29.03.2013 Views

Mathematical Modeling and Simulation for Production of MTBE

Mathematical Modeling and Simulation for Production of MTBE

Mathematical Modeling and Simulation for Production of MTBE

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Ministry <strong>of</strong> Higher Education<br />

And Scientific Research<br />

University <strong>of</strong> Technology<br />

Chemical Engineering Department<br />

MATHEMATICAL MODELING AND<br />

SIMULATION FOR PRODUCTION OF <strong>MTBE</strong><br />

BY REACTIVE DISTILLATION<br />

A Thesis<br />

Submitted To The<br />

Department <strong>of</strong> Chemical Engineering <strong>of</strong> the University <strong>of</strong><br />

Technology in a Partial Fulfillment <strong>of</strong> the Requirements <strong>for</strong> the<br />

Degree <strong>of</strong> Master <strong>of</strong> Science in Chemical Engineering<br />

By<br />

Mohammed Z. Mohammed<br />

B.Sc. in Chemical Engineering, 2003<br />

Supervised by<br />

Dr. Zaidoon M. Shakoor<br />

February / 2009


ﻰﻟﺇ ﺔﻣﺪﻘﻣ ﺓﺡﻭﺮﻁﺍ<br />

ﺕﺎﺒﻠﻄﺘﻣ ﻦﻣ ءﺰﺟ ﻲﻫﻭ ﺔﻴﺟﻮﻟﻮﻨﻜﺘﻟﺍ ﺔﻌﻣﺎﺠﻟﺍ / ﺔﻳﻭﺎﻴﻤﻴﻜﻟﺍ ﺔﺳﺪﻨﻬﻟﺍ ﻢﺴﻗ<br />

ﺔﻳﻭﺎﻴﻤﻴﻜﻟﺍ ﺔﺳﺪﻨﻬﻟﺍ ﻡﻮﻠﻋ ﻲﻓ ﺮﻴﺘﺴﺟﺎﻤﻟﺍ ﺔﺟﺭﺩ ﻞﻴﻧ<br />

ﻞﺒﻗ ﻦﻣ<br />

ﺪﻤﺤﻣ ﻞﻣﺍﺯ ﺪﻤﺤﻣ<br />

( 2003 ﺱﻮﻳﺭﻮﻟﺍﻚﺑ<br />

)<br />

ﺭﻮﺘﻛﺪﻟﺍ ﻑﺍﺮﺷﺈﺑ<br />

ﺭﻮﻜﺷ ﻦﺴﺤﻣ ﻥﻭﺪﻳﺯ<br />

2009 / ﻁﺎﺒﺷ<br />

ﻲﻤﻠﻌﻟ ﺚﺤﺒﻟا و ﻲﻟﺎﻌﻟا<br />

ﺔﻴﺟﻮﻟﻮﻨﻜﺘﻟا ﺔﻌﻣﺎﺠﻟا<br />

ﻢﻴﻠﻌﺘﻟا ةرازو<br />

ﺔﻳوﺎﻴﻤﻴﻜﻟا<br />

ﺔﺳﺪﻨﻬﻟا ﻢﺴﻗ<br />

ﻲﺛﻼﺛ ﻞﻴﺜﻣ ﺝﺎﺘﻧﻹ ﺓﺎﻛﺎﺤﻤﻟﺍﻭ ﻲﺿﺎﻳﺮﻟﺍ ﻞﻳﺩﻮﻤﻟﺍ<br />

ﻲﻠﻋﺎﻔﺘﻟﺍ<br />

ﺮﻴﻄﻘﺘﻟﺍ ﺔﻄﺳﺍﻮﺑ ﺮﺜﻳﺍ ﻞﻴﺗﻮﻴﺑ


ﻪـﻠﻟﺍ ﻢﺴﺑ<br />

ﻢﻴﺣﺮﻟﺍ ﻦﻤﺣﺮﻟﺍ<br />

ﻪـﻠﻟﺍ ﻊﻓﺮﻳ<br />

ﺍﻮﻨﻣﺍ ﻦﻳﺬﻟﺍ<br />

ﻦﻳﺬﻟﺍﻭ ﻢﻜﻨﻣ<br />

ﻢﻠﻌﻟﺍ ﺍﻮﺗﻭﺃ<br />

ﻪـﻠﻟﺍﻭ ﺕﺎﺟﺭﺩ<br />

ﻥﻮﻠﻤﻌﺗ ﺎﻤﺑ<br />

ــــــــــــﻴﺒﺧ<br />


ﺔﻟﺩﺎﺠﻤﻟﺍ<br />

ﻪــﻠﻟﺍ ﻕﺪﺻ<br />

ﻢﻴﻈﻌﻟﺍ


Dedicated to<br />

My father <strong>and</strong> my mother.<br />

My wife, daughter, <strong>and</strong> my son.<br />

My brothers <strong>and</strong> sisters<br />

My supervisor<br />

All my friends<br />

Mohammed


Acknowledgment<br />

Praise be to Allah Who gave me ability to achieve this research.<br />

I wish to express my sincere gratitude, appreciation <strong>and</strong><br />

thankfulness to my supervisor. Dr. Zaidoon M. Shakoor <strong>for</strong> his<br />

kind supervision <strong>and</strong> continuous advice during the research.<br />

My deep thanks go to Dr. Jamal M. Ali, The Active Head <strong>of</strong><br />

Chemical Engineering Department, <strong>for</strong> his encouragement <strong>and</strong><br />

providing facilities through out this work, to thank Dr. Nidhal M.<br />

Al-Azzawi <strong>for</strong> her assistance.<br />

I wish to thank Dr .Khalid A. Sukker <strong>for</strong> his assistance.<br />

I would also like to express my acknowledgment to the staff <strong>of</strong><br />

Chemical Engineering Department <strong>of</strong> the University <strong>of</strong><br />

Technology. Also great thanks are extended to the staff <strong>of</strong> the<br />

Central Library in the University.<br />

To all that helped me in one way or another, I wish to express<br />

my thanks.<br />

And finally my special thanks go to my wife <strong>for</strong> her support<br />

<strong>and</strong> encouragement.<br />

I<br />

Mohammed


Certificate <strong>of</strong> Supervisor<br />

I certify that this thesis has been concluded under my supervision in a<br />

partial fulfillment <strong>of</strong> the requirements <strong>for</strong> the Degree <strong>of</strong> Master <strong>of</strong> Science in<br />

Chemical Engineering at the Chemical Engineering Department, University<br />

<strong>of</strong> Technology.<br />

Signature:<br />

Name:<br />

Date: / 3/ 2009<br />

(Supervisor)<br />

In view <strong>of</strong> the available recommendations, I <strong>for</strong>ward this thesis <strong>for</strong><br />

debate by the Examining Committee.<br />

Signature:<br />

Name: Dr. Khalid A. Sukkar<br />

Assistant Pr<strong>of</strong>essor Head <strong>of</strong> Post<br />

Graduate Committee Department <strong>of</strong><br />

Chemical Engineering<br />

Date: / 3/ 2009


Certificate <strong>of</strong> Examiners<br />

We certify, as an Examining Committee, that we have read this thesis<br />

entitled " <strong>Mathematical</strong> <strong>Modeling</strong> <strong>and</strong> <strong>Simulation</strong> <strong>for</strong> <strong>Production</strong> <strong>of</strong> <strong>MTBE</strong><br />

by Reactive Distillation ", examined the student Mohammed Z. Mohammed<br />

in its content <strong>and</strong> found that the thesis meets the st<strong>and</strong>ard <strong>for</strong> the degree <strong>of</strong><br />

Master <strong>of</strong> Science in Chemical Engineering.<br />

Signature:<br />

Name: Dr. Zaidoon M. Shakoor<br />

Data: / 3/ 2009<br />

(supervisor)<br />

Signature:<br />

Name: Assistant Pr<strong>of</strong>essor Dr. Mohammed F. Abed<br />

Data: / 3 / 2009<br />

(Member)<br />

Signature:<br />

Name Assistant Pr<strong>of</strong>essor Dr. Shada A. Samih<br />

Data: / / 2009<br />

(Member)<br />

Signature:<br />

Name: Dr. Abbas H. Slaimon<br />

Data: /3/ 2009<br />

(Chairman)<br />

Approved by the Acting Head <strong>of</strong> the Chemical Engineering Department<br />

Signature:<br />

Name: Dr. Jamal M. Ali<br />

Head <strong>of</strong> Chemical Engineering Department<br />

Data: / 3 / 2009


Certification<br />

I certify that this thesis entitled (<strong>Mathematical</strong> <strong>Modeling</strong> <strong>and</strong><br />

<strong>Simulation</strong> <strong>for</strong> <strong>Production</strong> <strong>of</strong> <strong>MTBE</strong> by Reactive Distillation) was prepared<br />

under my linguistic supervision. It was amended to meet the style <strong>of</strong> English<br />

Language.<br />

Signature:<br />

Name: Eyad Shamselden<br />

Date: / 3/ 2009


ABSTRACT<br />

In this thesis, theoretical investigations have been made concerning reactive<br />

distillation columns. The detailed steady state modeling, <strong>and</strong> simulation are made<br />

<strong>for</strong> two important oxygenates produced by reactive distillation columns, they are<br />

methyl tertiary butyl ether (<strong>MTBE</strong>) <strong>and</strong> ethyl tertiary butyl ether(ETBE).<br />

This study was per<strong>for</strong>med through several steps in order to construct <strong>and</strong> develop<br />

an improved steady state model based<br />

on recent manner <strong>of</strong> MESH equations ( Mass balance, Equilibrium, Summation<br />

<strong>of</strong> composition, <strong>and</strong> Heat balance) the reaction portion added to the mass <strong>and</strong><br />

energy balance.<br />

This model was developed to study the behavior <strong>of</strong> multi component non<br />

ideal mixture in reactive distillation. The set <strong>of</strong> algebraic equations governing<br />

steady state composition pr<strong>of</strong>ile in a reactive distillation column are solved by<br />

using Gausses elimination method.<br />

The developed model can be employed to simulate the reactive distillation<br />

operation. This model required the in advance specification <strong>of</strong> number <strong>of</strong> reactive<br />

<strong>and</strong> non-reactive trays, the reflux ratio, composition <strong>and</strong> flow rates <strong>of</strong> the feed,<br />

<strong>and</strong> heat duty to determine the result <strong>of</strong> the following:<br />

• The liquid <strong>and</strong> vapor composition pr<strong>of</strong>iles.<br />

• The temperature pr<strong>of</strong>ile.<br />

• The top product (distillate) flow rate, temperature, <strong>and</strong> composition.<br />

• The bottom product (reboiler) flow rate, temperature, <strong>and</strong> composition.<br />

• The reaction pr<strong>of</strong>iles <strong>for</strong> reactive trays.<br />

An analysis is per<strong>for</strong>med in order to show the impact on the reactive<br />

separation system by adding or subtracting either non-reactive or reactive<br />

separation stages, keeping constant number <strong>of</strong> total stages, <strong>and</strong> other variables<br />

such as feed ratio, catalyst weight per tray, location <strong>of</strong> feed, <strong>and</strong> reflux ratio.<br />

II


In the <strong>MTBE</strong> case study, when reflux ratio equal to seven, 1100kg <strong>of</strong> catalyst<br />

per tray, 8 reactive trays, <strong>and</strong> 10 th <strong>and</strong> 11 th<br />

isobutene lead to get the best purity, yield, <strong>and</strong> conversion.<br />

The validity <strong>of</strong> the developed steady state equilibrium model had been<br />

evaluated by comparing its predictions with another theoretical work.<br />

III<br />

feed locations <strong>for</strong> methanol <strong>and</strong><br />

The residue curve map(RCM) plotted <strong>for</strong> the system that do not react then<br />

<strong>for</strong> reactive system, these non reactive RCM <strong>and</strong> reactive RCM have studied <strong>for</strong><br />

both oxygenates (<strong>MTBE</strong>, <strong>and</strong> ETBE).<br />

The calculations <strong>and</strong> simulations in this thesis were obtained by using<br />

MATLAB environment, version 7.<br />

This simulation model can be adapted to any reactive distillation application.


Contents<br />

IV<br />

Contents<br />

Page No.<br />

Acknowledgment .......................................................................................... I<br />

Abstract ........................................................................................................ II<br />

Contents ..................................................................................................... IV<br />

Nomenclature ............................................................................................ VIII<br />

Greek Symbols ............................................................................................ IX<br />

List <strong>of</strong> Abbreviations ................................................................................... X<br />

Chapter One: Introduction<br />

1.1 Introduction .............................................................................................. 1<br />

1.2 Separation process ................................................................................... 1<br />

1.3 Reactive distillation simulation ............................................................... 3<br />

1.4 Residue curve map ................................................................................... 3<br />

1.5 Scope <strong>of</strong> the present work ........................................................................ 4<br />

Chapter Two: Literature Survey<br />

2.1 Introduction ............................................................................................. 5<br />

2.2 Application <strong>of</strong> reactive distillation .......................................................... 7<br />

2.3 Advantages <strong>and</strong> constraints ...................................................................... 9<br />

2.3.1 The advantages ...................................................................................... 9<br />

2.3.2 The constraints .................................................................................... 14


V<br />

Contents<br />

2.4 The stage models. ................................................................................. 16<br />

2.4.1 The equilibrium model....................................................................... 20<br />

2.4.2 Non equilibrium or Rate-Based Model .............................................. 23<br />

2.4.3 Comparison <strong>of</strong> equilibrium <strong>and</strong> non equilibrium models................. 25<br />

2.5. Gasoline additives (Oxygenates) ......................................................... 29<br />

2.5.1 Methyl tertiary butyl ether .................................................................. 29<br />

2.5.2 Ethyl tertiary butyl ether ..................................................................... 30<br />

2.6 VLE <strong>for</strong> multi-component distillation .................................................. 31<br />

2.6.1 Thermodynamic models ..................................................................... 32<br />

2.6.2 Ideal vapor liquid equilibrium ............................................................ 33<br />

2.6.3 Non ideal vapor liquid equilibrium ..................................................... 34<br />

2.6.4 Calculation <strong>of</strong> activity coefficient ...................................................... 34<br />

2.6. 4.1 Wilson model,1962 ......................................................................... 35<br />

2.6.4.2 NRTL model ,1986 .......................................................................... 35<br />

2.6.4.3 UNIQUAC model,1975 .......................................................................... 35<br />

2.6.4.4 UNIFAC Model,1975 ............................................................................. 36<br />

2.7 Residue curve map (RCM) .................................................................. 38<br />

2.7.1 Residue curve map plot ..................................................................... 41<br />

2.7.2 Distillation regions <strong>and</strong> boundaries ................................................... 43<br />

2.7.3 Residue curve map with reaction (kinetically controlled) ................ 43<br />

Chapter Three: <strong>Modeling</strong> & <strong>Simulation</strong><br />

3.1 Introduction ............................................................................................ 46<br />

3.2 Steady state modeling <strong>of</strong> continuous packed RD column ..................... 47


VI<br />

Contents<br />

3.2.1 Model assumptions ....................................................................... 47<br />

3.2.2 Estimation <strong>of</strong> model parameters ................................................... 48<br />

3.2.2.a. Equilibrium relations ................................................... 48<br />

3.2.2.b. Antoine model ............................................................. 49<br />

3.2.2.c. Bubble point calculation ............................................ 49<br />

3.2.2.d Enthalpy estimation ..................................................... 50<br />

3.3 Steady State Model equations ................................................................ 52<br />

3.3.1 Non reactive trays ......................................................................... 52<br />

3.3.2 Reactive trays ................................................................................ 53<br />

3.3.3 Condenser ..................................................................................... 53<br />

3.3.4 Reboiler ......................................................................................... 54<br />

3.4 Degree <strong>of</strong> freedom ............................................................................... 55<br />

3.5 Case studies .......................................................................................... 57<br />

3.5.1 Case study one .............................................................................. 57<br />

3.5.2 Case study two .............................................................................. 59<br />

3.6 <strong>Simulation</strong> by MATLAB ....................................................................... 62<br />

Chapter Four: Results <strong>and</strong> Discussion<br />

4.1 Introduction ............................................................................................ 64<br />

4.2 Model validity ........................................................................................ 64<br />

4.3 Effect <strong>of</strong> reactive tray change ................................................................ 68<br />

4.4 Effect <strong>of</strong> Variation <strong>of</strong> Feed Location ..................................................... 71<br />

4.5 Effect <strong>of</strong> feed ratio ................................................................................. 72


VII<br />

Contents<br />

4.6 Catalyst effects ............................................................................. 74<br />

4.7 Effect <strong>of</strong> reflux ratio ......................................................................... 75<br />

4.8 General effects investigation <strong>for</strong> ETBE case study ........................ 85<br />

4.9 Non reacting residue curve map ...................................................... 89<br />

4.10 Kinetically controlled residue curve map ...................................... 92<br />

Chapter Five: Conclusions <strong>and</strong> Recommendations<br />

5.1 Conclusions .......................................................................................... 100<br />

5.2 Recommendations <strong>for</strong> Future Work .................................................... 101<br />

References<br />

Appendixes<br />

Appendix (A): Sample <strong>of</strong> Calculation <strong>of</strong> Real Enthalpy<br />

Appendix (B): Physical Properties <strong>of</strong> Pure Components<br />

Appendix (C): Activity Coefficient Models<br />

Appendix (D): Model Data<br />

Appendix (E): Results <strong>of</strong> Models


Nomenclature<br />

Symbol Definition Units<br />

A, B,<br />

<strong>and</strong> C<br />

Antoine’s coefficient [−]<br />

A , B ,<br />

<strong>and</strong> C<br />

Ideal vapor enthalpy coefficient [−]<br />

a Activity [−]<br />

a<br />

ij<br />

a ,b , c ,<br />

<strong>and</strong> d<br />

Non-temperature dependent energy parameter<br />

between components i <strong>and</strong> j<br />

VIII<br />

[J/mol]<br />

enthalpy coefficient [−]<br />

bij Temperature dependent energy parameter<br />

between components i <strong>and</strong> j<br />

[J/mol. k]<br />

c Number <strong>of</strong> component [−]<br />

Cp Specific heat <strong>of</strong> a component [kJ/kg. ْ◌ C]<br />

Da Damkohler number ( H rref. /V) [−]<br />

2<br />

Ð Maxwell Stefan diffusivity [mP P/s]<br />

D Distillate flow rate [ mol/hr]<br />

F Feed molar flow rate [mol/hr]<br />

f Fugacity [pa]<br />

h Liquid phase enthalpy [J/mol]<br />

H Vapor phase enthalpy [J/mol]<br />

H molar holdup [ mol/hr]<br />

I Component identification number [-]<br />

J Stage identification number [-]<br />

K thermodynamic equilibrium coefficient<br />

[−]<br />

L 1BMolar flow rate <strong>of</strong> liquid [mol/hr]<br />

m Material balance summation [mol]<br />

Mwi Molecular weight <strong>of</strong> component i [mol/kg]<br />

N Interfacial mass transfer [mol/hr]<br />

Number <strong>of</strong> components <strong>of</strong> a mixture<br />

[−]<br />

NC<br />

n<br />

Pt<br />

Number <strong>of</strong> trays<br />

Total pressure [pa]<br />

[−]


Symbol Definition Units<br />

Pi<br />

Q<br />

R<br />

vapor pressure <strong>of</strong> pure component [pa]<br />

Rate <strong>of</strong> heat transfer [Watt]<br />

Universal gas constant [J/mol. K ]<br />

Rr Dimensionless reaction rate (r/rref). [- ]<br />

RR<br />

Reflux ratio [- ]<br />

r Reaction rate [mol/s]<br />

S<br />

Side stream mole flow rate [mol/hr]<br />

T Temperature [k]<br />

t 2Btime hr<br />

V 3BMolar flow rate <strong>of</strong> vapor [mol/hr]<br />

X Liquid phase mole fraction [−]<br />

Y Vapor phase mole fraction [−]<br />

Subscript Symbols<br />

Symbol Definition<br />

av Average value<br />

B Bottom product<br />

C Condenser<br />

c Critical value<br />

D Distillate product<br />

F Feed<br />

i Component i<br />

Li Component i in liquid phase<br />

Vi Component i in vapor phase<br />

j Tray<br />

n Segment (stage) index<br />

IX


Greek Symbols<br />

Symbol Definition Units<br />

α Vapor activity coefficient [ _ ]<br />

γ Liquid activity coefficient [ _ ]<br />

ΔE The error [ o C]<br />

ε Reaction volume [m 3 ]<br />

ξ Time dimensionless [−]<br />

λ Latent heat [J/mole]<br />

Λ Parameter in Wilson model [−]<br />

υ Stoechiometric coefficient <strong>of</strong> component [−]<br />

ρ Density [kg/m 3 ]<br />

Φ Fugacity coefficient [−]<br />

List <strong>of</strong> Abbreviations<br />

Symbol Definition<br />

EFAO Europe Fuel Associated Organization<br />

EQ Equilibrium<br />

ETBE Ethyl tertiary butyl ether<br />

IB Isobutene<br />

MATLAB Matrix Laboratory<br />

MESH (Material balance, Equilibrium, Summation <strong>of</strong> mole, Heat balance)<br />

<strong>MTBE</strong> Methyl tertiary butyl ether<br />

NB Normal butane<br />

NEQ Non equilibrium<br />

RCM Residue curve map<br />

RD Reactive distillation<br />

TAME Tertiary amyl methyl ether<br />

VLE Vapor Liquid Equilibrium<br />

X


Chapter One Introduction<br />

1.1 INTRODUCTION:<br />

Chapter One<br />

Introduction<br />

Distillation is the most important separation method in refinery <strong>and</strong><br />

chemical industry. In terms <strong>of</strong> installed capacity <strong>and</strong> energy usage, the<br />

commitment <strong>of</strong> the process industry to this unit operation is enormous. In USA,<br />

<strong>for</strong> example, the energy consumed by distillation is equivelent to about 7.5 % <strong>of</strong><br />

the U.S. oil consumption (Kimmo, 1998). Reactive distillation (RD) is a<br />

combination <strong>of</strong> separation <strong>and</strong> reaction in a single vessel, the combination <strong>of</strong><br />

reaction <strong>and</strong> distillation is an old idea that has received renewed attention<br />

recently. There are two main types <strong>of</strong> reactive distillation, batch <strong>and</strong> continuous,<br />

the continuous RD is largerly used <strong>for</strong> production scale, constant product<br />

composition, <strong>and</strong> continuous feed provision.<br />

1.2 SEPARATION PROCESS:<br />

The driving <strong>for</strong>ce <strong>for</strong> any distillation process is the difference between the<br />

liquid <strong>and</strong> vapor composition in the mixture. When the liquid <strong>and</strong> the vapor have<br />

the same composition at a certain point, this mixture is called azeotropic mixture<br />

<strong>and</strong> this point is called azeotropic point. There<strong>for</strong>e there is no driving <strong>for</strong>ce <strong>for</strong><br />

separation at this point, <strong>and</strong> the azeotropic mixtures cannot be separated by<br />

conventional distillation technique.<br />

The conventional distillation can produce azeotropic products, which must<br />

be separated by using other methods. There are several enhanced distillation<br />

methods which can be used to separate azeotropic mixtures, such as<br />

(Perry,1997; Seader, 2006) :<br />

1


Chapter One Introduction<br />

1. Pressure swing distillation.<br />

2. Salted distillation.<br />

3. Extractive distillation.<br />

4. Azeotropic distillation.<br />

5. Reactive distillation.<br />

As shown above the presence <strong>of</strong> the azeotrope in a mixture makes<br />

separation by conventional distillation difficult. Azeotropes can <strong>for</strong>m distillation<br />

regions, which limit the separation. When reacive distillation process is used,<br />

improvements can be obtained by really integrating the tasks, on the following<br />

items:<br />

• On the reaction: because there is an equilibrium displacement, since the<br />

products are being withdrawn.<br />

• On the separation: because <strong>of</strong> the changes in the driving <strong>for</strong>ce <strong>for</strong> mass<br />

transfer due to the reaction.<br />

There are several applications <strong>of</strong> reactive distillation to separate azeotropic<br />

mixtures in industry, <strong>for</strong> example production <strong>of</strong> octane boosters (<strong>MTBE</strong>,<br />

TAME, <strong>and</strong> ETBE)<br />

2


Chapter One Introduction<br />

1.3 REACTIVE DISTILLATION SIMULATION:<br />

The design <strong>and</strong> operation issues <strong>for</strong> reactive distillation (RD) system are<br />

considerably more complex than those involved <strong>for</strong> either conventional reactor<br />

or conventional distillation column. The introduction <strong>of</strong> an in-situ separation<br />

function within the reaction zone leads to complex interactions between vapor-<br />

liquid equilibrium, vapor-liquid mass transfer, intra-catalyst diffusion (<strong>for</strong><br />

heterogeneously catalyzed process) <strong>and</strong> chemical kinetics. Such interactions<br />

have been shown to lead to the phenomenon <strong>of</strong> multiple <strong>and</strong> complex dynamics<br />

which have been verified in experimental laboratory <strong>and</strong> pilot plant unit (Isao,<br />

1971). Although rigorous design <strong>of</strong> this column by NEQ stage model is carried<br />

out by Baur <strong>and</strong> Krishna, 2000 the effect <strong>of</strong> various parameters by continuation<br />

analysis has not been investigated <strong>for</strong> this column configuration. <strong>Mathematical</strong><br />

optimization methods are generally very powerful <strong>for</strong> generating <strong>and</strong> evaluating<br />

design alternatives.<br />

1.4<br />

Residue curve is the locus <strong>of</strong> the liquid composition X (t) remaining at<br />

any given time in the still. Residue curve map is a collection <strong>of</strong> liquid residue<br />

curves originating from different initial composition.<br />

Residue curves <strong>and</strong> residue curve maps have been extensively studied <strong>for</strong><br />

over 100 years. Much <strong>of</strong> the literature in this field deals with systems that do not<br />

react. Chemical reactions can influence residue curve maps in some important<br />

ways(Ross T., et. al., 2006). For example, it is known that reactions can lead to<br />

both the appearance <strong>and</strong> disappearance <strong>of</strong> stationary points (azeotropes), <strong>and</strong><br />

that reactive azeotropes can exist even in systems that otherwise would be<br />

considered thermodynamically ideal. It follows that chemical reactions can<br />

influence the very existence <strong>of</strong> separation boundaries <strong>and</strong>, there<strong>for</strong>e, the design<br />

<strong>and</strong> synthesis <strong>of</strong> reactive separation processes. Examples <strong>of</strong> such systems<br />

3


Chapter One Introduction<br />

include four-component systems with a single reaction <strong>and</strong> quarterly systems<br />

with a kinetically controlled reaction which are taken <strong>for</strong> ETBE <strong>and</strong> <strong>MTBE</strong>.<br />

1.5 SCOPE OF THIS WORK:<br />

The main objectives <strong>of</strong> the present study include the following:<br />

1. Studying the feasibility <strong>of</strong> the reactive distillation due to study <strong>of</strong> the non<br />

reacting residue curve map <strong>and</strong> then with reaction <strong>for</strong> two oxygenates methyl<br />

tertiary butyl ether (<strong>MTBE</strong>) <strong>and</strong> ethyl tertiary butyl ether (ETBE).<br />

2. Development <strong>of</strong> a steady state model <strong>for</strong> the reactive distillation <strong>of</strong> <strong>MTBE</strong><br />

<strong>and</strong> ETBE.<br />

3. Establishment developed <strong>and</strong> generalized program to solve the model<br />

equations which can be used as a basis <strong>for</strong> reactive distillation design<br />

concepts, by per<strong>for</strong>ming the mass <strong>and</strong> energy balances around the reactive<br />

distillation column.<br />

4. Studying the effects <strong>of</strong> process variables, <strong>and</strong> selection <strong>of</strong> the best values <strong>of</strong><br />

variables <strong>of</strong> <strong>MTBE</strong> <strong>and</strong> ETBE produced by reactive distillation.<br />

RESIDUE CURVE MAP:<br />

4


Chapter Two Literature Survey<br />

2.1 INTRODUCTION:<br />

Chapter Two<br />

Literature Survey<br />

In recent years, increasing attention has been directed towards reactive<br />

distillation process as alternative to conventional processes (reactor <strong>and</strong> then<br />

separation). This has led to development <strong>of</strong> a variety <strong>of</strong> techniques <strong>for</strong> reactive<br />

multistage column; however, in 2005 Cristhain investigated the conceptual <strong>of</strong><br />

reactive distillation (RD) process <strong>and</strong> an attempt is made with this design<br />

strategy to conjugate the strengths <strong>of</strong> graphical <strong>and</strong> optimization-based method.<br />

The authors analyzed several methods available in design <strong>and</strong> operation, <strong>and</strong><br />

they suggested some guidelines to propose a reactive distillation process. These<br />

guidelines are separated in levels, <strong>and</strong> the first level is the feasibility analysis.<br />

Certainly the first important task be<strong>for</strong>e the proposition <strong>of</strong> a feasible separation<br />

scheme is to study the system behavior.<br />

The potential benefits <strong>of</strong> applying RD processes are taxed by significant<br />

complexities in process development <strong>and</strong> design. For reactions that are<br />

irreversible, it is more economical to take the reaction to completion in a reactor<br />

<strong>and</strong> then separate the products in a separate distillation column (Harvey, 2004).<br />

The principles may be illustrated when we look <strong>for</strong> an example process <strong>for</strong> the<br />

production <strong>of</strong> chemical C out <strong>of</strong> A <strong>and</strong> B according the following reaction<br />

scheme:<br />

A + B ↔ C + D<br />

(2.1)<br />

In addition some undesired side reactions are assumed, such as <strong>for</strong> example:<br />

A+ C ↔ E<br />

(2.2)<br />

5


Chapter Two Literature Survey<br />

2 C ↔ F<br />

(2.3)<br />

This reaction can be carried out in a conventional process setup as<br />

sketched on the left side <strong>of</strong> Figure (2.1), the objective is to produce C out <strong>of</strong><br />

reactants A <strong>and</strong> B, thereby making byproduct D. In addition, there are undesired<br />

side <strong>and</strong> consecutive reactions, so that the exit stream <strong>of</strong> the reactor will be a<br />

mixture <strong>of</strong> all components.<br />

A <strong>and</strong> B have to be separated <strong>and</strong> recycled, C has to be separated <strong>and</strong><br />

purified to separation, <strong>and</strong> D, E, <strong>and</strong> F have to be disposed <strong>of</strong>. Normally, this<br />

will require more than the single distillation column that is given in Figure (2.1).<br />

Shown on the right h<strong>and</strong> side <strong>of</strong> Figure (2.1) is a typical setup <strong>for</strong> reactive<br />

distillation column. The reactions will take place in the reactive section.<br />

