<br />

Benzo(a)pyrene 3.26E-05 2.25E-05 2.23E-05 – – – –<br />

Benzo(e)pyrene 2.28E-11 1.79E-11 1.84E-11 – – – –<br />

Benzo(b)fluoranthene 3.31E-05 2.32E-05 2.36E-05 – – – –<br />

Benzo(g,h,i)perylene 3.26E-05 2.25E-05 2.23E-05 – – – –<br />

Benzo(k)fluoranthene 3.26E-05 2.24E-05 2.22E-05 – – – –<br />

Chrysene 3.29E-05 2.26E-05 2.23E-05 – – – –<br />

Dibenz(a,h)anthracene 3.25E-05 2.24E-05 2.22E-05 – – – –<br />

Indeno(1,2,3-cd)pyrene 3.26E-05 2.25E-05 2.23E-05 – – – –<br />

2010 Page J-95


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-26 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected Species in Emsley Point (cont’d)<br />

COPC<br />

High Molecular Weight PAHs (cont’d)<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Pyrene 3.29E-05 2.27E-05 2.26E-05 – – – –<br />

Total HPAH HQ = 2.98E-04 2.06E-04 2.04E-04 – – – –<br />

Total PAH HQ = 3.20E-04 2.21E-04 2.19E-04 – – – –<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 1.05E-07 4.04E-07 2.25E-07 – – – –<br />

1,3,5-Trimethylbenzene 1.09E-08 4.58E-08 2.66E-08 – – – –<br />

Phenolic Compounds<br />

Phenol 1.02E-14 2.30E-13 1.57E-13 – – – –<br />

2,4-Dimethylphenol 5.12E-13 5.06E-12 3.31E-12 – – – –<br />

2,4-Dinitrophenol 7.05E-13 2.55E-11 1.76E-11 – – – –<br />

Trace Elements<br />

Barium 2.94E-04 2.07E-04 2.37E-04 5.16E-04 8.69E-04 5.93E-04 3.07E-04<br />

Boron 8.18E-04 1.61E-02 1.33E-02 6.60E-03 1.97E-03 1.86E-02 1.35E-03<br />

Cadmium 9.22E-03 1.85E-02 5.66E-03 3.78E-02 4.44E-02 1.10E-02 1.33E-03<br />

Manganese 9.18E-04 6.33E-04 8.30E-04 7.37E-04 8.49E-04 1.54E-03 3.04E-04<br />

Molybdenum 1.97E-02 7.60E-02 4.26E-02 8.98E-04 8.27E-04 1.75E-03 1.10E-03<br />

Nickel 1.47E-02 1.09E-02 1.11E-02 3.47E-02 2.94E-02 6.67E-02 2.98E-02<br />

Tin 5.28E-04 1.84E-03 9.03E-04 1.91E-03 2.06E-03 1.31E-03 1.20E-03<br />

Vanadium 9.14E-03 3.47E-02 1.99E-02 9.60E-02 7.93E-02 1.05E-01 3.59E-02<br />

Zinc 7.11E-03 2.61E-02 1.56E-02 2.29E-02 2.27E-02 5.63E-02 2.31E-02<br />

Max HQ 1.97E-02 7.60E-02 4.26E-02 9.60E-02 7.93E-02 1.05E-01 3.59E-02<br />

Page J-96 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-27 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 1<br />

BTEX<br />

COPC<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Benzene 6.87E-07 3.72E-06 2.53E-06 – – – –<br />

Ethylbenzene 2.06E-06 8.84E-06 5.41E-06 – – – –<br />

Toluene 1.19E-06 5.80E-06 3.64E-06 – – – –<br />

Xylenes 1.85E-06 7.90E-06 4.81E-06 – – – –<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 1.63E-05 6.01E-05 3.10E-05 6.17E-05 5.27E-05 4.97E-05 4.02E-05<br />

Aliph>C08-C10 - F1 1.99E-05 6.80E-05 3.18E-05 1.03E-04 8.25E-05 5.14E-05 4.37E-05<br />

Arom>C08-C10 - F1 6.80E-06 1.46E-05 7.75E-07 8.65E-05 6.33E-05 1.22E-06 4.72E-06<br />

F1 - Total 4.30E-05 1.43E-04 6.36E-05 2.51E-04 1.98E-04 1.02E-04 8.86E-05<br />

Aliph>C10-C12 - F2 4.32E-05 1.26E-04 4.34E-05 3.55E-04 2.63E-04 7.02E-05 6.97E-05<br />

Aliph>C12-C16 - F2 7.68E-04 3.01E-03 1.69E-03 1.60E-03 1.60E-03 2.73E-03 2.15E-03<br />

Arom>C10-C12 - F2 2.04E-04 4.20E-04 2.80E-06 2.70E-03 1.96E-03 4.48E-06 1.23E-04<br />

Arom>C12-C16 - F2 2.43E-04 5.02E-04 6.05E-06 3.19E-03 2.32E-03 9.80E-06 1.49E-04<br />

