29.03.2013 Views

in the Sea Star Asterias rubens L. - Université Libre de Bruxelles

in the Sea Star Asterias rubens L. - Université Libre de Bruxelles

in the Sea Star Asterias rubens L. - Université Libre de Bruxelles

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

UNIVERSITE LIBRE DE BRUXELLES – FACULTE DES SCIENCES<br />

LABORATOIRE DE BIOLOGIE MARINE<br />

Bioaccumulation and Effects of Polychlor<strong>in</strong>ated Biphenyls (PCBs)<br />

Thesis submitted <strong>in</strong> fulfilment of<br />

<strong>the</strong> <strong>de</strong>gree of :<br />

Doctor <strong>in</strong> Sciences<br />

<strong>in</strong> <strong>the</strong> <strong>Sea</strong> <strong>Star</strong> <strong>Asterias</strong> <strong>rubens</strong> L.<br />

1<br />

Bruno Danis<br />

March 2004<br />

Supervisors:<br />

Dr Michel Warnau<br />

Dr Philippe Dubois


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

2


Si les pétroliers transportaient <strong>de</strong> l'eau <strong>de</strong> mer, on s'en foutrait qu'ils fassent naufrage…<br />

3<br />

Philippe Geluck<br />

A ceux qui nous manquent et qui veillent sur nous…


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

4


ACKNOWLEDGEMENTS-REMERCIEMENTS<br />

5<br />

ACKNOWLEDGEMENTS-REMERCIEMENTS<br />

Quand vient le moment d’écrire les remerciements, <strong>de</strong>s tonnes <strong>de</strong> souvenirs s’engouffrent<br />

dans votre tête, faisant apparaître les personnes sans qui une thèse ne serait pas ce qu’elle est,<br />

sans qui tous les éléments qui la composent ne se seraient pas ajustés comme ils le sont…<br />

Beaucoup <strong>de</strong> mes phrases vont commencer par « je remercie le Dr… », mais bon c’est comme<br />

ça… [on se croirait un peu à une cérémonie <strong>de</strong> remise <strong>de</strong>s Oscars…]<br />

Je commence évi<strong>de</strong>mment par remercier le Professeur Michel Jangoux, qui m’a ouvert les<br />

portes <strong>de</strong> son laboratoire il y a six ans déjà (!) et qui, j’en suis sûr, a gardé un œil bienveillant<br />

sur moi pendant les moments difficiles ou joyeux qui ont échelonné cette pério<strong>de</strong>.<br />

Je remercie le Dr Philippe Dubois, mon copromoteur et vois<strong>in</strong> <strong>de</strong> palier. Ton sens critique<br />

affuté m’a plus d’une fois poussé à puiser au fond <strong>de</strong> mes ressources. Merci d’avoir été<br />

toujours présent dans les moments <strong>de</strong> doutes, et merci pour ta franchise.<br />

Je remercie le Dr Michel Warnau, mon autre copromoteur, mon quasi-grand frère. Généreux<br />

et impartial, sans compter, tu m’as donné le goût <strong>de</strong> la recherche, celle que l’on mène en<br />

poussant toujours plus lo<strong>in</strong> ses limites, celle pour laquelle on a tant beso<strong>in</strong> <strong>de</strong> ses proches.<br />

Merci à Geneviève et aux trois petits warnouilles: Nathan, Luane et Max, pour la gentillesse<br />

sans f<strong>in</strong> que vous avez montré à mon égard.<br />

Je remercie le Dr Scott Fowler, un autre protagoniste bienveillant <strong>de</strong> ma thèse, qui m’a<br />

accueillit au se<strong>in</strong> <strong>de</strong> son laboratoire à plusieurs reprises, et m’a permis <strong>de</strong> concrétiser mes<br />

fantasmes expérimentaux pratiquement sans limite.<br />

Je remercie Jean-Louis Teyssié, technicien <strong>de</strong> l’extrême dopé à la sala<strong>de</strong> qui, tel un compteur<br />

Geiger, détecte la mo<strong>in</strong>dre trace <strong>de</strong> radioactivité. Tu m’as appris tous les rouages <strong>de</strong> la<br />

manipulation « à chaud », et tu n’as jamais reculé <strong>de</strong>vant les défis que je souhaitais que nous<br />

relevions ensemble.<br />

Je remercie Olivier Cotret, autre technicien <strong>de</strong> l’extrême, qui a été ma ma<strong>in</strong> droite pendant<br />

toute la durée <strong>de</strong>s expérimentations monégasques. Merci pour tes Hénaurmes coups <strong>de</strong> ma<strong>in</strong> !<br />

Je remercie le Dr Jean-Paco Bustamante, mon b<strong>in</strong>ôme Rochelais, avec qui nous avons bataillé<br />

à mort, à coup <strong>de</strong> cerises, dans le jard<strong>in</strong> <strong>de</strong> M. Verola, ex-champion <strong>de</strong> boules <strong>de</strong> son petit<br />

état.


6<br />

ACKNOWLEDGEMENTS-REMERCIEMENTS<br />

Je remercie le Dr Jean-Pierre Villeneuve pour son ai<strong>de</strong> précieuse dans l’analyse <strong>de</strong>s PCB<br />

« froids », et pour sa gran<strong>de</strong> patience.<br />

Je remercie le Dr Chantal Catt<strong>in</strong>i pour sa gentillesse, son ai<strong>de</strong>, a<strong>in</strong>si que pour le temps qu’elle<br />

a passé pour moi <strong>de</strong>vant sa colonne, à voir couler <strong>de</strong> l’extrait d’étoile <strong>de</strong> mer.<br />

Je remercie le Dr Véronique Flamand pour ses précieux conseils en matière d’ELISA et son<br />

ouverture d’esprit.<br />

Je remercie le Dr Virg<strong>in</strong>ie De Backer pour son ai<strong>de</strong> et ses conseils concernant la famille <strong>de</strong>s<br />

diox<strong>in</strong>es.<br />

Je remercie le Dr Patrick Flammang pour ses conseils pour la réalisation <strong>de</strong>s Western Blots.<br />

Je remercie le Dr Pascale Wantier pour sa gentillesse et pour m’avoir <strong>in</strong>itié aux joies <strong>de</strong><br />

l’analyse <strong>de</strong>s PCBs.<br />

Je remercie le Prof Robert Flammang pour son <strong>in</strong>térêt pour notre projet, et l’implication <strong>de</strong><br />

son laboratoire pendant plusieurs années.<br />

Je remercie le Dr 2 Stanislas Goriely, qui m’a <strong>in</strong>itié aux joies <strong>de</strong> l’ELISA, mais qui est surtout<br />

mon ami <strong>de</strong>puis qu<strong>in</strong>ze ans. Merci aussi à Nanou et au petit Kolya pour les <strong>in</strong>oubliables<br />

brunchs du dimanche. Je suis sûr que nos bamb<strong>in</strong>s joueront encore longtemps ensemble.<br />

Je remercie le Dr Drossos, <strong>de</strong>xtre chirurgien <strong>de</strong> la ma<strong>in</strong>, à qui je dois le sauvetage <strong>de</strong> mon<br />

annulaire droit après une rencontre <strong>in</strong>désirée, un soir <strong>de</strong> noël 2003, entre les tendons <strong>de</strong> mon<br />

cher doigt et une rogneuse mal léchée <strong>de</strong> la marque I<strong>de</strong>al, qu’au passage je ne remercie pas,<br />

car elle ne place pas <strong>de</strong> gar<strong>de</strong> sur <strong>de</strong> tels eng<strong>in</strong>s.<br />

Je remercie évi<strong>de</strong>mment l’ensemble du Biomar, dans l’ordre du début à la f<strong>in</strong> du couloir<br />

« Hippie» Chantal, « Gomez da Costa » Sergio, «DivX le Breton » V<strong>in</strong>z, « le Dubbe » Phil,<br />

« Sand » Cristi, « le Dim-Dim », « le Loron », « Chipito» GillesD, « Snore » Geoff, « Mac<br />

Guy-ver » Guy, « Never-short-of-a-joke » Herwig, « Oui-oui » Richard, « Vivi » Viviane,<br />

« Psycho » Marcelle, « Happy hour » Edw<strong>in</strong>, « Dr<strong>in</strong>e-dr<strong>in</strong>e » Sandr<strong>in</strong>e, « Radar» Phil,<br />

« Buffalo » Beber, « Coup’-coup’ » Dev, « MasterM<strong>in</strong>d » Didje, « Isaac » GillesR, « Aussie »<br />

Raph, « Cotten » Guillemette, « Never-steack never aga<strong>in</strong>» <strong>de</strong>n Daaav-id, « Tam-tam »<br />

Tamar, « Civette » Yves, « Jedi » Eugene, « Chewbacca » Jean-Marc, « Batman » Walter, et<br />

« Dites-Edith » Edith. Merci à vous tous <strong>de</strong> m’avoir supporté pendant toutes ces (courtes)<br />

années (six ans, je n’en reviens pas !).<br />

Je remercie chaleureusement l’équipage du Belgica, composé d’hommes dévoués, qui me<br />

laisseront <strong>de</strong>s souvenirs <strong>de</strong> moments hors du commun, parfois surréalistes (surtout au cours <strong>de</strong><br />

nos premières sorties…).


7<br />

ACKNOWLEDGEMENTS-REMERCIEMENTS<br />

Je remercie les GMs <strong>de</strong> mon Comité d’Accompagnement, les Drs Christiane Lancelot et Guy<br />

Josens, pour leur constante attention tout au long <strong>de</strong> ma thèse.<br />

Je remercie le FRIA, qui m’a accordé une bourse <strong>de</strong> thèse pendant les premières années <strong>de</strong><br />

celle-ci.<br />

Je remercie la fondationVan Buuren qui m’a apporté un ballon d’oxygène non négligeable<br />

pendant les mois <strong>de</strong> disette.<br />

Je remercie l’ONEM pour son soutien f<strong>in</strong>ancier (pendant les nombreux mois <strong>de</strong> disette encore<br />

et quand le ballon d’oxygène s’est envolé…).<br />

Je remercie la Communauté Française <strong>de</strong> Belgique pour la bourse <strong>de</strong> voyage qu’elle m’a<br />

accordée, et qui m’a permis <strong>de</strong> -presque- jo<strong>in</strong>dre les <strong>de</strong>ux bouts au cours <strong>de</strong> mes séjours<br />

monégasques.<br />

Je remercie le Dr Gwenaëlle Leclercq et le presque-Dr Grégory Sempo pour leur amitié si<br />

simple qu’elle m’a fait oublier bien <strong>de</strong>s prises <strong>de</strong> têtes. Spéciale dédicace au petit Loup, dont<br />

les piles ne sont jamais à plat pour jouer avec ma petite Zoé.<br />

Je remercie mon cous<strong>in</strong> David pour le so<strong>in</strong> avec lequel il a court-circuité mon ord<strong>in</strong>ateur tout<br />

neuf au champagne –s’il vous plaît- à quelques sema<strong>in</strong>es du dépôt <strong>de</strong> ma thèse (je t’avais dit<br />

que je te louperais pas !!).<br />

Je remercie Chanda & Maxime, <strong>de</strong> chez Macl<strong>in</strong>e, et qui ont réussi à sauver <strong>in</strong> extremis toutes<br />

mes données après l’<strong>in</strong>ci<strong>de</strong>nt cité ci-<strong>de</strong>ssus.<br />

Je remercie ma sœur, Muriel, pour sa présence rayonnante dans les moments très difficiles qui<br />

ont émaillés la pério<strong>de</strong> <strong>de</strong> thèse. Gilles t’es quelques lignes au <strong>de</strong>ssus…<br />

Je remercie ma marra<strong>in</strong>e Jan<strong>in</strong>e, a<strong>in</strong>si que Jacques pour nous avoir accueillis mille fois autour<br />

d’un <strong>in</strong>croyable fest<strong>in</strong> qui a toujours eu l’art <strong>de</strong> nous remonter le moral à l’<strong>in</strong>f<strong>in</strong>i.<br />

Je remercie ma belle-famille, Monique –notre ange gardien-, Au<strong>de</strong> et Yvan, toujours prêts à<br />

nous changer les idées.<br />

Je remercie évi<strong>de</strong>mment tout le reste <strong>de</strong> la famille pour l’affection et l’attention qu’elle m’a<br />

toujours prodigué.<br />

Je remercie mes parents-adorés qui m’ont soutenu sans faillir <strong>de</strong>puis <strong>de</strong> nombreuses années (je<br />

n’ose même pas les compter) et m’ont montré l’importance <strong>de</strong> l’ouverture d’esprit, <strong>de</strong> la<br />

curiosité, <strong>de</strong> la ténacité et du bon v<strong>in</strong>.<br />

Enf<strong>in</strong>, bien sûr, je remercie Cél<strong>in</strong>e, avec qui j’ai traversé en très peu <strong>de</strong> temps les plus dures<br />

tempêtes, mais aussi les plus gran<strong>de</strong>s joies <strong>de</strong> ma vie. Je crois qu’après ce que nous avons vécu,<br />

aucun ouragan ne pourra nous éloigner.


8<br />

ACKNOWLEDGEMENTS-REMERCIEMENTS<br />

Zoé, mon bébé-crabe, et Liam, mon bébé-grogne, papa vous dédie ce travail.


TABLE OF CONTENTS<br />

9<br />

TABLE OF CONTENTS<br />

ACKNOWLEDGEMENTS-REMERCIEMENTS........................................................................................................5<br />

TABLE OF CONTENTS................................................................................................................................................9<br />

SUMMARY ..................................................................................................................................................................11<br />

I. GENERAL INTRODUCTION ..........................................................................................................................15<br />

I.1. POLYCHLORINATED BIPHENYLS.........................................................................................................................15<br />

I.1.1. General <strong>in</strong>formation ..................................................................................................................................15<br />

I.1.2. Analysis ......................................................................................................................................................16<br />

I.1.3. International recommendations ................................................................................................................18<br />

I.2. PCBS IN THE MARINE ENVIRONMENT................................................................................................................19<br />

I.2.1. Caracterization of PCB contam<strong>in</strong>ation ....................................................................................................20<br />

I.2.2. Biological effects of PCBs.........................................................................................................................22<br />

I.2.3. Biomarkers of PCB exposure....................................................................................................................27<br />

I.3. CONTAMINATION OF THE NORTH SEA BY PCBS ...............................................................................................31<br />

I.3.1. The North <strong>Sea</strong> ............................................................................................................................................31<br />

I.3.2. Orig<strong>in</strong> and fluxes of PCB contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong> North <strong>Sea</strong>......................................................................32<br />

I.3.3. PCBs <strong>in</strong> benthic ecosystems of <strong>the</strong> North <strong>Sea</strong> ..........................................................................................33<br />

II. OBJECTIVES ................................................................................................................................................35<br />

III. EXPERIMENTAL CONDITIONS...............................................................................................................37<br />

III.1 NON-COPLANAR VS. COPLANAR CONGENER-SPECIFICITY OF PCB BIOACCUMULATION AND<br />

IMMUNOTOXICITY IN SEA STARS ..............................................................................................................................39<br />

III.2 DELINEATION OF PCB UPTAKE PATHWAYS IN A BENTHIC SEA STAR USING A RADIOLABELLED CONGENER<br />

...................................................................................................................................................................................59<br />

III.3 COPLANAR PCB UPTAKE KINETICS IN THE COMMON SEA STAR ASTERIAS RUBENS AND SUBSEQUENT<br />

EFFECTS ON ROS PRODUCTION AND CYP1A INDUCTION.......................................................................................73<br />

III.4 CONTRASTING EFFECTS OF COPLANAR VS NON-COPLANAR PCB CONGENERS ON IMMUNOMODULATION<br />

AND CYP1A LEVELS (DETERMINED USING AN ADAPTED ELISA METHOD) IN THE COMMON SEA STAR ASTERIAS<br />

RUBENS L. .................................................................................................................................................................95<br />

IV. FIELD CONDITIONS.................................................................................................................................113<br />

IV.1 CONTAMINANT LEVELS IN SEDIMENTS AND ASTEROIDS (ASTERIAS RUBENS L., ECHINODERMATA) FROM<br />

THE BELGIAN COAST AND SCHELDT ESTUARY: POLYCHLORINATED BIPHENYLS AND HEAVY METALS...............115<br />

IV.2 BIOACCUMULATION AND EFFECTS OF PCBS AND HEAVY METALS IN SEA STARS (ASTERIAS RUBENS, L.)<br />

FROM THE NORTH SEA: A SMALL SCALE PERSPECTIVE..........................................................................................141<br />

IV.3 ECHINODERMS AS BIOINDICATORS, BIOASSAYS AND IMPACT ASSESSMENT TOOLS OF SEDIMENT-<br />

ASSOCIATED METALS AND PCBS IN THE NORTH SEA............................................................................................159<br />

IV.4 LEVELS AND EFFECTS OF PCDD/FS AND C-PCBS IN SEDIMENTS, MUSSELS AND SEA STARS OF THE<br />

INTERTIDAL ZONE IN THE SOUTHERN NORTH SEA AND THE CHANNEL.................................................................185<br />

V. GENERAL DISCUSSION ..........................................................................................................................205<br />

THE BIOACCUMULATION OF PCBS IN SEA STARS...................................................................................................205<br />

THE EFFECTS OF PCBS IN SEA STARS .....................................................................................................................208<br />

CONCLUSIONS-RECOMMENDATIONS......................................................................................................................211<br />

VI. REFERENCES.............................................................................................................................................213<br />

VII. ANNEX STUDIES ......................................................................................................................................249<br />

VII.1 BIOACCUMULATION OF PCBS IN THE SEA URCHIN PARACENTROTUS LIVIDUS: SEAWATER AND FOOD<br />

EXPOSURES TO A 14 C-RADIOLABELLED CONGENER (PCB 153).............................................................................251<br />

VII.2 BIOACCUMULATION OF PCBS IN THE CUTTLEFISH SEPIA OFFICINALIS FROM SEAWATER, SEDIMENT AND<br />

FOOD PATHWAYS. ...................................................................................................................................................263


10<br />

TABLE OF CONTENTS<br />

VII.3 MEASUREMENT OF EROD ACTIVITY: CAUTION ON THE SPECTRAL PROPERTIES OF THE STANDARDS USED<br />

.................................................................................................................................................................................279<br />

VII.4 EFFECTS OF PCBS ON REACTIVE OXYGEN SPECIES (ROS) PRODUCTION BY THE IMMUNE CELLS OF<br />

PARACENTROTUS LIVIDUS (ECHINODERMATA).....................................................................................................287<br />

APPENDIX I: CAPTIONS TO FIGURES...............................................................................................................299<br />

APPENDIX II: CAPTIONS TO TABLES ...............................................................................................................304<br />

APPENDIX III: CAPTIONS TO EQUATIONS......................................................................................................308


SUMMARY<br />

11<br />

SUMMARY<br />

PCBs are among <strong>the</strong> most problematic mar<strong>in</strong>e contam<strong>in</strong>ants. Converg<strong>in</strong>g towards <strong>the</strong> oceans<br />

via <strong>the</strong> rivers and <strong>the</strong> atmosphere, <strong>the</strong>y concentrate <strong>in</strong> sediments where <strong>the</strong>y become a<br />

permanent threat to organisms liv<strong>in</strong>g at <strong>the</strong>ir contact. PCBs are extremely resistant,<br />

bioaccumulated and some congeners are consi<strong>de</strong>red as highly toxic. The North <strong>Sea</strong> is<br />

consi<strong>de</strong>red as a highly contam<strong>in</strong>ated area; however little <strong>in</strong>formation is available regard<strong>in</strong>g<br />

<strong>the</strong> impact of PCBs on key benthic organisms of this region.<br />

Ubiquist, abundant and generally recognized as a good bio<strong>in</strong>dicator species, <strong>the</strong> common NE<br />

Atlantic sea star <strong>Asterias</strong> <strong>rubens</strong> (L.) is an ecosystem-structur<strong>in</strong>g species <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> and<br />

was chosen as an experimental mo<strong>de</strong>l. The present study focused on <strong>the</strong> characterization of<br />

PCB bioaccumulation <strong>in</strong> A. <strong>rubens</strong> exposed through different routes (seawater, food,<br />

sediments) and on subsequent biological responses, at immune and sucellular levels. The<br />

consi<strong>de</strong>red responses were respectively (i) <strong>the</strong> production of reactive oxyggen species (ROS)<br />

by sea stars amoebocytes, which constitutes <strong>the</strong> ma<strong>in</strong> l<strong>in</strong>e of <strong>de</strong>fence of ech<strong>in</strong>o<strong>de</strong>rms aga<strong>in</strong>st<br />

pathogenic challenges and (ii) <strong>the</strong> <strong>in</strong>duction of a cytochrome P450 immunopositive prote<strong>in</strong><br />

(CYP1A IPP) which, <strong>in</strong> vertebrates, is <strong>in</strong>volved <strong>in</strong> PCB <strong>de</strong>toxification.<br />

Experimental exposures carried out have shown that A. <strong>rubens</strong> efficiently accumulates PCBs.<br />

Exposure concentrations were always adjusted to match those encountered <strong>in</strong> <strong>the</strong> field. PCB<br />

concentrations reached <strong>in</strong> sea stars dur<strong>in</strong>g <strong>the</strong> experiments matched <strong>the</strong> values reported <strong>in</strong><br />

field studies; <strong>the</strong>refore our experimental protocol was found to accurately simulate actual<br />

field situations. Uptake k<strong>in</strong>etics were related to <strong>the</strong> planar conformation of <strong>the</strong> consi<strong>de</strong>red<br />

congeners: non-coplanar PCB uptake was <strong>de</strong>scribed us<strong>in</strong>g saturation mo<strong>de</strong>ls, whereas<br />

coplanar PCBs (c-PCBs) were bioaccumulated accord<strong>in</strong>g to bell-shaped k<strong>in</strong>etics. Non-<br />

coplanar congeners generally reached saturation concentrations whith<strong>in</strong> a few days or a few<br />

weeks, which means that sea stars can be used to p<strong>in</strong>po<strong>in</strong>t PCB contam<strong>in</strong>ation shortly after<br />

occurrence. On <strong>the</strong> o<strong>the</strong>r hand, c-PCB concentrations reached a peak followed by a sud<strong>de</strong>n<br />

drop, <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> probable occurrence of c-PCB-targeted metabolization processes <strong>in</strong> sea<br />

stars. Our experimental studies also <strong>de</strong>monstrated that seawater was by far <strong>the</strong> most efficient<br />

route for PCB uptake <strong>in</strong> sea stars and that even if PCB levels <strong>in</strong> seawater are extremely low<br />

compared to sediment-associated concentrations, seawater constitutes a non-negligible route


12<br />

SUMMARY<br />

for PCB uptake <strong>in</strong> mar<strong>in</strong>e <strong>in</strong>vertebrates. Among <strong>the</strong> different body compartments, bodywall<br />

displayed <strong>the</strong> highest bioaccumulative potency and can <strong>the</strong>refore be consi<strong>de</strong>red as particularly<br />

<strong>in</strong>terest<strong>in</strong>g for field biomonitor<strong>in</strong>g applications. Rectal caeca, which play a central role <strong>in</strong><br />

digestion and excretion processes <strong>in</strong> sea stars, have also rised particular <strong>in</strong>terest as results<br />

suggest <strong>the</strong>se organs could be <strong>in</strong>volved <strong>in</strong> <strong>the</strong> elim<strong>in</strong>ation of PCB 77 <strong>de</strong>gradation products.<br />

The field work carried out dur<strong>in</strong>g <strong>the</strong> present study showed that PCB concentrations measured<br />

<strong>in</strong> A. <strong>rubens</strong> tissues reflect environmental levels of certa<strong>in</strong> congeners. As it was <strong>the</strong> case <strong>in</strong><br />

experimental conditions, A. <strong>rubens</strong> differentially accumulated PCB congeners accord<strong>in</strong>g to<br />

<strong>the</strong>ir planarity. Strong relationships were found between concentrations measured <strong>in</strong><br />

sediments and those <strong>de</strong>term<strong>in</strong>ed <strong>in</strong> sea stars body wall for certa<strong>in</strong> non-coplanar congeners<br />

(e.g. 118 and 138), thus allow<strong>in</strong>g to consi<strong>de</strong>r A. <strong>rubens</strong> as a suitable bio<strong>in</strong>dicator species for<br />

medium-chlor<strong>in</strong>ated PCB congeners. On <strong>the</strong> o<strong>the</strong>r hand, sea stars appeared to be able to<br />

regulate -to a certa<strong>in</strong> extent- <strong>the</strong>ir content <strong>in</strong> coplanar PCBs. This implies that (i) A. <strong>rubens</strong><br />

cannot be strictly consi<strong>de</strong>red as an <strong>in</strong>dicator organism for c-PCBs and (ii) c-PCBs probably<br />

affect essential aspects of sea star biology, potentially lead<strong>in</strong>g to <strong>de</strong>leterious effects.<br />

The present study addressed effects of PCB exposure on A. <strong>rubens</strong> biology, <strong>in</strong> both<br />

experimental and field conditions. In experimental conditions, PCBs were found to<br />

significantly alter ROS production by sea stars amoebocytes. This alteration also occurred <strong>in</strong><br />

a congener-specific way: c-PCBs were found to significantly affect, and probably impair sea<br />

stars immune system, whereas non-coplanar congeners had no effect. In <strong>the</strong> field, <strong>the</strong> PCB<br />

contribution to immunotoxicity could not be <strong>de</strong>term<strong>in</strong>ed because none of our studies<br />

consi<strong>de</strong>red ROS production along with c-PCB concentration measurements. However, <strong>the</strong><br />

levels of ROS production by sea stars amoebocytes measured <strong>in</strong> field and experimental<br />

conditions were found to potentially lead to altered immunity, and <strong>the</strong>refore to impair sea<br />

stars <strong>de</strong>fence aga<strong>in</strong>st pathogenic agents.<br />

A specially <strong>de</strong>signed ELISA was used to measure CYP1A IPP <strong>in</strong> experimental and field<br />

conditions. Experimental work has shown that <strong>the</strong> <strong>in</strong>duction of this prote<strong>in</strong> was related to<br />

PCB exposure <strong>in</strong> a congener-specific fashion: c-PCBs alone were found to strongly <strong>in</strong>duce<br />

<strong>the</strong> production of CYP1A IPP accord<strong>in</strong>g to a dose-<strong>de</strong>pen<strong>de</strong>nt relationship. These results have<br />

highlighted many similarities between <strong>the</strong> diox<strong>in</strong>-like responsiveness of CYP1A IPP<br />

<strong>in</strong>duction <strong>in</strong> sea stars and that occurr<strong>in</strong>g <strong>in</strong> vertebrates. This strongly suggests similarities <strong>in</strong><br />

<strong>the</strong> toxicity-trigger<strong>in</strong>g mechanism of diox<strong>in</strong>s and c-PCBs. In <strong>the</strong> field, CYP1A IPP <strong>in</strong>duction<br />

was found to be significantly related to PCB levels <strong>de</strong>term<strong>in</strong>ed <strong>in</strong> bottom sediments. It can<br />

thus be consi<strong>de</strong>red as a valuable biomarker. Fur<strong>the</strong>r research is however nee<strong>de</strong>d to better


13<br />

SUMMARY<br />

characterize <strong>the</strong> <strong>in</strong>fluence of physico-chemical and physiological parameters on CYP1A<br />

<strong>in</strong>duction to ref<strong>in</strong>e <strong>the</strong> <strong>in</strong>terpretation of <strong>the</strong> <strong>in</strong>formation ga<strong>the</strong>red via this biomarker.<br />

Results obta<strong>in</strong>ed <strong>in</strong> our study have lead to questionn<strong>in</strong>g <strong>in</strong>ternational regulations apply<strong>in</strong>g to<br />

PCB biomonitor<strong>in</strong>g <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e environment. For <strong>in</strong>stance, we strongly suggest that <strong>the</strong><br />

selection of congeners to be systematically consi<strong>de</strong>red should be revised to <strong>in</strong>clu<strong>de</strong> c-PCBs.<br />

In<strong>de</strong>ed, <strong>in</strong> our experiments PCB toxicity was almost always attributable to <strong>the</strong> sole c-<br />

congeners. Historically, <strong>de</strong>term<strong>in</strong>ation of c-PCB concentrations was extremely difficult due to<br />

analytical limitations; however, nowadays, <strong>the</strong>se problems have been overcome and do no<br />

more justify <strong>the</strong>ir exclusion from monitor<strong>in</strong>g studies.<br />

Although A. <strong>rubens</strong> appeared to be quite resistant to PCB contam<strong>in</strong>ation, levels measured <strong>in</strong><br />

sea stars from <strong>the</strong> sou<strong>the</strong>rn North <strong>Sea</strong> can possibly affect <strong>the</strong>ir immune and endocr<strong>in</strong>e systems<br />

<strong>in</strong> a subtle way, but with relatively low risk for this species at <strong>the</strong> short-term. However, this<br />

does not mean that o<strong>the</strong>r species <strong>in</strong> this region un<strong>de</strong>rgo similarly low risks, or that sea star-<br />

structured ecosystems may not become affected <strong>in</strong> <strong>the</strong> long-term.


I. GENERAL INTRODUCTION<br />

I.1. Polychlor<strong>in</strong>ated biphenyls<br />

I.1.1. General <strong>in</strong>formation<br />

15<br />

GENERAL INTRODUCTION<br />

Polychlor<strong>in</strong>ated biphenyls (PCBs) have been <strong>in</strong> use <strong>in</strong> <strong>the</strong> <strong>in</strong>dustry s<strong>in</strong>ce <strong>the</strong> 1930s, <strong>in</strong><br />

electrical equipment and <strong>in</strong> <strong>the</strong> manufacture of pa<strong>in</strong>ts, plastics, adhesives, coat<strong>in</strong>g compounds<br />

and pressure-sensitive copy<strong>in</strong>g paper (Clark 1997). Their remarkable physico-chemical<br />

properties (very high stability, excellent electric and <strong>the</strong>rmic <strong>in</strong>sulation) led to <strong>the</strong>ir<br />

proliferation <strong>in</strong> <strong>the</strong> <strong>in</strong>dustry to which <strong>the</strong>y were marketed un<strong>de</strong>r various tra<strong>de</strong> names<br />

(Metcalfe 1994): Aroclor (Monsanto, United States), Clophen (Bayer, Germany), Phenoclor<br />

(Caffaro, Italy), Pyralene (Pro<strong>de</strong>lec, France), Kanechlor (Kanegafushi, Japan), Sovol<br />

(Russia).<br />

These commercial PCBs vary <strong>in</strong> texture from clear oils to pow<strong>de</strong>rs, accord<strong>in</strong>g to <strong>the</strong> needs of<br />

<strong>in</strong>dustrial applications. These mixtures also vary <strong>in</strong> composition, conta<strong>in</strong><strong>in</strong>g between 20 and<br />

60 % per weight of chlor<strong>in</strong>e, with a vary<strong>in</strong>g number of chlor<strong>in</strong>e atome per molecule.<br />

Theoretically, PCBs <strong>in</strong>clu<strong>de</strong> 209 possible compounds (congeners) with vary<strong>in</strong>g <strong>de</strong>gree and<br />

pattern of chlor<strong>in</strong>e substitution (Fig. 1). Ballschmiter & Zell (1980) set up a nomenclature<br />

system for PCBs that assigns each congener a number comprised between 1 and 209. This<br />

system was adopted by <strong>the</strong> International Union of Pure and Applied Chemistry (IUPAC).<br />

Figure 1. Number<strong>in</strong>g system for sites of chlor<strong>in</strong>e on a biphenyl molecule (Metcalfe 1994)<br />

PCBs were first reported <strong>in</strong> environmental samples <strong>in</strong> <strong>the</strong> 1960s (Jensen, 1966). Although<br />

<strong>the</strong>re are 209 possible PCB congeners, only around 90 of <strong>the</strong>m have been <strong>de</strong>tected <strong>in</strong> <strong>the</strong>


16<br />

GENERAL INTRODUCTION<br />

environment. The relative abundance of <strong>the</strong> different congeners <strong>in</strong> environmental samples<br />

<strong>de</strong>pends on factors such as <strong>the</strong> congener abundance <strong>in</strong> <strong>the</strong> <strong>in</strong>itial commercial products, <strong>the</strong><br />

relative sales and uses of <strong>the</strong> products, and <strong>the</strong> relative persistence and transport <strong>in</strong> <strong>the</strong><br />

environment of <strong>the</strong> compounds.<br />

Due to high persistence and relative volatility, on <strong>the</strong> long term PCBs may be transported<br />

over consi<strong>de</strong>rable distances, as a consequence of mass movements of air or water. These<br />

movements can also occur by diffusion, which may be very localized, but can take place over<br />

large distances, especially <strong>in</strong> air. PCBs have been <strong>de</strong>tected <strong>in</strong> <strong>the</strong> most remote regions, such as<br />

<strong>the</strong> Arctic, <strong>the</strong> North Atlantic and even <strong>the</strong> Antarctic and <strong>de</strong>ep-sea (e.g. AMAP 1998), where<br />

<strong>the</strong>re is no anthropogenic emission sources.<br />

Data on <strong>the</strong> global production and use of PCBs has been collected for <strong>de</strong>ca<strong>de</strong>s, but more work<br />

is nee<strong>de</strong>d for <strong>the</strong> <strong>in</strong>terpretation of past, present and future contam<strong>in</strong>ation levels around <strong>the</strong><br />

world: it is likely that PCB compounds will rema<strong>in</strong> <strong>in</strong> <strong>the</strong> environment for a very long time<br />

(Cumm<strong>in</strong>s 1988, Tanabe 1988, Voldner & Li 1995, Wania & Mackay 1996, Vallack et al.<br />

1998). In <strong>the</strong> late 1980s, estimations <strong>in</strong>dicated that <strong>the</strong>re were still 374,000 tons of PCBs <strong>in</strong><br />

<strong>the</strong> environment, of which 232,400 tons dissolved <strong>in</strong> seawater, 3,500 tons dissolved <strong>in</strong><br />

freshwater, and 1580 tons circulat<strong>in</strong>g <strong>in</strong> <strong>the</strong> atmosphere (Tanabe 1988). Accord<strong>in</strong>g to <strong>the</strong><br />

same author, 783,000 additional tons of PCBs were rema<strong>in</strong><strong>in</strong>g <strong>in</strong> storages or <strong>in</strong> landfills, of<br />

which an un<strong>de</strong>term<strong>in</strong>ed part could be released <strong>in</strong> <strong>the</strong> environment.<br />

I.1.2. Analysis<br />

Most analyses of PCB levels <strong>in</strong> <strong>the</strong> environment have been reported as Aroclor equivalents.<br />

This was once due to necessity because traditional packed-column gas chromatography (GC)<br />

were not able to resolve <strong>in</strong>dividual PCB congeners. This lack of resolution limited <strong>the</strong><br />

capacity of analyses to accurately <strong>de</strong>scribe environmental PCB levels and patterns. Moreover,<br />

<strong>the</strong>se analyses were mostly based on Aroclor peaks from <strong>the</strong> packed-column chromatogram,<br />

assum<strong>in</strong>g that ratios among PCB congeners <strong>in</strong> <strong>the</strong> environment were <strong>the</strong> same as those found<br />

<strong>in</strong> commercial mixtures (Metcalfe 1994).<br />

It is now well-known that, once released <strong>in</strong> <strong>the</strong> environment, <strong>the</strong> composition of a commercial<br />

PCB mixture changes over time, s<strong>in</strong>ce different congeners display very different physico-<br />

chemical properties (e.g. water solubility, vapor pressure, ten<strong>de</strong>ncy to sorb to organic matter).<br />

Individual congener partition behaviour differs among water, air and solid phases (Dickhut et<br />

al. 1986, Lara & Ernst 1989, Brunner et al. 1990). Moreover, some congeners un<strong>de</strong>rgo


17<br />

GENERAL INTRODUCTION<br />

<strong>de</strong>chlor<strong>in</strong>ation by anaerobic bacterial action when present <strong>in</strong> sediment at threshold<br />

concentrations, while o<strong>the</strong>rs do not (Brown et al. 1987, Quensen et al. 1990, Mohn & Tiedje<br />

1992). Also, “light” congeners can be subject to aerobic <strong>de</strong>gradation <strong>in</strong> particular conditions<br />

(Furukawa 1982). Consequently, orig<strong>in</strong>al PCB mixtures become <strong>de</strong>pleted <strong>in</strong> <strong>the</strong> most<br />

<strong>de</strong>gradable congeners and enriched <strong>in</strong> metabolites of <strong>the</strong> latter ones and <strong>in</strong> “resistant”<br />

congeners. In biota, PCB composition can also be altered, <strong>de</strong>pend<strong>in</strong>g on <strong>the</strong> uptake,<br />

metabolization and <strong>de</strong>puration rates of <strong>in</strong>dividual congeners. PCBs <strong>in</strong> <strong>the</strong> environment take on<br />

a congener composition that becomes dissimilar to <strong>the</strong> orig<strong>in</strong>al Aroclor mixture. Thus, s<strong>in</strong>ce<br />

<strong>the</strong> early 1990s, congener-specific analysis of PCBs has progressively replaced traditional<br />

Aroclor-equivalent based methods (Du<strong>in</strong>ker et al. 1991, Eganhouse & Gossett 1991).<br />

For rout<strong>in</strong>e analyses of PCB congeners <strong>in</strong> mar<strong>in</strong>e biota samples, <strong>the</strong> commonly used methods<br />

are high resolution gas chromatography with capillary columns and electron capture <strong>de</strong>tection<br />

(HRGC-ECD) or high resolution gas chromatography with low resolution electron impact<br />

mass spectrometry <strong>in</strong> selected ion mo<strong>de</strong> (HRGC-LRMS-SIM) (Metcalfe 1994). Most<br />

<strong>in</strong>dividual PCB congeners can be resolved us<strong>in</strong>g <strong>the</strong>se methods at low parts-per-billion<br />

concentrations (Schultz et al. 1989). An advantage of <strong>the</strong> ECD over LRMS for PCB analysis<br />

is that it is halogen sensitive (Cairns et al. 1989): many coextractive compounds (e.g.<br />

polynuclear aromatic hydrocarbons, phthalates) are not <strong>de</strong>tected. A disadvantage of <strong>the</strong><br />

method over HRGC-LRMS is that <strong>the</strong> response is highly <strong>de</strong>pen<strong>de</strong>nt on <strong>the</strong> <strong>de</strong>gree and pattern<br />

of chlor<strong>in</strong>ation, reduc<strong>in</strong>g sensitivity and accuracy of <strong>the</strong> method for lesser chlor<strong>in</strong>ated<br />

congeners.<br />

Ano<strong>the</strong>r approach used to address <strong>the</strong> toxic potential of PCBs is <strong>the</strong> use of toxic equivalency<br />

(TEQ). In this approach, <strong>the</strong> biological or toxic potencies of <strong>in</strong>dividual congeners are<br />

expressed related to a benchmark contam<strong>in</strong>ants, usually 2,3,7,8 tetrachloro-dibenzo-p-diox<strong>in</strong><br />

(TCDD), an extremely potent toxicant (Fig. 2). Us<strong>in</strong>g a variety of endpo<strong>in</strong>ts or responses, a<br />

relative biological potency or toxic equivalency factor (TEF) can be <strong>de</strong>term<strong>in</strong>ed for each<br />

congener. The TEQ approach is an attempt to provi<strong>de</strong> <strong>in</strong>tegrated assessment of <strong>the</strong> toxic<br />

potential of environmental mixtures. It relies on a number of assumption, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong><br />

absence of non-additive <strong>in</strong>teractions (i.e. possible synergism or antagonism is not taken <strong>in</strong>to<br />

account) among <strong>the</strong> components of <strong>the</strong> mixture (Safe 1990, Ahlborg et al. 1992, 1994).<br />

TCDD equivalents are be<strong>in</strong>g used <strong>in</strong>creas<strong>in</strong>gly <strong>in</strong> risk assessments as a replacement for<br />

exposure measures based only on TCDD or total PCBs (Barron et al. 1994, Van <strong>de</strong>n Berg et<br />

al. 1998).


Figure 2. Molecular configuration of 2,3,7,8 TCDD and PCB 169 (Metcalfe 1994)<br />

I.1.3. International recommendations<br />

18<br />

GENERAL INTRODUCTION<br />

Persistent Organic Pollutants (POPs) is <strong>the</strong> common name refer<strong>in</strong>g to a group of organic<br />

contam<strong>in</strong>ants that comprises PCBs. POPs are semi-volatile, bioaccumulative, persistent and<br />

toxic (Vallack et al. 1998). Although <strong>the</strong> occurrence of POPs at elevated levels is of great<br />

concern <strong>in</strong> “hot spots”, <strong>the</strong> POPs issue has received <strong>in</strong>creas<strong>in</strong>g attention at regional and global<br />

scales <strong>in</strong> <strong>the</strong> last <strong>de</strong>ca<strong>de</strong>s (Wania & Mackay 1996, UNECE 1998, UNEP 2001).<br />

Due to <strong>the</strong>ir beyond-boundaries transport, political problems have also arisen. International<br />

agreements have thus come <strong>in</strong>to effect, such as <strong>the</strong> 1998 Aarhus Protocol on POPs (UNECE,<br />

1998). The overall and long-term objective of <strong>the</strong> Aarhus Protocol on POPs is to elim<strong>in</strong>ate<br />

any discharge, emission and loss of POPs to <strong>the</strong> environment. The <strong>in</strong>ternational community<br />

has called for action to reduce and elim<strong>in</strong>ate production, use and releases of <strong>the</strong>se substances<br />

through: (i) <strong>the</strong> Protocol to <strong>the</strong> regional UNECE Convention on Long-Transboundary Air<br />

Pollution (CLRTAP) on POPs, opened for signatures <strong>in</strong> June 1998 and (ii) <strong>the</strong> global<br />

Stockholm Convention on POPs, opened for signatures <strong>in</strong> 2001. These <strong>in</strong>struments establish<br />

strict <strong>in</strong>ternational regimes for <strong>in</strong>itial lists of POPs (16 <strong>in</strong> <strong>the</strong> UNECE Protocol and 12 <strong>in</strong> <strong>the</strong><br />

Stockholm Convention). Both <strong>in</strong>struments also conta<strong>in</strong> provisions for <strong>in</strong>clud<strong>in</strong>g additional<br />

chemicals <strong>in</strong>to <strong>the</strong>ir list. They lay down <strong>the</strong> follow<strong>in</strong>g control measures: prohibition or severe<br />

restriction of <strong>the</strong> <strong>in</strong>tentional production of POPs and <strong>the</strong>ir use, restrictions on export and<br />

import of <strong>the</strong> <strong>in</strong>tentionally produced POPs (Stockholm Convention) , provisions on <strong>the</strong> safe<br />

handl<strong>in</strong>g of stockpiles (Stockholm Convention), provisions on <strong>the</strong> environmentally sound


19<br />

GENERAL INTRODUCTION<br />

disposal of POPs wastes and provisions on <strong>the</strong> reduction of emissions of un<strong>in</strong>tentionally<br />

produced POPs (e.g. diox<strong>in</strong>s and furans).<br />

Regard<strong>in</strong>g PCBs, <strong>the</strong> International Council for <strong>the</strong> Exploration of <strong>the</strong> <strong>Sea</strong> (ICES) has<br />

recommen<strong>de</strong>d that congeners 28, 52, 101, 153, 138 and 180 should be selected for rout<strong>in</strong>e<br />

analysis (Du<strong>in</strong>ker et al. 1988). Several European Union (EU) countries have adopted <strong>the</strong>se<br />

congeners, with <strong>the</strong> addition of congener 118, for <strong>de</strong>f<strong>in</strong><strong>in</strong>g maximal levels of PCBs <strong>in</strong> edible<br />

mar<strong>in</strong>e resources. These environmental quality standards and o<strong>the</strong>r <strong>in</strong>ternational<br />

commitments also arise from <strong>the</strong> 1984 International Conference on <strong>the</strong> Protection of <strong>the</strong><br />

North <strong>Sea</strong>, <strong>the</strong> 1995 Barcelona Convention for <strong>the</strong> Protection of <strong>the</strong> Mediterranean <strong>Sea</strong>s<br />

aga<strong>in</strong>st Pollution, <strong>the</strong> Baltic States HELCOM, etc.<br />

One of <strong>the</strong> most frequent objectives of monitor<strong>in</strong>g is to assess seafood quality us<strong>in</strong>g estuar<strong>in</strong>e<br />

and mar<strong>in</strong>e water and sediments as a check for sources of possible pollution. The recent<br />

emphasis on <strong>the</strong> monitor<strong>in</strong>g of non-ortho and mono-ortho PCB congeners has necessitated an<br />

expansion of <strong>the</strong> list of congeners to be consi<strong>de</strong>red <strong>in</strong> rout<strong>in</strong>e analysis. Because of <strong>the</strong>ir high<br />

toxic potential (Safe 1990), it is most probable that all non-ortho substituted congeners should<br />

be <strong>in</strong>clu<strong>de</strong>d <strong>in</strong> analysis programmes (Metcalfe 1994).<br />

I.2. PCBs <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e environment<br />

The ultimate s<strong>in</strong>k for many contam<strong>in</strong>ants is <strong>the</strong> mar<strong>in</strong>e environment, follow<strong>in</strong>g ei<strong>the</strong>r direct<br />

discharges or hydrologic and atmospheric processes (Stegeman & Hahn 1994). S<strong>in</strong>ce <strong>the</strong> late<br />

1960s, PCBs are known to be present <strong>in</strong> substantial quantities <strong>in</strong> mar<strong>in</strong>e sediments, as well as<br />

<strong>in</strong> mar<strong>in</strong>e biota (Jensen et al. 1969). PCBs accumulate <strong>in</strong> <strong>the</strong> organic phase, such as biota and<br />

<strong>the</strong> organic fraction of sediments, transfer<strong>in</strong>g between <strong>the</strong>se compartments accord<strong>in</strong>g to <strong>the</strong><br />

mo<strong>de</strong>l presented <strong>in</strong> Fig. 3. PCBs persist <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e environment for several <strong>de</strong>ca<strong>de</strong>s: most<br />

PCBs only exist <strong>in</strong> trace concentrations, but all have extensive half-lives (<strong>de</strong>gradation half-<br />

lives rang<strong>in</strong>g up to 200 years) <strong>in</strong> <strong>the</strong> environment (Howard et al. 1991, Haynes et al. 2000, Oh<br />

2000, Moore et al. 2002, Wania & Daly 2002).


20<br />

GENERAL INTRODUCTION<br />

Figure 3. Contam<strong>in</strong>ants transfers between compartments <strong>in</strong> a coastal mo<strong>de</strong>l (Moore et al. 2002)<br />

I.2.1. Caracterization of PCB contam<strong>in</strong>ation<br />

a. <strong>Sea</strong>water<br />

PCBs are hydrophobic compounds, i.e. <strong>the</strong>y have extremely low water solubilities.<br />

Concentrations <strong>in</strong> ocean water are generally very low, mak<strong>in</strong>g reliable quantification<br />

technically difficult. PCB concentrations <strong>in</strong> filtered ocean water are usually reported to be <strong>in</strong><br />

<strong>the</strong> low pg l -1 range. In contrast, PCBs are highly lipophilic and adsorb readily onto particles.<br />

Their distribution <strong>in</strong> sea is thus far from be<strong>in</strong>g uniform.<br />

The sea surface microlayer (SSM) is a film vary<strong>in</strong>g from a few µm to 1 mm <strong>in</strong> thickness. It is<br />

extremely difficult to study, but is known to conta<strong>in</strong> high levels of particulate organic carbon<br />

and lipids compared to bulk water, thus allow<strong>in</strong>g PCBs to accumulate (Daumas et al. 1976,<br />

Hardy et al. 1988, Xhoffer et al. 1992, Garabetian et al. 1993). Elevated levels of dissolved<br />

organic contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong> SSM have been reported with enrichment factors reach<strong>in</strong>g one to<br />

three or<strong>de</strong>rs of magnitu<strong>de</strong> for PCBs (Duce et al. 1972, Bidleman 1973, Napolitano 1995).<br />

While <strong>the</strong> total quantity may not be great, <strong>the</strong> PCB enrichment of <strong>the</strong> SSM may be of<br />

consi<strong>de</strong>rable importance to surface-liv<strong>in</strong>g organisms. Where water masses with variable<br />

physico-chemical characteristics meet, <strong>the</strong>y form a front where float<strong>in</strong>g material gets<br />

accumulated <strong>in</strong>clud<strong>in</strong>g surface oil. Fronts have a high productivity and attract a wi<strong>de</strong> range of<br />

animals, which thus receive a PCB-enriched diet. S<strong>in</strong>ce <strong>the</strong> upper millimetre of <strong>the</strong> sea is also<br />

enriched <strong>in</strong> microorganisms and zooneuston (<strong>in</strong>clud<strong>in</strong>g larvae), great concern has been


21<br />

GENERAL INTRODUCTION<br />

expressed on <strong>the</strong> toxic effects of <strong>the</strong> high contam<strong>in</strong>ant levels <strong>in</strong> <strong>the</strong> SSM (Hardy et al. 1990,<br />

Hardy & Cleary 1992, Stebb<strong>in</strong>g et al. 1992). The PCB enrichment <strong>in</strong> SSM microorganisms<br />

also poses analytical difficulties <strong>in</strong> dist<strong>in</strong>guish<strong>in</strong>g <strong>the</strong> portion that is <strong>in</strong>corporated and <strong>the</strong> one<br />

that is adsorbed onto it. The former may affect <strong>the</strong>m, but <strong>the</strong> latter is bioavailable to animals<br />

feed<strong>in</strong>g on <strong>the</strong> contam<strong>in</strong>ated organisms. PCBs adsorbed onto <strong>in</strong>organic particles may<br />

ultimately be carried to <strong>the</strong> seabed, which acts as a s<strong>in</strong>k for <strong>the</strong>se compounds. Moreover,<br />

suspen<strong>de</strong>d or re-suspen<strong>de</strong>d particles are commonly <strong>in</strong>gested by filter-feed<strong>in</strong>g animals,<br />

enter<strong>in</strong>g food cha<strong>in</strong>s by this route.<br />

b. Sediments<br />

Sediments are repositories for physical and biological <strong>de</strong>bris and are consi<strong>de</strong>red as s<strong>in</strong>ks for a<br />

wi<strong>de</strong> variety of chemicals (Clark 1997). The concern associated with PCBs sorption to<br />

sediments is that many organisms spend a consi<strong>de</strong>rable portion of <strong>the</strong>ir life-cycle on or <strong>in</strong><br />

mar<strong>in</strong>e sediments. This provi<strong>de</strong>s a path for PCBs to reach higher trophic levels. Direct<br />

transfer of contam<strong>in</strong>ants from sediments or <strong>in</strong>terstitial water to organisms is consi<strong>de</strong>red to be<br />

a major route of exposure (Walker & Peterson 1994). PCBs are present <strong>in</strong> much higher<br />

concentrations <strong>in</strong> sediments than <strong>in</strong> overly<strong>in</strong>g water. Sorption to sediments is <strong>the</strong> predom<strong>in</strong>ant<br />

remov<strong>in</strong>g mechanism for PCBs from <strong>the</strong> water column. The analysis of PCBs <strong>in</strong> sediments<br />

has <strong>the</strong> advantage of <strong>in</strong>tegrat<strong>in</strong>g time variations. Once contam<strong>in</strong>ated, sediments can act<br />

<strong>the</strong>mselves as a slowly releas<strong>in</strong>g source of PCBs, which causes chronic exposure of biota long<br />

after <strong>the</strong> primary source of contam<strong>in</strong>ation has discont<strong>in</strong>ued (Moore et al. 2002).<br />

c. Organisms<br />

As a consequence of <strong>the</strong>ir hydrophobic and persistent characteristics PCBs are<br />

bioaccumulated and high concentrations are found <strong>in</strong> biota (Stebb<strong>in</strong>g et al. 1992, Clark 1997,<br />

OSPAR 2000). PCBs are efficiently accumulated by mar<strong>in</strong>e organisms by absorption across<br />

outer surfaces (e.g. gills, sk<strong>in</strong>), or by <strong>in</strong>gestion of contam<strong>in</strong>ated food, seawater or sediments.<br />

Once <strong>the</strong>y have entered <strong>the</strong> organism, PCBs are stored with<strong>in</strong> <strong>the</strong> fatty tissues, or <strong>in</strong> o<strong>the</strong>r<br />

lipophilic sites, such as cell membranes or lipoprote<strong>in</strong>s. In <strong>the</strong> long term, release from storage<br />

may occur (e.g. <strong>in</strong> times of low food availability) dur<strong>in</strong>g which organisms mobilize and use<br />

<strong>the</strong>ir fat reserves, so <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> concentration of PCBs <strong>in</strong> <strong>the</strong>ir body up to possibly<br />

harmful levels (Walker et al. 1996). Delayed toxicity may <strong>the</strong>refore be observed some time<br />

after <strong>in</strong>itial exposure to <strong>the</strong> contam<strong>in</strong>ant. Organisms have <strong>the</strong> capacity to bioaccumulate and<br />

to biomagnify PCBs, which results <strong>in</strong> body concentrations several or<strong>de</strong>rs of magnitu<strong>de</strong> higher


22<br />

GENERAL INTRODUCTION<br />

than <strong>in</strong> seawater or <strong>in</strong> <strong>the</strong> food (OSPAR 2000). In mar<strong>in</strong>e animals, contam<strong>in</strong>ants tend to<br />

concentrate <strong>in</strong> specific organs (Walker et al. 1996).<br />

The fact that PCBs accumulate preferentially <strong>in</strong> fatty tissues implies that caution must be<br />

taken <strong>in</strong> compar<strong>in</strong>g levels of contam<strong>in</strong>ation <strong>in</strong> different organisms. Different amounts of<br />

PCBs can be accumulate <strong>in</strong> <strong>the</strong> various organs, hav<strong>in</strong>g quite different implication for a fat<br />

animal than for an emaciated one. Accumulation rates vary among species, but also with<strong>in</strong> a<br />

species accord<strong>in</strong>g to factors such as age, sex, stage <strong>in</strong> <strong>the</strong> breed<strong>in</strong>g cycle, as well as exposure<br />

concentrations or feed<strong>in</strong>g habits (Van <strong>de</strong>r Oost et al. 2003). Bioaccumulation is a precursor to<br />

all chemical toxicity: without some <strong>de</strong>gree of accumulation, even if slight, toxic action <strong>in</strong><br />

organism target site(s) cannot take place.<br />

I.2.2. Biological effects of PCBs<br />

Experimental studies have shown that PCBs are capable of produc<strong>in</strong>g a wi<strong>de</strong> variety of toxic<br />

effects <strong>in</strong> exposed organisms, some of <strong>the</strong> most common <strong>in</strong>clu<strong>de</strong> neurotoxicity, immune<br />

dysfunction, reproductive and <strong>de</strong>velopmental effects, and cancer (Hard<strong>in</strong>g & Addison 1986,<br />

Zabel et al. 1995, Chapman 1996, Krogenaes 1998, Coteur et al. 2001). PCBs are of concern<br />

primarily because of <strong>the</strong>ir potential for caus<strong>in</strong>g chronic effects follow<strong>in</strong>g long-term, low-level<br />

exposure (Walker et al. 1996, OSPAR 2000). The effects of substances on biota are<br />

<strong>de</strong>pen<strong>de</strong>nt on a number of factors and processes <strong>in</strong>clud<strong>in</strong>g bioavailability, bioaccumulation,<br />

toxic potency and <strong>the</strong> capacity of <strong>the</strong> organism to metabolize <strong>the</strong> substance (Fig. 4). Mar<strong>in</strong>e<br />

contam<strong>in</strong>ation by PCBs poses a relatively well-documented risk to <strong>the</strong> health of mar<strong>in</strong>e<br />

organisms, which can occur at levels rang<strong>in</strong>g from subcellular effects to ecosystem effects<br />

(Tanabe & Tatsukawa 1992, Elkus et al. 1992, Norstrom & Muir 1994, Bello et al. 2001).<br />

Figure 4. Mo<strong>de</strong>l <strong>de</strong>scrib<strong>in</strong>g <strong>the</strong> fate of lipophilic xenobiotics <strong>in</strong> organisms (Hodgson & Levi 1993)


a. Subcellular and cellular effects<br />

23<br />

GENERAL INTRODUCTION<br />

To ga<strong>in</strong> a full un<strong>de</strong>rstand<strong>in</strong>g of <strong>the</strong> toxic effects of a chemical, it is necessary to l<strong>in</strong>k <strong>in</strong>itial<br />

molecular <strong>in</strong>teractions to consequent effects at higher levels of organization. The extent to<br />

which such a molecular <strong>in</strong>teraction occurs is, <strong>in</strong> general, related to <strong>the</strong> dose received, although<br />

<strong>the</strong> relationship is rarely a simple one (Walker et al. 1996). Molecular <strong>in</strong>teractions between<br />

<strong>the</strong> xenobiotic and sites of action, which lead to toxic manifestations, may be highly specific<br />

for certa<strong>in</strong> types of xenobiotics and organisms or non-specific, because of <strong>the</strong> variety of sites<br />

of action, which can occur <strong>in</strong> one species and not <strong>in</strong> o<strong>the</strong>r ones (Fig. 5).<br />

Figure 5. Pathways for activation and <strong>de</strong>toxification of organic chemicals (Walker et al. 1996)<br />

Subcellular effects of pollutants can be out of two types: those which serve to protect <strong>the</strong><br />

organism aga<strong>in</strong>st <strong>the</strong> harmful effects of <strong>the</strong> chemical (viz. <strong>de</strong>toxification via e.g. <strong>in</strong>duction of<br />

monooxygenases or <strong>in</strong>duction of metallothione<strong>in</strong>s), and those which do not (e.g. <strong>in</strong>hibition of<br />

AchE, formation of DNA adducts) (Table 1). Protective mechanisms function by reduc<strong>in</strong>g <strong>the</strong><br />

contam<strong>in</strong>ant concentration <strong>in</strong> <strong>the</strong> cell (e.g. some PCB congeners <strong>in</strong>duce enzymes that<br />

metabolize <strong>the</strong>m) or by reduc<strong>in</strong>g <strong>the</strong> bioreactive fraction of <strong>the</strong> contam<strong>in</strong>ant concentration.<br />

One of <strong>the</strong>se mechanisms is achieved through <strong>the</strong> monooxygenase system, whose function is<br />

to <strong>in</strong>crease <strong>the</strong> rate of production of water-soluble metabolites and conjugates of low toxicity,<br />

which can be excreted. However, <strong>in</strong> some cases, metabolism leads to <strong>the</strong> production of highly<br />

reactive metabolites, that can cause more damage than <strong>the</strong> parent compound.