Figure 2.1 Schematic representation <strong>of</strong> a conventional<br />

<strong>and</strong> reactive distillation process(Around, 1999)<br />

6


Chapter Two Literature Survey<br />

In case <strong>of</strong> a heterogeneous reaction, this section can consist <strong>of</strong> reactive packing<br />

elements but also <strong>of</strong> trays that are covered with a teabag type. For homogeneous<br />

reactions, the location <strong>of</strong> the reactive section is defined by the feed location <strong>of</strong> a<br />

homogeneous liquid catalyst. The non-reactive rectifying <strong>and</strong> stripping section<br />

take care <strong>of</strong> additional product separation. In this kind <strong>of</strong> setup there is in-situ<br />

product removal <strong>of</strong> desired product C, which will pull the equilibrium <strong>of</strong> the<br />

main reaction towards the right h<strong>and</strong> side, thereby increasing the overall<br />

conversion. This way one can overcome a bad equilibrium constant. In addition,<br />

lowering the concentration <strong>of</strong> C due to the in-situ separation will also reduce the<br />

rates <strong>of</strong> side reactions, there will be less conversion <strong>of</strong> C to undesired side<br />

products, <strong>and</strong> this illustrates how reactive distillation may be applied to systems<br />

where selectivity is important.<br />

The non-reactive section in the column play an important role in product<br />

separation <strong>and</strong> reactants recycle. In the ideal case, the non-reactive zones<br />

separate the products from the reactant in such away that the reactants are<br />

automatically flushed back into the reactive zone, while pure products may be<br />

obtained as product stream. The design <strong>and</strong> operation issues <strong>for</strong> reactive<br />

distillation (RD) system are considerable more complex than those involved <strong>for</strong><br />

either conventional reactor or conventional distillation column.<br />

2.2 APPLICATION OF REACTIVE DISTILLATION:<br />

There are a large number <strong>of</strong> processes that have been proposed <strong>for</strong><br />

reactive distillation (Doherty et. al., 1992; Kai, et. al., 2002), but only very few<br />

found industrial application. There are various reasons <strong>for</strong> the lack <strong>of</strong><br />

application, the most important <strong>of</strong> which is that most companies are reluctant to<br />

try something that has been never done be<strong>for</strong>e <strong>and</strong> will rather use proven<br />

technology. In addition, since in reactive distillation all is done in one vessel, the<br />

7


Chapter Two Literature Survey<br />

possibilities <strong>for</strong> control are fairly limited, if a design is, there<strong>for</strong>e, not optimized<br />

be<strong>for</strong>e it is built. The most important application <strong>of</strong> reactive distillation is the<br />

production <strong>of</strong> fuel ethers because the success <strong>of</strong> the <strong>MTBE</strong> process was boosted<br />

by phase out <strong>of</strong> lead based anti-knock agents in gasoline. These octane<br />

enhancers are nowadays mainly replaced by <strong>MTBE</strong> or similar oxygenates like<br />

ethyl tertiary butyl ether (ETBE) <strong>and</strong> tertiary amyl methyl ether (TAME). For<br />

some time, <strong>MTBE</strong> has been the fastest growing chemical (Ainsworth, 1991), <strong>and</strong><br />

over the last two decade a considerable number <strong>of</strong> plants <strong>for</strong> production <strong>of</strong> these<br />

oxygenate were built, many based on reactive distillation technology.<br />

The concept <strong>of</strong> combining these two important functions <strong>for</strong> enhancement<br />

<strong>of</strong> overall per<strong>for</strong>mance is not new in the chemical engineering world. The<br />

recovery <strong>of</strong> ammonia in the Solvay process from soda ash <strong>of</strong> the 1860s may be<br />

cited as probably the first commercial application <strong>of</strong> reactive distillation (Kai, et.<br />

al., 2002). Many old processes have made use <strong>of</strong> this concept. The production <strong>of</strong><br />

propylene oxide, ethylene dichloride, sodium methoxide, <strong>and</strong> various esters <strong>of</strong><br />

carboxylic acids are some examples <strong>of</strong> processes in which RD has found a place<br />

in some <strong>for</strong>m or another, without attracting attention to a different class <strong>of</strong><br />

operation. It was not until the 1980s, when the enormous dem<strong>and</strong> <strong>for</strong> <strong>MTBE</strong><br />

(methyl tertiary butyl ether), that the process gained separate status as a<br />

promising multifunctional reactor <strong>and</strong> separator. Table (2-1) represent a<br />

different benefits <strong>of</strong> industrial important reactions either implemented on<br />

commercial scale or have been investigated on laboratory scale, using Reactive<br />

Distillation.<br />

8


Chapter Two Literature Survey<br />

Table (2.1) Examples <strong>of</strong> reactive distillation<br />

Reaction The benefit References<br />

methanol + isobutene ↔<strong>MTBE</strong> To enhance the conversion Baur et.al. , 2000<br />

<strong>of</strong> isobutene, achieve Around,1999<br />

separation if i-C4 from<br />

Cristhain.P,2008<br />

C4 stream <strong>and</strong>, decrease or<br />

eliminate side reaction<br />

ethanol +isobutene ↔ETBE<br />

acetaldehyde +acetic anhydride<br />

↔vinyl acetate<br />

benzene + propylene ↔cumene<br />

To utilize bio-ethanol <strong>and</strong><br />

surpass equilibrium<br />

conversion<br />

To improve safe process<br />

with high purity.<br />

To use <strong>of</strong> exothermic <strong>of</strong><br />

reaction, high purity<br />

cumene, <strong>and</strong> <strong>for</strong> much<br />

cheaper.<br />

n-paraffin ↔ iso-paraffin To increase the octane<br />

value <strong>of</strong> paraffin stock<br />

methanol from synthesis gas For better temperature<br />

control <strong>and</strong> improve yield<br />

methanol /dimethyl ether+ CO<br />

↔ acetic acid<br />

Hexamethylene diamine + adipic<br />

acid ↔nylon 6, 6 prepolymer<br />

<strong>Production</strong> <strong>of</strong> high purity<br />

acetic acid<br />

To enhance the conversion<br />

<strong>and</strong> good quality polymer<br />

2.3 ADVANTGES AND CONSTRAINTS.<br />

2.3.1 The Advantages:<br />

9<br />

Al-Arfaj M. A. et.<br />

al., 2002<br />

EFAO, 2006<br />

Zoeller J.R. ,et.<br />

al.,1998<br />

Kai et. al., 2002<br />

Lebas E.,et. al.<br />

1999<br />

Watanbe R., et.<br />

al. 1997<br />

Kai, et. al., 2002<br />

Doherty M.F., et.<br />

al. 1987<br />

The advantages <strong>and</strong> constraints in reactive distillation are specific to each<br />

system. The advantages <strong>of</strong> reactive distillation in general are:<br />

1. Chemical equilibrium limitation can be overcome, an equilibrium reaction<br />

can be driven to completion by separation <strong>of</strong> products from the reacting<br />

mixture (i.e., reaction conversion can approach 100%). Higher conversions<br />

are obtained due to shifting <strong>of</strong> the equilibrium to the right. This is


Chapter Two Literature Survey<br />

exemplified by the production <strong>of</strong> methyl acetate. ( Stankiewicz, 2003; Agreda<br />

et. al., 1990) <strong>and</strong> tertiary amyl ether (Bravo et. al., 1993).<br />

2. Higher selectivity can be achieved, elimination <strong>of</strong> possible side reaction by<br />

removal <strong>of</strong> the product from the reaction zone. This can serve to increase<br />

selectivity. In some applications particularly in cases when thermodynamic<br />

reaction prevents high conversion the coupling <strong>of</strong> distillation to remove<br />

reaction product from reaction zone can improve the overall conversion <strong>and</strong><br />

selectivity significantly, <strong>for</strong> example in the production <strong>of</strong> propylene oxide<br />

from propylene chlorohydrins (Carra et. al., 1979 ) <strong>and</strong> <strong>for</strong> alkylation <strong>of</strong><br />

benzene to produce cumene (Shoemaker <strong>and</strong> Jones, 1987).<br />

3. Improvement quantity <strong>of</strong> used materials. For example, it may be possible to<br />

operate with a reduction in the amount <strong>of</strong> excess reactant fed to the reactor.<br />

Normally feeding one reactant in excess is used to shift the equilibrium<br />

towards the production <strong>of</strong> product. With reactive distillation, this shift is<br />

attained through removal <strong>of</strong> the reaction products from reaction phase. Also<br />

elimination by-product <strong>for</strong>mation may allow the use <strong>of</strong> lesser quantities <strong>of</strong><br />

reactant. It may also be possible to avoid auxiliary solvent. In the production<br />

<strong>of</strong> <strong>MTBE</strong>, in industrial practice when conventional reactor used, a 10%<br />

excess <strong>of</strong> methanol is used in order to reduce mainly isobutylene dimmers<br />

by-product <strong>for</strong>mation. (Elkanzi E. M, 1995). The excess <strong>of</strong> methanol causes<br />

some problems in separating the product <strong>MTBE</strong> from non reacted reactant,<br />

because <strong>MTBE</strong> <strong>for</strong>ms azeotropes with methanol <strong>and</strong> i-C4. The separation task<br />

is there<strong>for</strong>e difficult. While <strong>MTBE</strong> is obtained with high purity from feed<br />

equimolar quantities <strong>of</strong> methanol <strong>and</strong> i-C4 when reactive distillation is used,<br />

because this scheme allows <strong>for</strong> "reacting away" the azeotropes (Taylor R. <strong>and</strong><br />

Krishna ,2000). Figurers (2.2) <strong>and</strong> (2.3) show <strong>MTBE</strong> production by reactive<br />

distillation <strong>and</strong> conventional distillation respectively.<br />

10


Chapter Two Literature Survey<br />

Figure(2-2) Processing schemes <strong>for</strong> the etherification reaction<br />

MeOH +<br />

IB ↔ <strong>MTBE</strong><br />

11


Chapter Two Literature Survey<br />

12<br />

Figure(2-3) Conventional route <strong>for</strong> the synthesis <strong>of</strong> <strong>MTBE</strong>: two stage <strong>MTBE</strong> process: R01: tubula<br />

reactor; R02-R03: adiabatic reactors; HX: heat exchanger; M: mixer; D: divider; S01-S02: distillation<br />

towers (adapted from Peters et al. (2000)).


Chapter Two Literature Survey<br />

4. The heat <strong>of</strong> reaction can be used in-situ <strong>for</strong> distillation, saving associated<br />

energy costs, through use <strong>of</strong> energy released by exothermic reaction <strong>for</strong><br />

vaporization. This reduces the reboiler heat duty which is supplied normally<br />

by steam. Benefits <strong>of</strong> heat integration are obtained because the heat generated<br />

in chemical reaction is used <strong>for</strong> vaporization, this particularly advantageous<br />

<strong>for</strong> situation involving heat <strong>of</strong> reaction such the hydration <strong>of</strong> ethylene oxide<br />

(Circ et. al., 1994).<br />

5. Reduction <strong>of</strong> hotspot, because the liquid vaporization provides a sink <strong>for</strong><br />

thermal energy. This is beneficial in, <strong>for</strong> example, the hydrolysis <strong>of</strong> ethylene<br />

oxide to ethylene glycol (Ciric et. al.,1994).<br />

Increasing process efficiently <strong>and</strong> reducing <strong>of</strong> investment <strong>and</strong> operational<br />

cost are direct result <strong>of</strong> this approach (Cristhain, et. al., 2008).<br />

Effecting distillation <strong>and</strong> reaction simultaneously reduces the capital cost<br />

<strong>and</strong> includes benefits such as reduction <strong>of</strong> recycle, optimization <strong>of</strong> separation,<br />

lower requirements <strong>of</strong> pump, instrument <strong>and</strong> piping.<br />

The most spectacular is in production <strong>of</strong> methyl acetate, the traditional<br />

process uses one reactor <strong>and</strong> nine distillation columns (Taylor R. <strong>and</strong> Krishna,<br />

2000). When reactive distillation is used, only one reactive distillation column is<br />

needed. The conventional <strong>and</strong> reactive distillation <strong>of</strong> methyl acetate are shown in<br />

Figure (2.4.a) <strong>and</strong> Figure (2.4.b) respectively.<br />

13


Chapter Two Literature Survey<br />

Figure(2-4) Processing schemes <strong>for</strong> the esterification reaction<br />

MeOH + AcOH ↔ MeOAc + H 2O<br />

(a) conventional processing scheme consisting <strong>of</strong> one reactor followed by<br />

nine distillation columns. (b) the reactive distillation configuration<br />

(Taylor R. <strong>and</strong> Krishna R., 1985).<br />

2.3.2 The Constraints:<br />

The constraints on using reactive distillation are:<br />

1. Reactive distillation is not suitable <strong>for</strong> every process where reaction <strong>and</strong><br />

separation steps occur. Operating conditions, such as pressure <strong>and</strong><br />

temperature <strong>of</strong> reactive <strong>and</strong> separation process <strong>and</strong> perhaps other<br />

requirement, must overlap in order to assure the feasibility <strong>of</strong> combined<br />

process. In some processing the optimum conditions <strong>of</strong> temperature <strong>and</strong><br />

pressure <strong>for</strong> distillation may be far from optimal condition <strong>for</strong> reaction <strong>and</strong><br />

vice versa. This limitation can be overcome by fixing adequate operating<br />

conditions in the cases where this is possible.<br />

14


Chapter Two Literature Survey<br />

2. Suitable volatilities <strong>of</strong> reactants <strong>and</strong> products to keep high concentration <strong>of</strong><br />

reactant in reaction zone (Seader, 2006) gives three cases ideal <strong>for</strong> reactive<br />

distillation.<br />

i. A R or A 2R , R is more volatile than A<br />

ii. A R or A 2R , A is more volatile than R<br />

iii. 2A R+S or A+B R+S, A <strong>and</strong> B are intermediate in<br />

volatility to R <strong>and</strong> S, R is the most volatile<br />

3. Reaction may <strong>for</strong>m "reactive azeotropes ". these azeotropes are included by<br />

the reaction affecting the separation.<br />

4. Difficulties in providing proper residence time characteristics. If the residence<br />

time <strong>for</strong> the reaction is long, it may require a large column size <strong>and</strong> a large<br />

hold-up leading to the process becoming uneconomical compared with<br />

st<strong>and</strong>ard separate reactor <strong>and</strong> distillation column setup (Neil E Small, 2004).<br />

5. Scale up to large flows. It is difficult to design RD process <strong>for</strong> very large flow<br />

rates because <strong>of</strong> liquid distribution problems in packed RD columns.<br />

6. Although RD process intensification allows <strong>for</strong> saving cost, in return, control<br />

issues are more complex than conventional schemes are.<br />

7. A very stable catalyst is required <strong>for</strong> heterogeneous system. Catalyst<br />

deactivation may have a marked effect on column per<strong>for</strong>mance <strong>and</strong> is not<br />

easily overcome.<br />

However, some <strong>of</strong> above the limitations may be circumvented by using reactive<br />

extraction instead <strong>of</strong> reactive distillation.<br />

15


Chapter Two Literature Survey<br />

2.4 THE STAGE MODELS:<br />

A reactive distillation problem can be studied using different approaches<br />

including: feasibility, simulation, modeling, design <strong>and</strong> experimental studies in<br />

the laboratory <strong>and</strong> the pilot plant. A combination <strong>of</strong> all <strong>of</strong> these methods gives<br />

rise to the most accurate solution to the problem. One very important aspect <strong>of</strong><br />

predicting the behavior in these systems is the model used to design <strong>and</strong> simulate<br />

the reactive distillation process. An effective way <strong>of</strong> decomposing the modeling<br />

aspects <strong>of</strong> reactive distillation involves the following classification <strong>of</strong> the models<br />

existing <strong>for</strong> distillation with reaction (Baur, 2000):<br />

I. Steady-state equilibrium stage model.<br />

II. Dynamic equilibrium stage model.<br />

III. Steady-state non-equilibrium stage model;<br />

IV. Dynamic non-equilibrium stage model;<br />

V. Steady-state non-equilibrium cell model, that accounts <strong>for</strong> staging <strong>of</strong> the<br />

vapor <strong>and</strong> liquid phases inside the column.<br />

Two primary approaches available in the literature <strong>for</strong> modeling reactive<br />

distillation columns will be taken up .<br />

I. Equilibrium stage model.<br />

II. Non-equilibrium stage model.<br />

Much more popular have been the models incorporating phase equilibrium,<br />

while taking into account finite reaction rates. (Nelson,1971; Suzuki et al.,1971;<br />

Carra et al. 1979; Alejski et al. 1988; Chang <strong>and</strong> Seader, 1988; Aljeski, et al.<br />

1991; Sim<strong>and</strong>l <strong>and</strong> svrecek,1991; Ciric <strong>and</strong> Gu, 1994; Abufares <strong>and</strong> Douglas,<br />

1995; Perez-Cesneros et al.,1997). The models presented in all <strong>of</strong> these papers<br />

are more or less the same.<br />

They incorporate a set <strong>of</strong> liquid <strong>and</strong> vapor mass balances along with<br />

equilibrium correlations <strong>for</strong> the vapor liquid equilibrium calculation. The<br />

reaction is normally tackled by implement a kinetics expression into the liquid<br />

16


Chapter Two Literature Survey<br />

phase overall mass balance <strong>and</strong> the liquid phase composition balances. The<br />

above models vary mainly in the way the equations are solved, or objectives <strong>of</strong><br />

the model. The models presented by Nelson (1971) <strong>and</strong> Suzuki et al., (1971) are<br />

extensions <strong>of</strong> numerical methods originally developed <strong>for</strong> normal distillation.<br />

Nelson uses a Newton Raphson method <strong>for</strong> solving the model equations. Suzuki<br />

uses Muller's method. Carra et al., (1979) also use Newton method <strong>for</strong> solving<br />

the model equations. They use their model <strong>for</strong> steady state simulation <strong>of</strong> un<br />

experimental column <strong>for</strong> the production <strong>of</strong> propylene oxide from chloro hydrins.<br />

Alejski (1991) presents a model <strong>for</strong> taking into account liquid phase plug<br />

flow on a distillation tray. This is done by modeling the liquid phase on a tray as<br />

a cascade <strong>of</strong> mixing cells. The model was solved with a Newton Raphson<br />

algorithm.<br />

Chang <strong>and</strong> Seader (1988) present a model along with a homotopy method<br />

<strong>for</strong> solving the model equations. Homotopy methods are generally more robust<br />

<strong>and</strong> have much wider range <strong>of</strong> convergence than Newton method. Calculations<br />

times <strong>for</strong> the Homotopy method are, however, much higher than <strong>for</strong> that<br />

Newton's method.<br />

Sim<strong>and</strong>l <strong>and</strong> Svrcek (1991) present a model along with two different<br />

solution methods the first method is a simultaneous solution method after<br />

linearization <strong>of</strong> the equations. The second one is inside-outside algorithm. The<br />

latter was found to converge much faster than the simultaneous method, <strong>and</strong> the<br />

robustness was found to be similar.<br />

In (Jacob <strong>and</strong> Krishna, 1993). For <strong>MTBE</strong> synthesis using the column<br />

configuration, shown in Figure (2.5), varying the location <strong>of</strong> the stage to which<br />

methanol is feed results. When methanol is fed to stages 10 or 11, steady state<br />

multiplicity is observed (Baur, et. al., 2000)<br />

17


Chapter Two Literature Survey<br />

Figure (2.5) Configuration <strong>of</strong> the <strong>MTBE</strong> synthesis column, following<br />

Jacobs <strong>and</strong> Krishna (1993), the bottom flow is fixed at 203 mol/s<br />

Ciric <strong>and</strong> Gu (1994) present a somewhat different approach. They directly<br />

implemented the equations <strong>for</strong> capitalized <strong>and</strong> variable cost into the model<br />

equations. The resulting mixed integer nonlinear programming (MINLP) model<br />

determines the optimal configuration <strong>and</strong> operating conditions.<br />

Abufares <strong>and</strong> Douglas (1995) present a steady state <strong>and</strong> a dynamic model<br />

describing a reactive distillation. They use the ASPEN PLUS RADFRAC with a<br />

st<strong>and</strong>ard equilibrium stage column model that may be extended to take into<br />

account chemical reactions (Venkataraman et. al, 1990).<br />

RADFRAC is used by Jacobs <strong>and</strong> Krishna 1993, Nijhuis et al. ,1993 <strong>and</strong><br />

Hauan et al., 1995.<br />

18


Chapter Two Literature Survey<br />

Sneesby et al. (1997a) uses both PRO / II <strong>and</strong> ASPEN PLUS <strong>for</strong> steady state<br />

modeling <strong>of</strong> a column <strong>for</strong> production <strong>of</strong> ETBE. In their second paper ( Sneesby<br />

et al., 1997b), they present a dynamic model, which they solve with SPEED UP<br />

dynamic simulator.<br />

A somewhat different approach to the equilibrium model is presented by<br />

Perez-Cisneros et al., (1997). Their model uses so called "elements" rather than<br />

the actual components. The chemical elements are the molecule parts that remain<br />

invariant during the reaction, <strong>and</strong> the actual molecules may be <strong>for</strong>med by<br />

different combinations <strong>of</strong> elements. The benefit <strong>of</strong> this approach is that chemical<br />

<strong>and</strong> physical equilibrium problems in reactive mixture are the same as a strictly<br />

physical equilibrium model. The method however is unsuitable <strong>for</strong> extension to<br />

non equilibrium models because the real components are required <strong>for</strong> transfer<br />

rate calculations rather than the chemical elements.<br />

Non-equilibrium models belong to more recent times. The first work in<br />

this field was presented by Sawistowski et al., (1979) who modeled a packed<br />

reactive distillation column <strong>for</strong> esterification <strong>of</strong> methanol <strong>and</strong> acetic acid to<br />

methyl acetate. They used an effective diffusivity method <strong>for</strong> their mass transfer<br />

model. Fourier's law was used <strong>for</strong> heat transfer modeling. The resulting system<br />

<strong>of</strong> differential equations was solved using a Runge-kutta method.<br />

Higler, et al., 1999 developed a generic NEQ model <strong>for</strong> packed distillation<br />

column. The important features <strong>of</strong> the model are the use <strong>of</strong> Maxwell Stefan<br />

equation <strong>for</strong> description <strong>of</strong> intra phase mass transfer <strong>and</strong> incorporation <strong>of</strong> a<br />

homotopy like continuation method that allows <strong>for</strong> easy tracking <strong>of</strong> multiple<br />

steady state.<br />

Jianjum, et al., 2003 developed the dynamic rate-based <strong>and</strong> equilibrium<br />

model <strong>for</strong> packed reactive distillation column. The dynamic responses <strong>of</strong><br />

controlled variables ( product purity <strong>and</strong> reactant conversion) to a step change in<br />

manipulated variables (reflux ratio, bottom rate, <strong>and</strong> reboiler duty) were studied<br />

19


Chapter Two Literature Survey<br />

with both the dynamic <strong>and</strong> equilibrium model. The dynamic response <strong>of</strong> reactant<br />

conversion is very non-linear unconventional, but the response <strong>of</strong> product purity<br />

is well approximated by linear first order differential equation.<br />

Reactive distillation <strong>of</strong> ETBE production was per<strong>for</strong>med by Young et al.<br />

2003, from their study, the internal pr<strong>of</strong>iles <strong>of</strong> RD process especially total reflux<br />

operation, can be well understood, which is almost impossible in actual process.<br />

And ef<strong>for</strong>ts are devoted to explain the observed results in physical aspect.<br />

Calculation algorithm is based on Luyben algorithm, <strong>and</strong> rigorous energy<br />

balance is used with vapor flow rate calculation by iteration. Internal pr<strong>of</strong>iles <strong>of</strong><br />

RD column <strong>for</strong> both total reflux <strong>and</strong> process after this are observed <strong>and</strong> analyzed<br />

in the simulation tool MATLAB.<br />

Antti Pyhälahti , 2005 studied the setting up a reactive distillation process<br />

<strong>for</strong> production <strong>of</strong> TAME, the results <strong>of</strong> this study has a significant impact on the<br />

development <strong>of</strong> the highly successful NExTAME <strong>and</strong> NExETHERS<br />

technologies, even if the final solution is based on the Side Reactor Concept<br />

(SRC).<br />

The technical re-conversion <strong>of</strong> <strong>MTBE</strong> process to produce ETBE was<br />

studied by (Isela, et al. 2007) using a non equilibrium model in reactive<br />

distillation with an UNIFAC method at steady state. The simulation was carried<br />

out in Aspen Plus, analyzing the possibility <strong>of</strong> using actual instillation <strong>of</strong> <strong>MTBE</strong><br />

plant as it works, to produce ETBE. The analysis <strong>of</strong> azeotrope condition revealed<br />

that the ethanol-to-isobutene molar feed ratio is the main factor affecting the<br />

equilibrium.<br />

2.4.1 The Equilibrium Model:<br />

The equilibrium stage model assumes that the vapor <strong>and</strong> liquid stream<br />

leaving a given stage are in thermodynamic equilibrium with one another<br />

(Krishna <strong>and</strong> Taylor, 1985). A schematic diagram <strong>of</strong> an equilibrium stage is<br />

20


Chapter Two Literature Survey<br />

shown in Figure (2.6). Vapor from the stage below <strong>and</strong> liquid from the stage<br />

above are brought in to contact on stage together with any fresh or recycle feeds,<br />

the vapor <strong>and</strong> liquid streams leaving the stage are assumed to be in equilibrium<br />

with each other.<br />

Figure (2.6): General Equilibrium Stage Model, Including<br />

Feed Stage <strong>and</strong> Side Stream Product Withdrawal.<br />

The equations on the equilibrium stage model are also known as MESH<br />

being acronym:<br />

• The M equations are the material balance equations.<br />

• The E equations are phase equilibrium relations.<br />

• The S equations are summation equations.<br />

• The H equations are heat (enthalpy) equation.<br />

21


Chapter Two Literature Survey<br />

dm<br />

dt<br />

j<br />

= L<br />

j−<br />

1<br />

+ V<br />

j+<br />

1<br />

+ F<br />

j<br />

− S<br />

v<br />

j<br />

−V<br />

j<br />

− L<br />

j<br />

− S<br />

l<br />

j<br />

+<br />

r c<br />

∑∑ υ i,<br />

j R i,<br />

mε<br />

j<br />

(2.4)<br />

m=<br />

1 i=<br />

1<br />

dm j xi,<br />

j<br />

v l r c<br />

= L<br />

j−1<br />

x<br />

i,<br />

j−1<br />

+ V<br />

j+<br />

1<br />

y<br />

i,<br />

j+<br />

1<br />

+ Fj<br />

zi,<br />

j − ( S j + V j ) yi,<br />

j − ( L j + S j ) xi,<br />

j + ∑ ∑ i,<br />

j<br />

dt<br />

m=<br />

1i= 1<br />

22<br />

υ R (2.5)<br />

i,<br />

mε<br />

j<br />

y<br />

i,<br />

j k x<br />

i,<br />

j i,<br />

j<br />

= (2.6)<br />

1<br />

1 , = ∑ c<br />

X (2.7)<br />

i=<br />

i j<br />

c<br />

∑<br />

i=<br />

1<br />

y 1<br />

(2.8)<br />

i,<br />

j =<br />

dH j xi,<br />

j<br />

v v l l<br />

= L<br />

j−1<br />

h<br />

i,<br />

j−1<br />

+ V<br />

j+<br />

1<br />

H<br />

i,<br />

j+<br />

1<br />

+ F j H − ( S j + V j ) H i j − ( L j + S j ) h + Q<br />

dt<br />

j<br />

,<br />

j j<br />

The (mj) is the hold-up on the stage j. With very few exceptions, mj<br />

(2.9)<br />

considered to be the hold-up only <strong>of</strong> the liquid, it is, however, important to<br />

include the hold up <strong>of</strong> vapor phase at higher pressure. The last term in equations<br />

r c<br />

(2.4 to 2.5) ( ∑ ∑ νi<br />

Ri m j<br />

m=<br />

1i= 1<br />

, j , ε ) is the rate <strong>of</strong> the disappearance <strong>of</strong> the total<br />

moles due to any m reaction <strong>of</strong> the stage j. Equation (2.5) is the component<br />

material balance (neglecting the vapor hold-up), vi, m represents the<br />

stocheometric coefficient <strong>of</strong> component i in reaction m <strong>and</strong> εj<br />

reaction volume.<br />

The E equations are phase equilibrium relations, the compositions <strong>of</strong> the<br />

stream leaving stage are in thermodynamic equilibrium. There<strong>for</strong>e, the mole<br />

is<br />

represents the


Chapter Two Literature Survey<br />

fractions <strong>of</strong> component i in the liquid <strong>and</strong> vapor streams leaving stage j by the<br />

equilibrium relationship are shown in equation (2.6).<br />

The S equation are summation equations (2.7 <strong>and</strong> 2.8) are two equations<br />

arise from the necessity that mole fraction <strong>of</strong> all components, in either liquid or<br />

vapor phase, sum to unity .<br />

The enthalpy balance is given by equation (2.9), the left side represents<br />

the accumulation <strong>of</strong> enthalpy on stage. It represents the total enthalpy <strong>of</strong> stage,<br />

but <strong>for</strong> the reason given above this will normally be the liquid phase enthalpy.<br />

At steady state condition, all terms per time equal to zero.<br />

Some authors include additional equation in their (mostly unsteady state )<br />

models, <strong>for</strong> example pressure drop, controller equations, <strong>and</strong> so on.<br />

2.4.2 Non Equilibrium or Rate-Based Model (NEQ Model).<br />

A non-equilibrium (NEQ) or rate-based model employs a transport<br />

phenomenon approach <strong>and</strong> the film model description <strong>for</strong> predicting the mass<br />

transfer rates. It assumes equilibrium is established at the interface between<br />

vapor <strong>and</strong> liquid phases. The model equation <strong>for</strong> a generic stage j (The NEQ<br />

stage may represent a tray or section <strong>of</strong> packing column) <strong>and</strong> component i may<br />

be represented based on conventional distillation equation that incorporate the<br />

chemical reaction term (Taylor <strong>and</strong> Krishna ,1985). A schematic representation<br />

<strong>of</strong> the NEQ stage is shown in Figure (2.7).<br />

V<br />

L<br />

j+<br />

1<br />

j−1<br />

The component molar balance <strong>for</strong> the vapor <strong>and</strong> liquid phases is<br />

y<br />

x<br />

i,<br />

j+<br />

1<br />

i,<br />

j−1<br />

−<br />

−<br />

V<br />

L<br />

j<br />

j<br />

x<br />

y<br />

i,<br />

j<br />

i,<br />

j<br />

+<br />

+<br />

f<br />

f<br />

l<br />

v<br />

j,<br />

j<br />

j,<br />

j<br />

−<br />

−<br />

N<br />

N<br />

v<br />

i,<br />

j<br />

l<br />

i,<br />

j<br />

= 0<br />

= 0<br />

NRi,jR are the interfacial mass transfer rates, at the vapor-liquid interface.<br />