F2 - Total 1.26E-03 4.06E-03 1.74E-03 7.84E-03 6.14E-03 2.81E-03 2.49E-03<br />

Aliph>C16-C21 - F3 8.62E-06 1.93E-05 3.81E-08 1.21E-04 6.94E-05 2.06E-07 7.16E-06<br />

Aliph>C21-C34 - F3 8.83E-06 1.98E-05 1.36E-07 1.24E-04 7.11E-05 8.13E-07 7.33E-06<br />

Arom>C16-C21 - F3 3.12E-04 6.28E-04 2.10E-05 3.92E-03 3.18E-03 3.43E-05 1.68E-04<br />

Arom>C21-C34 - F3 1.03E-03 2.30E-03 3.05E-04 1.18E-02 9.53E-03 4.99E-04 8.19E-04<br />

F3 - Total 1.36E-03 2.96E-03 3.26E-04 1.60E-02 1.29E-02 5.34E-04 1.00E-03<br />

Total TPH HQ = 2.66E-03 7.17E-03 2.13E-03 2.41E-02 1.92E-02 3.45E-03 3.58E-03<br />

2010 Page J-97


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-27 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 1 (cont’d)<br />

COPC<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Acenaphthene 3.47E-06 2.39E-06 2.36E-06 – – – –<br />

Acenaphthylene 3.44E-06 2.39E-06 2.37E-06 – – – –<br />

Anthracene 3.50E-06 2.40E-06 2.39E-06 – – – –<br />

Fluorene 3.45E-06 2.40E-06 2.39E-06 – – – –<br />

1-Methylnaphthalene 2.24E-09 1.82E-09 1.89E-09 – – – –<br />

2-Methylnaphthalene 4.16E-06 3.34E-06 3.48E-06 – – – –<br />

Naphthalene 3.59E-06 2.46E-06 2.42E-06 – – – –<br />

Phenanthrene 1.20E-05 6.49E-06 4.98E-06 – – – –<br />

Total LPAH HQ = 3.37E-05 2.19E-05 2.04E-05 – – – –<br />

High Molecular Weight PAHs<br />

Fluoranthene 6.34E-06 3.63E-06 3.24E-06 – – – –<br />

Benz(a)anthracene 3.34E-05 2.70E-05 3.06E-05 – – – –<br />

Benzo(a)pyrene 3.26E-05 2.49E-05 2.95E-05 – – – –<br />

Benzo(e)pyrene 4.08E-11 3.21E-11 3.30E-11 – – – –<br />

Benzo(b)fluoranthene 4.10E-05 3.88E-05 4.77E-05 – – – –<br />

Benzo(g,h,i)perylene 3.26E-05 2.31E-05 2.56E-05 – – – –<br />

Benzo(k)fluoranthene 3.26E-05 2.25E-05 2.23E-05 – – – –<br />

Chrysene 4.67E-05 3.26E-05 3.31E-05 – – – –<br />

Dibenz(a,h)anthracene 3.25E-05 2.25E-05 2.29E-05 – – – –<br />

Indeno(1,2,3-cd)pyrene 3.26E-05 2.38E-05 2.67E-05 – – – –<br />

Page J-98 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-27 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 1 (cont’d)<br />

COPC<br />

High Molecular Weight PAHs (cont’d)<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Pyrene 4.71E-05 2.99E-05 3.03E-05 – – – –<br />

Total HPAH HQ = 3.38E-04 2.49E-04 2.72E-04 – – – –<br />

Total PAH HQ = 3.71E-04 2.71E-04 2.92E-04 – – – –<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 1.62E-07 6.25E-07 3.50E-07 – – – –<br />

1,3,5-Trimethylbenzene 1.69E-08 7.09E-08 4.12E-08 – – – –<br />

Phenolic Compounds<br />

Phenol 1.58E-14 3.56E-13 2.43E-13 – – – –<br />

2,4-Dimethylphenol 7.93E-13 7.83E-12 5.12E-12 – – – –<br />

2,4-Dinitrophenol 1.09E-12 3.94E-11 2.72E-11 – – – –<br />

Trace Elements<br />

Barium 5.33E-04 3.13E-04 3.07E-04 1.20E-03 2.21E-03 8.31E-04 3.75E-04<br />

Boron 8.86E-04 1.74E-02 1.53E-02 7.15E-03 2.13E-03 2.54E-02 1.46E-03<br />

Cadmium 1.11E-02 2.17E-02 6.98E-03 4.63E-02 5.42E-02 1.60E-02 1.40E-03<br />

Manganese 1.76E-03 2.62E-03 3.21E-03 3.02E-03 2.16E-03 3.21E-03 5.10E-04<br />

Molybdenum 5.64E-02 2.17E-01 1.23E-01 2.08E-03 1.94E-03 5.21E-03 3.24E-03<br />

Nickel 3.66E-02 2.74E-02 2.79E-02 6.97E-02 6.27E-02 1.65E-01 7.58E-02<br />

Tin 6.62E-04 2.07E-03 9.21E-04 2.88E-03 3.93E-03 1.36E-03 1.22E-03<br />

Vanadium 1.49E-02 5.42E-02 3.04E-02 1.49E-01 1.34E-01 1.61E-01 5.81E-02<br />

Zinc 9.68E-03 3.06E-02 1.63E-02 6.28E-02 6.92E-02 6.23E-02 2.38E-02<br />

Max HQ 5.64E-02 2.17E-01 1.23E-01 1.49E-01 1.34E-01 1.65E-01 7.58E-02<br />

2010 Page J-99


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-28 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 2<br />