Table 1. Protective and non-protective responses to chemicals (Walker et al. 1996).<br />

Type of effects Example Consequences<br />

24<br />

GENERAL INTRODUCTION<br />

Protective Induction of monooxygenases Increase <strong>in</strong> rate of metabolism of pollutant to more watersoluble<br />

metabolite and thus <strong>in</strong>crease <strong>in</strong> rate of excretion<br />

Induction of metallothione<strong>in</strong> Increase <strong>the</strong> rate of b<strong>in</strong>d<strong>in</strong>g sites with metals to <strong>de</strong>crease<br />

bioavailability<br />

Non-protective Inhibition of AChE Toxic effects seen above 50% <strong>in</strong>hibition<br />

Formation of DNA adducts May cause harmful effects if lead<strong>in</strong>g to mutation<br />

These chemical surveillance systems have evolved as mechanisms for recogniz<strong>in</strong>g a broad<br />

range of chemical structures and <strong>in</strong>itiat<strong>in</strong>g appropriate responses, such as <strong>the</strong><br />

biotransformation and elim<strong>in</strong>ation of toxic compounds (Brattsen 1979, Nebert & Gonzalez<br />

1987, Gonzalez & Nebert 1990). The enzymatic components of this <strong>in</strong>ducible<br />

biotransformation system are now well-known and <strong>in</strong>clu<strong>de</strong> monooxygenases <strong>in</strong> <strong>the</strong><br />

cytochrome P450 (CYP) superfamily as well as conjugat<strong>in</strong>g enzymes such as <strong>the</strong><br />

glutathionetransferases and glucuronosyltransferases. The sensory component of this system<br />

consists of soluble receptors that regulate <strong>the</strong> expression of <strong>the</strong> biotransformation and<br />

transporter genes <strong>in</strong> response to environmental chemicals. These receptors <strong>in</strong>clu<strong>de</strong> several<br />

members of <strong>the</strong> steroid/nuclear receptor superfamily (Kliewer et al. 1999a,b, Savas et al.<br />

1999, Waxman 1999, Honkakoski & Negishi 2000) as well as <strong>the</strong> aryl hydrocarbon receptor<br />

(AhR, Fig.6).<br />

Figure 6. Hypo<strong>the</strong>sized <strong>in</strong>duction mechanism of CYP1A (Bucheli & Fent 1995)<br />

The adaptive function of <strong>the</strong> AhR has been studied for more than 30 years, lead<strong>in</strong>g to <strong>the</strong><br />

prediction and <strong>the</strong>n discovery of <strong>the</strong> AhR as an ‘<strong>in</strong>duction receptor’ that controls <strong>the</strong>


25<br />

GENERAL INTRODUCTION<br />

<strong>in</strong>duction of adaptive enzymes, especially CYP1A (Poland et al. 1976, Whitlock 1999). The<br />

AhR is now known to recognize an impressive range of chemical structures, <strong>in</strong>clud<strong>in</strong>g non-<br />

aromatic and non-halogenated compounds (Denison et al. 1998). In regulat<strong>in</strong>g<br />

biotransformation enzymes, <strong>the</strong> AhR serves an important adaptive function, but <strong>the</strong> function<br />

of this prote<strong>in</strong> is much more complex: studies <strong>de</strong>al<strong>in</strong>g with <strong>the</strong> toxicities associated with<br />

exposure to TCDD and related compounds showed that <strong>the</strong>se chemicals are <strong>in</strong>terfer<strong>in</strong>g with<br />

important physiological functions <strong>in</strong> addition to <strong>in</strong>duc<strong>in</strong>g biotransformation enzymes (Poland<br />

& Knutson 1982, Pohjanvirta & Tuomisto 1994).<br />

Physiological and morphological parameters are higher-level responses that follow chemical<br />

and cellular <strong>in</strong>teractions. They are generally <strong>in</strong>dicative of irreversible damages (H<strong>in</strong>ton et al.<br />

1992). When a pollutant enters a cell, it may trigger certa<strong>in</strong> biochemical responses, or it may<br />

be stored with<strong>in</strong> a compartment, prevent<strong>in</strong>g <strong>in</strong>terferences with essential biochemical<br />

components of <strong>the</strong> cells.<br />

Many alterations may persist even after <strong>the</strong> exposure to a toxicant has ceased so that host<br />

responses to prior toxicity can also be used to <strong>de</strong>term<strong>in</strong>e effects. Responses are relatively<br />

easily recognized, provi<strong>de</strong>d that proper reference and control data are available. Nowadays,<br />

sufficient <strong>in</strong>formation is at hand to assemble cellular or histopathological biomarker<br />

approaches and to apply <strong>the</strong>m <strong>in</strong> <strong>in</strong>tegrated field studies (H<strong>in</strong>ton 1994).<br />

b. Immunological effects<br />

The immune system of an organism ma<strong>in</strong>ta<strong>in</strong>s a close and efficient surveillance of <strong>the</strong> body <strong>in</strong><br />

or<strong>de</strong>r to react aga<strong>in</strong>st <strong>in</strong>fection and <strong>in</strong>festation or elim<strong>in</strong>ate dysregulated prote<strong>in</strong> expression.<br />

This system can be divi<strong>de</strong>d <strong>in</strong>to two forms of immunity: acquired -or specific- immunity and<br />

<strong>in</strong>nate -or nonspecific- immunity (Roitt et al. 1993). Acquired immunity provi<strong>de</strong>s rapid,<br />

specific, and selective reaction aga<strong>in</strong>st a given <strong>in</strong>fectious agent, but requires a previous<br />

exposition to <strong>the</strong> same agent. Innate immunity is less specific, but protects <strong>the</strong> organism<br />

whithout previous contact with <strong>the</strong> <strong>in</strong>fectious agent. Innate immunity is present <strong>in</strong> all<br />

metazoan animals, whereas acquired immunity would be present only <strong>in</strong> vertebrates.<br />

Ow<strong>in</strong>g to <strong>the</strong> complexity of <strong>the</strong> immune system, several authors have suggested us<strong>in</strong>g a tiered<br />

approach for exam<strong>in</strong><strong>in</strong>g immunotoxicity <strong>in</strong> mammals and lower vertebrates (Vos 1980, Miller<br />

1985, Luster et al. 1988, Weeks et al. 1992). Although <strong>in</strong>vertebrate immunity relies on <strong>the</strong><br />

<strong>in</strong>nate system for host <strong>de</strong>fence <strong>the</strong>re are wi<strong>de</strong> rang<strong>in</strong>g strategies for elim<strong>in</strong>at<strong>in</strong>g microbes.<br />

Assays of immunocompetence for <strong>in</strong>vertebrates can <strong>the</strong>refore be approached at different<br />

levels of organization (Pipe et al. 1995): (1) <strong>the</strong> apparatus for immunity (total/differential


26<br />

GENERAL INTRODUCTION<br />

blood cell counts, hemopoietic tissues), (2) <strong>the</strong> mechanisms of immunity (phagocytosis, blood<br />

cell proliferation, release of antimicrobial molecules), and (3) <strong>the</strong> efficiency of <strong>the</strong> immune<br />

response (susceptibility to <strong>in</strong>fection by mo<strong>de</strong>l agents). Most studies of environmental<br />

modulation of <strong>the</strong> immune function <strong>in</strong> mar<strong>in</strong>e <strong>in</strong>vertebrates have focused on heavy metals, but<br />

some organic compounds have been adressed, both <strong>in</strong> laboratory and field studies (Fischer<br />

1988, An<strong>de</strong>rson 1993, Pipe & Coles 1995, Coteur et al. 2001, 2003a).<br />

c. Individual effects<br />

Chemically-<strong>in</strong>duced disor<strong>de</strong>rs have been attributed to PCBs at <strong>the</strong> level of <strong>the</strong> <strong>in</strong>dividual. The<br />

existence of repair<strong>in</strong>g and <strong>de</strong>toxification mechanisms (e.g. mixed-function oxidases) <strong>in</strong>volves<br />

that a biological response measured at a given level of biological organization might not be<br />

<strong>de</strong>tected at a higher organization level (Luoma & Carter 1991, George & Olsson 1994,<br />

Goldste<strong>in</strong> 1995). Effects on <strong>in</strong>dividuals <strong>in</strong>tegrate <strong>the</strong>se latter mechanisms and are <strong>the</strong>refore<br />

highly relevant of <strong>the</strong> actual <strong>de</strong>leterious effects of a contam<strong>in</strong>ant from a biological viewpo<strong>in</strong>t,<br />

but <strong>the</strong>se responses are generally slow and not specific of a given contam<strong>in</strong>ant. Individual<br />

responses <strong>in</strong>clu<strong>de</strong> for <strong>in</strong>stance direct <strong>in</strong>crease <strong>in</strong> mortality rates or <strong>in</strong>terference with processes<br />

of resource acquisition. These effects may result <strong>in</strong> slower population growth or population<br />

<strong>de</strong>cl<strong>in</strong>e. At <strong>the</strong> <strong>in</strong>dividual level, fertilization rate or embryonic <strong>de</strong>velopment are commonly<br />

used as markers, and represent a good compromise: <strong>the</strong>se responses are quite fast (from a few<br />

hours to a few days) and ecologically relevant because <strong>the</strong> reproductive success and <strong>the</strong><br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g of populations rely directly on <strong>the</strong>se processes (D<strong>in</strong>nel et al. 1988, Gray 1989,<br />

Langston 1990, Weis & Weis 1991, Warnau et al. 1996a).<br />

d. Population and ecological effects<br />

The presence of PCBs <strong>in</strong>to <strong>the</strong> mar<strong>in</strong>e environment is known to provoke toxic effects <strong>in</strong> biota,<br />

which vary with <strong>the</strong> <strong>in</strong>tensity and duration of exposure (Long et al. 1995). PCBs may exert<br />

dramatic effects on relatively tolerant species (as <strong>de</strong>term<strong>in</strong>ed by laboratory test<strong>in</strong>g) by a<br />

number of ecological mechanisms (Walker et al. 1996). In<strong>de</strong>ed, <strong>the</strong> direct <strong>in</strong>fluence of<br />

contam<strong>in</strong>ants on predators and grazers can lead to cascad<strong>in</strong>g <strong>in</strong>direct effects on more tolerant<br />

species <strong>in</strong> o<strong>the</strong>r trophic levels. The direct effects of contam<strong>in</strong>ants on sensitive species may<br />

also alter competitive <strong>in</strong>teractions with<strong>in</strong> <strong>the</strong> resistant populations of producers and<br />

consumers of a given community. Similarly, disturbance rates or resource availability may be<br />

<strong>in</strong>fluenced by <strong>the</strong> presence of contam<strong>in</strong>ants such as PCBs, lead<strong>in</strong>g to important modifications<br />

<strong>in</strong> ecosystem processes, such as <strong>de</strong>composition rates of <strong>the</strong> organic matter, oxygen dynamics


27<br />

GENERAL INTRODUCTION<br />

and nutrient cycl<strong>in</strong>g (Walker & Liv<strong>in</strong>gstone 1992). It has also been suggested that localized<br />

toxicant-<strong>in</strong>duced mortality may alter metapopulation dynamics, and have significant impacts<br />

on non-exposed groups (Spromberg et al. 1998). Mechanisms associated to population and<br />

community dynamics can vary <strong>in</strong> potentially complex fashion follow<strong>in</strong>g PCB exposure. The<br />

presence of PCBs <strong>in</strong> mar<strong>in</strong>e ecosystems can clearly cause a wi<strong>de</strong> range of <strong>in</strong>direct ecological<br />

effects that can be as or more significant than <strong>the</strong> direct (toxic) effects triggered by <strong>the</strong><br />

contam<strong>in</strong>ant (Feldman et al. 2000).<br />

It is now wi<strong>de</strong>ly adopted that communities and ecosystems are much more than <strong>the</strong> sum of<br />

<strong>the</strong>ir discrete parts and potentially <strong>in</strong>tense <strong>in</strong>direct <strong>in</strong>fluences of realistic PCB exposures<br />

should be <strong>in</strong>corporated <strong>in</strong>to an <strong>in</strong>tegrated ecotoxicological approach (Walker et al. 1996) .<br />

I.2.3. Biomarkers of PCB exposure<br />

The need to <strong>de</strong>tect and assess <strong>the</strong> impact of contam<strong>in</strong>ations <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e environment has led<br />

to <strong>the</strong> <strong>de</strong>velopment of markers of biological effect (biomarkers) at various organizational<br />

levels (Huggett 1992, Liv<strong>in</strong>gstone 1991, Liv<strong>in</strong>gstone et al. 2000). Several <strong>de</strong>f<strong>in</strong>itions have<br />

been given for <strong>the</strong> term ‘biomarker’, which is generally used <strong>in</strong> a broad sense to <strong>in</strong>clu<strong>de</strong><br />

almost any measurement reflect<strong>in</strong>g an <strong>in</strong>teraction between a biological system and a potential<br />

hazard, which may be chemical, physical or biological (WHO 1993). A biomarker is <strong>de</strong>f<strong>in</strong>ed<br />

as a change <strong>in</strong> a biological response (rang<strong>in</strong>g from molecular through cellular and<br />

physiological responses to behavioural changes) which can be related to exposure to<br />

environmental chemicals or to <strong>the</strong>ir toxic effects (Peakall 1994). Accord<strong>in</strong>g to NRC (1987)<br />

and WHO (1993), biomarkers can be subdivi<strong>de</strong>d <strong>in</strong>to three classes:<br />

•Biomarkers of exposure: allow <strong>de</strong>tection and quantitation of an exogenous substance or its<br />

metabolites or <strong>the</strong> product of an <strong>in</strong>teraction between this xenobiotic and some target<br />

molecules or cells (e.g. DNA or prote<strong>in</strong> adducts, formation of specific metabolites,…),<br />

•Biomarkers of effect: <strong>in</strong>dicate measurable biochemical, physiological or o<strong>the</strong>r alterations<br />

with<strong>in</strong> tissues or body fluids of an organism that can be recognized as associated to an<br />

established or possible health impairment or disease (e.g. reproductive, <strong>de</strong>velopmental,<br />

endocr<strong>in</strong>e or genetic toxicity),<br />

•Biomarkers of susceptibility: <strong>in</strong>dicate <strong>the</strong> <strong>in</strong>herent or acquired ability of an organism to<br />

respond to <strong>the</strong> challenge of an exposure to a specific xenobiotic substance, <strong>in</strong>clud<strong>in</strong>g genetic<br />

factors and changes <strong>in</strong> receptors which alter <strong>the</strong> susceptibility of an organism to that exposure<br />

(e.g. activity of enzymes implied <strong>in</strong> activation or <strong>de</strong>toxification of a specific chemical or<br />

DNA repair capacity for specific types of DNA damage).


Table 2. Biomarkers at different organizational levels (Walker et al. 1996)<br />

Organizational level Example of biomarker<br />

B<strong>in</strong>d<strong>in</strong>g to a receptor TCDD b<strong>in</strong>d<strong>in</strong>g to Ah receptor<br />

Nonphenyls b<strong>in</strong>d<strong>in</strong>g to oestrogenic receptor<br />

Biochemical response Induction of monooxygenases<br />

28<br />

Vitellogen<strong>in</strong> formation<br />

Physiological alterations Eggshell th<strong>in</strong>n<strong>in</strong>g<br />

Fem<strong>in</strong>ization of embryos<br />

Effects on <strong>in</strong>dividuals Behavioural changes<br />

a. Molecular markers of PCB exposure<br />

Scope for growth<br />

GENERAL INTRODUCTION<br />

Molecular markers have been used extensively <strong>in</strong> environmental monitor<strong>in</strong>g as part of<br />

<strong>in</strong>tegrated programmes (Bayne et al. 1988, Hylland et al. 1996, Schlenk et al. 1996). The<br />

ma<strong>in</strong> advantages provi<strong>de</strong>d by this level of organization are:<br />

• an <strong>in</strong>tegrated measure of <strong>the</strong> bioavailable fraction of contam<strong>in</strong>ants<br />

• <strong>the</strong> <strong>de</strong>monstration of causality through mechanistic un<strong>de</strong>rstand<strong>in</strong>g<br />

• <strong>the</strong> i<strong>de</strong>ntification of different routes of exposure and <strong>the</strong>ir relative importance<br />

• <strong>the</strong> <strong>de</strong>tection of exposure to readily metabolized contam<strong>in</strong>ants.<br />

The most wi<strong>de</strong>ly and best studied biomarker of PCB exposure is <strong>the</strong> <strong>in</strong>duction of cytochrome<br />

P450 (CYP)-<strong>de</strong>pen<strong>de</strong>nt monooxygenase. Payne & Penrose (1975) and Payne (1976) were<br />

among <strong>the</strong> first to make use of this enzymatic complex as a biomarker, report<strong>in</strong>g elevated<br />

cytochrome P450 activity <strong>in</strong> fish from petroleum-contam<strong>in</strong>ated sites. The multiple forms of<br />

CYP catalyze a wi<strong>de</strong> variety of monooxygenation reactions that contribute to cellular<br />

oxidative metabolism <strong>in</strong> both prokaryotes and eukaryotes (Gibson & Skett 1994, Nelson et al.<br />

1996). The products of <strong>the</strong> CYP super gene family un<strong>de</strong>rtake <strong>the</strong> oxidation of endogenous<br />

substrates, e.g. fatty acids and steroid hydroxylation but some CYP gene families (CYP1,<br />

CYP2 and CYP3) can also catalyze <strong>the</strong> oxidation of xenobiotics (Nelson et al. 1996). CYP1<br />

may be <strong>in</strong>duced <strong>in</strong> organisms exposed to specific aromatic and chlor<strong>in</strong>ated hydrocarbons,<br />

such as diox<strong>in</strong>s, furans, polyaromatic hydrocarbons (PAHs), or PCBs (Stegeman & Hahn


29<br />

GENERAL INTRODUCTION<br />

1994). An elevation of CYP1A * levels may <strong>the</strong>refore <strong>in</strong>dicate exposure to <strong>the</strong>se <strong>in</strong>ducers. The<br />

use of CYP1A <strong>in</strong>duction as a biomarker for <strong>the</strong> pollution of aquatic ecosystems by organic<br />

contam<strong>in</strong>ants has ma<strong>in</strong>ly been based on fish.<br />

Whereas <strong>the</strong> enzyme system and its <strong>in</strong>ductibility have been studied extensively <strong>in</strong> vertebrates,<br />

less is known <strong>in</strong> <strong>in</strong>vertebrates (Liv<strong>in</strong>gstone et al. 2000). Different <strong>in</strong>vertebrates have been<br />

screened for <strong>the</strong> occurrence of <strong>the</strong> CYP1A system. It has been reported <strong>in</strong> four phyla:<br />

Annelida, Arthropoda, Ech<strong>in</strong>o<strong>de</strong>rmata and Mollusca (Lee 1981). Moore et al. (1980) found<br />

that some components of a xenobiotic <strong>de</strong>toxification system were present <strong>in</strong> <strong>the</strong> blue mussel<br />

Mytilus edulis, but with limited metaboliz<strong>in</strong>g capacity for organic xenobiotics. The use of<br />

CYP1A as a biomarker was assessed with several molluscs (Stegeman 1985, Liv<strong>in</strong>gstone et<br />

al. 1989). Yawetz et al. (1992) observed an <strong>in</strong>duction of CYP1A content by PCBs <strong>in</strong><br />

molluscs. Enhanced CYP1A activity was found <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e polychaete Nereis virens after<br />

exposure to benzo[a]pyrene or PCBs (Lee et al. 1981). Organisms from oil-contam<strong>in</strong>ated sites<br />

showed several times higher CYP1A activities and lacked or had un<strong>de</strong>velopped gametes<br />

(Fries & Lee 1984). Studies on crustaceans provi<strong>de</strong>d controversial results, but <strong>in</strong> any case,<br />

crustacean CYP1A is less sensitive to <strong>in</strong>duction than fish (James 1989). The CYP1A system<br />

is also present <strong>in</strong> several ech<strong>in</strong>o<strong>de</strong>rms species (<strong>de</strong>n Besten et al. 1991). Evi<strong>de</strong>nce for <strong>the</strong><br />

presence of P450 enzymes belong<strong>in</strong>g to <strong>the</strong> CYP1, CYP2, and CYP3 subfamilies have been<br />

obta<strong>in</strong>ed <strong>in</strong> sea stars (<strong>de</strong>n Besten et al. 1993). Recently, <strong>the</strong> first ech<strong>in</strong>o<strong>de</strong>rm CYP genes were<br />

i<strong>de</strong>ntified by Sny<strong>de</strong>r (1998) <strong>in</strong> digestive tissues of an ech<strong>in</strong>oid (Lytech<strong>in</strong>us anamesis).<br />

b. Immunological markers<br />

Pollution-<strong>in</strong>duced suppressive effect on <strong>the</strong> immune system was found to lead to enhanced<br />

disease <strong>in</strong> organisms (Pipe & Coles 1995). Therefore, immunocompetence assays have been<br />

<strong>in</strong>creas<strong>in</strong>gly used as biomarkers of environmental contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong> last years. Monitor<strong>in</strong>g<br />

<strong>the</strong> immune system as a target for toxicity is difficult, given <strong>the</strong> complexity and self-<br />

regulatory nature of <strong>the</strong> immune network, so that conventional dose-response relationships<br />

may not always be observed. As with o<strong>the</strong>r biomarker responses, immune responses provi<strong>de</strong><br />

an <strong>in</strong>tegrated measure of exposure over time and may reflect <strong>the</strong> comb<strong>in</strong>ed results of<br />

simultaneous exposure to several chemicals. It is, however, not possible to <strong>de</strong>term<strong>in</strong>e which<br />

* Accord<strong>in</strong>g to Stegeman et al. (1992), <strong>the</strong> hydrocarbon-<strong>in</strong>ducible isoenzyme cytochrome P4501A is referred to<br />

as CYP1A. Hi<strong>the</strong>rto, only <strong>the</strong> respective isoenzyme of ra<strong>in</strong>bow trout (Oncorhyncus mykiss) can conclusively be<br />

termed CYP1A1 (Heilmann et al. 1988), whereas, for all o<strong>the</strong>r species, CYP1A is more appropriate.


30<br />

GENERAL INTRODUCTION<br />

chemical has caused <strong>the</strong> observed effect as none of <strong>the</strong> changes <strong>in</strong> immune function can be<br />

attributed to a specific compound or class of chemicals (Wester et al. 1994).<br />

The use of <strong>in</strong>vertebrate immunotoxicology, although of <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>terest whith<strong>in</strong><br />

environmental monitor<strong>in</strong>g studies, is still very much <strong>in</strong> its <strong>in</strong>fancy (Liv<strong>in</strong>gstone et al. 2000).<br />

Risk assessment of specific compounds <strong>in</strong> terms of immunomodulation lead<strong>in</strong>g to enhanced<br />

disease susceptibility for <strong>in</strong>dividuals or populations whith<strong>in</strong> a particular ecosystem has not yet<br />

been attempted. In<strong>de</strong>ed, much of <strong>the</strong> fundamental <strong>in</strong>formation on <strong>in</strong>vertebrate immune<br />

responses and disease susceptibility is not available.<br />

Among <strong>the</strong> immune functions, oxidative stress is wi<strong>de</strong>ly <strong>in</strong>vestigated. The <strong>in</strong>terest of<br />

oxidative stress <strong>in</strong> ecotoxicological applications is based on <strong>the</strong> oxygen paradox: this<br />

molecule is fundamental for many biochemical pathways <strong>in</strong> aerobic organisms, but its<br />

consumption generates <strong>the</strong> <strong>in</strong>tracellular formation of potentially toxic reactive oxygen species<br />

(ROS). Despite <strong>the</strong> fact that basal oxyradical production is normally counteracted by a<br />

complex antioxidant system, several pollutants are known to enhance <strong>the</strong> <strong>in</strong>tracellular<br />

generation of ROS through different mechanisms <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> redox cycle, <strong>the</strong> cytochrome<br />

P450-<strong>de</strong>pen<strong>de</strong>nt oxidative metabolism of aromatic hydrocarbons and <strong>the</strong> Fenton reaction <strong>in</strong><br />

<strong>the</strong> presence of some transitional metals (Liv<strong>in</strong>gstone 1998). From <strong>the</strong> standpo<strong>in</strong>t of<br />

biomarkers it is useful to un<strong>de</strong>rstand how antioxidants react to xenobiotic-mediated<br />

enhancement of oxyradical production but <strong>the</strong> complexity of <strong>in</strong>teractions between pro-oxidant<br />

factors and cellular targets often preclu<strong>de</strong>s this possibility. Variations of <strong>in</strong>dividuals<br />

antioxidants are difficult to predict and <strong>the</strong>y often vary accord<strong>in</strong>g to <strong>the</strong> class of chemicals<br />

tested, species sensitivity and several environmental and biological factors (W<strong>in</strong>ston & Di<br />

Giulio 1991). Induction of antioxidant <strong>de</strong>fences is referred to as a counteract<strong>in</strong>g response of<br />

exposed organisms but <strong>the</strong> same antioxidants can be <strong>de</strong>pleted when overwhelmed. Depend<strong>in</strong>g<br />

on <strong>the</strong> duration and <strong>in</strong>tensity of <strong>the</strong> pro-oxidant stressor, antioxidant <strong>de</strong>fences might only be<br />

<strong>in</strong>duced dur<strong>in</strong>g <strong>the</strong> first phase of <strong>the</strong> response, while <strong>in</strong> o<strong>the</strong>r conditions organisms can exhibit<br />

no variations or transitory responses before adaptive mechanisms occur (Regoli & Pr<strong>in</strong>cipato<br />

1995). All <strong>the</strong>se possibilities (and <strong>the</strong>ir comb<strong>in</strong>ations) have been reported (W<strong>in</strong>ston & Di<br />

Giulio 1991) and <strong>the</strong> complexity of antioxidant responses to pollutant exposure often leads to<br />

a controversy about <strong>the</strong> use of oxidative stress <strong>in</strong> ecotoxicological applications.


I.3. Contam<strong>in</strong>ation of <strong>the</strong> North <strong>Sea</strong> by PCBs<br />

I.3.1. The North <strong>Sea</strong><br />

31<br />

GENERAL INTRODUCTION<br />

The <strong>de</strong>pth of <strong>the</strong> North <strong>Sea</strong> is not uniform: shallowest region is located near Dover (30 m),<br />

gett<strong>in</strong>g <strong>de</strong>eper towards <strong>the</strong> west (up to 100 m) and <strong>the</strong> north (up to 700 m). Water masses<br />

result from <strong>the</strong> mix<strong>in</strong>g of NE Atlantic waters, precipitations, and river <strong>in</strong>puts. <strong>Sea</strong>sonal<br />

variations of sal<strong>in</strong>ity are relatively low (sal<strong>in</strong>ity rema<strong>in</strong>s around 35‰ all year long), except <strong>in</strong><br />

coastal regions, where <strong>the</strong> <strong>in</strong>fluence of large estuaries can br<strong>in</strong>g it down to 32‰. Water<br />

masses circulation has been mo<strong>de</strong>lized us<strong>in</strong>g radionucli<strong>de</strong> data; grossly, water masses<br />

circulate accord<strong>in</strong>g to an anti-clockwise direction <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> (Fig. 7).<br />

Figure 7. Diagram of <strong>the</strong> general water circulation <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> (NSTF 1993)<br />

Approximately 164 million people live <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> catchment area. Numerous large<br />

rivers (e.g. Rh<strong>in</strong>e, Scheldt, Elbe, Thames) flow through this heavily urbanized and<br />

<strong>in</strong>dustrialized region, provid<strong>in</strong>g significant <strong>in</strong>puts of several different pollutants <strong>in</strong>to <strong>the</strong> North<br />

<strong>Sea</strong>. Hence, <strong>the</strong> North <strong>Sea</strong> constitutes <strong>the</strong> ultimate repository for a large range of domestic<br />

and <strong>in</strong>dustrial contam<strong>in</strong>ants.<br />

The sou<strong>the</strong>rn region of <strong>the</strong> North <strong>Sea</strong> (<strong>the</strong> sou<strong>the</strong>rn bight) is consi<strong>de</strong>red as one of <strong>the</strong> most<br />

contam<strong>in</strong>ated area. Certa<strong>in</strong> researchers consi<strong>de</strong>r that <strong>the</strong>re is no compartment of <strong>the</strong> sou<strong>the</strong>rn


32<br />

GENERAL INTRODUCTION<br />

bight (seawater, sediments, biota) which is not altered anthropogenically <strong>in</strong> a way or ano<strong>the</strong>r<br />

(Rygg 1985, Kersten et al. 1994).<br />

I.3.2. Orig<strong>in</strong> and fluxes of PCB contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong> North <strong>Sea</strong><br />

Inputs of contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> occur via three ma<strong>in</strong> routes: direct, river<strong>in</strong>e and<br />

atmospheric <strong>in</strong>puts. The relative importance of each <strong>in</strong>put route differs among <strong>the</strong> regions,<br />

and accord<strong>in</strong>g to contam<strong>in</strong>ants consi<strong>de</strong>red (OSPAR 2000). Direct <strong>in</strong>puts of contam<strong>in</strong>ants arise<br />

ma<strong>in</strong>ly as a consequence of municipal and <strong>in</strong>dustrial discharges <strong>in</strong> coastal waters and from<br />

offshore activities and dump<strong>in</strong>g. River<strong>in</strong>e <strong>in</strong>puts extend along <strong>the</strong> coasts, and constitute<br />

ano<strong>the</strong>r important contribution to contam<strong>in</strong>ation. Atmospheric <strong>in</strong>puts are an important source<br />

to <strong>the</strong> mar<strong>in</strong>e environment for several substances <strong>in</strong>clud<strong>in</strong>g heavy metals (e.g. mercury and<br />

lead), PCBs and some nitrogen compounds. The sources of atmospheric <strong>in</strong>puts may be<br />

located with<strong>in</strong> or outsi<strong>de</strong> <strong>the</strong> North <strong>Sea</strong> area as PCBs can be transported on a global scale<br />

through <strong>the</strong> atmosphere.<br />

Ocean currents are also important <strong>in</strong> <strong>the</strong> transport and distribution of PCBs <strong>in</strong> <strong>the</strong> North <strong>Sea</strong>.<br />

Although PCB concentrations <strong>in</strong> seawater are extremely low, <strong>the</strong> largeness of <strong>the</strong> water<br />

volumes transported implies that fluxes are large. PCBs, as many o<strong>the</strong>r contam<strong>in</strong>ants, get<br />

adsorbed onto particulate matter upon which <strong>the</strong> transport path and fate of substances largely<br />

<strong>de</strong>pend (Olsen et al. 1982, Balls 1988). The resi<strong>de</strong>nce time of dissolved substances <strong>in</strong> <strong>the</strong><br />

North <strong>Sea</strong> is 1 to 3 years (Otto et al. 1990). However, over 70% of <strong>the</strong> substances associated<br />

with <strong>the</strong> suspen<strong>de</strong>d matter rema<strong>in</strong> <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> or <strong>in</strong> associated sedimentation areas such<br />

as Wad<strong>de</strong>n <strong>Sea</strong>, Skagerrak, Norwegian Trench and estuaries (Eisma 1973, Eisma & Kalf<br />

1987, Eisma & Irion 1988). Whereas <strong>the</strong> Atlantic Ocean is <strong>the</strong> major source of suspen<strong>de</strong>d<br />

matter <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn North <strong>Sea</strong> (McManus & Prandle 1997), <strong>in</strong> <strong>the</strong> Dutch coastal zone <strong>the</strong><br />

dump<strong>in</strong>g of dredged material and <strong>the</strong> river<strong>in</strong>e <strong>in</strong>put from <strong>the</strong> Scheldt and Rh<strong>in</strong>e are also<br />

relatively important sources of suspen<strong>de</strong>d matter and associated substances (Eisma 1973,<br />

Eisma & Kalf 1987, Van Alphen 1990, Lourens 1996).<br />

Sediments are subject to resuspension and bioturbation, which can lead to <strong>the</strong> remobilization<br />

of PCBs (which become available aga<strong>in</strong> to organisms) or to <strong>the</strong>ir burial <strong>in</strong> <strong>de</strong>eper layers of<br />

bottom sediments. Although it is not possible to <strong>de</strong>rive reliable estimates of <strong>in</strong>puts because<br />

most PCB concentrations are below <strong>the</strong> limit of <strong>de</strong>tection, estimated fluxes <strong>de</strong>rived for <strong>the</strong><br />

North <strong>Sea</strong> are <strong>in</strong> <strong>the</strong> range of 0.13 – 2.4 t yr -1 for <strong>the</strong> 1990 to 1995 period (OSPAR 2000).


I.3.3. PCBs <strong>in</strong> benthic ecosystems of <strong>the</strong> North <strong>Sea</strong><br />

33<br />

GENERAL INTRODUCTION<br />

PCB contam<strong>in</strong>ation levels <strong>in</strong> North <strong>Sea</strong> biota have been ma<strong>in</strong>ly characterized <strong>in</strong> dab (Limanda<br />

limanda), blue mussels (Mytilus edulis), and common sea stars (<strong>Asterias</strong> <strong>rubens</strong>) (e.g.<br />

Stebb<strong>in</strong>g et al. 1992, <strong>de</strong>n Besten et al. 2001, Coteur et al. 2003a, Stronkhorst et al. 2003).<br />

Dab is <strong>the</strong> most abundant flatfish species <strong>in</strong> <strong>the</strong> North <strong>Sea</strong>, with an estimated biomass of<br />

about 2 million tons (Daan et al. 1990). Because it is a <strong>de</strong>mersal fish with a large geographic<br />

distribution and abundance, and because it is sensitive to PCB exposure (Slei<strong>de</strong>r<strong>in</strong>ck et al.<br />

1995), it has been rout<strong>in</strong>ely used <strong>in</strong> pollution monitor<strong>in</strong>g programmes <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> (North<br />

<strong>Sea</strong> Task Force; Jo<strong>in</strong>t Monitor<strong>in</strong>g Programme) (Stebb<strong>in</strong>g et al. 1992, NSTF 1993a,b).<br />

However, regard<strong>in</strong>g <strong>in</strong>dicat<strong>in</strong>g purposes, dabs present a major flaw as <strong>the</strong>y are known to<br />

migrate dur<strong>in</strong>g spawn<strong>in</strong>g periods over relatively long distances, which makes difficult to<br />

<strong>de</strong>term<strong>in</strong>e <strong>the</strong> orig<strong>in</strong> of <strong>the</strong> contam<strong>in</strong>ation (Rijnsdorp et al. 1992).<br />

The blue mussel (M. edulis) is a se<strong>de</strong>ntary, filter-feed<strong>in</strong>g bivalve of commercial importance,<br />

which has long been consi<strong>de</strong>red amongst <strong>the</strong> best suited sent<strong>in</strong>el organisms for monitor<strong>in</strong>g<br />

mar<strong>in</strong>e pollutions (Goldberg et al. 1978). It has been <strong>the</strong>refore wi<strong>de</strong>ly used as bio<strong>in</strong>dicator <strong>in</strong><br />

North <strong>Sea</strong> pollution studies. M. edulis efficiently takes up and concentrates PCBs to levels<br />

well above those present <strong>in</strong> <strong>the</strong> surround<strong>in</strong>g seawater. It provi<strong>de</strong>s <strong>in</strong>formation on spatial and<br />

temporal pollution trends and enables <strong>the</strong> i<strong>de</strong>ntification of contam<strong>in</strong>ation «hot spots» <strong>in</strong><br />

coastal areas (e.g. Phillips 1990). Moreover, <strong>the</strong> blue mussel exhibits a series of biochemical<br />

(sublethal) responses to pollutants (see Liv<strong>in</strong>gstone 1991 for a review) which may be used as<br />

early warn<strong>in</strong>g signals of exposure (McCarthy & Shugart 1990, Huggett 1992).<br />

The common NE Atlantic sea star <strong>Asterias</strong> <strong>rubens</strong> (Fig. 8) is also an <strong>in</strong>terest<strong>in</strong>g test organism<br />

because of its key position as top predator <strong>in</strong> <strong>the</strong> food cha<strong>in</strong> “seston-mussels-sea stars”. In <strong>the</strong><br />

North <strong>Sea</strong>, this ech<strong>in</strong>o<strong>de</strong>rm is known to <strong>in</strong>fluence <strong>the</strong> structure and function<strong>in</strong>g of benthic<br />

communities (Menge 1982, Hayward & Ryland 1990, Hostens & Hammerl<strong>in</strong>k 1994). It lives<br />

on or <strong>in</strong> proximity of sediments (<strong>the</strong> ma<strong>in</strong> reservoir of contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e<br />

environment) and can be found <strong>in</strong> very diversified biotopes from <strong>the</strong> surface to <strong>de</strong>pths<br />

reach<strong>in</strong>g 650 m. A. <strong>rubens</strong> is also able to colonize low sal<strong>in</strong>ity areas, such as estuaries, which<br />

are un<strong>de</strong>r direct <strong>in</strong>fluence of contam<strong>in</strong>ation carried by large rivers.


34<br />

GENERAL INTRODUCTION<br />

Figure 8. The common NE Atlantic sea star <strong>Asterias</strong> <strong>rubens</strong> L. (Hayward & Ryland 1996)<br />

In semi-field studies, A. <strong>rubens</strong> has been <strong>de</strong>monstrated to efficiently accumulate PCBs,<br />

lead<strong>in</strong>g to <strong>de</strong>leterious effects on reproductive processes (<strong>de</strong>n Besten et al. 1989, 1990a). This<br />

sea star has largely proved its value or potential value as a bio<strong>in</strong>dicator species for a wi<strong>de</strong><br />

range of anthropogenic contam<strong>in</strong>ants (e.g. PCBs, metals, organometals) <strong>in</strong> laboratory and/or<br />

<strong>in</strong> field studies (e.g. Bjerregaard 1988, Everaarts & Fischer 1989, Temara et al. 1997a,<br />

1998a,b, Warnau et al. 1999, Coteur et al. 2003a, Stronkhorst et al. 2003). Although <strong>the</strong>re is a<br />

wealth of studies show<strong>in</strong>g <strong>the</strong> quality of <strong>the</strong> sea star as a bio<strong>in</strong>dicator, no study has<br />

<strong>in</strong>vestigated bioaccumulation processes of PCBs <strong>in</strong> <strong>the</strong> sea star. However, such data is a<br />

prerequisite to assess <strong>the</strong> value of A. <strong>rubens</strong> as a bio<strong>in</strong>dicator of PCB contam<strong>in</strong>ation.<br />

Available data on effects of PCB exposure <strong>in</strong> sea stars are also scarce, but have shown that<br />

<strong>the</strong>se organisms are affected (<strong>de</strong>n Besten 1998, <strong>de</strong>n Besten et al. 1990a, 1993). Exist<strong>in</strong>g<br />

studies have focused on <strong>the</strong> subcellular level us<strong>in</strong>g <strong>the</strong> microsomal activity of <strong>the</strong> CYP<br />

enzyme system (<strong>de</strong>n Besten et al. 1991, 1993) and steroid metabolism (<strong>de</strong>n Besten et al.<br />

1991). In vitro or <strong>in</strong> vivo exposure of sea stars to PCBs has elsewhere been reported to<br />

<strong>de</strong>crease DNA <strong>in</strong>tegrity (Sarkar & Everaarts 1995).


II. OBJECTIVES<br />

35<br />

OBJECTIVES<br />

Oceans are <strong>the</strong> ultimate receptacle for many anthropogenic contam<strong>in</strong>ants that converge<br />

towards <strong>the</strong>m via <strong>the</strong> rivers and <strong>the</strong> atmosphere. Often display<strong>in</strong>g low solubility <strong>in</strong> seawater,<br />

<strong>the</strong>se contam<strong>in</strong>ants concentrate <strong>in</strong> sediments, where <strong>the</strong>y become a persistant threat for<br />

benthic communities, particularly <strong>in</strong> coastal areas. PCBs are among <strong>the</strong> mar<strong>in</strong>e contam<strong>in</strong>ants<br />

of highest concern. Their unique physico-chemical characteristics, at first exploited by <strong>the</strong><br />

<strong>in</strong>dustry, have rapidly become a cause of concern: PCBs are resistant to <strong>de</strong>gradation, readily<br />

accumulated by mar<strong>in</strong>e organisms and highly toxic. Among <strong>the</strong> 209 possible congeners,<br />

coplanar PCBs display a diox<strong>in</strong>-like conformation and have <strong>the</strong> highest toxic potential.<br />

Information available about <strong>the</strong> impact of PCBs on mar<strong>in</strong>e benthic species <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> is<br />

scarce. In addition most of <strong>the</strong> exist<strong>in</strong>g studies addressed species that are poorly<br />

representative of North <strong>Sea</strong> benthic ecosystems, which leads to uncerta<strong>in</strong> characterization of<br />

<strong>the</strong> pr<strong>in</strong>cipal ecological impact of <strong>the</strong>se contam<strong>in</strong>ants.<br />

The common NE Atlantic sea star <strong>Asterias</strong> <strong>rubens</strong> (L.) can be consi<strong>de</strong>red as an ecosystem-<br />

structur<strong>in</strong>g species <strong>in</strong> <strong>the</strong> North <strong>Sea</strong>. In addition it is ubiquist, abundant and generally<br />

recognized as a good bio<strong>in</strong>dicator species. Therefore, A. <strong>rubens</strong> was chosen as an<br />

experimental mo<strong>de</strong>l to study PCB bioaccumulation and effects. <strong>Sea</strong> stars have already been<br />

used <strong>in</strong> <strong>the</strong> field to characterize <strong>the</strong> contam<strong>in</strong>ation status of a region, but no data regard<strong>in</strong>g<br />

bioaccumulation efficiencies, body distribution or relative importance of <strong>the</strong> different uptake<br />

routes are available <strong>in</strong> <strong>the</strong> literature.<br />

The ma<strong>in</strong> objectives of <strong>the</strong> present study were to exam<strong>in</strong>e -both <strong>in</strong> experimental and natural<br />

conditions- <strong>the</strong> bioaccumulation and body distribution of PCBs <strong>in</strong> A. <strong>rubens</strong>, and <strong>the</strong><br />

biological consequences attributable to PCB exposure.<br />

For this purpose, <strong>the</strong> accumulation biok<strong>in</strong>etics of structurally-contrast<strong>in</strong>g PCB congeners<br />

were studied by expos<strong>in</strong>g sea stars via different exposure routes (seawater, sediments or<br />

food), us<strong>in</strong>g ei<strong>the</strong>r a mixture of PCB congeners (Chap. III.1) or s<strong>in</strong>gle-congeners (Chap. III.2<br />

& III.3). The effects of PCB exposure on <strong>the</strong> immune response (ROS production) and on <strong>the</strong><br />

<strong>in</strong>duction of <strong>de</strong>toxification mechanisms (CYP1A <strong>in</strong>duction) have been studied <strong>in</strong> parallel<br />

(Chap. III.4).<br />

The exist<strong>in</strong>g relationships between PCB levels measured <strong>in</strong> <strong>the</strong> environment and those<br />

measured <strong>in</strong> sea stars were also exam<strong>in</strong>ed (Section IV) <strong>in</strong> or<strong>de</strong>r to «calibrate» <strong>the</strong>


36<br />

OBJECTIVES<br />

bio<strong>in</strong>dicat<strong>in</strong>g value of A. <strong>rubens</strong>. The health status of sea stars was studied alongsi<strong>de</strong> (same<br />

Section) by measur<strong>in</strong>g different biological responses (ROS production and CYP1A <strong>in</strong>duction)<br />

<strong>in</strong> field-collected <strong>in</strong>dividuals. F<strong>in</strong>ally, <strong>the</strong> last objective of this fourth section was to assess <strong>the</strong><br />

contam<strong>in</strong>ation status of <strong>the</strong> sou<strong>the</strong>rn North <strong>Sea</strong> by measur<strong>in</strong>g concentration levels of PCBs<br />

and of o<strong>the</strong>r contam<strong>in</strong>ants of concern, viz. heavy metals and diox<strong>in</strong>s, <strong>in</strong> sediments and biota.


III. EXPERIMENTAL CONDITIONS<br />

37


Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

III.1 Non-coplanar vs. coplanar congener-specificity of PCB bioaccumulation<br />

and immunotoxicity <strong>in</strong> sea stars<br />

Danis B 1 , Catt<strong>in</strong>i Ch 2 , Cotret O 2 , Teyssié JL 2 , Coteur G 1 , Villeneuve JP 2 ,<br />

Fowler SW 2 & Warnau M 2<br />

1 Laboratoire <strong>de</strong> Biologie mar<strong>in</strong>e (CP 160/15), <strong>Université</strong> <strong>Libre</strong> <strong>de</strong> <strong>Bruxelles</strong>, Av. F.D.<br />

Roosevelt 50, B-1050 Brussels, Belgium<br />

2 International Atomic Energy Agency - Mar<strong>in</strong>e Environment Laboratory, 4 Quai Anto<strong>in</strong>e Ier,<br />

MC-98000 Monaco<br />

39


ABSTRACT<br />

Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

The group of polychlor<strong>in</strong>ated biphenyls compounds (PCBs) are among <strong>the</strong> contam<strong>in</strong>ants of<br />

greatest concern <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e environment. Resistant to <strong>de</strong>gradation, bioaccumulated and<br />

highly toxic, <strong>the</strong>y represent a cont<strong>in</strong>ual threat for mar<strong>in</strong>e organisms and ecosystems. The<br />

toxicity of PCBs is now thought to be ma<strong>in</strong>ly attributable to a few congeners only, viz. <strong>the</strong><br />

coplanar congeners. In <strong>the</strong> present study, a representative species of North <strong>Sea</strong> benthic<br />

ecosystems, <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> (L.), was exposed experimentally to a mixture of 10<br />

selected PCB congeners (3 coplanar and 7 non-coplanar) <strong>in</strong> contam<strong>in</strong>ated sediments. Both <strong>the</strong><br />

<strong>de</strong>gree of bioaccumulation and subsequent immunotoxic effects of <strong>the</strong>se PCBs were<br />

<strong>de</strong>term<strong>in</strong>ed. A strong congener-specificity for both bioaccumulation and immunotoxicity was<br />

found as well as a probable <strong>in</strong>duction of a congener-specific <strong>de</strong>toxification mechanism<br />

result<strong>in</strong>g <strong>in</strong> <strong>the</strong> specific metabolization of <strong>the</strong> three coplanar congeners tested. Moreover, a<br />

strong correlation was observed between <strong>the</strong> bioaccumulation of coplanar PCBs and<br />

immunotoxic effects. These f<strong>in</strong>d<strong>in</strong>gs suggest that coplanar congeners need to be <strong>in</strong>clu<strong>de</strong>d <strong>in</strong><br />

<strong>the</strong> list of congeners recommen<strong>de</strong>d to be systematically analyzed for monitor<strong>in</strong>g <strong>the</strong> water<br />

quality of <strong>the</strong> mar<strong>in</strong>e environment. If similar relationships were found to occur <strong>in</strong> o<strong>the</strong>r taxa,<br />

<strong>the</strong>re would be strong grounds for a possible revision of <strong>the</strong> current <strong>in</strong>ternational<br />

recommendations on water quality criteria for <strong>the</strong>se compounds.<br />

KEYWORDS<br />

Polychlor<strong>in</strong>ated biphenyls; ech<strong>in</strong>o<strong>de</strong>rms; bioaccumulation; immunotoxicity; <strong>de</strong>toxification;<br />

congener-specificity.<br />

40


INTRODUCTION<br />

Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Ow<strong>in</strong>g to <strong>the</strong>ir persistence <strong>in</strong> <strong>the</strong> environment and <strong>the</strong> fact that <strong>the</strong>y are readily<br />

bioaccumulated and highly toxic for aquatic organisms, polychlor<strong>in</strong>ated biphenyls (PCBs) are<br />

among <strong>the</strong> pollutants of greatest concern <strong>in</strong> mar<strong>in</strong>e ecosystems (Stebb<strong>in</strong>g et al. 1992, OSPAR<br />

2000). Although PCB levels tend to <strong>de</strong>crease regionally, a global <strong>de</strong>cl<strong>in</strong>e <strong>in</strong> PCB<br />

concentrations is thought to be unlikely because of cont<strong>in</strong>ual <strong>in</strong>puts <strong>in</strong>to <strong>the</strong> environment<br />

ma<strong>in</strong>ly due to leakages from landfills and emissions from <strong>in</strong>c<strong>in</strong>erators (Tanabe 1988).<br />

Ano<strong>the</strong>r worrisome fact is that <strong>the</strong> quantities of PCBs still <strong>in</strong> use <strong>in</strong> <strong>the</strong> late 1980s excee<strong>de</strong>d<br />

<strong>the</strong> amount that had been released <strong>in</strong>to <strong>the</strong> environment until that time (ibid.). In <strong>the</strong> mar<strong>in</strong>e<br />

environment, <strong>the</strong>se contam<strong>in</strong>ants ma<strong>in</strong>ly become associated with bottom sediments,<br />

represent<strong>in</strong>g a chronic threat for benthic ecosystems (e.g., Fowler et al. 1978, Boese et al.<br />

1996, Koponen et al. 1998).<br />

The PCB family is composed of 209 different congeners and about half of <strong>the</strong>m have been<br />

<strong>de</strong>tected <strong>in</strong> significant concentrations <strong>in</strong> environmental samples (Metcalfe 1994). Until <strong>the</strong><br />

late 1970s, PCBs were ma<strong>in</strong>ly analyzed as commercial mixture equivalents (e.g. Aroclor,<br />

Kaneclor) (Du<strong>in</strong>ker et al. 1991, Eganhouse & Gossett 1991). By <strong>the</strong> late 1980s, <strong>the</strong> need to<br />

conduct congener-specific approaches became wi<strong>de</strong>ly adopted, s<strong>in</strong>ce it appeared that<br />

processes such as bioaccumulation, metabolization, or toxicity could differ consi<strong>de</strong>rably from<br />

one PCB congener to ano<strong>the</strong>r (Du<strong>in</strong>ker et al. 1989, Skerfv<strong>in</strong>g et al. 1994).<br />

The International Council for <strong>the</strong> Exploration of <strong>the</strong> <strong>Sea</strong> (ICES) has recommen<strong>de</strong>d <strong>the</strong><br />

systematic consi<strong>de</strong>ration of 6 PCB congeners for monitor<strong>in</strong>g purposes (i.e. IUPAC#28, 52,<br />

101, 138, 153 and 180). This selection (with congener #118 ad<strong>de</strong>d) was subsequently adopted<br />

and recommen<strong>de</strong>d by <strong>the</strong> World Health Organization (WHO 1999). However, it is now<br />

wi<strong>de</strong>ly accepted that <strong>the</strong> toxicity of such mixtures is ma<strong>in</strong>ly due to a few congeners, viz. <strong>the</strong><br />

non-ortho-substituted and mono-ortho-substituted congeners (Du<strong>in</strong>ker et al. 1989, Safe 1990,<br />

Metcalfe 1994). These congeners appear to be more problematic than o<strong>the</strong>r PCBs; <strong>in</strong><strong>de</strong>ed, <strong>the</strong><br />

former can display planar configuration (c-PCBs) which is very close to <strong>the</strong> configuration of<br />

<strong>the</strong> highly toxic 2,3,7,8-tetrachlorodibenzo-p-diox<strong>in</strong> (2,3,7,8-TCDD). In vertebrates, <strong>the</strong><br />

toxicity of coplanar PCBs is known to take place through a receptor-mediated response<br />

<strong>in</strong>volv<strong>in</strong>g <strong>the</strong> b<strong>in</strong>d<strong>in</strong>g of <strong>the</strong> contam<strong>in</strong>ant to <strong>the</strong> cytosolic aryl hydrocarbon receptor (AhR),<br />

followed by changes <strong>in</strong> gene expression (Kohn 1983, Shugart et al. 1992, Safe 1995, Hahn<br />

1998, Nebert et al. 2000). Fur<strong>the</strong>rmore, coplanar PCBs are known to <strong>in</strong>duce CYP1A which is<br />

<strong>the</strong> major enzyme responsible for <strong>the</strong> metabolic activation of promutagens and<br />

procarc<strong>in</strong>ogens. However, not all <strong>the</strong> adverse biological effects of PCBs are attributable to<br />

41


Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

this mechanism; for example, many PCBs can exert toxicity as endocr<strong>in</strong>e disrupters or<br />

immunosuppressants through diverse pathways such as alteration of enzymatic activities<br />

(k<strong>in</strong>ases and phospholipases), disturbance of Ca 2+ homeostasis, or modulation of gene<br />

expression (e.g. Satar 2000, Arukwe 2001).<br />

Ech<strong>in</strong>o<strong>de</strong>rms are a major phylum of mar<strong>in</strong>e benthic <strong>in</strong>vertebrates which <strong>in</strong>clu<strong>de</strong>s a number of<br />

species play<strong>in</strong>g key roles <strong>in</strong> various ecosystems (Harrold & Pearse 1987, Birkeland 1989,<br />

Menge et al. 1994). S<strong>in</strong>ce <strong>the</strong>y are commonly found <strong>in</strong> coastal and estuar<strong>in</strong>e waters,<br />

ech<strong>in</strong>o<strong>de</strong>rms are directly exposed to anthropogenic contam<strong>in</strong>ants which may affect several<br />

aspects of <strong>the</strong>ir physiology such as reproduction, early <strong>de</strong>velopment, somatic growth, and<br />

neurophysiology (<strong>de</strong>n Besten et al. 1989, Mallefet et al. 1994, Kobayashi 1995, Warnau et al.<br />

1996, Temara et al. 1997). Several authors have proposed <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> as a<br />

valuable sent<strong>in</strong>el organism (sensu Philips, 1976, 1990) for survey<strong>in</strong>g and monitor<strong>in</strong>g mar<strong>in</strong>e<br />

contam<strong>in</strong>ation (e.g. Bjerregaard 1988, Temara et al. 1998b, 2002, OSPAR 2000, Coteur et al.<br />

2003a). This top-predator feeds ma<strong>in</strong>ly on filter-feed<strong>in</strong>g bivalves and is wi<strong>de</strong>ly distributed<br />

both geographically and bathymetrically <strong>in</strong> <strong>the</strong> NE Atlantic and North <strong>Sea</strong> (Hayward &<br />

Ryland 1990). Fur<strong>the</strong>rmore, it is easily i<strong>de</strong>ntified, collected, and ma<strong>in</strong>ta<strong>in</strong>ed un<strong>de</strong>r laboratory<br />

conditions and several experimental and/or field studies have shown that A. <strong>rubens</strong> efficiently<br />

bioconcentrates mar<strong>in</strong>e contam<strong>in</strong>ants such as metals and PCBs (B<strong>in</strong>yon 1978, Bjerregaard<br />

1988, <strong>de</strong>n Besten et al. 1990a, 2001, Sørensen & Bjerregaard 1991, Rouleau et al. 1993,<br />

Hansen & Bjerregaard 1995, Temara et al. 1996, 1997a, 1998b, Everaarts et al. 1998, Warnau<br />

et al. 1999, Coteur et al. 2003a,b, Danis et al. Chap. III.2). Therefore, <strong>the</strong> common sea star has<br />

been consi<strong>de</strong>red as an excellent bio<strong>in</strong>dicator species for monitor<strong>in</strong>g a range of contam<strong>in</strong>ants<br />