23<br />

(2.10)<br />

(2.11)


Chapter Two Literature Survey<br />

|<br />

P PRI R(2-12)R<br />

L<br />

The continuity equation<br />

The enthalpy balances <strong>for</strong> both vapor <strong>and</strong> liquid phases are<br />

V<br />

R<br />

24<br />

R R(2.13)R<br />

R<br />

N<br />

l |<br />

P PRI i =<br />

R<br />

N<br />

v<br />

i<br />

(2.14)R<br />

ERj Ris the interface energy transfer rates, the product <strong>of</strong> the energy fluxes <strong>and</strong> the<br />

net interfacial area.<br />

|<br />

j−1<br />

The continuity <strong>of</strong> the energy transfer rates at the interface is<br />

P PR R (2-15)R<br />

y<br />

RT<br />

R E<br />

l |<br />

P PRI i =<br />

NRi,j Ris usually obtained from the Maxwell-Stefan equation <strong>for</strong> mass transfer in<br />

multi-component system. The Maxwell-Stefan equations from mass transfer in<br />

the vapor <strong>and</strong> liquid respectively are given by<br />

i<br />

v<br />

j+<br />

1<br />

H<br />

H<br />

l<br />

j−1<br />

v<br />

j+<br />

1<br />

−<br />

−<br />

L<br />

V<br />

j<br />

j<br />

H<br />

H<br />

l<br />

j<br />

v<br />

j<br />

+<br />

+<br />

H<br />

v<br />

v<br />

∂μ<br />

c y −<br />

i<br />

i N k yk<br />

N<br />

= ∑ v v<br />

∂z<br />

k = 1 ct<br />

Di,<br />

k<br />

f<br />

l<br />

j<br />

f<br />

v<br />

j<br />

H<br />

lf<br />

j<br />

v<br />

i<br />

.)<br />

x<br />

RT<br />

i<br />

l<br />

= 0<br />

l<br />

l<br />

l<br />

∂μ<br />

c −<br />

i xi<br />

N k yk<br />

N i<br />

= ∑ l l<br />

∂z<br />

k = 1 ct<br />

Di,<br />

k<br />

R R(2-16)<br />

RE v<br />

i<br />

(2-17)<br />

NRi Ris molar fluxes <strong>of</strong> species i , <strong>and</strong> the ÐRi,kR represent the corresponding<br />

Maxwell Stefan diffusivity <strong>of</strong> the i-k pair in appropriate phase. The energy flux<br />

is related to conductivity <strong>and</strong> convection as follows<br />

vf<br />

j<br />

−<br />

−<br />

E<br />

E<br />

l<br />

j<br />

+<br />

v<br />

j<br />

−<br />

Q<br />

Q<br />

l<br />

j<br />

v<br />

j<br />

= 0


Chapter Two Literature Survey<br />

E<br />

∂T<br />

l<br />

l l<br />

= − j λ j<br />

c l<br />

+ ∑i=<br />

1 N i,<br />

j<br />

l<br />

(2-18)<br />

i,<br />

j<br />

∂η<br />

H<br />

Figure (2.7): General Non Equilibrium Stage Model, Including<br />

Feed Stage <strong>and</strong> Side Stream Product Withdrawal.<br />

2.4.3 Comparison <strong>of</strong> Equilibrium (EQ) <strong>and</strong> Non Equilibrium<br />

(NEQ) Models.<br />

1. For EQ model, only the number <strong>of</strong> stages <strong>and</strong> two physical properties (vapor<br />

liquid equilibrium <strong>and</strong> enthalpies) are needed, While the NEQ model requires<br />

thermodynamic properties, not only <strong>for</strong> calculation <strong>of</strong> phase equilibrium but<br />

also <strong>for</strong> calculation <strong>of</strong> driving <strong>for</strong>ces <strong>for</strong> mass transfer <strong>and</strong>, in reactive<br />

distillation, <strong>for</strong> taking into account the effect <strong>of</strong> non-ideal component<br />

25


Chapter Two Literature Survey<br />

behavior in the calculation <strong>of</strong> reaction rates <strong>and</strong> chemical equilibrium<br />

coefficient, in addition to physical properties such as surface tension,<br />

diffusion coefficient, viscosities, etc. <strong>for</strong> calculation <strong>of</strong> mass (<strong>and</strong> heat)<br />

transfer coefficient <strong>and</strong> interfacial area. Table (2.2) shows the properties that<br />

needed <strong>for</strong> EQ <strong>and</strong> NEQ in a models Ibrahim, S.S.,2007.<br />

Table (2.2) the needed properties <strong>for</strong> EQ <strong>and</strong> NEQ models<br />

Non-Equilibrium Model<br />

26<br />

Equilibrium Model<br />

Activity Coefficients Activity Coefficients<br />

Vapor Pressures Vapor Pressures<br />

Fugacity Coefficients Fugacity Coefficients<br />

Densities Densities<br />

Enthalpies Enthalpies<br />

Diffusivities<br />

Viscosities<br />

Surface Tension<br />

Thermal Conductivities<br />

Mass-Transfer Coefficients<br />

Heat-Transfer Coefficients<br />

2. Solving the rate-based model is always much more difficult than solving the<br />

equilibrium model <strong>for</strong> all <strong>of</strong> the simulations. The EQ model can be solved<br />

first, <strong>and</strong> the results can be used as the initial guess <strong>for</strong> the rate-based<br />

model.<br />

3. The drawback <strong>of</strong> EQ model is the evaluation <strong>of</strong> the efficiencies <strong>for</strong> the plate<br />

or HETP <strong>for</strong> the packing column in the case <strong>of</strong> multi component reactive<br />

mixture. Pouzineau, et al. compare between the two models by studying


Chapter Two Literature Survey<br />

Acetic anhydride reaction with water to obtain two moles <strong>of</strong> Acetic Acid,<br />

the prediction <strong>of</strong> EQ model was equivalent to the NEQ model.<br />

Baur et al., 2000 developed a generic NEQ cell model <strong>for</strong> RD tray<br />

columns <strong>of</strong> production <strong>of</strong> ethylene glycol, they concluded that the dynamic EQ<br />

model, widely used in the literature, shows much less sensitivity to disturbance,<br />

that is important in case <strong>of</strong> studying control concept , but studying <strong>of</strong> effect <strong>of</strong><br />

various parameters, gives in many cases nearly the same results<br />

Jianjun, 2004 et al. compare between a steady-state equilibrium <strong>and</strong> rate-<br />

based models <strong>for</strong> packed reactive distillation columns <strong>for</strong> the production <strong>of</strong><br />

tertiary amyl methyl ether (TAME) <strong>and</strong> methyl acetate.<br />

They concluded that the number <strong>of</strong> equations in the rate-based model is 5-7<br />

times the number <strong>of</strong> equations in the equilibrium model if the number <strong>of</strong><br />

segments in the rate-based model is the same as the number <strong>of</strong> theoretical stages<br />

in the equilibrium model. For example at same number <strong>of</strong> segments. For methyl<br />

acetate no. <strong>of</strong> equation <strong>for</strong> EQ is 407 while <strong>for</strong> NEQ is 1899, <strong>and</strong> For TAME<br />

no. <strong>of</strong> equation <strong>for</strong> EQ was 600 while <strong>for</strong> NEQ was 4430. An optimal reflux<br />

ratio <strong>and</strong> an optimal operating pressure were found <strong>for</strong> both the TAME system<br />

<strong>and</strong> the methyl acetate system. The optimal values predicted by the equilibrium<br />

model <strong>and</strong> the rate-based model are very close. Also the mole fraction pr<strong>of</strong>ile<br />

<strong>for</strong> the two cases in Figure (2.8)<br />

27


Chapter Two Literature Survey<br />

(a) (b)<br />

28<br />

( c )<br />

( c ) ( d )<br />

Figure (2.8) Comparison <strong>of</strong> temperature <strong>and</strong> composition pr<strong>of</strong>iles between the<br />

equilibrium model <strong>and</strong> rate based model (a,b) <strong>for</strong> the methyl acetate system<br />

(c,d) <strong>for</strong> the TAME system ( Jianjun et al. 2004),.


Chapter Two Literature Survey<br />

2.5 GASOLINE ADDITIVES (OXYGENATES)<br />

Oxygenates are compounds containing oxygen in a chain <strong>of</strong> carbon <strong>and</strong><br />

hydrogen atoms. Today, oxygenates are blended into gasoline in two <strong>for</strong>ms:<br />

alcohols or ethers. When added to gasoline, alcohols by themselves tend to be<br />

very volatile, <strong>for</strong>mation <strong>of</strong> an azeotrope with light hydrocarbons, <strong>and</strong> water<br />

soluble, which can create problems in the fuel distribution system <strong>and</strong> vehicle<br />

engine as well as in the environment. These problems <strong>of</strong> volatility <strong>and</strong> water<br />

solubility can be overcome by "stabilizing" the alcohols with various petroleum-<br />

derived components through a process known as etherification. Ethers retain all<br />

the benefits <strong>of</strong> their alcohol feedstock, without their shortcomings,<br />

(EFOA,2006). Ternary ethyl lead is still used in Iraq as a gasoline additive <strong>for</strong><br />

octane booster, this component causes massive environmental pollution. <strong>MTBE</strong>,<br />

TAME, or ETBE units could be established <strong>for</strong> producing high octane gasoline<br />

<strong>and</strong> reducing the pollution, especially the raw material <strong>of</strong> most <strong>of</strong> these ethers<br />

can found in many refinery units such as cracking.<br />

2.5.1 Methyl Tertiary Butyl Ether.<br />

<strong>MTBE</strong> is almost exclusively used as a fuel component in motor gasoline,<br />

<strong>MTBE</strong> is also produced in huge amounts as anti-knock agent in gasoline, where<br />

it has replaced tetraethyl lead to large extent (Marceglia <strong>and</strong> Oriani ,1982 ).<br />

Moreover, <strong>MTBE</strong> has become the second largest volume organic chemical<br />

produced in U.S. after ethylene (Raisch,1994). There<strong>for</strong>e the production <strong>of</strong><br />

<strong>MTBE</strong> by reactive distillation is <strong>of</strong> great industrial importance (Smith <strong>and</strong><br />

Huddleston,1982; Tadé, Datta <strong>and</strong> Smith ,1997). The production <strong>of</strong> Methyl Tert-<br />

butyl ether is presented using a reactive distillation column in order to convert<br />

methanol <strong>and</strong> isobutene <strong>for</strong> obtaining <strong>MTBE</strong>, according to the reaction.<br />

CH<br />

3<br />

OH<br />

i<br />

C<br />

H<br />

+ − 4 8<br />

↔<br />

<strong>MTBE</strong><br />

29


Chapter Two Literature Survey<br />

N-butene is presented in the feed mixture but it is inert <strong>for</strong> the reaction, <strong>for</strong><br />

the conventional reactor-separator scheme, methanol is usually fed in excess in<br />

order to improve the conversion <strong>of</strong> i-C4 into <strong>MTBE</strong>. This causes some problems<br />

<strong>for</strong> separating the product <strong>MTBE</strong> from the non reacted reactants because <strong>MTBE</strong><br />

<strong>for</strong>ms azeotropes with methanol <strong>and</strong> i-C4. The separation task is difficult. In this<br />

work, it is proposed to feed equimolar quantities <strong>of</strong> methanol <strong>and</strong> i-C4<br />

stoichiometric proportion, <strong>and</strong> product with high purity <strong>of</strong> <strong>MTBE</strong> is obtain.<br />

Thus, the problem <strong>of</strong> splitting azeotropic mixture is reduced because the reactive<br />

distillation scheme allows <strong>for</strong> "reacting away" the azeotropes (Taylor <strong>and</strong><br />

Krishna, 2000)<br />

2.5.2 Ethyl Tertiary Butyl Ether<br />

30<br />

, in<br />

The production <strong>of</strong> ethyl tertiary butyl ether is presented using a reactive<br />

distillation column in order to convert ethanol <strong>and</strong> isobutene <strong>for</strong> obtaining<br />

ETBE, according to the reversible reaction over an acidic catalyst, such as the<br />

acidic ion-exchanger resin Amberlyst 15.<br />

C<br />

2<br />

H<br />

6<br />

O<br />

i<br />

C<br />

H<br />

+ − 4 8<br />

↔<br />

ETBE<br />

ETBE is produced via reactive distillation by either feeding a single<br />

partially reacted mixture to the column or by feeding two fresh reactant streams<br />

directly to the column at different feed tray locations. The hydrocarbon feed is<br />

obtained from an upstream unit in the refinery (fluidized catalytic cracker, steam<br />

cracker, isobutene dehydrogenation unit, etc.). In any <strong>of</strong> these units the butane<br />

product contains isobutene, normal butane, <strong>and</strong> other light hydrocarbons.<br />

There<strong>for</strong>e, the butane feed to the column contains large amounts <strong>of</strong> inert, which<br />

go out from the top <strong>of</strong> the column because they are much lighter than the product<br />

ETBE. The ethanol fresh feed is usually essentially pure to minimize side<br />

reactions.


Chapter Two Literature Survey<br />

The per<strong>for</strong>mance <strong>of</strong> a packed column is <strong>of</strong>ten expressed in terms <strong>of</strong> the<br />

height equivalence to a theoretical plate (HETP). The HETP is related to the<br />

height <strong>of</strong> packing by<br />

H<br />

HETP = ( 2.<br />

19)<br />

N<br />

eqm<br />

where Neqm<br />

is the number <strong>of</strong> equilibrium stages needed to accomplish the<br />

same separation possible in a real packed column <strong>of</strong> height H. Although the<br />

theory <strong>of</strong> distillation is well known, the estimation methods <strong>for</strong> efficiencies are<br />

still relatively inaccurate. The factors that affect efficiencies can be divided into<br />

three groups: the structural, functional, <strong>and</strong> the system factors <strong>and</strong> physical<br />

properties. To the best <strong>of</strong> our knowledge there are no fundamentally sound<br />

methods <strong>for</strong> estimating either efficiency or HETPs in RD operations(Taylor <strong>and</strong><br />

Krishna, 2000) .<br />

2.6 VAPOR LIQUID EQUILIBRIUM FOR MULTI-COMPONENT<br />

DISTILLATION.<br />

For multi-component mixture, graphical representation <strong>of</strong> properties,<br />

cannot be used to determine equilibrium-stage requirements. Analytical<br />

computation procedures must be applied with thermodynamic properties<br />

depending on temperature, pressure <strong>and</strong> phase composition, these equations tend<br />

to be complex. Nevertheless the equations are widely used <strong>for</strong> computing phase<br />

equilibrium ratios ( K-values), enthalpies <strong>and</strong> densities <strong>of</strong> mixture over a wide<br />

range <strong>of</strong> conditions. Vapor liquid equilibrium calculations are usually carried out<br />

<strong>for</strong> separation processes with several versions. The prediction <strong>of</strong> mixture vapor<br />

liquid equilibrium is more complicated than prediction <strong>of</strong> pure component.<br />

Phase equilibrium relation is one <strong>of</strong> the fundamental properties which are<br />

necessary <strong>for</strong> the separation processes, <strong>and</strong> useful equation have been proposed<br />

31


Chapter Two Literature Survey<br />

<strong>for</strong> expressing relation. Efficient design <strong>of</strong> distillation equipment requires<br />

quantitative underst<strong>and</strong>ing <strong>of</strong> vapor liquid equilibria in multi component mixture<br />

as expressed through vapor phase fugacity coefficient <strong>and</strong> liquid phase activity<br />

coefficients.<br />

2.6.1 Thermodynamic models<br />

To describe the phase equilibrium <strong>of</strong> a system <strong>of</strong> NC components at a<br />

temperature T <strong>and</strong> pressure P, the vapor phase fugacity is equal to the liquid<br />

phase fugacity <strong>for</strong> every component.<br />

∧ v<br />

f i<br />

=<br />

∧ l<br />

f i<br />

i=1, 2, 3. . . . . NC<br />

The vapor phase fugacity can be written in terms <strong>of</strong> the vapor phase<br />

fugacity coefficient<br />

∧ v<br />

i<br />

∧<br />

i<br />

f = y Φi<br />

P<br />

∧<br />

i<br />

Φ ; vapor mole fraction y i ; <strong>and</strong> total pressure P as follows.<br />

Also the liquid phase fugacity can be written in terms <strong>of</strong> liquid phase<br />

32<br />

(2.20)<br />

activity coefficient γ i ; liquid mole fraction x i ; <strong>and</strong> liquid phase properties f i as<br />

follows.<br />

∧<br />

l<br />

i<br />

f = x γ f<br />

where<br />

i<br />

i<br />

i<br />

fi is calculated using the equation:<br />

sat ( P P ) ⎤<br />

i<br />

⎥<br />

⎥<br />

(2.21)<br />

⎡ l<br />

sat sat Vi<br />

−<br />

fi<br />

= Φi<br />

Pi<br />

exp ⎢<br />

(2.22)<br />

⎢⎣<br />

RT ⎦<br />

At equilibrium<br />

sat<br />

iPi<br />

xi<br />

yi<br />

=<br />

Φ P<br />

γ<br />

where<br />

i<br />

Φ i is given by the equation;<br />

(2.23)


Chapter Two Literature Survey<br />

Φ ∧<br />

i<br />

= Φ<br />

∧<br />

sat ( P P ) ⎤<br />

i<br />

⎥<br />

⎥<br />

Φ ⎡<br />

i Vi<br />

−<br />

Φi<br />

= exp ⎢−<br />

(2.24)<br />

sat<br />

Φi<br />

⎢⎣<br />

RT ⎦<br />

At low pressures, vapor phases usually approximate ideal gases <strong>for</strong> which<br />

sat<br />

i<br />

= 1<br />

<strong>and</strong> Poynthing factor which is represented by the exponential differs<br />

from unity by only a few parts per thus<strong>and</strong>. There<strong>for</strong>e equation (2.19) is written<br />

as.<br />

sat<br />

iPi<br />

yi = ⋅ x<br />

P<br />

γ<br />

t<br />

i<br />

2.6.2 Ideal Vapor Liquid Equilibrium<br />

33<br />

(2.25)<br />

Vapor liquid equilibrium is one <strong>of</strong> the most important fundamental<br />

properties in simulation, optimization <strong>and</strong> design <strong>of</strong> any distillation process.<br />

The mixture is called ideal if both liquid <strong>and</strong> vapor are ideal mixtures <strong>of</strong><br />

sat<br />

ideal components, thus in the vapor phase the partial pressure <strong>of</strong> component P i<br />

is proportional to its mole fraction in the vapor phase according to Daltons law.<br />

sat<br />

i = y P<br />

(2.26)<br />

P i<br />

The equilibrium relationship <strong>for</strong> any component is defined as.<br />

y<br />

i K = (2.27)<br />

xi<br />

For ideal mixture the K value can be predicted from Raoult’s law, where.<br />

.<br />

K<br />

y<br />

x<br />

i<br />

=<br />

i<br />

sat<br />

Pi<br />

P<br />

= (2.28)


Chapter Two Literature Survey<br />

2.6.3 Non Ideal Vapor Liquid Equilibrium<br />

For non-ideal mixture or azeotropic mixture additional variable γ i (activity<br />

coefficient) appears in vapor-liquid equilibrium equation.<br />

sat<br />

iPi<br />

yi = ⋅ xi<br />

P<br />

γ<br />

t<br />

where γ i represents degree <strong>of</strong> deviation from reality.<br />

34<br />

(2.30)<br />

when γ = 1,the<br />

mixture is said to be ideal which simplifies the equation to<br />

i<br />

Raoult’s law. For non-ideal mixture γ ≠ 1,<br />

exhibits either positive deviation<br />

from Raoult’s law ( γ > 1),<br />

or negative deviation from Raoult’s law ( γ < 1).<br />

i<br />

2.6.4 Calculation <strong>of</strong> Activity Coefficient.<br />

i<br />

The prediction <strong>of</strong> liquid phase activity coefficient is most important <strong>for</strong><br />

design calculation <strong>of</strong> non-ideal distillation. Be<strong>for</strong>e calculating vapor-liquid<br />

equilibrium <strong>of</strong> non-ideal mixture, the activity coefficient <strong>of</strong> each component<br />

must be calculated.<br />

There are several excess energy (gP<br />

E<br />

P)P<br />

Pmodels to calculate the activity<br />

coefficient <strong>for</strong> multicomponent systems, the most important models are <strong>of</strong><br />

(Wilson, NRTL, UNIFAC, <strong>and</strong> UNIQUAC). In all these models, the model<br />

parameters are determined by fitting the experimental data <strong>of</strong> binary mixtures.<br />

Each one <strong>of</strong> these models has advantages <strong>and</strong> disadvantages. There is no general<br />

model which has a good representation <strong>of</strong> all azeotropic mixtures. The selection<br />

<strong>of</strong> appropriate model <strong>for</strong> a given mixture is based on three characteristics, which<br />

are temperature, pressure <strong>and</strong> composition. If inappropriate model is selected,<br />

the design <strong>and</strong> simulation <strong>of</strong> the process will not work well.<br />

i


Chapter Two Literature Survey<br />

2.6.4.1 Wilson Model,1962<br />

Wilson <strong>and</strong> Deal (1962) used the following equation to calculate the liquid<br />

phase activity coefficient.<br />

γ = 1 − ln<br />

i<br />

N<br />

C<br />

∑<br />

j=<br />

1<br />

x<br />

j<br />

Λ<br />

ij<br />

−<br />

N<br />

⎡<br />

⎢<br />

x Λ<br />

C<br />

∑ ⎢ k<br />

NC<br />

K = 1 ⎢<br />

⎢∑<br />

⎣<br />

k = 1<br />

Λ<br />

ki<br />

kj<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

35<br />

(2.30)<br />

The Wilson model has the disadvantage that it cannot predict vapor liquid<br />

equilibrium when two liquids exist in the liquid phase.<br />

2.6.4.2 NRTL Model, 1986<br />

The NRTL (non-r<strong>and</strong>om, two liquid model) was developed by Renon <strong>and</strong><br />

Prausnitz (1968). This model uses three binary interaction parameters <strong>for</strong> each<br />

binary pair in multicomponent mixture-pairs. For NC components system, it<br />

requires N ( −1)<br />

2 molecular binary pair. This equation is applicable to<br />

C N C<br />

multicomponent vapor-liquid, liquid- liquid, <strong>and</strong> vapor-liquid-liquid systems.<br />

The main equation used to calculate liquid phase activity coefficient <strong>for</strong><br />

NRTL model is (SimBasis 2003).<br />

ln<br />

N<br />

C<br />

∑<br />

τ x<br />

C<br />

∑<br />

k = 1<br />

C<br />

∑ NC<br />

j=<br />

1<br />

∑<br />

k = 1<br />

⎛<br />

⎜<br />

C<br />

∑<br />

ji j ji N<br />

mj m mj<br />

j=<br />

1<br />

j ij ⎜ m=<br />

1<br />

γ =<br />

+<br />

−<br />

⎟<br />

i<br />

τ<br />

N<br />

ij<br />

(2.31)<br />

N<br />

x<br />

k<br />

G<br />

G<br />

ki<br />

x<br />

x<br />

G<br />

K<br />

G<br />

kj<br />

⎜<br />

⎜<br />

⎝<br />

N<br />

τ<br />

C<br />

∑<br />

k = 1<br />

The NRTL group interaction parameters are defined in literature (Gmehling<br />

et al. 1977).<br />

2.6.4.3 Uniquac Model,1975<br />

Abrams <strong>and</strong> Prausnitz (1975) developed the UNIQUAC (UNIversal QUAsi<br />

Chemical) activity coefficient model. This model distinguishes two contributions<br />

termed combinational (C) <strong>and</strong> residual (R).<br />

x<br />

x<br />

k<br />

G<br />

G<br />

kj<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />


Chapter Two Literature Survey<br />

C<br />

i<br />

R<br />

i<br />

ln γ = ln γ ( combinational)<br />

+ ln γ ( residual)<br />

(2.32)<br />

i<br />

The combinational part basically accounts <strong>for</strong> non-ideality <strong>of</strong> a mixture<br />

arising from differences in size <strong>and</strong> shape <strong>of</strong> constituent molecular species;<br />

whereas the residual part considers the difference between inter-molecular <strong>and</strong><br />

intramolecular interaction energies.<br />

The two-parameter UNIQUAC equation gives a good representation <strong>of</strong> the<br />

vapor-liquid equilibria <strong>of</strong> binary <strong>and</strong> multi component mixtures(SimBasis 2003).<br />

c φ z θ φ<br />

lnγ<br />

= ln<br />

x l<br />

(2.33)<br />

i<br />

NC<br />

i<br />

i<br />

i<br />

+ qi<br />

ln + li<br />

− ∑ xi 2 φi<br />

xi<br />

j=<br />

1<br />

j<br />

C<br />

∑ NC<br />

j=<br />

1<br />

∑<br />

k = 1<br />

j<br />

NC<br />

R<br />

lnγ<br />

i = −qi<br />

ln( ∑θ<br />

iτ<br />

ji ) + qi<br />

N<br />

− qi<br />

θ jτ<br />

ij<br />

(2.33)<br />

j=<br />

1<br />

θ τ<br />

Values <strong>for</strong> parameters are given by Gmehling et al., (1977-1984).<br />

2.6.4.4 Unifac Model,1975<br />

k<br />

kj<br />

Fredensl<strong>and</strong> et al. (1975) describe UNIFAC model (UNIQUAC functional<br />

group model). In UNIFAC model each molecule is taken as a composite <strong>of</strong><br />

subgroups; <strong>for</strong> example t-butanol is composed <strong>of</strong> 3 "CH3" groups, 1 "C" group<br />

<strong>and</strong> 1 "OH" group also ethane contains two "CH3"<br />

groups. The interaction<br />

parameters between different molecules are defined in literature.<br />

This model is also called group contribution model, which is based<br />

theoretically on UNIQUAC equation (2.32). The activity coefficient consists <strong>of</strong><br />

two parts, combinational <strong>and</strong> residual contributions.<br />

C<br />

R<br />

lnγ = lnγ<br />

( combinational)<br />

+ lnγ<br />

( residual)<br />

(2.34)<br />

i<br />

i<br />

i<br />

The combinational contribution C<br />

γ i takes into account the effects arising<br />

R<br />

from difference in molecular size <strong>and</strong> shape while residual contribution γ i takes<br />

36


Chapter Two Literature Survey<br />

into account energetic interactions between the functional group in the mixture.<br />

The combinational part is given by the equation(Smith <strong>and</strong> Van Ness 1987).<br />

C Φ i li<br />

Φ i<br />

lnγ i = ln + 5qi<br />

ln + li<br />

− ∑ x jl<br />

j<br />

(2.35)<br />

x Φ x<br />

i<br />

The residual contribution is given by.<br />

∑<br />

i<br />

i<br />

j<br />

R<br />

i<br />

i<br />

lnγ υ (lnΓ<br />

− lnΓ<br />

)<br />

(2.36)<br />

i<br />

= K<br />

K<br />

K<br />

⎡<br />

ln ΓK = K ⎢1<br />

− ln( ∑θ<br />

mψ<br />

mK ) −∑<br />

( θ mψ<br />

Km ∑θ<br />

nψ<br />

⎢⎣<br />

m<br />

m n<br />

K<br />

θ (2.37)<br />

Hansen et al. (1991)<br />

1. It has explicit temperature dependence.<br />

37<br />

nm<br />

⎤<br />

) ⎥<br />

⎥⎦<br />

provide a computer aided system <strong>for</strong> UNIFAC<br />

parameters calculation. UNIFAC model is extensively used to describe<br />

thermodynamics in chemical engineering literature. It is widely used in process<br />

simulation.<br />

2. It has a large library <strong>of</strong> functional groups from which thous<strong>and</strong>s <strong>of</strong><br />

chemicals can be built.<br />

3. It can be updated <strong>and</strong> exp<strong>and</strong>ed, as more experimental data are available.<br />

4. Finally, UNIFAC model can be used when the binary interaction<br />

parameters are not available <strong>for</strong> other models.