BTEX<br />

COPC<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Benzene 6.88E-07 3.73E-06 2.54E-06 – – – –<br />

Ethylbenzene 2.06E-06 8.86E-06 5.42E-06 – – – –<br />

Toluene 1.20E-06 5.83E-06 3.66E-06 – – – –<br />

Xylenes 1.86E-06 7.94E-06 4.83E-06 – – – –<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 1.77E-05 6.60E-05 3.44E-05 6.38E-05 5.51E-05 5.51E-05 4.44E-05<br />

Aliph>C08-C10 - F1 2.14E-05 7.40E-05 3.53E-05 1.05E-04 8.50E-05 5.71E-05 4.81E-05<br />

Arom>C08-C10 - F1 6.84E-06 1.47E-05 8.61E-07 8.65E-05 6.34E-05 1.36E-06 4.82E-06<br />

F1 - Total 4.60E-05 1.55E-04 7.06E-05 2.55E-04 2.03E-04 1.14E-04 9.73E-05<br />

Aliph>C10-C12 - F2 4.53E-05 1.34E-04 4.82E-05 3.58E-04 2.67E-04 7.80E-05 7.57E-05<br />

Aliph>C12-C16 - F2 8.48E-04 3.34E-03 1.88E-03 1.71E-03 1.73E-03 3.03E-03 2.39E-03<br />

Arom>C10-C12 - F2 2.05E-04 4.21E-04 3.11E-06 2.70E-03 1.96E-03 4.97E-06 1.23E-04<br />

Arom>C12-C16 - F2 2.43E-04 5.04E-04 6.71E-06 3.19E-03 2.32E-03 1.08E-05 1.50E-04<br />

F2 - Total 1.34E-03 4.40E-03 1.93E-03 7.96E-03 6.28E-03 3.12E-03 2.73E-03<br />

Aliph>C16-C21 - F3 8.63E-06 1.93E-05 3.23E-08 1.22E-04 6.95E-05 1.64E-07 7.16E-06<br />

Aliph>C21-C34 - F3 8.86E-06 1.99E-05 1.11E-07 1.25E-04 7.14E-05 6.45E-07 7.36E-06<br />

Arom>C16-C21 - F3 3.13E-04 6.32E-04 2.33E-05 3.92E-03 3.18E-03 3.79E-05 1.71E-04<br />

Arom>C21-C34 - F3 1.05E-03 2.35E-03 3.39E-04 1.19E-02 9.56E-03 5.51E-04 8.61E-04<br />

F3 - Total 1.38E-03 3.03E-03 3.62E-04 1.60E-02 1.29E-02 5.90E-04 1.05E-03<br />

Total TPH HQ = 2.76E-03 7.58E-03 2.37E-03 2.42E-02 1.94E-02 3.83E-03 3.88E-03<br />

Page J-100 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-28 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 2 (cont’d)<br />

COPC<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Acenaphthene 3.47E-06 2.39E-06 2.36E-06 – – – –<br />

Acenaphthylene 3.44E-06 2.39E-06 2.37E-06 – – – –<br />

Anthracene 3.50E-06 2.40E-06 2.39E-06 – – – –<br />

Fluorene 3.45E-06 2.40E-06 2.39E-06 – – – –<br />

1-Methylnaphthalene 2.49E-09 2.02E-09 2.09E-09 – – – –<br />

2-Methylnaphthalene 4.16E-06 3.34E-06 3.48E-06 – – – –<br />

Naphthalene 3.59E-06 2.46E-06 2.42E-06 – – – –<br />

Phenanthrene 1.20E-05 6.49E-06 4.98E-06 – – – –<br />

Total LPAH HQ = 3.37E-05 2.19E-05 2.04E-05 – – – –<br />

High Molecular Weight PAHs<br />

Fluoranthene 6.34E-06 3.63E-06 3.24E-06 – – – –<br />

Benz(a)anthracene 3.34E-05 2.70E-05 3.06E-05 – – – –<br />

Benzo(a)pyrene 3.26E-05 2.49E-05 2.95E-05 – – – –<br />

Benzo(e)pyrene 3.58E-11 2.81E-11 2.89E-11 – – – –<br />

Benzo(b)fluoranthene 4.10E-05 3.88E-05 4.77E-05 – – – –<br />

Benzo(g,h,i)perylene 3.26E-05 2.31E-05 2.56E-05 – – – –<br />

Benzo(k)fluoranthene 3.26E-05 2.25E-05 2.23E-05 – – – –<br />

Chrysene 4.67E-05 3.26E-05 3.31E-05 – – – –<br />

Dibenz(a,h)anthracene 3.25E-05 2.25E-05 2.29E-05 – – – –<br />

2010 Page J-101


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-28 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected Species in <strong>Kitimat</strong> 2 (cont’d)<br />