<strong>in</strong> <strong>the</strong> North <strong>Sea</strong> (Everaarts et al. 1998, <strong>de</strong>n Besten et al. 2001, Coteur et al. 2003a,<br />

Stronkhorst et al. 2003); however, few studies have <strong>in</strong>vestigated <strong>in</strong> <strong>de</strong>tail PCB<br />

bioaccumulation processes <strong>in</strong> sea stars.<br />

The effects of contam<strong>in</strong>ants on A. <strong>rubens</strong> have focused ma<strong>in</strong>ly on its reproductive success<br />

(<strong>de</strong>n Besten et al. 1989), early <strong>de</strong>velopment (Kobayashi 1995, Coteur et al. 2003a), immune<br />

system (Coteur et al. 2003a,c, Danis et al. Chap. III.3, III.4), DNA <strong>in</strong>tegrity (Sarkar &<br />

Everaarts 1995) and <strong>in</strong>duction of <strong>the</strong> Cytochrome P450 (Everaarts et al. 1998, <strong>de</strong>n Besten et<br />

al. 2001, Stronkhorst et al. 2003, Danis et al. Chap. III.3, III.4). ROS production is one of <strong>the</strong><br />

ma<strong>in</strong> immune responses of ech<strong>in</strong>o<strong>de</strong>rms (Chia & X<strong>in</strong>g 1996). This response is triggered by<br />

amoebocytes, which are <strong>the</strong> most active free-circulat<strong>in</strong>g cells found <strong>in</strong> ech<strong>in</strong>o<strong>de</strong>rm coelomic<br />

cavities. Ech<strong>in</strong>o<strong>de</strong>rms lack a specific adaptive immune system and rely on <strong>in</strong>nate responses<br />

<strong>in</strong>volv<strong>in</strong>g both humoral and cellular components (Chia & X<strong>in</strong>g 1996). These processes seem<br />

42


Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

to be very efficient and certa<strong>in</strong>ly constitute <strong>the</strong> ma<strong>in</strong> <strong>de</strong>fence aga<strong>in</strong>st foreign agents. Reactive<br />

oxygen species (ROS) production has recently received much attention <strong>in</strong> <strong>the</strong> field of<br />

<strong>in</strong>vertebrate immunology and appears to respond to various xenobiotics (An<strong>de</strong>rson et al.<br />

1997, Coteur et al. 2001, 2002c, 2003a, Danis et al. Chap. III.3, III.4).<br />

The present study focuses on <strong>the</strong> bioaccumulation and immunotoxicity of key congeners (viz.<br />

those consi<strong>de</strong>red as <strong>the</strong> most abundant or toxic ones) <strong>in</strong> <strong>the</strong> sea star A. <strong>rubens</strong> <strong>in</strong> or<strong>de</strong>r to<br />

fur<strong>the</strong>r assess its value as a bio<strong>in</strong>dicator species. Particular care was taken to <strong>de</strong>sign<br />

experimental conditions to simulate, as closely as possible, natural conditions that may be<br />

encountered <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e environment (e.g. levels of contam<strong>in</strong>ants and complex exposure).<br />

MATERIALS AND METHODS<br />

Test organisms and sediments<br />

<strong>Sea</strong> stars <strong>Asterias</strong> <strong>rubens</strong> L. and sediments (5 cm upper layer) were collected <strong>in</strong> Audresselles<br />

(Nord-Pas-<strong>de</strong>-Calais, France) <strong>in</strong> March 1999 and transported to <strong>the</strong> IAEA-MEL premises <strong>in</strong><br />

Monaco. Prior to experimentation, animals were acclimated to laboratory conditions for 1<br />

month (constantly aerated open-circuit 3000 l aquarium; flow rate 300 l hr -1 ; sal<strong>in</strong>ity 34 p.s.u.;<br />

temperature 17 ± 0.5°C; light/dark cycle 12 hrs/12 hrs) dur<strong>in</strong>g which time <strong>the</strong>y were fed<br />

mussels (Mytilus edulis L.) ad libitum. The sediments were conditioned <strong>in</strong> a constantly<br />

aerated closed-circuit 400 l aquarium (sal<strong>in</strong>ity 34 p.s.u.; temperature 4 ± 0.5°C; light/dark<br />

cycle 12 hrs/12 hrs), and before utilization <strong>the</strong>y were characterized for total and organic<br />

carbon content and gra<strong>in</strong>-size distribution (Table 3).<br />

Table 3. Sediments characteristics: total and organic carbon content (mg C g -1 ), and gra<strong>in</strong>-size distribution (%)<br />

PCB congeners and sediment preparation<br />

Total carbon 9.29 ± 2.75 mg g -1<br />

Organic carbon 0.27 ± 0.09 mg g -1<br />

Size fractions % (mean ± SD)<br />

500-1000 µm 0.04 ± 0.03<br />

250-500 µm 1.97 ± 0.22<br />

125-250 µm 96.2 ± 0.33<br />

63-125 µm 1.70 ± 0.19<br />

< 63 µm 0.08 ± 0.01<br />

Ten PCB congeners were purchased from Promochem GmbH (Germany) as s<strong>in</strong>gle congeners<br />

of high certified purity (from 99.1 to 99.9% purity accord<strong>in</strong>g to congener). For <strong>the</strong><br />

43


Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

experiments, a stock solution of each congener was prepared <strong>in</strong> acetone (Ultrapure gra<strong>de</strong>,<br />

Sigma).<br />

Three kg of dry sediments were spiked accord<strong>in</strong>g to <strong>the</strong> method of Murdoch et al. (1997).<br />

Sediments were placed <strong>in</strong> a 5 l glass bottle conta<strong>in</strong><strong>in</strong>g 500 ml of <strong>de</strong>canted natural seawater.<br />

An aliquot (~1 µl) of each PCB stock solution was <strong>the</strong>n ad<strong>de</strong>d us<strong>in</strong>g a 5 µl Hamilton glass<br />

syr<strong>in</strong>ge. After 5 m<strong>in</strong> (to allow acetone to evaporate), sediments were agitated us<strong>in</strong>g a rotat<strong>in</strong>g<br />

plate (150 rpm) for 35 hrs. At <strong>the</strong> end of that period, <strong>the</strong> supernatant seawater was removed<br />

and sediments were placed <strong>in</strong> a 70 l glass aquarium, thoroughly mixed, and ma<strong>in</strong>ta<strong>in</strong>ed for 24<br />

hrs un<strong>de</strong>r flow<strong>in</strong>g seawater (flow rate 15 l hr -1 , sal<strong>in</strong>ity 34 p.s.u.; temperature 17 ± 0.5°C;<br />

light/dark cycle 12 hrs/12 hrs) to allow leach<strong>in</strong>g of weakly-bound PCBs. The quantity of<br />

spiked sediments allowed to form a cont<strong>in</strong>uous layer of 2 cm <strong>de</strong>pth <strong>in</strong> <strong>the</strong> experimental<br />

aquarium.<br />

Exposure of sea stars to PCBs<br />

Fifty sea stars of similar size (radius: 59 ± 8 mm) were held for 28 d <strong>in</strong> <strong>the</strong> aquarium<br />

conta<strong>in</strong><strong>in</strong>g <strong>the</strong> spiked sediments un<strong>de</strong>r <strong>the</strong> same open-circuit conditions as previously<br />

<strong>de</strong>scribed. Every fourth day <strong>the</strong> sea stars were allowed to feed overnight on fresh mussels M.<br />

edulis; <strong>the</strong> mussels (one per sea star) were supplied <strong>in</strong> <strong>the</strong> even<strong>in</strong>g, and <strong>the</strong> next morn<strong>in</strong>g any<br />

un<strong>in</strong>gested food and empty shells were removed. Duration and frequency of feed<strong>in</strong>g were<br />

<strong>de</strong>signed <strong>in</strong> this way <strong>in</strong> or<strong>de</strong>r to m<strong>in</strong>imize any <strong>in</strong>gestion of PCB-labelled food. At <strong>the</strong><br />

beg<strong>in</strong>n<strong>in</strong>g and end of <strong>the</strong> experiment, sediments were sampled to check <strong>the</strong> PCB<br />

concentrations. Periodically throughout <strong>the</strong> experiment, 3 to 4 sea stars were collected, r<strong>in</strong>sed<br />

<strong>in</strong> fresh seawater (particular care was taken to elim<strong>in</strong>ate sediment particles), rapidly dra<strong>in</strong>ed<br />

of excess water, sampled for <strong>the</strong>ir coelomic fluid (see below), and <strong>the</strong>n dissected. Two body<br />

compartments (bodywall and pyloric caeca) were isolated, weighed (wet weight) and kept<br />

frozen (-80°C) for subsequent analysis of PCB congener concentrations.<br />

PCB analyses<br />

Extraction of freeze-dried samples: A 50 to 100 g fresh weight sub-sample was taken from<br />

<strong>the</strong> frozen sample. This sub-sample was freeze-dried and carefully pulverised <strong>in</strong> a cleaned<br />

pestle and mortar. About 5 to 10 g of this material was placed <strong>in</strong>to a pre-cleaned extraction<br />

thimble <strong>in</strong> a Soxhlet apparatus. The size of <strong>the</strong> sub-sample was adjusted <strong>in</strong> or<strong>de</strong>r to obta<strong>in</strong><br />

about 100 mg of extractable organic matter (“lipid”). A known amount of <strong>in</strong>ternal standard<br />

(2,4,5 trichlorobiphenyl, PCB 29) was ad<strong>de</strong>d to <strong>the</strong> sub-sample <strong>in</strong> <strong>the</strong> thimble before Soxhlet<br />

extraction. About 250 ml of hexane were ad<strong>de</strong>d to <strong>the</strong> extraction flask and <strong>the</strong> sample was<br />

extracted for 8 hours cycl<strong>in</strong>g <strong>the</strong> solvent through at a rate of 4 to 5 cycles per hour.<br />

44


Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Concentration of <strong>the</strong> extract: The extracts were concentrated on a rotary evaporator (30 °C) to<br />

obta<strong>in</strong> a f<strong>in</strong>al volume of about 15 ml, were dried with anhydrous sodium sulphate and fur<strong>the</strong>r<br />

concentrated to 1 ml by evaporat<strong>in</strong>g excess solvent un<strong>de</strong>r a gentle stream of clean dry<br />

nitrogen. The sample extract was analysed gravimetrically for extractable organic matter<br />

(EOM) content.<br />

Removal of lipids by concentrated sulphuric acid: The concentrated extract was transferred<br />

<strong>in</strong>to a separatory funnel with enough hexane (40 to 50 ml) <strong>in</strong> or<strong>de</strong>r to dilute <strong>the</strong> sample. Five<br />

ml concentrated sulphuric acid were ad<strong>de</strong>d to <strong>the</strong> extract and <strong>the</strong> separatory funnel was<br />

vigorously shaken. The separatory funnel was placed <strong>in</strong> a rack and <strong>the</strong> phases were allowed to<br />

separate. The hexane phase was recovered <strong>in</strong>to a glass beaker. Dried with sodium sulphate<br />

and <strong>the</strong> hexane was transferred <strong>in</strong>to a graduated tube. The volume of <strong>the</strong> extract was reduced<br />

by evaporat<strong>in</strong>g <strong>the</strong> solvent with a gentle stream of pure nitrogen to about 1 ml.<br />

Fraction<strong>in</strong>g: A Florisil column was used for this separation. The Florisil was pre-extracted <strong>in</strong><br />

<strong>the</strong> Soxhlet apparatus with methanol for 8 hours, <strong>the</strong>n with hexane for ano<strong>the</strong>r 8 hours.<br />

Activation was achieved by heat<strong>in</strong>g <strong>the</strong> dried Florisil at 130 °C for 8 hours. It was <strong>the</strong>n<br />

partially <strong>de</strong>activated with 0.5 % water by weight and stored <strong>in</strong> a tightly sealed glass jar with<br />

ground glass stopper. The water was well mixed <strong>in</strong>to <strong>the</strong> Florisil and <strong>the</strong> mixture was allowed<br />

to equilibrate for one day before use. A 1 cm diameter burette with Teflon stopcock was<br />

plugged with pre-cleaned glass wool. 18 grams of Florisil were weighed out <strong>in</strong> a beaker and<br />

covered with hexane. A slurry was ma<strong>de</strong> by agitation and poured <strong>in</strong>to <strong>the</strong> glass column. The<br />

solvent was dra<strong>in</strong>ed to just above <strong>the</strong> Florisil bed. Individual columns were prepared<br />

immediately before use, and a new column of Florisil used for each sample.<br />

The extract, reduced to 1 ml, was applied to <strong>the</strong> Florisil column. It was carefully eluted with<br />

65 ml of hexane and <strong>the</strong> fraction, conta<strong>in</strong><strong>in</strong>g <strong>the</strong> PCBs, collected and concentrated to 1 ml by<br />

evaporat<strong>in</strong>g <strong>the</strong> hexane with a gentle stream of pure nitrogen.<br />

Gas chromatography conditions: Samples were analyzed us<strong>in</strong>g an HP 6890 gas<br />

chromatograph equipped with an ECD- 63 Ni <strong>de</strong>tector and an SE-54 capillary column (30 m<br />

length, 0.25 mm id, 0.25 µm film thickness). Initial temperature of <strong>the</strong> column was 70°C.<br />

F<strong>in</strong>al temperature was 260°C, reached at a rate of 3 °C m<strong>in</strong> -1 . The <strong>de</strong>tector temperature was<br />

300°C. The carrier gas was helium, at a flow rate of 1.0 ml m<strong>in</strong> -1 . Injection mo<strong>de</strong> was<br />

“splitless”.<br />

Quality assurance/quality control: QA/QC was performed accord<strong>in</strong>g to <strong>the</strong> gui<strong>de</strong>l<strong>in</strong>es on <strong>the</strong><br />

QA/QC requirements for analysis of sediments and mar<strong>in</strong>e organisms as <strong>de</strong>scribed <strong>in</strong><br />

45


Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Reference Method N°57, “Contam<strong>in</strong>ant monitor<strong>in</strong>g programs us<strong>in</strong>g mar<strong>in</strong>e organisms:<br />

Quality assurance and good laboratory practice” (UNEP 1990).<br />

Biok<strong>in</strong>etic analyses<br />

PCB uptake <strong>in</strong> <strong>the</strong> two sea star body compartments (bodywall and pyloric caeca) was<br />

expressed as change <strong>in</strong> concentration (ng PCB g -1 lipid) over time of ei<strong>the</strong>r s<strong>in</strong>gle congeners<br />

or <strong>the</strong> sum of <strong>the</strong> 10 consi<strong>de</strong>red congeners. When uptake k<strong>in</strong>etics ten<strong>de</strong>d to reach a steady<br />

state dur<strong>in</strong>g <strong>the</strong> experiment, <strong>the</strong>y were best fitted by a s<strong>in</strong>gle-component first-or<strong>de</strong>r k<strong>in</strong>etic<br />

mo<strong>de</strong>l (Equation 1):<br />

Equation 1: C t = C 0 + C ss (1 - e -kt ),<br />

where C 0 and C t are concentrations (ng PCB g -1 lipid) at time 0 (background concentration)<br />

and t (days), respectively, and C ss is <strong>the</strong> <strong>in</strong>corporated concentration (ng PCB g -1 lipid) at<br />

steady state, and k is <strong>the</strong> <strong>de</strong>puration rate constant (day -1 ) (Brown et al. 1995). Constants of <strong>the</strong><br />

uptake equation and <strong>the</strong>ir statistics were estimated by iterative adjustment of <strong>the</strong> mo<strong>de</strong>l and<br />

Hessian matrix computation, respectively, us<strong>in</strong>g <strong>the</strong> nonl<strong>in</strong>ear curve-fitt<strong>in</strong>g rout<strong>in</strong>es <strong>in</strong> <strong>the</strong><br />

Systat 5.2.1 software (Wilk<strong>in</strong>son 1988). Possible correlations between concentration values<br />

for <strong>the</strong> 10 congeners <strong>in</strong> <strong>the</strong> different body compartments were calculated us<strong>in</strong>g bivariate<br />

correlation <strong>in</strong> <strong>the</strong> SPSS 11 software.<br />

ROS production measurements<br />

At days 0, 2, 7, 16, and 28 dur<strong>in</strong>g <strong>the</strong> contam<strong>in</strong>ation period, coelomic fluid was collected<br />

from 4 sea stars for ROS production analysis accord<strong>in</strong>g to <strong>the</strong> method <strong>de</strong>scribed by Coteur et<br />

al. (2002). An aliquot of 3 ml of coelomic fluid was obta<strong>in</strong>ed by cutt<strong>in</strong>g <strong>the</strong> tip of <strong>the</strong> longest<br />

arm of <strong>the</strong> sea stars and poured <strong>in</strong>to 3 ml anticoagulant buffer (1.2 10 -2 M EDTA <strong>in</strong> Ca-, Mg-<br />

free artificial seawater -CMFASW-; Noble 1970) at 4°C. The coelomocyte concentration of<br />

this suspension was <strong>de</strong>term<strong>in</strong>ed us<strong>in</strong>g a Thoma haemocytometer. The suspension was <strong>the</strong>n<br />

centrifuged (400 g for 10 m<strong>in</strong>, 4°C) and <strong>the</strong> supernatant replaced by CMFASW to obta<strong>in</strong> a<br />

f<strong>in</strong>al concentration of 1 ± 0.25 x 10 6 cells ml -1 . This concentration was double-checked as<br />

<strong>de</strong>scribed above.<br />

ROS were measured us<strong>in</strong>g peroxidase/lum<strong>in</strong>ol-enhanced chemilum<strong>in</strong>escence (PLCL) as<br />

<strong>de</strong>scribed <strong>in</strong> Coteur et al. (2002), us<strong>in</strong>g a EG&G LB-9507 lum<strong>in</strong>ometer. Measurements were<br />

normalised with <strong>the</strong> actual coelomocyte concentration <strong>in</strong> each sample and expressed ei<strong>the</strong>r as<br />

<strong>the</strong> sum of all 10 m<strong>in</strong>-<strong>in</strong>terval measurements for 10 6 cells ("total chemilum<strong>in</strong>escence").<br />

Possible correlations between ROS production and PCB concentrations <strong>in</strong> sea star tissues<br />

were tested us<strong>in</strong>g bivariate correlation procedures <strong>in</strong> <strong>the</strong> SPSS 11 software.<br />

46


RESULTS<br />

PCB congener bioaccumulation<br />

Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

The uptake k<strong>in</strong>etics of <strong>the</strong> 10 PCB congeners tested were <strong>de</strong>term<strong>in</strong>ed <strong>in</strong> 2 different body<br />

compartments (bodywall and pyloric caeca) and are shown <strong>in</strong> Fig.9 (sum of 10 PCBs) and<br />

Figs 10 and 11 (<strong>in</strong>dividual congeners).<br />

Figure 9. Uptake k<strong>in</strong>etics of <strong>the</strong> sum of 10 PCB congeners (mean concentration <strong>in</strong><br />

ng g –1 total lipids) <strong>in</strong> bodywall and pyloric caeca of A. <strong>rubens</strong> exposed to spiked<br />

sediments<br />

A.<br />

47


A.<br />

B.<br />

B.<br />

Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Figure 10. Uptake k<strong>in</strong>etics of 7 non coplanar PCB congeners (mean concentration<br />

<strong>in</strong> ng g –1 total lipids) <strong>in</strong> (A) bodywall and (B) pyloric caeca of A. <strong>rubens</strong> exposed<br />

to spiked sediments<br />

PCB concentration (ng g -1 lipids)<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

PCB concentration (ng g -1 lipids)<br />

PCB 77 PCB 126 PCB 169<br />

0 5 10 15 20 25 30<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Time (d)<br />

PCB 77 PCB 126 PCB 169<br />

0 5 10 15 20 25 30<br />

Time (d)<br />

Figure 11. Individual uptake k<strong>in</strong>etics of 3 c-PCB congeners (mean concentration <strong>in</strong> ng g –1 total<br />

lipids ± SD, n = 3) <strong>in</strong> (A) bodywall and (B) pyloric caeca of A. <strong>rubens</strong> exposed to spiked<br />

sediments.<br />

48


Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

The monitor<strong>in</strong>g of PCB congener concentrations <strong>in</strong> sediments after spik<strong>in</strong>g and after 28 days<br />

of exposure (Table 4) showed that S 10 PCB concentration <strong>de</strong>creased from 178 ng g -1 dry wt at<br />

<strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> experiment to 129 ng g -1 dry wt at day 28. Concentrations <strong>de</strong>creased with<br />

similar rates regardless <strong>the</strong> congener, <strong>in</strong>dicat<strong>in</strong>g that no particular process o<strong>the</strong>r than<br />

<strong>de</strong>sorption from sediments was responsible for this loss. Assum<strong>in</strong>g <strong>the</strong> concentration <strong>de</strong>crease<br />

rate was constant this would result <strong>in</strong> a time-<strong>in</strong>tegrated mean sediment concentration of 154<br />

ng g -1 dry wt.<br />

Table 4. Concentration of different PCB congeners <strong>in</strong> <strong>the</strong> sediments (mean concentration; ng g -1 dry wt; n=3).<br />

Before PCB addition After PCB addition and 24 hrs un<strong>de</strong>r<br />

flow<strong>in</strong>g seawater<br />

49<br />

After 28 days of experiment<br />

PCB 28 0.044 5.9 4.2<br />

PCB 52 0.004 7.1 5.1<br />

PCB 77 0.003 5.2 3.5<br />

PCB 101 0.008 26 18<br />

PCB 118 0.005 27 19<br />

PCB 126


Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Table 5. Parameters and statistics of <strong>the</strong> equations <strong>de</strong>scrib<strong>in</strong>g uptake k<strong>in</strong>etics of <strong>the</strong> non-coplanar PCB congeners<br />

accumulated from sediments <strong>in</strong> two body compartments of <strong>Asterias</strong> <strong>rubens</strong>. Mo<strong>de</strong>l used: C(t)=C 0+C ss.(1-e -k.t )<br />

where C(t) and C 0 are PCB concentrations (ng g -1 lipids) respectively at time t (d) and at time 0 and C ss is <strong>the</strong><br />

PCB concentration <strong>in</strong>corporated at steady-state; k is <strong>the</strong> <strong>de</strong>puration rate constant (d -1 ); ASE is <strong>the</strong> asymptotic<br />

standard error; C BKD is <strong>the</strong> background PCB concentrations, measured <strong>in</strong> sea stars before start<strong>in</strong>g <strong>the</strong><br />

experiment; R 2 corr is <strong>the</strong> corrected <strong>de</strong>term<strong>in</strong>ation coefficient.<br />

Congener C BKD C 0(ASE) C ss(ASE) k (ASE) R 2 corr<br />

Body wall PCB 28 8.33 - 367 (21.2) 0.33 (0.08) 0.69<br />

PCB 52 31.1 - 593 (29.5) 0.22 (0.04) 0.83<br />

PCB 101 200 191 (241) 3000 (426) 0.08 (0.03) 0.81<br />

PCB 118 278 195 (287) 3530 (695) 0.06 (0.03) 0.76<br />

PCB 138 989 629 (209) 4340 (1940) 0.03 (0.02) 0.82<br />

PCB 153 1330 685 (261) 5580 (3750) 0.03 (0.03) 0.78<br />

PCB 180 32.2 75.1 (134) 1520 (536) 0.05 (0.04) 0.72<br />

∑ 10PCBs 2980 1510 (1300) 16600 (2910) 0.07 (0.03) 0.78<br />

Pyloric caeca PCB 28 14.4 5.69 (68.3) 584 (89.1) 0.10 (0.05) 0.71<br />

PCB 52 48.1 55.8 (84.2) 670 (116) 0.10 (0.05) 0.69<br />

PCB 101 203 236 (183) 1470 (624) 0.06 (0.05) 0.58<br />

PCB 118 214 204 (168) 1210 (498) 0.06 (0.06) 0.56<br />

PCB 138 540 475 (163) 758 (243) 0.09 (0.09) 0.44<br />

PCB 153 743 505 (211) 852 (221) 0.12 (0.11) 0.42<br />

PCB 180 27.8 - 200 (31.5) 0.41 (0.32) 0.18<br />

∑ 10PCBs 1890 1830 (941) 5230 (1390) 0.09 (0.08) 0.52<br />

Table 6. PCB concentrations over time (d) (mean ± SD; ng g -1 lipids) <strong>in</strong> <strong>the</strong> bodywall (A) and pyloric caeca (B)<br />

of <strong>the</strong> sea star.<br />

A.Bodywall<br />

Time PCB 28 PCB 52 PCB 77 PCB 101 PCB 118 PCB 126 PCB 138 PCB 153 PCB 169 PCB 180 ∑ 10PCBs<br />

0 7.63 ± 1.21 25.5 ± 3.54 39.5 ± 3.54 112 ± 2.12 171 ± 1.41 30.7 ± 6.66 444 ± 38.4 559 ± 17.1 0.90 ± 0.12 28.0 ± 1.41 1600 ± 290<br />

2 265 ± 66.8 292 ± 74.6 49.7 ± 18.2 987 ± 384 1020 ± 352 48.3 ± 10.7 1140 ± 246 1150 ± 322 0.85 ± 0.24 411 ± 170 5360 ± 1560<br />

4 302 ± 84.5 411 ± 64.5 59.0 ± 33.0 1205 ± 377 1140 ± 359 41.3 ± 4.93 1230 ± 379 935 ± 240 0.76 ± 0.14 419 ± 222 5750 ± 1690<br />

7 374 ± 72.9 501 ± 95.8 330 ± 83.3 1650 ± 453 1540 ± 397 473 ± 157 1740 ± 301 2060 ± 251 42.7 ± 24.8 578 ± 206 9280 ± 2000<br />

11 398 ± 139 579 ± 167 298 ± 227 1950 ± 649 1820 ± 484 605 ± 154 1820 ± 436 2020 ± 517 41.2 ± 35.2 653 ± 301 9990 ± 3180<br />

16 371 ± 61.6 531 ± 96.2 94.5 ± 51.3 2230 ± 714 2390 ± 744 51.5 ± 8.85 2570 ± 771 2820 ± 830 0.92 ± 0.11 765 ± 328 11800 ± 3470<br />

21 423 ± 84.2 637 ± 148 151 ± 70.7 3320 ± 985 3240 ± 829 53.7 ± 8.50 3250 ± 1000 3790 ± 1240 0.74 ± 0.06 1630 ± 356 16700 ± 4800<br />

28 318 ± 37.7 584 ± 50.3 57.5 ± 35.7 2905 ± 366 2960 ± 359 63.8 ± 7.59 3290 ± 484 3720 ± 613 0.91 ± 0.20 1180 ± 207 15100 ± 1690<br />

B.Pyloric caeca<br />

Time PCB 28 PCB 52 PCB 77 PCB 101 PCB 118 PCB 126 PCB 138 PCB 153 PCB 169 PCB 180 ∑ 10PCBs<br />

0 12.7 ± 2.08 61.5 ± 14.9 42.7 ± 7.02 215 ± 99.1 209 ± 65.8 25.3 ± 10.2 382 ± 77.2 522 ± 167 0.07 ± 0.02 16.3 ± 4.16 162 ± 442<br />

2 221 ± 87.5 294 ± 113 116 ± 32.35 624 ± 209 560 ± 179 59.0 ± 48.1 759 ± 184 913 ± 254 0.07 ± 0.02 177 ± 85.6 3700 ± 1020<br />

4 214 ± 35.4 334 ± 118 160 ± 33.94 569 ± 97.6 532 ± 88.4 119 ± 39.6 756 ± 88.4 910 ± 63.6 5.71 ± 9.78 139 ± 89.1 3730 ± 350<br />

7 340 ± 177 411 ± 208 172 ± 99.86 855 ± 504 776 ± 424 154 ± 148 983 ± 394 1170 ± 366 0.08 ± 0.01 218 ± 168 5080 ± 2380<br />

50


Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

11 362 ± 201 477 ± 63.7 147 ± 80.35 856 ± 314 707 ± 301 69.0 ± 78.4 788 ± 296 890 ± 311 0.44 ± 0.66 184 ± 149 4480 ± 1660<br />

16 429 ± 26.7 499 ± 35.0 65.0 ± 14.00 1016 ± 126 887 ± 71.9 36.7 ± 3.21 1080 ± 55.0 1250 ± 80.8 0.06 ± 0.01 139 ± 31.4 5400 ± 351<br />

21 595 ± 174 689 ± 235 72.3 ± 37.29 1360 ± 527 1110 ± 415 33.3 ± 12.7 1060 ± 259 1300 ± 398 0.06 ± 0.01 218 ± 175 6440 ± 2130<br />

28 539 ± 141 688 ± 241 104 ± 62.34 1410 ± 630 1230 ± 570 42.5 ± 16.8 1220 ± 493 1370 ± 519 0.05 ± 0.01 227 ± 183 6830 ± 2810<br />

When <strong>in</strong>dividual PCB congeners were consi<strong>de</strong>red, uptake <strong>in</strong> bodywall and pyloric caeca<br />

displayed saturation k<strong>in</strong>etics for all congeners except <strong>the</strong> coplanar ones (Fig.10, Tables 5 and<br />

6). In <strong>the</strong> case of coplanar congeners, k<strong>in</strong>etics showed a fairly unpredictable bioaccumulative<br />

behaviour (Fig.11). In<strong>de</strong>ed, <strong>the</strong>ir concentration <strong>in</strong>creased at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> experiment<br />

(until day 7 to 11), and <strong>the</strong>n dropped sharply. In bodywall, <strong>the</strong> estimated steady-state<br />

concentrations (C 0 + C ss) of non-coplanar congeners ranged from 367 ng g -1 lipids (PCB 28) to<br />

6.3 µg g -1 lipids (PCB 153) (ratio=1:17) whereas <strong>in</strong> <strong>the</strong> pyloric caeca, values were lower,<br />

rang<strong>in</strong>g from 590 ng g -1 lipids (PCB 28) to 1.7 µg g -1 lipids (PCB 101) (ratio=1:3).<br />

In or<strong>de</strong>r to verify a possible metabolic transformation of <strong>the</strong> c-PCBs, ratios of <strong>the</strong> non<br />

coplanar PCB 153 (which is not metabolized) to PCB 77, PCB 126 and PCB 169 have been<br />

calculated for sediments and sea star tissues at different times dur<strong>in</strong>g <strong>the</strong> experiment (Fig. 12).<br />

The ratio did not vary much for sediments, <strong>in</strong>dicat<strong>in</strong>g that no significant metabolization of<br />

<strong>the</strong>se congeners occurred. In contrast, <strong>the</strong> ratios of PCB 153 to c-PCBs <strong>in</strong> sea star tissues<br />

<strong>in</strong>creased up to a factor 30,000 (Fig.12).<br />

Figure 12. Variation of <strong>the</strong> ratio between PCB 153 and c-PCBs 77, 126 and 169 <strong>in</strong> sediments (yellow) and sea<br />

stars bodywall (orange) and pyloric caeca (green) at different times dur<strong>in</strong>g <strong>the</strong> exposure period. Time 0:<br />

background ratios (before spik<strong>in</strong>g). To fit <strong>the</strong> figure, PCB 153:169 ratio is divi<strong>de</strong>d by a factor 100 <strong>in</strong> sea stars<br />

bodywall, and by 1000 <strong>in</strong> pyloric caeca.<br />

51


Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Correlations between <strong>in</strong>corporated concentrations of different congeners were also calculated.<br />

Bioaccumulation of several congeners was found to be highly correlated <strong>in</strong> both tissues. The<br />

strongest correlations were found for PCBs 28 vs. 52 (r ≥ 0.91), 101 vs. 118 (r ≥ 0.99), and<br />

138 vs. 153 (r ≥ 0.98). Significant correlations were also found between c-PCB concentrations<br />

<strong>in</strong> bodywall and pyloric caeca, both for <strong>in</strong>tra- and <strong>in</strong>ter-tissue comparisons. In particular, PCB<br />

77 and PCB 126 concentrations were always closely correlated, sometimes with very high<br />

correlation coefficient values (e.g., r = 0.95, p ≤ 0.0001 <strong>in</strong> bodywall).<br />

Toxic Equivalents<br />

Diox<strong>in</strong> toxic equivalents (TEQs) were calculated for c-PCBs us<strong>in</strong>g toxic equivalency factors<br />

(TEFs) as <strong>de</strong>scribed by Smith & Gangoli (2002) (Fig.13). Toxicity was always dom<strong>in</strong>ated by<br />

c-PCB 126 <strong>the</strong> contribution of which accounted for more than 98% of <strong>the</strong> total TEQ <strong>in</strong> sea<br />

star tissues. The highest TEQ values calculated for c-PCB 126 were 60.5 ± 15.4 µg TEQ g -1<br />

lipids <strong>in</strong> <strong>the</strong> bodywall (at day 11) and 15.4 ± 14.8 µg TEQ g -1 lipids <strong>in</strong> <strong>the</strong> pyloric caeca (at<br />

day 7).<br />

A.<br />

B.<br />

PCB concentration (pg TEQ g -1 lipids)<br />

PCB concentration (pg TEQ g -1 lipids)<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

Bodywall Pyloric caeca Sum LCL S<br />

0 2 7 16 28<br />

Time (d)<br />

Bodywall Pyloric caeca Sum LCL S<br />

0 2 7 16 28<br />

Time (d)<br />

52<br />

90000<br />

80000<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

90000<br />

80000<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

Total Chemilum<strong>in</strong>escence (RLU)<br />

Total Chemilum<strong>in</strong>escence (RLU)


C.<br />

PCB concentration (100 pg TEQ g -1 lipids)<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Bodywall Pyloric caeca Sum LCL S<br />

0 2 7 16 28<br />

Time (d)<br />

Figure 13. Comparison between c-PCB 77 (A), 126 (B) and 169 (C) concentrations<br />

(pg WHO TEQ g -1 lipids; except PCB 169 <strong>in</strong> pyloric caeca: 100 pg WHO TEQ g -1<br />

total lipids) <strong>in</strong> bodywall (white bars) and pyloric caeca (grey bars), and ROS<br />

production by bacteria-stimulated amoebocytes (white dots; total<br />

chemilum<strong>in</strong>escence, RLU) of A. <strong>rubens</strong> exposed to spiked sediments.<br />

Effects of PCB congeners on ROS production<br />

In or<strong>de</strong>r to ga<strong>in</strong> some <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> effects of PCB congeners <strong>in</strong> this species, reactive<br />

oxygen species (ROS) production was analysed for nonstimulated and bacteria-stimulated<br />

coelomocytes.<br />

Dur<strong>in</strong>g <strong>the</strong> experiment, <strong>the</strong> variation of ROS production displayed a dist<strong>in</strong>ct behaviour, quite<br />

comparable to that observed for c-PCBs uptake k<strong>in</strong>etics (Fig. 13). In<strong>de</strong>ed, ROS production <strong>in</strong><br />

both nonstimulated and bacteria-stimulated coelomocytes <strong>in</strong>creased sharply dur<strong>in</strong>g <strong>the</strong> first<br />

week of exposure, <strong>the</strong>n <strong>de</strong>cl<strong>in</strong>ed and reached a constant level, close to background levels,<br />

dur<strong>in</strong>g <strong>the</strong> two last weeks (Fig. 14).<br />

A. Bodywall<br />

PCB concentration (ng g -1 lipids)<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

PCB 77 PCB 126 PCB 169 Sum LCL NS Sum LCL S<br />

0 5 10 15 20 25 30<br />

Time (d)<br />

53<br />

90000<br />

80000<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

Total Chemilum<strong>in</strong>escence (RLU)<br />

100000<br />

90000<br />

80000<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

ROS production (sum LCL)


B. Pyloric caeca<br />

PCB concentration (ng g -1 lipids; pg PCB169 g -1<br />

lipids)<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

PCB 77 PCB 126 PCB 169 Sum LCL NS Sum LCL S<br />

0<br />

0<br />

0 5 10 15 20 25 30<br />

Time (d)<br />

Figure 14. Comparison between ROS production by nonstimulated (black dots) and<br />

bacteria-stimulated (white dots) amoebocytes (total chemilum<strong>in</strong>escence, RLU) and<br />

c-PCB 77 (white squares) 126 (light grey squares) and 169 (dark grey squares)<br />

concentrations (ng g -1 total lipids; except PCB 169 <strong>in</strong> pyloric caeca: pg g -1 total<br />

lipids) <strong>in</strong> (A) bodywall and (B) pyloric caeca of A. <strong>rubens</strong> exposed to spiked<br />

sediments.<br />

Most notably, <strong>the</strong> k<strong>in</strong>etic behaviour of ROS production matched perfectly that displayed by c-<br />

PCB bioaccumulation <strong>in</strong> sea star tissues (see Figs 13 and 14, respectively). Therefore,<br />

correlations were computed between ROS production and c-PCB tissue content expressed<br />

ei<strong>the</strong>r as TEQ or concentrations. Except for PCB 77 and PCB 169 <strong>in</strong> pyloric caeca, c-PCB<br />

concentrations <strong>in</strong> <strong>the</strong> two body compartments were significantly correlated to ROS production<br />

by nonstimulated and bacteria-stimulated coelomocytes, with correlation coefficients rang<strong>in</strong>g<br />

from 0.71 to 0.84.<br />

DISCUSSION<br />

The present study is a complement to two previous studies <strong>de</strong>al<strong>in</strong>g with s<strong>in</strong>gle PCB congener<br />

accumulation <strong>in</strong> sea stars, <strong>in</strong> <strong>the</strong> form of two structurally-contrast<strong>in</strong>g radiolabelled PCB<br />

congeners, PCB 153 and c-PCB 77 (Danis et al. Chap. III.2, III.3, respectively). These<br />

previous experiments, along with those performed <strong>in</strong> <strong>the</strong> present study, were <strong>de</strong>signed to<br />

obta<strong>in</strong> complementary <strong>in</strong>formation on PCB bioaccumulation <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

us<strong>in</strong>g different techniques (GC-ECD vs. radiotracer techniques), uptake routes (seawater,<br />

food, sediments), and contam<strong>in</strong>ants (10 different congeners), but always us<strong>in</strong>g contam<strong>in</strong>ant<br />

exposure concentrations that were on <strong>the</strong> same or<strong>de</strong>r of magnitu<strong>de</strong> as those that can occur <strong>in</strong><br />

<strong>the</strong> mar<strong>in</strong>e environment.<br />

54<br />

100000<br />

90000<br />

80000<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

ROS production (sum LCL)


Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Results of <strong>the</strong> present study clearly <strong>de</strong>monstrated that all PCB congeners tested were<br />

accumulated efficiently <strong>in</strong> sea star tissues, with transfer factors from sediments of 120 <strong>in</strong> <strong>the</strong><br />

bodywall and 40 <strong>in</strong> <strong>the</strong> pyloric caeca. These values, although slightly lower, are comparable<br />

to those found for sediment exposure <strong>in</strong> previous studies us<strong>in</strong>g <strong>the</strong> s<strong>in</strong>gle congener PCB 153<br />

(Danis et al. Chap. III.2); this suggests that <strong>the</strong> presence of a mixture of congeners does not<br />

<strong>in</strong>terfere with uptake efficiency of PCB 153 <strong>in</strong> sea star tissues.<br />

When consi<strong>de</strong>r<strong>in</strong>g <strong>the</strong> sum of <strong>the</strong> 10 PCB congeners tested, uptake k<strong>in</strong>etics <strong>in</strong> bodywall and<br />

pyloric caeca were best <strong>de</strong>scribed by cont<strong>in</strong>uous <strong>in</strong>creas<strong>in</strong>g functions eventually reach<strong>in</strong>g a<br />

steady state. Between <strong>the</strong> two tissues, bodywall was found to be <strong>the</strong> most effective<br />

accumulator which is <strong>in</strong> agreement with previous observations (Danis et al. Chap. III.2).<br />

Because it is an efficient accumulator, easily dissected, and constitutes ca. 75% of <strong>the</strong> total<br />

sea star body weight, bodywall could serve as an i<strong>de</strong>al target tissue for biomonitor<strong>in</strong>g studies<br />

us<strong>in</strong>g sea stars as bio<strong>in</strong>dicators. Bodywall analysis of PCBs would complement <strong>the</strong><br />

<strong>in</strong>formation ga<strong>the</strong>red through analysis of pyloric caeca which are often <strong>the</strong> only organs<br />

exam<strong>in</strong>ed <strong>in</strong> field studies (e.g. Everaarts et al. 1998, <strong>de</strong>n Besten et al. 2001, Stronkhorst et al.<br />

2003).<br />

When exam<strong>in</strong><strong>in</strong>g <strong>in</strong>dividual congeners separately, all <strong>the</strong> non-coplanar PCBs followed <strong>the</strong><br />

same saturation k<strong>in</strong>etics as S 10 PCBs, although <strong>the</strong>y atta<strong>in</strong>ed different steady-state<br />

concentration values. Surpris<strong>in</strong>gly, <strong>the</strong> uptake k<strong>in</strong>etics for coplanar congeners, displayed<br />

totally different patterns; for example, <strong>the</strong> concentrations of <strong>the</strong>se PCBs reached a peak value<br />

after 7 to 11 days of exposure, accord<strong>in</strong>g to <strong>the</strong> c-congener, and <strong>the</strong>n sud<strong>de</strong>nly dropped to<br />

<strong>in</strong>itial values. This behaviour could be due ei<strong>the</strong>r to a change <strong>in</strong> bioaccumulation parameters<br />

(<strong>de</strong>crease <strong>in</strong> uptake rate or <strong>in</strong>crease <strong>in</strong> loss rate) or, alternatively, to <strong>the</strong> progressive activation<br />

of an efficient <strong>de</strong>toxification mechanism that triggers metabolization of <strong>the</strong> c-PCB<br />

specifically. In view of exist<strong>in</strong>g literature, <strong>the</strong> second hypo<strong>the</strong>sis appears to be <strong>the</strong> most<br />

plausible one. In<strong>de</strong>ed, specific <strong>in</strong>duction of P450 enzymatic activity has been reported <strong>in</strong><br />

ech<strong>in</strong>o<strong>de</strong>rms exposed to c-PCBs (e.g., <strong>de</strong>n Besten et al. 1993; Danis et al. Chap. III.3, III.4).<br />

In addition, <strong>the</strong> fact that ratios of <strong>the</strong> non-ortho substituted congeners (PCBs 77, 126 and 169)<br />

to <strong>the</strong> PCB 153 <strong>in</strong>creased dur<strong>in</strong>g <strong>the</strong> experiment support <strong>the</strong> existence of a metabolic<br />

transformation of <strong>the</strong>se c-PCB congeners.<br />

c-PCBs have close structural similarities with polychlorodibenzo-p-diox<strong>in</strong>s (PCDDs)<br />

(Metcalfe et al 1994, Schweitzer et al. 1997, Walker & Peterson 1994). Those c-PCBs with<br />

vic<strong>in</strong>al hydrogen atoms <strong>in</strong> o, m positions and 0-1 ortho chlor<strong>in</strong>e atoms, such as PCBs 77 and<br />

55


Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

126, are generally thought to be targets of Cytochrome P450 (CYP) isozymes and<br />

consequently metabolized (Hong et al. 1998). Regard<strong>in</strong>g <strong>the</strong> effects of PCB 77, caution<br />

should be exercised, as exist<strong>in</strong>g evaluations of <strong>the</strong> toxicity (and metabolization) are hampered<br />

by variations <strong>in</strong> toxic effects and <strong>in</strong> different species (Safe 1994). Whereas <strong>the</strong> CYP enzyme<br />

system and its <strong>in</strong>ducibility have been extensively <strong>de</strong>scribed <strong>in</strong> vertebrates, much less is known<br />

for <strong>in</strong>vertebrates <strong>de</strong>spite <strong>the</strong> fact that <strong>the</strong> CYP1A system has been reported <strong>in</strong> four<br />

<strong>in</strong>vertebrate phyla: annelids, arthropods, ech<strong>in</strong>o<strong>de</strong>rms and molluscs (Lee 1981, Bucheli &<br />

Fent 1995). In particular, <strong>the</strong> first ech<strong>in</strong>o<strong>de</strong>rm CYP genes were recently i<strong>de</strong>ntified by Sny<strong>de</strong>r<br />

(1998) <strong>in</strong> digestive tissues of a sea urch<strong>in</strong> (Lytech<strong>in</strong>us anamesis), and evi<strong>de</strong>nce for <strong>the</strong><br />

presence of P450 enzymes belong<strong>in</strong>g to <strong>the</strong> CYP1, CYP2, and CYP3 subfamilies has been<br />

reported previously <strong>in</strong> sea stars (<strong>de</strong>n Besten et al. 1993, Danis et al. Chap. III.3, III.4).<br />

If, as strongly suggested by <strong>the</strong>se observations, a metabolization of <strong>the</strong> c-PCBs actually<br />

occurs, our results <strong>in</strong>dicate that PCBs 77, 126 and 169 un<strong>de</strong>rgo similar metabolic processes <strong>in</strong><br />

sea stars, and that CYP enzymes play a pivotal role <strong>in</strong> <strong>the</strong>se processes.<br />

Most noteworthy, <strong>the</strong> immune biomarker (ROS production) that was measured dur<strong>in</strong>g <strong>the</strong><br />

bioaccumulation experiment followed exactly <strong>the</strong> same pattern as c-PCB uptake; i.e., after an<br />

<strong>in</strong>itial <strong>in</strong>crease to day 7, ROS production fell to control levels from day 16 until <strong>the</strong> end of <strong>the</strong><br />

experiment. This observation could be due to toxicity and subsequent impairment of<br />

amoebocytes occurr<strong>in</strong>g when PCB concentrations reach a certa<strong>in</strong> level with<strong>in</strong> <strong>the</strong> organism’s<br />

tissues. However, non-coplanar PCB congeners (viz., <strong>the</strong> ones show<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>g<br />

concentrations over time) were shown to have no effect on ROS production <strong>in</strong> ech<strong>in</strong>o<strong>de</strong>rms<br />

(Coteur et al. 2001, Danis et al. Chap. III.4). In contrast, c-PCBs are well-documented to<br />

specifically stimulate ROS production by amoebocytes <strong>in</strong> ech<strong>in</strong>o<strong>de</strong>rms (Coteur et al. 2001,<br />

Danis et al. Chap. III.3, III.4) as well as <strong>in</strong> o<strong>the</strong>r mar<strong>in</strong>e organisms (e.g., Wilbr<strong>in</strong>k et al. 1991,<br />

Duffy et al. 2002). Therefore, <strong>the</strong> return of ROS production to normal levels is clearly related<br />

to <strong>the</strong> <strong>de</strong>crease <strong>in</strong> c-PCB concentrations <strong>in</strong> <strong>the</strong> sea stars. This is also suggested by <strong>the</strong> strong<br />

correlation found between c-PCB concentrations and ROS production values. Such a drop <strong>in</strong><br />

ROS production was also reported <strong>in</strong> A. <strong>rubens</strong> dur<strong>in</strong>g experimental exposure to <strong>the</strong> c-PCB 77<br />

congener (Danis et al. Chap. III.3). The <strong>in</strong>volvement of a congener-specific protective<br />

mechanism through <strong>the</strong> cytochrome P450 system was also suggested, s<strong>in</strong>ce a clear <strong>in</strong>duction<br />

of a CYP1A immunopositive prote<strong>in</strong> (CYP1A IPP) was measured follow<strong>in</strong>g c-PCB 77 and<br />

126 exposure, but not follow<strong>in</strong>g PCB 153 exposure (Danis et al. Chap. III.3, III.4).<br />

56


Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

The immunotoxic effects measured <strong>in</strong> <strong>the</strong> present study show <strong>the</strong> potential importance of<br />

ROS production as a biomarker of c-PCB exposure, and constitute a good basis to argue for<br />

<strong>the</strong> usefulness of ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicator organisms for PCBs. In addition, this immune<br />

biomarker is of high ecological relevance, s<strong>in</strong>ce it furnishes direct <strong>in</strong>formation about <strong>the</strong><br />

health of <strong>the</strong> organisms. In<strong>de</strong>ed, high levels of ROS production can lead to <strong>the</strong> production of<br />

large quantities of reduction products, such as <strong>the</strong> hydroxyl radical (OH • ) or <strong>the</strong> superoxi<strong>de</strong><br />

anion ( • -<br />

O2 ) which are extremely potent oxidants that react with cellular macromolecules (e.g.,<br />

Babior et al. 1984, W<strong>in</strong>ston & Di Giulio 1991, Chia and X<strong>in</strong>g 1996, Baier-An<strong>de</strong>rson &<br />

An<strong>de</strong>rson 2000).<br />

It is <strong>in</strong>terest<strong>in</strong>g to note that while <strong>the</strong> shape of <strong>the</strong> ROS production k<strong>in</strong>etics closely reflected<br />

<strong>the</strong> observations of Danis et al. (Chap. III.3), <strong>the</strong> pattern of <strong>the</strong> PCB 77 uptake k<strong>in</strong>etics<br />

observed here did not. In <strong>the</strong> present study PCB 77 was bioaccumulated <strong>in</strong> A. <strong>rubens</strong> tissues<br />

follow<strong>in</strong>g bell-shaped k<strong>in</strong>etics, whereas Danis et al. (Chap. III.3) <strong>de</strong>scribed a cont<strong>in</strong>uous<br />

<strong>in</strong>creas<strong>in</strong>g uptake f<strong>in</strong>ally reach<strong>in</strong>g a steady state. In view of <strong>the</strong> above discussion, this k<strong>in</strong>etic<br />

discrepancy is most certa<strong>in</strong>ly due to <strong>the</strong> different analytical methods used <strong>in</strong> both studies. The<br />

present study used classical chemical analysis (GC-ECD) which unequivocally i<strong>de</strong>ntifies each<br />

congener, whereas Danis et al. (Chap. III.3) used liquid sc<strong>in</strong>tillation techniques to measure <strong>the</strong><br />

14 C activity of radiolabelled PCB 77. Although <strong>the</strong> use of a radiotracer has numerous<br />

advantages <strong>in</strong> study<strong>in</strong>g c-PCB biok<strong>in</strong>etics (e.g. <strong>in</strong>crease <strong>in</strong> <strong>de</strong>tection sensitivity), <strong>the</strong> major<br />

drawback of this technique is that it <strong>de</strong>tects only 14 C and not specifically <strong>the</strong> PCB congeners.<br />

Hence, no differentiation can be ma<strong>de</strong> between <strong>the</strong> congener itself and possible <strong>de</strong>gradation<br />

products if <strong>the</strong> labelled molecule is metabolized. Therefore, based on <strong>the</strong> observations noted<br />

<strong>in</strong> our study as well as those reported by Danis et al. (Chap. III.3, III.4) on ROS production<br />

and CYP1A IPP <strong>in</strong>duction, we suspect that <strong>the</strong> saturation k<strong>in</strong>etics reported for radiolabelled<br />

PCB 77 bioaccumulation result from <strong>de</strong>tection of both 14 C-PCB 77 and its 14 C-metabolite(s)<br />

ra<strong>the</strong>r than be<strong>in</strong>g due to a different k<strong>in</strong>etic behaviour.<br />

CONCLUSIONS<br />

In general, <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs from this study <strong>de</strong>monstrate a strong relationships between <strong>the</strong><br />

bioaccumulation of coplanar PCB and resultant immunotoxic effects. Fur<strong>the</strong>rmore, <strong>the</strong>se<br />

results have provi<strong>de</strong>d evi<strong>de</strong>nce for congener-specific toxicity un<strong>de</strong>r complex, realistic<br />

conditions (i.e. exposure to a mixture of PCB congeners bound to sediments conta<strong>in</strong><strong>in</strong>g<br />

ecologically-relevant concentrations). These f<strong>in</strong>d<strong>in</strong>gs un<strong>de</strong>rscore <strong>the</strong> need to provi<strong>de</strong><br />

57


Bioaccumulation and effects of a mixture of PCB congeners <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

<strong>in</strong>formation <strong>in</strong> natural environments about similar coplanar-specific biological effects <strong>in</strong> o<strong>the</strong>r<br />

organisms, especially <strong>the</strong> “classical” bio<strong>in</strong>dicator species such as bivalves. The<br />

recommendations for PCB monitor<strong>in</strong>g that are presently adopted by <strong>in</strong>ternational<br />

organisations (e.g. EU, ICES) and wi<strong>de</strong>ly followed <strong>in</strong> <strong>the</strong> scientific community, generally<br />

address a limited set of PCB congeners (viz. #28, 52, 101, 138, 153 and 180). The latter ones<br />

are well-known to be <strong>the</strong> most relevant <strong>in</strong> terms of PCB abundance <strong>in</strong> biota and environment<br />

(e.g. OSPAR 2000), but not at all with respect to <strong>the</strong>ir toxicity and as a threat to mar<strong>in</strong>e<br />

ecosystems. Our results clearly show that coplanar congeners were <strong>the</strong> only ones responsible<br />

for <strong>the</strong> observed immunotoxicity, <strong>de</strong>spite <strong>the</strong> fact that <strong>the</strong>y were much less abundant <strong>in</strong> <strong>the</strong><br />

experimental environment (as occurs <strong>in</strong> <strong>the</strong> natural environment) and far less bioconcentrated<br />

than <strong>the</strong> congeners “recommen<strong>de</strong>d” for monitor<strong>in</strong>g studies. Because PCBs affect <strong>the</strong> immune<br />

system of sea stars <strong>in</strong> a congener-specific way, coplanar PCBs may represent a potential<br />

threat to ech<strong>in</strong>o<strong>de</strong>rm populations, and hence to benthic communities <strong>in</strong> general. Therefore, we<br />

propose that coplanar congeners be <strong>in</strong>clu<strong>de</strong>d on <strong>the</strong> list of congeners to be systematically<br />

monitored <strong>in</strong> studies <strong>de</strong>al<strong>in</strong>g with water quality assessment of <strong>the</strong> mar<strong>in</strong>e environment.<br />

Fur<strong>the</strong>rmore, a generalization of our observations to o<strong>the</strong>r mar<strong>in</strong>e taxa would necessitate a<br />

revision of <strong>the</strong> current <strong>in</strong>ternational recommendation gui<strong>de</strong>l<strong>in</strong>es.<br />

ACKNOWLEDGEMENTS<br />

This work was performed at <strong>the</strong> IAEA-Mar<strong>in</strong>e Environment Laboratory which operates un<strong>de</strong>r<br />

a bipartite agreement between <strong>the</strong> International Atomic Energy Agency and <strong>the</strong> Government<br />

of <strong>the</strong> Pr<strong>in</strong>cipality of Monaco, and was partially supported by special fund<strong>in</strong>g from <strong>the</strong><br />

National Bank of Belgium (BNB), a NFSR Research fellowship to MW, and SSTC Contract<br />

MN/11/30 of <strong>the</strong> Belgian Fe<strong>de</strong>ral Research Programme. BD and GC were hol<strong>de</strong>rs of a FRIA<br />

doctoral grant, and MW is a Honorary Research Associate of <strong>the</strong> National Fund for Scientific<br />

Research (NFSR, Belgium).<br />

58


Del<strong>in</strong>eation of PCB uptake pathways <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

III.2 Del<strong>in</strong>eation of PCB uptake pathways <strong>in</strong> a benthic sea star us<strong>in</strong>g a<br />

radiolabelled congener<br />

Mar<strong>in</strong>e Ecology Progress Series 253:155-163<br />

Danis B a , Cotret O b , Teyssié JL b , Fowler SW b , Bustamante P c & Warnau M b<br />

a. Laboratoire <strong>de</strong> Biologie mar<strong>in</strong>e (CP 160/15), <strong>Université</strong> <strong>Libre</strong> <strong>de</strong> <strong>Bruxelles</strong>, Av. F.D.<br />

Roosevelt 50, B-1050 Brussels, Belgium<br />

b. International Atomic Energy Agency, Mar<strong>in</strong>e Environment Laboratory, 4 Quai Anto<strong>in</strong>e Ier,<br />

BP 800, MC-98012 Monaco ce<strong>de</strong>x<br />

c. Laboratoire <strong>de</strong> Biologie et d'Environnement Mar<strong>in</strong>s, UPRES-EA 3168, <strong>Université</strong> <strong>de</strong> La<br />

Rochelle, 22 Avenue Michel Crépeau, F-17042 La Rochelle, France<br />

59


ABSTRACT<br />

Del<strong>in</strong>eation of PCB uptake pathways <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

<strong>Asterias</strong> <strong>rubens</strong>, a common sea star <strong>in</strong> North <strong>Sea</strong> waters, was selected to study <strong>the</strong><br />

bioaccumulation of an important polychlor<strong>in</strong>ated biphenyl congener, 14 C-labelled PCB 153,<br />

from two contrasted sources: seawater and sediments. After 4 weeks of acclimation to<br />

laboratory conditions, sea stars were exposed for 34 days to realistic concentrations (30 ng l -1<br />