Chapter Two Literature Survey<br />

2.7<br />

RESIDUE CURVE MAP (RCM)<br />

The first step in distillation <strong>of</strong> azeotropic mixture is the constructing <strong>of</strong> a<br />

residue curve map <strong>for</strong> the mixture under consideration. The residue curve map<br />

provides a graphical tool <strong>for</strong> multi-component azeotropic mixtures prediction if<br />

the feasible separation which could be obtained be<strong>for</strong>e any simulation or<br />

experimental study <strong>of</strong> the distillation process. The residue curve behaves as<br />

batch distillation with single equilibrium stage.<br />

The biggest benefit <strong>of</strong> residue curve map is that it is a qualitative<br />

description <strong>of</strong> the composition pr<strong>of</strong>ile that could be observed in an actual<br />

distillation tower. The residue curve map has the ability to characterize <strong>and</strong><br />

distinguish between different ternary systems having azeotropes. The shapes <strong>of</strong><br />

the residue curves are very useful in the design <strong>of</strong> real finite reflux distillation<br />

columns since they give a qualitative picture <strong>of</strong> the composition pr<strong>of</strong>iles in<br />

actual staged distillation columns (Wasylkiewicz et al., 1999a).<br />

To underst<strong>and</strong> the residue curve map, notice Figure (2.9) which represents a<br />

simple residue curve map (Chwan Yee 2003) .<br />

Fig. (2.9) Residue Curve Map <strong>and</strong> Distillation Boundary<br />

<strong>of</strong> a Ternary Mixture System (Chwan Yee 2003) .<br />

38


Chapter Two Literature Survey<br />

The residue curve starts at the light pure component region (lowest boiling<br />

temperature), <strong>and</strong> moves towards the intermediate boiling component, <strong>and</strong> end at<br />

the heavy pure component in the same region (highest boiling temperature). The<br />

lowest temperature nodes are termed unstable nodes (UN), all trajectories leave<br />

from them; while the highest temperature points in the region are termed stable<br />

nodes (SN), as all trajectories ultimately reach them. These nodes can be either<br />

azeotropes or pure components. The points that the trajectories approach from<br />

one direction <strong>and</strong> end in a different direction (as always is the point <strong>of</strong><br />

intermediate boiling component) are termed saddle points (S).<br />

To determine the relationship between the number <strong>of</strong> nodes (stable <strong>and</strong><br />

unstable) <strong>and</strong> saddle points necessary in legitimately drawn ternary residue plot<br />

there are several studies in which the equations are based on topological<br />

arguments. The most useful <strong>for</strong>m <strong>of</strong> these equations is presented by Van Dongen<br />

<strong>and</strong> Doherty, 1985.<br />

4 3 3<br />

2 2 1 1<br />

( N − S ) + 2(<br />

N − S ) + ( N − S ) = 1<br />

(2.38)<br />

where<br />

N i =number <strong>of</strong> nodes (stable <strong>and</strong> unstable) involving i species.<br />

S i =number <strong>of</strong> saddles involving i species.<br />

Ternary mixtures containing only one azeotrope may exhibit six possible<br />

residue curve maps that differ by the binary pair <strong>for</strong>ming the azeotrope <strong>and</strong> by<br />

whether the azeotrope is minimum or maximum boiling.<br />

Bernot et al. (1990, 1991) use residue curves in analyzing batch distillation.<br />

They made very interesting work in finding the still <strong>and</strong> product paths <strong>and</strong> batch<br />

distillation regions <strong>for</strong> 3 <strong>and</strong> 4 component systems. They found the batch<br />

distillation boundaries <strong>for</strong> any region by joining the unstable node to all the<br />

saddles <strong>and</strong> nodes <strong>of</strong> this region. They used the stable separatrices to divide the<br />

39


Chapter Two Literature Survey<br />

composition space. Also they<br />

Pham <strong>and</strong> Doherty (1990b) recognized that the residue curve map <strong>of</strong> a<br />

heterogeneous mixture does not differ from that <strong>for</strong> a homogeneous mixture with<br />

the same set <strong>of</strong> singular points.<br />

used residue curve maps to select suitable<br />

extractive agents <strong>and</strong> the sequence <strong>of</strong> product removal by estimating the<br />

per<strong>for</strong>mance <strong>of</strong> the tower.<br />

Fien <strong>and</strong> Liu (1994) <strong>and</strong> Widagdo <strong>and</strong> Seider (1996) use residue curves as a<br />

st<strong>and</strong>ard tool <strong>for</strong> design <strong>of</strong> a column.<br />

Safrit et al. (1995)<br />

present residue curve map <strong>for</strong> continuous distillation <strong>of</strong><br />

ternary mixture <strong>and</strong> they showed that it could be applied to batch distillation at<br />

the current instance <strong>of</strong> time.<br />

Westerberg <strong>and</strong> Wahnschafft (1996) put the basis to find the feasibility <strong>of</strong><br />

azeotropic distillation by using residue curve map.<br />

Almeida Rivera et. al. (2004) published some perspectives about reactive<br />

distillation processes. The authors have analyzed several methods available <strong>for</strong><br />

design <strong>and</strong> operation, <strong>and</strong> they suggest some guideline to propose a RD process.<br />

These guidelines are separated in levels, <strong>and</strong> first level is feasibility analysis.<br />

Certainly, the first important task be<strong>for</strong>e the proposition <strong>of</strong> a feasible separation<br />

scheme is to study the system behavior.<br />

Cristhain p. (2005) have suggested the methods <strong>and</strong> tools needed <strong>for</strong><br />

reactive distillation process synthesis, analysis, <strong>and</strong> evaluation. The first <strong>of</strong> these<br />

methods is improved residue curve map technique<br />

40


Chapter Two Literature Survey<br />

According to literature the residue curve map has the following properties<br />

(Doherty <strong>and</strong> Perkins 1978a)<br />

:<br />

1. The residue curves always point in the direction <strong>of</strong> increasing temperature.<br />

2. Pure components <strong>and</strong> azeotropes define fixed points in the map.<br />

3. Azeotropes define boundaries in the composition space, showing different<br />

qualitative behaviors depending on where initial compositions is in the<br />

space.<br />

4. Boundaries define distillation regions, which can not be crossed by simple<br />

stage-by-stage distillation.<br />

5. Residue curves are equivalent to the composition pr<strong>of</strong>ile, one would get<br />

running a distillation tower at fixed pressure <strong>and</strong> infinite reflux.<br />

2.7.1 Residue Curve Map Plot<br />

To construct the residue curve map experimentally, a liquid mixture is<br />

charged to the still pot <strong>and</strong> the pot is differentially heated to produce vapor. The<br />

vapor in equilibrium with the liquid is removed as soon as it <strong>for</strong>ms. The<br />

concentration <strong>of</strong> the more volatile component is higher in the vapor than in the<br />

equilibrium liquid. With time the concentration <strong>of</strong> the more volatile component<br />

decreases in liquid <strong>and</strong> the liquid boiling point increases. The composition <strong>of</strong><br />

liquid in still pot versus time produces single residue curve map. By starting<br />

from different initial compositions, different residue curves are <strong>for</strong>med <strong>and</strong> the<br />

plot <strong>of</strong> these curves is called residue curve map.<br />

Using appropriate thermodynamic model, it is easy to construct the residue<br />

curves theoretically without making any experiments. Doherty <strong>and</strong> Perkins<br />

(1978 a) also Westerberg <strong>and</strong> Wahnschafft (1996), start with the mole balances<br />

<strong>for</strong> the batch distillation <strong>and</strong> generate a set <strong>of</strong> NC linearly independent,<br />

autonomous, ordinary differential equations, whose solution <strong>for</strong> various initial<br />

41


Chapter Two Literature Survey<br />

conditions produces a residue curve map. They assume that the still pot is<br />

charged with M(t = 0) moles <strong>of</strong> a NC<br />

d<br />

dt<br />

( x M ) = x<br />

i<br />

i<br />

dM<br />

dt<br />

dxi<br />

+ M = −yiV<br />

dt<br />

component mixture having a composition<br />

vector X(t = 0). The liquid is differentially heated to <strong>for</strong>m a vapor, which is in<br />

equilibrium with the liquid. The vapor has composition y(x) , is removed the<br />

instant it <strong>for</strong>ms, <strong>and</strong> has a flowrate V(t).<br />

But<br />

Combining Eqn. (2.39) <strong>and</strong> (2.40) gives<br />

Where i=1, 2 ….. NC -1 (2.39)<br />

42<br />

dM<br />

(2.40) = −V<br />

dt<br />

dxi<br />

M ( t)<br />

= V ( t)(<br />

xi<br />

− yi<br />

) where i=1, 2 …..NRC R-1 (2.41)<br />

dt<br />

Since the vapor flow V (t) is an arbitrary (positive) function <strong>of</strong> time then let.<br />

M ( 0)<br />

V ( t)<br />

ξ ( t) = ln( ) = ⋅ t<br />

(2.42)<br />

M ( t)<br />

M ( t)<br />

By substitution <strong>for</strong> ξ (t)<br />

resulting the final <strong>for</strong>mulation is.<br />

dx<br />

dξ<br />

i = xi<br />

− yi<br />

Where i=1,2 ….. NRCR -1 (2.43)<br />

For different initial still compositions, integration <strong>of</strong> equation (2.43)<br />

produces several residue curves. From the mathematical point this equation is<br />

non-linear ordinary differential equation, which can be integrated numerically<br />

over the dimensionless time from initial point to final point.


Chapter Two Literature Survey<br />

2.7.2 Distillation Regions <strong>and</strong> Boundaries<br />

The distillation boundaries are important features <strong>of</strong> the residue curve map<br />

because they inhibit some separations from being accomplished by ordinary<br />

distillation (Thomas 1991).<br />

The distillation boundaries divide the composition diagram into a number<br />

<strong>of</strong> distillation regions. The presence <strong>of</strong> an azeotrope in a multi-component<br />

mixture induces distillation boundaries, which cannot be crossed by simple<br />

distillation.<br />

In batch distillation region any initial distillation composition leads to the<br />

same sequences <strong>of</strong> cuts. To know the available distillation products <strong>for</strong> the<br />

studied systems <strong>and</strong> be<strong>for</strong>e any distillation experiments it is important to<br />

investigate the distillation boundaries <strong>and</strong> regions. The knowledge <strong>of</strong> batch<br />

distillation boundaries helps us to know if the available separation could be<br />

reached or not. There<strong>for</strong>e feasible product regions <strong>for</strong> any azeotropic must lie<br />

within distillation boundaries. Boundaries between distillation regions cannot be<br />

crossed by using simple distillation.<br />

2.7.3 Residue Curve Map With Reaction<br />

Residue curves <strong>and</strong> residue curve maps have been extensively studied <strong>for</strong><br />

over 100 years(Ostwald,1900; Schreinemakers, 1902 ;Taylor R., 2006). For<br />

mixtures that have azeotrpe, separation boundaries may exist, <strong>and</strong> these<br />

boundaries are important in separation process synthesis.<br />

Much <strong>of</strong> the literature in this field deals with systems that do not react.<br />

However, over the last 20 years or so, reactive separations have come in <strong>for</strong><br />

considerable attention (Doherty, 2001; Taylor, 2000). Chemical reactions can<br />

influence residue curve maps in some important ways. For example, reactions<br />

43


Chapter Two Literature Survey<br />

can lead to the disappearance <strong>of</strong> some azeotropes that exist in the absence <strong>of</strong><br />

reaction. Chemical reactions can also lead to the creation <strong>of</strong> new azeotropes that<br />

would not exist in the absence <strong>of</strong> reaction. Moreover, the reactive azeotropes can<br />

exist even in the system that otherwise would be considered thermodynamically<br />

ideal. It follows that chemical reactions can influence the very existence <strong>of</strong><br />

separation boundaries <strong>and</strong>, there<strong>for</strong>e, the design <strong>and</strong> synthesis <strong>of</strong> reactive<br />

separation processes(Doherty,2001).<br />

The influence <strong>of</strong> reaction kinetics on chemical phase equilibrium <strong>and</strong><br />

reactive azeotrope was investigated first by (Venimadhavan et al. 1994). For a<br />

single reaction, the residue curves are obtained from<br />

dxi<br />

= xi<br />

− yi<br />

+ Da(<br />

υi<br />

− υxi<br />

) Rr<br />

(2.44)<br />

dξ<br />

where Rr =( r/rref)<br />

is a dimensionless reaction rate. Da is the Damkohler<br />

number (a dimensionless measure <strong>of</strong> the rate <strong>of</strong> reaction) defined by Da<br />

( H rref/V), where H is the molar holdup <strong>and</strong> V is the molar flow <strong>of</strong> vapor<br />

leaving the still. When Da = 0, equation (2-44) simplifies to equation (2-43) <strong>for</strong><br />

non-reacting systems. The other extreme <strong>of</strong> high Da leads to a reaction<br />

equilibrium. For other values <strong>of</strong> the Damkohler number, equation (2-43) must<br />

be expressed in terms <strong>of</strong> mole fractions, because <strong>for</strong> kinetically controlled<br />

systems there is no composition trans<strong>for</strong>mation that can lead to the simple <strong>for</strong>m<br />

<strong>of</strong> reaction equilibrium equation. The stationary points <strong>of</strong> these equations are<br />

obtained by setting the derivative terms in equation (2-44) to zero. Figures (2-<br />

10) shows the residue curve map <strong>for</strong> ternary system (IB-MeOH-<strong>MTBE</strong>) at 11<br />

atm. without reaction. While Figure (2-11) show the same system at 8 atm. with<br />

reaction.<br />

44


Chapter Two Literature Survey<br />

Figure 2.10 Residue curves in the non-reacting ternary system isobutenemethanol-<strong>MTBE</strong><br />

at 11 atm. Numbers near residue curves are the lengths <strong>of</strong><br />

the corresponding curve, azeotrope. (Taylor R., et. al.,2006).<br />

Figure 2.11 Residue curves in the reacting ternary system isobutenemethanol-<strong>MTBE</strong><br />

at 8 atm. Numbers near residue curves are the lengths <strong>of</strong> the<br />

corresponding curve , azeotrope. (Taylor R. , et. al.,2006).<br />

45


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

3.1 INTRODUCTION<br />

Chapter Three<br />

<strong>Modeling</strong> <strong>and</strong> simulation<br />

A model is a set <strong>of</strong> assumptions about the operation <strong>of</strong> the system, logical,<br />

algorithm, <strong>and</strong> mathematical (Graham Horton, 2001). <strong>Mathematical</strong> model <strong>of</strong><br />

any process is a set <strong>of</strong> equations including the necessary input data to solve the<br />

equations, whose solution gives a specified data representative <strong>of</strong> the process to<br />

a corresponding set input, that allows us to predict the behavior <strong>of</strong> chemical<br />

process system (Wayne 1998,Denn 1986). Processing modeling has made<br />

substantial progress over decades (Pantelides, 2001). Today, computer<br />

simulation is used extensively to analyze the dynamic chemical process or<br />

design controllers <strong>and</strong> study their effectiveness in controlling the process. The<br />

simulation operations make it possible to evaluate the influence <strong>of</strong> variables on<br />

any process theoretically. Steady state simulation <strong>of</strong> parameter system involves<br />

the solution <strong>of</strong> algebraic equations, while dynamic simulation involves the<br />

solution <strong>of</strong> ordinary differential equations. Also by comparing the experimental<br />

results with simulation results, one can decide if it is necessary to develop a<br />

more detailed model or it is possible to introduce simplifying assumptions to the<br />

model. The simulation is also used to fix the experimental conditions needed <strong>for</strong><br />

design, optimization, <strong>and</strong> control. Engineers are now capable <strong>of</strong> building<br />

mathematical models with a degree <strong>of</strong> details <strong>and</strong> prediction.<br />

The equilibrium stage model is widely adopted to describe the distillation<br />

process because <strong>of</strong> its simplicity <strong>and</strong> convenience. In this chapter, a steady state<br />

model was developed to simulate reactive distillation columns <strong>of</strong> <strong>MTBE</strong> <strong>and</strong><br />

ETBE production. The set <strong>of</strong> algebraic equations covering the steady state<br />

composition, vapor flow rates, <strong>and</strong> liquid flow rates was determined by using<br />

46


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

matrix method, the temperature pr<strong>of</strong>ile was determined by using Newton<br />

Raphsin's method. A computer program written by MATLAB environment<br />

(version 7) is used to per<strong>for</strong>m all the calculation. There are many solution<br />

methods <strong>for</strong> the distillation models to solve different distillation systems,<br />

especially <strong>for</strong> complex multi component distillation column, these methods have<br />

different applicable occasions (Chen et al, 2004). The selection <strong>of</strong> solution<br />

method is there<strong>for</strong>e a very important issue (Taylor <strong>and</strong> Krishna, 2000).<br />

3.2 STEADY STATE MODELING OF CONTINUOUS PACKED<br />

REACTIVE DISTILLATION COLUMN:<br />

3.2.1 Model Assumptions:<br />

The reactive distillation column is modeled as a tray column, using<br />

reactive <strong>and</strong> non reactive stages where appropriate. The vapor <strong>and</strong> liquid stream<br />

leaving a stage are in thermodynamic equilibrium with one another. This is<br />

known as equilibrium model <strong>for</strong> reactive distillation, the condenser <strong>and</strong> reboiler<br />

stage numbered 1 <strong>and</strong> N, respectively. Figure (3-1) represents a scheme <strong>of</strong> the<br />

reactive tray in continuous reactive distillation column.<br />

The proposed model <strong>for</strong> reactive distillation column includes the<br />

following assumption:<br />

1. Steady state<br />

2. Neglect <strong>of</strong> vapor holdup.<br />

3. Column pressure is constant.<br />

4. Perfect mixing on all stages <strong>and</strong> in all vessels ( condenser <strong>and</strong><br />

reboiler)<br />

5. Total condensation.<br />

6. The streams leaving any particular stage are in equilibrium with<br />

each other.<br />

47


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

7. The condenser <strong>and</strong> the rebioler are treated as equilibrium stages.<br />

8. The stage efficiency is assumed 100% (<strong>for</strong> simplicity).<br />

Most <strong>of</strong> models consider liquid flow rate <strong>of</strong> output in distillate <strong>and</strong> bottom<br />

constant, <strong>and</strong> most <strong>of</strong>ten it is esterification reaction. The present model deals<br />

with this flow rates as a variable, <strong>and</strong> etherification reaction.<br />

y<br />

v n<br />

n Ln− 1x n−1<br />

+ y<br />

n x<br />

vn 1 n+<br />

1<br />

48<br />

L n<br />

Figure (3-1) Scheme <strong>of</strong> the reactive tray in continuous<br />

reactive distillation column<br />

3.2.2 Estimation Of Model Parameters<br />

a) Equilibrium relations<br />

For non-ideal mixture additional variable γi<br />

<strong>of</strong> deviation from ideality<br />

K<br />

i<br />

i ⋅ Pi<br />

=<br />

P<br />

γ<br />

appears to represent the degree<br />

(3.1)<br />

The vapor phase is assumed to behave ideally (φ=1) <strong>and</strong> the liquid phase<br />

<strong>for</strong> <strong>MTBE</strong> system (four components system) is modeled using Wilson activity<br />

coefficient equation (Appendix C, table C-1). This method is accurate <strong>for</strong> multi<br />

component mixture that doesn't <strong>for</strong>m two liquid phases (Kooijman <strong>and</strong> Taylor,<br />

2000), also UNIFAC activity coefficient model is used <strong>for</strong> ETBE(Appendix C,<br />

from table C-2 to table C-4).<br />

A+B C


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

b) Antoine Model:<br />

The vapor pressure <strong>of</strong> each component in this study is obtained by using<br />

Antoine equation:<br />

ln( P ) = A<br />

<br />

B<br />

+<br />

T + C<br />

where the temperature T is in Kevin <strong>and</strong> pressure in kp<br />

49<br />

( 3.2)<br />

Appendix (B), Table (B-3) contains parameters <strong>of</strong> Antoine equation <strong>for</strong><br />

all component used in this study.<br />

c) Bubble Point Calculation:<br />

The most widely employed numerical method <strong>for</strong> estimating bubble point<br />

<strong>of</strong> a mixture is the Newton Raphson's technique. For distillation process the<br />

liquid <strong>of</strong> each tray is at its bubble point <strong>and</strong> the vapor above the plate is at its<br />

dew point. The bubble point <strong>of</strong> multi component mixture <strong>and</strong> constant<br />

pressure can be calculated by trial <strong>and</strong> error on the equilibrium relationships<br />

y = k x<br />

( 3.3 )<br />

i<br />

i<br />

i<br />

When liquid at its bubble point then<br />

c<br />

∑ k i xi<br />

i=<br />

1<br />

Error! Bookmark not defined. = 1<br />

( 3.4)<br />

Moreover, when the vapor is at its dew point<br />

Y<br />

i<br />

∑ Ki<br />

= 1<br />

To estimate the bubble point by Newton Raphson's iterative method<br />

equation (3.6) is written in the <strong>for</strong>m<br />

(3.5)<br />

f ( T )<br />

+ 1 = T −<br />

(3.6)<br />

'<br />

f ( T )<br />

Tn n<br />

where


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

c<br />

f ( T ) Kixi<br />

−1<br />

(3.7)<br />

f<br />

'<br />

= ∑<br />

i=<br />

1<br />

c dK i<br />

( T ) xi<br />

(3.8)<br />

dT<br />

= ∑<br />

i=<br />

1<br />

d) Enthalpy Estimation<br />

Vapor enthalpy is a function <strong>of</strong> temperature <strong>and</strong> pressure. The ideal vapor<br />

state enthalpy H* is chosen as a reference, because it depends only on<br />

temperature, <strong>and</strong> it is identical to the zero pressure enthalpy <strong>of</strong> real fluid at the<br />

same temperature:<br />

H* (T) = H (T, P = 0) (3.9)<br />

Edmister (1984) expressed the ideal vapor enthalpy, <strong>for</strong> many hydrocarbons,<br />

as fifth order polynomial:<br />

H*-H*0 = A+BT+CT^2+DT^3+ET^4+FT^5 (3.10)<br />

where; T is in R <strong>and</strong> H* is in Btu/lb. The constants <strong>of</strong> the above equation are<br />

listed in Appendix A, Table (A-2) <strong>for</strong> each component <strong>of</strong> the system under<br />

consideration.<br />

The reactive distillation column <strong>of</strong> the <strong>MTBE</strong> is operating at high pressure,<br />

low temperature, so it is important to estimate the enthalpy <strong>of</strong> each component at<br />

the related operating pressure, because <strong>of</strong> the deviation from the ideal vapor<br />

state. Edmister procedure is used to estimate these enthalpies:<br />

H = (H*-H) + (H*- H*0) + H*0<br />

H = enthalpy at T <strong>and</strong> P<br />

H*-H = enthalpy departure from simple fluid.<br />

H*-H*0 = ideal vapor enthalpy.<br />

H* = ideal vapor enthalpy at T = 0<br />

0<br />

H* 0 is equal to zero at T = 0 <strong>for</strong> the operating temperature ranges.<br />

50<br />

(3-11)


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

(H*-H) is found <strong>for</strong> the operating temperature range <strong>and</strong> operating pressure <strong>of</strong><br />

each distillation column from the following equation:<br />

where;<br />

0<br />

1<br />

H * −H<br />

⎛ H * −H<br />

⎞ ⎛ H * −H<br />

⎞<br />

=<br />

⎜<br />

⎟ + ω ⎜<br />

⎟<br />

(3.12)<br />

RTc<br />

⎝ RTc<br />

⎠ ⎝ RTc<br />

⎠<br />

H * −H<br />

RTc<br />

= enthalpy departure at any temperature <strong>and</strong> pressure.<br />

0<br />

⎛ H * −H<br />

⎞<br />

⎜<br />

⎟ = enthalpy departure <strong>of</strong> simple fluid at the temperature <strong>and</strong> pressure.<br />

⎝ RTc<br />

⎠<br />

1<br />

⎛ H * −H<br />

⎞<br />

⎜<br />

⎟ = enthalpy correction <strong>for</strong> real fluid at the same temperature <strong>and</strong><br />

⎝ RTc<br />

⎠<br />

pressure.<br />

Equation (3-11) is used to get a fifth order polynomial <strong>of</strong> enthalpy as a<br />

function <strong>of</strong> temperature at the operating pressure <strong>of</strong> the column.<br />

H = a + bT + cT 2 + dT 3 + eT 4 + fT 5<br />

In appendix A, Tables (A-3) shows the constants <strong>of</strong> equation (3-11) <strong>for</strong> the<br />

column. A sample <strong>of</strong> calculation <strong>for</strong> estimating the enthalpy <strong>of</strong> n-Butane <strong>for</strong><br />

temperature range <strong>of</strong> ( 345-395K) at the pressure <strong>of</strong> 11 Bar is shown in (A-1).<br />

For vapor mixture, the V<strong>and</strong>er Walls mixing rule is used:<br />

where; Hi<br />

c<br />

H mv = ∑<br />

i=<br />

1<br />

Y H<br />

i<br />

vi<br />

51<br />

(3.13)<br />

(3.14)<br />

The partial molar enthalpy <strong>of</strong> component i in liquid mixture may be<br />

expressed as:<br />

is the molar enthalpy <strong>of</strong> component i in the vapor mixture.<br />

− λ H h (3.15)<br />

Li<br />

= vi<br />

where λ is the latent heat <strong>of</strong> vaporization <strong>and</strong> can be predicted from Watson<br />

<strong>for</strong>mula at any temperature, as follows:<br />

0.<br />

38<br />

⎡ Tc<br />

− T ⎤<br />

λ = λb<br />

⎢ ⎥<br />

(3.16)<br />

⎣Tc<br />

− Tb<br />


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

where,<br />

λ b<br />

T<br />

T<br />

b<br />

c<br />

:- latent heat at normal boiling point in KJ/Kmol.<br />

:- boiling point in K.<br />

:- critical temperature in K.<br />

T :- temperature in K.<br />

The values λ b, Tb, Tc<br />

<strong>for</strong> each component <strong>of</strong> the system are given in Appendix<br />

B Table (B-3). The enthalpy <strong>of</strong> liquid mixture is estimated using the following<br />

equation:<br />

c<br />

hL = ∑<br />

i=<br />

1<br />

h<br />

Li<br />

X<br />

i<br />

52<br />

(3-17)<br />

The heat <strong>of</strong> mixing (heat <strong>of</strong> solution) is ignored in this work (<strong>for</strong> organic<br />

solutions the heat <strong>of</strong> mixing is usually small <strong>and</strong> can be ignored Edmister 1984).<br />

3.3 STEADY STATE MODEL EQUATIONS<br />

3.3.1 Non Reactive Trays<br />

a) Total material balance:<br />

V<br />

V<br />

L + n+<br />

1 L n<br />

− − = 0<br />

(3.18)<br />

n −1<br />

n<br />

b) Component material balance<br />

V<br />

V<br />

L − X<br />

n+<br />

1Y<br />

L X nY<br />

n<br />

+ − − = 0<br />

(3.19 )<br />

n 1 n−1<br />

n+<br />

1 n n<br />

c) Energy balance<br />

h<br />

V<br />

V<br />

L − n−1<br />

n+<br />

1H<br />

L n n H n<br />

h<br />

+ − − = 0<br />

(3.20)<br />

n 1<br />

n+<br />

1 n<br />

d) Phase equilibrium


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

( T, P,<br />

X ) * φ ( T,<br />

P,<br />

Y)<br />

i<br />

φ =<br />

l<br />

v<br />

Error! Bookmark not defined. X<br />

*<br />

i<br />

Y<br />

(3-21)<br />

e) Summation<br />

c<br />

∑<br />

i=<br />

1<br />

X −1<br />

= 0<br />

(3.22)<br />

n,<br />

i<br />

3.3.2 Reactive Trays<br />

a) Total material balance:<br />

n<br />

L n V − n L − n V = v<br />

n i R<br />

− 1 + 1 ∑ m,<br />

j<br />

i=<br />

1<br />

+ (3.23)<br />

b) Component material balance:<br />

V<br />

L − X<br />

n+<br />

1Y<br />

L X nY<br />

i n,<br />

i R j<br />

V<br />

+ − − −<br />

= 0<br />

n 1 n−1<br />

n+<br />

1 n n<br />

n ε (3.24)<br />

m,<br />

c) Energy balance:<br />

L + − − −<br />

= 0<br />

−1 h −1<br />

V + 1H<br />

+ 1 L h V H w R , ∆H<br />

(3.25)<br />

n n n n n n n n n n i R<br />

d) Phase equilibrium:<br />

l<br />

v<br />

Error! Bookmark not defined. X =<br />

*<br />

i<br />

Y<br />

(3.26)<br />

e) Summation:<br />

c<br />

∑<br />

i=<br />

1<br />

53<br />

w<br />

i<br />

φ ( T, P,<br />

X ) * φ ( T,<br />

P,<br />

Y)<br />

i<br />

X −1<br />

= 0<br />

(3.27)<br />

n,<br />

i<br />

3.3.3 Condenser<br />

i<br />

i<br />

i


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

a) Total material balance:<br />

( + ) = 0<br />

V (3.28)<br />

− 2 L1<br />

D<br />

b) Component material balance:<br />

( + ) = 0<br />

V 2 2,<br />

1<br />

i,<br />

1<br />

Y<br />

− L D X<br />

i (3.29)<br />

c) Energy balance:<br />

( + ) − = 0<br />

V 2 H 2 L1<br />

D h1<br />

c<br />

− Q<br />

d) Phase equilibrium:<br />

l<br />

v<br />

Error! Bookmark not defined. φ ( , P,<br />

X ) * X = i φ ( T,<br />

P,<br />

Y)<br />

* Y<br />

(3.31)<br />

e) Summation:<br />

c<br />

∑<br />

i=<br />

1<br />

T i<br />

i i<br />

54<br />

(3.30)<br />

X −1<br />

= 0<br />

(3.32)<br />

n,<br />

i<br />

f) Reflux Ratio<br />

RR= Fref/D<br />

(3.33)<br />

3.3.4 Reboiler<br />

a) Total material balance:<br />

− V N L<br />

L N<br />

− − = 0<br />

(3.34)<br />

N 1<br />

b) Component Material Balance


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

V<br />

L − −<br />

N −1 X N −1<br />

NY<br />

N LN<br />

X N<br />

c) Energy Balance<br />

h<br />

V<br />

h<br />

L N −1<br />

N H L N R<br />

= 0:<br />

(3.35)<br />

Q<br />

− − + = 0<br />

(3.36)<br />

N −1<br />

N N<br />

d) Phase Equilibrium<br />

l<br />

v<br />

Error! Bookmark not defined. φ ( , P,<br />

X ) * X = i φ ( T,<br />

P,<br />

Y)<br />

* Y<br />

(3.37)<br />

e) Summation<br />

c<br />

∑<br />

i=<br />

1<br />

T i<br />

i i<br />

X −1<br />

= 0<br />

(3.38)<br />

n,<br />

i<br />

These equations are solved by using 2N * 2N Jacobean matrix to estimate<br />

the vapor <strong>and</strong> liquid flow rates at each stage since all the enthalpies are known at<br />

the stage temperature.<br />

55


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

3.4 DEGREE OF FREEDOM:<br />

To examine the number <strong>of</strong> variables <strong>and</strong> the number <strong>of</strong> equations required<br />

to solve the model , the difference between the number <strong>of</strong> variables involved in<br />

the relationship has been called " Degree <strong>of</strong> freedom " A degree <strong>of</strong> freedom<br />

analysis was first developed by Gilli<strong>and</strong> <strong>and</strong> Reed ,1942 <strong>and</strong> modified by<br />

Kwauk,1956. If the column consists <strong>of</strong> N stages <strong>and</strong> the number <strong>of</strong> components<br />

presented in feed is C, then the column , can be defined as shown in table (3-1)<br />

as follows :<br />

Table (3-1) Number <strong>of</strong> variables <strong>and</strong> equations<br />

Number <strong>of</strong> variables<br />

Liquid flow rates N<br />

Vapor flow rates N<br />

Liquid composition C.N<br />

Vapor composition C.N<br />

Reboiler ,trays, <strong>and</strong> Condenser temperature N<br />

Total N(3+2C)<br />

Number <strong>of</strong> equations<br />

Total material balance equations. N<br />

Total heat balance equations. N<br />

Component material balance equations. C.N<br />

Equilibrium equations. C.N<br />

Summation equations. N<br />

56


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

Total N(3+2C)<br />

Since the number <strong>of</strong> equations is equal to number <strong>of</strong> variables, then the<br />

model can be solved to evaluate:<br />

• Liquid flow rate in the column.<br />

• Liquid composition pr<strong>of</strong>iles.<br />

• Vapor composition pr<strong>of</strong>iles.<br />

• Amount <strong>of</strong> Distillate <strong>and</strong> Bottom product.<br />