COPC<br />

High Molecular Weight PAHs (cont’d)<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Indeno(1,2,3-cd)pyrene 3.26E-05 2.38E-05 2.67E-05 – – – –<br />

Pyrene 4.71E-05 2.99E-05 3.03E-05 – – – –<br />

Total HPAH HQ = 3.38E-04 2.49E-04 2.72E-04 – – – –<br />

Total PAH HQ = 3.71E-04 2.71E-04 2.92E-04 – – – –<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 1.80E-07 6.94E-07 3.87E-07 – – – –<br />

1,3,5-Trimethylbenzene 1.87E-08 7.88E-08 4.58E-08 – – – –<br />

Phenolic Compounds<br />

Phenol 1.75E-14 3.95E-13 2.70E-13 – – – –<br />

2,4-Dimethylphenol 8.81E-13 8.70E-12 5.69E-12 – – – –<br />

2,4-Dinitrophenol 1.21E-12 4.38E-11 3.03E-11 – – – –<br />

Trace Elements<br />

Barium 5.33E-04 3.13E-04 3.07E-04 1.20E-03 2.21E-03 8.31E-04 3.75E-04<br />

Boron 8.86E-04 1.74E-02 1.53E-02 7.15E-03 2.13E-03 2.54E-02 1.46E-03<br />

Cadmium 1.11E-02 2.17E-02 6.98E-03 4.63E-02 5.42E-02 1.60E-02 1.40E-03<br />

Manganese 1.76E-03 2.62E-03 3.21E-03 3.02E-03 2.16E-03 3.21E-03 5.10E-04<br />

Molybdenum 5.64E-02 2.17E-01 1.23E-01 2.08E-03 1.94E-03 5.21E-03 3.24E-03<br />

Nickel 3.66E-02 2.74E-02 2.79E-02 6.97E-02 6.27E-02 1.65E-01 7.58E-02<br />

Tin 6.62E-04 2.07E-03 9.21E-04 2.88E-03 3.93E-03 1.36E-03 1.22E-03<br />

Vanadium 1.49E-02 5.42E-02 3.04E-02 1.49E-01 1.34E-01 1.61E-01 5.81E-02<br />

Zinc 9.68E-03 3.06E-02 1.63E-02 6.28E-02 6.92E-02 6.23E-02 2.38E-02<br />

Max HQ 5.64E-02 2.17E-01 1.23E-01 1.49E-01 1.34E-01 1.65E-01 7.58E-02<br />

Page J-102 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-29 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected Species in Terminal<br />

BTEX<br />

COPC<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Benzene 6.87E-07 3.73E-06 2.54E-06 – – – –<br />

Ethylbenzene 2.06E-06 8.85E-06 5.41E-06 – – – –<br />

Toluene 1.19E-06 5.81E-06 3.64E-06 – – – –<br />

Xylenes 1.85E-06 7.91E-06 4.82E-06 – – – –<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 1.67E-05 6.18E-05 3.20E-05 6.24E-05 5.34E-05 5.13E-05 4.14E-05<br />

Aliph>C08-C10 - F1 2.03E-05 6.98E-05 3.28E-05 1.04E-04 8.32E-05 5.30E-05 4.50E-05<br />

Arom>C08-C10 - F1 6.81E-06 1.46E-05 8.00E-07 8.65E-05 6.33E-05 1.26E-06 4.75E-06<br />

F1 - Total 4.39E-05 1.46E-04 6.56E-05 2.52E-04 2.00E-04 1.06E-04 9.11E-05<br />

Aliph>C10-C12 - F2 4.38E-05 1.28E-04 4.48E-05 3.56E-04 2.64E-04 7.25E-05 7.15E-05<br />

Aliph>C12-C16 - F2 7.91E-04 3.11E-03 1.74E-03 1.63E-03 1.64E-03 2.82E-03 2.22E-03<br />

Arom>C10-C12 - F2 2.04E-04 4.21E-04 2.89E-06 2.70E-03 1.96E-03 4.62E-06 1.23E-04<br />

Arom>C12-C16 - F2 2.43E-04 5.03E-04 6.24E-06 3.19E-03 2.32E-03 1.01E-05 1.50E-04<br />

F2 - Total 1.28E-03 4.16E-03 1.80E-03 7.88E-03 6.18E-03 2.91E-03 2.56E-03<br />

Aliph>C16-C21 - F3 8.62E-06 1.93E-05 2.64E-08 1.21E-04 6.94E-05 1.29E-07 7.16E-06<br />

Aliph>C21-C34 - F3 8.84E-06 1.98E-05 8.84E-08 1.24E-04 7.12E-05 5.05E-07 7.34E-06<br />

Arom>C16-C21 - F3 3.13E-04 6.29E-04 2.16E-05 3.92E-03 3.18E-03 3.51E-05 1.69E-04<br />

Arom>C21-C34 - F3 1.04E-03 2.31E-03 3.15E-04 1.18E-02 9.54E-03 5.12E-04 8.31E-04<br />

