25.03.2013 Views

Applications of AUSM+ Scheme on Subsonic, Supersonic and ...

Applications of AUSM+ Scheme on Subsonic, Supersonic and ...

Applications of AUSM+ Scheme on Subsonic, Supersonic and ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

a c<strong>on</strong>e-cylinder-finned c<strong>on</strong>figurati<strong>on</strong> <strong>and</strong> c<strong>on</strong>e cylinder body<br />

(see Figure1). The length <str<strong>on</strong>g>of</str<strong>on</strong>g> the projectile without fins is 6<br />

calibers <strong>and</strong> the diameter is 40 mm. the length <str<strong>on</strong>g>of</str<strong>on</strong>g> fined body is<br />

10 calibers <strong>and</strong> diameter is 30 mm. Four fins are located <strong>on</strong><br />

the back end <str<strong>on</strong>g>of</str<strong>on</strong>g> the projectile. All necessary details <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

geometries are given in reference [16,17] . A hypers<strong>on</strong>ic<br />

reentry c<strong>on</strong>e probe [18] is simulated at mach 5.9 <strong>and</strong> its tip to<br />

base radius ratios is changed from 0,0.25 <strong>and</strong> 0.50 <strong>and</strong> angle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>e is taken 30 o . A structured computati<strong>on</strong>al mesh was<br />

generated for these c<strong>on</strong>figurati<strong>on</strong>s. In general, most <str<strong>on</strong>g>of</str<strong>on</strong>g> the grid<br />

points are clustered in the near wall regi<strong>on</strong> to capture the<br />

boundary layer <strong>and</strong> c<strong>on</strong>trol the Y + value for turbulence model.<br />

.<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

Fig. 1 (a) airfoil (b)(c) c<strong>on</strong>e cylinder with <strong>and</strong> without fins (d) c<strong>on</strong>e<br />

III. GOVERNING EQUATIONS AND NUMERICAL<br />

METHOD<br />

The system <str<strong>on</strong>g>of</str<strong>on</strong>g> governing equati<strong>on</strong>s for a single-comp<strong>on</strong>ent<br />

fluid, written to describe the mean flow properties, is cast in<br />

integral Cartesian form for an arbitrary c<strong>on</strong>trol volume V with<br />

differential surface area dA as follows:<br />

World Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Engineering <strong>and</strong> Technology 49 2011<br />

243<br />

∂<br />

∂t<br />

∫<br />

V<br />

WdV +<br />

∫[<br />

F −G]<br />

dA = ∫<br />

. HdV (1)<br />

Where the vectors W, F <strong>and</strong> G are defined as:<br />

⎡ρ<br />

⎤ ⎡ρu<br />

⎤<br />

⎧0<br />

⎫<br />

⎢ ⎥ ⎢ ⎥<br />

⎪ ⎪<br />

⎢<br />

ρu<br />

⎥ ⎢ρvu+<br />

Piˆ<br />

⎥<br />

⎪<br />

τ xi ⎪<br />

W = ⎢ρv<br />

⎥ , ⎢ ⎥<br />

⎪ ⎪<br />

F = ρvv+<br />

Pˆj<br />

, G =<br />

⎢ ⎥ ⎢ ⎥<br />

⎨τ<br />

yi ⎬<br />

⎢ρw⎥<br />

⎢ρvw+<br />

Pkˆ<br />

⎥<br />

⎪ ⎪<br />

⎢<br />

⎣ρE⎥<br />

⎢ ⎥<br />

⎪<br />

τ Zi ⎪<br />

⎦ ⎢⎣<br />

ρvE+<br />

Pv⎥<br />

⎪ ⎪<br />

⎦ τ ijv<br />

j + q<br />

⎪⎩<br />

⎪⎭<br />

Vector H c<strong>on</strong>tains source terms such as body forces <strong>and</strong><br />

energy sources.<br />

Here ρ, v, E, <strong>and</strong> p are the density, velocity, total energy<br />

per unit mass, <strong>and</strong> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> the fluid, respectively.Τ is<br />

the viscous stress tensor, <strong>and</strong> q is the heat flux.<br />

Total energy E is related to the total enthalpy H by<br />

E=H-p/ρ<br />

Where<br />

H=h+׀v׀ 2 /2<br />

IV. NUMERICAL METHODS<br />

4.1 Advecti<strong>on</strong> Upstream Splitting Method<br />

The Advecti<strong>on</strong> Upstream Splitting Method (AUSM)<br />

scheme was introduced <strong>and</strong> applied by Liou <strong>and</strong> Steffen<br />

in1991 [1-3] .The AUSM scheme defines a cell interface Mach<br />

number based <strong>on</strong> characteristic speeds from the neighboring<br />

cells. The interface Mach number is used to determine the<br />

upwind extrapolati<strong>on</strong> for the c<strong>on</strong>vective part <str<strong>on</strong>g>of</str<strong>on</strong>g> the inviscid<br />

fluxes. A separate splitting is used for the pressure terms.<br />

Generalized Mach number <strong>and</strong> pressure splitting functi<strong>on</strong>s are<br />

described by Liou [1,2,4] <strong>and</strong> the new scheme was termed<br />

ASUM+. The <str<strong>on</strong>g>AUSM+</str<strong>on</strong>g> scheme was shown to have several<br />

desirable properties:<br />

1. It gives exact resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1-D c<strong>on</strong>tact <strong>and</strong> shock<br />

disc<strong>on</strong>tinuities,<br />

2. It preserves positivity <str<strong>on</strong>g>of</str<strong>on</strong>g> scalar quantities,<br />

3. It is free <str<strong>on</strong>g>of</str<strong>on</strong>g> oscillati<strong>on</strong>s at stati<strong>on</strong>ary <strong>and</strong> moving shocks.<br />

The <str<strong>on</strong>g>AUSM+</str<strong>on</strong>g> scheme avoids an explicit artificial dissipati<strong>on</strong>,<br />

<strong>and</strong> differences the fluxes directly using:<br />

∂ E = Ei<br />

− Ei<br />

ξ<br />

V<br />

+ 1/ 2 −1/<br />

2<br />

The algebraic method is used to generate three-dimensi<strong>on</strong>al<br />

boundary-fitted grids for a c<strong>on</strong>e. The height <str<strong>on</strong>g>of</str<strong>on</strong>g> the first grid<br />

next to the body is c<strong>on</strong>trolled, <strong>and</strong> the grids near to the body<br />

are normalized. The C-type mesh is generated <strong>on</strong> the tip <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

c<strong>on</strong>e. The grid size is 70x50x36 is used for this geometry.<br />

V. TURBULENCE MODEL<br />

The K-ω SST model [19,20] (Menter, 1993) is a two equati<strong>on</strong><br />

model that solves the transport <str<strong>on</strong>g>of</str<strong>on</strong>g> specific dissipati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

turbulent kinetic energy <strong>and</strong> the turbulent kinetic energy. This<br />

model is a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the k-ω <strong>and</strong> k-ε models.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!