• Temperature pr<strong>of</strong>iles in the column.<br />

• Reaction rate pr<strong>of</strong>iles<br />

• Vapor flow rate in the column<br />

57


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

3.5 CASE STUDIES<br />

3.5.1 Case Study One (<strong>MTBE</strong>)<br />

Figure (3-2) represents the continuous tray reactive distillation column,<br />

there is vapor liquid equilibrium in the reboiler <strong>and</strong> condenser which can be<br />

assumed as a theoretical stage. By starting from the upper point, the condenser is<br />

numbered as stage one <strong>and</strong> the first stage (section 1) <strong>of</strong> packing column is<br />

numbered stage 2, then we count from the top to the bottom. The last tray <strong>of</strong> the<br />

column is thus stage numbered (16), also the reboiler named stage (17). Making<br />

the total material, component, <strong>and</strong> energy balances on the various section <strong>of</strong><br />

continuous reactive distillation column, <strong>and</strong> further simplification <strong>of</strong> the<br />

equation lead to the model<br />

The conventional MESH equations are used <strong>for</strong> column adding one term<br />

taking account <strong>of</strong> the reaction in the mass <strong>and</strong> energy balances. The base model<br />

as shown in Figure (3.2) consists <strong>of</strong> seventeen theoretical stages, numbered from<br />

top to bottom (1 to 17), with total condenser numbered as (1) <strong>and</strong> partial<br />

reboiler numbered as (17), there are rectification section above reactive section<br />

<strong>and</strong> stripping section below the reactive section.<br />

The reaction studies are the etherification <strong>of</strong> isobutene( 4 H ) <strong>and</strong><br />

), resulting in the product methyl tertiary Butyl<br />

methanol ( CH 3 OH<br />

ether( C5 12O<br />

) .<br />

H<br />

MEOH + IB<br />

Chemical reaction rate<br />

caution catalyst<br />

58<br />

C 8<br />

<strong>MTBE</strong> ( 3.39)


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

vi<br />

kf<br />

g<br />

m<br />

r *<br />

i , j , j i i cat<br />

= (3.40)<br />

Chemical reaction driving <strong>for</strong>ce (Sundmaker <strong>and</strong> H<strong>of</strong>fman ,1999)<br />

Activity<br />

g<br />

i<br />

⎛<br />

=<br />

⎜<br />

⎜<br />

⎝<br />

γ<br />

a<br />

a * i i xi<br />

i<br />

⎞<br />

a<br />

<strong>MTBE</strong><br />

ic<br />

− ai<br />

⎟<br />

2<br />

MEOH MEOH<br />

⎟<br />

K eqa<br />

i ⎠<br />

4 (3.41)<br />

= (3.42)<br />

Chemical reaction constant (Thiel et al. 2002)<br />

where<br />

Ea ⎛ ⎞<br />

⎜ 1 1 ⎟<br />

K ( T ) = k ( T ) e ^ −<br />

(3.43)<br />

f<br />

f ο<br />

R ⎜ ⎟<br />

⎝T<br />

T ο ⎠<br />

kf(Tº) = 15.5 .10 -3<br />

mol / (s * eq[H+] )<br />

Ea = 92400 J/mol<br />

Tº = 333.15 K<br />

Chemical equilibrium constant.<br />

ln k<br />

+ ε(<br />

T<br />

eq<br />

3<br />

⎛ 1<br />

= lnk<br />

+ α⎜<br />

−<br />

eqο<br />

⎝ T<br />

−<br />

3<br />

) + θ(<br />

4<br />

−<br />

T<br />

T<br />

T<br />

1 ⎞ ⎛ T ⎞<br />

⎟ + βln⎜<br />

⎟ + σ(<br />

T − T*)<br />

+ δ(<br />

T * ⎠ ⎝ T * ⎠<br />

4<br />

)<br />

59<br />

T<br />

2<br />

−<br />

T<br />

2<br />

)<br />

(3.44)


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

Figure (3-2) Reactive distillation column scheme <strong>for</strong> production <strong>of</strong> <strong>MTBE</strong><br />

3.5.2 Case Study Two (ETBE):<br />

Figure (3-3) represents the continuous tray reactive distillation column, there<br />

is vapor liquid equilibrium in the reboiler <strong>and</strong> condenser which can be assumed<br />

as a theoretical stage. Starting from the lower point, the reboiler is numbered as<br />

stage one <strong>and</strong> the first stage (section 1) <strong>of</strong> packing column is numbered stage 2,<br />

then we count from the bottom to the top. The last tray <strong>of</strong> the column is thus<br />

numbered (24), also the condenser is named stage (1). Making the total material,<br />

component, <strong>and</strong> energy balances on the various section <strong>of</strong> continuous reactive<br />

distillation column, <strong>and</strong> further simplification <strong>of</strong> the equation lead to the model<br />

60


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

Figure (3-3) Reactive distillation column scheme <strong>for</strong> production <strong>of</strong> ETBE<br />

3.6<strong>Simulation</strong><br />

By MATLAB<br />

Muhammad A. Al-Arfaj, (2002).<br />

The design <strong>of</strong> a distillation column with a simulation program requires a<br />

large number <strong>of</strong> individual computer runs. Different programs have been<br />

developed to per<strong>for</strong>m such calculation using different computer languages (C,<br />

C<br />

++<br />

, Fortran, Java…).<br />

Among all <strong>of</strong> these programs, MATLAB environment (Version 7) is<br />

selected because <strong>of</strong> its high-level technical computing language <strong>and</strong> interactive<br />

environment <strong>for</strong> algorithm development, data visualization, data analysis <strong>and</strong><br />

numerical computation. The MATLAB language supports the vector <strong>and</strong> matrix<br />

61


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

operations that are fundamental to engineering <strong>and</strong> scientific problems<br />

(MATLAB web site).<br />

MATLAB provides several types <strong>of</strong> functions <strong>for</strong> per<strong>for</strong>ming<br />

mathematical operations <strong>and</strong> analyzing data, such as matrix manipulation, linear<br />

algebra, polynomials <strong>and</strong> interpolation, ordinary differential equations, partial<br />

differential equations, sparse matrix operations, 2D <strong>and</strong> 3D plotting <strong>and</strong> much<br />

more.<br />

To calculate the composition <strong>of</strong> each component on each stage<br />

(condenser, trays, reboiler), the component mass balance equation are solved by<br />

using Gauss elimination method as shown in matrix below:<br />

⎡−<br />

(<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

A = ⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢<br />

⎢⎣<br />

L<br />

+ 1 V 1K<br />

L1<br />

0<br />

0<br />

0<br />

:<br />

.<br />

0<br />

)<br />

i,<br />

1<br />

− (<br />

( V ) 2k<br />

i,<br />

2<br />

L + 2 V 2K<br />

L2<br />

0<br />

0<br />

:<br />

.<br />

0<br />

)<br />

i,<br />

2<br />

− (<br />

0<br />

( ) 3 i,<br />

3<br />

+ 3 3<br />

3 L<br />

V k<br />

L V K<br />

0<br />

:<br />

.<br />

0<br />

)<br />

i,<br />

3<br />

− (<br />

62<br />

0<br />

0<br />

(<br />

L<br />

V k<br />

:<br />

.<br />

0<br />

)<br />

4 i,<br />

4<br />

+ )<br />

4 4 i,<br />

4<br />

L j<br />

K V<br />

− (<br />

0<br />

0<br />

0<br />

( V 5k<br />

L + j V<br />

:<br />

.<br />

L<br />

16<br />

)<br />

i,<br />

5<br />

j<br />

K<br />

)<br />

i,<br />

j<br />

− (<br />

L<br />

( V<br />

17<br />

+<br />

j<br />

0<br />

0<br />

0<br />

0<br />

k<br />

:<br />

.<br />

V<br />

17<br />

)<br />

i,<br />

j<br />

K<br />

i,<br />

17<br />

⎤⎡<br />

x1<br />

⎤ ⎡ 0 ⎤<br />

⎥⎢<br />

x<br />

⎥ ⎢ ⎥<br />

2<br />

⎢ ⎥ ⎢<br />

0<br />

⎥<br />

⎥<br />

⎥⎢<br />

x3<br />

⎥ ⎢ 0 ⎥<br />

⎥⎢<br />

⎥ ⎢ ⎥<br />

⎥⎢<br />

x4<br />

⎥ = ⎢ r 4 ⎥<br />

⎥⎢<br />

xj<br />

⎥ ⎢Fjxfi<br />

+ rj⎥<br />

⎥⎢<br />

⎥ ⎢ ⎥<br />

⎥⎢<br />

: ⎥ ⎢ : ⎥<br />

⎥⎢<br />

. ⎥ ⎢ 0 ⎥<br />

⎥⎢<br />

⎥ ⎢ ⎥<br />

) ⎥⎦<br />

⎢⎣<br />

x17⎥⎦<br />

⎢⎣<br />

0 ⎥⎦


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

To find the vapor <strong>and</strong> liquid flow rate the total mass <strong>and</strong> heat balance<br />

equations are solved by using Gauss elimination method as shown in matrix<br />

below:<br />

⎡H<br />

1<br />

⎢<br />

0<br />

⎢<br />

⎢ 0<br />

⎢<br />

⎢ 0<br />

⎢ :<br />

⎢<br />

⎢ 0<br />

⎢ 1<br />

⎢<br />

⎢ 0<br />

⎢ 0<br />

⎢<br />

⎢ 0<br />

⎢<br />

⎢<br />

:<br />

⎢<br />

⎣<br />

0<br />

− H<br />

H<br />

0<br />

0<br />

:<br />

0<br />

−1<br />

1<br />

0<br />

0<br />

:<br />

0<br />

2<br />

2<br />

0<br />

− H<br />

H<br />

0<br />

:<br />

0<br />

0<br />

−1<br />

1<br />

0<br />

:<br />

0<br />

3<br />

3<br />

0<br />

0<br />

− H<br />

H<br />

:<br />

0<br />

0<br />

0<br />

−1<br />

1<br />

:<br />

0<br />

− H<br />

−1<br />

j+<br />

1<br />

− h<br />

−1<br />

The flow chart <strong>of</strong> simulation program which simulate the continuous<br />

reactive distillation is shown in Figure (3.4)<br />

j<br />

4<br />

Start<br />

Read column Specification<br />

0<br />

0<br />

0<br />

:<br />

0<br />

0<br />

0<br />

0<br />

:<br />

0<br />

Read physical properties<br />

Read activity coefficient model<br />

parameters <strong>and</strong> Antoine<br />

constants<br />

Input initial compositions<br />

Assume Ti ,Vi , Xi ,<strong>and</strong> Li<br />

j =0<br />

j =j+1<br />

H<br />

:<br />

:<br />

:<br />

:<br />

:<br />

:<br />

:<br />

:<br />

:<br />

:<br />

1<br />

17<br />

h<br />

0<br />

0<br />

:<br />

0<br />

1<br />

0<br />

0<br />

:<br />

1<br />

0<br />

1<br />

63<br />

0<br />

h<br />

− h<br />

0<br />

:<br />

0<br />

0<br />

1<br />

−1<br />

0<br />

:<br />

2<br />

0<br />

3<br />

0<br />

0<br />

h<br />

− h<br />

:<br />

0<br />

0<br />

0<br />

1<br />

−1<br />

:<br />

4<br />

0<br />

j<br />

h<br />

0<br />

0<br />

0<br />

j+<br />

1<br />

:<br />

− h<br />

0<br />

0<br />

0<br />

1<br />

:<br />

16<br />

−1<br />

0 ⎤⎡<br />

V ⎤ ⎡ − Q<br />

1<br />

c<br />

⎢<br />

0<br />

⎥⎢<br />

⎥<br />

⎥<br />

V<br />

0<br />

⎢ 2 ⎥ ⎢<br />

0 ⎥⎢<br />

V ⎥ ⎢ 0<br />

3<br />

⎥ ⎢<br />

0<br />

⎢ ⎥<br />

⎥ ⎢ +<br />

⎢V<br />

F<br />

⎥ jh<br />

f rj<br />

j<br />

j<br />

: ⎥⎢<br />

: ⎥ ⎢ :<br />

⎥⎢<br />

⎥ ⎢<br />

h17<br />

⎥⎢V<br />

⎥ ⎢ Q<br />

17<br />

r<br />

⎥⎢<br />

⎥<br />

=<br />

0 L<br />

⎢ 0<br />

1 ⎥⎢<br />

⎥ ⎢<br />

0 ⎥⎢<br />

L ⎥ ⎢ 0<br />

2<br />

0<br />

⎥⎢<br />

⎥ ⎢<br />

0<br />

⎥<br />

L3<br />

⎢ ⎥ ⎢<br />

0 ⎥⎢<br />

L ⎥ ⎢ F j + r<br />

j<br />

j<br />

⎥⎢<br />

⎥ ⎢<br />

:<br />

⎥⎢<br />

:<br />

⎥ ⎢<br />

:<br />

1 ⎥⎢<br />

⎥ ⎢<br />

⎦⎣L<br />

⎦<br />

0<br />

17 ⎣<br />

Evaluate bubble point <strong>of</strong> each tray<br />

Calculate element <strong>of</strong> jacobian<br />

matrix<br />

o<br />

1, j<br />

i<br />

1, j<br />

X = X ,<br />

o<br />

2, j<br />

i<br />

2, j<br />

Evaluate composition matrices<br />

⎤<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

Hr⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎥<br />

⎦<br />

o i o<br />

X = X , X = X , X = X<br />

3, j<br />

3, j<br />

Calculate new compositions<br />

i 1 i 1<br />

1, j X 2, j<br />

+ , ! i<br />

3, j<br />

X + ,<br />

X + ,<br />

X +<br />

i !<br />

4, j<br />

∇<br />

4, j<br />

i<br />

4, j


Chapter Three <strong>Modeling</strong> <strong>and</strong> simulation<br />

Assume initial temperature<br />

No<br />

ο<br />

T j<br />

Calculate components vapor pressures<br />

Calculate components activity coefficients<br />

Yes<br />

No<br />

T −T<br />

≤ 0.<br />

02T<br />

p+<br />

1<br />

j<br />

p+<br />

1<br />

j<br />

p =0<br />

T = T<br />

p =p+1<br />

p<br />

j<br />

p<br />

j<br />

Calculate k i, j values<br />

f ( T<br />

p+<br />

1 p<br />

T j = T j − '<br />

f ( T<br />

p<br />

j<br />

Yes<br />

Bubble point= T j<br />

If j


Chapter Four Results <strong>and</strong> Discussion<br />

4-1U INTRODUCTION:<br />

Chapter Four<br />

Results <strong>and</strong> Discussion<br />

The production <strong>of</strong> <strong>MTBE</strong> from isobutene <strong>and</strong> methanol by RD is used<br />

as a first case to reveal the effects <strong>of</strong> some variables such as number <strong>of</strong><br />

reactive trays, locations <strong>of</strong> feed, reflux ratio, <strong>and</strong> catalyst weight. The feed<br />

ratio effect is also studied although the equal molar <strong>of</strong> each <strong>of</strong> MeoH <strong>and</strong> IB is<br />

preferred to avoid separation problems. The first case is defined as shown<br />

Appendix (D), Table (D-1). <strong>MTBE</strong> is required as a bottom product <strong>of</strong> the<br />

column, as the methanol <strong>and</strong> isobutene is fed in stoichiometric proportion.<br />

Also the second case is shown in Appendix (D), Table (D-2).<br />

The model can be evaluated by the comparison with experimental result<br />

or even with different theoretical results that use different simulation or<br />

solution method.<br />

4-2U MODEL VALADITY:<br />

Figure (4.1.a) <strong>and</strong> Figure (4.1.b) represent the liquid composition pr<strong>of</strong>ile<br />

<strong>and</strong> temperature pr<strong>of</strong>ile along reactive distillation column in Wang work<br />

(Wang, et. al. 2003) <strong>for</strong> <strong>MTBE</strong> production at 11atm pressure <strong>and</strong> 17 stages.<br />

In present model the liquid composition pr<strong>of</strong>iles <strong>of</strong> the four components<br />

as shown in Figure (4.2.a) that shows the liquid is dominated by n-butane from<br />

top stage to 11P<br />

th<br />

P stage. In this stage the liquid becomes richer in <strong>MTBE</strong> as the<br />

other components decrease. In the section <strong>of</strong> the column above the reaction<br />

zone, the mole fractions <strong>of</strong> <strong>MTBE</strong> quickly decreases as one moves to the top<br />

stage. This is due mainly to the large difference between k-values <strong>of</strong> <strong>MTBE</strong><br />

<strong>and</strong> those <strong>for</strong> other components. In the isobutene mole composition pr<strong>of</strong>ile, the<br />

64


Chapter Four Results <strong>and</strong> Discussion<br />

maximum value <strong>of</strong> IB mole fraction appears in the 10P<br />

65<br />

th<br />

P tray<br />

which represents<br />

C4s feed location, that agrees with Wang's pr<strong>of</strong>ile except the maximum point<br />

th<br />

was 11P<br />

P. This tray represents the C4s feed location in his work, the same was<br />

shown in the methanol pr<strong>of</strong>ile. The error is evaluated (Appendix E, table E-1)<br />

<strong>for</strong> the two Figures (4.1.a <strong>and</strong> 4.2.a) to make comparison. It was very low error<br />

<strong>for</strong> (IB, MeOH, <strong>and</strong>, <strong>MTBE</strong> pr<strong>of</strong>iles), but in the NB pr<strong>of</strong>ile it was higher than<br />

the other <strong>and</strong> that is distinct in the figures. Generally this result in agreement<br />

with Wang's work.<br />

For the same mole fraction <strong>and</strong> flow rate <strong>of</strong> feed using same type <strong>and</strong><br />

quantity <strong>of</strong> catalyst. Mole fractions <strong>of</strong> (IB, MeOH, <strong>MTBE</strong>, <strong>and</strong> NB) <strong>of</strong><br />

distillate in this model are (0.0608, 0.0601, 0, 0.879) but in Wang's work the<br />

pr<strong>of</strong>ile are (0.05, 0.05, 0, 0.9). Also in the bottom the model's mole fractions<br />

are (0.0007, 0, 0.9742, 0.0251) compared to the other work which were (0, 0,<br />

0.98, 0.02).<br />

Although there are good agreement in comparison with the two mole<br />

fractions in the bottom <strong>and</strong> distillate however one can distinguish there are few<br />

different paths <strong>of</strong> these components pr<strong>of</strong>iles which are from condenser stage<br />

(1) to reboiler stage (17), this may be due to using different VLE models <strong>and</strong><br />

enthalpy correlations.<br />

Also the temperature pr<strong>of</strong>iles are presented in Figure (4.1.b) <strong>and</strong> Figure<br />

(4.2.b), which showed good comparison results. The temperature pr<strong>of</strong>ile<br />

conducted in the column operates "from top (the condenser stage) to the first<br />

feed location" in low range. It is less than 10 K. In this modeling it was 6<br />

while in the Wang's work was 9, suddenly the temperature increases from this<br />

tray to reboiler to make more than 60 K ranges because <strong>of</strong> the existence <strong>of</strong> the<br />

heavy component in these trays.


Chapter Four Results <strong>and</strong> Discussion<br />

Figure (4.1.a) liquid molar composition pr<strong>of</strong>ile.<br />

Figure (4.1.b) temperature pr<strong>of</strong>ile.<br />

(Wange et al. 2003)<br />

66


Chapter Four Results <strong>and</strong> Discussion<br />

liquid mole fractions (-)<br />

Figure (4.2.a) Theoretical liquid molar composition pr<strong>of</strong>ile<br />

Figure (4.2.b) Temperature pr<strong>of</strong>ile.<br />

67


Chapter Four Results <strong>and</strong> Discussion<br />

4-3U EFFECT OF REACTIVE TRAYS CHANGE:<br />

The effect <strong>of</strong> adding or subtracting either non-reactive or reactive<br />

separation stages, "keeping the number <strong>of</strong> total stages constant" is studied<br />

relative to the purity, conversion, <strong>and</strong> yield.<br />

Figure (4-3) shows the <strong>MTBE</strong> composition against column stages with<br />

variation in reactive stages. There are clear increase in <strong>MTBE</strong> mole fractions<br />

in each tray especially in the striping sector. It was noticed that using more<br />

than eight reactive trays does not improve the conversion significantly.<br />

This can be seen from Figure (4.5) which shows the isobutene<br />

conversion pr<strong>of</strong>ile with variation in reactive stages. The conversion increases<br />

linearly with the number <strong>of</strong> reactive stages but after using more than eight<br />

reactive trays the rate becomes very low.<br />

There<strong>for</strong>e from eight stages onwards the difference decreases <strong>and</strong> then<br />

there is no relevant importance in the purity, as illustrated in Figure (4.4)<br />

which shows the <strong>MTBE</strong> composition in the bottom against reactive stages.<br />

The conversion which is shown in Figure (4.5) has no benefit when<br />

more than eight is used. The yield depends upon <strong>MTBE</strong> mole fraction in the<br />

bottom <strong>and</strong> bottom flow rate. "The bottom flow rate <strong>and</strong> distillate assumed to<br />

be variable <strong>and</strong> this assumption made the model more complexity".<br />

Figure (4.6) shows flow rate pr<strong>of</strong>ile with variation <strong>of</strong> reactive stages<br />

number. It can be observed the yield decreases with increasing <strong>of</strong> reactive<br />

stages. The column with eight reactive stages can be considered the best<br />

choice <strong>for</strong> good purity <strong>and</strong> conversion even with the decrease in flow rate the<br />

yield still good.<br />

68


Chapter Four Results <strong>and</strong> Discussion<br />

<strong>MTBE</strong> liquid mole fraction<br />

<strong>MTBE</strong> liquid mole fraction<br />

<strong>MTBE</strong> Liquid molar composition (-)<br />

iti ( )<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17<br />

Stage No.<br />

69<br />

Reactive tray=1<br />

Reactive tray=2<br />

Reactive tray=3<br />

Reactive tray=4<br />

Reactive tray=5<br />

Reactive tray=6<br />

Reactive tray=7<br />

Reactive tray=8<br />

Reactive tray=9<br />

Reactive tray=10<br />

Figure (4.3)Liquid composition pr<strong>of</strong>ile <strong>of</strong> the product (<strong>MTBE</strong>) with<br />

different number <strong>of</strong> reactive trays.<br />

Number <strong>of</strong> reactive trays<br />

Figure (4.4) <strong>MTBE</strong> liquid composition in bottom using<br />

different numbers <strong>of</strong> reactive trays


Chapter Four Results <strong>and</strong> Discussion<br />

Bottom flow rate mole/s<br />

Figure (4.5) IB liquid conversion with using different numbers <strong>of</strong> reactive<br />

trays.<br />

Figure (4.6) Bottom flow rate with using different numbers <strong>of</strong> reactive trays<br />

70


Chapter Four Results <strong>and</strong> Discussion<br />

4-4U EFFECT OF VARIATION OF FEED LOCATIONS:<br />

The variations in feed locations <strong>of</strong> reactive distillation column <strong>for</strong><br />

<strong>MTBE</strong> production are studied by (Jacob <strong>and</strong> Krishna, 1993). They have<br />

studied the alternative methanol feed locations they found when this location<br />

is moved from 1P<br />

st<br />

P tray to the C4s feed tray, the conversion increases from 0.87<br />

to 0.99, when the methanol enters below C4s feed location the conversion<br />

goes to a value less than 0.5 (Figure 2.5). The methanol always enters the<br />

column through the tray above the isobutene feed location tray. The reason is<br />

clear because the methanol is liquid while the isobutene is a vapor <strong>and</strong> if the<br />

methanol enters from location below C4s there is no good contact between<br />

them. In the present model, the study <strong>of</strong> feed locations avoids this case <strong>and</strong> the<br />

difference between the two feed locations was just one.<br />

The yield, purity, <strong>and</strong> conversion were studied (Figure 4.7). There is<br />

trade <strong>of</strong>f between the conversion <strong>and</strong> purity. It can be noticed the conversion<br />

decreases when the location moves down while the yield <strong>and</strong> the purity<br />

increase, after 10P<br />

th<br />

P <strong>and</strong><br />

th<br />

11P<br />

P tray<br />

feed locations. The increasing in purity <strong>and</strong><br />

yield causes the conversion to become lower. From these location cases ,10P<br />

th<br />

<strong>and</strong> 11P<br />

P trays can be considered as the best one because they give good purity,<br />

conversion, <strong>and</strong> yield when compared to others.<br />

variation.<br />

Appendix E, table E-4 summarizes the results <strong>of</strong> feed locations<br />

71<br />

th<br />

P


Chapter Four Results <strong>and</strong> Discussion<br />

conversion,purity, bottomflowrate*190.85<br />

1.02<br />

1<br />

0.98<br />

0.96<br />

0.94<br />

0.92<br />

0.9<br />

conversion<br />

purity<br />

flow rate *190.85<br />

0.88<br />

7th <strong>and</strong> 8th trays 8th <strong>and</strong> 9th trays 9th <strong>and</strong> 10th trays 10th <strong>and</strong> 11th trays 11th <strong>and</strong> 12th trays<br />

feed location<br />

Figure (4.7) Conversion(-), purity(-), <strong>and</strong> bottom flow rate (mole/s)<br />

with using different locations <strong>of</strong> feed.<br />

4-5U EFFECT OF FEED RATIO:<br />

Although equal molars <strong>of</strong> reactant are preferred when reactive<br />

distillation is used to avoid side reactions <strong>and</strong> separation problems, the feed<br />

ratio variation <strong>of</strong> methanol to isobutene is studied to see how the system is<br />

affected.The effects <strong>of</strong> variation in feed ratio is illustrated by Figures (4.10.a)<br />

<strong>and</strong> (4.8.b) <strong>and</strong> summarize in Figure (4.9). As it is known in the conventional<br />

production process, an excess in methanol is required in order to increase the<br />

conversion <strong>of</strong> IB. The problem <strong>of</strong> separating non-reacted methanol or non-<br />

reacted isobutene from bottom product appears when using this scheme. It can<br />

be observed from Figure (4.9) both purity <strong>and</strong> conversion decrease with<br />

increase in the feed ratio <strong>and</strong> the best result occurs when the feed ratio is equal<br />

to one.<br />

72


Chapter Four Results <strong>and</strong> Discussion<br />

Liquid mole fraction (-)<br />

Liquid molar composition (-)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17<br />

Stage No.<br />

Figure (4.8.a) Liquid composition pr<strong>of</strong>ile with feed ratio=(0.7)<br />

Liquid mole fraction (-)<br />

Liquid molar composition (-)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

73<br />

Isobutene<br />

Methanol<br />

<strong>MTBE</strong><br />

n-Butane<br />

2 4 6 8 10 12 14 16<br />

Stage No.<br />

Isobutene<br />

Methanol<br />

<strong>MTBE</strong><br />

n-Butane<br />

Figure (4.8.b) Liquid composition pr<strong>of</strong>ile with feed ratio=(1.3).


