28.03.2013 Views

Utilising Malaysian Fibre in Stone Mastic Asphalt as a Replacement ...

Utilising Malaysian Fibre in Stone Mastic Asphalt as a Replacement ...

Utilising Malaysian Fibre in Stone Mastic Asphalt as a Replacement ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Ratn<strong>as</strong>amy Muniandy, Jeyan V<strong>as</strong>udevan, Megat Johari Megat Mohd Noor & Husa<strong>in</strong>i Omar<br />

The skeletal formation ofthe coarse aggregate provides high resistance to deformation.<br />

Add<strong>in</strong>g the fibres to the b<strong>in</strong>der will prevent the <strong>as</strong>phalt from dra<strong>in</strong><strong>in</strong>g off dur<strong>in</strong>g<br />

storage, transport and lay<strong>in</strong>g. Very soft b<strong>in</strong>der may dra<strong>in</strong> down e<strong>as</strong>ily. Bethune(1993)<br />

states that m<strong>as</strong>tic fills the voids and reta<strong>in</strong><strong>in</strong>g chips <strong>in</strong> position. It h<strong>as</strong> an additional<br />

stabilis<strong>in</strong>g effect, <strong>as</strong> well <strong>as</strong> provid<strong>in</strong>g the design air voids. The result is a highly durable<br />

rut resistant <strong>as</strong>phalt mix.<br />

SMA can be used on all types of road and it is ideal for roads with heavy traffic. Its<br />

high b<strong>in</strong>der content gives a longer life than conventional mixes. The second advantage<br />

is its coarse and open texture which generally provides high skid resistance at all speeds,<br />

<strong>as</strong> well <strong>as</strong> good dra<strong>in</strong>age and fewer spray problems (Bethune 1993).<br />

Analysis of FilJre Morphology by Scann<strong>in</strong>g Electron Microscope<br />

The Scann<strong>in</strong>g Electron Microscope (SEM) output is shown <strong>in</strong> Plates1,2,3 and 4. Plate 2<br />

shows a thick presence of <strong>Malaysian</strong> fibre whilst Plate 1 shows otherwise. Plates 3 and 4<br />

shows the state of cellulose fibre after recover<strong>in</strong>g from slight damage after mix<strong>in</strong>g.<br />

Plate 1: Imported film (1 OOOX Magnification)<br />

Plate 3: Recovered imported filJre (lOOOX)<br />

Plate 2: <strong>Malaysian</strong> filJre (lOOOX Magnification)<br />

Plate 4: Recovered <strong>Malaysian</strong> jilJre lOOOX<br />

52 PertanikaJ. Sci. & Technol. Supplement Vol. 9 No.1, 2001


Ratn<strong>as</strong>amy Muniandy, Jeyan V<strong>as</strong>udevan, Megat Johari Megat Mohd oor & Husa<strong>in</strong>i Omar<br />

The chemical analysis on <strong>Malaysian</strong> fibre by Liew and FRIM (1994) have been taken<br />

<strong>in</strong>to consideration. This analysis w<strong>as</strong> conducted to monitor the presence ofany deleterious<br />

substance that would react with <strong>as</strong>phalt. Table 1 and Table 2 show the chemical<br />

composition and chemical properties of <strong>Malaysian</strong> fibre and imported fibre respectively.<br />

Constituents<br />

TABLE 1<br />

Chemical composition of <strong>Malaysian</strong> fibre<br />

Ash(%)<br />

Lign<strong>in</strong>(%)<br />

Holocellulose (%)<br />

AlphHellulose (%)<br />

Ethanol-Aceton Extractive (%)<br />

Summative analysis (%)<br />

Sauree: Liew(1996)<br />

Sample<br />

<strong>Malaysian</strong> <strong>Malaysian</strong><br />

fibre V<strong>as</strong>cular fibre (after<br />

Bundle ref<strong>in</strong><strong>in</strong>g)<br />

3.36<br />

19.16<br />

77.04<br />

62.24<br />

1.94<br />

101.50<br />

TABLE 2<br />

Chemical properties of <strong>Malaysian</strong> fibre<br />

Constituents<br />

Moisture Content<br />

Hot Water Soluble<br />

Alkali soluble<br />

Alcohol benzene soluble<br />

Sauree: FRIM(1994)<br />

Pyrolysis G<strong>as</strong> Chromatography Analysis<br />

<strong>Malaysian</strong> fibre (%)<br />

10.40<br />

13.40<br />

29.90<br />

3.20<br />

3.23<br />

17.50<br />

75.33<br />

67.53<br />

2.87<br />

99.23<br />

Figure 3 shows the mixture for both <strong>as</strong>phalt with imported fibre and <strong>as</strong>phalt with<br />

<strong>Malaysian</strong> fibre. Results <strong>in</strong>dicate that both peak at the same <strong>in</strong>stance <strong>as</strong> pla<strong>in</strong> <strong>as</strong>phalt for<br />

the <strong>as</strong>phalt chemical component. Both the behaviour of imported and the <strong>Malaysian</strong><br />

fibre display almost similar properties.<br />

From this analysis it is clear that there are no deleterious components <strong>in</strong> the fibre<br />

that may cause problems to the mix.<br />

RESULTS OF THERMAL PULPING<br />

After the gr<strong>in</strong>d<strong>in</strong>g process, the particle w<strong>as</strong> p<strong>as</strong>sed through a sieve size of 500flm prior<br />

to the pressurised thermal pulp<strong>in</strong>g. Plates 5 and 6 show the outcomes of pulp<strong>in</strong>g the<br />