F3 - Total 1.37E-03 2.98E-03 3.36E-04 1.60E-02 1.29E-02 5.48E-04 1.01E-03<br />

Total TPH HQ = 2.69E-03 7.29E-03 2.20E-03 2.41E-02 1.92E-02 3.56E-03 3.67E-03<br />

2010 Page J-103


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-29 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected Species in Terminal (cont’d)<br />

COPC<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Acenaphthene 3.47E-06 2.39E-06 2.36E-06 – – – –<br />

Acenaphthylene 3.44E-06 2.39E-06 2.37E-06 – – – –<br />

Anthracene 3.50E-06 2.40E-06 2.39E-06 – – – –<br />

Fluorene 3.45E-06 2.40E-06 2.39E-06 – – – –<br />

1-Methylnaphthalene 2.32E-09 1.88E-09 1.95E-09 – – – –<br />

2-Methylnaphthalene 4.16E-06 3.34E-06 3.48E-06 – – – –<br />

Naphthalene 3.59E-06 2.46E-06 2.42E-06 – – – –<br />

Phenanthrene 1.20E-05 6.49E-06 4.98E-06 – – – –<br />

Total LPAH HQ = 3.37E-05 2.19E-05 2.04E-05 – – – –<br />

High Molecular Weight PAHs<br />

Fluoranthene 6.34E-06 3.63E-06 3.24E-06 – – – –<br />

Benz(a)anthracene 3.34E-05 2.70E-05 3.06E-05 – – – –<br />

Benzo(a)pyrene 3.26E-05 2.49E-05 2.95E-05 – – – –<br />

Benzo(e)pyrene 2.96E-11 2.32E-11 2.39E-11 – – – –<br />

Benzo(b)fluoranthene 4.10E-05 3.88E-05 4.77E-05 – – – –<br />

Benzo(g,h,i)perylene 3.26E-05 2.31E-05 2.56E-05 – – – –<br />

Benzo(k)fluoranthene 3.26E-05 2.25E-05 2.23E-05 – – – –<br />

Chrysene 4.67E-05 3.26E-05 3.31E-05 – – – –<br />

Dibenz(a,h)anthracene 3.25E-05 2.25E-05 2.29E-05 – – – –<br />

Page J-104 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-29 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected Species in Terminal (cont’d)<br />

COPC<br />

High Molecular Weight PAHs<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Indeno(1,2,3-cd)pyrene 3.26E-05 2.38E-05 2.67E-05 – – – –<br />

Pyrene 4.71E-05 2.99E-05 3.03E-05 – – – –<br />

Total HPAH HQ = 3.38E-04 2.49E-04 2.72E-04 – – – –<br />

Total PAH HQ = 3.71E-04 2.71E-04 2.92E-04 – – – –<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 1.67E-07 6.45E-07 3.60E-07 – – – –<br />

1,3,5-Trimethylbenzene 1.74E-08 7.32E-08 4.25E-08 – – – –<br />

Phenolic Compounds<br />

Phenol 1.63E-14 3.68E-13 2.51E-13 – – – –<br />

2,4-Dimethylphenol 8.19E-13 8.09E-12 5.29E-12 – – – –<br />

2,4-Dinitrophenol 1.13E-12 4.07E-11 2.81E-11 – – – –<br />

Trace Elements<br />

Barium 5.33E-04 3.13E-04 3.07E-04 1.20E-03 2.21E-03 8.31E-04 3.75E-04<br />

Boron 8.86E-04 1.74E-02 1.53E-02 7.15E-03 2.13E-03 2.54E-02 1.46E-03<br />

Cadmium 1.11E-02 2.17E-02 6.98E-03 4.63E-02 5.42E-02 1.60E-02 1.40E-03<br />

Manganese 1.76E-03 2.62E-03 3.21E-03 3.02E-03 2.16E-03 3.21E-03 5.10E-04<br />

Molybdenum 5.64E-02 2.17E-01 1.23E-01 2.08E-03 1.94E-03 5.21E-03 3.24E-03<br />

Nickel 3.66E-02 2.74E-02 2.79E-02 6.97E-02 6.27E-02 1.65E-01 7.58E-02<br />

Tin 6.62E-04 2.07E-03 9.21E-04 2.88E-03 3.93E-03 1.36E-03 1.22E-03<br />

Vanadium 1.49E-02 5.42E-02 3.04E-02 1.49E-01 1.34E-01 1.61E-01 5.81E-02<br />

Zinc 9.68E-03 3.06E-02 1.63E-02 6.28E-02 6.92E-02 6.23E-02 2.38E-02<br />

Max HQ 5.64E-02 2.17E-01 1.23E-01 1.49E-01 1.34E-01 1.65E-01 7.58E-02<br />

2010 Page J-105


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-30 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected Species in Clio Bay<br />

BTEX<br />

COPC<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Benzene 4.24E-07 1.43E-06 1.05E-06 – – – –<br />

Ethylbenzene 5.92E-07 2.22E-06 1.49E-06 – – – –<br />

Toluene 2.82E-07 1.07E-06 7.66E-07 – – – –<br />

Xylenes 3.56E-07 1.32E-06 9.34E-07 – – – –<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 1.66E-05 6.13E-05 3.17E-05 6.21E-05 5.31E-05 5.08E-05 4.10E-05<br />