Chapter Four Results <strong>and</strong> Discussion<br />

Conversion(-),Purity(-), <strong>and</strong> Bottom<br />

flow rate/231(mol/s) /mole/s<br />

Figure (4.9) Conversion(-), purity(-), <strong>and</strong> bottom flow rate(mole/s) with<br />

using different feed ratios<br />

4-6U CATALYST EFFECT:<br />

The using catalyst per tray in reactive trays with different weights is<br />

investigated <strong>and</strong> illustrated in Figure (4.10) which shows the relationship <strong>of</strong><br />

purity, conversion, <strong>and</strong> yield with catalyst weights. The increase in purity <strong>and</strong><br />

conversion is distinct in this figure but the yield decreases in this case. The<br />

using <strong>of</strong> 1100 kg can be considered as the best, but it would also augments the<br />

cost <strong>of</strong> process.<br />

74


Chapter Four Results <strong>and</strong> Discussion<br />

Figure (4-10) Conversion(-), purity(-), <strong>and</strong> bottom flow rate (mole/s) with<br />

using different catalyst weights per tray.<br />

4-7U FFECTS OF REFLUX RATIO:<br />

The effect <strong>of</strong> reflux ratio on purity, conversion, <strong>and</strong> yield has been<br />

studied simultaneously. The maximum values <strong>for</strong> both <strong>of</strong> conversion <strong>and</strong><br />

purity were when the reflux ratio equal to five Figure (4.15.a). However, at<br />

this reflux ratio, the bottom flow rate was very low so that, it could not reach<br />

the amount <strong>of</strong> required yield. When the reflux ratio increased the bottom flow<br />

rate increased.<br />

This is clear from (Figure 4.11) with very low decrease in liquid flow<br />

rate until reflux ratio exceeded the 8P<br />

higher so the best or optimum value can be chosen as eight.<br />

th<br />

P tray<br />

75<br />

as decrease in the purity become<br />

The main reason <strong>for</strong> this behavior is the reflux ratio increase, the<br />

distillate flow rate becomes lower ,as the bottom flow rate becomes higher, so


Chapter Four Results <strong>and</strong> Discussion<br />

that the conversion <strong>and</strong> purity will be decreased. In addition there is<br />

temperature pr<strong>of</strong>ile effect.<br />

Figure (4.12) shows how the reflux ratios effect on the reaction rates.<br />

<strong>and</strong> this reaction occurs in different mount, (Figure 4.13)<br />

As shown in Figure (4-14) that when reflux ratios increase, the<br />

temperature pr<strong>of</strong>iles decrease there<strong>for</strong>e, the decrease in temperature leads to<br />

decrease in the reaction rate.<br />

Figure (4-15) shows the <strong>MTBE</strong> liquid pr<strong>of</strong>ile along the column trays<br />

Figure (4-11) Bottom flow rate (mol/s), purity(-), <strong>and</strong> conversion(-) versus<br />

reflux ratio<br />

76


Chapter Four Results <strong>and</strong> Discussion<br />

reaction rate (mol/s)<br />

-15<br />

-20<br />

-25<br />

-30<br />

-35<br />

-40<br />

RR=5<br />

RR=6<br />

RR=7<br />

RR=8<br />

RR=9<br />

-45<br />

4 5 6 7 8 9 10 11<br />

Stage No.<br />

Figure (4.12) Reaction rate along the reactive trays with different reflux<br />

ratio.<br />

reactionrate(mol/s)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18<br />

Stage No.<br />

Figure (4-13) Reaction rate <strong>of</strong> isobutene <strong>and</strong> methanol along column<br />

stages.<br />

77


Chapter Four Results <strong>and</strong> Discussion<br />

Liquid molar <strong>MTBE</strong> composition fraction (-)<br />

Liquid molar <strong>MTBE</strong> composition (-)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Figure (4-14) Temperature pr<strong>of</strong>ile with different reflux ratios<br />

RR=2.5<br />

RR=3<br />

RR=4<br />

RR=4.5<br />

RR=5<br />

RR=6<br />

RR=7<br />

RR=9<br />

2 4 6 8 10 12 14 16<br />

Stage No.<br />

Figure (4.15 ) <strong>MTBE</strong> composition pr<strong>of</strong>ile with different reflux ratio<br />

78


Chapter Four Results <strong>and</strong> Discussion<br />

Liquid molar composition fraction (-)<br />

Liquid molar composition (-)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Isobutene<br />

Methanol<br />

<strong>MTBE</strong><br />

n-Butane<br />

2 4 6 8 10 12 14 16<br />

Stage No.<br />

Figure (4.16.a )Liquid composition pr<strong>of</strong>ile with reflux ratio =5<br />

Liquid molar composition (-)<br />

Liquid molar composition fraction (-)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Isobutene<br />

Methanol<br />

<strong>MTBE</strong><br />

n-Butane<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17<br />

Stage No.<br />

Figure (4.16.b )Liquid composition pr<strong>of</strong>ile with reflux ratio =6<br />

79


Chapter Four Results <strong>and</strong> Discussion<br />

Liquid molar composition (-)<br />

Liquid molar composition fraction (-)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Isobutene<br />

Methanol<br />

<strong>MTBE</strong><br />

n-Butane<br />

0<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17<br />

Stage No.<br />

Figure (4.16.c )Liquid composition pr<strong>of</strong>ile with reflux ratio =7<br />

Liquid molar composition (-)<br />

Liquid molar composition fraction (-)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Isobutene<br />

Methanol<br />

<strong>MTBE</strong><br />

n-Butane<br />

2 4 6 8 10 12 14 16<br />

Stage No.<br />

Figure (4.16.e)Liquid composition pr<strong>of</strong>ile with reflux ratio =8<br />

80


Chapter Four Results <strong>and</strong> Discussion<br />

Liquid molar composition fraction (-)<br />

Liquid molar composition (-)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Isobutene<br />

Methanol<br />

<strong>MTBE</strong><br />

n-Butane<br />

2 4 6 8 10 12 14 16<br />

Stage No.<br />

Figure (4.16. f)Liquid composition pr<strong>of</strong>ile with reflux ratio =9<br />

The alternative <strong>for</strong> further improvement <strong>of</strong> the <strong>MTBE</strong> composition in<br />

the bottom product is to decrease the bottom flow rate. However, it should be<br />

noticed that the fact <strong>of</strong> doing so implies feeding <strong>MTBE</strong> in the reactive sector<br />

<strong>of</strong> the column. This action will have adverse effect on the reaction itself, as it<br />

displace the equilibrium reaction towards the reactant <strong>and</strong> lower the<br />

conversion. But the explanation <strong>of</strong> this case is as follows:<br />

Decreasing the <strong>of</strong> bottom flow rate leads to increasing <strong>of</strong> reactants in<br />

reaction zone <strong>and</strong> increasing <strong>of</strong> <strong>MTBE</strong> in stripping sector, also there are<br />

enough trays <strong>for</strong> separation, result <strong>of</strong> that is higher conversion <strong>and</strong> purity. And<br />

lower yield which depends upon the liquid flow rate in the bottom, Figure (4-<br />

13-b) shows the algorithm <strong>of</strong> how the purity <strong>and</strong> conversion are affected by<br />

decreasing in bottom flow rate. And these effects can be seen in Figures ( 4-4<br />

to 4-6), Figure(4-8), <strong>and</strong> Figures (4-11 to 13).<br />

Figure (4-18) shows how the conversion, purity, <strong>and</strong> yield effected by the<br />

decreasing <strong>of</strong> bottom flow rate.<br />

81


Chapter Four Results <strong>and</strong> Discussion<br />

Decreasing<br />

the bottom<br />

flow rate<br />

There are<br />

enough trays<br />

<strong>for</strong> separation<br />

Increasing <strong>of</strong><br />

the reactants<br />

in reaction<br />

zone<br />

Displace the<br />

reaction in<br />

toward the<br />

products<br />

Increase<br />

the<br />

conversion<br />

Figure (4-18) algorithm <strong>of</strong> affect <strong>of</strong> bottom flow rate on purity, conversion,<br />

<strong>and</strong> yield.<br />

Decreasing<br />

the bottom<br />

flow rate<br />

There are<br />

enough trays<br />

<strong>for</strong> separation<br />

Increasing <strong>of</strong><br />

the product<br />

(<strong>MTBE</strong>) in<br />

stripping zone<br />

Increase<br />

the<br />

purity<br />

82<br />

Decreasing<br />

the bottom<br />

flow rate<br />

Decreasing<br />

The yield


Chapter Four Results <strong>and</strong> Discussion<br />

Liquid <strong>and</strong> vapor flow rate (mol/s)<br />

Also from <strong>of</strong> this model we can get the following results:<br />

2400<br />

2200<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

2 4 6 8 10 12 14 16<br />

Stage No.<br />

Figure (4-13-b) Liquid <strong>and</strong> vapor flow rate along column stages .<br />

Liquid <strong>and</strong> vapor enthalpy (J/mol)<br />

x 105<br />

-1<br />

-1.2<br />

-1.4<br />

-1.6<br />

-1.8<br />

-2<br />

-2.2<br />

-2.4<br />

-2.6<br />

-2.8<br />

-3<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16<br />

Stage No.<br />

Figure (4-19) Liquid <strong>and</strong> vapor enthalpy along column stages .<br />

83


Chapter Four Results <strong>and</strong> Discussion<br />

Liquid molar composition fraction (-)<br />

Liquid molar composition (-)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Isobutene<br />

Methanol<br />

<strong>MTBE</strong><br />

n-Butane<br />

2 4 6 8 10 12 14 16<br />

Stage No.<br />

Figure (4-22) Liquid <strong>and</strong> vapor composition pr<strong>of</strong>ile.<br />

84


Chapter Four Results <strong>and</strong> Discussion<br />

4-8U GENERAL EFFECTS INVESTIGATION FOR (ETBE)<br />

CASE STUDY:<br />

Again there is comparison with the model which is used in this study<br />

Figure (2-14-a) <strong>and</strong> (2-14-b) present theoretical simulation <strong>of</strong> (Al-Arfag.,2002)<br />

As figures (2-15-a) <strong>and</strong> (2-15-b) shows in the present model, the model<br />

validity can be concluded from these results <strong>of</strong> two models, except there are<br />

different temperature ranges due to using different activity coefficient models,<br />

both <strong>of</strong> two models show the same behavior <strong>for</strong> composition <strong>and</strong> temperature<br />

pr<strong>of</strong>iles.<br />

The effect <strong>of</strong> subtracting the reactive trays is shown in Figure (4-16)<br />

when ten reactive trays are used <strong>and</strong> figure (4-17) when the number <strong>of</strong> reactive<br />

trays is equal to six, the composition pr<strong>of</strong>iles <strong>of</strong> the reactive distillation still<br />

good purity but when using ten, but when this number decrease to six, the<br />

purity value reaches to 50% <strong>and</strong> this percentage is unacceptable.<br />

Figure (4-18) shows the effects <strong>of</strong> variation in reflux ratio on the purity,<br />

the conversion, <strong>and</strong> the yield. The values <strong>of</strong> RR start from one when the value<br />

<strong>of</strong> yield is zero until 2.94, at this value <strong>of</strong> reflux ratio, the best purity,<br />

conversion, <strong>and</strong> yield can be achieved. Also this value represents the optimum<br />

in (Al-Arfag.,2002).<br />

85


Chapter Four Results <strong>and</strong> Discussion<br />

Figure (4-23-a) Theoretical liquid molar composition pr<strong>of</strong>ile.<br />

Figure (4-23-b) Theoretical temperature pr<strong>of</strong>ile.<br />

(Al-Arfaj, et. al., 2002)<br />

86


Chapter Four Results <strong>and</strong> Discussion<br />

Liquid molar composition fraction (-)<br />

Liquid molar composition (-)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Temperature (k)<br />

0<br />

R 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 C<br />

460<br />

440<br />

420<br />

400<br />

380<br />

360<br />

340<br />

Stage No.<br />

87<br />

Ethanol<br />

Isobutene<br />

ETBE<br />

n-Butane<br />

Figure (4-24-a) l liquid molar composition pr<strong>of</strong>ile<br />

320<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25<br />

Stage No.<br />

Figure (4-25-b) Temperature pr<strong>of</strong>ile.


Chapter Four Results <strong>and</strong> Discussion<br />

Liquid molar composition fraction (-)<br />

Liquid molar composition fraction (-)<br />

Figure (4-26 ) Liquid composition pr<strong>of</strong>ile with 10 reactive trays<br />

Figure (4-27 ) liquid composition pr<strong>of</strong>ile with 6 reactive trays<br />

88


Chapter Four Results <strong>and</strong> Discussion<br />

Figure (4-28) Purity, yield <strong>and</strong> conversion versus reflux ratio<br />

4-9 UNON REACTING RESIDUE CURVE MAPS:<br />

Figure (4-19) shows residue curve map <strong>for</strong> non-reacting mixture<br />

isobutene (1)-methanol(2)-<strong>MTBE</strong>(3) at pressure <strong>of</strong> 11 atm. We have included<br />

the effect <strong>of</strong> n-butane in the modeling, this system has two binary azeotropes<br />

with regard to equation ( 2-43 ) the isobutene-methanol azeotrope is an<br />

unstable node <strong>and</strong> the methanol-<strong>MTBE</strong> binary azeotrope is a saddle point. In<br />

addition, the isobutene vertex is a saddle point, <strong>and</strong> the <strong>MTBE</strong> <strong>and</strong> methanol<br />

are stable nodes.<br />

There is a separation boundary that divides the composition triangles<br />

into two parts along a line that appears to run from the isobutene methanol<br />

azeotrope to the methanol-<strong>MTBE</strong> saddle point. All residue curves Figure (4-<br />

19) that lie above this boundary go between the isobutene-methanol azeotrope<br />

<strong>and</strong> the methanol vertex; the residue curves below the boundary end at the<br />

89


Chapter Four Results <strong>and</strong> Discussion<br />

<strong>MTBE</strong> vertex. The separation boundary itself is, in theory, a single curve from<br />

the isobutene-methanol azeotrope that subsequently splits <strong>and</strong> goes to both the<br />

pure methanol <strong>and</strong> pure <strong>MTBE</strong> vertices<br />

Figure (4-20) shows residue curve map <strong>for</strong> non-reacting mixture<br />

isobutene (1)-ethanol(2)-ETBE(3) at pressure 7.5 atm. We have included the<br />

effect <strong>of</strong> n-butane in the modeling, this system has two binary azeotropes.<br />

With regard to equation ( 2-43 ) the isobutene-methanol isobutene azeotrope<br />

is an unstable node <strong>and</strong> the ethanol-<strong>MTBE</strong> binary azeotrope is a saddle point.<br />

In addition, the isobutene vertex is a saddle point, <strong>and</strong> the ETBE <strong>and</strong> ethanol<br />

are stable nodes.<br />

There is a separation boundary that divides the composition triangles<br />

into two parts along a line that appears to run from the isobutene ethanol<br />

azeotrope to the ethanol-ETBE saddle point. All residue curves Figure (4-20)<br />

that lie above this boundary go between the isobutene-ethanol azeotrope <strong>and</strong><br />

the ethanol vertex; the residue curves below the boundary end at the ETBE<br />

vertex. The separation boundary itself is, in theory, a single curve from the<br />

isobutene-ethanol azeotrope that subsequently splits <strong>and</strong> goes to both the pure<br />

ethanol <strong>and</strong> pure ETBE vertices.<br />

90


Chapter Four Results <strong>and</strong> Discussion<br />

Figure (4-19) Residue curves in non reacting system <strong>of</strong> isobutene-methanol-<br />

<strong>MTBE</strong> at 11 atm.<br />

Ethanol Mole Fraction<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

I-butene Mole Fraction<br />

Figure (4-20) Residue curves in non reacting system <strong>of</strong> isobutene<br />

methanol -ETBE at 7 atm.<br />

91


Chapter Four Results <strong>and</strong> Discussion<br />

4-10 UKINETICALLY CONTROLLED REACTION OF (RCM):<br />

Again the system isobutene (1)-methanol(2)-<strong>MTBE</strong>(3) at pressure 11<br />

atm. <strong>and</strong> the system isobutene (1)-ethanol(2)-ETBE(3) were studied. We<br />

looked at this systems in the absence <strong>of</strong> reaction <strong>and</strong> we have also added the<br />

inert n-butane. Here we look at the effects <strong>of</strong> kinetically controlled reaction in<br />

this system.<br />

It is clear that solutions <strong>of</strong> equation (2-44) depends on the Damkohler number,<br />

<strong>and</strong> it should be also clear that Da depends on time in so far as reaction rate,<br />

holdup, <strong>and</strong> vapor flow rate change with the time. It is common to assume<br />

constant Da when integrating equation (2-44), this is equivalent to assumeing<br />

that V <strong>and</strong> H change at the same rate.<br />

When the value <strong>of</strong> Damohler number is low there are very few effects<br />

on residue curve map Figure (4-21) which represents reacting isobutene (1)-<br />

methanol(2)-<strong>MTBE</strong>(3) system at Da=0.01, <strong>and</strong> Figure (4-22) which represents<br />

reacting isobutene (1)-ethanol(2)-ETBE(3) system at Da=0.05<br />

Figure (4-21) Reactive residue curves system <strong>of</strong> isobutene-methanol-<br />

<strong>MTBE</strong> at 11 atm.Da= 0.01<br />

92


Chapter Four Results <strong>and</strong> Discussion<br />

Ethanol Mole Fraction<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

I-butene Mole Fraction<br />

Figure (4-22) Reactive residue curves system <strong>of</strong> isobutene-methanol-ETBE at<br />

7 atm. Da=0.05<br />

Figure (4-23)Reactive residue curves system <strong>of</strong>isobutene-methanol-<strong>MTBE</strong> at<br />

11 atm.Da= 0.12<br />

93


Chapter Four Results <strong>and</strong> Discussion<br />

Figure (4-24) Reactive residue curves system <strong>of</strong> isobutene-methanol-ETBE<br />

at 7 atm. Da=0.1<br />

When reaction kinetics plays a role, curves do not all start <strong>and</strong> end at a<br />

fixed point in the composition triangle. Were we to integrate backward in ξ,<br />

we would find that the curves that pass through the hypotenuse end at an<br />

unstable node (with respect to equation 2-44) that lies outside the composition<br />

triangle. The situation is not so simple <strong>for</strong> the other residue curves in Figures<br />

(4-23 <strong>and</strong> 4-24). Those that start on the x-axis in the vicinity <strong>of</strong> the <strong>MTBE</strong><br />

vertex <strong>and</strong> those that start on the y-axis when traced backward appear to<br />

simply come to an end, with the numerical integration taking vanishingly<br />

small steps. There is no unique end point <strong>for</strong> these curves. Nevertheless, we<br />

find that the curves that mark the edges <strong>of</strong> the different regions in this map are,<br />

once again, those that are longest, provided that we consider only that portion<br />

<strong>of</strong> the curve that lies within or on the borders <strong>of</strong> the composition triangle.<br />

94


Chapter Four Results <strong>and</strong> Discussion<br />

Thus, boundaries in systems with two degrees <strong>of</strong> freedom are maximum line<br />

integrals, even when the curves do not have common end points.<br />

Figure (4-23) Reactive residue curves system <strong>of</strong> isobutene-methanol-<strong>MTBE</strong><br />

at 11 atm.Da= 1<br />

Ethanol Mole Fraction<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

I-butene Mole Fraction<br />

Figure (4-24)Reactive Residue curves system isobutene-methanol-ETBE at 7<br />

atm. Da=1<br />

95


Chapter Five Conclusions <strong>and</strong> Recommendations<br />

Chapter Five<br />

Conclusions <strong>and</strong> Recommendations<br />

5.1 UCONCLUSIONS:<br />

1. Due to the complex interaction between <strong>of</strong> reactive distillation<br />

column, design concepts require good modeling program. The<br />

program which used in the present study show good validity.<br />

Specially when other concern data are determined well.<br />

2. There is trade-<strong>of</strong>f between the conversion <strong>and</strong> the purity <strong>of</strong> the<br />

bottom product, which deserves better analysis.<br />

3. The result can be improved by increasing the amount <strong>of</strong> catalyst<br />

used in each stage, but it also augments the cost <strong>of</strong> the process.<br />

4. There is also strong influence <strong>of</strong> the thermodynamic model<br />

parameters chosen, <strong>and</strong> it is <strong>of</strong> crucial importance to employ the<br />

best set <strong>of</strong> models.<br />

5. The conversion <strong>and</strong> purity <strong>of</strong> product increase when more reactive<br />

trays are added to the column until they reach limit number.<br />

6. Location <strong>of</strong> feed has influence on conversion <strong>and</strong> other parameters<br />

because there are conditions which must be considered.<br />

7. The feed ratio variations in reactive distillation column <strong>for</strong><br />

produce <strong>MTBE</strong>, <strong>and</strong> ETBE have bad effects on the product<br />

specification, because <strong>of</strong> the separation problem <strong>of</strong> non-reacted<br />

reactant.<br />

96


Chapter Five Conclusions <strong>and</strong> Recommendations<br />

8. The choice <strong>of</strong> reflux ratio is very important <strong>and</strong> it has different<br />

effects on conversion because it depends on more than one factor.<br />

9. There is a relationship between the purity <strong>of</strong> product <strong>and</strong> its flow<br />

rate. It can be used to improve the purity.<br />

10. The influence <strong>of</strong> reaction on RCMs <strong>of</strong> <strong>MTBE</strong> <strong>and</strong> ETBE systems<br />

are investigated. It can be noticed when reaction are involved, there<br />

are clear changes <strong>for</strong> residue curves. In <strong>MTBE</strong> system, at limit<br />

reaction the RCM show better behavior than in case <strong>of</strong> non-<br />

reaction system. But in ETBE system, the RCM show new<br />

azeotrope which was not exist in non-reaction system.<br />

5.2 URECOMMENDATION FOR FUTURE WORK:<br />

The following suggestions <strong>for</strong> future work can be considered:<br />

1. Studying the non-equilibrium reactive distillation instead <strong>of</strong> the<br />

equilibrium reactive distillation .<br />

2. In the present work the steady state is applied. In future unsteady<br />

state systems can be studied .<br />

3. Studying other oxygenates like TAME which is sequences <strong>of</strong><br />

reactions.<br />

4. Other catalyst can be studied <strong>for</strong> the same systems using other<br />

geometry <strong>for</strong> catalyst distribution.<br />

97


•<br />

A<br />

References<br />

Abrams, D. S. <strong>and</strong> Prausnitz, J. M. “Statistical Thermodynamics <strong>of</strong> Liquid<br />

Mixtures: A New Expression <strong>for</strong> The Excess Gibbs Energy <strong>of</strong> Partly or<br />

Completely Miscible Systems”, AIChE J., 21, p.116-128, (1975).<br />

Abufares, A.A. <strong>and</strong> Douglas, P.L. "<strong>Mathematical</strong> modeling <strong>and</strong> simulation <strong>of</strong><br />

an <strong>MTBE</strong> catalytic distillation process using SPEEDUP <strong>and</strong> Aspen Plus"<br />

Trans IChemE., 73, 3-12 (1995).<br />

Agreeda., V. H., Partin L.R. <strong>and</strong> Hiese ,W.H. " High purity methyl acetate via<br />

reactive distillation, Chem. Eng. Progress,2,40-46 (1990).<br />

Ainsworth, Booming <strong>MTBE</strong> dem<strong>and</strong> draws increasing number <strong>of</strong> producers,<br />

Chem. Eng. News, 13-16 (1991).<br />

Al-Arfaj M. A. <strong>and</strong> Luyben, W. L. "Comparative control study <strong>of</strong> ideal <strong>and</strong><br />

methyl acetate reactive distillation," Chem. Eng. Sci., vol. 24, pp. 5039-<br />

5050,2002<br />

Al-Arfaj M. A. <strong>and</strong> Luyben, W. L., "Control study <strong>of</strong> Ethyl tert-Butyl Ether<br />

reactive distillation," Ind. Chem. Eng.., vol. 41, pp. 3784-3796,2002<br />

Alej<strong>and</strong>ro O. Domancich, Ana C. Olivera1, Nélida B. Brignole, Patricia M.<br />

Hoch, "Per<strong>for</strong>mance Analysis <strong>of</strong> Reactive Distillation Column" IACChE,<br />

(2006)


Alejski, K., "Computation <strong>of</strong> the reacting distillation column using a liquid<br />

mixing model on the plates, Comput. Chem. Engng., 15, 313-323, (1991).<br />

Alejski, K.; Szymanowski; J.; <strong>and</strong> Bogacki, M. "The application <strong>of</strong> a<br />

minimization method <strong>for</strong> solving reactive distillation problems, Comput.<br />

Chem. Engng. 12, 833-839, (1988).<br />

Antti Pyhälahti ," <strong>Modeling</strong> <strong>of</strong> reactive separation systems" Chem. Eng.<br />

Report series Espoo no 50 (2005).<br />

Around P. H. ," A non-equilibrium model <strong>for</strong> reactive distillation" PhD<br />

thesis, University <strong>of</strong> Clarkson (1999).<br />

B<br />

Baur, R.; Higler, A.P. ; Taylor, R.; Krishna, R ., "Comparison <strong>of</strong> equilibrium<br />

stage <strong>and</strong> non-equilibrium stage models <strong>for</strong> reactive distillation" Chem. Eng.<br />

Journal, 76, 33-47, (2000).<br />

Baur, R.; Taylor, R.; Krishna, R ., "Development <strong>of</strong> Non-equilibrium cell<br />

model <strong>for</strong> reactive distillation tray column" Chem. Eng .Science 55, 6139-<br />

6154, (2000).<br />

Bernot C., Doherty, M. F. <strong>and</strong> Malone, M. F. “Feasibility <strong>and</strong> Separation<br />

Sequencing in Multicomponent Batch Distillation”, Chem. Eng. Sci., 42,<br />

p.1326-1311, (1991).<br />

Bernot C., Doherty, M. F. <strong>and</strong> Malone, M. F. “Patterns <strong>of</strong> Composition<br />

Change in Multicomponent Batch Distillation”, Chem. Eng. Sci., 45(5),<br />

(1990).<br />

Bravo,J.L.,A. pyhalthi <strong>and</strong> H. gaervelin "Investigation in Catalytic<br />

Distillation Pilot Plant : vapor-liquid equilibrium kinetics <strong>and</strong> mass transfer"<br />

issues Ind. Eng. Chem. 32,2220-2225 (1993).


C<br />

Carra, S .,E. Santacesaria,M. Morbidelli <strong>and</strong> L. Cavalli "syntheses <strong>of</strong><br />

propylene oxide from propylene-chlorohydrins- I kinetic aspects <strong>of</strong> the<br />

process", Chem. Eng. Sci.,34,1123-1132; ibid,34,1133-1140 (1979).<br />

Carra, S., E. Santacesaria, M. Morbidelli <strong>and</strong> L. Cavalli "synthesis <strong>of</strong><br />

propylene oxide from propylene-chlorohydrins- II. <strong>Modeling</strong> <strong>of</strong> the distillation<br />

with chemical reaction unit", Chem. Eng. Sci. 34, 1133-1140 (1979).<br />

Chang, Y. A., <strong>and</strong> Seader, J.D.", <strong>Simulation</strong> <strong>of</strong> continuous reactive distillation<br />

by homotopy continuation method", Coput. Chem. Eng. 12, 1243-1255 (1988).<br />

Chen, L., et al, "A Comparative Steady <strong>for</strong> Solution Methods <strong>of</strong> a Multi<br />

component Distillation", IEEE, Int. Conf. (2004).<br />

Chwan Yee, D. F. “In Depth Look at Extractive Distillation” Internet Site<br />

<br />

Ciric, A.R., <strong>and</strong> Gu. D., synthesis <strong>of</strong> non-equilibrium reactive distillation by<br />

MINLP optimization, A.I.CH.J.40, 1479-1487 (1994).<br />

Coulson J.M. <strong>and</strong> Richardson J.F., an Introduction to Chemical Engineering<br />

Design, Volume Six, (1985).<br />

Cristhain P. Almeida Rivera ;"Designing reactive distillation processes with<br />

improved efficiency", PhD Thesis, Technical University <strong>of</strong> Delft. (2005).<br />

Cristhain P. Almeida Rivera ;Johan Grievink "process Design approach <strong>for</strong><br />

Reactive distillation Based on Economics, Exyrgy, <strong>and</strong> Responsiveness<br />

Optimization" Ind. Eng. Chem. Vol. 47 pp 51-5 ,(2008).


D<br />

Denn, M. “Process <strong>Modeling</strong>”, Pitman Publishing Inc., (1986).<br />

Doherty, M. F.; Malone, M. F." Conceptual Design <strong>of</strong> Distillation<br />

Systems"; McGraw-Hill: New York,(2001).<br />

Doherty, M. F. <strong>and</strong> Perkins, J. D. “On the Dynamics <strong>of</strong> Distillation Processes<br />

I. The Simple Distillation <strong>of</strong> Multi-component Non-Reacting, Homogeneous<br />

Liquid Mixtures”, Chem. Eng. Sci.33. P.281-301, (1978a)<br />

Doherty, M. F. <strong>and</strong> Buzad G ."Reactive Distillation by Design", Trans<br />

IChemE, 70(A),448-458 (1992)<br />

E<br />

Edmister, W. C. <strong>and</strong> Lee, B. I. "Applied Hydrocarbon Thermodynamic", Vol<br />

nd<br />

1, 2P<br />

P Ed., Gulf Publishing Co., Houston, Texas (1984).<br />

EFAO "The Properties <strong>of</strong> Oxygenates", The European Fuel Oxygenates<br />

Association" <br />

EFAO "Technical Product Bulletin" ETBE, ", The European Fuel<br />

Oxygenates Association" ( 2006).<br />

Elkanzi E. M. " optimization <strong>of</strong> <strong>MTBE</strong> synthesis in a fixed-bed reactor<br />

system" Chemical engineering <strong>and</strong> process ,UAE University ,Al-Ain ,United<br />

Arab Emirates, 35,131-139 (1996).


F<br />

Fien, G. <strong>and</strong> Liu, Y.A. “Heuristic Synthesis <strong>and</strong> Shortcut Design <strong>of</strong><br />

Separation Processes Using Residue Curve Maps: A Review”, .Ind. Eng. Res.<br />

,33, P.2505-2522, (1994).<br />

G<br />

Gillil<strong>and</strong>, E.R. <strong>and</strong> Reed, C.E., "Degree <strong>of</strong> Freedom in Multicomponent<br />

Absorption <strong>and</strong> Rectification.", Ind. Eng. Chem., 34, 551-557 (1942).<br />

Gmehling, J. Onken, U., Arlt., W., “Vapor-Liquid Equilibrium Data<br />

Collection, DECHEMA Chemistry Data Series 1”, Frankfurt,(1977).<br />

Graham Horton " Introduction to simulation " Lectures <strong>of</strong> <strong>Modeling</strong>, (2001).<br />

Guttinger T.E. "Multiple steady states in azeotropic <strong>and</strong> reactive distillation."<br />

Thesis/dissertation, Swiss Federal Institute <strong>of</strong> Technology, (1998).<br />

H<br />

Harvey, A. G., Irisay, G <strong>and</strong> Wozny, G. "Reactive Batch Distillation in<br />

Unconventional Column Configurations" Berlin University <strong>of</strong> Technology<br />

(2004).<br />

Hauan, S., Hertzberg, T. <strong>and</strong> Lien, K.M.," Why Methyl-tert-butyl ether<br />

production by reactive distillation may yield multiple solutions" Ind. Eng.<br />

Chem. Res. 34,987-991 (1995).


I<br />

Ibrahim, S.S., “Rate based model in bubble cup batch distillation column ”,<br />

PhD thesis, University <strong>of</strong> Technology, IRAQ (2007).<br />

Isao, S. Yagi, H., Komatsu, H. <strong>and</strong> Hirata, M. "Calculation <strong>of</strong> Multi<br />

Component Distillation Accompanied by Chemical Reaction" Jour Chem.<br />

Eng. Jap. Vol. 4 P26-33, (1971).<br />

Isela, J. M., <strong>and</strong> Celesteno, M.M., "Technical Re-Conversion <strong>of</strong> an <strong>MTBE</strong><br />

Plant to Produce ETBE" International Journal <strong>of</strong> Chemical Engineering,<br />

7,S3 (2007).<br />

Isla M. A. <strong>and</strong> Irazoqui H. A., "<strong>Modeling</strong>, analysis, <strong>and</strong> simulation <strong>of</strong> a<br />

methyl tert-butyl ether reactive distillation column," Ind. Eng. Chem. Res.,<br />

vol. 35, pp. 2696-2708, (1996).<br />

J<br />

Jacobs R. <strong>and</strong> Krishna R., "Multiple Solutions in reactive distillation <strong>for</strong><br />

methyl tert-butyl ether synthesis" Ind. Eng. Chem. Res.,32,1706-1709, (1993)<br />

Jianjun, P., Thomas, F. R. <strong>and</strong> Bruce, E "dynamic Rate-based <strong>and</strong><br />

Equilibrium models <strong>for</strong> a packed Reactive Distillation Column" Ind. Eng.<br />

Chem. Res.,43,4000-4011, (2004).<br />

K<br />

Kai Sundmacher <strong>and</strong> Achim Kienle "Reactive Distillation" WILEY-VCH<br />

Verlage Gmbll <strong>and</strong> co. KGaA. (2002).<br />

Kimmo T. Klemola);" efficincies in distillation <strong>and</strong> reactive distillation" Acta<br />

Polytechnica Sc<strong>and</strong>inavica, chemical Technology series No.257, Espoo<br />

(1998).


Kooijman H. <strong>and</strong> Taylor R. The ChemSep book. Libri books on dem<strong>and</strong>,<br />

USA. (2000).<br />

Krishnamurthy, R., <strong>and</strong> Taylor, R., " A non-equilibrium stage model <strong>of</strong> multicomponent<br />

separation processes", 31,449-465, (1985).<br />

L<br />

Lebas E., Jullin S., Travers C., Capron P., Joly J., <strong>and</strong> Thery M, , US<br />

Pat.59,48,984 (1999).<br />

M<br />

MATLAB S<strong>of</strong>tware version 7.0, 1Twww.mathworks.com1T.<br />

N<br />

Nail E. Small " Using Activities <strong>for</strong> Reaction Kinetics", Engineering Analysis<br />

Project ,University <strong>of</strong> Edinburgh , 9902351, 2004.<br />

Nelson, P. A., "Countercurrent Equilibrium stage separation with reaction"<br />

AICHE journal, 17, 1034-1049 (1971).<br />

Nijhuis S.A., Kerkh<strong>of</strong>, F.P.J.M., <strong>and</strong> Mak, A.N.S., " Multiple Steady States<br />

during reactive distillation <strong>of</strong> methyl-tert-butyl ether, Ind. Eng. Chem. Res. 37,<br />

2821-2834 (1998).


