24.03.2013 Views

Multi-Spectral Transparent Materials Technologies - The American ...

Multi-Spectral Transparent Materials Technologies - The American ...

Multi-Spectral Transparent Materials Technologies - The American ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>American</strong> Ceramic Society – Baltimore, June 2010<br />

<strong>Multi</strong>-<strong>Spectral</strong><br />

<strong>Transparent</strong> <strong>Materials</strong> <strong>Technologies</strong><br />

Daniel C. Harris<br />

Naval Air Systems Command<br />

China Lake, California<br />

Daniel.Harris@navy.mil<br />

760-939-1649<br />

<strong>Multi</strong>spectral ZnS was discovered by<br />

Chuck Willingham at Raytheon in 1980<br />

1


UV Visible Near IR<br />

Atmospheric Transmission<br />

Microwave<br />

2


Magnesium Fluoride Dome on Sidewinder Missile Protects<br />

Delicate Seeker and Transmits Infrared Radiation<br />

MgF 2 dome<br />

3


Lockheed Martin SNIPER Targeting Pod<br />

Sapphire<br />

window<br />

SNIPER Pod<br />

4


LANTIRN Zinc Sulfide Infrared Window<br />

Lockheed<br />

Martin photos<br />

Joint Strike Fighter Electro-Optic Targeting System<br />

Faceted Sapphire Window<br />

ATFLIR<br />

Zinc<br />

Sulfide<br />

window<br />

Goodrich<br />

photo<br />

5


Germanium<br />

window<br />

Germanium Windows on SLAM-ER<br />

6


Generic Issues for Window and Dome <strong>Materials</strong><br />

•<br />

•<br />

•<br />

Transmission and emission at desired frequencies<br />

Resistance to rain and sand erosion<br />

Resistance to thermal shock<br />

Electromagnetic shielding<br />

Common External Window <strong>Materials</strong><br />

•<br />

Long Wave Infrared (8-12 μm)<br />

• Zinc sulfide (Dow, II-VI)<br />

Germanium (Umicore)<br />

•<br />

Midwave Infrared (3-5 μm)<br />

• Sapphire (Crystal Systems, Saint Gobain, Rubicon)<br />

• Silicon<br />

• Magnesium fluoride (France–Saint Gobain)<br />

• Spinel (TA&T [Armorline], Surmet, MER)<br />

ALON (aluminum oxynitride) (Surmet)<br />

•<br />

Visible and Near Infrared<br />

• Various glasses<br />

• Fused silica<br />

7


Early Maverick Dome (ZnS) Broken by Rain Impact in 1980s<br />

8


Sidewinder Dome (MgF 2 ) Pitted by Sand in Persian Gulf (1990)<br />

9


Splat!<br />

Bug Impact on ZnS/ZnSe Sandwich Window<br />

[N. Osborne, University of Dayton Research Institute] 10


Dust Storm Created by Helicopter<br />

[Aviation Week & Space Technology, 5 May 2008, page 34] 11


Candidate Midwave (3-5 μm) <strong>Materials</strong><br />

for High-Speed Systems<br />

Optical GaP, yttria, and lanthana-doped yttria are not commercially available<br />

12


Transmittance<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

“2-Color” (Midwave + Long Wave) <strong>Materials</strong><br />

0<br />

ms-ZnS<br />

Ge<br />

2 4 6 8 10 12 14 16<br />

•Ge – Great for aircraft. Operating<br />

temperature up to ~100°C<br />

•Si – Only midwave. Operating<br />

temperature up to ~250°C<br />

•GaP – Midwave, not long wave.<br />

Operating temperature up to<br />

~600°C (Mach 4). High dn/dT.<br />

Poor erosion resistance. Not<br />

commercially available.<br />

GaP<br />

Si<br />

3-5 μm 8-14 μm<br />

Wavelength (μm)<br />

GaAs<br />

ZnSe<br />

•GaAs – Excellent optical quality in both<br />

bands. Operating temperature up to<br />

~400°C (Mach 3). Erosion resistance is<br />

modest. Not commercially available.<br />

• ZnSe – Superb optical quality in both bands,<br />

but very poor erosion resistance<br />

• <strong>Multi</strong>spectral ZnS – <strong>The</strong> only contender for<br />