<strong>in</strong> seawater and 9.5 ng g -1 dry wt <strong>in</strong> sediments) of <strong>the</strong> contam<strong>in</strong>ant dur<strong>in</strong>g which time<br />

bioaccumulation of PCB#153 was followed <strong>in</strong> 6 body compartments. Results showed that (1)<br />

for each body compartment, PCB uptake k<strong>in</strong>etics were generally asymptotic and<br />

bioaccumulation was far greater when A. <strong>rubens</strong> was exposed via seawater than via<br />

sediments, (2) body wall and podia were <strong>the</strong> body compartments show<strong>in</strong>g <strong>the</strong> greatest aff<strong>in</strong>ity<br />

for <strong>the</strong> PCB congener mak<strong>in</strong>g <strong>the</strong>m i<strong>de</strong>al tissues for biomonitor<strong>in</strong>g purposes, and (3) <strong>the</strong><br />

concentrations reached <strong>in</strong> body compartments were <strong>in</strong> <strong>the</strong> range of values reported <strong>in</strong> several<br />

field studies. Because radioisotopic techniques are extremely sensitive, <strong>the</strong>y allow tak<strong>in</strong>g <strong>in</strong>to<br />

account key organs which are sometimes too small for standard analysis of PCBs.<br />

KEYWORDS<br />

Polychlor<strong>in</strong>ated biphenyls; PCB 153; bioaccumulation; k<strong>in</strong>etics; <strong>Asterias</strong> <strong>rubens</strong>; ech<strong>in</strong>o<strong>de</strong>rm<br />

60


INTRODUCTION<br />

Del<strong>in</strong>eation of PCB uptake pathways <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Polychlor<strong>in</strong>ated biphenyls (PCBs) are strictly anthropogenic chemicals that constitute one of<br />

<strong>the</strong> most problematic and wi<strong>de</strong>spread group of contam<strong>in</strong>ants. These xenobiotics, represented<br />

by 209 congeners, are extremely resistant to <strong>de</strong>gradation (physico-chemical or biological), are<br />

bioconcentrated by liv<strong>in</strong>g organisms, and can cause various adverse effects <strong>de</strong>pend<strong>in</strong>g on<br />

<strong>the</strong>ir pattern and <strong>de</strong>gree of chlor<strong>in</strong>e substitution (Metcalfe 1994). For PCBs enter<strong>in</strong>g <strong>the</strong><br />

mar<strong>in</strong>e environment, bottom sediments are <strong>the</strong> ultimate repository where <strong>the</strong>y may become a<br />

source for uptake by mar<strong>in</strong>e organisms through direct or <strong>in</strong>direct contact or, for filter fee<strong>de</strong>rs,<br />

by <strong>in</strong>gestion; however, <strong>in</strong>formation about <strong>the</strong>ir impact on benthic species is relatively scarce<br />

(Chapman 1995, Carr et al. 1996, Wood et al. 1997).<br />

Accord<strong>in</strong>g to different authors, <strong>the</strong> asteroid <strong>Asterias</strong> <strong>rubens</strong> qualifies as an excellent<br />

bio<strong>in</strong>dicator organism for monitor<strong>in</strong>g heavy metal contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> and NE<br />

Atlantic benthic ecosystems (Knickmeyer et al. 1992, <strong>de</strong>n Besten et al. 1993, Everaarts et al.<br />

1998, Temara et al. 1998b, Warnau et al. 1999). It is <strong>in</strong><strong>de</strong>ed a wi<strong>de</strong>ly distributed and abundant<br />

key species (sensu Lewis 1978) that is easy to collect, i<strong>de</strong>ntify and ma<strong>in</strong>ta<strong>in</strong> <strong>in</strong> <strong>the</strong> laboratory.<br />

In addition, A. <strong>rubens</strong> is a top predator feed<strong>in</strong>g ma<strong>in</strong>ly on mussels and liv<strong>in</strong>g on or <strong>in</strong> <strong>the</strong><br />

proximity to bottom sediments which are <strong>the</strong> ma<strong>in</strong> reservoir of many contam<strong>in</strong>ants, <strong>in</strong>clud<strong>in</strong>g<br />

PCBs. The biological and ecological characteristics of A. <strong>rubens</strong> as well as its potential<br />

economic impact (as a predator of commercially important mussels) have lead some authors<br />

to use this species as a tool to assess <strong>the</strong> <strong>de</strong>gree of PCB contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> (<strong>de</strong>n<br />

Besten et al. 1989, 1993, Everaarts et al.1998). However, to <strong>the</strong> best of our knowledge, no<br />

study has <strong>in</strong>vestigated PCB bioaccumulation processes <strong>in</strong> A. <strong>rubens</strong>. The only two<br />

experimental studies <strong>in</strong>vestigat<strong>in</strong>g PCB bioaccumulation <strong>in</strong> ech<strong>in</strong>o<strong>de</strong>rms concern sea urch<strong>in</strong>s<br />

exposed to contam<strong>in</strong>ated sediments (Weisberg et al. 1996, Schweitzer et al. 2000), and only<br />

Weisberg et al. (1996) exam<strong>in</strong>ed <strong>the</strong> k<strong>in</strong>etic aspects of PCB uptake.<br />

Such data are however nee<strong>de</strong>d to fur<strong>the</strong>r assess <strong>the</strong> value of <strong>Asterias</strong> <strong>rubens</strong> as a bio<strong>in</strong>dicator<br />

of PCB contam<strong>in</strong>ation. Therefore, <strong>in</strong> <strong>the</strong> present study, we have <strong>in</strong>vestigated <strong>the</strong> k<strong>in</strong>etics of<br />

PCB uptake <strong>in</strong> A. <strong>rubens</strong> exposed ei<strong>the</strong>r to <strong>the</strong> contam<strong>in</strong>ant <strong>in</strong> seawater or associated with<br />

sediments, i.e. <strong>the</strong> two extreme pathways of contam<strong>in</strong>ation from <strong>the</strong> viewpo<strong>in</strong>t of absolute<br />

PCB concentrations. In<strong>de</strong>ed, <strong>the</strong> high hydrophobicity of PCBs result <strong>in</strong> a characteristic<br />

partition<strong>in</strong>g with concentrations <strong>in</strong> seawater typically <strong>in</strong> <strong>the</strong> range of pg to ng l -1 while<br />

sediment concentrations are <strong>in</strong> <strong>the</strong> range of µg to mg kg -1 (see Table 7).<br />

61


Del<strong>in</strong>eation of PCB uptake pathways <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Table 7. Characteristics of <strong>the</strong> background and ad<strong>de</strong>d concentrations of PCB 153. Background concentrations<br />

were measured <strong>in</strong> sediments, seawater and sea stars (body wall and pyloric caeca) <strong>the</strong> day before start<strong>in</strong>g <strong>the</strong><br />

experiment; ad<strong>de</strong>d concentrations were measured <strong>in</strong> subsamples of sediments and seawater regularly collected <strong>in</strong><br />

<strong>the</strong> experimental microcosms throughout <strong>the</strong> experiment. Ranges of values of PCB 153 (unless specified)<br />

reported for sediments and seawater <strong>in</strong> <strong>the</strong> field are given for comparison.<br />

Compartment PCB concentration Location References<br />

Background Sediments 0.017 ng g -1 dry wt (n = 6)<br />

<strong>Sea</strong> water 0.026 ng l -1 (n = 6)<br />

Pyloric caeca 522 ± 167 ng g -1 lipids (n = 6)<br />

Body wall 559 ± 17 ng g -1 lipids (n = 6)<br />

Ad<strong>de</strong>d Sediments 9.49 ± 1.14 ng g -1 dry wt (n =<br />

<strong>Sea</strong> water<br />

(dissolved +<br />

particulate)<br />

12)<br />

31.4 ± 15.6 ng l -1 (n = 36)<br />

Field Values Sediments 22 - 4,060 ng g -1 dry wt<br />

0.27 - 47 ng g -1 dry wt (sum7 PCB)<br />

2.2 – 32 ng g -1 dry wt (sum7 PCB)<br />

<strong>Sea</strong> water (dissolved) 0.1 - 67.2 pg l -1<br />

<strong>Sea</strong> water<br />

(dissolved +<br />

particulate)<br />

<strong>Sea</strong> water (extreme<br />

hot spot)<br />

0.8 – 8.7 ng l -1 (Aroclor 1260)<br />

1.5 – 38.0 ng l -1 (Phenoclor<br />

DP-5)<br />

0.2 – 370 ng l -1 (Phenoclor<br />

DP-5/DP-6)<br />

0.34 – 4.93 ng l -1 (sum hexa-<br />

CB)<br />

dissolved: 1.8 ± 0.3 µg l -1<br />

particulate: 14 ± 3.9 µg l -1<br />

62<br />

North <strong>Sea</strong>, German Bight<br />

North <strong>Sea</strong>, Dutch coastal<br />

zone<br />

North <strong>Sea</strong>, Dutch coastal<br />

zone<br />

Stebb<strong>in</strong>g et al 1992<br />

Boon et al. 1985<br />

Laane et al. 1999<br />

Baltic <strong>Sea</strong> Shultz-Bull et al.<br />

1995<br />

Atlantic Harvey & Ste<strong>in</strong>hauer<br />

Mediterranean French 1976<br />

coasts<br />

El<strong>de</strong>r 1976<br />

Med. and Atlantic Marchand et al. 1990<br />

French coasts Telli-Karakoç et al.<br />

Marmara <strong>Sea</strong><br />

2002<br />

New Bedford Harbor,<br />

USA<br />

Bergen et al. 1996<br />

The PCB congener IUPAC #153 (2,2’,4,4’,5,5’ hexachlorobiphenyl) was selected because it<br />

is <strong>the</strong> most abundant <strong>in</strong> mar<strong>in</strong>e biota (Stebb<strong>in</strong>g et al. 1992) and has been shown to be an<br />

excellent <strong>in</strong>dicator of total PCB contam<strong>in</strong>ation (Atuma et al. 1996).<br />

MATERIALS AND METHODS<br />

Sampl<strong>in</strong>g<br />

The sea stars <strong>Asterias</strong> <strong>rubens</strong> (L<strong>in</strong>naeus 1758) were collected <strong>in</strong> April 1999 <strong>in</strong> <strong>the</strong> <strong>in</strong>tertidal<br />

zone at Audresselles (Pas-<strong>de</strong>-Calais, France). Prior to experimentation, specimens were<br />

acclimated to laboratory conditions for 1 month <strong>in</strong> constantly aerated closed circuit aquaria<br />

(sal<strong>in</strong>ity: 36 ‰, T: 16 ± 0.5 °C, 12/12 h dark/light cycle).<br />

In or<strong>de</strong>r to follow PCB 153 bioaccumulation un<strong>de</strong>r realistically simulated conditions, a 14 C-<br />

labelled congener was used and measured us<strong>in</strong>g highly sensitive b spectrometry.


Radiotracer<br />

Del<strong>in</strong>eation of PCB uptake pathways <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

The 14 C-labelled 2,2',4,4',5,5' hexachlorobiphenyl (purity ≥ 95%) was purchased from Sigma<br />

Chemicals, USA. Specific activity was 925 MBq mmol -1 . Stock solutions were prepared <strong>in</strong><br />

acetone at a concentration of 1 µg ml -1 .<br />

Sample treatment and liquid sc<strong>in</strong>tillation count<strong>in</strong>g<br />

Water samples (2 ml) were directly transfered to 20 ml glass sc<strong>in</strong>tillation vials (Packard,<br />

USA) and 10 ml of Ultima Gold XR ® (Packard Instruments) sc<strong>in</strong>tillation liquid were ad<strong>de</strong>d.<br />

Samples of sediment and sea star tissue (previously crushed) were placed <strong>in</strong> a vial conta<strong>in</strong><strong>in</strong>g<br />

2 ml of Acetonitrile ® <strong>in</strong> an ultrasonic bath for 10 m<strong>in</strong>. Acetonitrile ® was <strong>the</strong>n collected and<br />

replaced by ano<strong>the</strong>r 2 ml of Acetonitrile ® and <strong>the</strong> ultrasonic operation was repeated a second<br />

time. This treatment gave 4 ml of liquid phase (viz. <strong>the</strong> extraction) and a residue. The residue<br />

was digested overnight at 70°C with 2 ml of Soluene ® , and 10 ml of Hionic Fluor ®<br />

sc<strong>in</strong>tillation liquid were <strong>the</strong>n ad<strong>de</strong>d. The liquid phase (4 ml) was ad<strong>de</strong>d to 16 ml of filtered<br />

seawater and extracted twice us<strong>in</strong>g 2 ml of n-Hexane (Sigma, USA) un<strong>de</strong>r constant agitation.<br />

The organic phase (4 ml) and <strong>the</strong> aqueous phase (20 ml) were treated separately. The entire<br />

organic phase and 2 ml of <strong>the</strong> aqueous phase were each ad<strong>de</strong>d separately to 10 ml of Ultima<br />

Gold XR ® sc<strong>in</strong>tillation liquid.<br />

14 C-radioactivity was <strong>the</strong>n measured us<strong>in</strong>g a 1600 TR Liquid Sc<strong>in</strong>tillation Analyzer (Packard),<br />

compared to standards of known activities, and corrected for quench<strong>in</strong>g, background and<br />

physical <strong>de</strong>cay of <strong>the</strong> radiotracer. Count<strong>in</strong>g times were adjusted to obta<strong>in</strong> count<strong>in</strong>g rates with<br />

relative propagated errors less than 5 %. PCB concentrations were expressed on a total lipid<br />

content basis where lipids were <strong>de</strong>term<strong>in</strong>ed accord<strong>in</strong>g to <strong>the</strong> method of Barnes & Blackstock<br />

(1973). A schematic diagram of <strong>the</strong> sample treatment is shown <strong>in</strong> Figure 15.<br />

63


Del<strong>in</strong>eation of PCB uptake pathways <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Figure 15. Schematic representation of sample process<strong>in</strong>g before ß-spectrometry analysis<br />

Experimental procedures<br />

Uptake from seawater<br />

residue<br />

20 ml aqueous<br />

phase<br />

(<strong>in</strong>clud<strong>in</strong>g<br />

Acetonitrile)<br />

Liquid sc<strong>in</strong>tillation count<strong>in</strong>g<br />

2x{2 ml Acetonitrile; ultrasonic bath 10’}<br />

Asteroids (n = 24) were placed for 34 d <strong>in</strong> a 70 l glass aquarium (constantly aerated closed<br />

circuit aquaria; sal<strong>in</strong>ity 36 ‰; 16 ± 0.5°C; 12/12 h dark/light cycle) conta<strong>in</strong><strong>in</strong>g natural<br />

seawater spiked with 14 C-labelled PCB 153. One day prior to <strong>the</strong> experiments, four 5 l glass<br />

beakers were filled with filtered seawater (36 ‰; 16 ± 0.5°C), spiked with <strong>the</strong> radiolabelled<br />

PCB stock solution, and constantly stirred us<strong>in</strong>g an orbital agitation plate. Contam<strong>in</strong>ated<br />

water <strong>the</strong>n was poured <strong>in</strong>to <strong>the</strong> glass aquaria and uncontam<strong>in</strong>ated seawater was ad<strong>de</strong>d to<br />

obta<strong>in</strong> a f<strong>in</strong>al volume of 70 l. <strong>Sea</strong>water and radiotracer were renewed every second day dur<strong>in</strong>g<br />

<strong>the</strong> entire experiment. Activity was checked before and after each renewal to assess <strong>the</strong><br />

stability of <strong>the</strong> labelled PCB concentration <strong>in</strong> seawater (Table 7). The sea stars were fed<br />

unlabelled mussels (Mytilus edulis) every second day just before <strong>the</strong> seawater renewal. After<br />

2 hours un<strong>in</strong>gested mussels were removed to limit as much as possible PCB <strong>in</strong>corporation via<br />

<strong>the</strong> food. Periodically (after 2, 4, 7, 11, 14, 21 and 34 days), sea stars (n = 3) were removed,<br />

dissected <strong>in</strong>to seven body compartments (oral and aboral body walls, pyloric caeca, gonads,<br />

64<br />

2 ml hexane (ad<strong>de</strong>d twice)<br />

16 ml sea water<br />

4 ml Acetonitrile ®<br />

2 ml 2 ml 4 ml<br />

+ 10 ml<br />

Hionic<br />

Fluor ®<br />

+ 10 ml Ultima<br />

Gold XR ®<br />

4 ml hexane


Del<strong>in</strong>eation of PCB uptake pathways <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

rectal caeca, central digestive system, and podia), and radioanalyzed to <strong>de</strong>term<strong>in</strong>e uptake<br />

k<strong>in</strong>etics and body distribution of <strong>the</strong> <strong>in</strong>corporated PCB.<br />

Uptake from sediments<br />

Sediments (2.5 kg dry wt) from <strong>the</strong> North <strong>Sea</strong> (Audresselles, Pas-<strong>de</strong>-Calais, France) were<br />

contam<strong>in</strong>ated for 4 days with <strong>the</strong> 14 C-labelled PCB us<strong>in</strong>g <strong>the</strong> roll<strong>in</strong>g jar method (Murdoch et<br />

al. 1997). <strong>Sea</strong> stars (n = 24) were placed <strong>in</strong> a 70 l glass aquarium (constantly aerated open<br />

circuit aquarium; sal<strong>in</strong>ity 36 ‰; 16 ± 0.5°C; 12/12 h dark/light cycle) conta<strong>in</strong><strong>in</strong>g a 10 cm<br />

layer of seawater runn<strong>in</strong>g over a 2 cm layer of spiked sediments. A seperate group of 5 sea<br />

stars were placed <strong>in</strong> <strong>the</strong> same aquaria, but <strong>in</strong> ano<strong>the</strong>r compartment (not <strong>in</strong> contact with <strong>the</strong><br />

sediments), to serve as a control for possible cross-contam<strong>in</strong>ation through seawater. The sea<br />

stars were fed every second day with mussels (M. edulis). Un<strong>in</strong>gested food was removed after<br />

2 hours. The radioactivity of <strong>the</strong> labelled PCB was measured weekly <strong>in</strong> <strong>the</strong> sediments to<br />

check for possible leach<strong>in</strong>g (Table 7). Periodically (after 2, 4, 7, 11, 14, 21, and 34 days), 3<br />

<strong>in</strong>dividuals were removed, dissected as <strong>de</strong>scribed above, and <strong>the</strong>ir tissues counted for<br />

radioactivity.<br />

Data analyses<br />

Uptake of <strong>the</strong> PCB congener from seawater and sediments was expressed as change <strong>in</strong> PCB<br />

concentration (ng g -1 total lipids) over time. Uptake k<strong>in</strong>etics were <strong>de</strong>scribed ei<strong>the</strong>r by us<strong>in</strong>g a<br />

saturation exponential mo<strong>de</strong>l (Equation 2), a s<strong>in</strong>gle component exponential mo<strong>de</strong>l (Equation<br />

3), or a comb<strong>in</strong>ed mo<strong>de</strong>l (logistic and s<strong>in</strong>gle component exponential) (Equation 4):<br />

Equation 2: C(t) = Css (1-e -k.t )<br />

Equation 3: C(t) = C 0 e k.t<br />

Equation 4: Ct = Css (1-e -k.t ) / 1+e -k.(t-I)<br />

where C(t), C 0, and Css are <strong>the</strong> PCB concentrations (ng g -1 total lipids), respectively, at time t<br />

(d), at time 0 and at steady state, k is <strong>the</strong> rate constant (d -1 ), and I is <strong>the</strong> time (d) at <strong>the</strong><br />

<strong>in</strong>flexion po<strong>in</strong>t. The mo<strong>de</strong>l show<strong>in</strong>g <strong>the</strong> best fitt<strong>in</strong>g accuracy (based on <strong>the</strong> calculation of <strong>the</strong><br />

<strong>de</strong>term<strong>in</strong>ation coefficient, R 2 , and exam<strong>in</strong>ation of <strong>the</strong> residuals) was used.<br />

Constants of <strong>the</strong> different mo<strong>de</strong>ls and <strong>the</strong>ir statistics were estimated by iterative adjustment of<br />

<strong>the</strong> mo<strong>de</strong>ls and Hessian matrix computation, respectively, us<strong>in</strong>g <strong>the</strong> nonl<strong>in</strong>ear curve-fitt<strong>in</strong>g<br />

rout<strong>in</strong>es <strong>in</strong> <strong>the</strong> Systat ® 5.2.1 software (Wilk<strong>in</strong>son 1988). Differences between PCB<br />

concentrations <strong>in</strong> <strong>the</strong> different sea star body compartments were tested by 1-way ANOVA and<br />

65


Del<strong>in</strong>eation of PCB uptake pathways <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

<strong>the</strong> multiple comparison test of Tukey (Zar 1996). Changes <strong>in</strong> PCB body distribution were<br />

tested for significance us<strong>in</strong>g <strong>the</strong> G-test (adapted from <strong>the</strong> log-likelihood ratio test) for 2xk<br />

cont<strong>in</strong>gency tables (Zar 1996). Prior to <strong>the</strong> latter test, data were arcs<strong>in</strong>-transformed us<strong>in</strong>g <strong>the</strong><br />

correction of Freeman-Tukey (1950) <strong>de</strong>scribed by Zar (1996). The level of significance for<br />

statistical tests was always set at a = 0.05.<br />

RESULTS<br />

The uptake of PCB#153 by <strong>Asterias</strong> <strong>rubens</strong> was <strong>in</strong>vestigated through separate exposures to<br />

contam<strong>in</strong>ated seawater or sediments. As differences between accumulation k<strong>in</strong>etics <strong>in</strong> aboral<br />

and oral body walls were never found <strong>in</strong> any experiment (p always > 0.1), <strong>the</strong>se two<br />

compartments were pooled and are presented as a s<strong>in</strong>gle compartment (body wall) throughout<br />

<strong>the</strong> text. The uptake k<strong>in</strong>etics of PCB congener #153 <strong>in</strong> 6 different body compartments (body<br />

wall, pyloric caeca, gonads, rectal caeca, central digestive system, podia) are shown <strong>in</strong><br />

Figures 17 and 18 for <strong>the</strong> seawater and sediment exposures, respectively.<br />

ng g<br />

15000<br />

Bodywall<br />

3000<br />

Central Digestive System<br />

-1 lipids<br />

10000<br />

5000<br />

800<br />

600<br />

400<br />

200<br />

12.7 1-e -<br />

C(t)=<br />

0<br />

0 5 10 15 20 25 30 35<br />

0<br />

0 5 10 15 20 25 30 35<br />

2000<br />

1000<br />

1000<br />

2000<br />

Pyloric Caeca Gonads<br />

819 1-e -0.18*time<br />

1+e -0.18*(time-23)<br />

C(t)=<br />

0.46*time -0.46*(time-12)<br />

1+e<br />

1500<br />

1000<br />

500<br />

C(t)= 98.8<br />

e 0.09*time<br />

0<br />

0 5 10 15 20 25 30 35<br />

1417 1-e -<br />

C(t)=<br />

0.21*time -0.21*(time-23)<br />

1+e<br />

0<br />

0 5 10 15 20 25 30 35<br />

Figure 16. <strong>Asterias</strong> <strong>rubens</strong>-<strong>Sea</strong>water experiment. Uptake of 14 C-PCB 153 from seawater<br />

<strong>in</strong> different body compartments of <strong>the</strong> sea star (mean concentration <strong>in</strong> ng g -1 total lipids ±<br />

SD, n=3)<br />

66<br />

10000<br />

Podia<br />

200<br />

100<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

0 5 10 15 20 25 30 35<br />

300 Rectal Caeca<br />

C(t)= 4.50<br />

e 0.11*time<br />

6.58 1-e -<br />

C(t)=<br />

0.33*time -0.33*(time-12)<br />

1+e<br />

0<br />

0 5 10 15 20 25 30 35


4000<br />

3000<br />

2000<br />

1000<br />

Del<strong>in</strong>eation of PCB uptake pathways <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Figure 17. <strong>Asterias</strong> <strong>rubens</strong>-Sediment experiment. Uptake of 14 C-PCB 153 from sediments<br />

<strong>in</strong> different body compartments of <strong>the</strong> sea star (mean concentration <strong>in</strong> ng g -1 total lipids ±<br />

SD, n=3).<br />

Contam<strong>in</strong>ation via seawater<br />

Depend<strong>in</strong>g on <strong>the</strong> body compartment, accumulation from seawater was best <strong>de</strong>scribed by a<br />

comb<strong>in</strong>ed (logistic and exponential) mo<strong>de</strong>l (viz. uptake <strong>in</strong> body wall, pyloric caeca, gonads<br />

and podia) or a s<strong>in</strong>gle component exponential mo<strong>de</strong>l (viz. uptake <strong>in</strong> central digestive system<br />

and rectal caeca) (Fig. 17, Table 8A).<br />

Table 8. <strong>Asterias</strong> <strong>rubens</strong>. Parameters and statistics of <strong>the</strong> equations <strong>de</strong>scrib<strong>in</strong>g <strong>the</strong> uptake of 14 C-PCB #153 from<br />

seawater and sediments <strong>in</strong> <strong>the</strong> body compartments of <strong>the</strong> sea star.<br />

E (exponential mo<strong>de</strong>l): C(t) = C 0.e k.t ;<br />

S (saturation mo<strong>de</strong>l): C(t) = Css.(1-e -k.t );<br />

C (comb<strong>in</strong>ed mo<strong>de</strong>l): C(t) = Css.(1-e -k.t )/(1+e -k.(t-I) );<br />

where C 0, C(t), Css: 14 C-PCB #153 concentrations (ng g -1 lipids) respectively at time 0, at time t (d) and at<br />

steady-state; k: rate constant (d -1 ); I: time (d) at <strong>the</strong> <strong>in</strong>flexion po<strong>in</strong>t; ASE: asymptotic standard error; R 2 :<br />

corrected <strong>de</strong>term<strong>in</strong>ation coefficient.<br />

A. <strong>Sea</strong>water<br />

ng g<br />

5000<br />

Bodywall<br />

2000<br />

Central Digestive System<br />

-1 lipids<br />

1000<br />

0<br />

0 5 10 15 20 25 30 35<br />

800<br />

600<br />

400<br />

200<br />

Pyloric Caeca<br />

3537 1-e -<br />

C(t)=<br />

588 1-e -3.0*time<br />

1+e -3.0*(time-16)<br />

C(t)=<br />

0.33*time -0.33*(time-12)<br />

1+e<br />

0<br />

0 5 10 15 20 25 30 35<br />

1500<br />

1000<br />

500<br />

2000<br />

1500<br />

1000<br />

992 1-e 2000<br />

-4.1*time<br />

1+e -4.1*(time-16)<br />

C(t)=<br />

0<br />

0 5 10 15 20 25 30 35<br />

500<br />

Gonads<br />

C(t)= 74 e 0.09*time<br />

0<br />

0 5 10 15 20 25 30 35<br />

Body compartment Mo<strong>de</strong>l C 0 (ASE) Css (ASE) k (ASE) I (ASE) R 2<br />

Body wall C 12,665 (691) 0.46 (0.13) 11.7 (0.67) 0.92<br />

Central digestive system E 98.8 (27.7) 0.093 (0.009) 0.77<br />

Rectal caeca E 4.5 (2.0) 0.11 (0.01) 0.91<br />

Pyloric caeca C 819 (398) 0.18 (0.17) 22.9 (8.2) 0.80<br />

Gonads C 1,417 (231) 0.21 (0.11) 23 (2.8) 0.90<br />

Podia C 6,584 (449) 0.33 (0.12) 12.4 (0.87) 0.93<br />

67<br />

10000<br />

8000<br />

C(t)= 7618 (1-e -0.03*time )<br />

6000<br />

4000<br />

40<br />

30<br />

20<br />

10<br />

Podia<br />

0<br />

0 5 10 15 20 25 30 35<br />

50 Rectal Caeca<br />

31 1-e -0.22*time<br />

1+e -0.22*(time-20)<br />

C(t)=<br />

0<br />

0 5 10 15 20 25 30 35


B. Sediments<br />

Del<strong>in</strong>eation of PCB uptake pathways <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Body compartment Mo<strong>de</strong>l C 0 (ASE) Css (ASE) k (ASE) I (ASE) R 2<br />

Body wall C 3,537 (206) 0.33 (0.08) 12 (0.92) 0.93<br />

Central digestive system C 992 (81) 4.1 (29) 16 (2.0) 0.81<br />

Rectal caeca C 31 (2.3) 0.22 (0.05) 20 (1.1) 0.94<br />

Pyloric caeca C 588 (18) 3.0 (11) 16 (1.5) 0.97<br />

Gonads E 74 (19) 0.085 (0.008) 0.89<br />

Podia S 7,618 (4266) 0.034 (0.029) 0.57<br />

Table 9 <strong>Asterias</strong> <strong>rubens</strong>. Concentration factors (CF; maximum, m<strong>in</strong>imum and mean values) <strong>in</strong> <strong>the</strong> body<br />

compartments of <strong>the</strong> sea star after 34 days of exposure via seawater (A). Transfer factors (TF; maximum,<br />

m<strong>in</strong>imum, and mean values) <strong>in</strong> <strong>the</strong> body compartments of <strong>the</strong> sea star after 34 days of exposure via sediments<br />

(B). CFs are calculated as <strong>the</strong> ratio between PCB 153 concentration <strong>in</strong> <strong>the</strong> sea star body compartments (ng g -1<br />

total lipids) and its concentration <strong>in</strong> seawater (ng g -1 ). TFs are calculated as <strong>the</strong> ratio between PCB 153<br />

concentration <strong>in</strong> <strong>the</strong> sea star body compartments (ng g -1 total lipids) and its concentration <strong>in</strong> sediments (ng g -1 dry<br />

wt).<br />

A. <strong>Sea</strong>water<br />

Body wall Central dig. syst. Gonads Rectal caeca Pyloric caeca Podia<br />

Max. CF 3.91 10 5<br />

9.16 10 4<br />

6.01 10 4<br />

7.90 10 3<br />

4.75 10 4<br />

2.43 10 5<br />

M<strong>in</strong>. CF 3.52 10 5<br />

5.44 10 4<br />

2.96 10 4<br />

4.58 10 3<br />

1.05 10 4<br />

1.72 10 5<br />

Mean CF 3.74 10 5<br />

7.50 10 4<br />

4.62 10 4<br />

6.76 10 3<br />

2.31 10 4<br />

2.17 10 5<br />

B. Sediments<br />

Body wall Central dig. syst. Gonads Rectal caeca Pyloric caeca Podia<br />

Max. TF 417 109 150 3.43 70 863<br />

M<strong>in</strong>. TF 286 81 111 2.91 55 258<br />

Mean TF 343 94 137 3.10 61 479<br />

Body wall was <strong>the</strong> compartment that concentrated 14 C-PCB 153 to <strong>the</strong> greatest <strong>de</strong>gree, up to<br />

two or<strong>de</strong>rs of magnitu<strong>de</strong> higher than <strong>the</strong> rectal caeca (p Tukey test ≤ 0.0001; Table 9A).<br />

Body distribution of <strong>in</strong>corporated 14 C-PCB 153 varied significantly along <strong>the</strong> timecourse of<br />

<strong>the</strong> experiment (p G-test < 0.05). Initially, <strong>the</strong> contam<strong>in</strong>ant was mostly present <strong>in</strong> <strong>the</strong> podia (74 ±<br />

5 % of total body load after 2 days of exposure) and secondarily <strong>in</strong> <strong>the</strong> body wall (26 ± 5 %).<br />

Progressively, <strong>the</strong> proportion of <strong>the</strong> PCB associated with body wall <strong>in</strong>creased, reach<strong>in</strong>g 69 ± 5<br />

% of <strong>the</strong> total body bur<strong>de</strong>n after 34 days of exposure, while dur<strong>in</strong>g <strong>the</strong> same time <strong>the</strong> podia<br />

proportion had <strong>de</strong>creased to 7 ± 2 % (Table 10).<br />

Table 10 <strong>Asterias</strong> <strong>rubens</strong>. PCB distribution (mean % ± SD, n = 3) <strong>in</strong> <strong>the</strong> different body compartments of <strong>the</strong> sea<br />

star after 34 days of exposure via seawater or sediments.<br />

Body compartments<br />

14 C-PCB-153 distribution (% )<br />

<strong>Sea</strong>water exposure Sediment exposure<br />

Body wall 68.8 ± 1.4 20.7 ± 4.4<br />

Central digestive System 13.9 ± 4.1 8.9 ± 2.3<br />

Gonads 8.4 ± 2.5 12.7 ± 2.5<br />

Rectal caeca 0.2 ± 0.1 0.3 ± 0.1<br />

Pyloric caeca 1.8 ± 0.7 5.7 ± 1.4<br />

Podia 6.8 ±1.9 39.9 ± 14.6<br />

68


Contam<strong>in</strong>ation via sediments<br />

Del<strong>in</strong>eation of PCB uptake pathways <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Frequent radioanalysis of <strong>the</strong> contam<strong>in</strong>ated sediments <strong>in</strong>dicated that <strong>the</strong> maximum difference<br />

between measured 14 C-PCB 153 activities was 13.1% and that no significant <strong>de</strong>creas<strong>in</strong>g<br />

trends occurred; <strong>the</strong>refore, concentrations <strong>in</strong> labelled PCB rema<strong>in</strong>ed relatively stable<br />

throughout <strong>the</strong> 34 d-long experiment (9.5 ± 1.1 ng g -1 dry wt; see Table 7). Similarly,<br />

radioactivity <strong>in</strong> <strong>the</strong> seawater and <strong>in</strong> control sea stars rema<strong>in</strong>ed below <strong>the</strong> <strong>de</strong>tection limit,<br />

<strong>in</strong>dicat<strong>in</strong>g that no significant 14 C-PCB was <strong>in</strong>corporated from suspen<strong>de</strong>d sediments possibly<br />

<strong>in</strong>gested by <strong>the</strong> mussels on which <strong>the</strong>y fed nor from seawater due to cross contam<strong>in</strong>ation.<br />

Accumulation from contam<strong>in</strong>ated sediments was best <strong>de</strong>scribed ei<strong>the</strong>r by a s<strong>in</strong>gle component<br />

exponential mo<strong>de</strong>l (gonads), a saturation exponential mo<strong>de</strong>l (podia), or a comb<strong>in</strong>ed mo<strong>de</strong>l<br />

(body wall, rectal caeca, pyloric caeca and central digestive system) (Fig. 17, Table 8B). As<br />

noted dur<strong>in</strong>g <strong>the</strong> seawater exposure, body wall and podia were <strong>the</strong> body compartments that<br />

accumulated 14 C-PCB 153 to <strong>the</strong> highest levels when exposed to labelled sediments (Table<br />

9B).<br />

The distribution of 14 C-PCB <strong>in</strong> sea star tissues was <strong>de</strong>term<strong>in</strong>ed at different times dur<strong>in</strong>g <strong>the</strong><br />

timecourse of <strong>the</strong> experiment. Relative transfers among body compartments appeared quite<br />

different from those observed dur<strong>in</strong>g <strong>the</strong> seawater uptake experiment. In<strong>de</strong>ed, <strong>the</strong> proportion<br />

of contam<strong>in</strong>ant <strong>in</strong> <strong>the</strong> body wall and podia rema<strong>in</strong>ed relatively constant throughout <strong>the</strong><br />

experiment. Body wall and podia conta<strong>in</strong>ed <strong>the</strong> major part (ca. 60%) of <strong>the</strong> total body bur<strong>de</strong>n<br />

of 14 C-PCB, while <strong>the</strong> lowest percentage was found <strong>in</strong> <strong>the</strong> rectal caeca (≤ 0.3%) (Table 10).<br />

DISCUSSION<br />

The present study reports <strong>the</strong> first experimental data on <strong>the</strong> bioaccumulation k<strong>in</strong>etics of a key<br />

PCB congener <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong>, a common species wi<strong>de</strong>ly distributed <strong>in</strong> <strong>the</strong><br />

North <strong>Sea</strong> and NE Atlantic. The fact that organisms were also exposed to very low<br />

background concentrations of stable PCB 153 (Table 7), showed that <strong>the</strong>y were actually<br />

exposed to a global concentration of PCB 153 that did not differ significantly from <strong>the</strong> 14 C-<br />

PCB concentrations ad<strong>de</strong>d experimentally to seawater or sediments (Table 7). Experimental<br />

concentrations <strong>in</strong> seawater were higher than those usually reported for PCB 153 <strong>in</strong> <strong>the</strong> natural<br />

North <strong>Sea</strong> waters. However, <strong>the</strong> latter concentrations most generally concern <strong>the</strong> dissolved<br />

fraction whereas our measurements <strong>in</strong>volve both dissolved and particulate fractions. Although<br />

available PCB data on bulk seawater samples mostly concern <strong>the</strong> sum of congeners or PCB<br />

mixture equivalents, it is noteworthy that <strong>the</strong> experimental concentrations used here are quite<br />

69


Del<strong>in</strong>eation of PCB uptake pathways <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

close (even much lower if consi<strong>de</strong>r<strong>in</strong>g extreme hot spots) to values reported for mo<strong>de</strong>rate to<br />

highly contam<strong>in</strong>ated mar<strong>in</strong>e locations (Table 7). In addition, <strong>the</strong> ratio between seawater and<br />

sediment PCB concentrations ad<strong>de</strong>d is similar to <strong>the</strong> ratio between <strong>the</strong> background PCB<br />

concentrations measured <strong>in</strong> seawater and sediments used <strong>in</strong> <strong>the</strong> experiments (Table 7).<br />

Therefore, <strong>the</strong> experimental exposures may be consi<strong>de</strong>red as acceptable simulations of<br />

exposure situations that may actually occur <strong>in</strong> <strong>the</strong> field.<br />

Data on PCB concentrations <strong>in</strong> <strong>Asterias</strong> <strong>rubens</strong> <strong>in</strong> <strong>the</strong> field are scarce, and even less are<br />

available when look<strong>in</strong>g for congener-specific data (e.g. Everaarts et al. 1998, <strong>de</strong>n Besten et al.<br />

2001). It is noteworthy that <strong>the</strong> total PCB 153 concentrations (background + <strong>in</strong>corporated)<br />

reached <strong>in</strong> <strong>the</strong> pyloric caeca at <strong>the</strong> end of <strong>the</strong> experiments matched <strong>the</strong> concentrations reported<br />

<strong>in</strong> <strong>the</strong> same organs of sea stars from mo<strong>de</strong>rate to highly contam<strong>in</strong>ated North <strong>Sea</strong> locations<br />

(Table 11).<br />

Table 11 <strong>Asterias</strong> <strong>rubens</strong>. Comparisons among PCB #153 concentrations obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> present study<br />

(background + <strong>in</strong>corporated concentrations) and previous field studies <strong>in</strong> <strong>the</strong> North <strong>Sea</strong>.<br />

Body compartment PCB 153 concentration<br />

(ng g -1 lipids)<br />

70<br />

Specifications References<br />

Pyloric caeca 608 - 1,111 Experimental conditions;<br />

seawater uptake<br />

920 - 1,377 Experimental conditions;<br />

sediment uptake<br />

41 - 1,054 Pre-spawn<strong>in</strong>g period 1995;<br />

sou<strong>the</strong>rn North <strong>Sea</strong><br />

450 - 1,050 Pre-spawn<strong>in</strong>g period 1995;<br />

Dutch coastal zone<br />

40 - 125 Pre-spawn<strong>in</strong>g period 1995;<br />

sou<strong>the</strong>rn North <strong>Sea</strong><br />

Bodywall 728 - 4,360 Experimental conditions;<br />

seawater uptake<br />

1,215 - 14,068 Experimental conditions;<br />

sediment uptake<br />

Whole body 8,190 - 9,300 Experimental conditions;<br />

seawater uptake<br />

2,330 - 2,810 Experimental conditions;<br />

sediment uptake<br />

550 - 940 Spawn<strong>in</strong>g period 1986;<br />

Dutch coastal zone<br />

100 - 235 Spawn<strong>in</strong>g period 1986;<br />

sou<strong>the</strong>rn North <strong>Sea</strong><br />

4,300 (sum35 PCB) Spawn<strong>in</strong>g period 1989; German<br />

Bight<br />

2,400 (sum35 PCB) Post-spawn<strong>in</strong>g period 1989;<br />

German Bight<br />

Present study<br />

Present study<br />

<strong>de</strong>n Besten et al.. 2001<br />

Everaarts et al.. 1998<br />

Everaarts et al.. 1998<br />

Present study<br />

Present study<br />

Present study<br />

Present study<br />

Everaarts & Fischer 1989<br />

Everaarts & Fischer 1989<br />

Knickmeyer et al.. 1992<br />

Knickmeyer et al.. 1992


Del<strong>in</strong>eation of PCB uptake pathways <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

No field data were found concern<strong>in</strong>g PCB concentrations <strong>in</strong> <strong>the</strong> body wall. Consi<strong>de</strong>r<strong>in</strong>g <strong>the</strong><br />

whole body, PCB concentrations reached <strong>in</strong> experimentally-exposed sea stars were 2 to 10<br />

times higher than <strong>the</strong> few data available from <strong>the</strong> literature (Everaarts & Fischer 1989; Table<br />

11). However, <strong>the</strong>se comparisons should be ma<strong>de</strong> with caution, s<strong>in</strong>ce <strong>the</strong> latter field values<br />

are <strong>de</strong>rived from sea stars collected dur<strong>in</strong>g <strong>the</strong> spawn<strong>in</strong>g period. In<strong>de</strong>ed, it has been shown<br />

that <strong>the</strong> whole-body content of extractable lipids is strongly <strong>de</strong>pen<strong>de</strong>nt on <strong>the</strong> sexual state of<br />

<strong>in</strong>dividuals, and may fluctuate by a factor of 2 to 3, particularly dur<strong>in</strong>g <strong>the</strong> spawn<strong>in</strong>g period.<br />

This may result <strong>in</strong> a similar range of variations of PCB concentrations occurr<strong>in</strong>g with<strong>in</strong> a few<br />

weeks (Knickmeyer 1992; Everaarts et al. 1998; Table 11).<br />

Whe<strong>the</strong>r seawater or sediments were consi<strong>de</strong>red as a contam<strong>in</strong>ation source, a steady-state was<br />

reached or ten<strong>de</strong>d to be reached <strong>in</strong> most body compartments dur<strong>in</strong>g <strong>the</strong> course of <strong>the</strong><br />

experiments. This suggests ei<strong>the</strong>r that target sites are rapidly saturated, or that a<br />

metabolization mechanism is <strong>in</strong>duced quite rapidly follow<strong>in</strong>g PCB exposure. Although a<br />

MFO-like system has been <strong>de</strong>scribed <strong>in</strong> pyloric caeca of A. <strong>rubens</strong> by <strong>de</strong>n Besten et al. (1990,<br />

1993, 1998), it is well documented that PCB 153 is quite resistant to biological <strong>de</strong>gradation<br />

(Sipes & Schnellmann 1987, Letcher et al. 2000) due to its specific structure lack<strong>in</strong>g<br />

hydrogen atoms on <strong>the</strong> biphenyl molecule (Borlakoglu & Wilk<strong>in</strong>s 1993). Therefore, <strong>the</strong><br />

hypo<strong>the</strong>sis regard<strong>in</strong>g target site saturation is consi<strong>de</strong>red to be <strong>the</strong> most plausible explanation.<br />

It is also noteworthy that when a steady-state <strong>in</strong> uptake was observed, equilibrium<br />

concentrations of PCB 153 were generally reached quite rapidly (around day 20), <strong>in</strong>dicat<strong>in</strong>g<br />

that <strong>the</strong> sea star could be used as a bio<strong>in</strong>dicator to p<strong>in</strong>po<strong>in</strong>t a PCB contam<strong>in</strong>ation event soon<br />

after its occurrence.<br />

Concentrations of <strong>in</strong>corporated 14 C-PCB 153 at steady-state were much higher (up to 300<br />

times) <strong>in</strong> body wall and podia than <strong>in</strong> any o<strong>the</strong>r compartment. Be<strong>in</strong>g easily dissected and<br />

constitut<strong>in</strong>g 70-80% of <strong>the</strong> total body weight, body wall is of particular <strong>in</strong>terest with respect<br />

to field surveys, and it should be recommen<strong>de</strong>d as a body compartment to monitor<br />

complementarily to pyloric caeca which are <strong>the</strong> only body compartment that has been used <strong>in</strong><br />

previous studies (e.g., Everaarts et al. 1998, <strong>de</strong>n Besten et al. 1993, 2001).<br />

Concentrations <strong>in</strong>corporated <strong>in</strong>to <strong>the</strong> rectal caeca were always low, between one and two<br />

or<strong>de</strong>rs of magnitu<strong>de</strong> lower than all <strong>the</strong> o<strong>the</strong>r compartments. This is somewhat surpris<strong>in</strong>g but<br />

could be related to <strong>the</strong> functions of <strong>the</strong> rectal caeca which are well known to play an essential<br />

role <strong>in</strong> sea star digestion and excretion processes (Jangoux 1982, Warnau & Jangoux 1999).<br />

Our results have shown that PCB uptake is far more efficient <strong>in</strong> sea stars exposed to spiked<br />

seawater than to labelled sediments when compared to exposure concentrations. For a given<br />

71


Del<strong>in</strong>eation of PCB uptake pathways <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

body compartment, calculated concentration factors (CFs) based on seawater were between 2<br />

and 3 or<strong>de</strong>rs of magnitu<strong>de</strong> higher than transfer factors (TFs) from sediments (Tables 9A and<br />

9B). Therefore, over <strong>the</strong> long term, <strong>de</strong>spite <strong>the</strong> fact that sediments constitute <strong>the</strong> ma<strong>in</strong><br />

reservoir of PCBs <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e environment and that seawater PCB concentrations are<br />

comparatively extremely low, seawater would be an important route for PCB<br />

bioaccumulation <strong>in</strong> this sea star as it has been suggested for certa<strong>in</strong> benthic <strong>in</strong>fauna (e.g.<br />

Fowler et al. 1978). However, this does not imply that seawater would be <strong>the</strong> predom<strong>in</strong>ant<br />

pathway for PCB uptake, s<strong>in</strong>ce our results showed that f<strong>in</strong>al concentrations reached <strong>in</strong> <strong>the</strong><br />

different body compartiments follow<strong>in</strong>g <strong>the</strong> two types of exposure were generally of <strong>the</strong> same<br />

or<strong>de</strong>r of magnitu<strong>de</strong>. In addition, direct trophic transfer was not addressed here and could also<br />

contribute significantly to PCB bioaccumulation <strong>in</strong> <strong>the</strong> sea star.<br />

While this work constitutes <strong>the</strong> first report on PCB bioaccumulation k<strong>in</strong>etics <strong>in</strong> a sea star,<br />

several previous studies have used radiolabelled 14 C-PCB to exam<strong>in</strong>e bioaccumulation<br />

k<strong>in</strong>etics <strong>in</strong> o<strong>the</strong>r aquatic organisms (e.g., Goerke et al. 1973, Gooch & Hamdy 1982,<br />

Schweitzer et al. 1997). However, surpris<strong>in</strong>gly, <strong>the</strong>se studies mostly concern PCBs as Aroclor<br />

equivalents (see e.g. Butcher et al. 1997). The ma<strong>in</strong> advantage of <strong>the</strong> 14 C approach to measure<br />

PCB fluxes and transfers <strong>in</strong> aquatic biota is obviously <strong>the</strong> high sensitivity and <strong>the</strong> rapidity of<br />

<strong>the</strong> <strong>de</strong>tection, compared to analytical techniques us<strong>in</strong>g gas chromatography. It <strong>the</strong>refore<br />

constitutes an <strong>in</strong>terest<strong>in</strong>g tool, s<strong>in</strong>ce current research on <strong>the</strong> behaviour of PCBs <strong>in</strong> <strong>the</strong><br />

environment tends to focus on congener-specific <strong>in</strong>formation (Safe 1990, Metcalfe 1994,<br />

Letcher et al. 2000). Fur<strong>the</strong>rmore, it allows work<strong>in</strong>g with low (realistic) PCB concentrations,<br />

and assess<strong>in</strong>g uptake <strong>in</strong> organs which are often too small to be analyzed by classical chemical<br />

methodologies.<br />

ACKNOWLEDGEMENTS<br />

The IAEA Mar<strong>in</strong>e Environment Laboratory operates un<strong>de</strong>r a bipartite agreement between <strong>the</strong><br />

International Atomic Energy Agency and <strong>the</strong> Government of <strong>the</strong> Pr<strong>in</strong>cipality of Monaco. B.D.<br />

is hol<strong>de</strong>r of a FRIA doctoral grant; M.W. is a Honorary Research Associate of <strong>the</strong> National<br />

Fund for Scientific Research (NFSR, Belgium). Research was partially supported by a<br />

Belgian Fe<strong>de</strong>ral Research Programme (SSTC, Contract MN/11/30) and a NFSR fellowship to<br />

M.W.<br />

72


Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

III.3 Coplanar PCB uptake k<strong>in</strong>etics <strong>in</strong> <strong>the</strong> common sea star <strong>Asterias</strong> <strong>rubens</strong><br />

and subsequent effects on ROS production and CYP1A <strong>in</strong>duction<br />

Mar<strong>in</strong>e Ecology Progress Series (submitted)<br />

Danis B a , Cotret O b , Teyssié JL b , Fowler SW b & Warnau M b<br />

a: Laboratoire <strong>de</strong> Biologie mar<strong>in</strong>e (CP 160/15), <strong>Université</strong> <strong>Libre</strong> <strong>de</strong> <strong>Bruxelles</strong>, Av. F.D.<br />

Roosevelt 50, B-1050 Brussels, Belgium<br />

b: International Atomic Energy Agency, Mar<strong>in</strong>e Environment Laboratory, 4 Quai Anto<strong>in</strong>e I er ,<br />

MC-98000 Monaco<br />

73


ABSTRACT<br />

Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

The k<strong>in</strong>etic behaviour of a highly toxic PCB congener (IUPAC #77) was <strong>in</strong>vestigated <strong>in</strong> sea<br />

stars experimentally exposed via seawater, sediments, or food. Simultaneously, biological<br />

effects were assessed at <strong>the</strong> immune and subcellular levels, respectively, by measur<strong>in</strong>g<br />

reactive oxygen species (ROS) production and cytochrome P450 immunopositive prote<strong>in</strong><br />

(CYP1A IPP) <strong>in</strong>duction. Results <strong>in</strong>dicate that sea stars efficiently accumulate <strong>the</strong><br />

contam<strong>in</strong>ant, and that most organs bioconcentrate <strong>the</strong> congener accord<strong>in</strong>g to saturation<br />

k<strong>in</strong>etics. Biological effects were pronounced and affected essential functions of <strong>the</strong> sea star<br />

biology (viz., immune and <strong>de</strong>toxification systems) follow<strong>in</strong>g exposure to environmentally<br />

realistic PCB concentrations. These f<strong>in</strong>d<strong>in</strong>gs stress <strong>the</strong> need to (1) obta<strong>in</strong> <strong>in</strong>formation about<br />

similar coplanar-specific, biological effects <strong>in</strong> o<strong>the</strong>r organisms <strong>in</strong> <strong>the</strong> natural environment and<br />

(2) <strong>in</strong>clu<strong>de</strong> coplanar PCBs <strong>in</strong> <strong>the</strong> list of congeners to be systematically measured <strong>in</strong> mar<strong>in</strong>e<br />

biomonitor<strong>in</strong>g programmes.<br />

KEYWORDS<br />

Polychlor<strong>in</strong>ated biphenyls; PCB 77; bioaccumulation; <strong>Asterias</strong> <strong>rubens</strong>; ech<strong>in</strong>o<strong>de</strong>rm;<br />

CYP1A; reactive oxygen species; immune system<br />

74


INTRODUCTION<br />

Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Polychlor<strong>in</strong>ated biphenyls (PCBs) are a class of wi<strong>de</strong>spread stable and persistent<br />

contam<strong>in</strong>ants which have been wi<strong>de</strong>ly used <strong>in</strong> <strong>in</strong>dustrial applications, such as electrical and<br />

hydraulic equipment, plastics, lubricants, pestici<strong>de</strong>s and flame retardants (Metcalfe 1994).<br />

PCBs <strong>in</strong>clu<strong>de</strong> 209 congeners, which differ by <strong>the</strong> chlor<strong>in</strong>e substitution on <strong>the</strong> biphenyl r<strong>in</strong>gs.<br />

These compounds are found <strong>in</strong> <strong>the</strong> environment (e.g. Metcalfe 1994, Schreitmüller et al.<br />

1994, Bright et al. 1995, Wania & Daly 2002), and due to <strong>the</strong>ir <strong>in</strong>herent chemical, physical,<br />

and toxicological properties, bioaccumulation of <strong>the</strong>se compounds <strong>in</strong> mar<strong>in</strong>e biota is of<br />

grow<strong>in</strong>g concern (Stebb<strong>in</strong>g et al. 1992, OSPAR 2000). These compounds are readily<br />

accumulated by organisms (Fowler et al. 1978, Boese et al. 1996, Koponen et al. 1998), and<br />

are known to have <strong>de</strong>leterious effects on key biological processes <strong>in</strong>clud<strong>in</strong>g reproduction,<br />

<strong>de</strong>velopment, and immunity (Hard<strong>in</strong>g & Addison 1986, Zabel et al. 1995, Chapman 1996,<br />

Krogenaes et al. 1998, Coteur et al. 2001).<br />

From a toxicological po<strong>in</strong>t of view, some congeners appear to be more problematic than<br />

o<strong>the</strong>rs; <strong>in</strong><strong>de</strong>ed, <strong>the</strong> non-ortho- and mono-ortho-chlor<strong>in</strong>ated congeners can display planar<br />

configuration (c-PCBs). The toxicity of c-PCBs is produced through a receptor-mediated<br />

response <strong>in</strong>volv<strong>in</strong>g <strong>the</strong> b<strong>in</strong>d<strong>in</strong>g of <strong>the</strong> contam<strong>in</strong>ant to <strong>the</strong> cytosolic aryl hydrocarbon (Ah)<br />

receptor followed by changes <strong>in</strong> gene expression (Kohn 1983, Shugart et al. 1992, Safe 1995,<br />

Hahn 1998, Nebert et al. 2000). c-PCBs are known to <strong>in</strong>duce CYP1A which is <strong>the</strong> major<br />

enzyme responsible for <strong>the</strong> metabolic activation of promutagens and procarc<strong>in</strong>ogens.<br />

However, not all <strong>the</strong> adverse biological effects of PCBs are attributable to this mechanism. In<br />

particular, <strong>the</strong>re is <strong>in</strong>creas<strong>in</strong>g evi<strong>de</strong>nce that many PCBs can act both as endocr<strong>in</strong>e disrupters<br />

and immunosuppressants through more complex and diverse pathways such as alterations of<br />

k<strong>in</strong>ases and phospholipases, disturbance of Ca 2+ homeostasis, and modulation of gene<br />

expression (Satar 2000, Chiu et al. 2000, Arukwe 2001).<br />

In assess<strong>in</strong>g <strong>the</strong> impend<strong>in</strong>g risk <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e environment caused by <strong>the</strong>se contam<strong>in</strong>ants<br />

monitor<strong>in</strong>g biological effects is a fundamental issue (Suter 1993). To reach this goal,<br />

biomarkers are precious tools as <strong>the</strong>y offer early warn<strong>in</strong>g signals (<strong>de</strong>n Besten 1998). A<br />

biomarker is a variation of a biological response (rang<strong>in</strong>g from molecular to cellular and<br />

physiological responses) which can be related to exposure or to toxic effects of chemicals<br />

(Bayne et al. 1988, Peakall 1992). In an environmental context, biomarkers are sensitive<br />

<strong>in</strong>dicators of <strong>the</strong> entrance of a toxicant <strong>in</strong> an organism, its distribution among organs and/or<br />

tissues, and its toxic effect on critical processes (e.g. McCarthy & Shugart 1990).<br />

75


Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

The common NE Atlantic sea star, <strong>Asterias</strong> <strong>rubens</strong>, is consi<strong>de</strong>red as a valuable test organism<br />

because of its key position <strong>in</strong> benthic ecosystems, and more particularly <strong>in</strong> <strong>the</strong><br />

"seston–mussel–sea star" food cha<strong>in</strong> (<strong>de</strong>n Besten et al. 2001). In previous studies, it has been<br />

shown that <strong>the</strong> accumulation of PCB mixtures <strong>in</strong> this food cha<strong>in</strong> can lead to adverse effects on<br />

<strong>the</strong> reproduction of <strong>the</strong> sea star (e.g. <strong>de</strong>n Besten et al. 1989). The effects of such contam<strong>in</strong>ants<br />

have been assessed at <strong>the</strong> subcellular level us<strong>in</strong>g biomarkers such as benzo[a]pyrene<br />

hydroxylase (BaPH) activity (<strong>de</strong>n Besten 1998b, <strong>de</strong>n Besten et al. 1990b, 1993,) and hormone<br />

syn<strong>the</strong>sis rate (<strong>de</strong>n Besten et al. 1991). Fur<strong>the</strong>rmore, <strong>in</strong> vitro or <strong>in</strong> vivo exposure of sea stars to<br />