Aliph>C08-C10 - F1 2.02E-05 6.92E-05 3.25E-05 1.03E-04 8.30E-05 5.25E-05 4.45E-05<br />

Arom>C08-C10 - F1 2.76E-06 6.33E-06 7.92E-07 3.27E-05 2.41E-05 1.25E-06 2.37E-06<br />

F1 - Total 3.95E-05 1.37E-04 6.50E-05 1.98E-04 1.60E-04 1.05E-04 8.79E-05<br />

Aliph>C10-C12 - F2 4.36E-05 1.28E-04 4.44E-05 3.55E-04 2.64E-04 7.18E-05 7.09E-05<br />

Aliph>C12-C16 - F2 7.84E-04 3.08E-03 1.73E-03 1.62E-03 1.62E-03 2.79E-03 2.20E-03<br />

Arom>C10-C12 - F2 8.18E-05 1.70E-04 2.87E-06 1.07E-03 7.81E-04 4.57E-06 5.08E-05<br />

Arom>C12-C16 - F2 2.43E-04 5.03E-04 6.18E-06 3.19E-03 2.32E-03 1.00E-05 1.50E-04<br />

F2 - Total 1.15E-03 3.88E-03 1.78E-03 6.24E-03 4.99E-03 2.87E-03 2.47E-03<br />

Aliph>C16-C21 - F3 8.62E-06 1.93E-05 3.44E-08 1.21E-04 6.94E-05 1.81E-07 7.16E-06<br />

Aliph>C21-C34 - F3 8.84E-06 1.98E-05 1.21E-07 1.24E-04 7.12E-05 7.15E-07 7.34E-06<br />

Arom>C16-C21 - F3 3.13E-04 6.28E-04 2.14E-05 3.92E-03 3.18E-03 3.49E-05 1.69E-04<br />

Arom>C21-C34 - F3 4.29E-04 1.12E-03 3.12E-04 4.01E-03 3.27E-03 5.08E-04 5.34E-04<br />

F3 - Total 7.59E-04 1.79E-03 3.33E-04 8.17E-03 6.60E-03 5.44E-04 7.17E-04<br />

Total TPH HQ = 1.95E-03 5.80E-03 2.18E-03 1.46E-02 1.17E-02 3.52E-03 3.27E-03<br />

Page J-106 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-30 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected Species in Clio Bay (cont’d)<br />

Coastal Dwelling<br />

COPC<br />

Mink<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Acenaphthene 3.44E-06 2.37E-06 2.35E-06 – – – –<br />

Acenaphthylene 3.44E-06 2.37E-06 2.35E-06 – – – –<br />

Anthracene 3.44E-06 2.37E-06 2.35E-06 – – – –<br />

Fluorene 3.45E-06 2.38E-06 2.35E-06 – – – –<br />

1-Methylnaphthalene 2.29E-09 1.86E-09 1.93E-09 – – – –<br />

2-Methylnaphthalene 5.83E-07 4.52E-07 5.00E-07 – – – –<br />

Naphthalene 3.45E-06 2.38E-06 2.35E-06 – – – –<br />

Phenanthrene 4.24E-06 2.62E-06 2.42E-06 – – – –<br />

Total LPAH HQ = 2.20E-05 1.49E-05 1.47E-05 – – – –<br />

High Molecular Weight PAHs<br />

Fluoranthene 3.51E-06 2.43E-06 2.41E-06 – – – –<br />

Benz(a)anthracene 3.28E-05 2.26E-05 2.23E-05 – – – –<br />

Benzo(a)pyrene 3.26E-05 2.25E-05 2.23E-05 – – – –<br />

Benzo(e)pyrene 2.94E-11 2.31E-11 2.37E-11 – – – –<br />

Benzo(b)fluoranthene 3.31E-05 2.32E-05 2.36E-05 – – – –<br />

Benzo(g,h,i)perylene 3.26E-05 2.25E-05 2.23E-05 – – – –<br />

Benzo(k)fluoranthene 3.26E-05 2.24E-05 2.22E-05 – – – –<br />

Chrysene 3.29E-05 2.26E-05 2.23E-05 – – – –<br />

Dibenz(a,h)anthracene 3.25E-05 2.24E-05 2.22E-05 – – – –<br />

Indeno(1,2,3-cd)pyrene 3.26E-05 2.25E-05 2.23E-05 – – – –<br />

Pyrene 3.29E-05 2.27E-05 2.26E-05 – – – –<br />

2010 Page J-107


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-30 Hazard Quotients Summary (Application Case) <strong>for</strong> Selected Species in Clio Bay (cont’d)<br />

Coastal Dwelling Steller Sea Harbour Spotted<br />

Marbled<br />

COPC<br />

Mink<br />

Lion Porpoise Sandpiper Surf Scoter Murrelet Bald Eagle<br />

Total HPAH HQ = 2.98E-04 2.06E-04 2.04E-04 – – – –<br />

Total PAH HQ = 3.20E-04 2.21E-04 2.19E-04 – – – –<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 1.66E-07 6.38E-07 3.57E-07 – – – –<br />