Mach 4. Poor erosion resistance could<br />

be improved by coatings<br />

13


II-VI, Inc.<br />

High Quality Zinc Sulfide is Grown in Large Areas<br />

by Chemical Vapor Deposition<br />

14


<strong>The</strong>re is no adequate erosion<br />

protection coating for zinc sulfide<br />

<strong>The</strong>re is no durable multispectral<br />

material that transmits from the<br />

visible through the long wave<br />

infrared region<br />

(multispectral ZnS is used)<br />

15


Diamond Could be an Excellent Long Wave Infared Window<br />

(But Not a Midwave Window) if it Were Affordable and<br />

Could be Made in Desired Sizes and Shapes<br />

Transmittance<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

<strong>The</strong>oretical reflection limit<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14<br />

Wavelength (μm)<br />

Chemical vapor<br />

deposited diamond<br />

1.74 mm thick<br />

Midwave Long wave<br />

16


•<br />

•<br />

Windows emit radiation at the wavelengths they absorb<br />

Emission from the Window Creates Noise at a Sensor<br />

17


•<br />

•<br />

Most Infrared Transmitting <strong>Materials</strong> are Highly<br />

Reflective at Radio Frequencies<br />

Dome thickness should be multiple of λ/2 to minimize reflection<br />

Hemispheric geometry is the only practical one for IR/RF dome<br />

so that angle of incidence is always the same<br />

Radome thickness is optimized<br />

to minimize reflection at one<br />

angle of incidence<br />

Hemispheric dome minimizes<br />

reflection of all rays that pass<br />

through the center of the dome<br />

Penalty is severe drag<br />

18


Shielding Effectiveness (dB)<br />

RF Shielding by Square Gold Grid on Sapphire<br />

Observed<br />

Predicted<br />

Frequency (GHz)<br />

Grid spacing is much less than wavelength in this example<br />

If wavelength approaches grid spacing, more leakage occurs<br />

K. T. Jacoby, M. W. Pieratt, J. I. Halman, and K. A. Ramsey, Proc. SPIE 2009, 7302, 73020X<br />

<strong>The</strong>ory for transmission: S.-W. Lee, G. Zarillo, and C.-L. Law IEEE Transactions Antennas &<br />

Propagation 1982, AP-30, 904<br />

5 µm wide lines<br />

50 µm center to<br />

center


<strong>The</strong>re is a Strong Need for Infrared-<strong>Transparent</strong><br />

Electrically Conductive Coatings for<br />

Electromagnetic Shielding<br />

h<br />

P o<br />

P<br />

Conductive coating<br />

Sheet resistance = R s<br />

For example, indium tin oxide has visible transparency and electrical conductivity<br />

<strong>The</strong>re is no known material with adequate infrared transparency and adequate<br />

electrical conductivity<br />

d<br />

Infrared window<br />

Dielectric constant = ε<br />

20


DARPA/ONR Nano-Composite Optical Ceramics Program<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

