25.03.2013 Views

Applications of AUSM+ Scheme on Subsonic, Supersonic and ...

Applications of AUSM+ Scheme on Subsonic, Supersonic and ...

Applications of AUSM+ Scheme on Subsonic, Supersonic and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Fig. 13 Graph for Drag coeff. , lift <strong>and</strong> Pitching moment<br />

Coefficient for r n/r b=0 <strong>and</strong> θ=30 o<br />

Fig. 14 Graph for Drag coeff. , lift <strong>and</strong> Pitching moment<br />

Coefficient for r n/r b=0.25 <strong>and</strong> θ=30 o<br />

World Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Engineering <strong>and</strong> Technology 49 2011<br />

247<br />

Fig. 15 Graph for Drag coeff. , lift <strong>and</strong> Pitching moment Coefficient<br />

for rn/rb=0.50 <strong>and</strong> θ=30 o<br />

VII. CONCLUSION<br />

The paper describes in details the applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> AUSM<br />

scheme for different geometries <strong>and</strong> different flow regimes.<br />

AUSM scheme is suitable for lower subs<strong>on</strong>ic to supers<strong>on</strong>ic<br />

<strong>and</strong> even for hypers<strong>on</strong>ic flows. It also captures the<br />

disc<strong>on</strong>tinuities <strong>and</strong> shock without oscillati<strong>on</strong>s. It achieves<br />

higher order accuracy by appropriate use <str<strong>on</strong>g>of</str<strong>on</strong>g> limiters. So this<br />

scheme work for all types <str<strong>on</strong>g>of</str<strong>on</strong>g> flows from lower subs<strong>on</strong>ic to<br />

hypers<strong>on</strong>ic flows.<br />

REFERENCES<br />

[1] Liou, M.-S. <strong>and</strong> Steffen, C., “A New Flux Splitting <str<strong>on</strong>g>Scheme</str<strong>on</strong>g>,” J. Comput.<br />

Phys., Vol. 107, 23-39, 1993.<br />

[2] Liou, M.-S., “A Sequel to AUSM: <str<strong>on</strong>g>AUSM+</str<strong>on</strong>g>” J. Comput. Phys., Vol. 129,<br />

364-382, 1996.<br />

[3] Wada, Y. <strong>and</strong> Liou, M.-S., “An Accurate <strong>and</strong> Robust Flux Splitting<br />

<str<strong>on</strong>g>Scheme</str<strong>on</strong>g> for Shock <strong>and</strong> C<strong>on</strong>tact Disc<strong>on</strong>tinuities,” SIAM J. Scientific<br />

Computing, Vol. 18, 633-657, 1997.<br />

[4] Liou, M.-S., “A Sequel to AUSM, Part II: <str<strong>on</strong>g>AUSM+</str<strong>on</strong>g>-up” J. Comput.<br />

Phys., Vol. 214, 137- 170, 2006.<br />

[5] Edwards, J. R., Franklin, R., <strong>and</strong> Liou, M.-S., “Low-Diffusi<strong>on</strong> Flux-<br />

Splitting Methods for Real Fluid Flows with Phase Transiti<strong>on</strong>s,” AIAA<br />

J., Vol. 38, 1624-1633, 2000.<br />

[6] Chang, C.-H. <strong>and</strong> Liou, M.-S., “A New Approach to the Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Compressible Multifluid Flows with <str<strong>on</strong>g>AUSM+</str<strong>on</strong>g> <str<strong>on</strong>g>Scheme</str<strong>on</strong>g>,” AIAA Paper<br />

2003-4107, 16th AIAA CFD C<strong>on</strong>ference, Orl<strong>and</strong>o, FL, June 23-26,<br />

2003.<br />

[7] Edwards, J. R. <strong>and</strong> Liou, M.-S., “Low-Diffusi<strong>on</strong> Flux-Splitting Methods<br />

for Flows at All Speeds,” AIAA J., Vol. 36, 1610-1617, 1998.<br />

[8] Kim, K. H., Kim, C., <strong>and</strong> Rho, O., “Methods for the Accurate<br />

Computati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Hypers<strong>on</strong>ic Flows I. AUSMPW+ <str<strong>on</strong>g>Scheme</str<strong>on</strong>g>,” J. Comput.<br />

Phys., Vol. 174, 38-80, 2001.<br />

[9] Mary, I. <strong>and</strong> Sagaut, P., “Large Eddy Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Flow Around an<br />

Airfoil Near Stall,” AIAA J., Vol. 40, 1139-1145, 2002.<br />

[10] Manoha, E., Red<strong>on</strong>net, S., Terracol, M., <strong>and</strong> Guenanff, G., “Numerical<br />

Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Aerodynamics Noise,” ECCOMAS 24-28 July 2004.<br />

[11] Billet, G. <strong>and</strong> Louedin, O., “Adaptive Limiters for Improving the<br />

Accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> the MUSCL Approach for Unsteady Flows,” J. Comput.<br />

Phys., Vol. 170, 161-183, 2001.<br />

[12] Wada, K. <strong>and</strong> Koda, J., “Instabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> Spiral Shock – I. Onset <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Wiggle Instability <strong>and</strong> its Mechanism,” M<strong>on</strong>thly Notices <str<strong>on</strong>g>of</str<strong>on</strong>g> the Royal<br />

Astr<strong>on</strong>omical Society, Vol. 349, 270-280 (11), 2004.<br />

[13] R. V. Chima <strong>and</strong> M. S. Liou.Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>AUSM+</str<strong>on</strong>g> <strong>and</strong> H-CUSP<br />

schemes for turbo machinery applicati<strong>on</strong>s. NASA TM-2003-212457,<br />

2003.<br />

[14] M. S. Liou <strong>and</strong> C. J. Steffen, Jr. A new flux splitting scheme. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Computati<strong>on</strong>al Physics, 107(1):23-39, 1993.<br />

[15] Herald E. Addy Jr. Glenn Research Center, Clevel<strong>and</strong>, Ohio” Ice<br />

accreti<strong>on</strong>s <strong>and</strong> icing effect for modern airfoil” NASA/TP-2000-310021<br />

[16] Bertr<strong>and</strong> Girard “wind tunnel test <str<strong>on</strong>g>of</str<strong>on</strong>g> DERV-ISL reference models at<br />

supers<strong>on</strong>ic speed(Series ISLFPWT-1) August 1997 DERV-TM-<br />

9704.(Report)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!