PCBs has been reported to affect DNA <strong>in</strong>tegrity, larval <strong>de</strong>velopment, and immune and<br />

<strong>de</strong>toxification systems (<strong>de</strong>n Besten et al. 1990b, 1991, 1993, Everaarts & Sarkar 1995).<br />

The aim of <strong>the</strong> present work was to <strong>de</strong>scribe (1) <strong>the</strong> accumulation and tissue-distribution of a<br />

coplanar PCB congener (IUPAC#77) <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> exposed via seawater,<br />

sediments or food pathways and (2), <strong>in</strong> parallel, to assess <strong>the</strong> <strong>in</strong>duced biological effects at <strong>the</strong><br />

immune and subcellular levels. Accumulation and loss k<strong>in</strong>etics were studied by means of a<br />

14 C-labelled congener. This method has been used <strong>in</strong> a previous study (Danis et al. Chap.<br />

III.2), and displays many advantages over conventional methods (viz. classical GC-ECD or<br />

GC-MS <strong>de</strong>tection methods) <strong>in</strong> that it allows work<strong>in</strong>g at low, realistic levels of contam<strong>in</strong>ation,<br />

and with small organs of very low weight. Biological effects were assessed by measur<strong>in</strong>g<br />

reactive oxygen species (ROS) production by immune cells, and CYP1A immunopositive<br />

prote<strong>in</strong> (CYP1A IPP) <strong>in</strong>duction <strong>in</strong> sea star pyloric caeca.<br />

MATERIALS AND METHODS<br />

Sampl<strong>in</strong>g<br />

The sea stars, <strong>Asterias</strong> <strong>rubens</strong> (L<strong>in</strong>naeus 1758), were collected <strong>in</strong> April 2002 <strong>in</strong> <strong>the</strong> <strong>in</strong>tertidal<br />

zone at Audresselles (Pas-<strong>de</strong>-Calais, France). Prior to experimentation, 250 specimens of<br />

similar size (5-7 cm arm radius) and weight (36 ± 3.5 g) were acclimated to laboratory<br />

conditions for 1 month (constantly aerated open circuit aquaria, 34 p.s.u., 16 ± 0.5 °C, 12/12 h<br />

dark/light cycle). Mussels (Mytilus galloprov<strong>in</strong>cialis) were collected off "la Po<strong>in</strong>te <strong>de</strong>s<br />

Douaniers" (Cap d'Ail, France), and all specimens were held un<strong>de</strong>r similar controlled<br />

laboratory conditions until used <strong>in</strong> experiments.<br />

Radiotracer<br />

The 14 C-labelled 3,3',4,4' hexachlorobiphenyl (purity ≥ 95%) was purchased from Sigma<br />

Chemicals, USA. Specific activity was 25 MBq mmol -1 . Stock solutions were prepared <strong>in</strong><br />

acetone at a concentration of 1 µg ml -1 .<br />

76


Sample treatment and liquid sc<strong>in</strong>tillation count<strong>in</strong>g<br />

Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Water samples (2 ml) were directly transferred to 20 ml glass sc<strong>in</strong>tillation vials (Packard,<br />

USA) and 10 ml of Ultima Gold XR ® (Packard Instruments) sc<strong>in</strong>tillation liquid were ad<strong>de</strong>d.<br />

Samples of sediment, mussel or sea star tissues (previously ground) were placed <strong>in</strong> a vial<br />

conta<strong>in</strong><strong>in</strong>g 2 ml of Acetonitrile ® <strong>in</strong> an ultrasonic bath for 10 m<strong>in</strong>. The Acetonitrile ® was <strong>the</strong>n<br />

collected and replaced by ano<strong>the</strong>r 2 ml of Acetonitrile ® and <strong>the</strong> ultrasonic operation was<br />

repeated a second time. This treatment gave 4 ml of liquid phase (viz., <strong>the</strong> extract) and a<br />

residue. The residue was digested overnight at 70°C with 2 ml of Soluene ® , followed by an<br />

addition of 10 ml of Hionic Fluor ® sc<strong>in</strong>tillation liquid. The liquid phase (4 ml) was ad<strong>de</strong>d to<br />

16 ml of filtered seawater and extracted twice us<strong>in</strong>g 2 ml of n-Hexane (Sigma, USA) un<strong>de</strong>r<br />

constant agitation. The organic phase (4 ml) and aqueous phase (20 ml) were treated<br />

separately; <strong>the</strong> entire organic phase and 2 ml of <strong>the</strong> aqueous phase were each ad<strong>de</strong>d separately<br />

to 10 ml of Ultima Gold XR ® sc<strong>in</strong>tillation liquid.<br />

14 C-radioactivity was <strong>the</strong>n measured us<strong>in</strong>g a 1600 TR Liquid Sc<strong>in</strong>tillation Analyzer (Packard),<br />

compared to standards of known activities, and corrected for quench<strong>in</strong>g, background and<br />

physical <strong>de</strong>cay of <strong>the</strong> radiotracer. Count<strong>in</strong>g times were adjusted to obta<strong>in</strong> count<strong>in</strong>g rates with<br />

relative propagated errors less than 5 %. PCB concentrations were expressed on a total lipid<br />

content basis where lipids were <strong>de</strong>term<strong>in</strong>ed gravimetrically (UNEP 1990). A schematic<br />

diagram of <strong>the</strong> sample treatment is shown <strong>in</strong> Figure 18.<br />

Figure 18. Schematic representation of sample process<strong>in</strong>g before liquid sc<strong>in</strong>tillation count<strong>in</strong>g<br />

77


Experimental procedures<br />

Uptake from seawater<br />

Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

<strong>Sea</strong> stars (n = 25) were placed for 15 d <strong>in</strong> a 70 l glass aquarium (constantly aerated closed<br />

circuit aquaria; 34 p.s.u.; 16 ± 0.5°C; 12/12 h dark/light cycle) conta<strong>in</strong><strong>in</strong>g natural seawater<br />

spiked with 14 C-labelled PCB 77. One day prior to <strong>the</strong> experiments, four 5 l glass beakers<br />

were filled with filtered seawater (34 p.s.u.; 16 ± 0.5°C), spiked with <strong>the</strong> radiolabelled PCB<br />

stock solution, and constantly stirred us<strong>in</strong>g an orbital agitation plate. Spiked water was <strong>the</strong>n<br />

poured <strong>in</strong>to <strong>the</strong> glass aquarium and natural seawater was ad<strong>de</strong>d to obta<strong>in</strong> a f<strong>in</strong>al volume of<br />

70l. <strong>Sea</strong>water and radiotracer were renewed every second day dur<strong>in</strong>g <strong>the</strong> entire experiment.<br />

Activity was checked before and after each renewal to assess <strong>the</strong> stability of <strong>the</strong> labelled PCB<br />

concentration <strong>in</strong> seawater. The sea stars were fed unlabelled mussels (M. galloprov<strong>in</strong>cialis)<br />

every second day just before <strong>the</strong> seawater renewal. After 2 hrs, un<strong>in</strong>gested mussels were<br />

removed to limit as much as possible PCB <strong>in</strong>corporation via <strong>the</strong> food (PCB measurements <strong>in</strong><br />

un<strong>in</strong>gested mussel soft parts were always below <strong>de</strong>tection limit). Periodically, sea stars (n =<br />

3) were removed, dissected <strong>in</strong>to six body compartments (oral body wall, aboral body wall,<br />

pyloric caeca, gonads, rectal caeca, and central digestive system), and radioanalyzed to<br />

<strong>de</strong>term<strong>in</strong>e uptake k<strong>in</strong>etics.<br />

Uptake from sediments<br />

Sediments (2.5 kg dry wt) from <strong>the</strong> North <strong>Sea</strong> (Audresselles, Pas-<strong>de</strong>-Calais, France) were<br />

contam<strong>in</strong>ated for 4 days with <strong>the</strong> 14 C-labelled PCB us<strong>in</strong>g <strong>the</strong> roll<strong>in</strong>g jar method (Murdoch et<br />

al. 1997). <strong>Sea</strong> stars (n = 60) were placed for 34 d <strong>in</strong> a 70 l glass aquarium (constantly aerated<br />

open circuit aquarium; flow 30 l hr -1 ; 34 p.s.u.; 16 ± 0.5°C; 12/12 h dark/light cycle)<br />

conta<strong>in</strong><strong>in</strong>g a 10 cm layer of seawater runn<strong>in</strong>g over a 2 cm layer of spiked sediments. A<br />

separate group of 5 sea stars were placed <strong>in</strong> <strong>the</strong> same aquaria, but <strong>in</strong> ano<strong>the</strong>r compartment<br />

(not <strong>in</strong> contact with <strong>the</strong> sediments), to serve as a control for possible cross-contam<strong>in</strong>ation<br />

from labelled PCB <strong>in</strong> seawater. The sea stars were fed every second day with fresh mussels<br />

and any un<strong>in</strong>gested food was removed after 2 hrs (PCB measurements <strong>in</strong> un<strong>in</strong>gested mussel<br />

soft parts were always below <strong>de</strong>tection limit). The radioactivity of <strong>the</strong> labelled PCB was<br />

measured weekly <strong>in</strong> <strong>the</strong> sediments to check for possible leach<strong>in</strong>g. Periodically, 3 <strong>in</strong>dividuals<br />

were removed, dissected as <strong>de</strong>scribed above, and <strong>the</strong>ir tissues counted for radioactivity.<br />

Uptake from food<br />

Before <strong>the</strong> feed<strong>in</strong>g experiment, mussels were exposed for 2 d <strong>in</strong> a glass aquarium conta<strong>in</strong><strong>in</strong>g 4<br />

l of filtrated seawater spiked with 18 ng l -1 PCB 77. Radiolabelled seawater was changed daily<br />

78


Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

and mussels were regularly fed with phytoplankton (Isochrysis galbana). After 2 days of<br />

exposure to <strong>the</strong> 14 C-PCB congener, mussels were fed to <strong>the</strong> sea stars. Mussel exposure was<br />

carried out daily to obta<strong>in</strong> each day food that had been radiolabelled for 2 days. Sixty sea stars<br />

were placed for 34 d <strong>in</strong> a 70 l glass aquarium (constantly aerated open circuit aquarium; flow<br />

30 l hr -1 ; 34 p.s.u.; 16 ± 0.5°C; 12/12 h dark/light cycle). <strong>Sea</strong> stars were allowed to feed daily<br />

for 1 hr on radiolabelled mussels (1 mussel per sea star) and <strong>the</strong>n <strong>in</strong>dividuals were<br />

periodically sampled to measure PCB uptake k<strong>in</strong>etics.<br />

Reactive Oxygen Species (ROS) production measurements<br />

Amoebocyte ROS production was measured by <strong>the</strong> peroxidase, lum<strong>in</strong>ol – enhanced method<br />

optimized by Coteur et al. (2001). Briefly, 3 ml of coelomic fluid were collected <strong>in</strong> <strong>the</strong> same<br />

volume of anticoagulant buffer. The cell concentration was measured by absorbance at 280<br />

nm us<strong>in</strong>g a Tecan Spectrafluor Plus plate-rea<strong>de</strong>r. This suspension was <strong>the</strong>n centrifuged for 10<br />

m<strong>in</strong> at 400 g and resuspen<strong>de</strong>d <strong>in</strong> Ca 2+ -, Mg 2+ -free artificial seawater (ASW), <strong>the</strong> volume of<br />

which was adjusted to obta<strong>in</strong> a f<strong>in</strong>al amoebocyte concentration of 10 6 cells ml -1 . A stock<br />

solution of lum<strong>in</strong>ol and horseradish peroxidase (HRP) <strong>in</strong> DMSO was freshly diluted 100 fold<br />

<strong>in</strong> ASW (f<strong>in</strong>al concentrations of HRP and lum<strong>in</strong>ol were 500 µg ml -1 and 250 µg ml -1 ,<br />

respectively). The reaction was begun by add<strong>in</strong>g 200 µl of amoebocyte suspension <strong>in</strong> 100 µl<br />

of lum<strong>in</strong>ol / HRP solution, and 20 µl of a Micrococcus luteus suspension conta<strong>in</strong><strong>in</strong>g 2.5x10 9<br />

bacteria ml -1 (stimulated amoebocytes) or 20 µl of ASW (non-stimulated amoebocytes). The<br />

chemilum<strong>in</strong>escence was measured every 10 m<strong>in</strong> over a 2 h period us<strong>in</strong>g a Tecan Spectrafluor<br />

Plus plate-rea<strong>de</strong>r placed <strong>in</strong> an <strong>in</strong>cubator <strong>the</strong>rmostabilized at 14 ± 0.5°C. Results were<br />

expressed as <strong>the</strong> sum of all 10 m<strong>in</strong> <strong>in</strong>terval measurements for 10 6 cells ml -1 (total<br />

chemilum<strong>in</strong>escence) of bacteria-stimulated amoebocytes or non-stimulated amoebocytes.<br />

Cytochrome P450 immunopositive prote<strong>in</strong> (CYP1A IPP) quantification<br />

CYP1A IPP content was quantified us<strong>in</strong>g a competitive-ELISA method which has been fully<br />

<strong>de</strong>scribed elsewhere (Danis et al. Chap. III.4). Briefly, ELISA was carried out us<strong>in</strong>g<br />

competition between <strong>the</strong> CYP1A IPP conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> pyloric caeca of PCB-exposed sea stars<br />

and a biot<strong>in</strong>ylated CYP1A from ß-naphtoflavone (BNF)-<strong>in</strong>jected trout (Oncorhyncus mykiss).<br />

Multiwell plates (96 wells) were coated with Anti-CYP1A (rabbit anti-fish CYP1A pepti<strong>de</strong>,<br />

polyclonal antibody; Biosense, Norway). Wells were washed with phosphate-buffered sal<strong>in</strong>e<br />

(PBS), and nonspecific b<strong>in</strong>d<strong>in</strong>g sites were blocked with PBS-Bov<strong>in</strong>e serum album<strong>in</strong> (BSA).<br />

Wells were washed aga<strong>in</strong> and biot<strong>in</strong>ylated microsomes of BNF-<strong>in</strong>jected trout were ad<strong>de</strong>d<br />

(except for <strong>the</strong> blank wells). <strong>Sea</strong> star samples or standards (with adjusted prote<strong>in</strong><br />

concentration to 100 µg ml -1 ) were <strong>the</strong>n ad<strong>de</strong>d to <strong>the</strong> wells. Competition was allowed to take<br />

79


Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

place for 2 hrs, and after five wash<strong>in</strong>g steps extravid<strong>in</strong>-HRP was ad<strong>de</strong>d to all <strong>the</strong> wells. The<br />

plate was <strong>the</strong>n <strong>in</strong>cubated for 45 m<strong>in</strong> and <strong>the</strong> wells washed aga<strong>in</strong> us<strong>in</strong>g PBS. Chromogen TMB<br />

(Biosource, UK) was ad<strong>de</strong>d to all <strong>the</strong> wells and <strong>the</strong> plate was <strong>in</strong>cubated <strong>in</strong> <strong>the</strong> dark for 10<br />

m<strong>in</strong>. Sulfuric acid was <strong>the</strong>n ad<strong>de</strong>d to stop <strong>the</strong> reaction and absorbance was measured at 450<br />

nm us<strong>in</strong>g a micro plate rea<strong>de</strong>r (Packard, Spectracount). F<strong>in</strong>al results were expressed as<br />

<strong>in</strong>duction factors, viz., <strong>the</strong> ratio of CYP1A IPP levels between experimental and control<br />

groups.<br />

Data analyses<br />

Uptake of <strong>the</strong> PCB congener from seawater, sediments or food was expressed as change <strong>in</strong><br />

PCB concentration (ng g -1 total lipids) over time. Uptake k<strong>in</strong>etics were <strong>de</strong>scribed ei<strong>the</strong>r by<br />

us<strong>in</strong>g a saturation exponential mo<strong>de</strong>l (Equation 5), or a l<strong>in</strong>ear mo<strong>de</strong>l (Equation 6):<br />

Equation 5: C(t) = Css (1-e -k e .t )<br />

Equation 6: C(t) = k u.t<br />

where C(t) and Css are PCB concentrations (ng g -1 total lipids) at time t (d) and steady state,<br />

respectively, k u and k e are <strong>the</strong> respective biological uptake rate constants (d -1 ) (Whicker &<br />

Schultz 1982). The mo<strong>de</strong>l show<strong>in</strong>g <strong>the</strong> most accurate fit (based on calculation of <strong>the</strong><br />

<strong>de</strong>term<strong>in</strong>ation coefficient, R 2 , and exam<strong>in</strong>ation of <strong>the</strong> residuals) was selected.<br />

Constants of <strong>the</strong> mo<strong>de</strong>ls and <strong>the</strong>ir statistics were estimated by iterative adjustment of <strong>the</strong><br />

mo<strong>de</strong>ls and Hessian matrix computation, respectively, us<strong>in</strong>g <strong>the</strong> nonl<strong>in</strong>ear curve-fitt<strong>in</strong>g<br />

rout<strong>in</strong>es <strong>in</strong> <strong>the</strong> Systat ® 5.2.1 software (Wilk<strong>in</strong>son 1988). Differences among PCB<br />

concentrations <strong>in</strong> <strong>the</strong> different sea star body compartments and between ROS production and<br />

CYP1A IPP levels <strong>in</strong> <strong>the</strong> different exposure conditions were tested by 1-way ANOVA and <strong>the</strong><br />

multiple comparison test of Tukey (Zar 1996). Dose-response relationships were tested us<strong>in</strong>g<br />

l<strong>in</strong>ear and non-l<strong>in</strong>ear regressions. The level of significance for statistical tests was always set<br />

at a = 0.05.<br />

RESULTS<br />

Uptake from seawater<br />

Regular monitor<strong>in</strong>g of radiotracer activities <strong>in</strong> seawater allowed calculation of time-<strong>in</strong>tegrated<br />

dissolved concentration of PCB 77; its value was 12.9 ± 0.45 ng l -1 . Uptake of <strong>the</strong><br />

contam<strong>in</strong>ant <strong>in</strong> <strong>the</strong> different body compartments displayed saturation k<strong>in</strong>etics, except <strong>in</strong> <strong>the</strong><br />

80


Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

gonads, <strong>in</strong> which <strong>the</strong> PCB was l<strong>in</strong>early accumulated (Fig. 19, Table 12). Dur<strong>in</strong>g <strong>the</strong><br />

experiment (15 d), <strong>the</strong> digestive organs (viz. pyloric and rectal caeca and central digestive<br />

system) reached saturation, while saturation was almost reached <strong>in</strong> oral and aboral body<br />

walls.<br />

By or<strong>de</strong>r of <strong>de</strong>creas<strong>in</strong>g bioaccumulation efficiency (Fig. 19, Table 12), <strong>the</strong> PCB 77<br />

concentrations at <strong>the</strong> end of <strong>the</strong> exposure period were 286 ± 89.7 ng g -1 lipids <strong>in</strong> <strong>the</strong> gonads,<br />

262 ± 55.2 <strong>in</strong> <strong>the</strong> rectal caeca, 240 ± 32.5 <strong>in</strong> <strong>the</strong> oral body wall, 157 ± 26.1 <strong>in</strong> <strong>the</strong> aboral body<br />

wall, 53.1 ± 7.14 <strong>in</strong> <strong>the</strong> pyloric caeca and 11.9 ± 3.05 <strong>in</strong> <strong>the</strong> central digestive system.<br />

400<br />

300<br />

200<br />

100<br />

200<br />

150<br />

100<br />

0<br />

0 5 10 15<br />

50<br />

0<br />

0 5 10 15<br />

Figure 19. <strong>Asterias</strong> <strong>rubens</strong>. Uptake of 14 C-PCB 77 from seawater <strong>in</strong> different body compartments<br />

of <strong>the</strong> sea star (mean concentration <strong>in</strong> ng g –1 total lipids ± SD, n = 3).<br />

Table 12 <strong>Asterias</strong> <strong>rubens</strong>. Parameters and statistics of <strong>the</strong> equations <strong>de</strong>scrib<strong>in</strong>g <strong>the</strong> uptake of 14 C-PCB #77 <strong>in</strong><br />

different body compartments of <strong>the</strong> sea star. L (l<strong>in</strong>ear mo<strong>de</strong>l): C(t)=kt; S (saturation mo<strong>de</strong>l): C(t)=Css.(1-e -kt );<br />

where C(t) and Css: 14 C-PCB #77 concentrations (ng g -1 lipids) respectively at time t (d) and at steady-state; k:<br />

rate constant (d -1 ); ASE: asymptotic standard error; R 2 : corrected <strong>de</strong>term<strong>in</strong>ation coefficient.<br />

<strong>Sea</strong>water exposure<br />

500<br />

Oral Bodywall Gonads Rectal Caeca<br />

Aboral Bodywall<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 5 10 15<br />

Time (d) Time (d)<br />

Time (d)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 5 10 15<br />

Body Compartment Mo<strong>de</strong>l Css (ASE) k (ASE) R 2<br />

Oral body wall S 326 (53.3) 0.11 (0.03) 0.84<br />

Aboral body wall S 190 (22.9) 0.14 (0.03) 0.84<br />

Gonads L 19.2 (2.21) 0.53<br />

Pyloric caeca S 52 (3.30) 0.77 (0.20) 0.37<br />

Rectal caeca S 289 (18.7) 0.32 (0.06) 0.72<br />

Central digestive<br />

system<br />

S 13.0 (0.95) 0.47 (0.13) 0.53<br />

81<br />

400<br />

300<br />

200<br />

100<br />

20<br />

15<br />

10<br />

0<br />

0 5 10 15<br />

Pyloric Caeca Central Dig. System<br />

5<br />

Time (d)<br />

0<br />

0 5 10 15<br />

Time (d) Time (d)


Sediments exposure<br />

Food exposure<br />

Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Oral body wall S 125 (32.3) 0.05 (0.02) 0.59<br />

Aboral body wall S 194 (14.9) 0.22 (0.05) 0.62<br />

Gonads S 256 (67.6) 0.04 (0.02) 0.80<br />

Pyloric caeca S 109 (7.09) 0.17 (0.03) 0.78<br />

Rectal caeca S 300 (11.5) 0.11 (0.01) 0.95<br />

Central digestive<br />

system<br />

S 11.7 (0.82) 0.37 (0.11) 0.57<br />

Oral body wall S 76.7 (5.65) 0.16 (0.04) 0.72<br />

Aboral body wall S 195 (18.2) 0.09 (0.02) 0.82<br />

Gonads L 4.85 (0.34) 0.67<br />

Pyloric caeca S 141 (6.31) 0.14 (0.02) 0.89<br />

Rectal caeca S 190 (11.7) 0.16 (0.03) 0.77<br />

Central digestive<br />

system<br />

S 43.1 (2.84) 0.16 (0.03) 0.76<br />

Table 13 <strong>Asterias</strong> <strong>rubens</strong>. Concentration and Transfer factors, CF and TF (mean ± SD; n=24 for seawater<br />

exposure and n=33 for sediments and food exposures) <strong>in</strong> body compartments at <strong>the</strong> end of exposure periods via<br />

seawater, sediments or food. CFs calculated as ratio between PCB 77 concentration <strong>in</strong> body compartments (ng<br />

g –1 total lipids) and its concentration <strong>in</strong> seawater (ng g -1 ). TFs calculated as ratio between PCB 77 concentration<br />

<strong>in</strong> body compartments (ng g –1 total lipids) and its concentration <strong>in</strong> sediments (ng g -1 dry wt) or <strong>in</strong> food (ng g -1<br />

total lipids). BW: bodywall, Pyl. Caec.: pyloric caeca, Rect. Caec.: rectal caeca, C.D.S.: central digestive system<br />

Experiment Oral BW Aboral BW Gonads Pyl. Caec. Rect. Caec. C.D.S.<br />

<strong>Sea</strong>water 18,600 ± 2520 12,200 ± 2020 22,100 ± 6950 4,110 ± 550 20,300 ± 4280 920 ± 237<br />

Sediments 8.31 ± 1.74 14.1 ± 3.80 11.9 ± 1.80 7.37 ± 2.20 21.5 ± 2.06 0.97 ± 0.35<br />

Food 2.84 ± 1.30 7.93 ± 2.03 5.90 ± 1.12 5.26 ± 0.73 6.16 ± 1.18 1.51 ± 0.22<br />

Correlations, calculated between PCB 77 concentrations measured <strong>in</strong> <strong>the</strong> different body<br />

compartments, showed that concentrations measured <strong>in</strong> oral body wall were significantly<br />

correlated to those measured <strong>in</strong> aboral body wall (r = 0.68; Fig. 20), gonads (r = 0.50), rectal<br />

caeca (r = 0.37) and central digestive system (r = 0.29). Significant correlation was also found<br />

between PCB 77 concentrations measured <strong>in</strong> aboral body wall and those measured <strong>in</strong> rectal<br />

caeca (r=0.50) and gonads (r = 0.43).<br />

82


PCB concentration <strong>in</strong> Oral bodywall (ng g -1 lipids)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

r=0.73<br />

p


200<br />

150<br />

100<br />

50<br />

300<br />

200<br />

100<br />

0<br />

0 5 10 15 20 25 30 35<br />

0<br />

0 5 10 15 20 25 30 35<br />

Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Figure 21. <strong>Asterias</strong> <strong>rubens</strong>. Uptake of 14 C-PCB 77 from sediments <strong>in</strong> different body<br />

compartments of <strong>the</strong> sea star (mean concentration <strong>in</strong> ng g –1 total lipids ± SD, n = 3).<br />

The estimated mean transfer factors (TFs) <strong>in</strong>dicated that bioaccumulation <strong>in</strong> <strong>the</strong> body<br />

compartments was ranked differently than <strong>in</strong> <strong>the</strong> case of seawater-exposed sea stars (Table<br />

13), with rectal caeca show<strong>in</strong>g <strong>the</strong> highest TF, followed by aboral body wall and gonads. In<br />

addition, TF values were 3 or<strong>de</strong>rs of magnitu<strong>de</strong> lower than CFs calculated <strong>in</strong> <strong>the</strong> seawater<br />

experiment <strong>in</strong> which sea stars were exposed for only half <strong>the</strong> time.<br />

Significant correlations were calculated between PCB concentrations measured <strong>in</strong> <strong>the</strong><br />

different body compartments at <strong>the</strong> end of <strong>the</strong> exposure period; <strong>the</strong> strongest one was found<br />

for pyloric vs rectal caeca (r=0.73; Fig. 22), followed by weaker correlations for gonads vs<br />

oral body wall (r=0.51), and aboral body wall vs rectal caeca (r=0.34).<br />

300<br />

Oral Bodywall Gonads Rectal Caeca<br />

Aboral Bodywall<br />

200<br />

100<br />

200<br />

150<br />

100<br />

0<br />

0 5 10 15 20 25 30 35<br />

50<br />

0<br />

0 5 10 15 20 25 30 35<br />

84<br />

400<br />

300<br />

200<br />

100<br />

20<br />

15<br />

10<br />

0<br />

0 5 10 15 20 25 30 35<br />

Pyloric Caeca Central Dig. System<br />

5<br />

0<br />

0 5 10 15 20 25 30 35


PCB concentration <strong>in</strong> Rectal caeca (ng g -1 lipids)<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

85<br />

y = 2.23x + 1.70<br />

0<br />

0 20 40 60 80 100 120 140 160 180 200<br />

PCB concentration <strong>in</strong> Pyloric caeca (ng g -1 lipids)<br />

Figure 22. L<strong>in</strong>ear regression between 14 C-PCB 77 concentrations (ng g –1 total lipids)<br />

measured <strong>in</strong> rectal and pyloric caeca of sea stars exposed for 34 d to contam<strong>in</strong>ated<br />

sediments. r: correlation coefficient.<br />

Uptake from food<br />

r=0.67<br />

p


100<br />

80<br />

60<br />

40<br />

20<br />

300<br />

200<br />

100<br />

0<br />

0 5 10 15 20 25 30 35<br />

0<br />

0 5 10 15 20 25 30 35<br />

Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Figure 23. <strong>Asterias</strong> <strong>rubens</strong>. Uptake of 14 C-PCB 77 from food (Mytilus galloprov<strong>in</strong>cialis) <strong>in</strong><br />

different body compartments of <strong>the</strong> sea star (mean concentration <strong>in</strong> ng g –1 total lipids ± SD, n<br />

= 3).<br />

TFs from food were of <strong>the</strong> same or<strong>de</strong>r of magnitu<strong>de</strong> than those calculated for sediment-<br />

exposed sea stars; <strong>the</strong>y reached <strong>the</strong> maximal value of 7.93 <strong>in</strong> <strong>the</strong> aboral body wall after 34 d<br />

of exposure (Table 13).<br />

Correlations were found between PCB concentrations measured <strong>in</strong> <strong>the</strong> different body<br />

compartments at <strong>the</strong> end of <strong>the</strong> feed<strong>in</strong>g period. The highest correlation was found between <strong>the</strong><br />

pyloric and <strong>the</strong> rectal caeca (r=0.67; Fig. 24).<br />

PCB concentration <strong>in</strong> Rectal caeca (ng g -1 lipids)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

200<br />

Oral Bodywall Gonads Rectal Caeca<br />

Aboral Bodywall<br />

r=0.67<br />

p


ROS production<br />

Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Reactive oxygen species (ROS) production was measured <strong>in</strong> amoebocytes collected from <strong>the</strong><br />

sea stars sampled dur<strong>in</strong>g <strong>the</strong> seawater, sediments, or food experiments; <strong>the</strong>se results are<br />

presented <strong>in</strong> Fig. 25. In <strong>the</strong> case of seawater-exposed sea stars, <strong>the</strong> measurement of ROS<br />

production <strong>in</strong> non-stimulated amoebocytes showed no clear trends. However, bacteria-<br />

stimulated amoebocytes were <strong>in</strong>duced to produce more ROS dur<strong>in</strong>g <strong>the</strong> first five days, while<br />

afterwards ROS production <strong>de</strong>creased aga<strong>in</strong> to control levels until <strong>the</strong> end of <strong>the</strong> experiment<br />

(Fig. 25A). Dur<strong>in</strong>g <strong>the</strong> sediment experiment (Fig. 25B), an <strong>in</strong>creas<strong>in</strong>g trend was observed<br />

dur<strong>in</strong>g <strong>the</strong> first 9 days of exposure, at which time ROS levels dropped dramatically. The same<br />

trends were also observed <strong>in</strong> amoebocytes from sea stars exposed to labelled food; <strong>in</strong> this<br />

experiment maximum ROS production was reached after 5 days of exposure (Fig. 25C).<br />

A.<br />

ROS production (sum LCL)<br />

B.<br />

ROS production (sum LCL)<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

400000<br />

350000<br />

300000<br />

250000<br />

200000<br />

150000<br />

100000<br />

Non-stimulated Stimulated<br />

0<br />

0 5 10 15<br />

50000<br />

87<br />

Time (d)<br />

Non-stimulated Stimulated<br />

0<br />

0 5 10 15 20 25 30 35<br />

Time (d)


C.<br />

Ros production (sum LCL)<br />

300000<br />

250000<br />

200000<br />

150000<br />

100000<br />

50000<br />

Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Non-stimulated Stimulated<br />

0<br />

0 5 10 15 20 25 30 35<br />

Time (d)<br />

Figure 25. <strong>Asterias</strong> <strong>rubens</strong>. ROS production (sum LCL; non-stimulated<br />

and bacteria-stimulated amoebocytes; mean±SD; n = 3) measured <strong>in</strong><br />

sea stars exposed to 14 C-PCB 77 via (A) seawater, (B) sediments, or (C)<br />

food.<br />

Correlations between non-stimulated and bacteria-stimulated ROS production were found for<br />

all exposure routes, but with variable correlation coefficient values: r seawater=0.72,<br />

r sediments=0.94, r food=0.50.<br />

CYP1A immunopositive prote<strong>in</strong> <strong>in</strong>duction<br />

Cytochrome P450 (CYP1A) immunopositive prote<strong>in</strong> (CYP1A IPP) <strong>in</strong>duction was measured<br />

<strong>in</strong> pyloric caeca collected from experimental sea stars exposed to PCB 77 via seawater,<br />

sediments, or food (Fig. 26). Induction of CYP1A IPP followed saturation k<strong>in</strong>etics for<br />

whichever exposure route was consi<strong>de</strong>red (Table 14). Saturation values were higher <strong>in</strong> <strong>the</strong><br />

case of sediments and food exposures, but <strong>the</strong> rate constant was almost 3 times faster <strong>in</strong> <strong>the</strong><br />

case of seawater exposure.<br />

88


CYP1A immunopositive prote<strong>in</strong> (<strong>in</strong>duction fold)<br />

3<br />

2,5<br />

2<br />

1,5<br />

Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

<strong>Sea</strong> water Sediments Food<br />

1<br />

0 5 10 15 20 25 30 35<br />

Time (d)<br />

Figure 26 <strong>Asterias</strong> <strong>rubens</strong>. CYP1A IPP <strong>in</strong>duction (ratio of experimental response to<br />

control group; mean±SD; n = 3) measured us<strong>in</strong>g competitive ELISA <strong>in</strong> sea stars<br />

exposed to 14 C-PCB 77 via seawater, sediments or food.<br />

Table 14 <strong>Asterias</strong> <strong>rubens</strong>. Parameters and statistics of <strong>the</strong> equations <strong>de</strong>scrib<strong>in</strong>g <strong>the</strong> <strong>in</strong>duction of CYP1A<br />

immunopositive prote<strong>in</strong> dur<strong>in</strong>g <strong>the</strong> exposure experiments. K<strong>in</strong>etics were <strong>de</strong>scribed us<strong>in</strong>g a saturation mo<strong>de</strong>l:<br />

C(t)=Css(1-e -lt ) where l is <strong>the</strong> rate constant (d -1 ). O<strong>the</strong>r symbols as <strong>in</strong> Table 12.<br />

Exposure route Css (ASE) l s (ASE) R 2<br />

<strong>Sea</strong>water 1.57 (0.04) 1.16 (0.18) 0.50<br />

Sediments 1.91 (0.06) 0.40 (0.09) 0.42<br />

Food 1.98 (0.06) 0.42 (0.08) 0.37<br />

For each exposure route, significant correlations were found between CYP1A IPP <strong>in</strong>duction<br />

and PCB concentrations measured <strong>in</strong> seastars body compartments. The highest correlations<br />

were found for gonads (r=0.55) dur<strong>in</strong>g sediment exposure, aboral body wall (r=0.45)<br />

dur<strong>in</strong>g seawater exposure, and oral body wall (r=0.29) dur<strong>in</strong>g food exposure.<br />

DISCUSSION<br />

Although sea stars have been reported to efficiently concentrate PCBs, available literature<br />

ma<strong>in</strong>ly concerns field measurements of <strong>the</strong>se contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong> tissues and organs, and<br />

more specifically concerns non-coplanar congeners (e.g. Stebb<strong>in</strong>g et al. 1992, Everaarts et al.<br />

1998, <strong>de</strong>n Besten et al. 2001, Stronkhorst et al. 2003). One previous experimental study<br />

focused on bioaccumulation k<strong>in</strong>etics of <strong>the</strong> non-coplanar congener #153 follow<strong>in</strong>g exposure<br />

89


Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

via sediments or seawater (Danis et al. Chap. III.2). To <strong>the</strong> best of our knowledge, no<br />

previous <strong>in</strong>formation is available regard<strong>in</strong>g <strong>the</strong> relative importance of <strong>the</strong> different exposure<br />

routes on uptake of coplanar congeners <strong>in</strong> mar<strong>in</strong>e <strong>in</strong>vertebrates.<br />

In <strong>the</strong> present study, biok<strong>in</strong>etic experiments were performed us<strong>in</strong>g a 14 C-labelled PCB<br />

coplanar congener (IUPAC#77). The procedure was <strong>de</strong>signed <strong>in</strong> or<strong>de</strong>r to have ad<strong>de</strong>d<br />

contam<strong>in</strong>ant concentrations on <strong>the</strong> same or<strong>de</strong>r as those found <strong>in</strong> contam<strong>in</strong>ated natural mar<strong>in</strong>e<br />

environments. In general, <strong>the</strong> coplanar PCB congener was readily accumulated by A. <strong>rubens</strong><br />

exposed via seawater (CFs rang<strong>in</strong>g from 672 to 22,100 accord<strong>in</strong>g to <strong>the</strong> body compartment<br />

after 15 d of exposure), via sediments (TFs rang<strong>in</strong>g from 1 to 22 after 34 d of exposure) or via<br />

food (TFs rang<strong>in</strong>g from 1.5 to 7.9 after 34 d of exposure). In a previous study us<strong>in</strong>g <strong>the</strong> non-<br />

coplanar congener PCB 153, maximum TFs and CFs were, respectively, up to 1 and 2 or<strong>de</strong>rs<br />

of magnitu<strong>de</strong> higher than <strong>in</strong> <strong>the</strong> present study (Danis et al. Chap. III.2).<br />

When consi<strong>de</strong>r<strong>in</strong>g CFs and TFs, <strong>the</strong> relative bioaccumulation efficiency was up to 3 or<strong>de</strong>rs of<br />

magnitu<strong>de</strong> higher <strong>in</strong> seawater-exposed animals than when sea stars were exposed via<br />

sediments or food. The same observation was ma<strong>de</strong> for PCB 153 (Danis et al. Chap. III.2);<br />

i.e. PCB uptake was far more efficient <strong>in</strong> sea stars exposed to spiked seawater than <strong>in</strong> those<br />

exposed to labelled sediments when related to exposure concentrations. Therefore, over <strong>the</strong><br />

long term, <strong>de</strong>spite <strong>the</strong> fact that sediments constitute <strong>the</strong> ma<strong>in</strong> reservoir of PCBs <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e<br />

environment and that comparative seawater PCB concentrations are extremely low, seawater<br />

could be a non-negligible route for PCB bioaccumulation <strong>in</strong> <strong>the</strong> sea star, as has been<br />

suggested for o<strong>the</strong>r benthic <strong>in</strong>fauna (e.g., Fowler et al. 1978). However, this does not imply<br />

that seawater would be <strong>the</strong> predom<strong>in</strong>ant pathway for PCB uptake, s<strong>in</strong>ce results show that f<strong>in</strong>al<br />

concentrations reached <strong>in</strong> <strong>the</strong> different body compartments follow<strong>in</strong>g <strong>the</strong> three types of<br />

exposure were generally similar.<br />

In contrast with what was observed by Danis et al. (Chap. III.2) for PCB 153, concentrations<br />

of PCB 77 <strong>in</strong>corporated <strong>in</strong>to <strong>the</strong> rectal caeca were <strong>in</strong> <strong>the</strong> same range as those measured <strong>in</strong><br />

o<strong>the</strong>r tissue compartments. Although we do not have a clear explanation for this observation,<br />

it is never<strong>the</strong>less <strong>in</strong>terest<strong>in</strong>g, s<strong>in</strong>ce PCB 153 concentrations <strong>in</strong> rectal caeca were between 1<br />

and 2 or<strong>de</strong>rs of magnitu<strong>de</strong> lower than <strong>in</strong> all <strong>the</strong> o<strong>the</strong>r compartments.<br />

In most body compartments, accumulation k<strong>in</strong>etics were <strong>de</strong>scribed us<strong>in</strong>g saturation mo<strong>de</strong>ls.<br />

In seawater-exposed <strong>in</strong>dividuals, <strong>the</strong> highest saturation concentrations were reached <strong>in</strong> <strong>the</strong><br />

gonads, rectal caeca, and oral body wall, but <strong>the</strong> compartment reach<strong>in</strong>g saturation at <strong>the</strong><br />

fastest rate was <strong>the</strong> pyloric caeca. In sediment-exposed sea stars, rectal caeca displayed <strong>the</strong><br />

highest saturation concentration, but <strong>the</strong> central digestive system had <strong>the</strong> highest PCB<br />

90


Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

accumulation rate. Food-exposed animals displayed <strong>the</strong> highest saturation concentrations <strong>in</strong><br />

<strong>the</strong> rectal caeca and aboral body wall, and <strong>the</strong> different body compartments showed similar<br />

accumulation rates. Consi<strong>de</strong>r<strong>in</strong>g <strong>the</strong> different accumulation routes, <strong>the</strong> highest uptake rates<br />

were found <strong>in</strong> seawater-exposed sea stars, followed by sediments and food, attest<strong>in</strong>g to <strong>the</strong><br />

importance of seawater as a PCB exposure pathway.<br />

Particular concern arises from <strong>the</strong> PCB behaviour <strong>in</strong> <strong>the</strong> gonads of <strong>the</strong> sea star. In<strong>de</strong>ed,<br />

relatively high concentrations were <strong>in</strong>corporated <strong>in</strong> <strong>the</strong>se organs accord<strong>in</strong>g to l<strong>in</strong>ear uptake<br />

k<strong>in</strong>etics, suggest<strong>in</strong>g that a steady state <strong>in</strong> this compartment would take a very long time to be<br />

reached un<strong>de</strong>r natural conditions. This may have an important impact on sea star population<br />

survival, because of <strong>the</strong> endocr<strong>in</strong>e disrupt<strong>in</strong>g effect of coplanar PCBs (<strong>de</strong>n Besten et al. 1989,<br />

Sue<strong>de</strong>l et al. 1997, Chiu et al. 2000).<br />

In parallel to bioaccumulation k<strong>in</strong>etics, two different sublethal biological effects were<br />

measured: <strong>the</strong> ROS production by amoebocytes and CYP1A immunopositive prote<strong>in</strong><br />

<strong>in</strong>duction <strong>in</strong> pyloric caeca. Significant stimulation of ROS production by amoebocytes was<br />

observed <strong>in</strong> PCB 77-exposed sea stars regardless of <strong>the</strong> exposure pathway. In addition, ROS<br />

production stimulation was observed <strong>in</strong> bacteria-stimulated amoebocytes as well as <strong>in</strong> non-<br />

stimulated cells. This is <strong>in</strong> contrast with <strong>the</strong> observations reported by Coteur et al. (2001) who<br />

did not observe any significant ROS production by non-stimulated coelomocytes of PCB 77-<br />

exposed sea urch<strong>in</strong>s, Paracentrotus lividus. This is most probably due to differences <strong>in</strong><br />

composition of <strong>the</strong> coelomocyte population between sea urch<strong>in</strong>s and sea stars. In<strong>de</strong>ed,<br />

amoebocytes which are responsible for ROS production are <strong>the</strong> sole, free-circulat<strong>in</strong>g<br />

coelomocyte type <strong>in</strong> A. <strong>rubens</strong>, whereas <strong>the</strong>re are six different coelomocyte types co-exist<strong>in</strong>g<br />

<strong>in</strong> sea urch<strong>in</strong>s (Chia & X<strong>in</strong>g 1996). As ROS production is measured on a «per cell» basis, <strong>the</strong><br />

difference <strong>in</strong> coelomocyte population composition could result <strong>in</strong> an un<strong>de</strong>restimated response<br />

when ROS production is measured <strong>in</strong> sea urch<strong>in</strong>s compared to <strong>the</strong> same response <strong>in</strong><br />

A.<strong>rubens</strong>.<br />

Surpris<strong>in</strong>gly, after a strong stimulation dur<strong>in</strong>g <strong>the</strong> first 4 to 10 days, ROS production fell to<br />

control levels after a variable period of time. This observation could be due to a toxic effect<br />

on amoebocytes occurr<strong>in</strong>g when PCB concentrations reach a certa<strong>in</strong> level with<strong>in</strong> <strong>the</strong><br />

organism’s tissues. This toxicity could impair or <strong>in</strong>hibit <strong>the</strong> ROS production capacity of <strong>the</strong><br />

amoebocytes. In<strong>de</strong>ed, it has been shown <strong>in</strong> both sea stars and sea urch<strong>in</strong>s that when coplanar<br />

PCBs are <strong>in</strong>jected <strong>in</strong>to <strong>the</strong> coelomic cavity, ROS production is stimulated proportionally to<br />

<strong>the</strong> <strong>in</strong>jected dose up to a certa<strong>in</strong> <strong>in</strong>jected concentration at which it drops to ROS production<br />

control levels (Coteur et al. 2001, Danis et al. Chap. III.4). However, this hypo<strong>the</strong>sis may not<br />

91


Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

be sufficiently valid <strong>in</strong> or<strong>de</strong>r to expla<strong>in</strong> <strong>the</strong> observations reported here, s<strong>in</strong>ce PCB<br />

concentrations <strong>in</strong>corporated <strong>in</strong> sea stars were very similar dur<strong>in</strong>g <strong>the</strong> first days of exposure<br />

regardless of <strong>the</strong> exposure pathway (seawater, food or sediments), whereas <strong>the</strong> time at which<br />

ROS production began to <strong>de</strong>crease varied between days 4 (seawater exposure) and 9<br />

(sediment exposure).<br />

Alternatively, <strong>the</strong> <strong>de</strong>crease <strong>in</strong> ROS production could be due to <strong>the</strong> progressive activation of an<br />

efficient <strong>de</strong>toxification mechanism (e.g. components of <strong>the</strong> cytochrome P450 system,<br />

CYP1A) that would limit and <strong>the</strong>n elim<strong>in</strong>ate <strong>the</strong> impact of PCB 77 on amoebocyte functions,<br />

and thus on <strong>the</strong> stimulation of <strong>the</strong>se immune cells to produce ROS. Induction of P450<br />

enzymatic activity has been reported <strong>in</strong> ech<strong>in</strong>o<strong>de</strong>rms exposed to coplanar PCB congeners<br />

(<strong>de</strong>n Besten et al. 1993, Danis et al. Chap. III.4). In <strong>the</strong> present study, very clear and<br />

significant <strong>in</strong>duction of a CYP1A immunopositive prote<strong>in</strong> (CYP1A IPP) was measured <strong>in</strong> <strong>the</strong><br />

pyloric caeca of PCB 77-exposed sea stars, regardless of <strong>the</strong> exposure pathway. CYP1A IPP<br />

<strong>in</strong>duction <strong>in</strong>creased with time accord<strong>in</strong>g to a saturation mo<strong>de</strong>l; however, <strong>the</strong> maximum<br />

<strong>in</strong>duction was relatively low (approx. two-fold).<br />

Most noteworthy, from Figure 9 it is evi<strong>de</strong>nt that at <strong>the</strong> time correspond<strong>in</strong>g to <strong>the</strong> ROS<br />

production maximum <strong>in</strong> sea stars exposed via seawater or <strong>the</strong>ir food (i.e. day 5), <strong>the</strong> CYP1A<br />

IPP <strong>in</strong>duction factor is i<strong>de</strong>ntical (1.6) for both groups of sea stars. In contrast, this factor is<br />

lower for <strong>in</strong>dividuals exposed to PCB 77 from sediments. Fur<strong>the</strong>rmore, <strong>the</strong> time (9 days)<br />

when <strong>the</strong> CYP1A <strong>in</strong>duction factor reaches <strong>the</strong> same value (1.6) <strong>in</strong> sediment-exposed sea stars<br />

matches perfectly <strong>the</strong> time at which ROS production reaches its maximum value <strong>in</strong> this group<br />

of sea stars. This suggests that CYP1A enzymatic activity reaches an effective efficiency at an<br />

<strong>in</strong>duction factor of ca. 1.6, above which <strong>the</strong> toxic action of PCB 77 on <strong>the</strong> immune system<br />

would be efficiently limited, result<strong>in</strong>g <strong>in</strong> a ROS production at more normal levels. This is of<br />

prime importance from a biological po<strong>in</strong>t of view, s<strong>in</strong>ce immunomodulation <strong>in</strong>duced by<br />

coplanar PCBs can lead to dysfunctions <strong>in</strong> <strong>de</strong>fence aga<strong>in</strong>st <strong>in</strong>fections (see, e.g., Liv<strong>in</strong>gstone et<br />

al. 2000).<br />

In conclusion, <strong>Asterias</strong> <strong>rubens</strong> efficiently took up <strong>the</strong> coplanar PCB congener #77 which was<br />

distributed <strong>in</strong> all <strong>the</strong> tissues exam<strong>in</strong>ed. Consequent sublethal biological effects were<br />

pronounced and affected essential sea star physiological functions at environmentally realistic<br />

levels of PCB. In<strong>de</strong>ed, <strong>the</strong> present work showed that both <strong>the</strong> immune and P450 enzymatic<br />

systems were impacted. In this sea star species, exposed un<strong>de</strong>r <strong>the</strong> experimental conditions<br />

consi<strong>de</strong>red here, <strong>the</strong> immune effects appeared to be reversible. The ROS production<br />

parameter could thus be a very <strong>in</strong>terest<strong>in</strong>g short-term biomarker of <strong>the</strong> presence of coplanar<br />

92


Coplanar PCB uptake and subsequent effects <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

PCBs, and probably of o<strong>the</strong>r diox<strong>in</strong>-like organic contam<strong>in</strong>ants as well. Fur<strong>the</strong>rmore, its use <strong>in</strong><br />

conjunction with <strong>the</strong> CYP1A-<strong>in</strong>duction measurement would allow ga<strong>the</strong>r<strong>in</strong>g highly<br />

<strong>in</strong>formative data about timescales of exposure of animals, s<strong>in</strong>ce this parameter has different<br />

stimulation k<strong>in</strong>etics than ROS production; i.e. <strong>the</strong> CYP1A signal is still observable <strong>in</strong><br />

organisms when ROS production has returned to control levels.<br />

Nowadays <strong>the</strong> recommendations related to PCB monitor<strong>in</strong>g <strong>in</strong> <strong>the</strong> environment that are<br />

adopted by <strong>in</strong>ternational organisations such as <strong>the</strong> EU or ICES, address a limited number of<br />

PCB congeners, viz. #28, 52, 101, 118, 138, 153 and 180. These congeners are well-known to<br />

be <strong>the</strong> most relevant regard<strong>in</strong>g PCB abundance <strong>in</strong> biota and <strong>the</strong> environment (e.g. Metcalfe<br />

1994, OSPAR 2000), but not at all regard<strong>in</strong>g <strong>the</strong>ir toxicity to organisms and as a threat to<br />

mar<strong>in</strong>e ecosystems. In contrast, an <strong>in</strong>creas<strong>in</strong>g data set for a variety of organisms <strong>de</strong>monstrates<br />

that coplanar congeners, even if occurr<strong>in</strong>g at very low concentrations, are <strong>the</strong> key ones with<br />

respect to PCB toxicity (e.g. Wilbr<strong>in</strong>k et al. 1991, Michel et al. 1993, Schweitzer et al. 1997,<br />

<strong>de</strong>n Besten 1998a, Coteur et al. 2001, Duffy et al. 2002, Danis et al. Chap. III.1, III.3, III.4).<br />

These observations un<strong>de</strong>rscore <strong>the</strong> urgent need to provi<strong>de</strong> fur<strong>the</strong>r <strong>in</strong>formation <strong>in</strong> natural<br />

mar<strong>in</strong>e environments about coplanar-specific biological effects, especially <strong>in</strong> <strong>the</strong> most<br />

commonly used bio<strong>in</strong>dicator species (i.e. bivalves), <strong>in</strong> or<strong>de</strong>r to assess whe<strong>the</strong>r coplanar PCBs<br />

should be <strong>in</strong>clu<strong>de</strong>d <strong>in</strong> <strong>the</strong> list of congeners to be systematically monitored.<br />

ACKNOWLEDGEMENTS<br />

The IAEA Mar<strong>in</strong>e Environment Laboratory operates un<strong>de</strong>r a bipartite agreement between <strong>the</strong><br />

International Atomic Energy Agency and <strong>the</strong> Government of <strong>the</strong> Pr<strong>in</strong>cipality of Monaco. B.D.<br />

is hol<strong>de</strong>r of a FRIA doctoral grant, and M.W. is an Honorary Research Associate of <strong>the</strong><br />

National Fund for Scientific Research (NFSR, Belgium). The research was partly supported<br />

by a travel grant from <strong>the</strong> Belgian M<strong>in</strong>istry of <strong>the</strong> French Community (B.D.’s travel to and<br />

stay at IAEA-MEL) and by a NFSR equipment fund<strong>in</strong>g (Tecan Spectrafluor Plus plate-<br />

rea<strong>de</strong>r).<br />

93


Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCBs <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

III.4 Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCB congeners on<br />

immunomodulation and CYP1A levels (<strong>de</strong>term<strong>in</strong>ed us<strong>in</strong>g an adapted ELISA<br />

method) <strong>in</strong> <strong>the</strong> common sea star <strong>Asterias</strong> <strong>rubens</strong> L.<br />

Aquatic Toxicology (submitted)<br />

Danis B a , Goriely S b , Dubois Ph a , Fowler SW c , Flamand V b & Warnau M c<br />

a. Laboratoire <strong>de</strong> Biologie mar<strong>in</strong>e (CP 160/15), <strong>Université</strong> <strong>Libre</strong> <strong>de</strong> <strong>Bruxelles</strong>, Av. F.D.<br />

Roosevelt 50, B-1050 Brussels, Belgium.<br />

b. Laboratoire d’immunologie expérimentale (IMMEX, CP615), <strong>Université</strong> <strong>Libre</strong> <strong>de</strong><br />

<strong>Bruxelles</strong>, Campus hospitalo-universitaire d'An<strong>de</strong>rlecht, route <strong>de</strong> Lennik 808, B-1070<br />

Brussels, Belgium.<br />

c. International Atomic Energy Agency - Mar<strong>in</strong>e Environment Laboratory, 4 Quai Anto<strong>in</strong>e<br />

I er , MC-98000 Monaco.<br />

95


ABSTRACT<br />

Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCBs <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Biological effects of two structurally-contrast<strong>in</strong>g PCB congeners (coplanar 77 and non<br />

coplanar 153) were <strong>in</strong>vestigated by measur<strong>in</strong>g <strong>the</strong> <strong>in</strong>duction of CYP1A immunopositive<br />

prote<strong>in</strong> (CYP1A IPP) <strong>in</strong> <strong>the</strong> pyloric caeca and <strong>the</strong> production of reactive oxygen species<br />

(ROS) by amoebocytes <strong>in</strong> <strong>the</strong> common sea star <strong>Asterias</strong> <strong>rubens</strong>. CYP1A IPP was quantified<br />

us<strong>in</strong>g a specially <strong>de</strong>signed ELISA which uses competitive b<strong>in</strong>d<strong>in</strong>g between sea stars and trout<br />

CYP1A IPPs. Only <strong>the</strong> coplanar congener had a significant effect on <strong>the</strong> two consi<strong>de</strong>red<br />

biological responses. Intensity of <strong>the</strong> effects was dose-<strong>de</strong>pen<strong>de</strong>nt. However, <strong>the</strong> highest dose<br />

of PCB 77 <strong>in</strong>duced a dramatic <strong>de</strong>crease of ROS production. It is conclu<strong>de</strong>d that coplanar<br />

PCBs straightforwardly affect key biological processes such as <strong>the</strong> immune system and<br />

mixed-function oxidase (MFO) system.<br />

KEYWORDS<br />

CYP1A; ELISA; PCBs; ech<strong>in</strong>o<strong>de</strong>rms; ROS; immune system; <strong>Asterias</strong> <strong>rubens</strong><br />

96


INTRODUCTION<br />

Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCBs <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Biological effect monitor<strong>in</strong>g is essential <strong>in</strong> <strong>de</strong>term<strong>in</strong><strong>in</strong>g <strong>the</strong> spatial and temporal distribution<br />

of risks caused by contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e environment (Huggett 1992, Stegeman et al.<br />

1992). In <strong>the</strong> mar<strong>in</strong>e environment, biomarkers can offer early warn<strong>in</strong>g signals of exposure to<br />

contam<strong>in</strong>ants and may be used to diagnose and <strong>in</strong>terpret observed effects, for example by<br />

test<strong>in</strong>g sublethal toxicity <strong>in</strong> water or sediment samples <strong>in</strong> laboratory bioassays us<strong>in</strong>g selected<br />

test species (<strong>de</strong>n Besten 1998a). In this study, biological effects of PCBs were <strong>in</strong>vestigated <strong>in</strong><br />

<strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong>, a wi<strong>de</strong>ly distributed and abundant key benthic species (sensu<br />

Lewis 1978) <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> and NE Atlantic, which has been used as bio<strong>in</strong>dicator for<br />

monitor<strong>in</strong>g contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong> field (e.g., <strong>de</strong>n Besten et al. 1993, 2001, Everaarts et al.<br />

1998, Temara et al. 1998b, Coteur et al. 2003a, Stronkhorst et al. 2003). Two biological<br />

responses were specifically addressed: reactive oxygen species (ROS) production by<br />

amoebocytes and cytochrome P450 immunopositive prote<strong>in</strong> (CYP1A IPP) <strong>in</strong>duction <strong>in</strong> <strong>the</strong><br />

pyloric caeca.<br />

ROS production is one of <strong>the</strong> ma<strong>in</strong> immune responses of ech<strong>in</strong>o<strong>de</strong>rms and plays a key role <strong>in</strong><br />