2µm<br />

Raytheon Y 2 O 3 -MgO composite<br />

Transmittance (%)<br />

0 2 4 6 8 10<br />

Wavelength (µm)<br />

Objectives (2007-2011)<br />

•<br />

•<br />

•<br />

2 Compositions<br />

50:50 YM<br />

70:30 MY<br />

of Y2O3-MgO 2 mm thick<br />

Midwave infrared (3-5 μm) transmission<br />

> spinel<br />

<strong>The</strong>rmal shock resistance > sapphire<br />

Fabricate windows and domes<br />

Raytheon<br />

Nanocerox<br />

CeraNova<br />

University of California,<br />

Davis<br />

Rutgers University<br />

University of Connecticut<br />

21


Raytheon Nanograin Yttria-Magnesia Composite<br />

Provides Mechanical Properties Superior to<br />

Those of Either End Member<br />

Photographed<br />

with visible light<br />

Photographed<br />

with infrared light<br />

22


Aerodynamic Domes and Conformal Windows<br />

Navy SBIR Program (Small Business Innovation Research)<br />

Toroidal glass window made at Penn State<br />

University with OptiPro UltraForm Finishing –<br />

2009<br />

ALON ogive dome made at OptiPro – 2009<br />

23


Example of conformal window: spinel toroid made at Penn State<br />

University with OptiPro UltraForm Finishing – Jan 2010<br />

24


Alumina Dome blank<br />

CeraNova<br />

Final finishing<br />

QED<br />

Aerodynamic Dome Program Elements<br />

Grinding and polishing:<br />

OptiPro, Optimax, CeraNova, Penn State Univ, Univ. Rochester<br />

Metrology<br />

OptiPro<br />

ASE Optics<br />

Breault<br />

Appl. Science Innov.<br />

Applied Science Innovations<br />

OptiPro & ASE Optics<br />

Breault<br />

25


Aerodynamic Dome Program Elements (continued)<br />

Corrective optics<br />

OptiPro (fabrication)<br />

ASE Optics (metrology)<br />

Coating deep concave surfaces<br />

Precision Photonics<br />

26


Transmittance (%)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

<strong>Transparent</strong> Polycrystalline Alumina Could Replace<br />

Sapphire in Some Infrared-Only Applications<br />

• Krell et al, Fraunhofer Institute,<br />

reported infrared transparent Al2 with 0.5 μm grain size in 2003<br />

• Properties similar to sapphire<br />

• Can be made into shapes ―<br />

impractical for sapphire<br />

Sapphire 2.6 mm thick<br />

O 3<br />

Alumina<br />

1.02 mm thick<br />

5.00 mm thick<br />

CeraNova<br />

0.0 0.5 1.0 1.5 2.0 2.5<br />

Wavelength (μm)<br />

(1 mm thick)<br />

Alumina<br />

CeraNova [M. V. Parish & M. R. Pascucci, Proc. SPIE 2009, 7302, 730205]<br />

Polished Hemisphere<br />

(2 mm thick)<br />

Unfinished Dome<br />

27


“Coarse” Metrology with OptiPro UltraSurf Instrument<br />

can Measure a Workpiece During Grinding and<br />

Polishing Before Interferometry Applies<br />

Light Pen:<br />

•<br />

•<br />

Commercial pen from<br />

STIL<br />

Quad Probe from ASE<br />

Optics SBIR contract<br />

28


OptiPro 2009<br />

UltraSurf Measurement of ALON Ogive Dome<br />

with ASE Quad Probe<br />

29


“Fine” Metrology of Free-Form Optics by Interferometry<br />

Applied Science Innovations<br />

• Modular attachment to<br />

commercial interferometer<br />

• Wavefront and surface metrology<br />

• <strong>Multi</strong>ple double-pass transmittedwavefront<br />

maps cover entire<br />

surface<br />

• Solve system of equations to<br />

produce maps of both surfaces<br />

• Reference spherical mirror<br />

• Resolution better than 100 nm<br />

• Sample size limited by size of<br />

spherical mirror only<br />

• Patent 7,545,511 - 2009<br />

Resolved fringes<br />

Unresolved<br />

fringes<br />

Map of broken<br />

wine glass<br />

As reference mirror<br />

is moved, fringes are<br />

produced by limited<br />

regions. Hundreds<br />

of images stitched<br />

together produce<br />

map of both surfaces<br />

and transmitted<br />

wavefront<br />

30


QED <strong>Technologies</strong><br />

Rochester NY<br />

Magnetorheological Fluid Jet (MR Jet) Prototype<br />

Jet with<br />

magnet off<br />

Jet with<br />

magnet on<br />

Spindle<br />

Work piece<br />

Nozzle<br />

Fluid collection<br />

Polycrystalline Alumina Dome Concave Surface<br />

Initial figure 1.74 μm P-V Final figure 0.3 μm P-V 31


Airplanes and Ships could use Sensor Windows<br />

Much Larger than Anything Available Today<br />

Sensor windows<br />

Reconnaissance pod<br />

32


Two Approaches to Large Sensor Windows:<br />

1. Scale up size of monolithic window<br />

2. Edge bond windows to make larger windows<br />

TA&T 11 x 18”<br />

spinel<br />

window Surmet<br />

19 x 25” ALON window<br />

33


Adhesive-Free Bonding of Sapphire or Laser Crystals<br />

at Onyx Optics<br />

Bond<br />

line<br />

Fracture<br />

line<br />

H.-C. Lee, H. E. Meissner, X. Mu, C. Liu, and W. Qiu, Proc. SPIE 2009, 7302, 73020A<br />