O<br />

Ostwald, W. Dampfdrucke Ternarer Gemische, Abahndlungen der<br />

Mathematisch-Physischen der Konig Sachsischen. Ges. Wiss., 25, 413(1900).<br />

Ostwald, W. Lehrbuk der Allgemetnen Chemie; Engelmann: Leipzig,<br />

Germany, (1902).<br />

P<br />

Pantelides, C., "New Challenges <strong>and</strong> Opportunities <strong>for</strong> Process <strong>Modeling</strong>"<br />

ESCAPE-11, Elsevier Sci. Publishers, New York (2001).<br />

Perez-Cisneros, E., Gain, R., <strong>and</strong> Michelsen, M.L., "Reactive separation<br />

systems" I. Computation <strong>of</strong> physical <strong>and</strong> equilibrium Chem. Eng. Sci. 52, 527-<br />

543 (1997).<br />

Perry, R. H., <strong>and</strong> Green, D. W., "Perry's Chemical Engineering H<strong>and</strong>book",<br />

th<br />

7P<br />

P. Ed., McGraw-Hill, New York (1997).<br />

Peters U., Nierlich F., Schulte-Korne E. <strong>and</strong> Sakuth M. Methyl tert-butyl ether. In:<br />

Ullmann’s Encyclopedia <strong>of</strong> Industrial Chemistry, John Wiley <strong>and</strong> Sons (2000).<br />

Pham, H. <strong>and</strong> Doherty, M. “Design <strong>and</strong> Synthesis <strong>of</strong> Heterogeneous<br />

Azeotropic Distillations II: Residue Curve Maps”, Chem. Eng. Sci. 45(7),<br />

p.1837-1843 (1990b)<br />

Q<br />

Quitain A Itoh H., <strong>and</strong> Goto S., J. Chem. Eng. Japan, 32, 280-287, (1999).


R<br />

Renon, H., Prausnitz, J. M., “Local Compositions in Thermodynamic Excess<br />

Functions <strong>for</strong> Liquid Mixtures”, AIChE Journal, 14, 135, p.45, (1968)<br />

S<br />

Safrit B. T., Westerberg, A. W., Diwekar,U. M. <strong>and</strong> Wahnschafft, O. M.<br />

“Extending Continous Conventional <strong>and</strong> Extractive Distillation Feasibility<br />

Insights to Batch Distillation”, Ind. Eng. Chem. Res.34, p.3257-3264, (1995<br />

a).<br />

Sawistowski, H., <strong>and</strong> Pilavakis, P.A, Distillation with chemical reaction in a<br />

packed column. IChemE Symp. Ser. 56, 49-63, (1979).<br />

Schreinemakers, F. A. H. Dampfdrucke Ternarer Gemische. Z. Phys.<br />

Chem., 36, 257, 413, 71 (1901).<br />

Seader, J. D. ," Separation Process Principles." New York: John Wiley <strong>and</strong><br />

Sons. (2006).<br />

Shakoor, Z.M., “Dynamic <strong>and</strong> simulation <strong>of</strong> Azeotropic <strong>and</strong> Extractive batch<br />

distillation”, PhD thesis, University <strong>of</strong> Technology, IRAQ (2004).<br />

Shoemaker, J.D. <strong>and</strong> E.M Jones Cumene by catalytic distillation,<br />

Hydrocarbon Process, June,57-68 (1987).<br />

Sim<strong>and</strong>l, J. <strong>and</strong> Svrcek, W.Y., Extension <strong>of</strong> the simultaneous solution <strong>and</strong><br />

inside-outside algorithms to distillation with chemical reactions, Comput,<br />

Chem. Engng., 15, 337-348 (1991).


SimBasis appendix property packages “Property Methods <strong>and</strong> Calculations”<br />

.<br />

Smith, J. M. <strong>and</strong> Van Ness, H. G. “Introduction to Chemical Engineering<br />

Thermodynamics”, McGraw-Hill, Inc., Fourth Edition,(1987).<br />

Sneeby, M. G., Tade, M.O., Datta, R., <strong>and</strong> Smith, T. N.," ETBE synthesis Via<br />

reactive distillation. "1. Steady state simulation <strong>and</strong> design aspects" Ind. Eng.<br />

Res., 36, 1855-1869 (1997a).<br />

Sneeby, M. G., Tade, M.O., Datta, R., <strong>and</strong> Smith, T. N.," ETBE synthesis Via<br />

reactive distillation. "2. Dynamic simulation <strong>and</strong> control aspects" Ind. Eng.<br />

Res., 36, 1870-1881 (1997a).<br />

Sundmacher K. <strong>and</strong> A. Kienle, "Reactive distillation: status <strong>and</strong> future<br />

directions." Weinheim: WILLEY-VCH,(2003).<br />

Sundmacher K. <strong>and</strong> U. H<strong>of</strong>fmann. "Multiple Reactions in catalytic<br />

distillation processes <strong>for</strong> the production <strong>of</strong> the fuel oxygenates <strong>MTBE</strong> <strong>and</strong><br />

TAME: Analysis by rigorous model <strong>and</strong> experimental validation"(1999).<br />

Suzuki, I., Yagi, H., Kumatsu <strong>and</strong> Hirata, M., "Calculation <strong>of</strong> Multicomponent<br />

Distillation Accompanied by a chemical reaction, J. Chem. Eng.<br />

Jap 4, 26-33 (1971).<br />

Stankiewickz, A., Reactive separations <strong>for</strong> process intensification: An<br />

Industrial Perspective, Chemical Engineering <strong>and</strong> Processing, 42, pp. 137-144<br />

(2003).


T<br />

Taylor R., Am<strong>and</strong>a Miller, <strong>and</strong> Angelo Lucia, "Geometry <strong>of</strong> separation<br />

boundaries: systems with reaction" Ind. Eng. Res. vol. 45, pp.2777-2786,<br />

(2006)<br />

Taylor R., <strong>and</strong> R. Krishna, "<strong>Modeling</strong> reactive distillation," Chem. Eng. Sci.,<br />

vol. 55, pp. 5183-5229,(2000).<br />

Thiel C., Sundmacher K. <strong>and</strong> H<strong>of</strong>fmann U. "Residue curve maps <strong>for</strong><br />

heterogeneously catalysed reactive distillation <strong>of</strong> fuel ethers <strong>MTBE</strong> <strong>and</strong> TAME",<br />

Chemical Engineering Science 52 (6), (2002).<br />

Thomas M. E. ”A Study in the Synthesis <strong>of</strong> Separation Processes <strong>for</strong><br />

Multicomponent Azeotropic Mixtures” M.Sc thesis,Pittsburgh, Pennsylvania<br />

,( 1991).<br />

V<br />

Van Dongen D. B. <strong>and</strong> Doherty, M. F. “Desig <strong>and</strong> Synthesis <strong>of</strong> Homogeneous<br />

Distillations. 1. Problem Formulation <strong>for</strong> Single Column”, Ind. Eng. Chem.<br />

Funda., 24, P.454-463, (1985).<br />

Venimadhavan, G.; Buzad, G.; Doherty, M. F.; Malone, M. F. Effect<br />

<strong>of</strong> Kinetics on Residue Curve Maps <strong>for</strong> Reactive Distillation. AIChE J.<br />

40, 1814-1824 (1994).<br />

Venkataraman, S., Chan, W. K., <strong>and</strong> Boston, J.F. "Reactive Distillation using<br />

Aspen Plus", Chem. Eng. Prog., 8,45-54 (1990).


W<br />

Wang S.J.; Wang D.S.H.; <strong>and</strong> Lee E.K. " effect <strong>of</strong> interaction multiplicity on<br />

control system design <strong>for</strong> <strong>MTBE</strong> reactive distillation column" Journal <strong>of</strong><br />

process control. 13,503-515 (2003).<br />

Wasylkiewicz, S.K., Kobylka, L.C. <strong>and</strong> Castillo, F.J.L. “Design <strong>and</strong> Synthesis<br />

<strong>of</strong> Distillation Sequences <strong>for</strong> the Separation <strong>of</strong> Multicomponent Azeotropic<br />

Mixtures”, III Sympozjum Destylacja, Absorpcja i Ekstrakcja Szklarska<br />

Poreba, 13-15 wrzesien 1999, 83–91, (1999a).<br />

Watanbe R., Nakanishi A. Jap Pat 2,87,600 (1997)<br />

Wayne, B., "Process Dynamics <strong>Modeling</strong>, Analysis <strong>and</strong> <strong>Simulation</strong>", Prentic-<br />

Hall PTR, New Jersey (1998).<br />

Westerberg A.W. <strong>and</strong> Wahnschafft, O. “Synthesis <strong>of</strong> Distillation-Based<br />

Separation Processes”, To appear in Advances in Chemical Engineering,<br />

Academic Press, 23,161,(1996).<br />

Wilson, G.M. <strong>and</strong> Deal, “Experimental Data” C.H., Ind. Eng. Chem.<br />

Fundam., 1, 20 (1962).<br />

Z<br />

Zoeller J.R., lane D.W.C.; Eleanor H., Fuller, Jr. D.W. <strong>and</strong> Barnicki S. D.,<br />

US Pat 58,21, 384 (1998).


APPENDIX A:<br />

Appendix A<br />

(A-1)-Sample <strong>of</strong> Calculation <strong>of</strong> Real Enthalpy;<br />

A-1<br />

Appendix A<br />

Sample <strong>of</strong> calculation <strong>of</strong> the real enthalpy <strong>of</strong> n-Butane at P = 11<br />

Bar <strong>and</strong> temperature range (345-395 K) is shown below;<br />

Equation is used to find the real enthalpy <strong>of</strong> isobutene with tables<br />

(6-4) <strong>and</strong> (6-5) <strong>of</strong> Edmister (1985) pages (86-89):-<br />

For n-Butane C4H8 :-<br />

TB<br />

= 31.1 0 F = 491 R = 272.65 K = -0.5 0<br />

C<br />

TC<br />

= 305.7 0 F = 765.7 R = 424.82 K = 151.67 0<br />

C<br />

P<br />

c<br />

W<br />

= 550.7 psia<br />

SRK<br />

= 0.2008<br />

Mwt= 58.124<br />

P = 160psia<br />

Pr<br />

Tr<br />

160<br />

550.<br />

7<br />

= = ≈ 0.3.<br />

T<br />

T<br />

= [T in R range (622-711)]<br />

C<br />

R = 1.986 Btu / lb mol. R<br />

⎞<br />

⎜ ⎟<br />

⎠<br />

⎜<br />

∗<br />

∗<br />

H − H ⎛ H − H<br />

=<br />

RTC<br />

⎝ RTC<br />

0<br />

+<br />

∗ ⎛ H − H ⎞<br />

⎜<br />

⎟<br />

⎝ RTC<br />

⎠<br />

1<br />

ω …………….. (3-12)<br />

H * =7.430 + 0.09857T + 2.6918 * 10 -4 T 2 + 0.5182 * 10 -7 T<br />

-10 4 -15 5<br />

- 4.20139 * 10 T + 6.56042 * 10 T<br />

From tables (6-4) <strong>and</strong> (6-5) <strong>of</strong> Edmister (1985), find each term <strong>of</strong> eq. (3-<br />

12) as shown in table (A-1).<br />

3


A-2<br />

Appendix A<br />

Then we found (H*-H) <strong>for</strong> each Tr <strong>and</strong> fit the data to a polynomial<br />

<strong>and</strong> subtract the enthalpy deviation polynomial from the ideal enthalpy<br />

polynomial to find H as a function <strong>of</strong> T using the following equation;<br />

T T(R)<br />

r<br />

H = H*- (H* – H)<br />

Table(A-1): Estimated Values <strong>of</strong> Equation ( ).<br />

T(K)<br />

⎛ H − H<br />

−<br />

⎜<br />

⎝ RTC<br />

∗<br />

⎞<br />

⎟<br />

⎠<br />

0<br />

⎛ H − H<br />

−<br />

⎜<br />

⎝ RTC<br />

∗<br />

1<br />

⎞<br />

⎟<br />

⎠<br />

BTU / lb<br />

H * - H<br />

0.55 628 347.7 5.297 8.218 72.563<br />

0.6 645 358.33 5.147 7.576 69.649<br />

0.65 658 365.8 4.997 6.956 66.536<br />

0.7 675 375 4.843 6.364 63.947<br />

0.75 690 383.33 4.683 5.779 61.073<br />

0.8 704 391.11 2.426 2.904 31.421<br />

For example; Tr=0.55<br />

⎞ ⎛ − ⎞<br />

⎜ ⎟ +<br />

⎜<br />

⎟<br />

⎠ ⎝ ⎠<br />

⎜<br />

∗<br />

∗<br />

∗<br />

H − H ⎛ H − H H H<br />

=<br />

ω<br />

RTC<br />

⎝ RTC<br />

RTC<br />

0<br />

= 5.297+ 0.2008 * 8.218 = 6.947<br />

H* - H = 6.947 * 1.986 * 305.7 * (1/58.124)<br />

H* - H = 72.563BTU/lb<br />

The same has been done <strong>for</strong> each Tr <strong>and</strong> the results used <strong>for</strong> curve<br />

fitting either to a straight line or polynomial, <strong>for</strong> this example the curve<br />

fitting was;<br />

Bar was;<br />

H* - H =150.7601-0.4350 T<br />

Hence the final polynomial <strong>for</strong> real fluid enthalpy <strong>of</strong> ethane at 11<br />

1


A-3<br />

Appendix A<br />

H = -143.3301 -0.3364T+2.6918E-04 T^2+0.5182E-07 T^3-<br />

4.20139E-10 T^4+6.56042E-15 T^5<br />

The same procedure was carried out <strong>for</strong> each component at each<br />

operating pressure <strong>and</strong> the final results was shown in Tables (A-2) to (A-<br />

5). The graphical representation <strong>of</strong> the enthalpy departure <strong>for</strong> some<br />

components in the system are shown in (A-6).<br />

TABLE (A-2): IDEAL ENTHALPY CONSTANTS FOR EACH COMPONENT.<br />

H*=A+BT+CT^2+DT^3+ET^4+FT^5<br />

H* in BTU/lb T in R<br />

COMP. A B C D E F<br />

n-butane 7.430 0.09857 2.6918E-04 0.5182E-07 -4.20139E-10 6.56042E-15<br />

isobutene 14.964 0.03300 3.78264E-04 -0.73312E-07 0.69757E-10 6.66490E-15<br />

kJ/kg=2.326*BTU/lb K=R/1.8<br />

TABLE (A-3): CONSTANTS FOR THE FIFTH POLYNOMIAL OF THE<br />

ENTHALPY CORRELATION FOR THE<br />

<strong>MTBE</strong> SYSTEM ( P=11 BAR).<br />

H=a+ bT+ cT^2+ dT^3+ eT^4+ fT^5<br />

H in BTU/lb T in R<br />

Comp. a B c d e f<br />

n-butane -143.3301 0.5336 2.6918E-04 0.5182E-07 -4.20139E-10 6.56042E-15<br />

isobutene -148.6925 0.5568 3.78264E-04 -0.73312E-07 0.69757E-10 6.66490E-15


Appendix B<br />

Physical Properties <strong>of</strong> Pure Component<br />

B-1<br />

Appendix B<br />

Table (B-1): Critical <strong>and</strong> Physical Properties <strong>of</strong> Pure Component <strong>for</strong> case one.<br />

Components<br />

Units<br />

i-CR4RHR8<br />

CHR3RO<br />

CR5RHR12RO<br />

CR4RHR10<br />

Zc<br />

Pc<br />

TRC<br />

-5<br />

Pa*10P K<br />

TRb<br />

K<br />

w Mwt<br />

-<br />

g.molP<br />

0.2728 40 417.9 266.25 0.194 56.11<br />

0.1224 80.9 513.15 337.75 0.556 32.01<br />

0.26721 33.7 497.14 328.3 0.2661 88.15<br />

0.2730 38 425.18 272.65 0.199 58.12<br />

Table (B-2): Critical <strong>and</strong> Physical Properties <strong>of</strong> Pure Component <strong>for</strong> case two.<br />

Components<br />

Units<br />

i-CR4RHR8<br />

CR4RHR10<br />

CR2RHR6RO<br />

CR6RHR14RO<br />

Pc<br />

TRC<br />

-5<br />

Pa*10P K<br />

TRb<br />

K<br />

Mwt<br />

g.molP<br />

40 417.9 266.25 56.11<br />

38 425.18 272.65 58.12<br />

63.8 516.2 351.45 46.07<br />

30.4 531.0 345.65 102.18<br />

-1<br />

-1


B-2<br />

Appendix B<br />

TAB6LE (B-3): LATENT HEAT OF VAPORIZATION AS FUNCTION OF<br />

TEMP.<br />

λ = λb [(Tc -T) / (Tc - Tb)]^0.38<br />

λ in kJ/kmole, T in<br />

COMP.<br />

i-CR4RHR8<br />

CHR4RO<br />

CR5RHR12RO<br />

CR4RHR10<br />

CR2RHR6RO<br />

CR6RHR14RO<br />

COMP.<br />

i-CR4RHR8<br />

CHR4RO<br />

CR5RHR12RO<br />

CR4RHR10R(eq 2)<br />

CR2RHR6RO<br />

λb<br />

22131<br />

35278<br />

30522<br />

22408<br />

38770<br />

32970<br />

TABLE (B-4): LIQUID SPECIFIC HEAT CONSTANTS.<br />

A1<br />

a2<br />

a3<br />

a4<br />

a5<br />

87680 217.1 -0.9153 0.002266 0<br />

105800 -362.23 0.9379 0 0<br />

140120 -9,64.73 -0.563 0 0<br />

64.73 161840 9.8341 -0.014315 0<br />

102640 −139.63 −0.03034 0.0020386 0<br />

TABLE (B-5): CONSTANTS FOR THE VAPOR PRESSURE ANTOINE<br />

EQUATION FOR EACH COMPONENT.<br />

LnPº =A+B/(C-T)<br />

Pº in Pa , T in K<br />

COMP. A B C<br />

i-CR4RHR8 20.6556 -2125.74886 -33.160<br />

CHR4RO 23.49989 -3643.31362 -33.434<br />

CR5RHR12RO 20.71616 -2571.58460 -48.406<br />

CR4RHR10 20.57070 -2154.8973 -34.420<br />

CR2RHR6RO 18.9119 -3803.98 -41.68<br />

CR6RHR14RO 8.2493 -3454.18 -18.23


Appendix C<br />

Activity Coefficient Models<br />

The values <strong>for</strong> the model parameters aRi,j R<strong>and</strong> bRi,j R, at 11 bar were taken from<br />

Ung <strong>and</strong> Doherty, 1995 <strong>and</strong> Guttinger, 1998:<br />

Table (C-1) Wilson parameters <strong>for</strong> <strong>MTBE</strong> system<br />

Wilson Parameters<br />

ai,<br />

j<br />

bi,<br />

j<br />

IB<br />

MeOH<br />

<strong>MTBE</strong><br />

NB<br />

IB<br />

MeOH<br />

<strong>MTBE</strong><br />

NB<br />

IB<br />

0.0<br />

0.7420<br />

-0.2413<br />

-0.0729<br />

0.0<br />

-1296.719<br />

-136.6574<br />

0.0<br />

c c<br />

k, i k<br />

= − i ⎜∑Λ x i, j j⎟−∑ c<br />

⎝ j= 1 ⎠ k=<br />

1<br />

∑ Λ x k, j j<br />

ln γ 1 ln<br />

⎛ ⎞<br />

Λ<br />

j = 1<br />

x<br />

C-1<br />

MeOH<br />

-0.7420<br />

0.0<br />

-0.9833<br />

-0.8149<br />

-85.5447<br />

0.0<br />

204.5029<br />

-192.4019<br />

<strong>MTBE</strong><br />

0.2413<br />

0.9833<br />

0.0<br />

0.0<br />

15.2211<br />

-746.3971<br />

0.0<br />

0.0<br />

⎛ bi,<br />

j⎞<br />

⎜ ⎟<br />

⎝ ⎠<br />

; Λ = exp a +<br />

i, j i, j<br />

T<br />

Appendix C<br />

NB<br />

0.0<br />

0.81492<br />

0.0<br />

0.0<br />

0.0<br />

-<br />

1149.280<br />

0.0<br />

0.0


UNIFAC Method:<br />

Wilson model:<br />

C-2<br />

Appendix C<br />

The activity coefficient consists <strong>of</strong> two parts, combinational <strong>and</strong><br />

residual contribution (Smith <strong>and</strong> Van Ness 1987).<br />

x<br />

m<br />

=<br />

C<br />

R<br />

lnγ = lnγ<br />

( combinational)<br />

+ lnγ<br />

( residual)<br />

lnγ<br />

i<br />

C<br />

i<br />

Where<br />

Φ<br />

i<br />

=<br />

i<br />

Φ<br />

= ln<br />

x<br />

∑<br />

ri<br />

xi<br />

r x<br />

j<br />

∑<br />

j<br />

j<br />

i<br />

i<br />

li<br />

Φ i<br />

+ 5qi<br />

ln + li<br />

−<br />

Φ x<br />

i<br />

i<br />

i<br />

∑<br />

(Volume fraction)<br />

qixi<br />

ϑ i = (Area fraction)<br />

q x<br />

l<br />

j<br />

i = i i i<br />

j<br />

j<br />

5( r − q ) − ( r −1)<br />

The residual contribution is given by.<br />

i<br />

∑<br />

R<br />

i<br />

lnγ υ (lnΓ<br />

− lnΓ<br />

)<br />

= K<br />

In which<br />

K<br />

K<br />

i<br />

K<br />

⎡<br />

⎤<br />

lnΓK = θ K ⎢1<br />

− ln( ∑θ<br />

mψ<br />

mK ) − ∑( θ mψ<br />

Km ∑θ<br />

nψ<br />

nm)<br />

⎥<br />

⎣ m<br />

m n ⎦<br />

ψ<br />

nm<br />

m<br />

= exp( − T )<br />

m<br />

m<br />

a nm<br />

∑<br />

θ = ϑ x ϑ x<br />

∑<br />

j<br />

∑∑<br />

j n<br />

υ<br />

x<br />

mj<br />

nj<br />

j<br />

υ x<br />

j<br />

n<br />

n<br />

n<br />

j<br />

x<br />

j<br />

l<br />

j


C-3<br />

Appendix C<br />

Table (C.2) UNIFAC Group <strong>and</strong> Surface Area <strong>for</strong> Ethanol-<br />

Isobutene-ETBE-N.butane System.<br />

K<br />

1<br />

2<br />

4<br />

15<br />

26<br />

r1<br />

rR2R=2*0.9011+1*0.6744+1*0.2195<br />

rR3R=3*0.9011+2*0.6744+0.9183<br />

rR4R=2*0.9011+2*0.6744<br />

QR1R=1*0.848+1*0.54+1*1.200<br />

QR2R=2*0.848+1*0.54+1*0<br />

QR3R=3*0.848+1*0.78+2*0.54<br />

QR4R=2*0.848+2*0.54<br />

Table (C.3) molecular volume <strong>and</strong> Surface Area <strong>for</strong> Ethanol-<br />

Isobutene-ETBE-N.butane System.<br />

Ethanol(1) Isobutene(2) ETBE(3) nbutane(4)<br />

RRi 2.5755 4.9704 4.9704 3.1510<br />

2.5880 2.2360 4.4040 2.7760<br />

QRi<br />

Table (C.4)<br />

K<br />

1<br />

2<br />

4<br />

15<br />

26<br />

Group<br />

CHR3<br />

CHR2<br />

C<br />

OH<br />

CHR2 R-O<br />

Group<br />

CHR3<br />

CHR2<br />

C<br />

OH<br />

CHR2 R-O<br />

Ethanol<br />

(1)<br />

1<br />

1<br />

0<br />

1<br />

0<br />

GRkiR= vRkRP<br />

Ethanol(1)<br />

0.848<br />

0.6744<br />

0<br />

1.200<br />

0<br />

(i)<br />

Isobutene<br />

(2)<br />

2<br />

1<br />

1<br />

0<br />

0<br />

PR*R QRk<br />

Isobutene(2)<br />

1.6960<br />

0.6744<br />

0<br />

0<br />

0<br />

ETBE<br />

(3)<br />

3<br />

2<br />

0<br />

0<br />

1<br />

ETBE(3)<br />

2.5440<br />

1.08<br />

0<br />

0<br />

0.780<br />

n-butene(4)<br />

1.6960<br />

1.3488<br />

0<br />

0<br />

0<br />

n.butane<br />

(4)<br />

2<br />

2<br />

0<br />

0<br />

0<br />

RRk<br />

0.9011<br />

0.6744<br />

0.2195<br />

1.000<br />

0.9183<br />

QRk<br />

0.848<br />

0.54<br />

0<br />

1.200<br />

0.780


Table (C.5)UNIFAC-VLE interaction parameter, aRmk R,in Kelvin.<br />

Main No<br />

1<br />

2<br />

4<br />

15<br />

26<br />

1<br />

0<br />

0<br />

0<br />

156.4<br />

83.36<br />

=1*0.9011+1*0.6744+1*1.000<br />

2<br />

0<br />

0<br />

156.4<br />

83.36<br />

aRmkR(k)<br />

C-4<br />

4<br />

0<br />

0<br />

0<br />

156.4<br />

83.36<br />

15<br />

986.5<br />

986.5<br />

986.5<br />

0<br />

237.7<br />

Appendix C<br />

26<br />

252.5<br />

252.5<br />

252.5<br />

28.06<br />

0


Appendix D<br />

Table (D.1): Column data used <strong>for</strong> the case one(<strong>MTBE</strong>)<br />

Number <strong>of</strong> trays<br />

Number <strong>of</strong> reactive trays<br />

Operating pressure<br />

Reflux Ratio<br />

Bottom Flow (FB)<br />

Total mass <strong>of</strong> catalyst<br />

Temperature [K]<br />

Pressure [bar]<br />

Flow rate [mol/s]<br />

Composition<br />

Location<br />

Temperature [K]<br />

Pressure [bar]<br />

Flow rate [mol/s]<br />

Composition<br />

Location<br />

Temperature(k)<br />

nC4<br />

iC4<br />

MeOH<br />

<strong>MTBE</strong><br />

Temperature<br />

nC4<br />

iC4<br />

MeOH<br />

<strong>MTBE</strong><br />

OPERATING CONDITIONS<br />

D-1<br />

15<br />

8<br />

11 bar<br />

7<br />

203 mol/s<br />

1632.8 Kg (8000 eq[H+])<br />

FEED DATA (FEED ONE)<br />

350<br />

11 bar<br />

455<br />

n-C4: 0.63 i-C4: 0.37<br />

On 9th tray<br />

FEED DATA (FEED TWO)<br />

320<br />

11 bar<br />

168<br />

MeOH 1.0<br />

On 8th tray<br />

PRODUCTS ( DISTILLATE, FD)<br />

Composition<br />

353<br />

0.764<br />

0.12<br />

0.166<br />

0.0<br />

PRODUCTS ( BOTTOM, FB)<br />

Composition<br />

387<br />

0.341<br />

0.12<br />

0.166<br />

0.648<br />

Appendix D


Condenser<br />

Reboiler<br />

HEAT DUTY ( W)<br />

Table (D.2): Column data used <strong>for</strong> the case two (ETBE)<br />

Number <strong>of</strong> trays<br />

Number <strong>of</strong> reactive trays<br />

Operating pressure<br />

Reflux Ratio<br />

Bottom Flow (FB)<br />

Total mass <strong>of</strong> catalyst<br />

Temperature [K]<br />

Flow rate<br />

Composition<br />

Location<br />

Temperature [K]<br />

Flow rate<br />

Composition<br />

Location<br />

Temperature(k)<br />

nC4<br />

iC4<br />

EtOH<br />

ETBE<br />

Temperature<br />

nC4<br />

iC4<br />

EtOH<br />

ETBE<br />

D-2<br />

4.35.10P<br />

3.13.10P<br />

OPERATING CONDITIONS<br />

7<br />

7<br />

23<br />

15<br />

7.5atm<br />

2.94<br />

706.4 kmol/hr<br />

100 kg/tray<br />

FEED DATA (FEED ONE)<br />

336.9<br />

1767.5 kmol/hr<br />

n-C4: 0.6 i-C4: 0.4<br />

On 5th tray<br />

FEED DATA (FEED TWO)<br />

345.7<br />

707 kmol/hr<br />

EtOH 1.0<br />

On 19th tray<br />

PRODUCTS ( DISTILLATE, FD)<br />

Composition<br />

333.4<br />

0.99<br />

0.005<br />

0.005<br />

0<br />

PRODUCTS ( BOTTOM, FB)<br />

Composition<br />

420.4<br />

0.005<br />

0.002<br />

0.002<br />

0.991<br />

Appendix D


Condenser<br />

Reboiler<br />

HEAT DUTY ( W)<br />

D-3<br />

4.35.10P<br />

3.13.10P<br />

7<br />

7<br />

Appendix D<br />

(D.3): Chemical equilibrium constant <strong>for</strong> the case one (<strong>MTBE</strong>)<br />

ln k<br />

+ ε (<br />

T<br />

eq<br />

3<br />

⎛ 1<br />

= lnk<br />

+ α⎜<br />

−<br />

eqο<br />

⎝ T<br />

−<br />

3<br />

) + θ (<br />

4<br />

−<br />

T<br />

3<br />

α = -1.49277.10P<br />

1<br />

β = -7.74002. 10P<br />

-1<br />

γ = 5.07563.10P<br />

P<br />

-4<br />

δ = -9.12739.10P<br />

-6<br />

ε = 1.10649.10P<br />

-10<br />

θ = -6.27996.10P<br />

T* = 298.315 K<br />

= 284<br />

k eqο<br />

T<br />

T<br />

1 ⎞ ⎛ T ⎞<br />

⎟ + β ln⎜<br />

⎟ + σ ( T − T*)<br />

+ δ (<br />

T * ⎠ ⎝ T * ⎠<br />

4<br />

)<br />

(D.4): Chemical equilibrium constant <strong>for</strong> the case two (ETBE)<br />

4060.<br />

59<br />

kETBE = 10.<br />

387 + − 2.<br />

89055lnT<br />

−0.<br />

0191544T<br />

T<br />

+ 5.<br />

28586*<br />

10−5T<br />

2 −5.<br />

32977*<br />

10−8T<br />

3<br />

Adsorption equilibrium constant<br />

1323.<br />

1<br />

ln k A =<br />

−1.<br />

0707 +<br />

T<br />

T<br />

2<br />

−<br />

T<br />

2<br />

)