<strong>the</strong> <strong>de</strong>struction of microorganisms through cytotoxic mechanisms (Chia & X<strong>in</strong>g 1996). This<br />

immune response is triggered by amoebocytes which are <strong>the</strong> most active, free-circulat<strong>in</strong>g cells<br />

found <strong>in</strong> ech<strong>in</strong>o<strong>de</strong>rm coelomic cavities. Its amplitu<strong>de</strong> was reported to be modulated by<br />

contam<strong>in</strong>ants <strong>in</strong> A. <strong>rubens</strong> (Coteur et al. 2003a,b).<br />

CYP1A <strong>in</strong>duction is probably one of <strong>the</strong> most commonly studied biochemical markers <strong>in</strong><br />

environmental monitor<strong>in</strong>g (e.g., Bucheli & Fent 1995, Stegeman 1995, Hahn 2002). The ma<strong>in</strong><br />

function of <strong>the</strong> CYP1A-<strong>de</strong>pen<strong>de</strong>nt monooxygenase system is to convert relatively <strong>in</strong>soluble<br />

organic compounds to soluble metabolites; however, <strong>the</strong> result<strong>in</strong>g products are often more<br />

toxic than <strong>the</strong> parent compounds (Walker & Peterson 1994). Total cytochrome P450<br />

concentrations were reported <strong>in</strong> A. <strong>rubens</strong> us<strong>in</strong>g <strong>the</strong> carbon monooxi<strong>de</strong> (CO) difference<br />

spectra of sodium dithionite-reduced samples (<strong>de</strong>n Besten et al. 1991 1993). Dur<strong>in</strong>g <strong>the</strong> last<br />

<strong>de</strong>ca<strong>de</strong>, a shift from analyz<strong>in</strong>g total cytochrome P450 towards measur<strong>in</strong>g amounts of diox<strong>in</strong>-<br />

<strong>in</strong>ducible isoenzyme of CYP1A has taken place (Bucheli & Fent 1995). More specifically, <strong>in</strong><br />

<strong>the</strong> analysis of fish cytochrome P450, isoenzyme content has been measured us<strong>in</strong>g Enzyme-<br />

L<strong>in</strong>ked Immuno Sorbent Assays (ELISAs) (Celan<strong>de</strong>r & Förl<strong>in</strong> 1991, Goksøyr 1991, Förl<strong>in</strong> et<br />

al. 1992). However, this method has never been used before for such measurements <strong>in</strong><br />

ech<strong>in</strong>o<strong>de</strong>rms. Because of <strong>the</strong> high conservation of CYP1A sequence throughout <strong>the</strong> animal<br />

k<strong>in</strong>gdom, <strong>the</strong> ability of antipepti<strong>de</strong> antibodies (<strong>de</strong>veloped with a high aff<strong>in</strong>ity for trout<br />

CYP1A) to cross react with sea star cytochrome P450-like prote<strong>in</strong>s is worthwhile test<strong>in</strong>g <strong>in</strong><br />

97


Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCBs <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

or<strong>de</strong>r to optimize CYP1A IPP measurement <strong>in</strong> <strong>the</strong>se <strong>in</strong>vertebrates.<br />

In this study, we set up, test and apply a customized ELISA for <strong>the</strong> <strong>de</strong>term<strong>in</strong>ation of CYP1A<br />

IPP <strong>in</strong> sea stars. Intracoelomic <strong>in</strong>jections were used as an exposure route <strong>in</strong> or<strong>de</strong>r to test <strong>the</strong><br />

toxicity of PCBs. The doses consi<strong>de</strong>red were chosen to <strong>in</strong>clu<strong>de</strong> <strong>the</strong> higher range of those<br />

reported <strong>in</strong> previous bioaccumulation experiments (Danis et al. Chap. III.2). The effect of two<br />

structurally-contrast<strong>in</strong>g PCB congeners (viz. <strong>the</strong> coplanar congener 77 and <strong>the</strong> non-coplanar<br />

congener 153) on <strong>the</strong> immune system and on CYP1A IPP <strong>in</strong>duction <strong>in</strong> <strong>the</strong> sea star A. <strong>rubens</strong><br />

was <strong>the</strong>n <strong>de</strong>term<strong>in</strong>ed.<br />

MATERIALS AND METHODS<br />

Organisms<br />

The sea stars <strong>Asterias</strong> <strong>rubens</strong> (L<strong>in</strong>naeus 1758) were collected <strong>in</strong> April 2002 from <strong>the</strong> <strong>in</strong>tertidal<br />

zone at Audresselles (Pas-<strong>de</strong>-Calais, France). Prior to experimentation, 50 specimens of<br />

similar size (5-7 cm arm radius) and weight (36 ± 3.5 g) were acclimated to laboratory<br />

conditions for 1 month (constantly aerated closed circuit aquaria; sal<strong>in</strong>ity 34 p.s.u.; 16 ± 0.5<br />

°C; 12/12 hrs dark/light cycle).<br />

Chemicals and solutions<br />

Stock pow<strong>de</strong>rs of 2,2’,4,4’,5,5’ hexachlorobiphenyl (non-coplanar PCB 153), 3,3',4,4',5<br />

pentachlorobiphenyl (coplanar PCB 126) and 3,3',4,4' tetrachlorobiphenyl (coplanar PCB 77)<br />

purchased from Promochem (Germany) were dissolved <strong>in</strong> ultrapure acetone (Sigma) to reach<br />

a concentration of 1 µg ml -1 . Stock solutions were stored at –20°C until f<strong>in</strong>al dilutions were<br />

prepared. A few m<strong>in</strong>utes before <strong>in</strong>ject<strong>in</strong>g <strong>the</strong> animals, successive dilutions were ma<strong>de</strong> <strong>in</strong> glass<br />

haemolysis tubes us<strong>in</strong>g ultrapure acetone as a solvent.<br />

The polyclonal rabbit anti-trout CYP1A antibody (0.4 mg ml -1 ) and <strong>the</strong> ß-naphtoflavone<br />

(BNF)-<strong>in</strong>duced trout microsomal fraction were purchased from Biosense (Norway).<br />

Phosphate-buffered sal<strong>in</strong>e (PBS), bov<strong>in</strong>e serum album<strong>in</strong> (BSA), horseradish peroxidase<br />

(HRP) coupled to Extravid<strong>in</strong> and Coomassie blue were obta<strong>in</strong>ed from Sigma (USA). The<br />

substrate chromogen (tetramethylbenzid<strong>in</strong>e, TMB) was purchased from Biosource (UK).<br />

Prelim<strong>in</strong>ary PCB exposure<br />

In or<strong>de</strong>r to setup and test <strong>the</strong> ELISA, four batches of sea stars (n = 3) were <strong>in</strong>jected <strong>in</strong>to <strong>the</strong><br />

coelomic cavity with 50 µl of ei<strong>the</strong>r <strong>the</strong> coplanar PCB 126 (6 ng g -1 whole body FW), <strong>the</strong> non<br />

coplanar PCB 153 (15.2 ng g -1 whole body FW), seawater (control 1), or acetone (control 2),<br />

us<strong>in</strong>g a 50 µl Hamilton glass syr<strong>in</strong>ge. Animals were sampled 48 h after be<strong>in</strong>g <strong>in</strong>jected and<br />

98


Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCBs <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

pyloric caeca were dissected and immediately frozen <strong>in</strong> liquid nitrogen (-196°C). Samples<br />

were <strong>the</strong>n stored at –80°C.<br />

PCB exposure<br />

For <strong>the</strong> toxicity test, five batches of 3 sea stars were <strong>in</strong>jected with 50 µl of PCB solutions (at 5<br />

different concentrations) us<strong>in</strong>g a 50 µl Hamilton glass syr<strong>in</strong>ge. In addition, a control group<br />

(n=5) was <strong>in</strong>jected with acetone alone, and ano<strong>the</strong>r one (n = 5) with seawater; a last group<br />

of blank animals (n = 5) was not <strong>in</strong>jected. Injected doses were 15.2, 2.82, 0.56, 0.15 and 0.02<br />

ng PCB 153 g -1 whole body (FW) and 5.96, 1.51, 0.18, 0.04 and 0.008 ng PCB 77 g -1 whole<br />

body (FW). Animals were sampled 48 h after be<strong>in</strong>g <strong>in</strong>jected and pyloric caeca were dissected,<br />

frozen <strong>in</strong> liquid nitrogen and stored at -80°C until mak<strong>in</strong>g biomarker measurements.<br />

Prote<strong>in</strong> normalisation<br />

Frozen pyloric caeca were homogenized <strong>in</strong> PBS buffer us<strong>in</strong>g an ultraturrax (22,500 rpm; 20 s)<br />

and <strong>the</strong> homogenate was centrifuged (12,500 g; 4°C; 15 m<strong>in</strong>). The supernatant (post-<br />

mitochondrial supernatant, PMS) was transferred to new centrifugation tubes and re-<br />

centrifuged us<strong>in</strong>g <strong>the</strong> same protocol. In or<strong>de</strong>r to quantify <strong>the</strong> total prote<strong>in</strong> content, a sub-<br />

sample of <strong>the</strong> PMS was transferred to 96-well plates and mixed with Coomassie blue<br />

(Bradford 1976). Absorbance at 620 nm was measured us<strong>in</strong>g a Tecan Spectrafluor Plus plate-<br />

rea<strong>de</strong>r. Total prote<strong>in</strong> concentration of <strong>the</strong> samples was <strong>the</strong>n normalised to 100 µg ml -1 .<br />

Prote<strong>in</strong> biot<strong>in</strong>ylation<br />

Prote<strong>in</strong> biot<strong>in</strong>ylation of <strong>the</strong> trout microsomal extract was performed us<strong>in</strong>g Pierce Endogen<br />

(UK) biot<strong>in</strong>ylation kit. Sulfo-NHS-Biot<strong>in</strong> was ad<strong>de</strong>d to prote<strong>in</strong> solutions to give a 20-fold<br />

molar excess of Sulfo-NHS-Biot<strong>in</strong> <strong>in</strong> a 10 mg ml -1 prote<strong>in</strong> solution. After <strong>in</strong>cubat<strong>in</strong>g at room<br />

temperature for 30 m<strong>in</strong>, a <strong>de</strong>salt<strong>in</strong>g column was equilibrated with 30 ml PBS. After<br />

application of <strong>the</strong> trout microsome solution, an aliquot of buffer was applied and fractions<br />

conta<strong>in</strong><strong>in</strong>g variable prote<strong>in</strong> concentrations were collected <strong>in</strong> separate test tubes. Fractions<br />

conta<strong>in</strong><strong>in</strong>g <strong>the</strong> highest prote<strong>in</strong> concentration (as <strong>de</strong>term<strong>in</strong>ed us<strong>in</strong>g <strong>the</strong> Coomassie blue assay,<br />

Bradford 1976) were <strong>the</strong>n pooled toge<strong>the</strong>r. The biot<strong>in</strong> <strong>in</strong>corporation efficiency <strong>in</strong> this pool<br />

was tested us<strong>in</strong>g <strong>the</strong> HABA method (Green 1965).<br />

Western Blot<br />

Western blot was performed to test <strong>the</strong> cross-reactivity of <strong>the</strong> anti-trout CYP1A antibody with<br />

sea star homologue prote<strong>in</strong>s. After be<strong>in</strong>g cooled at 4°C, 0.1% bromophenol blue was ad<strong>de</strong>d to<br />

<strong>the</strong> samples. Prote<strong>in</strong> samples were comb<strong>in</strong>ed with equal parts of treatment buffer (0.125 M<br />

Tris(hydroxymethyl)am<strong>in</strong>omethane (Tris)-Cl, 2% Sodium do<strong>de</strong>cyl sulphate (SDS), 10%<br />

glycerol, 5% 2-mercaptoethanol) and heated <strong>in</strong> a water bath (60-70°C) for 2 m<strong>in</strong>. SDS<br />

99


Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCBs <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

polyacrylami<strong>de</strong> gel electrophoresis (SDS-page, 10% polyacrylami<strong>de</strong>) was used for this assay.<br />

After electrophoretic migration (200 V, constant voltage, 2 hrs), prote<strong>in</strong>s were transferred to<br />

nitrocellulose sheets us<strong>in</strong>g a Genie ® system (BioRad). Transfer papers were r<strong>in</strong>sed and<br />

blocked for 30 m<strong>in</strong> us<strong>in</strong>g a block<strong>in</strong>g buffer (10 -2 M Tris-SDS). Anti-trout CYP1A antibody<br />

was ad<strong>de</strong>d to a fresh change of block<strong>in</strong>g buffer at a 1:1000 dilution, and left overnight at 4°C.<br />

After thorough r<strong>in</strong>s<strong>in</strong>g, transfer papers were placed <strong>in</strong> block<strong>in</strong>g buffer (Tris-<br />

ethyldiam<strong>in</strong>etetraacetic acid (EDTA)-BSA) conta<strong>in</strong><strong>in</strong>g anti-rabbit IgG-alkal<strong>in</strong>e phosphatase<br />

(1:1000 dilution). The papers were <strong>the</strong>n washed, r<strong>in</strong>sed and transferred to 100 mM Tris-HCl<br />

with 1 mM MgCl 2. Enzyme-substrate chromophore cocktail (0.15 M bicarbonate/carbonate-<br />

BiCP-nitroblue tetrazolium) was f<strong>in</strong>ally ad<strong>de</strong>d.<br />

Enzyme-l<strong>in</strong>ked immuno sorbent assay (ELISA)<br />

Cytochrome P450 IPP content was quantified us<strong>in</strong>g competitive-ELISA (Fig. 27). The ELISA<br />

was carried out us<strong>in</strong>g competitive b<strong>in</strong>d<strong>in</strong>g to an anti-trout CYP1A antibody between <strong>the</strong><br />

CYP1A IPP conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> sea star samples and <strong>the</strong> biot<strong>in</strong>ylated CYP1A from BNF-<strong>in</strong>jected<br />

trout. Because <strong>the</strong> concentration of biot<strong>in</strong>ylated trout CYP1A rema<strong>in</strong>s constant while <strong>the</strong><br />

concentration of sea star CYP1A IPP varies between samples, <strong>the</strong> amount of bound<br />

biot<strong>in</strong>ylated trout CYP1A is <strong>in</strong>versely proportional to <strong>the</strong> concentration of CYP1A IPP <strong>in</strong> sea<br />

star samples.<br />

Anti-CYP<br />

Plate<br />

<strong>Star</strong>fish CYP<br />

Figure 27. Schematic representation of CYP1A IPP competitive ELISA method.<br />

In or<strong>de</strong>r to <strong>de</strong>term<strong>in</strong>e <strong>the</strong> optimal quantity of biot<strong>in</strong>ylated trout CYP1A to be used <strong>in</strong> our<br />

sett<strong>in</strong>g, a sigmoid-shaped fixation curve was resolved experimentally. The optimal<br />

biot<strong>in</strong>ylated trout CYP1A quantity to be used was chosen <strong>in</strong> <strong>the</strong> l<strong>in</strong>ear portion of <strong>the</strong> fixation<br />

100<br />

Biot<strong>in</strong><br />

Avid<strong>in</strong>-HRP<br />

Biot<strong>in</strong>ylated<br />

Trout CYP


Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCBs <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

curve, correspond<strong>in</strong>g to a concentration of 1mgml -1 total prote<strong>in</strong>. For <strong>the</strong> ELISA, multiwell<br />

plates (96 wells) were coated at 4°C with 100 µl of anti-CYP1A (rabbit anti-fish CYP1A<br />

pepti<strong>de</strong>, polyclonal antibody; dilution 1:1000 <strong>in</strong> PBS-BSA 0.1%). After 12 hrs, wells were<br />

washed 5 times with PBS and nonspecific b<strong>in</strong>d<strong>in</strong>g sites were blocked with 200 µl PBS-BSA<br />

2% agitated for 2 hrs at room temperature. Wells were washed aga<strong>in</strong>, and 100 µl of<br />

biot<strong>in</strong>ylated trout were ad<strong>de</strong>d along with prote<strong>in</strong>-normalised samples. This operation was<br />

performed as fast as possible, us<strong>in</strong>g a template multiwell plate (with low sorption<br />

characteristics) conta<strong>in</strong><strong>in</strong>g <strong>the</strong> samples. Competition between <strong>the</strong> two antigens was allowed to<br />

take place for 2 hrs at room temperature on an agitation plate. At this stage, five wash<strong>in</strong>g<br />

steps with PBS were performed and Extravid<strong>in</strong>-HRP (Sigma) <strong>in</strong> PBS-BSA 0.1% (dilution<br />

1:2000) was ad<strong>de</strong>d to all <strong>the</strong> wells. The plate was <strong>the</strong>n <strong>in</strong>cubated at room temperature for 45<br />

m<strong>in</strong> and <strong>the</strong> wells washed aga<strong>in</strong> us<strong>in</strong>g PBS. TMB chromogen cocktail (dilution 1:105 <strong>in</strong><br />

substrate buffer; Biosource, UK) was ad<strong>de</strong>d to all <strong>the</strong> wells and <strong>the</strong> plate was left <strong>in</strong> <strong>the</strong> dark<br />

for approximately 10 m<strong>in</strong> at room temperature. The reaction was stopped by add<strong>in</strong>g 50 µl of<br />

95-97% sulfuric acid (Sigma) to <strong>the</strong> wells. Absorbance was measured <strong>in</strong> <strong>the</strong> 96-well plates at<br />

450 nm us<strong>in</strong>g a microplate rea<strong>de</strong>r (Spectracount, Packard), assum<strong>in</strong>g that absorbance is<br />

proportional to <strong>the</strong> amount of biot<strong>in</strong>ylated trout CYP1A bound to <strong>the</strong> antibody.<br />

Reactive Oxygen Species (ROS) production measurements<br />

Amoebocyte ROS production was measured by <strong>the</strong> peroxidase, lum<strong>in</strong>ol-enhanced method<br />

optimized by Coteur et al. (2002). Briefly, 3 ml of coelomic fluid were collected <strong>in</strong> <strong>the</strong> same<br />

volume of anticoagulant buffer. The cell concentration was measured by absorbance at 280<br />

nm us<strong>in</strong>g a Tecan Spectrafluor Plus plate-rea<strong>de</strong>r. This suspension was <strong>the</strong>n centrifuged for 10<br />

m<strong>in</strong> at 400 g and resuspen<strong>de</strong>d <strong>in</strong> Ca 2+ -, Mg 2+ -free artificial seawater (ASW). ASW volume<br />

was adjusted to obta<strong>in</strong> a f<strong>in</strong>al amoebocyte concentration of 10 6 cells ml -1 . A stock solution of<br />

lum<strong>in</strong>ol and HRP <strong>in</strong> dimethylsulphoxi<strong>de</strong> (DMSO) was freshly diluted 100 fold <strong>in</strong> ASW (f<strong>in</strong>al<br />

concentrations of HRP and lum<strong>in</strong>ol were 500 µg ml -1 and 250 µg ml -1 , respectively). The<br />

reaction was begun by add<strong>in</strong>g 200 µl of amoebocyte suspension <strong>in</strong> 100 µl of lum<strong>in</strong>ol/HRP<br />

solution and 20 µl of a Micrococcus luteus suspension (2.5x10 9 bacteria ml -1 ) (stimulated<br />

amoebocytes) or 20 µl of ASW (non-stimulated amoebocytes). The chemilum<strong>in</strong>escence was<br />

measured every 10 m<strong>in</strong> over a 2 hr period us<strong>in</strong>g a Tecan Spectrafluor Plus plate-rea<strong>de</strong>r<br />

previously placed <strong>in</strong> an <strong>the</strong>rmostabilized <strong>in</strong>cubator (14 ± 0.5°C). Results were expressed as<br />

<strong>the</strong> sum of all 10 m<strong>in</strong> <strong>in</strong>terval measurements for 10 6 cells ml -1 (total chemilum<strong>in</strong>escence) of<br />

bacteria-stimulated amoebocytes or non-stimulated amoebocytes.<br />

101


Data analysis and statistics<br />

Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCBs <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Experiments were performed with at least three biological replicates. Data was expressed as<br />

arithmetic means ± standard <strong>de</strong>viation (SD). CYP1A <strong>in</strong>duction was <strong>de</strong>term<strong>in</strong>ed us<strong>in</strong>g dilution<br />

curves performed with highly responsive samples (PCB 126-<strong>in</strong>jected sea star). Dilution<br />

curves were best mo<strong>de</strong>lled us<strong>in</strong>g exponential equations (Equation 7). These data were <strong>the</strong>n<br />

expressed as CYP1A <strong>in</strong>hibition percentages (Equation 8). F<strong>in</strong>ally, <strong>in</strong>hibition percentages were<br />

converted to CYP1A <strong>in</strong>hibition percentages measured <strong>in</strong> control (acetone-<strong>in</strong>jected) sea stars<br />

(Equation 9) to obta<strong>in</strong> CYP1A <strong>in</strong>duction folds <strong>in</strong> sea star samples.<br />

Equation 7: y = a . e b.CYPi<br />

Equation 8: CYP i = 100 – (100 . A/A max)<br />

Equation 9: CYP I = (a . e b.CYPi )/(CYP ic)<br />

where CYP i is CYP1A <strong>in</strong>hibition percentage, A is absorbance at 450 nm <strong>in</strong> wells, A max is<br />

maximum absorbance <strong>in</strong> <strong>the</strong> absence of competitor (sea star samples), CYP I is <strong>the</strong> measure of<br />

CYP1A <strong>in</strong>duction (<strong>in</strong>duction folds), a and b are <strong>the</strong> parameters of <strong>the</strong> exponential equation<br />

fitt<strong>in</strong>g <strong>the</strong> dilution curve, and CYP ic is <strong>the</strong> <strong>in</strong>hibition percentage <strong>in</strong> control sea stars (viz.<br />

acetone-<strong>in</strong>jected animals).<br />

Dose-response relationships were tested by l<strong>in</strong>ear and non-l<strong>in</strong>ear regressions, us<strong>in</strong>g <strong>the</strong> Systat<br />

5.2.1 software (Wilk<strong>in</strong>son 1988). Differences between ROS production and P450 levels <strong>in</strong> <strong>the</strong><br />

different exposure conditions were tested for significance us<strong>in</strong>g 1-way ANOVA followed by<br />

<strong>the</strong> multiple comparison test of Tukey (Zar 1996). The level of significance was always set at<br />

a =0.05.<br />

RESULTS<br />

ELISA setup<br />

In <strong>the</strong> setup phase of <strong>the</strong> novel ELISA for measur<strong>in</strong>g CYP1A IPP <strong>in</strong> sea stars, a first step was<br />

to carry out western blot immunoassays to check <strong>the</strong> cross-reactivity of anti-trout CYP1A<br />

antibody with sea star samples. For this purpose, post-mitochondrial supernatant (PMS)<br />

extracts from sea stars <strong>in</strong>jected with PCB 126, PCB 153, seawater or acetone were run on<br />

gels. One of <strong>the</strong>se gel (PCB 126- and seawater-<strong>in</strong>jected sea stars) is shown <strong>in</strong> Fig. 28.<br />

102


Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCBs <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Figure 28. Western blot SDS-PAGE gel. Lanes are: (A) molecular<br />

weight standards (kD), (B) BNF-<strong>in</strong>jected trout microsomes, (C) PCB<br />

126-<strong>in</strong>jected sea star PMS extract and (D) seawater-<strong>in</strong>jected sea star<br />

PMS extract<br />

BNF-<strong>in</strong>duced trout microsomes were used as positive controls (lane B) and molecular weight<br />

standards were also run <strong>in</strong> <strong>the</strong> wells (lane A). Results show that a band appears <strong>in</strong> <strong>the</strong> case of<br />

PCB 126-exposed sea stars (lane C). The sea star band is <strong>in</strong> <strong>the</strong> range of CYP1A molecular<br />

weights reported <strong>in</strong> o<strong>the</strong>r species (between 45 and 60 kD; Lewis 1996) and was <strong>in</strong>duced only<br />

<strong>in</strong> <strong>in</strong>dividuals exposed to <strong>the</strong> coplanar PCB 126: control sea stars (lane D) showed no band.<br />

Therefore, <strong>the</strong> antibody was used for fur<strong>the</strong>r test<strong>in</strong>g and ELISA procedures.<br />

The competitive b<strong>in</strong>d<strong>in</strong>g-based ELISA was carried out on PMS extracts of sea star pyloric<br />

caeca us<strong>in</strong>g biot<strong>in</strong>ylated BNF-<strong>in</strong>duced trout microsomes as a competitor. The l<strong>in</strong>ear zone of<br />

<strong>the</strong> fixation curve was between 1 and 10 mg total prote<strong>in</strong> ml -1 , justify<strong>in</strong>g <strong>the</strong> use of a 1 mg<br />

total prote<strong>in</strong>s ml -1 solution for <strong>the</strong> competitor (be<strong>in</strong>g <strong>in</strong> <strong>the</strong> l<strong>in</strong>ear zone and represent<strong>in</strong>g <strong>the</strong><br />

lesser quantity to be used for <strong>the</strong> assay). The test for specificity (values of a representative<br />

run) are presented <strong>in</strong> Table 15.<br />

103


Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCBs <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Table 15. Optical <strong>de</strong>nsities measured <strong>in</strong> a representative ELISA (mean ± SD). Ab = rabbit antitrout CYP1A<br />

antibody; SW = seawater <strong>in</strong>jected sea stars (100 µg ml -1 ); AC = acetone <strong>in</strong>jected sea stars (100 µg ml -1 ); Tµ =<br />

trout microsomes (100 µg ml -1 ); B * Tµ = biot<strong>in</strong>ylated trout microsomes; Av-HRP = avid<strong>in</strong>e-coupled horse<br />

radish peroxidase; O.D. = optical <strong>de</strong>nsity (mean ± SD, biological triplicates); - = no sample/treatment<br />

Ab Sample/treatment B * Tµ Av-HRP O.D. n<br />

+ - - + 0.06<br />

+ - + + 0.93<br />

+ SW + + 0.75 ± 0.05 5<br />

+ AC + + 0.71 ± 0.13 5<br />

+ PCB 153 + + 0.65 ± 0.09 15<br />

+ PCB 126 + + 0.26 ± 0.05 15<br />

+ Tµ + + 0.16 ± 0.05 5<br />

The optical <strong>de</strong>nsity (OD) measurement <strong>in</strong> blank wells was 0.06. Maximum absorbance,<br />

measured <strong>in</strong> <strong>the</strong> absence of sample, produced an OD of 0.93. Weak competition occurred with<br />

seawater and acetone-<strong>in</strong>jected sea star PMS extract (OD = 0.75 and 0.71, respectively). PCB<br />

153 exposure <strong>in</strong>duced a competition of medium <strong>in</strong>tensity (OD = 0.65) while samples from<br />

PCB 126-exposed sea stars <strong>in</strong>duced significant competition for <strong>the</strong> anti-CYP1A antibody (OD<br />

= 0.26). The most <strong>in</strong>tense competition was found for BNF-<strong>in</strong>jected trout microsomes (OD =<br />

0.16). As mentioned <strong>in</strong> <strong>the</strong> methods section, <strong>the</strong> dilution curve was used to calculate CYP1A<br />

IPP <strong>in</strong>duction folds (as compared to controls) <strong>in</strong> <strong>the</strong> different samples us<strong>in</strong>g equation 3.<br />

<strong>Sea</strong>water and acetone controls showed CYP <strong>in</strong>duction factors of 1.01 ± 0.24 and 1.92 ± 0.84,<br />

respectively, while exposure to <strong>the</strong> non coplanar PCB 153 resulted <strong>in</strong> a CYP <strong>in</strong>duction factor<br />

of 2.67 ± 0.75. Significant variation of CYP1A IPP content was observed only <strong>in</strong> animals<br />

<strong>in</strong>jected with <strong>the</strong> diox<strong>in</strong>-like, coplanar congener 126 (CYP <strong>in</strong>duction factor: 67 ± 8.60) (Fig.<br />

29).<br />

CYP1A IPP <strong>in</strong>duction (time fold)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

PCB 153 PCB 126<br />

Figure 29 CYP1A IPP <strong>in</strong>duction (<strong>in</strong>duction fold, mean ± SD, n = 3) <strong>in</strong><br />

sea stars <strong>in</strong>jected with coplanar (126) or non-coplanar (153) PCB.<br />

104


Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCBs <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Reproducibility among different experiments was good when results were converted to<br />

<strong>in</strong>duction factors, with a 73-fold mean <strong>in</strong>crease <strong>in</strong> CYP1A IPP levels. The sensitivity of <strong>the</strong><br />

test, <strong>de</strong>f<strong>in</strong>ed as <strong>the</strong> lowest prote<strong>in</strong> concentration at which a significant variation of CYP1A<br />

IPP can be <strong>de</strong>tected, is 1.005-fold (5 ‰) <strong>in</strong> <strong>the</strong> case of PCB 126-exposed sea stars (calculated<br />

as 3.SD of blank measurements).<br />

<strong>Sea</strong> stars were <strong>in</strong>jected with <strong>in</strong>creas<strong>in</strong>g doses of structurally contrast<strong>in</strong>g congeners (PCB 153<br />

vs 77). CYP1A IPP <strong>in</strong>duction was measured <strong>in</strong> <strong>the</strong> different groups of <strong>in</strong>dividuals. Control<br />

groups (acetone-<strong>in</strong>jected, seawater-<strong>in</strong>jected and non-<strong>in</strong>jected) displayed no significant<br />

differences (p = 0.36) among each o<strong>the</strong>r. Thus, all control <strong>in</strong>dividuals were consi<strong>de</strong>red as a<br />

s<strong>in</strong>gle control group for <strong>the</strong> purpose of comparison.<br />

For PCB-exposed sea stars, <strong>the</strong> results showed a contrast<strong>in</strong>g response between <strong>in</strong>dividuals<br />

exposed to <strong>the</strong> coplanar vs <strong>the</strong> non-coplanar congener (Fig. 30). PCB 153 did not significantly<br />

<strong>in</strong>duce CYP1A IPP compared to controls, whereas PCB 77 <strong>in</strong>duced a steep <strong>in</strong>crease of<br />

CYP1A IPP content which displayed a significant, l<strong>in</strong>ear dose-response relationship<br />

(R 2 =0.87, p = 0.01).<br />

CYP1A IPP <strong>in</strong>duction (ratio experimental:control levels)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

PCB 77 PCB 153<br />

105<br />

y = 5.68x + 4.21<br />

R 2 = 0.87<br />

p = 0.01<br />

0<br />

0.001 0.01 0.1 1 10 100<br />

Injected dose (ng g -1 FW)<br />

Figure 30. CYP1A IPP <strong>in</strong>duction (ratio of experimental response to<br />

control group) as a function of <strong>in</strong>jected PCB dose (ng g -1 FW; log scale)<br />

for two structurally contrast<strong>in</strong>g congeners. Curve fitt<strong>in</strong>g: l<strong>in</strong>ear<br />

regression of CYP1A <strong>in</strong>duction as a function of <strong>in</strong>jected dose.<br />

Effects of PCB congeners on ROS production<br />

ROS production was measured <strong>in</strong> <strong>the</strong> different control groups (non-<strong>in</strong>jected, seawater-<strong>in</strong>jected<br />

or acetone-<strong>in</strong>jected sea stars) and no significant differences were found among <strong>the</strong>se three<br />

groups (p = 0.59 and 0.16 for non-stimulated and bacteria-stimulated amoebocytes,<br />

respectively). Therefore, all control <strong>in</strong>dividuals were pooled toge<strong>the</strong>r as a s<strong>in</strong>gle global<br />

control group for fur<strong>the</strong>r comparisons.


Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCBs <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

ROS production by non-stimulated amoebocytes is presented <strong>in</strong> Fig. 5. While PCB 153<br />

<strong>in</strong>duced some <strong>in</strong>crease <strong>in</strong> ROS production <strong>in</strong> a few <strong>in</strong>dividuals compared to controls, no<br />

statistically significant relationship was observed between ROS production and <strong>in</strong>jected PCB<br />

153 dose. In contrast, coplanar congener PCB 77 <strong>in</strong>duced a significant <strong>in</strong>crease <strong>in</strong> ROS<br />

production, i.e. up to 20 times <strong>the</strong> control values <strong>in</strong> <strong>in</strong>dividuals exposed to a dose of 1.51 ng g -<br />

1 FW. At <strong>the</strong> highest PCB 77 dose (5.96 ng g -1 FW), <strong>the</strong> level of ROS production dramatically<br />

dropped to control values (basel<strong>in</strong>e <strong>in</strong> Fig. 31).<br />

ROS production (RLU/10 6 cells)<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

PCB 77 PCB 153<br />

y = 18800x + 9700<br />

R 2 = 0.86<br />

p = 0.001<br />

0<br />

Basel<strong>in</strong>e<br />

2950±1350<br />

0.001 0.01 0.1 1 10 100<br />

Injected dose (ng g -1 FW)<br />

Figure 31. ROS production (total chemilum<strong>in</strong>escence) by nonstimulated<br />

amoebocytes as a function of <strong>in</strong>jected PCB dose (ng g -1 FW;<br />

log scale) for two structurally contrast<strong>in</strong>g congeners. Curve fitt<strong>in</strong>g:<br />

l<strong>in</strong>ear regression of ROS production as a function of <strong>in</strong>jected dose<br />

(exclud<strong>in</strong>g data of <strong>the</strong> highest dose); Basel<strong>in</strong>e: ROS production value <strong>in</strong><br />

control group (n = 15).<br />

The same behaviour was observed for bacteria-stimulated amoebocytes exposed to PCB 77<br />

(Fig. 32). Consi<strong>de</strong>r<strong>in</strong>g only <strong>the</strong> results at doses lower than <strong>the</strong> highest one, a very clear, l<strong>in</strong>ear<br />

dose-response relationship was found between ROS production and <strong>the</strong> dose of PCB 77<br />

(R 2 =0.86, p = 0.001 and R 2 = 0.95, p = 0.01 for non-stimulated and bacteria-stimulated<br />

amoebocytes, respectively).<br />

106


ROS production (RLU/10 6 cells)<br />

250000<br />

200000<br />

150000<br />

100000<br />

50000<br />

Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCBs <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

PCB 77 PCB 153<br />

y = 125000x + 27900<br />

R 2 = 0.95<br />

p = 0.01<br />

0<br />

Basel<strong>in</strong>e<br />

14000 ± 10800<br />

0.001 0.01 0.1 1 10 100<br />

Injected dose (ng g -1 FW)<br />

Figure 32. ROS production (total chemilum<strong>in</strong>escence) by bacteriastimulated<br />

amoebocytes as a function of <strong>in</strong>jected PCB dose (ng g -1 FW;<br />

log scale) for two structurally contrast<strong>in</strong>g congeners. Curve fitt<strong>in</strong>g:<br />

l<strong>in</strong>ear regression of ROS production as a function of <strong>in</strong>jected dose<br />

(exclud<strong>in</strong>g data of <strong>the</strong> highest dose); Basel<strong>in</strong>e: ROS production value <strong>in</strong><br />

control group (n = 15).<br />

In <strong>the</strong> case of PCB 153, no significant differences were found for ROS production by<br />

stimulated or non-stimulated amoebocytes <strong>in</strong> control vs exposed sea stars.<br />

F<strong>in</strong>ally, <strong>in</strong> or<strong>de</strong>r to check for a relationship between <strong>the</strong> responses of <strong>the</strong> two biological<br />

effects (viz. ROS production and CYP1A IPP <strong>in</strong>duction) <strong>in</strong> PCB 77-exposed sea stars, both<br />

factors were plotted as a l<strong>in</strong>ear function of ei<strong>the</strong>r non-stimulated or bacteria-stimulated<br />

amoebocytes (Fig. 33). Very strong <strong>de</strong>term<strong>in</strong>ation coefficients were found for l<strong>in</strong>ear<br />

regressions <strong>in</strong> both cases, i.e. R 2 = 0.95 , p = 0.03 and R 2 = 0.96 , p = 0.02 respectively. The<br />

strongest relationship was obta<strong>in</strong>ed between ROS production and CYP1A <strong>in</strong>duction <strong>in</strong> <strong>the</strong><br />

presence of bacteria-stimulated coelomocytes.<br />

107


DISCUSSION<br />

ROS production (RLU/10 6 cells)<br />

250000<br />

200000<br />

150000<br />

100000<br />

50000<br />

Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCBs <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

Non-stimulated amoebocytes Bacteria-stimulated amoebocytes<br />

108<br />

y = 14100x - 14200<br />

y = 2200x + 2700<br />

0<br />

0 5 10 15 20<br />

CYP1A IPP <strong>in</strong>duction (ratio experimental:control levels)<br />

r 2 = 0.95<br />

p = 0.03<br />

r 2 = 0.96<br />

p = 0.02<br />

Figure 33. Regressions between ROS production (total chemilum<strong>in</strong>escence)<br />

and CYP1A IPP <strong>in</strong>duction (ratio of experimental response to control group)<br />

<strong>in</strong> <strong>the</strong> case of non-stimulated and bacteria-stimulated amoebocytes from<br />

PCB 77-<strong>in</strong>jected sea stars. Curve fitt<strong>in</strong>g: l<strong>in</strong>ear regression of CYP1A IPP<br />

<strong>in</strong>duction as a function of ROS production; R 2 : <strong>de</strong>term<strong>in</strong>ation coefficient.<br />

In this paper, a novel, rapid and sensitive competitive ELISA for assess<strong>in</strong>g CYP1A IPPs <strong>in</strong><br />

sea stars is <strong>de</strong>scribed. This assay does not require long ultracentrifugation steps, or cell<br />

culture ma<strong>in</strong>tenance and is less time-consum<strong>in</strong>g than o<strong>the</strong>r wi<strong>de</strong>spread methods such as<br />

Western blot, or <strong>the</strong> CO-difference spectrum for <strong>de</strong>term<strong>in</strong><strong>in</strong>g total P450 contents. The only<br />

pre-requisite of <strong>the</strong> method is to <strong>de</strong>term<strong>in</strong>e <strong>the</strong> optimal quantity of biot<strong>in</strong>ylated competitor to<br />

be used <strong>in</strong> <strong>the</strong> test. Ano<strong>the</strong>r advantage of <strong>the</strong> method is <strong>the</strong> need of only m<strong>in</strong>ute quantities of<br />

tissues for analysis, as <strong>the</strong> relationship between CYP1A levels and sample dilution rema<strong>in</strong>ed<br />

l<strong>in</strong>ear over a wi<strong>de</strong> range of concentrations. The number of samples that can be processed<br />

simultaneously is also greatly enhanced, allow<strong>in</strong>g fast and efficient screen<strong>in</strong>g.<br />

Purified sea star CYP1A prote<strong>in</strong> is not available commercially and a true calibration curve<br />

could not be established. Therefore, for fur<strong>the</strong>r test<strong>in</strong>g, it is recommen<strong>de</strong>d to establish a<br />

dilution curve us<strong>in</strong>g PMS extracts of <strong>in</strong>dividuals exposed to a CYP1A-<strong>in</strong>duc<strong>in</strong>g compound,<br />

such as coplanar PCBs, diox<strong>in</strong>s, furans or polyaromatic hydrocarbons. Obviously, us<strong>in</strong>g this<br />

curve implies compar<strong>in</strong>g treated samples to control <strong>in</strong>dividuals. Never<strong>the</strong>less, overall, <strong>the</strong><br />

method is very satisfactory for fast screen<strong>in</strong>g of CYP1A IPP variations. In addition, <strong>the</strong> high<br />

<strong>de</strong>gree of <strong>in</strong>ductibility of <strong>the</strong> CYP1A (up to 73-fold mean <strong>in</strong>crease) is encourag<strong>in</strong>g with<br />

respect to apply<strong>in</strong>g this method to samples com<strong>in</strong>g from low-contrast<strong>in</strong>g field situations. The<br />

exact aff<strong>in</strong>ity of <strong>the</strong> antibody used <strong>in</strong> this study for sea star CYP1A could not be <strong>de</strong>term<strong>in</strong>ed,<br />

s<strong>in</strong>ce no pure sea star CYP1A is available. Also, absolute values of absorbance at 450 nm


Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCBs <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

varied among <strong>the</strong> different experiments, but this observation is generally consi<strong>de</strong>red as typical<br />

of ELISA test<strong>in</strong>g (Kennedy 1991).<br />

The <strong>in</strong>duction of CYP1A is one of <strong>the</strong> most frequently used biomarkers <strong>in</strong> <strong>the</strong> field of<br />

environmental contam<strong>in</strong>ation (Bucheli & Fent 1995). Quantification of CYP1A prote<strong>in</strong> levels<br />

<strong>in</strong> field and laboratory samples can provi<strong>de</strong> important and complementary <strong>in</strong>formation about<br />

<strong>the</strong> regulation of this prote<strong>in</strong> and toxicity mechanisms <strong>in</strong> general. Fast and simple methods are<br />

required for this purpose and <strong>the</strong> ELISA <strong>de</strong>scribed here seems to be a very promis<strong>in</strong>g tool.<br />

Provi<strong>de</strong>d that <strong>the</strong> cross-reactivity of <strong>the</strong> antibody and that <strong>the</strong> responsiveness to <strong>the</strong> compound<br />

is tested, <strong>the</strong> present method can probably be applied to a certa<strong>in</strong> range of mar<strong>in</strong>e <strong>in</strong>vertebrate<br />

species.<br />

In <strong>the</strong> present study, <strong>the</strong> adapted ELISA method allowed <strong>the</strong> observation of PCB congener-<br />

<strong>de</strong>pen<strong>de</strong>nt behaviour for CYP1A IPP <strong>in</strong>duction <strong>in</strong> sea stars. Exposure of congener 153 did not<br />

result <strong>in</strong> any significant <strong>in</strong>duction of CYP1A IPP whereas coplanar PCB 77 <strong>in</strong>duced a sharp<br />

<strong>in</strong>crease <strong>in</strong> this prote<strong>in</strong> content. In a previous study, <strong>de</strong>n Besten et al. (1993) measured total<br />

cytochrome P450 <strong>in</strong> sea stars that received s<strong>in</strong>gle <strong>in</strong>jections of different PCB congeners<br />

(PCBs 118, 126 and 153). In this work, total cytochrome P450 was <strong>de</strong>term<strong>in</strong>ed us<strong>in</strong>g <strong>the</strong><br />

carbon monoxi<strong>de</strong> difference spectrum of dithionite-reduced samples. Morever, PCB 126 was<br />

used at doses rang<strong>in</strong>g up to 2 µmol kg -1 (approx. 650 ng g -1 ), which is 2 or<strong>de</strong>rs of magnitu<strong>de</strong><br />

greater than <strong>the</strong> highest dose used <strong>in</strong> our experiments. No dose-<strong>de</strong>pen<strong>de</strong>nt effects of PCBs<br />

were found on <strong>the</strong> cytochrome P450 content by <strong>de</strong>n Besten et al. (1993). The discripancy<br />

between <strong>the</strong> latter results and those obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> present study can be expla<strong>in</strong>ed by <strong>the</strong><br />

lower specifity of measur<strong>in</strong>g total cytochrome P450 compared to measur<strong>in</strong>g only CYP1A IPP<br />

isoforms. O<strong>the</strong>r workers found results that were similar to ours by expos<strong>in</strong>g cell cultures of<br />

trout hepatocytes to different PCB congeners: only coplanar congeners 77 and 126 <strong>in</strong>duced<br />

significant CYP1A responses (Bruschweiler et al. 1996). As suggested by Coteur et al.<br />

(2001), similarities found <strong>in</strong> responsiveness to diox<strong>in</strong>-like compounds measured <strong>in</strong> sea stars<br />

and vertebrates could <strong>in</strong>dicate <strong>the</strong> existence of a similar <strong>de</strong>toxification mechanism <strong>in</strong><br />

ech<strong>in</strong>o<strong>de</strong>rms and vertebrates. The <strong>in</strong>tensity of CYP1A IPP <strong>in</strong>duction measured <strong>in</strong> this study<br />

was comparable to that <strong>de</strong>scribed <strong>in</strong> human cells (Jones & An<strong>de</strong>rson, 1999) and <strong>in</strong> mussels<br />

(Liv<strong>in</strong>gstone et al. 2000). The occurrence of a CYP1A-like prote<strong>in</strong> that can be <strong>in</strong>duced by<br />

PAHs and PCBs <strong>in</strong> molluscs has been shown <strong>in</strong> various studies (Liv<strong>in</strong>gstone & Goldfarb<br />

1998, Peters et al. 1998), and its <strong>in</strong>duction <strong>in</strong> mussels has been shown experimentally (Michel<br />

et al. 1993). However, <strong>the</strong>re is still a lot of discussion about <strong>the</strong> mechanisms un<strong>de</strong>rly<strong>in</strong>g this<br />

<strong>in</strong>duction <strong>in</strong> <strong>in</strong>vertebrates (see Hahn 2002a for a review). In vertebrates, CYP1A <strong>in</strong>duction is<br />

109


Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCBs <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

known to be l<strong>in</strong>ked to <strong>the</strong> exposure to diox<strong>in</strong>-like compounds. Mechanisms un<strong>de</strong>rly<strong>in</strong>g this<br />

<strong>in</strong>duction have been <strong>in</strong>vestigated and many studies have drawn <strong>the</strong> Aryl hydrocarbon<br />

Receptor (AhR) <strong>in</strong> <strong>the</strong> production of diox<strong>in</strong>-like toxicity (e.g., Fernan<strong>de</strong>z-Salguerro et al.<br />

1996, Schmidt et al. 1996). Although <strong>the</strong> occurrence of <strong>the</strong> AhR has not been <strong>de</strong>monstrated <strong>in</strong><br />

ech<strong>in</strong>o<strong>de</strong>rms, our data and those of Coteur et al. (2001) strongly suggest that a vertebrate-like,<br />

CYP1A-trigger<strong>in</strong>g mechanism may actually occur <strong>in</strong> ech<strong>in</strong>o<strong>de</strong>rms. The strongest arguments<br />

for this occurrence are: (i) <strong>the</strong> conservative evolution of <strong>the</strong> AhR sequence (Lewis 1996), (ii)<br />

a similar structure-<strong>in</strong>duction relationship, and (iii) <strong>the</strong> dose-response relationship found with<br />

cPCBs. Never<strong>the</strong>less, fur<strong>the</strong>r research is nee<strong>de</strong>d to <strong>de</strong>monstrate <strong>the</strong> existence of <strong>the</strong> AhR <strong>in</strong><br />

ech<strong>in</strong>o<strong>de</strong>rms, by address<strong>in</strong>g e.g. <strong>the</strong> <strong>in</strong>duction of ech<strong>in</strong>o<strong>de</strong>rm CYP1A by vertebrate AhR<br />

ligands, <strong>the</strong> relative structure-activity relationship (SAR) of <strong>the</strong> potential <strong>in</strong>ducers, and f<strong>in</strong>ally<br />

2,3,7,8-tetrachloro-dibenzo-p-diox<strong>in</strong> (TCDD) <strong>in</strong>teraction with <strong>the</strong> receptor lead<strong>in</strong>g to its<br />

potency to <strong>in</strong>duce CYP1A expression.<br />

The effect of <strong>the</strong> two structurally contrast<strong>in</strong>g PCBs on <strong>the</strong> immune system activity was<br />

assessed by measur<strong>in</strong>g ROS production <strong>in</strong> sea stars. In <strong>the</strong>se organisms, ROS production by<br />

amoebocytes represents <strong>the</strong> ma<strong>in</strong> <strong>de</strong>fence l<strong>in</strong>e aga<strong>in</strong>st non-self material, but <strong>the</strong> efficiency of<br />

this process has been shown to be modulated by xenobiotic exposure (An<strong>de</strong>rson et al. 1997,<br />

Coteur et al. 2001). For example, immunomodulation <strong>in</strong>duced by coplanar PCBs can lead to<br />

altered <strong>de</strong>fence aga<strong>in</strong>st <strong>in</strong>fections (Liv<strong>in</strong>gstone et al. 2000). One of <strong>the</strong> key actors <strong>in</strong> ROS<br />

production is <strong>the</strong> activation of a membrane-associated enzyme, <strong>the</strong> NADPH-oxidase, which<br />

reduces molecular oxygen to superoxi<strong>de</strong> anion ( • -<br />

O2 ), which leads to <strong>the</strong> production of o<strong>the</strong>r<br />

oxidants (Babior et al. 1984). In our study, non-coplanar PCB 153 did not <strong>in</strong>duce significant<br />

variation <strong>in</strong> ROS production whichever dose was applied (except at one concentration). In<br />

contrast, coplanar PCB 77 <strong>in</strong>duced a significant <strong>in</strong>crease <strong>in</strong> ROS production at all doses tested<br />

except <strong>the</strong> highest one, where ROS production dramatically dropped to control levels. This<br />

type of response has also been observed <strong>in</strong> sea urch<strong>in</strong>s (Coteur et al. 2001). <strong>Sea</strong> urch<strong>in</strong>s<br />

<strong>in</strong>jected with <strong>in</strong>creas<strong>in</strong>g doses of selected PCBs (congeners 77, 126 and 153) showed no<br />

significant effect <strong>in</strong> ROS production with PCB 153, whereas PCB 77 and PCB 126 caused a<br />

large <strong>in</strong>crease <strong>in</strong> ROS production. As <strong>in</strong> <strong>the</strong> present experiment, ROS production <strong>in</strong> sea<br />

urch<strong>in</strong>s also dropped at <strong>the</strong> highest PCB concentration (12.5 ng l -1 ) tested by Coteur et al.<br />

(2001). In our study, <strong>in</strong>duction of ROS production was observed <strong>in</strong> bacteria-stimulated<br />

amoebocytes as well as <strong>in</strong> non-stimulated cells, an observation which is <strong>in</strong> contrast with that<br />

reported by Coteur et al. (2001) <strong>in</strong> <strong>the</strong> case of non-stimulated amoebocytes. This is most<br />

probably due to differences <strong>in</strong> composition of <strong>the</strong> coelomocyte population between sea<br />

110


Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCBs <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

urch<strong>in</strong>s and sea stars. While amoebocytes (which are responsible for ROS production) are <strong>the</strong><br />

sole free-circulat<strong>in</strong>g coelomocyte type <strong>in</strong> A. <strong>rubens</strong>, <strong>the</strong>re are at least six different<br />

morphological and functional coelomocyte types co-exist<strong>in</strong>g <strong>in</strong> sea urch<strong>in</strong>s (Chia & X<strong>in</strong>g<br />

1996). As ROS production is measured on a «per 10 6 cells ml -1 » basis, this difference <strong>in</strong><br />

coelomocyte population composition could result <strong>in</strong> an un<strong>de</strong>restimated response when ROS<br />

production is measured <strong>in</strong> sea urch<strong>in</strong>s compared to <strong>the</strong> same response <strong>in</strong> A. <strong>rubens</strong>.<br />

In <strong>the</strong> present study, ROS production <strong>in</strong>creased with <strong>in</strong>jected cPCB doses, which <strong>in</strong>dicates<br />

immunomodulation by this xenobiotic, but could also be due partly to <strong>the</strong> production of ROS<br />

as by-products of o<strong>the</strong>r mechanisms related to cPCB exposure, viz. <strong>de</strong>toxification<br />

mechanisms. For <strong>in</strong>stance, PCB metabolites produced by CYP1A (qu<strong>in</strong>ones, hydroqu<strong>in</strong>ones)<br />

can lead to <strong>the</strong> formation of superoxi<strong>de</strong> anion radicals (Aryoshi et al. 1993). Therefore,<br />

CYP1A <strong>in</strong>duction can trigger an oxidative stress, which is also a major signal <strong>in</strong> apoptosis<br />

processes (Zahner et al. 1998, White & Prives 1999). In our study, <strong>the</strong> possible occurrence of<br />

ROS sources o<strong>the</strong>r than those produced <strong>in</strong> amoebocytes could be supported by <strong>the</strong> fact that<br />

CYP1A IPP <strong>in</strong>duction was directly proportional to ROS production (Fig. 33), at least up to<br />

<strong>the</strong> second highest <strong>in</strong>jected dose, but also by <strong>the</strong> fact that ROS production <strong>in</strong>creased<br />

regardless amoebocytes were bacteria-stimulated or not. Whe<strong>the</strong>r <strong>the</strong> measured ROS were<br />

produced only by amoebocytes or were also <strong>the</strong> result of PCB metabolisation processes (both<br />

sources probably coexist), it is however a fact that ROS production dropped to control levels<br />

<strong>in</strong> sea stars exposed to <strong>the</strong> highest dose of PCB 77. This drop could be expla<strong>in</strong>ed by <strong>the</strong> <strong>de</strong>ath<br />

of amoebocytes ei<strong>the</strong>r through direct cytotoxicity of PCB 77 at high concentration or through<br />

<strong>in</strong>direct PCB cytotoxicity via a ROS-triggered oxidative stress. Massive amoebocyte <strong>de</strong>ath<br />

directly geopardizes <strong>the</strong> efficiency of sea stars immune system, leav<strong>in</strong>g <strong>the</strong>m vulnerable to<br />

microbial attack. However, as ROS production did not drop down to zero but to control<br />

levels, one could alternatively suggest that <strong>the</strong> drop <strong>in</strong> ROS production could also be due to<br />

<strong>the</strong> <strong>in</strong>hibition of this immune response once a certa<strong>in</strong> treshold of PCB 77 concentration is<br />

reached <strong>in</strong> <strong>the</strong> coelomic fluid (this treshold would be comprised between <strong>the</strong> two highest<br />

doses tested, viz. 1.51 and 5.96 ng g -1 whole-body fresh weight).<br />

We conclu<strong>de</strong> that cPCBs have <strong>the</strong> potency to <strong>in</strong>duce <strong>de</strong>toxification mechanism and to impair<br />

immune system of A. <strong>rubens</strong>, and <strong>the</strong>refore represent a threat for sea star populations and <strong>in</strong><br />

extenso for benthic ecosystems. However, observed effects at <strong>the</strong> immune level could be also<br />

<strong>in</strong>directly enhanced by CYP1A IPP activity, which can potentially produce toxic cPCB<br />

metabolites, as occurs <strong>in</strong> <strong>the</strong> vertebrates. Measur<strong>in</strong>g CYP <strong>in</strong>duction and ROS production <strong>in</strong><br />

111


Contrast<strong>in</strong>g effects of coplanar vs non-coplanar PCBs <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

parallel provi<strong>de</strong>s valuable <strong>in</strong>formation on <strong>the</strong> organisms health status and thus could serve as<br />

an undissociable tool <strong>in</strong> environmental monitor<strong>in</strong>g studies.<br />

ACKNOWLEDGEMENTS<br />

The IAEA Mar<strong>in</strong>e Environment Laboratory operates un<strong>de</strong>r a bipartite agreement between <strong>the</strong><br />

International Atomic Energy Agency and <strong>the</strong> Government of <strong>the</strong> Pr<strong>in</strong>cipality of Monaco. B.D.<br />

and S.G. are respectively hol<strong>de</strong>rs of a FRIA and FNRS doctoral grant. V.F. and Ph.D. are<br />

Research Associates and M.W. is a Honorary Research Associate of <strong>the</strong> National Fund for<br />

Scientific Research (NFSR), Belgium. Research is partly supported by an Agathon De Potter<br />

(Belgian Royal Aca<strong>de</strong>my of Sciences) grant, a NFSR equipment fund<strong>in</strong>g (Tecan Spectrafluor<br />

Plus) and a Belgian Fe<strong>de</strong>ral Research Programme (SSTC, Contract MN/11/30 and<br />

EV/11/23A). Special thanks are due to Geoffroy Coteur (Laboratoire <strong>de</strong> Biologie Mar<strong>in</strong>e,<br />

ULB) for fruitful discussions on ROS mechanisms.<br />

112


IV. Field Conditions<br />

113


114


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

IV.1 Contam<strong>in</strong>ant levels <strong>in</strong> sediments and asteroids (<strong>Asterias</strong> <strong>rubens</strong> L.,<br />

Ech<strong>in</strong>o<strong>de</strong>rmata) from <strong>the</strong> Belgian coast and Scheldt estuary: polychlor<strong>in</strong>ated<br />

biphenyls and heavy metals.<br />

Science of <strong>the</strong> Total Environment (<strong>in</strong> press)<br />

Danis B a , Wantier P b , Flammang R b , Dutrieux S a , Dubois Ph a & Warnau M a*<br />

a : Laboratoire <strong>de</strong> Biologie Mar<strong>in</strong>e (CP 160/15), <strong>Université</strong> <strong>Libre</strong> <strong>de</strong> <strong>Bruxelles</strong>, 50 avenue<br />

F.D.Roosevelt, B-1050 <strong>Bruxelles</strong>, Belgium<br />

b : Laboratoire <strong>de</strong> Chimie Organique, <strong>Université</strong> <strong>de</strong> Mons-Ha<strong>in</strong>aut, 19 avenue Maistriau, B-<br />