Polish surfaces to be contacted<br />

to near-atomic flatness<br />

When surfaces are brought into<br />

contact, they stick together<br />

Heat to drive out adsorbed molecules<br />

and increase strength of bond<br />

Sapphire flexure bars joined at the center do<br />

not fracture on the bond line -- indicating that<br />

bond is stronger than sapphire<br />

Disadvantage is difficulty of preparing<br />

optically flat mating surfaces<br />

34


Resonant Cavity Approach to Tri-Mode Seeker Dome<br />

Performance objectives:<br />

• Transmit midwave infrared<br />

• Transmit near-infrared laser<br />

• Transmit millimeter wavelength λ o<br />

• Reject out-of-band radio frequencies<br />

• Durable to survive rain and sand erosion<br />

Dielectric 1<br />

Dielectric 2<br />

Conductive<br />

grid<br />

Gridded, bonded<br />

ALON dome<br />

from Surmet<br />

37


Summary<br />

Generic window problems<br />

• Transparency over all desired wavelengths<br />

• Optical emission<br />

• Rain and sand erosion<br />

• <strong>The</strong>rmal shock<br />

Infrared materials problems<br />

• Few materials are used: ZnS, Ge, sapphire, MgF2, Si, spinel, ALON<br />

• No long wave infrared material is sufficiently durable<br />

• No multispectral (visible to long wave) material is sufficiently durable<br />

• Good infrared transmitting materials are highly reflective at radio<br />

frequencies<br />

Some Current Technology Development<br />

• Nanocomposite materials with new combinations of properties<br />

• Aerodynamic infrared dome<br />

• Conformal sensor window<br />

• Large area window<br />

• Monolithic<br />

• Edge bonded<br />

Daniel.Harris@navy.mil<br />

38


<strong>Multi</strong>-<strong>Spectral</strong> <strong>Transparent</strong> <strong>Materials</strong> <strong>Technologies</strong><br />

Daniel C. Harris<br />

Naval Air Systems Command, China Lake, California<br />

Ceramic windows and domes protect delicate sensors from harsh environments<br />

while transmitting electromagnetic radiation in one or more spectral<br />

regions. Window material deficiencies that have existed for half a century<br />

include window durability, thermal shock resistance, and optical emission.<br />

<strong>The</strong>re are no very durable materials that transmit both midwave<br />

55 minutes<br />

(3-5 micron)<br />

and long wave (8-12 micron) infrared radiation. Some current thrusts in<br />

window research and development include the fabrication of nanocomposites<br />

with properties not attained by monolithic materials, making conformal<br />

shapes that extend the state of the art in machining and metrology, and<br />

scaling up transparent ceramics to make meter-class windows.<br />

Biographical information: Dan Harris is a Senior Scientist and Esteemed<br />

Fellow at the Naval Air Systems Command in China Lake, California, where he<br />

manages research and development programs in infrared window materials. He<br />

is the author of the monograph "<strong>Materials</strong> for Infrared Windows and Domes"<br />

and holds degrees in chemistry from MIT and Caltech.


Program Components: Small Business Contracts<br />

N02-155: Nano-Grain Infrared Window <strong>Materials</strong><br />

Phase II CeraNova (completed 2006)<br />

N03-009: Nanopowders for IR Window <strong>Materials</strong><br />

Phase II MetaMateria (completed 2006)<br />

N04-172: Aerodynamic dome finishing<br />

Phase II + enhancement + Ph II.5 OptiPro<br />

Phase II Creare (completed 2008)<br />

N04-234: Aerodynamic dome blank fabrication<br />

Phase II + enhancement + Ph II.5 CeraNova<br />

Phase II QED (completed Dec 08)<br />

– continues as subcontractor<br />

N06-069: Metrology for Ogive Infrared Dome<br />

Phase II OptiPro + Ph II.5 OptiPro 2010<br />

Phase II Breault<br />

Phase II MetroLaser (completed May 09)<br />

N07-181: Conformal Sensor Window<br />

Phase II OptiPro<br />

Phase II Third Wave Systems<br />

Phase II Applied Science Innovations<br />

+ enhancement 2009<br />

N07-182: Aerodynamic Infrared Dome<br />

Phase II Optimax<br />

Phase II CeraNova<br />

N08-029: Corrective Optics for Conformal<br />

Windows and Domes<br />

Phase II OptiPro<br />

Phase II ASE Optics – Working with OptiPro<br />

metrology<br />

N03-082: Tactical Reconnaissance Window<br />

(Rob Borland technical monitor)<br />

Phase II + enhancement TA&T(completed<br />

Phase II QED (completed 2008)<br />

N08-134: Edge-Bonded Infrared Windows<br />

Phase II Onyx Optics<br />

Phase II MER/Onyx Optics<br />

N04-T009: Nanocomposite optical materials<br />

Phase II Synkera with Raytheon/DARPA<br />

on<br />

2009)<br />

N08-T003: Low-Expansion, <strong>The</strong>rmal-Shock-Resistant<br />

Dome Material<br />

Phase II <strong>Materials</strong> and Systems Research<br />

N09-028: Optical Coatings for Deep Concave Surfaces<br />

(Mark Moran technical monitor)<br />

Phase II Precision Photonics<br />

N10-163 High-Strength, Optical Quality Spinel<br />

N10-164 Large-Area, Monolithic Infrared Sensor Window<br />

N10-165 Optically Precise Conformal Sensor Window<br />

40


Planned DDG-1000 Zumwalt-Class Destroyer<br />

Large sensor windows on deckhouse<br />

Wikimedia commons graphic<br />

41

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!