Reaction rate constant (mol/h/g <strong>of</strong> catalyst)<br />

k rate<br />

=<br />

7 . 148*<br />

10<br />

12<br />

Generalized rate equation (mol/h)<br />

r<br />

ETBE<br />

=<br />

M<br />

a =<br />

γ * x<br />

i<br />

i<br />

i<br />

cat<br />

K<br />

rate<br />

a<br />

⎛ − 60.<br />

4*<br />

10<br />

exp ⎜<br />

⎝ RT<br />

2<br />

ETBE<br />

⎛<br />

⎜<br />

⎜a<br />

⎝<br />

a<br />

−<br />

a<br />

( ) 3<br />

1+<br />

K a<br />

A<br />

iBut<br />

EtOH<br />

D-4<br />

3<br />

ETBE<br />

ETBE<br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

⎟<br />

⎠<br />

Appendix D


Appendix E<br />

The model results<br />

Table (E-1) the errors <strong>of</strong> model validity in case one<br />

E-1<br />

Appendix E<br />

TRAY NO. ISOBUTENE MEOH <strong>MTBE</strong> N- BUTANE<br />

( 1 )<br />

Condenser<br />

(2)<br />

(3)<br />

(4)<br />

(5)<br />

(6)<br />

Present<br />

model<br />

0.0608 0.0601 0.0002 0.8789<br />

Wang's<br />

work<br />

0.05 0.05 0 0.9<br />

The error 0.0108 0.0101 0.0002 0.0211<br />

Present<br />

model<br />

0.0532 0.0178 0.0008 0.9282<br />

Wang's<br />

work<br />

0.05 0.05 0 0.9<br />

The error 0.0032 0.0128 0.0008 0.0282<br />

Present<br />

model<br />

0.0460 0.057 0.0036 0.9446<br />

Wang's<br />

work<br />

0.05 0.04 0 0.91<br />

The error 0.004 0.017 0.0036 0.0346<br />

Present<br />

model<br />

0.0399 0.0031 0.0146 0.9424<br />

Wang's<br />

work<br />

0.05 0.03 0.01 0.91<br />

error 0.0101 0.0269 0.0046 0.0324<br />

Present<br />

model<br />

0.0405 0.0045 0.0269 0.9281<br />

Wang's<br />

work<br />

0.05 0.04 0.02 0.89<br />

The error 0.0095 0.0355 0.0069 0.0381<br />

Present<br />

model<br />

0.0465 0.0074 0.0405 0.9056<br />

Wang's<br />

work<br />

0.06 0.04 0.04 0.88


(7)<br />

(8)<br />

(9)<br />

(10)<br />

(11)<br />

(12)<br />

(13)<br />

(14)<br />

E-2<br />

Appendix E<br />

The error 0.0135 0.0326 0.0005 0.0256<br />

Present<br />

model<br />

0.0565 0.0113 0.0556 0.8767<br />

Wang's<br />

work<br />

0.05 0.04 0.06 0.85<br />

The error 0.0065 0.0287 0.0044 0.0267<br />

Present<br />

model<br />

0.0692 0.0167 0.0721 0.8420<br />

Wang's<br />

work<br />

0.075 0.05 0.075 0.8<br />

The error 0.0042 0.0333 0.0029 0.042<br />

Present<br />

model<br />

0.0835 0.0246 0.09 0.8019<br />

Wang's<br />

work<br />

0.08 0.06 0.14 0.72<br />

The error 0.0035 0.0354 0.05 0.0819<br />

Present<br />

model<br />

0.0984 0.0392 0.1070 0.7554<br />

Wang's<br />

work<br />

0.1 0.08 0.22 0.6<br />

The error 0.0016 0.0408 0.1130 0.1554<br />

Present<br />

model<br />

0.1143 0.0076 0.1421 0.7359<br />

Wang's<br />

work<br />

0.12 0.12 0.24 0.52<br />

The error 0.0043 0.1124 0.0979 0.2159<br />

Present<br />

model<br />

0.0844 0.0030 0.2231 0.6895<br />

Wang's<br />

work<br />

0.14 0.09 0.48 0.29<br />

The error 0.0556 0.087 0.2569 0.3995<br />

Present<br />

model<br />

0.0513 0.0012 0.3977 0.5497<br />

Wang's<br />

work<br />

0.07 0.12 0.7 0.11<br />

The error 0.0187 0.1188 0.3033 0.4397<br />

Present<br />

model<br />

0.0236 0.0005 0.6352 0.3407<br />

Wang's<br />

work<br />

0.05 0.05 0.85 0.05


(15)<br />

(16)<br />

(17)<br />

Reboiler<br />

E-3<br />

Appendix E<br />

The error<br />

Present<br />

0.0036 0.0495 0.2148 0.293<br />

model 0.0083 0.0002 0.8261 0.1653<br />

Wang's<br />

work<br />

0.01 0.025 0.94 0.025<br />

The error 0.0017 0.0248 0.1139 0.1043<br />

Present<br />

model<br />

0.0025 0 0.9294 0.0680<br />

Wang's<br />

work<br />

0.005 0 0.96 0.035<br />

The error 0.0025 0 0.0306 0.033<br />

Present<br />

model<br />

0.0007 0 0.9742 0.0251<br />

Wang's<br />

work<br />

0 0 0.98 0.02<br />

The error 0.0007 0 0.0078 0.0051


Table (E-2) the first assumption <strong>of</strong> model in case one<br />

Liquid fraction<br />

E-4<br />

Appendix E<br />

Tray<br />

number<br />

1-isobutene Methanol <strong>MTBE</strong> n-butane<br />

1 0.3145 0.1878 0 0.4976<br />

2 0.3247 0.0544 0 0.6209<br />

3 0.3018 0.0180 0 0.6802<br />

4 0.2751 0.0101 0 0.7148<br />

5 0.2519 0.0087 0 0.7394<br />

6 0.2330 0.0087 0 0.7583<br />

7 0.2175 0.0095 0 0.7729<br />

8 0.2046 0.0120 0 0.7834<br />

9 0.1924 0.0212 0 0.7863<br />

10 0.1769 0.0673 0 0.7558<br />

11 0.1773 0.0470 0 0.7757<br />

12 0.1534 0.0381 0 0.8085<br />

13 0.1320 0.0344 0 0.8336<br />

14 0.1137 0.0379 0 0.8484<br />

15 0.0991 0.0592 0 0.8417<br />

16 0.0836 0.1811 0 0.7353<br />

17 0.0319 0.7099 0 0.2581


E-5<br />

Appendix E<br />

Table (E-3) the result <strong>of</strong> reactive trays variation effects <strong>of</strong> model in<br />

case one<br />

Reactive<br />

Trays sum.<br />

1<br />

0.8015<br />

2<br />

0.5526<br />

3<br />

0.1987<br />

4<br />

0.7072<br />

5<br />

0.2633<br />

6<br />

0.09<br />

7<br />

0.0588<br />

8<br />

0.09<br />

9<br />

0.0885<br />

10<br />

0.0875<br />

0.0042<br />

0.7702<br />

0.0015<br />

0.5204<br />

0.0006<br />

0.1109<br />

0.0006<br />

0.8606<br />

0.0004<br />

0.3894<br />

0.0002<br />

0.1070<br />

0.0001<br />

0.0659<br />

0.0002<br />

0.107<br />

0.0002<br />

0.1046<br />

0.0002<br />

0.1029<br />

0.0191<br />

0.6469<br />

0.0067<br />

0.3967<br />

0.0028<br />

0.0812<br />

0.0028<br />

0.9352<br />

0.0019<br />

0.5782<br />

0.0008<br />

0.1421<br />

0.0006<br />

0.0831<br />

0.0008<br />

0.1421<br />

0.0008<br />

0.1383<br />

0.0008<br />

0.1353<br />

Table (E-4) the result <strong>of</strong> feed location variation effects <strong>of</strong> model in<br />

case one<br />

Feed<br />

Locations<br />

Conversion purity<br />

Liquid<br />

flow rate<br />

7,8 0.952 0.9632 174.1918<br />

8,9 0.9467 0.9731 175.7610<br />

9,10 0.9331 0.9765 179.8480<br />

10,11 0.8968 0.9742 190.9166<br />

11,12 0.8971 0.9767 190.8314<br />

Table (E-5) the result <strong>of</strong> feed ratio variation effects <strong>of</strong> model in case<br />

one<br />

Feed Ratio Conversion<br />

0.0643<br />

0.3475<br />

0.0241<br />

0.2001<br />

0.0109<br />

0.0813<br />

0.0108<br />

0.9806<br />

0.0074<br />

0.8184<br />

0.0036<br />

0.2231<br />

0.0025<br />

0.1074<br />

0.0036<br />

0.2231<br />

0.0036<br />

0.2157<br />

0.0036<br />

0.2091<br />

<strong>MTBE</strong> Composition<br />

0.1817<br />

0.3422<br />

0.0780<br />

0.1954<br />

0.0390<br />

0.0692<br />

0.0392<br />

0.9940<br />

0.0279<br />

0.9371<br />

0.0146<br />

0.3977<br />

0.0106<br />

0.1706<br />

0.0146<br />

0.3977<br />

0.0145<br />

0.3855<br />

0.0144<br />

0.3738<br />

0.3568<br />

0.3186<br />

0.1632<br />

0.1708<br />

0.0779<br />

0.0013<br />

0.0815<br />

0.9981<br />

0.0535<br />

0.9793<br />

0.0269<br />

0.6352<br />

0.0192<br />

0.3011<br />

0.0269<br />

0.6352<br />

0.0267<br />

0.6223<br />

0.0265<br />

0.6095<br />

0.5420<br />

0.2097<br />

0.2866<br />

0.0578<br />

0.1216<br />

0.0001<br />

0.1515<br />

0.9994<br />

0.0857<br />

0.9933<br />

0.0405<br />

0.8261<br />

0.0284<br />

0.4984<br />

0.0405<br />

0.8261<br />

0.0401<br />

0.8178<br />

0.0398<br />

0.8092<br />

0.6919<br />

0.0003<br />

0.4139<br />

0.0002<br />

0.1662<br />

0.0001<br />

0.2773<br />

0.9998<br />

0.1265<br />

0.9978<br />

0.0556<br />

0.9294<br />

0.0383<br />

0.7069<br />

0.0556<br />

0.9294<br />

0.055<br />

0.9255<br />

0.0546<br />

0.9213<br />

0.7684<br />

0.0003<br />

0.5155<br />

0.0002<br />

0.1997<br />

0.0001<br />

0.4799<br />

0.9999<br />

0.1810<br />

0.9993<br />

0.0721<br />

0.9742<br />

0.0486<br />

0.8627<br />

0.0721<br />

0.9742<br />

0.0712<br />

0.9726<br />

0.0705<br />

0.9213


0.7 0.9997<br />

0.8 0.9998<br />

0.9 0.9998<br />

1 0.8968<br />

1.1 0.8685<br />

1.2 0.8492<br />

1.3 0.8344<br />

E-6<br />

Appendix E<br />

Table (E-6) the result <strong>of</strong> catalyst weight variation effects <strong>of</strong> model in<br />

case one<br />

Catalyst<br />

wt<br />

Conversion BF Purity<br />

800 0.7019 257.4435 0.7333<br />

900 0.7816 229.2653 0.8989<br />

1000 0.8966 190.9166 0.9742<br />

1100 0.9997 142.7317 0.9926<br />

1200 0.9998 100.0158 0.9976<br />

Table (E-7) the result <strong>of</strong> Reflux Ratio variation effects on product<br />

composition <strong>for</strong> model in case one


Reflux<br />

Ratio<br />

2.5<br />

0.8015<br />

3<br />

0.5526<br />

4<br />

0.1987<br />

4.5<br />

0.7072<br />

5<br />

0.2633<br />

6<br />

0.09<br />

7<br />

0.0588<br />

9<br />

0.0440<br />

0.0042<br />

0.7702<br />

0.0015<br />

0.5204<br />

0.0006<br />

0.1109<br />

0.0006<br />

0.8606<br />

0.0004<br />

0.3894<br />

0.0002<br />

0.1070<br />

0.0001<br />

0.0659<br />

0.0001<br />

0.0460<br />

0.0191<br />

0.6469<br />

0.0067<br />

0.3967<br />

0.0028<br />

0.0812<br />

0.0028<br />

0.9352<br />

0.0019<br />

0.5782<br />

0.0008<br />

0.1421<br />

0.0006<br />

0.0831<br />

0.0004<br />

0.0563<br />

<strong>MTBE</strong> Composition<br />

0.0643<br />

0.3475<br />

0.0241<br />

0.2001<br />

0.0109<br />

0.0813<br />

0.0108<br />

0.9806<br />

0.0074<br />

0.8184<br />

0.0036<br />

0.2231<br />

0.0025<br />

0.1074<br />

0.0020<br />

0.0617<br />

0.1817<br />

0.3422<br />

0.0780<br />

0.1954<br />

0.0390<br />

0.0692<br />

0.0392<br />

0.9940<br />

0.0279<br />

0.9371<br />

0.0146<br />

0.3977<br />

0.0106<br />

0.1706<br />

0.0088<br />

0.0775<br />

E-7<br />

0.3568<br />

0.3186<br />

0.1632<br />

0.1708<br />

0.0779<br />

0.0013<br />

0.0815<br />

0.9981<br />

0.0535<br />

0.9793<br />

0.0269<br />

0.6352<br />

0.0192<br />

0.3011<br />

0.0159<br />

0.1136<br />

0.5420<br />

0.2097<br />

0.2866<br />

0.0578<br />

0.1216<br />

0.0001<br />

0.1515<br />

0.9994<br />

0.0857<br />

0.9933<br />

0.0405<br />

0.8261<br />

0.0284<br />

0.4984<br />

0.0231<br />

0.1823<br />

Appendix E<br />

0.6919<br />

0.0003<br />

0.4139<br />

0.0002<br />

0.1662<br />

0.0001<br />

0.2773<br />

0.9998<br />

0.1265<br />

0.9978<br />

0.0556<br />

0.9294<br />

0.0383<br />

0.7069<br />

0.0305<br />

0.3012<br />

0.7684<br />

0.0003<br />

0.5155<br />

0.0002<br />

0.1997<br />

0.0001<br />

0.4799<br />

0.9999<br />

0.1810<br />

0.9993<br />

0.0721<br />

0.9742<br />

0.0486<br />

0.8627<br />

0.0377<br />

0.4939<br />

Table (E-8) the result <strong>of</strong> Reflux Ratio variation effects on conversion,<br />

purity, yield <strong>for</strong> model in case one<br />

Reflux Bottom flow<br />

ratio<br />

Conversion Purity<br />

5 42.5687 0.9998 0.9993<br />

6 133.6680 0.944 0.9935<br />

7 190.9166 0.8966 0.9742<br />

8 230.4487 0.8826 0.9313<br />

9 260.3054 0.8768 0.8627<br />

10 284.0147 0.8723 0.7796


ﻦﻴﻟﻭﺯﺎﻜﻟﺍ<br />

ﺕﺎﻓﺎﻀﻣ<br />

ﺚﻴﺣ ( ﻱﺇ.<br />

ﻲﺑ.<br />

ﻲﺗ.<br />

ﻱﺇ)<br />

ﻞﻳﺪﺒﻟﺍ ﻦﻴﺠﺴﻛﻭﻻﺍ<br />

ﺏ<br />

ﻦﻣ ﻦﻴﻨﺛﺍ<br />

ﺔـــــﺻﻼﺨﻟﺍ<br />

ﺝﺎﺘﻧﻻ ﻲﻠﻋﺎﻔﺘﻟﺍ ﺮﻴﻄﻘﺘﻟﺍ ﺝﺍﺮﺑﺍ ﺓ ﺎﻛﺎﺤﻣ<br />

ﺮﺜﻳﺍ ﻞﻴﺗﻮﻴﺑ ﻲﺛﻼﺛ ﻞﻴﺛﺍﻭ ( ﻱﺍ.<br />

ﻲﺑ.<br />

ﻲﺗ.<br />

ﻡﺍ)<br />

ﺔﻌﺒﺸﻤﻟﺍ<br />

ﺕﺎﺒﻛﺮﻤﻟﺍ ﻱﺃ ( oxygenates)<br />

ﻰﻋﺪﺗ<br />

ﻭ ﺔﺳﺍﺭﺩ ﺚﺤﺒﻟﺍ ﺍﺬﻫ ﻝﻭﺎﻨﺘﻳ<br />

ﺮﺜﻳﺍ ﻞﻴﺗﻮﻴﺑ ﻲﺛﻼﺛ ﻞﻴﺜﻣ<br />

ﻲﺘﻟﺍﻭ ﺕﺎﻓﺎﻀﻤﻟﺍ ﻩﺬﻫ<br />

ﻲﻫﺔﻤﻬﻤﻟﺍ<br />

ﺖﺤﺒﺻﺍ<br />

. ﺹﺎﺻﺮﻟﺍ ﺕﺎﻴﻠﻴﺛﺍ ﻊﺑﺍﺮﻟ ﻞﻀﻓﻻﺍ<br />

ﺔﺟﺬﻤﻨﻟﺍ ﺏﻮﻠﺳﺍ ﻰﻟ ﻉ ﺪﻤﺘﻌﻳ ﻞﻳﺩﻮﻣ ﺮﻳﻮﻄﺗﻭ ءﺎﺸﻧﺍ ﺽﺮﻐﻟ ﺕﺍﻮﻁﺥ<br />

ﺓﺪﻋ ﻝﻼﺧ ﻦﻣ ﺔﺳﺍﺭﺪﻟﺍ ﻩﺬﻫ ﺕﺰﺠﻧُﺃ<br />

ﺕﺎﻗﻼﻋﻭ ﺔﻗﺎﻄﻟﺍﻭ ﺓﺩﺎﻤﻟﺍ ﺔﻧﺯﺍﻮﻤﻟ ﺮﺼﺘﺨﻣ ﻲﻫﻭ (MESH)<br />

. ﺔﻗﺎﻄﻟﺍﻭ ﺓﺩﺎﻤﻟﺍ ﺔﻧﺯﺍﻮﻣ ﻦﻣ ﻞﻜﻟ ﻝﻉﺎﻔﺘﻟﺍ<br />

ﺪﺣ<br />

ﻲﻧﺍﻮﺻﻝﺍﺩﺪﻋ<br />

ﻝ ﻖﺒﺴﻤﻟﺍ ﻦﻴﻴﻌﺘﻟﺍ ﺝﺎﺘﺤﻳ<br />

ﻭ<br />

ﺕﻻﺩﺎﻌﻣ ﻰﻠﻋ ﺪﻤﺘﻋﺕ<br />

ﻲﺘﻟﺍﻭ ﺔﺜﻳﺪﺤﻟﺍ<br />

ﺔﻓﺎﺿﺍ ﻢﺗ ﻚﻟﺬﻛ،ﺐﻴﻛﺍﺮﺘﻟﺍ ﻊﻤﺟ ﻊﻣ ﻥﺯﺍﻮﺘﻟﺍ<br />

ﻲﻠﻋﺎﻔﺘﻟﺍ ﺮﻴﻄﻘﺘﻟﺍ ﺓﺎﻛﺎﺤﻤﻟ ﻪﻣﺍﺪﺨﺘﺳﺍ ﻦﻜﻤﻳ ﻱﺬﻟﺍ ﻞﻳﺩﻮﻤﻟﺍ ﺍﺬﻫ<br />

. ﻱﺭﺍﺮﺤﻟﺍ ﻞﻤﺤﻟﺍﻭ ﺎﻫﻥﺎﻳﺮﺟ<br />

ﺕﻻﺪﻌﻣ<br />

ﻊﻣ ﺔﻠﻋﺎﻔﺘﻤﻟﺍ ﺩﺍﻮﻤﻟﺍ<br />

ﺐﻴﻛﺍﺮﺗﻭ<br />

ﻊﺟﺍﺮﻟﺍ ﺔﺒﺴﻧﻭ<br />

. ﺭﺎﺨﺒﻟﺍﻭ ﻞﺋﺎﺴﻠﻟ ﺩﻮﻤﻌﻟﺍ ﻝﻮﻁ ﻰﻠﻋ ﺐﻴﻛﺍﺮﺘﻟﺍ ﻊﻳﺯﻮﺗ<br />

. ﺩﻮﻤﻌﻠﻟ ﺓﺭﺍﺮﺤﻟﺍ ﺔﺟﺭﺩ<br />

: ﺪﻳﺪﺤﺗ ﻢﺘﻳ ﻲﻜﻟ<br />

ﻊﻳﺯﻮﺗ<br />

.( ﺮﻄﻗ ﺕﻡﻝﺍ)<br />

ﻱﻮﻠﻌﻟﺍ ﺞﺗﺎﻨﻟﻝ<br />

ﺓﺭﺍﺮﺤﻟﺍ ﺔﺟﺭﺩﻭ ﺐﻴﻛﺍﺮﺘﻟﺍﻭ ﻥﺎﻳﺮﺠﻟﺍ ﻝﺪﻌﻣ<br />

. ( ﻲﻘﺒﺘﻤﻟﺍ)<br />

ﻲﻠﻔﺴﻟﺍ ﺞﺗﺎﻨﻠﻟ ﺓﺭﺍﺮﺤﻟﺍ ﺔﺟﺭﺩﻭ ﺐﻴﻛﺍﺮﺘﻟﺍﻭ ﻥﺎﻳﺮﺠﻟﺍ ﻝﺪﻌﻣ<br />

. ﻞﻋﺎﻔﺘﻟﺍ ﻲﻧﺍﻮﺻ ﻝﻮﻁ ﻰﻠﻋ<br />

ﻞﻛ ﻝﺍﺰﺘﺧﺍﻭ ﺔﻓﺎﺿﺎﺑ ( ًﺔﻴﺟﺎﺘﻧﻻﺍﻭ ﺓﻭﺎﻗﻦﻟﺍﻭ<br />

ﻝﻮﺤﺘﻟﺍ ﺔﺒﺴﻧ ﺚﻴﺣ ﻦﻣ)<br />

ﺔﻠﻋﺎﻔﺘﻤﻟﺍ ﺩﺍﻮﻤﻟﺍ<br />

ﻞﻋﺎﻔﺘﻟﺍ ﻝﺪﻌﻣ ﻊﻳﺯﻮﺗ<br />

. 1<br />

. 2<br />

. 3<br />

. 4<br />

. 5<br />

ﻡﺎﻈﻨﻟﺍ ﺮﺛﺄﺗ ﺭﺎﻬﻅﻹ ﻞﻴﻠﺤﺘﻟﺍ ﺍﺬﻫ ﺰﺠﻧُﺃ<br />

ﺐﺴﻧﻭ ﻊﺟﺍﺮﻟﺍ ﺔﺒﺴﻧ ﻞﺜﻣ ﻯﺮﺧﻻﺍ ﺕﺍﺭ ﻲﻐﺘﻤﻟﺍ ﺾﻌﺑﻭ ﻞﺼﻔﻟﺍﻭ ﻞﻋﺎﻔﺘﻟﺍ<br />

ﻲﻧﺍﻮﺻ ﻦﻣ<br />

ﻲﻄﻌﺗ ﻲﺘﻟﺍ ﻑﻭﺮﻈﻟﺍ ﻞﻀﻓﺍ ﺪﻳﺪﺤﺗ ﻢﺛ ﻦﻣﻭ ﻞﻋﺎﻔﺘﻟﺍ ﻲﻧﺍﻮﺻ ﻲﻓ ﺓﺪﺣﺍﻮﻟﺍ ﺔﻴﻨﻴﺼﻟﺎﺑ ﺪﻋﺎﺴﻤﻟﺍ ﻞﻣﺎﻌﻟﺍ ﻥﺯﻭﻭ<br />

ﻯﺩﺍ<br />

ﺮﺜﻛﺍ ﻪﻧﻮﻛ ﻯﺮﺧﻻﺍ ﺕﺎﻴﻠﻤﻌﻟﺍ ﻦﻋ ﻒﻠﺘﺨﻳ ﺮﻴﻄﻘﺘﻠﻟ ﻞﺜﻣﻻﺍ ﺭﺎﻴﺘﺧﻻﺍ ﻥﺍ ﺮﻛﺬﻟﺎﺑ ﺮﻳﺪﺠﻟﺍ ﻦﻣ ،ﺞﺋﺎﺘﻨﻟﺍ<br />

ﻞﻀﻓﺍ<br />

ﺖﻧﺎﻛ ﺎﻣﺪﻨﻋ ﺞﺋﺎﺘﻨﻟﺍ ﻞﻀﻓﺍ<br />

ﻞﻋﺎﻔﺘﻟﺍ<br />

ﻊﺟﺍﺮﻟﺍ ﺔﺒﺴﻧ<br />

ﻥﺎﻤﺜﻟﺍ ﻞﻋﺎﻔﺘﻟﺍ ﻲﻧﺍﻮﺻ ﻦﻣ ﺔﻴﻨﻴﺻ ﻝﻚﺑ<br />

ﻲﻧﺍﻮﺼﻟ ﺩﺪﻋ ﻰﻠﻋﺍ ﻲﻫ<br />

ﻥﺎﻤﺜﻟﺍ<br />

ﺖﻄﻋﺍ<br />

ﻲﻧﺍﻮﺻﻝﺍ<br />

ﻊﻗﺍﻮﻣ ﻞﻀﻓﺍ ﺮﺸﻋ ﺔﻳﺩﺎﺤﻟ ﺍﻭ ﺓﺮﺷﺍ<br />

ﻊﻟﺍ ﺔﻴﻨﻴﺼﻟﺍ ﺖﻧﺎﻛ<br />

ﻲﻠﻋﺎﻔﺘﻟﺍ ﺮﻴﻄﻘﺗﻝﺎﺑ<br />

. ﺕﺎﺳﺍﺭﺪﻟﺍ ﺐﻠﻏﺍ ﻊﻣ<br />

ﺪﻋﺎﺴﻤﻟﺍ ﻞﻣﺎﻌﻟﺍ ﻥﺯﻭ<br />

(<strong>MTBE</strong>)<br />

ﺝﺎﺘﻧﺍ ﺔﺳﺍﺭﺩ<br />

ًﺍﺪﻴﻘﻌﺗ<br />

.<br />

ﻲﻓ<br />

ﻖﻓﺍﻮﺘﻳ ﺬﻫﻭ (7) ﻱﻭﺎﺴﺗ<br />

ﻦﻣ (1100 Kg) ﻡﺍﺪﺨﺘﺳﺍ ﺪﻨﻋﻭ<br />

ﺖﻧﺎﻛ ﻭ . ﻝﻮﺤﺘﻟﺍ ﺔﺒﺴﻧﻭ ﺓﻭﺎﻘﻨﻟﺍ ﻦﻣ ﻞﻛ<br />

ﻚﻟﺬﻛ . ﺓﺪﻴﺟ ﺞﺋ<br />

ﻦﻴﺴﺤﺗ ﻰﻟﺍ<br />

ﺎﺘﻧ ﻰﻠﻋ ﻝﻮﺼﺤﻟﺍ ﻦﻜﻤﻳ ﺚﻴﺤﺑ<br />

.<br />

ﻦﻴﻠﺗﻮﻴﺑﻭﺰﻳﻻﺍﻭ ﻝﻮﻧﺍ ﺚﻴﻤﻟﺍ ﻝﻮﺧﺪﻟ


ﻊﻣ ًﺍﺪﻴﺟ ًﺎﻘﻓﺍﻮﺗ ﺖﻄﻋﺍ ﺚﻴﺣ ﺔﻳﺮﻈﻧ ﻯﺮﺧﺍﻭ ﺔﻴﺒﻳﺮﺠﺗ ﺕﺎﻧﺎﻴﺑ ﻊﻣ ﻪﺗﺎﻨﻬﻜﺗ ﺔﻧﺭﺎﻗﺏ<br />

ﻡ ﻞﻳﺩﻭﻢﻟﺍ<br />

ءﺍﺩﺍ ﻢﻴﻴﻘﺗ ﻢﺗ<br />

ﻥﺍﺰﺗﻻﺍ ﻑﻭﺮﻅ ﺪﻨﻋ<br />

ﻞﻣﺎﻜﺘﻣ ﻡﺎﻈﻧ<br />

–<br />

ﻦﻴﺗﻮﻴﺑﻭﺰﻳﻻﺍ ) ﺞﻳﺰﻣﻭ<br />

ﻭ ﺓﺮﻘﺘﺴﻤﻟﺍ ﺔﻟﺎﺤﻟﺍ ﻲﻓ<br />

ﻝ ﻰﻟﻭﻻﺍ ﺔﻨﺒﻠﻟﺍ ﻥﻮﻜﻳ ﻥﺍ ﻦﻜﻤﻳﻭ<br />

( ﻱﺍ.<br />

ﻲﺑ.<br />

ﻲﺗ.<br />

ﻡﺍ -ﻝﻮﻧﺎﺜﻴﻣ<br />

ﺔﻴﻠﻤﻌﻟﺍ ﻩﺬﻬﻟ ﻞﻴﻠﺤﺘﻟﺍ<br />

ﻲﻠﻋﺎﻔﺗ ﺮﻴﻄﻘﺗ ﻡﺎﻈﻧ ﻱﻷ<br />

ﺍﺬﻫ<br />

ﻢﺗ<br />

ﺪﻗﻭ ﺕﺎﻧﺎﻴﺒﻟﺍ ﻩﺬﻫ<br />

. ﻲﻜﻴﻤﻨﻳﺍﺩﻮﻣﺮﺜﻟﺍ<br />

ﺔﻘﻴﺒﻄﺗ ﻦﻜﻤﻳ ﻞﻳﺩﻮﻤﻟﺍ ﺍﺬﻫ ﻥﺇ<br />

. ﺔﻔﻠﺘﺨﻣ ﺔﻴﻜﻴﻤﻨﻳﺍﺩﻮﻣﺮﺛ ﺕﻼﻳﺩﻮﻣ ﻊﻣ ﻪﻌﻴﺳﻮﺗﻭ<br />

-ﻦﻴﺗﻮﻴﺑﻭﺰﻳﻻﺍ ) ﺞﻳﺰﻤﻟ<br />

. ﻪﻧﻭﺪﺑﻭ ﻞﻋﺎﻓ ﺕﻝﺍ<br />

ﺩﻮﺟﻭ ﻲﺘﻟﺎﺣ ﻲﻓ<br />

.<br />

ﻞﻤﻌﻟﺍ ﺍﺬﻫ ﻲﻓ ﺔﻣﺩﺦﺘﺴﻤﻟﺍ<br />

ﺕﻻﺎﺤﻟﺍ ﻊﻴﻤﺠﻟ ﻲﻓ ﺓﺍﺩﺎﻛ ( MATLAB 7)<br />

(Package)<br />

ﺔﻴﻘﺒﻟﺍ ﻲﻨﺤﻨﻣ ﻢﺳﺭ ﻢﺗ ﻚﻟﺬﻛ<br />

(<br />

ﻱﺍ.<br />

ﻲﺑ.<br />

ﻲﺗ.<br />

ﻱﺍ-ﻝﻮﻧﺎﺜﻳﺍ<br />

ﻲﺿﺎﻳﺮﻟﺍ ﺞﻣﺎﻧﺮﺒﻟﺍ ﻡﺪﺨﺘﺳﺍ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!