04.01.2013 Views

Photovoltaics: Past, Present, and Future

Photovoltaics: Past, Present, and Future

Photovoltaics: Past, Present, and Future

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Photovoltaics</strong>: <strong>Past</strong>,<br />

<strong>Present</strong>, <strong>and</strong> <strong>Future</strong><br />

Ryne P. Raffaelle<br />

National Center for <strong>Photovoltaics</strong><br />

National Renewable Energy Lab<br />

Materials Challenges in Alternative<br />

<strong>and</strong> Renewable Energy<br />

February 21-24, 2010<br />

Cocoa Beach, Florida


<strong>Photovoltaics</strong> (PV)<br />

Solar Power<br />

Concentrating Solar Power<br />

(CSP)


Solar Cell Fundamentals


Solar Cell Fundamentals<br />

Shockley-Quiesser Limit for a single junction solar<br />

cell is 32%<br />

window<br />

p<br />

emitter<br />

n<br />

base<br />

window<br />

E c<br />

E f<br />

E v


Solar Cell Fundamentals


Solar Cell Fundamentals<br />

W. Shockley & H.J. Queisser, J.<br />

Appl. Phys. 32, 510 (1961)<br />

(S. Kurtz <strong>and</strong> D. Friedman, NREL)


V 1<br />

V 2<br />

V 3<br />

Multi-junction solar cell<br />

Multijunction Solar Cells<br />

load


Photovoltaic Timeline<br />

• 1839 – photovoltaic effect first recognized<br />

• 1883 – first solar cell created<br />

• 1946 - modern pn junction solar cell<br />

• 1954 – doped silicon first used in solar cells<br />

• 1958 - first spacecraft to use solar panels<br />

• 1970 – GaAs solar cells created<br />

• 1989 – first dual junction cell created<br />

• 1993 - first dual junction cells for spacecraft<br />

• 1995 – 30% efficiency barrier broken<br />

• 2004 – terrestrial solar cell production exceeds 1 GW<br />

• 2009 – 40% efficiency barrier broken


World Record PV Efficiencies<br />

NREL Technology Breakthroughs<br />

NREL Current World Records<br />

NREL<br />

NREL<br />

NREL<br />

NREL<br />

NREL<br />

NREL<br />

NREL<br />

NREL<br />

NREL<br />

NREL<br />

NREL<br />

NREL


1958 Vanguard 1<br />

Explorer 1 – Van Allen<br />

1962 Telstar (14 kW)<br />

Starfish<br />

1973 Orbital<br />

Workshop Array on<br />

Skylab (6 kW, LEO)<br />

History of Space <strong>Photovoltaics</strong><br />

1993 MJ III-V<br />

Solar Cell<br />

2008 Inverted<br />

Metamorphic<br />

Solar Cell<br />

1998 SCARLETT ARRAY<br />

on Deep Space 1<br />

2009 ISS Solar Array<br />

Completed<br />

2000 Boeing<br />

702 failures


• Solar Energy Research<br />

Institute (1974)<br />

• Begins operation in<br />

(1977)<br />

• Reagan cuts budget by<br />

90%<br />

National Center for <strong>Photovoltaics</strong><br />

• SERI becomes<br />

National Lab (1991)<br />

• National Renewable<br />

Energy Lab (NREL<br />

• National Center for<br />

<strong>Photovoltaics</strong> (NCPV)<br />

established in 1996<br />

NCPV


National Center for <strong>Photovoltaics</strong><br />

The National Center for <strong>Photovoltaics</strong> (NCPV) focuses on innovations in PV<br />

technology that drive industry growth in U.S. photovoltaic manufacturing.<br />

It is directed to use the resources <strong>and</strong> capabilities of the national labs <strong>and</strong><br />

universities for the benefit of the U.S. PV industry.<br />

The NCPV charge is to accelerate PV as a viable energy option in the U.S.