1,3,5-Trimethylbenzene 1.72E-08 7.25E-08 4.21E-08 – – – –<br />

Phenolic Compounds<br />

Phenol 1.61E-14 3.64E-13 2.49E-13 – – – –<br />

2,4-Dimethylphenol 8.10E-13 8.00E-12 5.23E-12 – – – –<br />

2,4-Dinitrophenol 1.11E-12 4.03E-11 2.78E-11 – – – –<br />

Trace Elements<br />

Barium 2.94E-04 2.07E-04 2.37E-04 5.16E-04 8.69E-04 5.93E-04 3.07E-04<br />

Boron 8.18E-04 1.61E-02 1.33E-02 6.60E-03 1.97E-03 1.86E-02 1.35E-03<br />

Cadmium 9.22E-03 1.85E-02 5.66E-03 3.78E-02 4.44E-02 1.10E-02 1.33E-03<br />

Manganese 9.18E-04 6.33E-04 8.30E-04 7.37E-04 8.49E-04 1.54E-03 3.04E-04<br />

Molybdenum 1.97E-02 7.60E-02 4.26E-02 8.98E-04 8.27E-04 1.75E-03 1.10E-03<br />

Nickel 1.47E-02 1.09E-02 1.11E-02 3.47E-02 2.94E-02 6.67E-02 2.98E-02<br />

Tin 5.28E-04 1.84E-03 9.03E-04 1.91E-03 2.06E-03 1.31E-03 1.20E-03<br />

Vanadium 9.14E-03 3.47E-02 1.99E-02 9.60E-02 7.93E-02 1.05E-01 3.59E-02<br />

Zinc 7.11E-03 2.61E-02 1.56E-02 2.29E-02 2.27E-02 5.63E-02 2.31E-02<br />

Max HQ 1.97E-02 7.60E-02 4.26E-02 9.60E-02 7.93E-02 1.05E-01 3.59E-02<br />

Page J-108 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-31 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in Emsley Point<br />

BTEX<br />

COPC<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Benzene 7.13E-09 6.21E-08 4.01E-08 – – – –<br />

Ethylbenzene 2.07E-08 9.34E-08 5.52E-08 – – – –<br />

Toluene 3.02E-08 1.57E-07 9.54E-08 – – – –<br />

Xylenes 4.78E-08 2.11E-07 1.24E-07 – – – –<br />

TPH - CCME CWS<br />

Aliph>C06-C08 - F1 8.45E-06 3.46E-05 2.00E-05 1.24E-05 1.40E-05 3.21E-05 2.47E-05<br />

Aliph>C08-C10 - F1 8.80E-06 3.56E-05 2.05E-05 1.25E-05 1.45E-05 3.32E-05 2.58E-05<br />

Arom>C08-C10 - F1 2.06E-07 8.61E-07 5.01E-07 3.16E-07 3.45E-07 7.90E-07 6.02E-07<br />

F1 - Total 1.74E-05 7.10E-05 4.11E-05 2.51E-05 2.89E-05 6.61E-05 5.11E-05<br />

Aliph>C10-C12 - F2 1.20E-05 4.86E-05 2.81E-05 1.69E-05 1.98E-05 4.54E-05 3.53E-05<br />

Aliph>C12-C16 - F2 4.67E-04 1.89E-03 1.09E-03 6.45E-04 7.62E-04 1.76E-03 1.37E-03<br />

Arom>C10-C12 - F2 7.59E-07 3.13E-06 1.81E-06 1.18E-06 1.30E-06 2.89E-06 2.21E-06<br />

Arom>C12-C16 - F2 1.67E-06 6.79E-06 3.91E-06 2.72E-06 2.98E-06 6.30E-06 4.85E-06<br />

F2 - Total 4.82E-04 1.95E-03 1.12E-03 6.66E-04 7.86E-04 1.82E-03 1.41E-03<br />

Aliph>C16-C21 - F3 4.49E-08 1.07E-07 1.74E-08 6.37E-07 3.62E-07 8.65E-08 3.73E-08<br />

Aliph>C21-C34 - F3 1.82E-07 4.17E-07 5.91E-08 2.56E-06 1.46E-06 3.40E-07 1.51E-07<br />

Arom>C16-C21 - F3 5.88E-06 2.36E-05 1.35E-05 9.66E-06 1.07E-05 2.20E-05 1.69E-05<br />

Arom>C21-C34 - F3 8.57E-05 3.43E-04 1.97E-04 1.37E-04 1.54E-04 3.21E-04 2.48E-04<br />

F3 - Total 9.18E-05 3.67E-04 2.11E-04 1.49E-04 1.66E-04 3.43E-04 2.65E-04<br />

Total TPH HQ = 5.91E-04 2.38E-03 1.38E-03 8.40E-04 9.82E-04 2.23E-03 1.73E-03<br />

2010 Page J-109


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-31 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in Emsley Point (cont’d)<br />

COPC<br />

Polycyclic Aromatic Hydrocarbons<br />

Low Molecular Weight PAHs<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Acenaphthene 1.55E-13 1.25E-13 1.29E-13 – – – –<br />