7000 Mons, Belgium<br />

* Present address: International Atomic Energy Agency, Mar<strong>in</strong>e Environment Laboratory, 4<br />

Quai Anto<strong>in</strong>e Ier, MC-98000 Monaco<br />

115


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

ABSTRACT<br />

The Sou<strong>the</strong>rn Bight of <strong>the</strong> North <strong>Sea</strong> is particularly exposed to anthropogenic contam<strong>in</strong>ation,<br />

due to its <strong>de</strong>mographic and <strong>in</strong>dustrial situation. The present work focuses on PCB and metal<br />

contam<strong>in</strong>ation of <strong>the</strong> mar<strong>in</strong>e environment along and off <strong>the</strong> Belgian coast. Its objectives were<br />

to compare <strong>the</strong> concentrations of seven PCB congeners and four heavy metals <strong>in</strong> <strong>the</strong><br />

sediments (a s<strong>in</strong>k for anthropogenic contam<strong>in</strong>ants) and <strong>in</strong> <strong>the</strong> asteroid <strong>Asterias</strong> <strong>rubens</strong> (a<br />

recognized bio<strong>in</strong>dicator species). N<strong>in</strong>eteen sampl<strong>in</strong>g stations were consi<strong>de</strong>red between <strong>the</strong><br />

mouth of <strong>the</strong> Scheldt estuary and <strong>the</strong> sou<strong>the</strong>rn limit of <strong>the</strong> Belgian coast (asteroids were found<br />

<strong>in</strong> 10 out of <strong>the</strong> 19 stations). PCB and metal concentrations measured <strong>in</strong> sediments and<br />

asteroids were <strong>in</strong> <strong>the</strong> range of values reported <strong>in</strong> previous studies. Stations un<strong>de</strong>r direct<br />

<strong>in</strong>fluence of <strong>the</strong> Scheldt were <strong>the</strong> most impacted by <strong>the</strong> consi<strong>de</strong>red contam<strong>in</strong>ants. Metal<br />

concentrations varied accord<strong>in</strong>g to <strong>the</strong> gra<strong>in</strong>-size fraction consi<strong>de</strong>red. In asteroids, PCBs and<br />

metals were found to be selectively distributed among body compartments and pyloric caeca<br />

were found to discrim<strong>in</strong>ate sampl<strong>in</strong>g stations <strong>the</strong> most efficiently. The two strategies used <strong>in</strong><br />

this study were complementary: PCB and metal analysis of sediments provi<strong>de</strong>d a physico-<br />

chemical evaluation of <strong>the</strong> contam<strong>in</strong>ation, whereas analysis of asteroids <strong>in</strong>troduced a<br />

biological dimension by tak<strong>in</strong>g <strong>in</strong>to account bioavailability of <strong>the</strong> contam<strong>in</strong>ants.<br />

KEYWORDS<br />

Ech<strong>in</strong>o<strong>de</strong>rms; <strong>Asterias</strong> <strong>rubens</strong>; heavy metals; polychlor<strong>in</strong>ated biphenyls; sediments; North<br />

<strong>Sea</strong><br />

116


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

INTRODUCTION<br />

The Sou<strong>the</strong>rn Bight of <strong>the</strong> North <strong>Sea</strong> is a highly urbanized and <strong>in</strong>dustrialized region, with<br />

important rivers (viz. major vectors of anthropogenic contam<strong>in</strong>ant fluxes to <strong>the</strong> sea) runn<strong>in</strong>g<br />

through its catchment area (NSTF 1993a,b). These rivers carry consi<strong>de</strong>rable amounts of<br />

contam<strong>in</strong>ants of domestic and <strong>in</strong>dustrial orig<strong>in</strong>s (NSTF 1993a,b, Bayens 1998) which<br />

eventually flow <strong>in</strong>to <strong>the</strong> mar<strong>in</strong>e environment.<br />

When reach<strong>in</strong>g mar<strong>in</strong>e waters, contam<strong>in</strong>ants ma<strong>in</strong>ly concentrate <strong>in</strong> <strong>the</strong> sediments due to <strong>the</strong>ir<br />

generally low solubility <strong>in</strong> seawater and <strong>the</strong>ir ten<strong>de</strong>ncy to adsorb onto particles. Sediments<br />

<strong>the</strong>refore constitute <strong>the</strong> bulk of anthropogenic contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong> coastal environment and<br />

may be a major source of contam<strong>in</strong>ation for numerous organisms liv<strong>in</strong>g <strong>in</strong> or close to <strong>the</strong>m<br />

(Stebb<strong>in</strong>g et al. 1992, NSTF 1993a, Karbe et al. 1994, Alzieu & Michel 1998). Among <strong>the</strong><br />

latter organisms, <strong>the</strong> common asteroid <strong>Asterias</strong> <strong>rubens</strong> is a wi<strong>de</strong>ly distributed and abundant<br />

top-predator species <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> which is known to <strong>in</strong>fluence <strong>the</strong> structure of benthic<br />

communities (Menge 1982, Hayward & Ryland 1990, Hostens & Hammerl<strong>in</strong>k 1994). This<br />

species has proved to be an efficient tool for biomonitor<strong>in</strong>g of several anthropogenic<br />

contam<strong>in</strong>ants (e.g., PCBs, metals, organometals) <strong>in</strong> laboratory and/or field studies (e.g.<br />

Bjerregaard 1988, Everaarts & Fischer 1989, Temara et al. 1997a, 1998a,b, Warnau et al.<br />

1999).<br />

The present study is part of <strong>the</strong> "Susta<strong>in</strong>able Development of <strong>the</strong> North <strong>Sea</strong>" Program of <strong>the</strong><br />

SSTC (Belgian Government - Prime M<strong>in</strong>ister Services) and focuses on anthropogenic<br />

contam<strong>in</strong>ation of <strong>the</strong> Belgian mar<strong>in</strong>e environment. This mar<strong>in</strong>e region is directly exposed to<br />

large amounts of anthropogenic contam<strong>in</strong>ant carried by <strong>the</strong> Scheldt river which ends up<br />

between <strong>the</strong> nor<strong>the</strong>rn limit of <strong>the</strong> Belgian coast and <strong>the</strong> sou<strong>the</strong>rn limit of <strong>the</strong> Dutch coast (see<br />

e.g., Bayens 1998). Among <strong>the</strong>se contam<strong>in</strong>ants, polychlor<strong>in</strong>ated biphenyls (PCBs) and metals<br />

are of particular concern (NSTF 1993a, Mommaerts et al. 1994, Alzieu & Michel 1998,<br />

Laane et al. 1999).<br />

The aim of <strong>the</strong> present paper was to <strong>de</strong>term<strong>in</strong>e <strong>the</strong> concentrations of seven PCB congeners<br />

(IUPAC# 28, 52, 101, 118, 138, 153, 180) and four heavy metals (Zn, Cd, Cu, and Pb) <strong>in</strong><br />

sediments (i.e. <strong>the</strong> ma<strong>in</strong> reservoir of anthropogenic contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e environment)<br />

and <strong>in</strong> <strong>the</strong> asteroid <strong>Asterias</strong> <strong>rubens</strong> (i.e. a dom<strong>in</strong>ant macrobenthic species whose bio<strong>in</strong>dicative<br />

value is recognized) <strong>in</strong> or<strong>de</strong>r to (i) compare and <strong>in</strong>tegrate <strong>the</strong> <strong>in</strong>formation ga<strong>the</strong>red through<br />

<strong>the</strong>se two <strong>in</strong>dicators and (ii) assess <strong>the</strong> quality status of <strong>the</strong> consi<strong>de</strong>red region.<br />

117


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

MATERIALS AND METHODS<br />

Sampl<strong>in</strong>g and sample preparation<br />

Samples (sediment and asteroids) were collected between February 4th and March 31st<br />

dur<strong>in</strong>g a cruise with <strong>the</strong> RV “Belgica” and by seashore fish<strong>in</strong>g and scuba div<strong>in</strong>g. N<strong>in</strong>eteen<br />

sampl<strong>in</strong>g stations were consi<strong>de</strong>red (Table 16, Fig. 34); 18 of <strong>the</strong>m are located along <strong>the</strong> coast<br />

or <strong>in</strong> <strong>the</strong> open sea (<strong>the</strong>se stations may be arranged accord<strong>in</strong>g to 7 transects parallel or<br />

perpendicular to <strong>the</strong> coast) and one is located <strong>in</strong> a closed estuary (Scharendijke,<br />

Grevel<strong>in</strong>genmeer, The Ne<strong>the</strong>rlands).<br />

Figure 34. Sampl<strong>in</strong>g stations and transects along and off <strong>the</strong> Belgian coast.<br />

Table 16. Positions and characteristics of <strong>the</strong> sampl<strong>in</strong>g stations<br />

Station co<strong>de</strong><br />

Coord<strong>in</strong>ates<br />

(N)(O)<br />

Depth<br />

(m)<br />

118<br />

Sal<strong>in</strong>ity<br />

(p.s.u.)<br />

Date of<br />

sampl<strong>in</strong>g<br />

(mm/dd/yy)<br />

Sediment<br />

collection<br />

Asteroid<br />

collection<br />

120 51°11.10 2°42.07 11.6 33.4 02/05/98 yes no<br />

130 51°16.25 2°54.30 8.32 32.0 02/05/98 yes no<br />

140 51°20.00 3°24.00 5.73 31.2 02/05/98 yes no<br />

150 51°25.00 3°24.00 13.7 32.1 02/05/98 yes no<br />

230 51°18.50 2°51.00 11.5 32.2 02/13/98 yes yes<br />

250 51°31.00 3°19.00 9.65 32.0 02/05/98 yes yes<br />

330 51°26.00 2°48.50 24.0 33.4 02/06/98 yes yes<br />

700 51°22.60 3°13.20 10.9 31.1 02/11/98 yes no<br />

710 51°26.45 3°08.32 12.2 32.6 02/11/98 yes yes<br />

Breskens 51°24.40 3°30.00 - 31.0 03/05/98 yes yes<br />

Knokke 51°20.80 3°17.80 - 32.0 03/20/98 yes yes


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

Nieuwpoort 51°08.80 2°42.80 - 32.5 03/06/98 yes yes<br />

Oosten<strong>de</strong> 51°13.80 2°54.40 - 32.0 03/10/98 yes yes<br />

Perkpol<strong>de</strong>r 51°24.80 4°02.60 - 27.0 03/09/98 yes no<br />

S01 51°25.00 3°34.20 17.0 29.9 02/05/98 yes no<br />

Terneuzen 51°20.70 3°48.30 - 28.0 03/09/98 yes no<br />

Wendu<strong>in</strong>e 51°17.80 3°04.40 - 32.7 03/19/98 yes yes<br />

ZG03 51°15.70 2°40.00 18.6 32.6 02/11/98 yes no<br />

Scharendijke 51°44.50 3°50.70 5 - 15 29.0 03/04/98 yes yes<br />

Sediments (6 replicates per station) were collected ei<strong>the</strong>r us<strong>in</strong>g a Re<strong>in</strong>eck box-corer dur<strong>in</strong>g<br />

<strong>the</strong> cruise or by hand <strong>in</strong> <strong>the</strong> <strong>in</strong>tertidal zone dur<strong>in</strong>g seashore collection. In both cases, only <strong>the</strong><br />

upper 5 cm layer of <strong>the</strong> sediments was consi<strong>de</strong>red and immediately frozen (-20°C) <strong>in</strong> 400 ml<br />

acid-washed polypropylene conta<strong>in</strong>ers. Asteroids (n = 15 per station) were collected ei<strong>the</strong>r<br />

us<strong>in</strong>g a beam trawl (dur<strong>in</strong>g <strong>the</strong> cruise; trawl<strong>in</strong>g time ranged from 10 to 30 m<strong>in</strong>, <strong>de</strong>pend<strong>in</strong>g on<br />

<strong>the</strong> sampl<strong>in</strong>g conditions i.e. currents, bottom nature, etc.) or by hand (seashore fish<strong>in</strong>g) or<br />

scuba div<strong>in</strong>g. Only specimens belong<strong>in</strong>g to <strong>the</strong> same size-class were consi<strong>de</strong>red. Immediately<br />

after collection, asteroids were dissected to five compartments (oral body wall, aboral body<br />

wall, gonads, gut and pyloric caeca). Dissected body compartments were pooled by 3 (lead<strong>in</strong>g<br />

thus to 5 pools per station, each pool com<strong>in</strong>g from 3 <strong>in</strong>dividuals) and frozen at 20°C). Tissues<br />

to be analyzed for PCB content (all except gut, due to too little tissue quantities) were<br />

wrapped <strong>in</strong> alum<strong>in</strong>um foils immediately after dissection and frozen at -20°C until analysis.<br />

Prior to metal analyses, sediment and asteroid samples were dried at 800°C for 72 h. In<br />

addition, dried sediments were sieved us<strong>in</strong>g an Endicots Octagon 200 siever <strong>in</strong> or<strong>de</strong>r to<br />

<strong>de</strong>term<strong>in</strong>e gra<strong>in</strong>-size distributions. The different fractions (>4 mm, 2-4 mm, 1-2 mm, 500-<br />

1000 µm, 250-500 µm, 125-250 µm, 63-125 µm, and


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

dichloromethane. Extracts were <strong>the</strong>n ga<strong>the</strong>red. A fraction of <strong>the</strong> extracts was used to<br />

<strong>de</strong>term<strong>in</strong>e <strong>the</strong> total lipid content (gravimetrically). The rema<strong>in</strong><strong>in</strong>g part was evaporated un<strong>de</strong>r<br />

nitrogen and 3 ml of isooctane were ad<strong>de</strong>d to each sample. Lipids were elim<strong>in</strong>ated by<br />

precipitation with sulfuric acid (3 times). For sediment analysis, an additional purification<br />

step us<strong>in</strong>g mercury to precipitate sulfur was performed at this stage. A f<strong>in</strong>al step of<br />

purification on Fluorisil was <strong>the</strong>n performed (40 ml hexane + 20 ml hexane:CH 2Cl 2, 95:5).<br />

The eluate was evaporated, 10µl of <strong>in</strong>ternal standard (PCB 155) was ad<strong>de</strong>d to 70 µl of <strong>the</strong><br />

sample and 2µl of this solution was <strong>in</strong>jected <strong>in</strong> <strong>the</strong> GC/MS.<br />

Samples were analyzed us<strong>in</strong>g a F<strong>in</strong>nigan GC/MS GCQ equipped with an AS9000<br />

autosampler and a CP-Sil 8 capillary column (50 m length, 0.25 mm id, 0.25 µm film<br />

thickness). Initial temperature of <strong>the</strong> column was 90°C. Temperature program was: (i)<br />

<strong>in</strong>crease to 180°C at 15°C m<strong>in</strong> -1 and hold for 6 m<strong>in</strong>, (ii) <strong>in</strong>crease to 220°C at 4°C m<strong>in</strong> -1 and<br />

hold for 2 m<strong>in</strong> and (iii) <strong>in</strong>crease to 275°C at 5°C m<strong>in</strong> -1 . The carrier gas was helium at a flux<br />

rate of 30 cm sec -1 . Injection mo<strong>de</strong> was “splitless”. Mass spectra were acquired <strong>in</strong> electron<br />

impact <strong>in</strong> mo<strong>de</strong> “multiple reaction monitor<strong>in</strong>g”.<br />

Concentration of congeners #28, 52, 101, 118, 153, 138 et 180 were measured <strong>in</strong> each<br />

sediment sample and <strong>in</strong> <strong>the</strong> different body compartments of <strong>the</strong> asteroids. Accuracy of <strong>the</strong><br />

method was tested us<strong>in</strong>g certified material reference from <strong>the</strong> BCR (sediments from <strong>the</strong><br />

harbour “Nova Scotian” <strong>in</strong> East of Canada). Analysed CRM were always with<strong>in</strong> 15% of <strong>the</strong><br />

mean certified values (except for congener 101 analyses that fell with<strong>in</strong> 30% of <strong>the</strong> mean<br />

certified value) (Table 17). The <strong>de</strong>tection limits were between 0.01 and 0.1 ng g -1 dry wt,<br />

<strong>de</strong>pend<strong>in</strong>g on <strong>the</strong> PCB congener.<br />

Table 17. Certified and measured PCB concentrations (ng g -1 dry wt ± sd, n = 4) <strong>in</strong> a certified material reference<br />

(sediments from <strong>the</strong> harbour “Nova Scotian” <strong>in</strong> East of Canada)<br />

Metal analyses<br />

IUPAC # Certified value Analysis<br />

101 1.62 ± 0.21 2.1 ± 0.49<br />

138 1.98 ± 0.28 1.67 ± 0.60<br />

153 2.27 ± 0.28 1.97 ± 0.43<br />

180 1.17 ± 0.15 1.06 ± 0.28<br />

The concentrations of Zn, Cu, Cd and Pb were measured <strong>in</strong> each of <strong>the</strong> 5 selected gra<strong>in</strong>-size<br />

fractions and <strong>in</strong> each asteroid body compartment, accord<strong>in</strong>g to <strong>the</strong> method <strong>de</strong>scribed by<br />

Warnau et al. (1995). Briefly, samples (0.4 g for sediments, 1 g for asteroid body wall, and<br />

0.5 g for o<strong>the</strong>r asteroid body compartments) were digested with 65% HNO 3 (Merck, p.a.<br />

120


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

gra<strong>de</strong>). Acid digestions were carried out at 20, 40, 60 and 80°C dur<strong>in</strong>g respectively 24, 6, 6<br />

and 12 h. Digests were diluted <strong>in</strong> milli-Q water (Millipore) and filtered on glass microfiber<br />

filters (Whatman GF/A). Metal concentrations were <strong>de</strong>term<strong>in</strong>ed by atomic emission<br />

spectrometry us<strong>in</strong>g a Job<strong>in</strong>-Yvon 38+ ICP-AES. Accuracy of <strong>the</strong> method was tested us<strong>in</strong>g<br />

certified reference material (Mytilus edulis tissues, CRM n°278, BCR) (Table 18). Detection<br />

limits for Zn, Cu, Cd, and Pb were respectively 0.002, 0.002, 0.001, 0.014 µg of metal per ml<br />

of digested sample.<br />

Table 18. Certified (C; mean value ± 95% CI) and measured (M; m<strong>in</strong> and max values, n = 6) metal<br />

concentrations (mg g -1 dry wt) of certified reference material (Mytilus edulis tissues, CRM n°278; BCR).<br />

Data analyses<br />

Zn Pb Cd Cu<br />

C 76.0 ± 2.0 1.91 ± 0.04 0.34 ± 0.02 9.60 ± 0.16<br />

M 77.0 – 82.0 1.91 - 1.95 0.31 - 0.37 9.60 - 10.7<br />

For PCB analysis, it was assumed that <strong>the</strong> loss was <strong>the</strong> same for <strong>the</strong> surrogate (PCB 103) than<br />

for <strong>the</strong> o<strong>the</strong>r analyzed congeners, and <strong>the</strong> PCB concentrations were corrected accord<strong>in</strong>gly.<br />

PCB 28 is not reported because of unexpla<strong>in</strong>ed <strong>in</strong>terference with o<strong>the</strong>r compounds. Everaarts<br />

et al. (1999) have encountered <strong>the</strong> same type of analytical problems.<br />

For metal analysis, emission <strong>in</strong>tensities were converted to concentrations (µg g -1 ). Statistical<br />

differences among metal concentrations measured <strong>in</strong> different gra<strong>in</strong>-size fractions of<br />

sediments, asteroid body compartments, and sampl<strong>in</strong>g stations were performed us<strong>in</strong>g 1- or 2-<br />

way analysis of variance (ANOVA) followed by a multiple comparison test of means (Tukey<br />

test) (Zar 1996). The variability expla<strong>in</strong>ed by each consi<strong>de</strong>red factor was <strong>de</strong>rived from <strong>the</strong><br />

sum of squares. Correlations between concentrations of different metals measured <strong>in</strong><br />

sediments or asteroids were tested us<strong>in</strong>g simple l<strong>in</strong>ear correlation procedures (Zar 1996).<br />

Concordance of rank<strong>in</strong>g of <strong>the</strong> stations accord<strong>in</strong>g to <strong>the</strong> contam<strong>in</strong>ation level <strong>de</strong>term<strong>in</strong>ed<br />

through sediment and asteroid analyses were tested us<strong>in</strong>g Kendall's coefficient of<br />

concordance (Zar 1996). The level of significance for statistical analyses was always set at<br />

a=0.05.<br />

121


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

RESULTS<br />

PCBs <strong>in</strong> sediments<br />

PCB concentrations were measured <strong>in</strong> <strong>the</strong> bulk sediment. Data was analyzed us<strong>in</strong>g 1-factor<br />

ANOVA and are presented <strong>in</strong> Table 19.<br />

Table 19. PCB concentrations (mean ± sd; mg g -1 dry wt, n = 6) <strong>in</strong> <strong>the</strong> bulk fraction of <strong>the</strong> sediments. Superscripts<br />

<strong>in</strong>dicate rank<strong>in</strong>g of stations accord<strong>in</strong>g to <strong>de</strong>creas<strong>in</strong>g concentrations of a given PCB congener (a>b>c>…).<br />

Stations with concentrations shar<strong>in</strong>g a common superscript are not significantly different from each o<strong>the</strong>r<br />

(multiple comparison test of Tukey; a = 0.05). nm = not measured<br />

Station ∑ 6PCB #52 #101 #118 #138 #153 #180<br />

120 4.79 bc ±0.56 0.20 ab ± 0.01 0.53 b ± 0.13 0.85 b ± 0.27 0.94 b ± 0.12 1.09 b ± 0.17 0.66 a ± 0.11<br />

130 10.6 abc ±1.01 0.44 a ± 0.05 1.16 b ± 0.09 2.84 a ± 1.36 2.03 ab ± 0.31 2.12 ab ± 0.40 1.60 a ± 0.71<br />

140 0.83 c ±1.03 0.07 b ± 0.05 0.14 b ± 0.10 0.28 b ± 0.35 0.15 b ± 0.19 0.21 b ± 0.18 0.14 a ± 0.14<br />

150 1.06 bc ±0.62 nm nm 0.34 b ± 0.16 0.25 b ± 0.13 0.18 b ± 0.13 0.19 a ± 0.06<br />

230 0.86 bc ±0.35 0.05 b ± 0.01 0.11 b ± 0.05 0.15 b ± 0.10 0.21 b ± 0.07 0.23 b ± 0.08 0.07 a ± 0.01<br />

250 0.90 bc ±0.62 0.05 b ± 0.02 0.08 b ± 0.06 0.25 b ± 0.16 0.18 b ± 0.15 0.23 b ± 0.12 0.16 a ± 0.18<br />

330 0.23 c ±0.09 0.05 b ± 0.02 0.03 b ± 0.01 nm 0.08 b ± 0.03 0.06 b ± 0.01 nm<br />

700 1.93 bc ±0.74 0.23 ab ± 0.18 0.36 b ± 0.25 0.27 b ± 0.19 0.31 b ± 0.09 0.45 b ± 0.22 0.26 a ± 0.22<br />

710 1.90 bc ±1.48 0.15 b ± 0.11 0.24 b ± 0.16 0.51 b ± 0.63 0.40 b ± 0.19 nm 0.25 a ± 0.08<br />

Breskens 7.70 abc ±4.84 0.16 b ± 0.08 1.48 ab ± 0.471.35 ab ± 1.34 2.29 ab ± 1.65 1.72 ab ± 0.91 0.63 a ± 0.66<br />

Knokke 2.93 bc ±3.64 0.05 b ± 0.01 0.31 b ± 0.18 0.53 b ± 0.01 1.10 b ± 1.48 0.80 b ± 1.05 nm<br />

Nieuwpoort 4.13 bc ±1.38 0.08 b ± 0.03 1.15 b ± 0.38 0.79 b ± 0.32 0.94 b ± 0.45 1.09 b ± 0.37 0.14 a ± 0.05<br />

Oosten<strong>de</strong> 1.05 bc ±0.19 0.07 b ± 0.05 0.31 b ± 0.13 0.31 b ± 0.33 0.24 b ± 0.09 0.34 b ± 0.15 nm<br />

Perkpol<strong>de</strong>r 14.4 ab ±13.8 0.16 b ± 0.08 1.75 ab ± 1.411.22 ab ± 1.35 4.59 ab ± 4.59 3.90 ab ± 4.13 2.92 a ± 3.72<br />

S01 7.46 bc ±1.52 0.41 a ± 0.23 0.92 b ± 0.161.35 ab ± 0.32 1.36 b ± 0.49 1.80 ab ± 0.39 1.07 a ± 0.12<br />

Scharendijke 3.94 bc ±0.29 0.24 ab ± 0.11 0.79 b ± 0.23 0.73 b ± 0.13 0.71 b ± 0.10 0.88 b ± 0.02 0.59 a ± 0.30<br />

Terneuzen 21.1 a ±11.3 0.16 b ± 0.06 3.09 a ± 1.531.83 ab ± 0.51 7.17 a ± 5.04 5.80 a ± 3.33 3.06 a ± 2.72<br />

Wendu<strong>in</strong>e 2.98 bc ±2.36 0.03 b ± 0.01 0.86 b ± 0.25 0.67 b ± 0.24 0.99 b ± 0.90 0.92 b ± 0.56 nm<br />

ZG03 1.36 bc ±0.99 0.04 b ± 0.03 0.12 b ± 0.09 0.31 b ± 0.34 0.32 b ± 0.22 0.33 b ± 0.21 0.15 a ± 0.12<br />

PCB concentrations varied significantly among <strong>the</strong> stations for all <strong>the</strong> congeners except #180.<br />

Sum of 6 PCB concentrations varied between 0.23 and 21.1ng g -1 dry weight <strong>in</strong> sediment for<br />

<strong>the</strong> 19 stations. The lowest concentrations were found <strong>in</strong> stations 330 and 140. Stations close<br />

to <strong>the</strong> estuary and <strong>in</strong> front of Oosten<strong>de</strong> (Terneuzen, Perkpol<strong>de</strong>r, 130) were <strong>the</strong> most<br />

contam<strong>in</strong>ated. PCB patterns appeared i<strong>de</strong>ntical for all <strong>the</strong> stations: PCBs #153 and #138 were<br />

<strong>the</strong> most abundant whereas PCBs #52 and #180 were <strong>de</strong>tected <strong>in</strong> lower concentrations.<br />

Analyz<strong>in</strong>g data <strong>in</strong> stations located along transects (Fig. 34) helped <strong>in</strong> obta<strong>in</strong><strong>in</strong>g more<br />

discrim<strong>in</strong>ative <strong>in</strong>formation. 1-way ANOVAs resulted <strong>in</strong> significant differences <strong>in</strong> PCB<br />

concentrations among stations for each <strong>in</strong>vestigated congener. In Transect I, Terneuzen<br />

exhibited significantly higher concentrations of PCB 101 and of <strong>the</strong> sum of PCBs. Transect II<br />

showed 130 and S01 were significantly more contam<strong>in</strong>ated than o<strong>the</strong>r stations (all congeners<br />

except PCB 52). No significant differences were found <strong>in</strong> Transect III. In Transect IV, station<br />

122


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

120 was significantly more contam<strong>in</strong>ated <strong>in</strong> most case. Station 130 was always significantly<br />

more contam<strong>in</strong>ated than <strong>the</strong> o<strong>the</strong>r stations <strong>in</strong> Transect V. Transect VI showed that Knokke<br />

was significantly more contam<strong>in</strong>ated (PCB 180). F<strong>in</strong>ally, <strong>in</strong> Transect VII, it appeared that S01<br />

was <strong>the</strong> most contam<strong>in</strong>ated station (PCB 52) and that Terneuzen was significantly more<br />

contam<strong>in</strong>ated <strong>in</strong> all <strong>the</strong> o<strong>the</strong>r cases.<br />

PCBs <strong>in</strong> asteroids<br />

Asteroids were found <strong>in</strong> 10 out of <strong>the</strong> 19 <strong>in</strong>vestigated stations. Individuals were pooled by<br />

groups of 3 (n = 3 to 5 pools per sampl<strong>in</strong>g site). Concentrations of 6 PCB congeners (PCB 28<br />

is not reported because of <strong>in</strong>terference with o<strong>the</strong>r compounds) were <strong>de</strong>term<strong>in</strong>ed <strong>in</strong> four body<br />

compartments (oral and aboral body walls, pyloric caeca and gonads) (Table 20).<br />

Table 20. PCB concentrations (mean ± sd; ng g -1 total lipids, n = 3 pools of 3) <strong>in</strong> <strong>the</strong> different body<br />

compartments of <strong>the</strong> asteroid <strong>Asterias</strong> <strong>rubens</strong>. Superscripts <strong>in</strong>dicate rank<strong>in</strong>g of stations accord<strong>in</strong>g to <strong>de</strong>creas<strong>in</strong>g<br />

concentrations of a given congener (a>b>c>…). Stations with concentrations shar<strong>in</strong>g a common superscript are<br />

not significantly different from each o<strong>the</strong>r (multiple comparison test of Tukey; a = 0.05). nm = not measured.<br />

A. Oral body wall<br />

Station ∑ 6PCB #52 #101 #118 #138 #153 #180<br />

230 431 a ± 101 19.3 a ± 16.1 63.4 a ± 24.7 46.7 a ± 10.6 169 a ± 40.5 118 a ± 11.6 nm<br />

250 590 a ± 222 28.4 a ± 12.8 79.9 a ± 31.5 76.6 a ± 39.9 228 a ± 85.0 176 a ± 61.2 19.0 a ± 7.59<br />

330 836 a ± 836 23.7 a ± 23.7 119 a ± 118 100 a ± 100 314 a ± 314 234 a ± 234 36.0 a ± 36.0<br />

710 901 a ± 233 16.5 a ± 4.08 106 a ± 13.4 148 a ± 35.8 351 a ± 122 280 a ± 56.6 nm<br />

Breskens nm nm nm nm nm nm nm<br />

Knokke 1484 a ± 594 63.9 a ± 41.4 207 a ± 54.1 148 a ± 61.4 612 a ± 250 443 a ± 235 38.2 a ± 7.56<br />

Nieuwpoort 1128 a ± 275 32.2 a ± 13.5 157 a ± 37.7 116 a ± 21.9 437 a ± 157 354 a ± 124 38.5 a ± 11.6<br />

Oosten<strong>de</strong> 1463 a ± 719 39.0 a ± 13.5 216 a ± 86.3 130 a ± 72.6 552 a ± 310 445 a ± 248 62.4 a ± 39.2<br />

Scharendijke 1202 a ± 333 27.9 a ± 11.8 150 a ± 8.1 124 a ± 32.3 484 a ± 233 389 a ± 164 51.2 a ± 9.42<br />

Wendu<strong>in</strong>e 1045 a ± 331 78.9 a ± 45.3 178 a ± 100 119 a ± 24.4 377 a ± 51.9 298 a ± 110 29.9 a ± 3.29<br />

B. Aboral body wall<br />

Station ∑ 6PCB #52 #101 #118 #138 #153 #180<br />

230 778 a ± 312 39.7 a ± 28.9 130 a ± 98.4 62.7 a ± 11.8 298 a ± 107 219 a ± 75.5 27.7 a ± 9.78<br />

250 1015 a ± 55 45.2 a ± 16.9 105 a ± 52.0 116 a ± 75.4 410 a ± 208 296 a ± 160 55.0 a ± 51.1<br />

330 nm nm nm nm nm nm nm<br />

710 nm nm nm nm nm nm nm<br />

Breskens nm nm nm nm nm nm nm<br />

Knokke 1046 a ± 231 31.9 a ± 17.2 154 a ± 62.6 76.7 a ± 39.3 475 a ± 124 299 a ± 52.3 28.6 a ± 1.26<br />

Nieuwpoort 919 a ± 272 53.4 a ± 16.3 70.7 a ± 49.4 80.9 a ± 23.6 393 a ± 137 287 a ± 94.4 62.7 a ± 49.2<br />

Oosten<strong>de</strong> 843 a ± 126 30.8 a ± 9.97 124 a ± 2.82 74.2 a ± 19.1 335 a ± 109 231 a ± 29.4 46.6 a ± 38.5<br />

Scharendijke 1125 a ± 132 62.5 a ± 6.31 54.2 a ± 6.25 100 a ± 10.0 490 a ± 119 361 a ± 58.0 nm<br />

Wendu<strong>in</strong>e nm nm nm nm nm nm nm<br />

123


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

C. Pyloric caeca<br />

Station ∑ 6PCB #52 #101 #118 #138 #153 #180<br />

230 562 b ± 102 31.3 b ± 0.47 102 b ± 21.9 54.1 a ± 32.8 189 b ± 7.17 131 b ± 51.8 27.5 a ± 20.5<br />

250 735 b ± 233 29.0 b ± 4.76 107 b ± 32.3 110 a ± 50.2 262 b ± 103 197 b ± 69.3 15.6 a ± 9.43<br />

330 592 b ± 27.5 22.2 b ± 9.79 61.0 b ± 5.51 59.6 a ± 13.9 223 b ± 20.2 182 b ± 19.4 24.7 a ± 4.54<br />

710 695 b ± 440 42.5 ab ± 20.7 136 b ± 62.5 87.4 a ± 54.5 227 b ± 135 191 b ± 110 17.0 a ± 11.4<br />

Breskens nm nm nm nm nm nm nm<br />

Knokke 1695 a ± 658 88.6 a ± 29.5 317 a ± 119 150 a ± 44.9 614 a ± 270 463 a ± 215 35.9 a ± 20.8<br />

Nieuwpoort 634 b ± 261 22.8 b ± 5.79 104 b ± 47.4 78.3 a ± 32.9 203 b ± 101 162 b ± 64.5 54.1 a ± 32.7<br />

Oosten<strong>de</strong> 689 b ± 338 24.9 b ± 16.4 108 b ± 65.9 74.9 a ± 32.3 230 ab ± 140 205 b ± 105 66.3 a ± 71.9<br />

Scharendijke 501 b ± 246 24.9 b ± 8.52 90.8 b ± 44.3 53.9 a ± 33.9 169 b ± 106 120 b ± 52.3 26.3 a ± 15.4<br />

Wendu<strong>in</strong>e 396 b ± 20.0 45.7 ab ± 11.6 62.5 b ± 9.58 38.3 a ± 20.2 134 b ± 42.6 104 b ± 11.4 nm<br />

D. Gonads<br />

Station ∑ 6PCB #52 #101 #118 #138 #153 #180<br />

230 655 b ± 164 56.9 a ± 19.3 121 b ± 42.6 71.9 a ± 4.94 200 b ± 70.6 169 b ± 47.3 23.6 b ± 4.37<br />

250 561 b ± 88.3 23.5 a ± 8.48 83.3 b ± 14.6 63.7 a ± 32.1 213 b ± 50.5 158 b ± 27.4 16.1 b ± 5.12<br />

330 nm nm nm nm nm nm nm<br />

710 356 b ± 117 18.1 a ± 5.45 50.5 b ± 13.5 37.8 a ± 8.74 145 b ± 75.2 94.8 b ± 39.4 nm<br />

Breskens nm nm nm nm nm nm nm<br />

Knokke 1473 a ± 307 72.7 a ± 65.9 294 a ± 99.0 149 a ± 44.4 546 a ± 105 359 a ± 36.2 50.9 ab ± 15.9<br />

Nieuwpoort 727 b ± 169 32.5 a ± 14.5 129 b ± 59.5 71.1 a ± 28.5 237 b ± 100 176 b ± 71.6 75.7 a ± 35.1<br />

Oosten<strong>de</strong> 688 b ± 257 27.1 a ± 15.0 117 b ± 46.2 80.6 a ± 46.1 219 ab ± 99.4 192 b ± 88.2 nm<br />

Scharendijke 653 b ± 218 28.7 a ± 14.7 136 b ± 61.7 46.6 a ± 21.1 251 b ± 83.8 161 b ± 73.6 nm<br />

Wendu<strong>in</strong>e 1325 ab ± 166 59.5 a ± 4.76 229 ab ± 37.3 132 a ± 22.1 519 a ± 53.4 358 ab ± 72.9 37.1 ab ± 0.23<br />

Regard<strong>in</strong>g sea stars, sum of PCB concentrations were <strong>the</strong> highest <strong>in</strong> <strong>the</strong> pyloric caeca, vary<strong>in</strong>g<br />

between 396 and 1695 ng g -1 total lipids. Oral and aboral body walls were generally more<br />

contam<strong>in</strong>ated than gonads. Pyloric caeca were also <strong>the</strong> most discrim<strong>in</strong>ative body<br />

compartment. <strong>Sea</strong> stars collected <strong>in</strong> stations Knokke, Breskens, and Nieuwpoort revealed <strong>the</strong><br />

highest concentration levels. Individuals were less contam<strong>in</strong>ated <strong>in</strong> stations Wendu<strong>in</strong>e and<br />

230.<br />

The PCB contam<strong>in</strong>ation profile was similar <strong>in</strong> sediments and sea stars: PCBs #153 and #138<br />

exhibited <strong>the</strong> highest concentrations, while congeners #52 and #180 were <strong>the</strong> less<br />

concentrated.<br />

PCB concentrations <strong>in</strong> <strong>the</strong> body compartments and <strong>the</strong>ir lipid contents were compared<br />

(Fig.35). These two factors were highly correlated (r ≥ 0.99, p ≤ 0.01), confirm<strong>in</strong>g that PCB<br />

concentration <strong>in</strong> <strong>the</strong> organism ma<strong>in</strong>ly <strong>de</strong>pends on its lipid content.<br />

124


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

∑6PCBs (ng g -1 dry wt.)<br />

∑6PCBs (ng g -1 dry wt.)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

r = 0.99<br />

p = 0.01<br />

Station Nieuwpoort<br />

0<br />

0 5 10 15 20 25 30 35 40<br />

200<br />

150<br />

100<br />

50<br />

Lipid content (g 100g -1 dry wt.)<br />

r = 0.99<br />

p = 0.009<br />

Station 250<br />

0<br />

0 5 10 15 20 25<br />

Lipid content (g 100g -1 dry wt.)<br />

Figure 35 Correlation between ∑ 6PCBs (ng g -1 dry weight) and lipid<br />

content (g 100g -1 dry wt) <strong>in</strong> four body compartments of <strong>the</strong> asteroid A.<br />

<strong>rubens</strong> for stations Nieuwpoort and 250.<br />

Possible correlations were also assessed between PCB levels <strong>in</strong> sediments and asteroids, but<br />

no significant correlation could be found. A strik<strong>in</strong>g difference between PCB concentration <strong>in</strong><br />

sediments and asteroids is exemplified by stations Knokke and 330, which both exhibit high<br />

PCB concentrations <strong>in</strong> asteroids while be<strong>in</strong>g among <strong>the</strong> less impacted station when<br />

consi<strong>de</strong>r<strong>in</strong>g sediments alone.<br />

The two latter stations show a very different granulometry from <strong>the</strong> one of <strong>the</strong> o<strong>the</strong>r stations<br />

(Table 21): fraction 250-500 µm is predom<strong>in</strong>ant <strong>in</strong> Knokke and 330 whereas fraction 125-250<br />

µm is generally <strong>the</strong> most represented fraction <strong>in</strong> <strong>the</strong> o<strong>the</strong>r stations.<br />

125


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

Table 21. Gra<strong>in</strong>-size distribution (mean % ± sd, n = 6) <strong>in</strong> <strong>the</strong> dried sediments for <strong>the</strong> 19 sampl<strong>in</strong>g stations.<br />

Predom<strong>in</strong>ant gra<strong>in</strong>-size fractions are <strong>in</strong>dicated <strong>in</strong> bold.<br />

Station Gra<strong>in</strong>-size fraction<br />

500-1000µm 250-500 µm 125-250 µm 63-125 µm


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

Metals <strong>in</strong> sediments<br />

The gra<strong>in</strong>-size distributions of <strong>the</strong> different sediments are presented <strong>in</strong> Table 21. The fraction<br />

size "125-250 µm" was <strong>the</strong> dom<strong>in</strong>ant one <strong>in</strong> 14 stations, fraction "250-500 µm" <strong>in</strong> 3 stations<br />

and fractions "63-125 µm" and "500-1000 µm" only <strong>in</strong> one station.<br />

Metal concentrations were measured <strong>in</strong> <strong>the</strong> different sediment fractions (Table 22). S<strong>in</strong>ce<br />

some of <strong>the</strong> <strong>in</strong>vestigated metals have close physico-chemical properties, correlations between<br />

<strong>the</strong>ir concentrations were <strong>de</strong>term<strong>in</strong>ed <strong>in</strong> each gra<strong>in</strong>-size fraction (Table 23). Highly significant<br />

correlations (p≤0.0001) were found between all metals <strong>in</strong> all sediment fractions, except<br />

between Cu vs Pb and Cu vs Cd <strong>in</strong> <strong>the</strong> c>…). Stations with concentrations shar<strong>in</strong>g a common superscript are not significantly different from each<br />

o<strong>the</strong>r (multiple comparison test of Tukey; a = 0.05)<br />

A. Fraction


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

150 32.7 ± 7.20 c<strong>de</strong>fg<br />

230 19.1 ± 2.10 efgh<br />

250 16.8 ± 2.10 fgh<br />

330 25.3 ± 8.10 <strong>de</strong>fgh<br />

700 37.4 ± 6.08 c<strong>de</strong><br />

710 31.5 ± 20.5 c<strong>de</strong>fgh<br />

Breskens 34.3 ± 10.1 c<strong>de</strong>f<br />

Knokke 14.3 ± 1.66 gh<br />

Nieuwpoort 15.6 ± 1.60 fgh<br />

Oosten<strong>de</strong> 15.6 ± 2.40 fgh<br />

Perkpol<strong>de</strong>r 33.8 ± 4.80 c<strong>de</strong>f<br />

S01 103 ± 6.00 a<br />

Scharendijke 26.2 ± 4.90 <strong>de</strong>fgh<br />

Terneuzen 12.8 ± 1.40 h<br />

Wendu<strong>in</strong>e 16.5 ± 3.53 fgh<br />

ZG03 42.1 ± 13.3 cd<br />

15.8 ± 3.50 c<strong>de</strong><br />

11.4 ± 1.40 <strong>de</strong><br />

11.5 ± 0.80 <strong>de</strong><br />

14.6 ± 2.40 <strong>de</strong><br />

25.8 ± 3.36 bc<br />

18.1 ± 7.10 bcd<br />

17.0 ± 4.00 c<strong>de</strong><br />

16.4 ± 4.55 c<strong>de</strong><br />

11.0 ± 0.40 <strong>de</strong><br />

11.8 ± 1.50 <strong>de</strong><br />

19.0 ± 4.00 bcd<br />

50.6 ± 3.50 a<br />

13.0 ± 8.00 <strong>de</strong><br />

7.00 ± 1.00 e<br />

17.3 ± 5.40 c<strong>de</strong><br />

28.9 ± 6.20 b<br />

128<br />

0.60 ± 0.13 <strong>de</strong><br />

0.50 ± 0.04 <strong>de</strong>f<br />

0.30 ± 0.02 ef<br />

0.50 ± 0.06 <strong>de</strong>f<br />

1.23 ± 0.25 b<br />

0.60 ± 0.18 <strong>de</strong>f<br />

0.55 ± 0.10 <strong>de</strong>f<br />

0.41 ± 0.01 ef<br />

0.40 ± 0.02 ef<br />

0.40 ± 0.02 ef<br />

0.48 ± 0.07 <strong>de</strong>f<br />

1.60 ± 0.09 a<br />

0.30 ± 0.02 ef<br />

0.26 ± 0.02 f<br />

0.43 ± 0.04 ef<br />

0.80 ± 0.20 cd<br />

3.40 ± 1.50 c<strong>de</strong>f<br />

1.50 ± 0.40 ef<br />

1.30 ± 0.30 f<br />

2.20 ± 0.50 <strong>de</strong>f<br />

5.80 ± 1.28 c<br />

3.20 ± 2.00 c<strong>de</strong>f<br />

3.30 ± 1.30 c<strong>de</strong>f<br />

1.50 ± 0.62 ef<br />

1.00 ± 0.01 f<br />

1.20 ± 0.01 f<br />

3.60 ± 0.80 c<strong>de</strong>f<br />

13.4 ± 1.80 a<br />

4.50 ± 1.70 c<strong>de</strong><br />

1.00 ± 0.10 f<br />

2.10 ± 1.92 <strong>de</strong>f<br />

5.40 ± 2.00 c<br />

C. Fraction 125-250 µm<br />

Station Zn Pb Cd Cu<br />

120 28.7 ± 7.90 c<br />

130 106 ± 7.90 a<br />

140 15.6 ± 4.00 <strong>de</strong>f<br />

150 5.80 ± 0.70 f<br />

230 14.3 ± 1.70 ef<br />

250 15.0 ± 0.90 <strong>de</strong>f<br />

330 8.30 ± 0.80 f<br />

700 34.0 ± 5.05 c<br />

710 11.4 ± 2.00 f<br />

Breskens 27.8 ± 9.90 cd<br />

Knokke 5.80 ± 1.49 f<br />

Nieuwpoort 11.4 ± 0.90 f<br />

Oosten<strong>de</strong> 7.40 ± 0.60 f<br />

Perkpol<strong>de</strong>r 35.0 ± 5.70 c<br />

S01 63.1 ± 20.1 b<br />

Scharendijke 26.6 ± 4.00 c<strong>de</strong><br />

Terneuzen 8.90 ± 0.90 f<br />

Wendu<strong>in</strong>e 6.00 ± 0.79 f<br />

ZG03 12.8 ± 2.00 f<br />

23.4 ± 4.50 cd<br />

64.9 ± 3.30 a<br />

15.8 ± 7.50 <strong>de</strong>f<br />

3.80 ± 0.80 g<br />

4.30 ± 0.40 g<br />

8.70 ± 0.60 efg<br />

5.00 ± 0.20 g<br />

25.9 ± 3.43 c<br />

7.50 ± 1.50 fg<br />

14.0 ± 4.00 ef<br />

3.30 ± 0.44 g<br />

7.40 ± 0.70 fg<br />

4.00 ± 0.20 g<br />

17.0 ± 2.00 <strong>de</strong><br />

43.1 ± 14.3 b<br />

7.00 ± 1.00 fg<br />

5.00 ± 0.01 g<br />

4.80 ± 1.11 g<br />

9.70 ± 0.70 efg<br />

0.60 ± 0.15 c<br />

2.50 ± 0.17 a<br />

0.30 ± 0.07 <strong>de</strong><br />

0.10 ± 0.01 e<br />

0.30 ± 0.01 <strong>de</strong><br />

0.30 ± 0.02 <strong>de</strong><br />

0.30 ± 0.01 e<br />

1.03 ± 0.15 b<br />

0.20 ± 0.04 e<br />

0.47 ± 0.12 cd<br />

0.13 ± 0.01 e<br />

0.30 ± 0.02 <strong>de</strong><br />

0.20 ± 0.01 e<br />

0.46 ± 0.07 cd<br />

1.20 ± 0.28 b<br />

0.20 ± 0.03 e<br />

0.23 ± 0.02 e<br />

0.16 ± 0.01 e<br />

0.30 ± 0.03 <strong>de</strong><br />

3.20 ± 1.10 d<br />

13.7 ± 1.00 a<br />

1.10 ± 0.50 ef<br />

0.40 ± 0.10 f<br />

0.60 ± 0.01 f<br />

0.90 ± 0.10 ef<br />

0.70 ± 0.10 f<br />

5.60 ± 1.16 bc<br />

0.90 ± 0.30 f<br />

2.80 ± 1.30 <strong>de</strong><br />

0.30 ± 0.05 f<br />

0.60 ± 0.10 f<br />

0.70 ± 0.40 f<br />

3.80 ± 0.90 cd<br />

7.40 ± 3.10 b<br />

2.30 ± 0.50 <strong>de</strong>f<br />

0.60 ± 0.10 f<br />

0.40 ± 0.03 f<br />

1.10 ± 0.10 ef<br />

D. Fraction 250-500 µm<br />

Station Zn Pb Cd Cu<br />

120 37.0 ± 11.3 cd<br />

130 120 ± 13.2 ab<br />

140 26.7 ± 12.8 cd<br />

150 9.0 ± 1.70 cd<br />

230 13.0 ± 2.60 cd<br />

250 11.8 ± 1.40 cd<br />

330 7.80 ± 1.10 cd<br />

26.0 ± 7.10 <strong>de</strong><br />

66.6 ± 4.90 a<br />

15.5 ± 7.50 efg<br />

6.70 ± 3.30 gh<br />

4.20 ± 1.40 h<br />

6.90 ± 0.70 gh<br />

7.40 ± 5.30 h<br />

0.80 ± 0.21 c<strong>de</strong><br />

2.10 ± 0.30 a<br />

0.70 ± 0.47 c<strong>de</strong>f<br />

0.20 ± 0.03 gh<br />

0.30 ± 0.05 gh<br />

0.10 ± 0.03 h<br />

0.30 ± 0.02 gh<br />

4.70 ± 1.70 d<br />

16.3 ± 2.30 b<br />

2.40 ± 2.00 d<br />

0.70 ± 0.20 d<br />

0.90 ± 0.20 d<br />

0.70 ± 0.10 d<br />

0.70 ± 0.30 d


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

700 36.1 ± 8.65 cd<br />

710 18.1 ± 5.30 cd<br />

Breskens 95.1 ± 45.0 b<br />

Knokke 3.50 ± 0.85 d<br />

Nieuwpoort 19.4 ± 1.50 cd<br />

Oosten<strong>de</strong> 6.30 ± 0.70 d<br />

Perkpol<strong>de</strong>r 149 ± 51.1 a<br />

S01 34.9 ± 5.00 cd<br />

Scharendijke 39.4 ± 15.5 c<br />

Terneuzen 20.3 ± 9.40 cd<br />

Wendu<strong>in</strong>e 4.70 ± 0.85 d<br />

ZG03 31.2 ± 6.30 cd<br />

34.5 ± 5.61 cd<br />

10.4 ± 2.90 gh<br />

45.0 ± 15.0 bc<br />

3.30 ± 0.24 h<br />

16.1 ± 1.80 efg<br />

5.30.0 ± 1.60 gh<br />

50.0 ± 10.0 b<br />

22.8 ± 4.50 <strong>de</strong>f<br />

15.0 ± 6.00 efg<br />

11.0 ± 6.00 fg<br />

4.50 ± 0.41 gh<br />

22.9 ± 3.80 <strong>de</strong><br />

129<br />

1.10 ± 0.25 c<br />

6.80 ± 0.89 cd<br />

0.30 ± 0.08 fgh<br />

1.30 ± 0.80 d<br />

1.12 ± 0.41 c<br />

13.2 ± 7.40 bc<br />

0.13 ± 0.01 h<br />

0.30 ± 0.02 d<br />

0.50 ± 0.04 <strong>de</strong>fg<br />

1.50 ± 0.20 d<br />

0.20 ± 0.01 gh<br />

0.40 ± 0.01 d<br />

1.62 ± 0.26b 27.2 ± 14.9 a<br />

0.90 ± 0.07 cd<br />

2.90 ± 0.70 d<br />

0.34 ± 0.16 efgh<br />

4.50 ± 2.20 cd<br />

0.47 ± 0.16 <strong>de</strong>fgh<br />

0.18 ± 0.02 gh<br />

0.80 ± 0.15 c<strong>de</strong>f<br />

2.20 ± 1.30 d<br />

0.30 ± 0.03 d<br />

3.60 ± 1.00 d<br />

E. Fraction 500-1000 µm<br />

Station Zn Pb Cd Cu<br />

120 40.1 ± 10.9 bcd<br />

42.3 ± 4.30 bc<br />

1.20 ± 0.22 a<br />

6.20 ± 1.60 bcd<br />

130 99.0 ± 17.2 ab<br />

85.0 ± 34.5 ab<br />

1.20 ± 0.32 a<br />

13.4 ± 3.00 b<br />

140 53.3 ± 49.9 bcd<br />

28.7 ± 24.5 bc<br />

0.88 ± 0.81 ab<br />

7.10 ± 6.10 <strong>de</strong>fgh<br />

150 65.7 ± 17.5 abc<br />

34.6 ± 7.90 bc<br />

1.30 ± 0.32 a<br />

9.30 ± 2.90 bc<br />

230 28.2 ± 3.60 cd<br />

15.8 ± 3.20 c<br />

0.60 ± 0.09 ab<br />

2.80 ± 0.80 efgh<br />

250 31.9 ± 5.50 bcd<br />

20.7 ± 1.60 c<br />

0.62 ± 0.06 ab<br />

3.10 ± 0.75 <strong>de</strong>fgh<br />

330 25.6 ± 5.10 cd<br />

24.5 ± 2.60 bc<br />

1.30 ± 0.24 a<br />

1.80 ± 0.30 fgh<br />

700 29.8 ± 14.3 bcd<br />

37.0 ± 8.55 bc<br />

0.88 ± 0.16 ab<br />

5.70 ± 1.84 c<strong>de</strong>f<br />

710 37.8 ± 8.10 bcd<br />

32.3 ± 3.20 bc<br />

1.20 ± 0.12 a<br />

5.40 ± 1.40 c<strong>de</strong>fg<br />

Breskens 53.3 ± 26.8 d<br />

105 ± 104 a<br />

0.75 ± 0.41 b<br />

7.20 ± 2.40 c<strong>de</strong><br />

Knokke 9.80 ± 0.82 cd<br />

15.2 ± 0.78 c<br />

0.58 ± 0.04 ab<br />

1.00 ± 0.07 gh<br />

Nieuwpoort 25.8 ± 17.2 cd<br />

23.7 ± 4.20 bc<br />

0.87 ± 0.17 ab<br />

1.80 ± 0.50 fgh<br />

Oosten<strong>de</strong> 16.0 ± 1.30 cd<br />

26.2 ± 2.60 bc<br />

0.98 ± 0.09 a<br />

1.90 ± 0.27 fgh<br />

Perkpol<strong>de</strong>r 104 ± 29.7 a<br />

38.0 ± 7.00 bc<br />

1.12 ± 0.21 a<br />

18.6 ± 5.50 a<br />

S01 65.3 ± 33.4 abc<br />

45.2 ± 24.4 bc<br />

1.40 ± 0.32 a<br />

7.50 ± 3.10 cd<br />

Scharendijke 34.8 ± 15.7 24.0 ± 16.0 0.27 ± 0.10 21.3 ± 45.7<br />

Terneuzen 2.10 ± 19.6 cd<br />

28.0 ± 8.00 c<br />

0.59 ± 0.07 ab<br />

1.80 ± 0.90 h<br />

Wendu<strong>in</strong>e 14.3 ± 1.39 cd<br />

23.1 ± 1.01 bc<br />

1.04 ± 0.08 a<br />

1.30 ± 0.05 gh<br />

ZG03 28.2 ± 9.50 cd<br />

31.7 ± 4.4 bc<br />

1.30 ± 0.16 a<br />

3.80 ± 1.40 <strong>de</strong>fgh<br />

Table 23 Correlation coefficients (r) between metal concentrations measured <strong>in</strong> <strong>the</strong> different gra<strong>in</strong>-size fractions<br />

of <strong>the</strong> sediments (pcorrelation always < 0.0001 except when ns -non significant correlation- is <strong>in</strong>dicated)<br />

A. Fraction 500-1000 µm<br />

Pb Cd Cu<br />

Zn 0.66 0.51 0.89<br />

Pb 0.62 0.79<br />

Cd 0.59


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

B. Fraction 250-500 µm<br />

C. Fraction 125-250 µm<br />

D. Fraction 63-125 µm<br />

E. Fraction


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

followed by <strong>the</strong> multiple comparison test of Tukey. Results of <strong>the</strong> 1-way ANOVAs showed<br />

significant differences <strong>in</strong> metal concentrations among stations for each <strong>in</strong>vestigated element<br />

and each sediment gra<strong>in</strong>-size fraction (Table 22). Though <strong>the</strong> contam<strong>in</strong>ation level of several<br />

stations was not well contrasted, some stations (viz. Perkpol<strong>de</strong>r, SO1 and 130) generally<br />

exhibited significantly higher metal concentrations than <strong>the</strong> o<strong>the</strong>r ones, whereas o<strong>the</strong>r stations<br />

(Knokke, Terneuzen, Wendu<strong>in</strong>e, Oosten<strong>de</strong> and Nieuwpoort) were generally ranked among <strong>the</strong><br />

less contam<strong>in</strong>ated ones.<br />

When data was analyzed among stations located along transects parallel or perpendicular to<br />

<strong>the</strong> coast (see Fig. 34), a better discrim<strong>in</strong>ation between stations was obta<strong>in</strong>ed. In Transect I,<br />

Perkpol<strong>de</strong>r and Breskens exhibited significantly higher concentrations of Cu (gra<strong>in</strong>-size 500-<br />

1000µm), of Cd (gra<strong>in</strong>-size 250-500µm) and of Zn (gra<strong>in</strong>-size 250-500µm). Transect II<br />

showed 130 and S01 were significanly more contam<strong>in</strong>ated than o<strong>the</strong>r stations (Cu: 250-<br />