PV Facilities at NREL<br />

Science & Technology Facility<br />

Outdoor Test Facility<br />

Solar Energy Research Facility<br />

Process Development <strong>and</strong> Integration Lab


NREL’s SETP is aligned with the DOE SETP<br />

DOE<br />

Solar Energy<br />

Technology<br />

Program<br />

<strong>Photovoltaics</strong> (PV)<br />

Concentrating<br />

Solar Power (CSP)<br />

System Integration<br />

Distributed Generation<br />

- on-site or near point of use<br />

-<br />

Market Transformation<br />

Centralized Generation<br />

- large users or utilities -<br />

Ed Etzkon: Tuesday, 2:40 PM, Sea Oats


2015 Goals:<br />

Residential 8-10 ¢/kWh<br />

Commercial 6-8 ¢/kWh<br />

Utility 5-7 ¢/kWh<br />

DOE SETP Goals<br />

Cost Competitive<br />

Target<br />

Cost Cost<br />

($/W)<br />

Reliabilit<br />

y y<br />

Performance<br />

$ / W p $/Watt of Module Price vs Efficiency <strong>and</strong> $/m2 Costs<br />

Efficiency $ / m 2<br />

Reliability<br />

Cost ($/W) Performance


Wafers<br />

Crystalline Si<br />

Poly X-tal Si<br />

III-V<br />

PV Technology Portfolio<br />

Thin Films<br />

a-Si<br />

CdTe<br />

CIGS<br />

Polymeric<br />

Concentrators<br />

Low X<br />

High X<br />

Portable


PV Opportunities in the U.S.<br />

•The US has the largest solar resource of any industrialized<br />

country in the world.<br />

• Developing the technology <strong>and</strong> industrial base to harness this<br />

resource is the key to the transformation “green economy” <strong>and</strong> the<br />

US economic recovery.<br />

PV Industry Roadmap – US DOE


Average insolation<br />

kWh/m 2 /day<br />

Global Solar Energy Resource


Solar Energy Potential<br />

3 TW<br />

Source: Nathan S. Lewis, California Institute of Technology


Solar Energy Potential<br />

6 Boxes at 3.3 TW Each<br />

Worldwide Solar Energy<br />

Theoretical: 120,000 TW<br />

Energy in 1 hour of sunlight ≡ 14 TW<br />

Practical: ≈ 600 TW<br />

Source: Nathan S. Lewis, California Institute of Technology


Size Matters


Efficiency<br />

10% 20% 30% 40%<br />

3.6 TW US Consumption<br />

Source: Nathan S. Lewis, California Institute of Technology


Source: Energy Information Administration,<br />

Annual Energy Outlook 2006, Table D4<br />

U.S. Energy Consumption <strong>and</strong><br />

the Role of Renewable Energy


�<br />

Growth of Global PV Industry


US PV Market Share


Cumulative Installed Capacity (MW)<br />

4,000<br />

3,500<br />

3,000<br />

2,500<br />

2,000<br />

1,500<br />

1,000<br />

500<br />

-<br />

Global PV Deployment<br />

1992<br />

1993<br />

1994<br />

1995<br />

1996<br />

1997<br />

1998<br />

1999<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

2007<br />

Germany<br />

Japan<br />

US<br />

Spain<br />

Italy<br />

Korea<br />

France<br />

Australia


Global PV Deployment


Global PV Production


Cost versus Production<br />

http://www.energy.soton.ac.uk/solar/solar.html


PV Learning Curve


Public data from SEC, analysts, etc.<br />

Agenda Slide (Arial Narrow, 28 pt)<br />

= Q3 2009 Price<br />

= End-of-Year 2010<br />

Price


PV News ‘08 Actual 6.9 GW<br />

Navigant ‘08 Actual 5.4 GW<br />

PV Production Status<br />

* Goldman projection<br />

is for dem<strong>and</strong><br />

** Navigant projection<br />

is for accelerated case


Policy Driven Scenarios<br />

Source: U.S. Dept. of Energy


Predicted PV Revenues<br />

The PV industry has grown at CAGR of ~ 45% over the last decade.


U.S. Production Trends<br />

Source: U.S. Dept. of Energy


Predicted PV Revenues


Cost Cost of of Materials Materials Limit Limit (20% (20% Modules)<br />

Modules)<br />

PV module prices have followed an experience curve with a slope of ~<br />

80% (a 20% decrease in price with every doubling of cumulative<br />

production).