Acenaphthylene 2.34E-15 1.88E-15 1.94E-15 – – – –<br />

Anthracene 2.36E-10 1.88E-10 1.94E-10 – – – –<br />

Fluorene 2.69E-10 2.15E-10 2.22E-10 – – – –<br />

1-Methylnaphthalene 1.45E-09 1.17E-09 1.22E-09 – – – –<br />

2-Methylnaphthalene 1.09E-09 8.86E-10 9.20E-10 – – – –<br />

Naphthalene 6.30E-10 5.36E-10 5.63E-10 – – – –<br />

Phenanthrene 3.65E-10 2.90E-10 3.00E-10 – – – –<br />

Total LPAH HQ = 4.04E-09 3.29E-09 3.42E-09 – – – –<br />

High Molecular Weight PAHs<br />

Fluoranthene 4.52E-13 3.56E-13 3.66E-13 – – – –<br />

Benz(a)anthracene 1.59E-08 1.25E-08 1.29E-08 – – – –<br />

Benzo(a)pyrene 2.24E-10 1.74E-10 1.78E-10 – – – –<br />

Benzo(e)pyrene 2.28E-11 1.79E-11 1.84E-11 – – – –<br />

Benzo(b)fluoranthene 1.72E-11 1.36E-11 1.40E-11 – – – –<br />

Benzo(g,h,i)perylene 6.29E-11 4.95E-11 5.09E-11 – – – –<br />

Benzo(k)fluoranthene 1.63E-11 1.29E-11 1.33E-11 – – – –<br />

Chrysene 1.05E-11 8.26E-12 8.50E-12 – – – –<br />

Dibenz(a,h)anthracene 4.65E-11 3.66E-11 3.76E-11 – – – –<br />

Indeno(1,2,3-cd)pyrene 7.48E-11 5.89E-11 6.07E-11 – – – –<br />

Page J-110 2010


<strong>Marine</strong> <strong>Ecological</strong> <strong>Risk</strong> <strong>Assessment</strong> <strong>for</strong> <strong>Kitimat</strong> Terminal Operations<br />

Technical Data Report<br />

Appendix J: Estimated Hazard Indices and Hazard Quotients <strong>for</strong> Selected Species<br />

Table J-31 Hazard Quotients Summary (Project Case) <strong>for</strong> Selected Species in Emsley Point (cont’d)<br />

COPC<br />

High Molecular Weight PAHs (cont’d)<br />

Coastal Dwelling<br />

Mink<br />

Steller Sea<br />

Lion<br />

Harbour<br />

Porpoise<br />

Spotted<br />

Sandpiper Surf Scoter<br />

Marbled<br />

Murrelet Bald Eagle<br />

Pyrene 1.06E-08 8.34E-09 8.56E-09 – – – –<br />

Total HPAH HQ = 2.69E-08 2.12E-08 2.18E-08 – – – –<br />

Total PAH HQ = 3.10E-08 2.45E-08 2.52E-08 – – – –<br />

Volatile Organic Compounds<br />

1,2,4-Trichlorobenzene 1.05E-07 4.04E-07 2.25E-07 – – – –<br />

1,3,5-Trimethylbenzene 1.09E-08 4.58E-08 2.66E-08 – – – –<br />

Phenolic Compounds<br />

Phenol 1.02E-14 2.30E-13 1.57E-13 – – – –<br />

2,4-Dimethylphenol 5.12E-13 5.06E-12 3.31E-12 – – – –<br />

2,4-Dinitrophenol 7.05E-13 2.55E-11 1.76E-11 – – – –<br />

Trace Elements<br />

Barium 3.08E-11 1.51E-11 8.43E-12 9.23E-11 1.39E-10 2.39E-11 1.15E-11<br />

Boron 1.15E-12 3.76E-12 1.59E-12 7.64E-12 7.90E-12 1.81E-12 2.17E-13<br />

Cadmium 4.66E-06 7.34E-06 8.80E-07 2.15E-05 2.51E-05 3.88E-06 5.84E-09<br />

Manganese 7.54E-10 5.72E-10 5.68E-10 3.04E-10 2.12E-10 5.84E-10 3.02E-10<br />

Molybdenum 1.17E-06 1.89E-06 2.25E-07 3.20E-07 3.62E-07 5.51E-08 1.24E-09<br />

Nickel 1.57E-06 1.17E-06 1.16E-06 3.53E-06 2.99E-06 6.36E-06 3.23E-06<br />

Tin 9.72E-08 3.86E-07 2.20E-07 6.87E-08 8.50E-08 2.67E-07 2.99E-07<br />

Vanadium 1.90E-06 7.24E-06 3.98E-06 1.04E-05 8.22E-06 1.74E-05 8.89E-06<br />

Zinc 1.24E-08 3.76E-08 1.77E-08 9.65E-08 1.03E-07 5.53E-08 2.79E-08<br />

Max HQ 5.91E-04 2.38E-03 1.38E-03 8.40E-04 9.82E-04 2.23E-03 1.73E-03<br />

2010 Page J-111

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!