<strong>Malaysian</strong> fibre and ilmported fibre. The fractional screen<strong>in</strong>g for <strong>Malaysian</strong> fibre and<br />

imported fibre is shown <strong>in</strong> Figs. 4 and 5 respectively. From the result obta<strong>in</strong>, it can be<br />

seen that the trend of particle distribution is almost the same for both <strong>Malaysian</strong> and the<br />

imported fibre but the sizes differ from 500flm for the <strong>Malaysian</strong> fibre and 50flm for the<br />

imported fibre.<br />

54<br />

PertanikaJ. Sci. & Technol. Supplement Vol. 9 No.1, 2001


<strong>Utilis<strong>in</strong>g</strong> <strong>Malaysian</strong> <strong>Fibre</strong> <strong>in</strong> <strong>Stone</strong> <strong>M<strong>as</strong>tic</strong> <strong>Asphalt</strong><br />

80/100 <strong>Asphalt</strong><br />

80/100 <strong>Asphalt</strong> + Import <strong>Fibre</strong><br />

Fig. 3. Pyrolysis g<strong>as</strong> chromatograph<br />

Plate 5. Pulped imported jiiffe Plate 6. Pulped <strong>Malaysian</strong> jiiffe<br />

PertanikaJ. Sci. & Technol. Supplement Vol. 9 o. 1, 2001 55


<strong>Utilis<strong>in</strong>g</strong> <strong>Malaysian</strong> <strong>Fibre</strong> <strong>in</strong> <strong>Stone</strong> <strong>M<strong>as</strong>tic</strong> <strong>Asphalt</strong><br />

r----- ----------.---.<br />

I 162.0<br />

160.<br />

WEIGHT 158.<br />

OF OIL 156.0<br />

154_0'<br />

PASSES 152.0<br />

(g) 150.0<br />

148.<br />

146.0<br />

Recovered Recovered PUlp-<br />

Imported fibre <strong>Malaysian</strong> fibre<br />

SAMPLE<br />

....._.._-----_..._---<br />

Fig. 7. Comparison between recovered imported filne & recovered<br />

<strong>Malaysian</strong> Filne vs weight of oil p<strong>as</strong>ses<br />

provides the ability to reta<strong>in</strong> the <strong>as</strong>phalt dur<strong>in</strong>g the dra<strong>in</strong> out process when temperature<br />

<strong>in</strong>cre<strong>as</strong>es.<br />

In the <strong>Fibre</strong> Dra<strong>in</strong> Down test, by us<strong>in</strong>g motor oil, <strong>Malaysian</strong> fibre shows better<br />

performance than imported fibre with<strong>in</strong> the allowable five m<strong>in</strong>utes duration time of<br />

dra<strong>in</strong><strong>in</strong>g out period. There is however, a noticeable dripp<strong>in</strong>g of oil from <strong>Malaysian</strong> fibre<br />

<strong>in</strong>dicat<strong>in</strong>g that it h<strong>as</strong> yet to be stable. This may be <strong>as</strong>sumed due to the thick presence<br />

of <strong>Malaysian</strong> fibre. This <strong>as</strong>sumption can be accepted when the Recovered <strong>Fibre</strong> Dra<strong>in</strong><br />

Down Test shows a stable dra<strong>in</strong> out with<strong>in</strong> the allowable duration. However, the results<br />

are still <strong>in</strong>ferior compared to imported fibre. Even though the dra<strong>in</strong> off rate is not<br />

comparable to imported fibre but it is still acceptable because the performance of the<br />

<strong>Malaysian</strong> fibre is still with<strong>in</strong> the given range, set by the European cellulose producer.<br />

The ma<strong>in</strong> conclusion is that <strong>Malaysian</strong> fibre does perform comparably to imported<br />

fibre and could be an alternative supplement to replace imported fibre. However, more<br />

f<strong>in</strong>d<strong>in</strong>g is required to improve its performance.<br />

REFERENCES<br />

BETHUNE J. and D. POTTER. 1993. Asphatic Innovations: Oversees Experience, Australian <strong>Asphalt</strong><br />

Pavement Association, Hawthorn, April 1993.<br />

LlEw, Lio 'EL. 1994. Properties of medium density fibreboard made from oil palm (Elaesis Qu<strong>in</strong>eensis)<br />

trunk. B.Sc. Forestry (Wood Industry) Project Report. Faculty of Forestry, Universiti Pertanian<br />

Malaysia, Serdang.<br />

Tappi Test<strong>in</strong>g Procedures. 1985. Atlanta: American National Standards Institute.<br />

FRlM. 1994. Tests Data of Forest Research Institute Malaysia <strong>in</strong> <strong>Fibre</strong> From Oil Palm Fruit Bunches.<br />

Brochure of Sabutek (M) Sdn. Bhd. Kuala Lumpur, Malaysia.<br />

NATIONAL AsPHALT PAVEMENT AssoCIATION (NAPA). 1996. Guidel<strong>in</strong>es for Materials, Production, and<br />

Placement of <strong>Stone</strong> Matrix <strong>Asphalt</strong> (SMA).<br />

<strong>Asphalt</strong> Overlays for Highway and Street Rehabilitation. AI. Manual Series o. 17 (MS.17), Second<br />

Edition, 1983.<br />

PertanikaJ. Sci. & Technol. SupplementVol. 9 o. 1, 2001 57

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!