DOE EERE Charge: Making<br />

PV More Sustainable<br />

Economical<br />

• Raw materials usage<br />

• Abundant Materials<br />

• Manufacturability<br />

• Efficiency<br />

• Durability<br />

• Market Assessment<br />

Environmentally Safe<br />

• Non-toxic alternatives<br />

• Aqueous based materials<br />

• Re-use, Reman, Recycle<br />

• Environmental Impact Assessment<br />

Societal<br />

• Reliability<br />

• Building Integrated (BIPV)<br />

• Productization<br />

Sustainable development is<br />

development that meets the<br />

needs of the present without<br />

compromising the ability of<br />

future generations to meet<br />

their own needs – UN<br />

Bruntl<strong>and</strong> Commission


S<strong>and</strong><br />

Energy <strong>and</strong> Si-intensive wafers<br />

Add Carbon &<br />

Heat Energy<br />

CO2<br />

Waste ~1/2<br />

in sawing<br />

metallurgical<br />

grade Si<br />

Add more heat<br />

energy (1500°C)<br />

pure<br />

SiHCl<br />

3<br />

or<br />

SiH4<br />

Add Heat Energy<br />

(1000 °C)<br />

silicon<br />

feedstock<br />

Use 10X<br />

more than<br />

needed • ~ 2 yr energy payback<br />

• $0.60/W - $1.00/W for feedstock alone


Thin Film PV<br />

Ascent Solar<br />

•Amorphous Si (aSi)<br />

•CdTe<br />

•Cu(In,Ga)Se 2 (CIGS)


BIPV<br />

42


Comparison of Production Costs for<br />

Conventional Silicon <strong>and</strong> CdTe Thin Film Modules<br />

Silicon<br />

$2.10/W<br />

Encapsulation<br />

27%<br />

Cell<br />

24%<br />

Feedstock 23%<br />

Ingot 12%<br />

Wafer 14%<br />

Encapsulation<br />

50%<br />

CdTe<br />

$1.10/W<br />

Coated Glass<br />

29%<br />

Materials 3%<br />

Equipment 13%<br />

Operating 5%


S<strong>and</strong><br />

HWCVD is<br />

best low-T<br />

scalable<br />

technique<br />

Vision for Si wafer replacement<br />

Add Carbon &<br />

Heat Energy<br />

CO2<br />

NREL Si Group: H. Branz, MRS 2009<br />

metallurgical<br />

grade Si<br />

44<br />

pure<br />

SiHCl3<br />

or<br />

SiH4<br />

Directly deposit<br />

enough pure silicon<br />

for light absorption


Concentrating <strong>Photovoltaics</strong><br />

> 40% Efficient


Inverted Metamorphic Solar Cell<br />

• Creation of a fundamentally new technology path, the inverted lattice-mismatched (IMM) cell.<br />

This cell design resulted in the new 1 sun solar cell efficiency record (33.8%). Also, this<br />

technology allowed NREL to break the 40% AM1.5 photovoltaic conversion efficiency barrier<br />

under concentration! This technology shatters all records related to specific power (~3000<br />

W/kg) (enabling for a host of PV spin-off applications, man portable energy scavenging, space<br />

power systems).<br />

• Remarkably rapid transfer of the technology to industry. RF Micro Devices, Emcore, Spectrolab,<br />

Microlink.<br />

• R&D 100 Award <strong>and</strong> the 2009 Federal Laboratory Consortium Award for Excellence in<br />

Technology Transfer.


Next Generation PV<br />

• Metamorphic Growth<br />

• Inverted Metamorphic Growth<br />

• 4, 5, … Junction Devices<br />

• Dilute Nitride Devices<br />

• Poly III-V<br />

• Mechanical Stacking<br />

• Optical Spectrum Splitting<br />

• Concentrator Designs<br />

• QM B<strong>and</strong>gap Engineering<br />

• IBSC<br />

η from 30% to 40% <strong>and</strong> beyond?<br />

Emcore


3 rd Generation Solar Cells<br />

Source: Martin Green, UNSW


Alternative Paths to High Efficiency<br />

Barnham, Imperial<br />

College<br />

e<br />

e<br />

E g<br />

E c<br />

E v<br />

Multiple Exciton Generation<br />

– Multiple excitons<br />

generated from a single<br />

excited electron by impact<br />

ionization<br />

e<br />

e<br />

E c<br />

E v<br />

Down Converter – Convert<br />

one high energy photon into<br />

one or more convertible<br />

photons<br />

SK Growth of III-V<br />

Quantum Dots<br />

S.M. Hubbard, et al, Appl. Phys.<br />

Lett 92, 123512 (2008)<br />

Solar<br />

Cell<br />

Intermediate B<strong>and</strong> – Presence of<br />

partially filled Intermediate<br />

B<strong>and</strong> allows multiple photon<br />

collection paths, including two<br />

photon processes<br />

e<br />

E c<br />

E v<br />

Up Converter – Convert two<br />

(or more) unusable lowenergy<br />

photons (red) into a<br />

single convertible photon<br />

(blue).<br />

e<br />

e<br />

e<br />

E c<br />

IB<br />

E v


Working with the NCPV<br />

Incubator<br />

New Pre-Incubator<br />

Technology Pathway Partnerships<br />

PV Supply Chain<br />

<strong>Future</strong> Generation Program<br />

PV Manufacturing Initiative<br />

TPPs<br />

Ammonix<br />

Sunpower<br />

Soliant<br />

General Electric<br />

Konarka<br />

Nanosolar<br />

BP Solar<br />

Greenray<br />

Unisolar<br />

Dow Chemical<br />

Ind. CRADAs<br />

Plextronics<br />

SiXtron<br />

Corning/Varian<br />

Incubator<br />

Calsiolar<br />

Sol Focus<br />

MicroLink Devices<br />

SoloPower<br />

Primestar<br />

AVA Solar<br />

Plextronics<br />

Innovalight<br />

Spire Solar<br />

Solexel<br />

1366 Technologies<br />

Solasta<br />

Skyline<br />

Pre-Incubator<br />

Banyan Energy<br />

Crystal Solar<br />

ISET<br />

TiSol<br />

Ascent Solar Technologies<br />

EPIR Technologies<br />

MicroLink Devices<br />

1366 Technologies<br />

Lightwave Power<br />

Vanguard Solar<br />

Semprius<br />

SpectraWatt<br />

Luna Innovations<br />

Universities<br />

Toledo<br />

Delaware<br />

Florida<br />

Arizona State<br />

Cal Tech<br />

RIT<br />

MIT<br />

Penn State<br />

Georgia Tech<br />

Stanford<br />

UC Davis<br />

CSM<br />

Colorado<br />

Colorado State<br />

Illinois<br />

Michigan<br />

South Florida<br />

Washington<br />

Next Gen<br />

Wakonda<br />

Voxtel<br />

Solasta<br />

Solexant<br />

Soltaix<br />

Voxtel<br />

NREL T&E<br />

1366 Technologies<br />

3M<br />

AMONIX<br />

ADCO<br />

Advent Solar<br />

Applied Materials<br />

Applied Optical Sciences<br />

BASF<br />

BP Solar<br />

BRP Manufacturing<br />

Dow Chemical<br />

CaliSolar<br />

Dupont<br />

First Solar<br />

GT Solar<br />

Infoscitex<br />

Innovalight<br />

Konarka<br />

NanoSolar<br />

PrimeStar<br />

Solar Power Industries<br />

SolFocus<br />

Schott Solar<br />

Skyline Solar<br />

Spectrolab (Boeing)<br />

SunPower<br />

TruSeal<br />

Uni-Solar


Questions?<br />

Visit us online at www.nrel.gov<br />

National Renewable Energy<br />

Operated for the U.S. Department of Energy Office of Energy Efficiency <strong>and</strong> Renewable Energy<br />

Laboratory<br />

Innovation for Our Energy <strong>Future</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!