500µm, 125-250µm and 63-125µm; Cd: 250-500µm and 125-250µm; Pb: all except <strong>the</strong><br />

f<strong>in</strong>est fraction; Zn: all except 500-1000µm). ZG03 was <strong>the</strong> most contam<strong>in</strong>ated station of<br />

Transect III, show<strong>in</strong>g <strong>the</strong> highest concentrations <strong>in</strong> Cu (250-500µm and


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

Table 25 Metal concentrations (mean ± sd; mg g -1 dry wt, n = 5 pools of 3) <strong>in</strong> <strong>the</strong> different body compartments of<br />

<strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong>. Superscripts <strong>in</strong>dicate rank<strong>in</strong>g of stations accord<strong>in</strong>g to <strong>de</strong>creas<strong>in</strong>g concentrations of a<br />

given metal (a>b>c>…). Stations with concentrations shar<strong>in</strong>g a common superscript are not significantly<br />

different from each o<strong>the</strong>r (multiple comparison test of Tukey; a = 0.05)<br />

A. Oral body wall<br />

Station Zn Pb Cd Cu<br />

230 38.1 ± 25.8 c<br />

250 86.9 ± 19.9 ab<br />

330 59.1 ± 8.7 bc<br />

710 73.3 ± 13.1 abc<br />

Breskens 98.5 ± 13.5 a<br />

Knokke 73.1 ± 5.9 abc<br />

Nieuwpoort 44.4 ± 23.3 c<br />

Oosten<strong>de</strong> 68.9 ± 16.1 abc<br />

Scharendijke 54.6 ± 19.2 bc<br />

Wendu<strong>in</strong>e 82.2 ± 13.0 ab<br />

B. Aboral body wall<br />

0.85 ± 0.63 bc<br />

1.47 ± 0.44 ab<br />

2.11 ± 0.97 a<br />

1.62 ± 0.07 ab<br />

1.77 ± 0.43 ab<br />

2.00 ± 0.34 ab<br />

0.16 ± 0.02 c<br />

1.77 ± 0.18 ab<br />

0.46 ± 0.58 c<br />

1.37 ± 0.13 ab<br />

132<br />

0.10 ± 0.06 c<strong>de</strong><br />

0.16 ± 0.04 cd<br />

0.21 ± 0.02 bc<br />

0.17 ± 0.03 bcd<br />

0.31 ± 0.06 a<br />

0.25 ± 0.02 ab<br />

0.03 ± 0.02 e<br />

0.19 ± 0.01 bc<br />

0.09 ± 0.08 <strong>de</strong><br />

0.17 ± 0.02 cd<br />

0.38 ± 0.22 abc<br />

0.51 ± 0.19 abc<br />

0.91 ± 0.14 a<br />

0.42 ± 0.06 bcd<br />

0.55 ± 0.30 abc<br />

0.75 ± 0.14 ab<br />

0.02 ± 0.00 e<br />

0.25 ± 0.24 <strong>de</strong><br />

0.07 ± 0.11 e<br />

0.12 ± 0.09 <strong>de</strong><br />

Station Zn Pb Cd Cu<br />

230 109 ± 65.8 d<br />

250 156 ± 34.7 ab<br />

330 91 ± 24.6 e<br />

710 189 ± 35.5 ab<br />

Breskens 161 ± 28.7 ab<br />

Knokke 135 ± 37.8 b<br />

Nieuwpoort 127 ± 26.5 b<br />

Oosten<strong>de</strong> 120 ± 26.2 b<br />

Scharendijke 210 ± 50.0 a<br />

Wendu<strong>in</strong>e 108 ± 21.1 c<br />

C. Pyloric caeca<br />

0.36 ± 0.19 bc<br />

0.26 ± 0.03 ab<br />

1.15 ± 0.16 c<br />

0.52 ± 0.12 bc<br />

0.91 ± 0.13 abc<br />

1.16 ± 0.53 ab<br />

0.52 ± 0.28 bc<br />

0.92 ± 0.72 abc<br />

0.73 ± 0.20 abc<br />

1.43 ± 0.32 a<br />

0.22 ± 0.11 bc<br />

0.27 ± 0.06 bc<br />

0.31 ± 0.10 abc<br />

0.28 ± 0.06 bc<br />

0.47 ± 0.10 ab<br />

0.51 ± 0.19 a<br />

0.25 ± 0.08 c<br />

0.26 ± 0.03 c<br />

0.25 ± 0.06 c<br />

0.27 ± 0.05 bc<br />

0.54 ± 0.67 c<br />

0.04 ± 0.00 c<br />

0.04 ± 0.00 c<br />

1.45 ± 0.62 a<br />

0.02 ± 0.00 c<br />

0.13 ± 0.17 c<br />

0.03 ± 0.01 c<br />

0.03 ± 0.01 c<br />

0.03 ± 0.01 c<br />

0.26 ± 0.19 b<br />

Location Zn Pb Cd Cu<br />

230 53.0 ± 64.5 b<br />

250 45.1 ± 8.80 b<br />

330 58.3 ± 9.30 b<br />

710 149 ± 12.4 ab<br />

Breskens 89.4 ± 10.6 b<br />

Knokke 73.1 ± 4.90 b<br />

Nieuwpoort 57.2 ± 12.0 b<br />

Oosten<strong>de</strong> 119 ± 27.9 b<br />

Scharendijke 282 ± 186 a<br />

Wendu<strong>in</strong>e 88 ± 9.3 b<br />

0.95 ± 0.73 abc<br />

1.27 ± 0.25 abc<br />

1.19 ± 0.23 bc<br />

0.63 ± 0.16 c<br />

2.03 ± 0.32 a<br />

1.51 ± 0.13 ab<br />

1.16 ± 0.70 bc<br />

1.18 ± 0.10 bc<br />

1.22 ± 0.58 bc<br />

1.47 ± 0.16 abc<br />

1.31 ± 1.15 ab<br />

0.83 ± 0.52 b<br />

0.60 ± 0.23 b<br />

0.92 ± 0.25 ab<br />

1.06 ± 0.64 ab<br />

2.36 ± 1.40 a<br />

1.11 ± 0.38 ab<br />

1.62 ± 0.78 ab<br />

0.56 ± 0.18 b<br />

0.62 ± 0.13 b<br />

5.12 ± 4.15 c<br />

5.45 ± 0.64 c<br />

19.0 ± 9.70 bc<br />

7.63 ± 3.37 c<br />

30.3 ± 17.6 b<br />

16.4 ± 2.97 bc<br />

9.00 ± 1.44 c<br />

11.6 ± 2.18 c<br />

51.1 ± 14.4 a<br />

11.8 ± 0.75 bc


D. Gut<br />

Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

Location Zn Pb Cd Cu<br />

230 37.6 ± 37.5 c<br />

250 79.9 ± 4.60 c<br />

330 70.2 ± 8.60 c<br />

710 68.8 ± 2.70 c<br />

Breskens 72.9 ± 6.30 c<br />

Knokke 67.5 ± 4.60 c<br />

Nieuwpoort 59.3 ± 1.80 c<br />

Oosten<strong>de</strong> 58.6 ± 30.1 c<br />

Scharendijke 81.7 ± 16.4 c<br />

Wendu<strong>in</strong>e 70.9 ± 26.0 c<br />

E. Gonads<br />

0.92 ± 0.33 c<br />

1.09 ± 0.75 c<br />

2.11 ± 2.09 c<br />

1.15 ± 0.66 c<br />

1.36 ± 0.24 c<br />

0.92 ± 0.09 c<br />

1.08 ± 0.50 c<br />

1.20 ± 0.46 c<br />

1.86 ± 2.00 c<br />

1.68 ± 0.76 c<br />

133<br />

0.19 ± 0.08 c<br />

0.21 ± 0.08 c<br />

0.24 ± 0.13 c<br />

0.22 ± 0.08 c<br />

0.26 ± 0.09 c<br />

0.19 ± 0.07 c<br />

0.19 ± 0.04 c<br />

0.16 ± 0.05 c<br />

0.12 ± 0.02 c<br />

0.19 ± 0.04 c<br />

3.76 ± 3.19 ab<br />

4.92 ± 1.06 ab<br />

4.84 ± 1.72 ab<br />

4.25 ± 1.67 ab<br />

4.92 ± 2.18 ab<br />

2.33 ± 0.28 b<br />

7.11 ± 2.70 a<br />

2.72 ± 1.22 ab<br />

6.52 ± 3.48 a<br />

3.52 ± 1.65 ab<br />

Location Zn Pb Cd Cu<br />

230 37.6 ± 15.9 c<br />

250 55.0 ± 16.7 c<br />

330 37.2 ± 25.9 c<br />

710 23.0 ± 25.3 c<br />

Breskens 32.3 ± 9.1 c<br />

Knokke 42.4 ± 29.8 c<br />

Nieuwpoort 56.7 ± 7.3 c<br />

Oosten<strong>de</strong> 39.7 ± 25.7 c<br />

Scharendijke 78.1 ± 16.7 c<br />

Wendu<strong>in</strong>e 40.4 ± 17.7 c<br />

0.59 ± 0.37 c<br />

1.02 ± 0.03 c<br />

1.44 ± 1.36 c<br />

0.96 ± 0.10 c<br />

0.58 ± 0.06 c<br />

1.48 ± 0.48 c<br />

1.01 ± 0.45 c<br />

0.76 ± 0.20 c<br />

1.75 ± 1.87 c<br />

0.88 ± 0.13 c<br />

0.09 ± 0.07 ab<br />

0.06 ± 0.01 b<br />

0.12 ± 0.08 ab<br />

0.05 ± 0.01 b<br />

0.11 ± 0.02 ab<br />

0.08 ± 0.04 b<br />

0.18 ± 0.04 a<br />

0.11 ± 0.03 ab<br />

0.12 ± 0.01 ab<br />

0.11 ± 0.04 ab<br />

0.74 ± 0.73 b<br />

1.25 ± 0.21 b<br />

0.90 ± 1.11 b<br />

1.52 ± 1.19 b<br />

2.04 ± 0.58 b<br />

2.07 ± 0.96 b<br />

6.66 ± 2.31 a<br />

1.78 ± 0.85 b<br />

6.18 ± 3.24 a<br />

1.93 ± 0.71 b<br />

Table 26. Correlation coefficients (r) between metal concentrations measured <strong>in</strong> <strong>the</strong> different sea star body<br />

compartments (p correlation always


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

Data were analyzed us<strong>in</strong>g 2-way ANOVA (Table 27). These analyses showed that metal<br />

concentrations differed significantly among stations and among body compartments for all<br />

<strong>in</strong>vestigated elements.<br />

Table 27. Variability (%) <strong>in</strong> metal concentrations measured <strong>in</strong> <strong>Asterias</strong> <strong>rubens</strong> expla<strong>in</strong>ed by <strong>the</strong> factors<br />

consi<strong>de</strong>red (station, body compartment) and <strong>the</strong>ir <strong>in</strong>teraction.<br />

Factor Zn Pb Cd Cu<br />

Station 15.5 10.1 6.2 11.1<br />

Body compartment 29.8 7.8 50.1 39.8<br />

Station x Body compartment 26.1 22.8 18.2 35.0<br />

Residual 28.6 59.3 25.4 14.1<br />

In particular, <strong>the</strong> multiple comparison test of Tukey (data not shown) <strong>in</strong>dicated that Cd and<br />

Cu were always more concentrated <strong>in</strong> pyloric caeca, while Zn ten<strong>de</strong>d to be preferentially<br />

concentrated <strong>in</strong> <strong>the</strong> aboral body wall; no clear trends was found for Pb. Two-way ANOVA<br />

also showed that <strong>the</strong> two factors consi<strong>de</strong>red (station sampled and body compartment) and<br />

<strong>the</strong>ir <strong>in</strong>teraction were responsible for 41-86% of <strong>the</strong> variability <strong>in</strong> metal concentrations<br />

measured <strong>in</strong> asteroids. Except for Pb, <strong>the</strong> largest part of variation was always associated to <strong>the</strong><br />

"body compartment" factor. Interaction between "station" and "body compartment" factors<br />

was always significant and accounted for an important part of <strong>the</strong> observed variablity (18-<br />

35%), <strong>in</strong>dicat<strong>in</strong>g that differences <strong>in</strong> station contam<strong>in</strong>ation varied accord<strong>in</strong>g to <strong>the</strong> consi<strong>de</strong>red<br />

body compartment. Therefore, data had to be re-analyzed us<strong>in</strong>g 1-way ANOVA, consi<strong>de</strong>r<strong>in</strong>g<br />

separately each body compartment. The latter analyses showed that, except for Cd, Pb and Zn<br />

<strong>in</strong> <strong>the</strong> digestive tract and for Pb and Zn <strong>in</strong> <strong>the</strong> gonads, significant differences <strong>in</strong> metal<br />

concentrations occurred among stations (p ANOVAalways


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

significant correlations were found between metal concentrations measured <strong>in</strong> sediments and<br />

<strong>in</strong> asteroid body compartments (oral and aboral body walls and pyloric caeca). However,<br />

correlation coefficients were generally low (maximum value of r = 0.74).<br />

Station rank<strong>in</strong>gs us<strong>in</strong>g sediment and asteroid data were compared us<strong>in</strong>g Kendall's coefficient<br />

of concordance. Results of <strong>the</strong>se tests did not show any significant concordance. This lack of<br />

rank<strong>in</strong>g concordance was probably ma<strong>in</strong>ly due to several <strong>in</strong>termediary-contam<strong>in</strong>ated and<br />

poorly contrasted stations whose rank<strong>in</strong>g was quite variable.<br />

DISCUSSION<br />

Determ<strong>in</strong>ation of <strong>the</strong> gra<strong>in</strong>-size distribution <strong>in</strong> collected sediments showed that <strong>the</strong> fraction<br />

125-250 µm (f<strong>in</strong>e sand) was predom<strong>in</strong>ant <strong>in</strong> most of <strong>the</strong> consi<strong>de</strong>red stations. Its <strong>de</strong>gree of<br />

predom<strong>in</strong>ance varies significantly from one station to ano<strong>the</strong>r, suggest<strong>in</strong>g that local<br />

hydrodynamics is variable.<br />

PCB analyses <strong>in</strong> bulk sediments showed that <strong>the</strong> lowest concentration levels were found <strong>in</strong><br />

<strong>the</strong> offshore stations (e.g. stations 330 and 250) while <strong>the</strong> highest levels were measured <strong>in</strong><br />

stations un<strong>de</strong>r direct <strong>in</strong>fluence of <strong>the</strong> Scheldt river (Terneuzen, Perkpol<strong>de</strong>r, 130, S01). These<br />

results are <strong>in</strong> agreement with those found <strong>in</strong> o<strong>the</strong>r studies (Laane et al. 1999) <strong>in</strong> <strong>the</strong> Dutch<br />

coastal zone. Station 130 is localized where <strong>the</strong> Scheldt gyre meets North-Atlantic currents,<br />

giv<strong>in</strong>g place to locally favorable conditions for <strong>the</strong> sedimentation of heavily contam<strong>in</strong>ated<br />

particles swepped by <strong>the</strong> Scheldt. Stations Perkpol<strong>de</strong>r, Terneuzen and S01 are situated <strong>in</strong> <strong>the</strong><br />

Scheldt and consequently receive highly contam<strong>in</strong>ated flows. Consi<strong>de</strong>r<strong>in</strong>g PCB congeners<br />

separately, #101 was <strong>the</strong> most discrim<strong>in</strong>at<strong>in</strong>g (although not <strong>the</strong> most abundant). As found <strong>in</strong><br />

previous studies (e.g. Stebb<strong>in</strong>g et al. 1992), <strong>the</strong> most abundant congeners <strong>in</strong> sediments were<br />

#153 and #138.<br />

The use of transects (parallel or perpendicular to <strong>the</strong> coast, Fig. 34) brought a more<br />

discrim<strong>in</strong>ative approach, as a smaller number of stations were consi<strong>de</strong>red. This helped <strong>in</strong><br />

enlighten<strong>in</strong>g more subtle differences between contam<strong>in</strong>ation levels <strong>in</strong> <strong>the</strong> sampl<strong>in</strong>g stations.<br />

Perpendicular transects (Transects IV, V, and VI) were particularly useful <strong>in</strong> show<strong>in</strong>g <strong>the</strong><br />

contam<strong>in</strong>ation gradient direction: <strong>in</strong>termediary stations were always more contam<strong>in</strong>ated.<br />

Highest PCB concentrations were measured along <strong>the</strong> halfway transect (Transects II), which<br />

<strong>in</strong>clu<strong>de</strong>s stations un<strong>de</strong>r direct <strong>in</strong>fluence of <strong>the</strong> Scheldt (Lizen 1990, Bayens 1992). This shows<br />

that PCB contam<strong>in</strong>ation from <strong>the</strong> Scheldt spreads out sou<strong>the</strong>rly, along <strong>the</strong> coast.<br />

PCB concentrations measured <strong>in</strong> asteroids were comparable to those measured <strong>in</strong> previous<br />

studies (Everaarts et al. 1998, <strong>de</strong>n Besten et al. 2001). PCBs were distributed selectively<br />

135


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

between body compartments of <strong>the</strong> sea stars. Generally, pyloric caeca exhibited <strong>the</strong> highest<br />

concentrations. No significant difference was found between contam<strong>in</strong>ant levels <strong>in</strong> aboral and<br />

oral body walls although only <strong>the</strong> oral body wall is <strong>in</strong> direct contact with sediments.<br />

Sampl<strong>in</strong>g sites were ranked accord<strong>in</strong>g to <strong>the</strong>ir PCB concentration level <strong>in</strong> sediments and <strong>in</strong><br />

asteroids. No rank concordance was found, probably because stations such as Knokke, 330 or<br />

Wendu<strong>in</strong>e presented surpris<strong>in</strong>g differences between relative contam<strong>in</strong>ation of asteroids and<br />

sediments. These three stations were <strong>the</strong> only ones where fraction 250-500 µm was dom<strong>in</strong>ant<br />

(toge<strong>the</strong>r with station S01, where no sea stars were found). The gra<strong>in</strong>-size distribution varied<br />

from one station to ano<strong>the</strong>r and bioavailability of contam<strong>in</strong>ants is known to vary accord<strong>in</strong>g to<br />

gra<strong>in</strong>-size (Luoma & Carter 1991). Therefore <strong>the</strong> relative importance of <strong>the</strong>se fractions might<br />

<strong>in</strong>fluence <strong>the</strong> exposure of asteroids to <strong>the</strong> contam<strong>in</strong>ants. A significant correlation (r=0.85)<br />

was found between asteroid concentration ratios (CRs) and <strong>the</strong> percentage of <strong>the</strong> 250-500 µm<br />

gra<strong>in</strong> size fraction <strong>in</strong> sediments. This suggests that contam<strong>in</strong>ants associated to this gra<strong>in</strong>-size<br />

fraction are more readily available for asteroids.<br />

Ano<strong>the</strong>r cause for <strong>the</strong> lack of concordance between rank<strong>in</strong>g of stations obta<strong>in</strong>ed via sediment<br />

and asteroid analysis could be that asteroid specimens were found only <strong>in</strong> some sampl<strong>in</strong>g<br />

stations, and particularly that none were found along Transect II, where sediments were <strong>the</strong><br />

most contam<strong>in</strong>ated. The sediment type (muddy) along this transect is not appropriate for<br />

asteroid populations (Hayward & Ryland 1990). The fact that sea stars were found <strong>in</strong> stations<br />

where sediments contam<strong>in</strong>ation level was not very well contrasted might also have affected<br />

statistical tests (i.e. rank concordance). O<strong>the</strong>r authors have encountered <strong>the</strong> same problem<br />

(e.g. Guns et al. 1999).<br />

Metal analysis <strong>in</strong> <strong>the</strong> different gra<strong>in</strong>-size fractions of <strong>the</strong> sediments showed selective<br />

distribution. The f<strong>in</strong>est fraction (


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

Atlantic currents. A good explanation for its high contam<strong>in</strong>ation by heavy metals is that this<br />

station is <strong>the</strong> most sal<strong>in</strong>e consi<strong>de</strong>red <strong>in</strong> <strong>the</strong> Scheldt. In<strong>de</strong>ed, it is a well <strong>de</strong>scribed phenomena<br />

that organic matter tends to flocculate when sal<strong>in</strong>ity <strong>in</strong>creases and that metals have a ten<strong>de</strong>ncy<br />

to complex with suspen<strong>de</strong>d organic matter (NSTF 1993a, Verlaan et al. 1998). Station 130 is<br />

located <strong>in</strong> a low-energy area, where <strong>the</strong> Scheldt gyre contacts <strong>the</strong> Northwards Atlantic<br />

currents: <strong>the</strong>ir <strong>in</strong>teraction leads to local conditions allow<strong>in</strong>g sedimentation of very f<strong>in</strong>e<br />

particles swept by <strong>the</strong> Scheldt (Lizen 1990). Coastal stations, especially Knokke, Oosten<strong>de</strong><br />

and Wendu<strong>in</strong>e exhibit relatively low metal concentrations: <strong>the</strong>y are probably partly protected<br />

from <strong>the</strong> Scheldt particular contribution.<br />

As <strong>in</strong> <strong>the</strong> case of PCBs, <strong>the</strong> use of transects for metal analysis enlightened more subtle<br />

differences between contam<strong>in</strong>ation levels <strong>in</strong> <strong>the</strong> sampl<strong>in</strong>g stations. As for PCBs, <strong>the</strong> highest<br />

metal concentrations were measured along Transect II.<br />

The metal measurements <strong>in</strong> asteroids showed that <strong>in</strong>vestigated elements are selectively<br />

distributed among body compartments. Cu and Cd are more concentrated <strong>in</strong> <strong>the</strong> pyloric caeca,<br />

Zn is more efficiently concentrated <strong>in</strong> <strong>the</strong> aboral body wall, while Pb does not seem to have a<br />

preferential "target" compartment. The latter observation was somehow unexpected. In<strong>de</strong>ed,<br />

data available <strong>in</strong> <strong>the</strong> literature generally report that Pb tends to be more efficiently<br />

<strong>in</strong>corporated <strong>in</strong> calcitic skeletons (Kersten & Kroncke 1991, Temara et al. 1997b, 1998b).<br />

Differences <strong>in</strong> metal contam<strong>in</strong>ation among stations were found <strong>in</strong> each asteroid body<br />

compartment. Among <strong>the</strong>se compartments, three of <strong>the</strong>m (pyloric caeca, oral body wall, and<br />

aboral body wall) showed better discrim<strong>in</strong>ation among sampl<strong>in</strong>g stations. Station rank<strong>in</strong>g was<br />

obta<strong>in</strong>ed from sediment and tissue analyses. As <strong>in</strong> <strong>the</strong> case of PCBs, no concordance was<br />

found between rank<strong>in</strong>g obta<strong>in</strong>ed for sediments and asteroids, enlighten<strong>in</strong>g that us<strong>in</strong>g a<br />

physico-chemical approach (sediments) might not be sufficient to characterize a<br />

contam<strong>in</strong>ation as it does not take <strong>in</strong>to account bioavailability.<br />

Significant correlations were found between metal concentrations measured <strong>in</strong> each sediment<br />

gra<strong>in</strong>-size and <strong>in</strong> each asteroid body compartment. The highest correlations were found for<br />

gra<strong>in</strong>-size fraction


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

body compartments. These two sources coexist: some authors have shown that A. <strong>rubens</strong><br />

concentrates heavy metals from seawater (<strong>de</strong>n Besten et al. 1990, Temara et al. 1996, 1998a,<br />

Warnau et al. 1999), and translocation processes are well-documented <strong>in</strong> ech<strong>in</strong>o<strong>de</strong>rms<br />

(Temara et al. 1996, 1998b, Warnau et al. 1995c, 1996b, 1999).<br />

Us<strong>in</strong>g <strong>Asterias</strong> <strong>rubens</strong> <strong>in</strong> this study allowed us to take <strong>in</strong>to account <strong>the</strong> multiple contam<strong>in</strong>ation<br />

sources and <strong>the</strong> variation of bioavailability of metals <strong>de</strong>pend<strong>in</strong>g on sediments. Investigat<strong>in</strong>g<br />

biota br<strong>in</strong>gs complementary <strong>in</strong>formation that is necessary to tackle <strong>the</strong> ecological<br />

consequences of a contam<strong>in</strong>ation. A. <strong>rubens</strong> helped <strong>in</strong> putt<strong>in</strong>g forward a group of more<br />

contam<strong>in</strong>ated stations, different from that which would have resulted from a study limited to<br />

sediments analysis. Analysis of biota and sediments is however more <strong>de</strong>mand<strong>in</strong>g than <strong>the</strong><br />

latter approach alone because it implies f<strong>in</strong>d<strong>in</strong>g organisms. This constra<strong>in</strong>t can be solved -for<br />

example- by us<strong>in</strong>g active monitor<strong>in</strong>g or bioassays (<strong>de</strong>n Besten et al. 2001).<br />

In sediments, concentrations of Zn, Pb, Cd and Cu are <strong>in</strong> <strong>the</strong> range of concentrations<br />

generally reported (e.g. Bayne et al. 1988, Everaarts & Fischer 1989, Stebb<strong>in</strong>g et al. 1992,<br />

NSTF 1993a,b). However, Cd concentrations along Transect II are <strong>in</strong> <strong>the</strong> superior part of <strong>the</strong><br />

ranges generally reported <strong>in</strong> sediments from <strong>the</strong> North <strong>Sea</strong>. This transect can <strong>the</strong>refore be<br />

consi<strong>de</strong>red as relatively contam<strong>in</strong>ated, at least by Cd. Concentrations measured <strong>in</strong> <strong>the</strong><br />

asteroids are also comprised <strong>in</strong> <strong>the</strong> range of concentrations found <strong>in</strong> literature for <strong>the</strong> same<br />

species (Riley & Segar 1970, Bryan 1984, Everaarts & Fischer 1989, Temara et al. 1997).<br />

Sampl<strong>in</strong>g stations where asteroids were found are not particularly contam<strong>in</strong>ated by heavy<br />

metals, imply<strong>in</strong>g a certa<strong>in</strong> weaken<strong>in</strong>g of statistical tests (no concordance between sediment<br />

and asteroid contam<strong>in</strong>ation levels).<br />

CONCLUSIONS<br />

Variations <strong>in</strong> contam<strong>in</strong>ant levels <strong>in</strong> sediments from <strong>the</strong> Sou<strong>the</strong>rn Bight of <strong>the</strong> North <strong>Sea</strong> are<br />

ma<strong>in</strong>ly expla<strong>in</strong>ed by hydrodynamic factors: stations with low residual currents are often <strong>the</strong><br />

most contam<strong>in</strong>ated ones. Sediments are a source of contam<strong>in</strong>ation for asteroids, although it<br />

may not be consi<strong>de</strong>red as <strong>the</strong> ma<strong>in</strong> one. The use of A. <strong>rubens</strong> has shown that this species helps<br />

<strong>in</strong> dist<strong>in</strong>guish<strong>in</strong>g <strong>the</strong> contam<strong>in</strong>ation state of selected stations while tak<strong>in</strong>g <strong>in</strong>to account<br />

bioavailability. Some body compartments appear as better bio<strong>in</strong>dicators, ie. pyloric caeca.<br />

Information brought by <strong>the</strong> use of asteroids does not compare with that brought by <strong>the</strong> use of<br />

sediments, and this highlights <strong>the</strong> observable differences between an "abiotic" <strong>in</strong>dicator<br />

(sediments) and a biotic <strong>in</strong>dicator (asteroids), <strong>the</strong> latter one <strong>in</strong>tegrat<strong>in</strong>g <strong>the</strong> bioavailability of<br />

contam<strong>in</strong>ants.<br />

138


Contam<strong>in</strong>ant levels <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> Belgian coast and Scheldt estuary<br />

ACKNOWLEDGEMENTS<br />

Research supported by a Belgian Fe<strong>de</strong>ral Research Program (SSTC, Contract MN/11/30).<br />

Grateful thanks are due to Ch. De Rid<strong>de</strong>r, C. De Amaral, G. Coteur (ULB), P. Gossel<strong>in</strong><br />

(UMH) and G. Ra<strong>de</strong>nac (Univ. La Rochelle, France) for helpful assistance <strong>in</strong> offshore and sea<br />

shore sampl<strong>in</strong>gs. M. Warnau and Ph. Dubois are respectively Honorary Research Associate<br />

and Research Associate of <strong>the</strong> National Fund for Scientific Research (NFSR, Belgium).<br />

Contribution of <strong>the</strong> "Centre Interuniversitaire <strong>de</strong> Biologie Mar<strong>in</strong>e" (CIBIM).<br />

139


140


Bioaccumulation and effects of PCBs and heavy metals <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> North <strong>Sea</strong><br />

IV.2 Bioaccumulation and effects of PCBs and heavy metals <strong>in</strong> sea stars<br />

(<strong>Asterias</strong> <strong>rubens</strong>, L.) from <strong>the</strong> North <strong>Sea</strong>: a small scale perspective<br />

Mar<strong>in</strong>e Pollution Bullet<strong>in</strong> (submitted)<br />

Danis B a , Wantier P b , Flammang R b , Pernet Ph a , Chambost-Manciet Y a , Coteur G a ,<br />

Warnau M a,c & Dubois Ph a<br />

a : Laboratoire <strong>de</strong> Biologie Mar<strong>in</strong>e (CP 160/15), <strong>Université</strong> <strong>Libre</strong> <strong>de</strong> <strong>Bruxelles</strong>, 50 avenue<br />

F.D. Roosevelt, B-1050 <strong>Bruxelles</strong>, Belgium<br />

b : Laboratoire <strong>de</strong> Chimie Organique, <strong>Université</strong> <strong>de</strong> Mons-Ha<strong>in</strong>aut, 19 avenue Maistriau, B-<br />

7000 Mons, Belgium<br />

c: Present address: Mar<strong>in</strong>e Environment Laboratory, International Atomic Energy Agency, 4<br />

quai Anto<strong>in</strong>e 1er, MC-98000 Monaco<br />

141


ABSTRACT<br />

Bioaccumulation and effects of PCBs and heavy metals <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> North <strong>Sea</strong><br />

<strong>Sea</strong> stars (<strong>Asterias</strong> <strong>rubens</strong> L.) were collected <strong>in</strong> different stations distributed <strong>in</strong> <strong>the</strong> Sou<strong>the</strong>rn<br />

Bight of <strong>the</strong> North <strong>Sea</strong>. Concentrations of four heavy metals and six PCB congeners were<br />

measured <strong>in</strong> two body compartments (body wall and pyloric caeca). In or<strong>de</strong>r to assess <strong>the</strong><br />

potential harm of <strong>the</strong>se contam<strong>in</strong>ants, two biological effects were measured <strong>in</strong> sea stars, viz.<br />

reactive oxygen species (ROS) production by amoebocytes and cytochrome P450<br />

immunopositive prote<strong>in</strong> (CYP1A IPP) <strong>in</strong>duction <strong>in</strong> pyloric caeca. <strong>Sea</strong> stars from stations<br />

located <strong>in</strong> <strong>the</strong> plume of <strong>the</strong> Scheldt river showed <strong>the</strong> highest contam<strong>in</strong>ation levels. O<strong>the</strong>r<br />

stations, similarly located, displayed lower levels. No simple relationship could be established<br />

between ROS production by sea star amoebocytes and contam<strong>in</strong>ant levels measured <strong>in</strong> sea<br />

star tissues. CYP1A IPP <strong>in</strong>duction displayed more contrasted responses, and highly<br />

significant regressions were found between PCB concentrations measured <strong>in</strong> pyloric caeca<br />

and CYP1A IPP. Both key biological processes were found to be significantly affected. On<br />

<strong>the</strong> whole, data <strong>in</strong>dicated that contam<strong>in</strong>ation levels and subsequent effects <strong>in</strong> sea stars were<br />

comparable to those <strong>de</strong>scribed <strong>in</strong> previous large-scale studies, but that work<strong>in</strong>g at a smaller<br />

scale highlighted <strong>the</strong> existence of patterns of contam<strong>in</strong>ation which can blur general trends due<br />

to major contam<strong>in</strong>ation sources like contam<strong>in</strong>ated rivers.<br />

KEYWORDS<br />

PCBs; Heavy metals; North <strong>Sea</strong>; Ech<strong>in</strong>o<strong>de</strong>rms; CYP1A; ROS<br />

142


Bioaccumulation and effects of PCBs and heavy metals <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> North <strong>Sea</strong><br />

INTRODUCTION<br />

Harmful substances, such as heavy metals or polychlor<strong>in</strong>ated biphenyls (PCBs), are carried<br />

by rivers or <strong>the</strong> atmosphere and eventually reach and contam<strong>in</strong>ate <strong>the</strong> mar<strong>in</strong>e environment<br />

(Bayens 1998, OSPAR 2000). These contam<strong>in</strong>ants are of particular concern due to <strong>the</strong>ir<br />

persistence, bioavailability and toxicity to mar<strong>in</strong>e species (Mommaerts et al. 1994, Alzieu &<br />

Michel 1998, Laane et al. 1999, OSPAR 2000). Because of <strong>the</strong>ir low solubility <strong>in</strong> seawater,<br />

heavy metals and PCBs tend to adsorb on particles and concentrate <strong>in</strong> sediments, ultimately<br />

affect<strong>in</strong>g organisms liv<strong>in</strong>g <strong>in</strong> or close to <strong>the</strong>m (Stebb<strong>in</strong>g 1992, Alzieu & Michel 1998,<br />

OSPAR 2000). The <strong>de</strong>lay between <strong>the</strong>ir <strong>in</strong>troduction <strong>in</strong> <strong>the</strong> environment and <strong>the</strong> first<br />

observable effects on organisms can vary between a few hours and <strong>de</strong>ca<strong>de</strong>s, <strong>de</strong>pend<strong>in</strong>g on <strong>the</strong><br />

species and/or biological level consi<strong>de</strong>red (Everaarts et al. 1998).<br />

The common sea star, <strong>Asterias</strong> <strong>rubens</strong> (Ech<strong>in</strong>o<strong>de</strong>rmata, L.), has proven to be a valuable<br />

organism for ecotoxicological test<strong>in</strong>g (Bjeregaard 1988, Everaarts & Fisher 1989, Temara et<br />

al. 1997a, 1998a,b, Everaarts et al. 1998, Warnau et al. 1999, <strong>de</strong>n Besten et al. 2001). Its<br />

position as a predator <strong>in</strong> <strong>the</strong> food cha<strong>in</strong> “seston-mussels-seastars”, its wi<strong>de</strong> distribution and its<br />

key position <strong>in</strong> North <strong>Sea</strong> benthic communities contribute to its high potential as a sent<strong>in</strong>el<br />

organism (Menge 1982, Hayward & Ryland 1990, Hostens & Hammerl<strong>in</strong>k 1994, Temara et<br />

al. 1998b, Den Besten et al. 2001, Coteur et al. 2003a,b,c). Different biomarkers have been<br />

used <strong>in</strong> A. <strong>rubens</strong>, among which <strong>the</strong> levels of cytochrome P450 <strong>in</strong> <strong>the</strong> digestion and storage<br />

organs (<strong>the</strong> so-called pyloric caeca) (<strong>de</strong>n Besten et al. 1991, 1993, Danis et al. Chap. III.4)<br />

and <strong>the</strong> production of reactive oxygen species (ROS) by amoebocytes (<strong>the</strong> ma<strong>in</strong> immune cell<br />

type circulat<strong>in</strong>g <strong>in</strong> coelomic cavities) (Coteur et al. 2002a,c, 2003a,c). ROS production<br />

participates <strong>in</strong> <strong>the</strong> cytotoxic <strong>de</strong>struction of microorganisms (Chia & X<strong>in</strong>g 1996, Gross et al.<br />

1999). CYP1A is an enzyme family whose ma<strong>in</strong> function is to convert <strong>in</strong>soluble organic<br />

compounds to soluble metabolites that can be excreted (Bucheli & Fent 1995). However,<br />

some of <strong>the</strong>se metabolites can <strong>in</strong> turn reveal more toxic than <strong>the</strong> orig<strong>in</strong>al compounds<br />

(Stegeman 1995): CYP1A-<strong>de</strong>pen<strong>de</strong>nt oxidation is found to activate compounds such as<br />

polyaromatic hydrocarbons (PAHs) or PCBs to various reactive <strong>in</strong>termediates that ultimately<br />

cause toxicity, mutagenicity and carc<strong>in</strong>ogenicity (Walker & Peterson 1994).<br />

A broad scale study by <strong>de</strong>n Besten and collaborators (2001) focused on <strong>the</strong> relation between<br />

biomarkers and contam<strong>in</strong>ant accumulation <strong>in</strong> sea stars collected along pollution gradients <strong>in</strong><br />

<strong>the</strong> central and central North <strong>Sea</strong>. These authors showed that contam<strong>in</strong>ation by heavy metals<br />

and PCBs as well as some biomarker responses were relatively high <strong>in</strong> stations located close<br />

to estuaries. The goal of <strong>the</strong> present study is to <strong>de</strong>term<strong>in</strong>e contam<strong>in</strong>ant concentrations and<br />

143


Bioaccumulation and effects of PCBs and heavy metals <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> North <strong>Sea</strong><br />

biomarker responses <strong>in</strong> <strong>the</strong> same sea star species at f<strong>in</strong>e scale, focus<strong>in</strong>g on stations located <strong>in</strong><br />

or close to <strong>the</strong> plume of <strong>the</strong> Scheldt river, one of <strong>the</strong> highly contam<strong>in</strong>ated estuaries of <strong>the</strong><br />

North <strong>Sea</strong>. Consi<strong>de</strong>red contam<strong>in</strong>ants were 4 heavy metals (Zn, Cd, Cu and Pb), 6 PCB<br />

congeners (IUPAC #52, 101, 118, 138, 153, 180); recor<strong>de</strong>d biological effects were CYP1A<br />

immunopositive prote<strong>in</strong> <strong>in</strong>duction and ROS production.<br />

MATERIALS AND METHODS<br />

Field trips and sample preparation<br />

Asteroids were collected <strong>in</strong> February 1999, dur<strong>in</strong>g cruise n°9905 on <strong>the</strong> RV “Belgica” and by<br />

seashore fish<strong>in</strong>g <strong>in</strong> 10 sampl<strong>in</strong>g stations (Table 28).<br />

Table 28. Positions and characteristics of <strong>the</strong> sampl<strong>in</strong>g stations<br />

Station co<strong>de</strong><br />

Coord<strong>in</strong>ates<br />

(N)(E)<br />

144<br />

Depth<br />

(m)<br />

Sal<strong>in</strong>ity<br />

(‰)<br />

Date of sampl<strong>in</strong>g<br />

(dd/mm/yy)<br />

230 51°18.50 2°51.00 16 29.2 24/02/99<br />

340 51°29.94 2°59.45 26 31.3 25/02/99<br />

710 51°26.45 3°08.32 11 30.0 24/02/99<br />

Breskens 51°24.40 3°30.00 Intertidal 31.0 03/03/99<br />

GC1 51°34.40 3°24.80 11 31.2 24/02/99<br />

Knokke 51°20.80 3°17.80 Intertidal 32.0 23/03/99<br />

Nieuwpoort 51°08.80 2°42.80 Intertidal 32.5 11/03/99<br />

Oosten<strong>de</strong> 51°13.80 2°54.40 Intertidal 32.0 11/03/99<br />

S01 51°25.00 3°34.20 27 27.9 23/02/99<br />

Scharendijke 51°44.50 3°50.70 5-10 29.0 15/03/99<br />

<strong>Sea</strong> stars were collected us<strong>in</strong>g a beam trawl (mesh: 30 mm; counter-current trawl<strong>in</strong>g for 10 to<br />

30 m<strong>in</strong>), by hand (<strong>in</strong>tertidal stations) or by SCUBA div<strong>in</strong>g (Scharendijke, Grevel<strong>in</strong>genmeer:<br />

closed estuary system). Only specimens belong<strong>in</strong>g to <strong>the</strong> same size-class (5-7 cm from <strong>the</strong> tip<br />

of <strong>the</strong> arm to <strong>the</strong> center of <strong>the</strong> mouth) were consi<strong>de</strong>red. After coelomic liquid was withdrawn<br />

by bleed<strong>in</strong>g for ROS measurement, two compartments (body wall and pyloric caeca) were<br />

immediately isolated by dissection. A part of <strong>the</strong> pyloric caeca (ca. 5 ml) was immediately<br />

frozen <strong>in</strong> liquid nitrogen for cytochrome P450 immunopositive prote<strong>in</strong> (CYP1A IPP)<br />

analysis. Rema<strong>in</strong><strong>in</strong>g pyloric caeca and <strong>the</strong> <strong>in</strong>tegument <strong>in</strong>ten<strong>de</strong>d for metal analyses were<br />

placed <strong>in</strong> PET recipients immediately after dissection , while those <strong>in</strong>ten<strong>de</strong>d for PCB analysis<br />

were pooled by 5 (3 pools per station) and wrapped <strong>in</strong> alum<strong>in</strong>um foil. Sampled compartments<br />

were frozen at -20°C until analysis.


Metal analyses<br />

Bioaccumulation and effects of PCBs and heavy metals <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> North <strong>Sea</strong><br />

The concentrations of Zn, Cu, Cd and Pb were measured <strong>in</strong> each asteroid body compartment<br />

accord<strong>in</strong>g to <strong>the</strong> method <strong>de</strong>scribed by Warnau et al. (1995). Briefly, tissues were dried (60°C,<br />

72 hrs) and samples (1 g of body wall, 0.5 g of pyloric caeca) were digested with 65% HNO 3<br />

(Merck, p.a. gra<strong>de</strong>). Acid digestions were carried out at 20, 40, 60 and 80°C dur<strong>in</strong>g<br />

respectively 24, 6, 6 and 12 h. Digests were diluted <strong>in</strong> Milli-Q water (Millipore) and filtered<br />

on glass microfiber filters (Whatman GF/A). Metal concentrations were <strong>de</strong>term<strong>in</strong>ed by atomic<br />

emission spectrometry us<strong>in</strong>g a Job<strong>in</strong>-Yvon 38+ ICP-AES. Accuracy of <strong>the</strong> method was tested<br />

us<strong>in</strong>g certified reference material (Mytilus edulis tissues, CRM n°278, Community Bureau of<br />

Reference, Table 29). Detection limits for Zn, Cu, Cd, and Pb were respectively 0.002, 0.002,<br />

0.001, 0.014 µg of metal per ml of digested sample. Calibration was carried out by add<strong>in</strong>g<br />

known metal doses to matrix standards.<br />

Table 29. Certified (mean value ± 95% CI) and measured metal (m<strong>in</strong> and max values, µg g -1 DW, n=43) and<br />

PCB concentrations (mean ± sd, ng g -1 total lipids, n=4) of certified reference materials (Mytilus edulis tissues,<br />

CRM n°278, BCR for metals and mackerel oil; CRM n°350, BCR for PCBs).<br />

PCB analyses<br />

Contam<strong>in</strong>ant Certified value Measured<br />

Cd 0.35 ± 0.01 0.33 - 0.39<br />

Cu 9.45 ± 0.13 8.62 - 10.7<br />

Pb 2.00 ± 0.04 1.88 - 2.21<br />

Zn 83.1 ± 0.10 81.1 - 90.1<br />

PCB 52 62.0 ± 9.00 64.6 ± 0.90<br />

PCB 101 164 ± 9.00 197 ± 5.70<br />

PCB 118 142 ± 20.0 119 ± 2.60<br />

PCB 138 274 ± 27.0 274 ± 8.30<br />

PCB 153 317 ± 20.0 311 ± 9.40<br />

PCB 180 73.0 ± 13.0 68.1 ± 1.80<br />

All solvents and reagents were pestici<strong>de</strong> gra<strong>de</strong>. PCB congeners and reference material were<br />

bought from Promochem (Germany). Samples were <strong>in</strong>sufficient to analyze PCBs <strong>in</strong> sea stars<br />

from S01 and <strong>in</strong> <strong>the</strong> body wall for sea stars from station 230.<br />

Part of <strong>the</strong> frozen sample was taken and dried overnight at 103°C to <strong>de</strong>duce <strong>the</strong> dry weight.<br />

The rema<strong>in</strong><strong>in</strong>g sub-sample was homogenized and a surrogate (PCB 103) was ad<strong>de</strong>d. Samples<br />

were <strong>the</strong>n extracted three times with a modified Bligh and Dyer method (MeOH: CH 2Cl 2:<br />

H 2O, 10:5:4) (Booij & Van <strong>de</strong>n Berg, 1994). The organic phase was separated and <strong>the</strong><br />

aqueous phase was extracted three times with dichloromethane. Dichloromethane extracts<br />

were <strong>the</strong>n pooled. A fraction of <strong>the</strong> extracts was used to <strong>de</strong>term<strong>in</strong>e <strong>the</strong> total lipid content<br />

(gravimetrically). The rema<strong>in</strong><strong>in</strong>g part was evaporated un<strong>de</strong>r nitrogen and 3 ml of isooctane<br />

145


Bioaccumulation and effects of PCBs and heavy metals <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> North <strong>Sea</strong><br />

were ad<strong>de</strong>d to each sample. Lipids were elim<strong>in</strong>ated by precipitation with sulfuric acid (three<br />

times). A f<strong>in</strong>al purification on Florisil® was performed (40 ml hexane + 20 ml<br />

hexane:CH 2Cl 2, 95:5). The eluate was evaporated, 10 µl of <strong>in</strong>ternal standard (PCB 155) was<br />

ad<strong>de</strong>d to 70 µl of <strong>the</strong> sample and 2 µl of this solution was <strong>in</strong>jected <strong>in</strong>to <strong>the</strong> GC/MS.<br />

Samples were analyzed us<strong>in</strong>g a F<strong>in</strong>nigan GC/MS GCQ equipped with an AS9000 auto<br />

sampler and a CP-Sil 8 capillary column (50m length, 0,25mm id, 0,25 µm film thickness).<br />

Initial temperature of <strong>the</strong> column was 90°C. Temperature program was: (i) <strong>in</strong>crease to 180°C<br />

at 15°C/m<strong>in</strong> and hold for 6 m<strong>in</strong>, (ii) <strong>in</strong>crease to 220°C at 4°C/m<strong>in</strong> and hold for 2 m<strong>in</strong> and (iii)<br />

<strong>in</strong>crease to 275°C at 5°C/m<strong>in</strong>. The carrier gas was helium, at a flux rate of 30 cm sec -1 .<br />

Injection mo<strong>de</strong> was “splitless”. Mass spectra were acquired <strong>in</strong> electron impact <strong>in</strong> mo<strong>de</strong><br />

“multiple reaction monitor<strong>in</strong>g”.<br />

Concentration of congeners #52, 101, 118, 153, 138 and 180 were measured <strong>in</strong> <strong>the</strong> different<br />

body compartments of <strong>the</strong> asteroids. Accuracy of <strong>the</strong> method was tested us<strong>in</strong>g certified<br />

material reference from <strong>the</strong> BCR (mackerel oil; CRM n°350) (Table 29). It was assumed that<br />

<strong>the</strong> loss was <strong>the</strong> same for <strong>the</strong> surrogate (PCB 103) as for <strong>the</strong> o<strong>the</strong>r analyzed congeners, thus<br />

<strong>the</strong> PCB concentrations were corrected accord<strong>in</strong>gly.<br />

Measure of Reactive Oxygen Species (ROS) production<br />

Amoebocytes ROS production was measured by <strong>the</strong> peroxidase, lum<strong>in</strong>ol – enhanced method<br />

<strong>de</strong>veloped by Coteur et al. (2002). Briefly, 3 ml of coelomic fluid were collected <strong>in</strong> <strong>the</strong> same<br />

volume of anticoagulant buffer. The cell concentration was measured by absorbance at 280<br />

nm us<strong>in</strong>g a Tecan Spectrafluor+ plate rea<strong>de</strong>r. The cell suspension was <strong>the</strong>n centrifuged and<br />

resuspen<strong>de</strong>d <strong>in</strong> Ca 2+ , Mg 2+ -free artificial seawater (ASW) to obta<strong>in</strong> a f<strong>in</strong>al amoebocyte<br />

concentration of 10 6 cells ml -1 . A stock solution of lum<strong>in</strong>ol and horseradish peroxidase (HRP)<br />

<strong>in</strong> DMSO was <strong>the</strong>n freshly diluted 100 fold <strong>in</strong> ASW (f<strong>in</strong>al concentrations of HRP and lum<strong>in</strong>ol<br />

were respectively 5x10 -1 mg ml -1 and 2.5x10 -1 mg ml -1 ). The reaction was started by add<strong>in</strong>g<br />

200 µl of amoebocyte suspension <strong>in</strong> 100 µl of lum<strong>in</strong>ol/HRP solution and 20 µl of a<br />

Micrococcus luteus suspension (Sigma, 2.5x10 9 bacteria ml -1 ; stimulated ROS production) or<br />

20 µl of ASW (unstimulated ROS production). The chemilum<strong>in</strong>escence was measured every<br />

10 m<strong>in</strong> over a 2 h period us<strong>in</strong>g a Tecan Spectrafluor+ plate rea<strong>de</strong>r. Dur<strong>in</strong>g this period, <strong>the</strong><br />

plates were placed at 14°C. Results were expressed as <strong>the</strong> sum of all 10 m<strong>in</strong> <strong>in</strong>terval<br />

measurement for 10 6 cells ml -1 (total chemilum<strong>in</strong>escence) for stimulated amoebocytes (<strong>in</strong> <strong>the</strong><br />

presence of bacteria) or unstimulated amoebocytes (without bacteria).<br />

146


Bioaccumulation and effects of PCBs and heavy metals <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> North <strong>Sea</strong><br />

Cytochrome P450 immunopositive prote<strong>in</strong> quantification<br />

Cytochrome P450 immunopositive prote<strong>in</strong> (CYP1A IPP) <strong>in</strong>duction was quantified us<strong>in</strong>g<br />

competitive ELISA as <strong>de</strong>scribed by Danis et al. (Chap. III.4). The ELISA was carried out<br />

us<strong>in</strong>g competition for anti-trout CYP1A antibodies between <strong>the</strong> CYP1A IPP conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong><br />

sea star samples and a biot<strong>in</strong>ylated CYP1A from ß-naphtoflavone (BNF)-<strong>in</strong>jected trouts<br />

(Oncorhyncus mykiss). Multiwell plates were coated with Anti-CYP1A (rabbit anti-fish<br />

CYP1A pepti<strong>de</strong>, polyclonal antibody purchased from Biosense, Norway). Wells were washed<br />

with phosphate-buffered sal<strong>in</strong>e (PBS, Sigma), and nonspecific b<strong>in</strong>d<strong>in</strong>g sites were blocked<br />

with PBS conta<strong>in</strong><strong>in</strong>g bov<strong>in</strong>e serum album<strong>in</strong> (BSA, Sigma). Wells were washed aga<strong>in</strong>, and<br />

were ad<strong>de</strong>d with biot<strong>in</strong>ylated microsomes from BNF-<strong>in</strong>jected trouts (except for <strong>the</strong> blank<br />

wells). Samples or standards (with adjusted prote<strong>in</strong> concentration) were <strong>the</strong>n ad<strong>de</strong>d to <strong>the</strong><br />

wells. Competition was allowed to take place and after five wash<strong>in</strong>g steps, Extravid<strong>in</strong>-HRP<br />

(Sigma) was ad<strong>de</strong>d to all <strong>the</strong> wells. The plate was <strong>the</strong>n <strong>in</strong>cubated and <strong>the</strong> wells were washed<br />

aga<strong>in</strong> us<strong>in</strong>g PBS. Chromogen TMB (Pierce, UK) was ad<strong>de</strong>d to all <strong>the</strong> wells and <strong>the</strong> plate was<br />

<strong>in</strong>cubated <strong>in</strong> obscurity. Sulfuric acid (Sigma) was ad<strong>de</strong>d to <strong>the</strong> wells to stop <strong>the</strong> reaction.<br />

Optical <strong>de</strong>nsity was measured <strong>in</strong> <strong>the</strong> 96-well plates at 450 nm us<strong>in</strong>g a Packard Spectracount<br />

microplate rea<strong>de</strong>r.<br />

Data analyses<br />

Statistical differences between measured concentrations <strong>in</strong> different asteroid body<br />

compartments and sampl<strong>in</strong>g stations were performed us<strong>in</strong>g 1-way analysis of variance<br />

(ANOVA) followed by a multiple comparison test of <strong>the</strong> means (Tukey test) (Zar 1996).<br />

Relationships between <strong>the</strong> various factors (measured concentrations and biological effects)<br />

were tested us<strong>in</strong>g simple l<strong>in</strong>ear regression procedures (Zar 1996). The level of significance<br />

for statistical analyses was always set at a = 0.05.<br />

RESULTS<br />

Raw data are accessible at: http://www.mumm.ac.be/datacentre/Databases/IDOD/<strong>in</strong><strong>de</strong>x.php<br />

Heavy metal concentration <strong>in</strong> asteroids<br />

Concentrations of four heavy metals (Zn, Cd, Cu and Pb) were measured <strong>in</strong> sea stars sampled<br />

<strong>in</strong> <strong>the</strong> Sou<strong>the</strong>rn Bight of <strong>the</strong> North <strong>Sea</strong>. Two body compartments were consi<strong>de</strong>red for analysis<br />

(body wall and pyloric caeca). No significant differences were found between stations<br />

regard<strong>in</strong>g Cu concentrations measured <strong>in</strong> <strong>the</strong> body wall (p ANOVA=0.31, mean concentration for<br />

all stations was 1.65±0.27µg Cu g -1 ). Significant differences were found for <strong>the</strong> o<strong>the</strong>r metals<br />

147


Bioaccumulation and effects of PCBs and heavy metals <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> North <strong>Sea</strong><br />

(p ANOVA≤0.0001). Metal concentrations measured <strong>in</strong> sea star body wall are presented <strong>in</strong> Fig.<br />

37.<br />

Figure 37. <strong>Asterias</strong> <strong>rubens</strong>. Concentrations (µg g -1 ; mean+SD; n=5) of heavy metals (Zn, Cu, Cd, Pb) measured<br />

<strong>in</strong> <strong>the</strong> body wall of sea stars sampled <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn North <strong>Sea</strong>. Histogram bars shar<strong>in</strong>g <strong>the</strong> same superscript do<br />

not differ significantly. Cu concentrations do not differ significantly between stations.<br />

Zn concentration <strong>in</strong> <strong>the</strong> body wall separated sea stars from Breskens and Knokke (display<strong>in</strong>g<br />

higher concentrations) from those sampled <strong>in</strong> Scharendijke (<strong>in</strong>termediary concentrations) and<br />

<strong>the</strong> rema<strong>in</strong><strong>in</strong>g stations. Regard<strong>in</strong>g Cd concentrations measured <strong>in</strong> <strong>the</strong> same body<br />

compartment, sea stars from Breskens was significantly more contam<strong>in</strong>ated than all <strong>the</strong> o<strong>the</strong>r<br />

stations (p ANOVA≤0.0001). <strong>Sea</strong> stars from Breskens also displayed <strong>the</strong> highest Pb<br />

concentrations <strong>in</strong> <strong>the</strong> body wall, followed by those from an <strong>in</strong>termediary group (Oosten<strong>de</strong>,<br />

230 and Knokke) and by <strong>the</strong> rema<strong>in</strong><strong>in</strong>g stations. Heavy metal concentrations measured <strong>in</strong><br />

pyloric caeca significantly differed accord<strong>in</strong>g to <strong>the</strong> sampl<strong>in</strong>g station (p ANOVA≤0.0001; Fig 38).<br />

148


Bioaccumulation and effects of PCBs and heavy metals <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> North <strong>Sea</strong><br />

Figure 38. <strong>Asterias</strong> <strong>rubens</strong>. Concentrations (µg g -1 ; mean+SD; n=5) of heavy metals (Zn, Cu, Cd, Pb) measured<br />

<strong>in</strong> <strong>the</strong> pyloric caeca of sea stars sampled <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn North <strong>Sea</strong>. Histogram bars shar<strong>in</strong>g <strong>the</strong> same superscript<br />

do not differ significantly.<br />

Rank<strong>in</strong>g of <strong>the</strong> stations accord<strong>in</strong>g to metal concentrations measured <strong>in</strong> sea star tissues varied<br />

from one metal to ano<strong>the</strong>r. For Zn, three groups of stations were formed: <strong>the</strong> most<br />

contam<strong>in</strong>ated group <strong>in</strong>clu<strong>de</strong>d Breskens and Knokke, <strong>the</strong> least contam<strong>in</strong>ated group <strong>in</strong>clu<strong>de</strong>d<br />

S01 and Scharendijke, while sea stars from <strong>the</strong> rema<strong>in</strong><strong>in</strong>g stations displayed lower Zn<br />

concentrations (p ANOVA≤0.0001). For Cd, sea stars sampled <strong>in</strong> 230 and Nieuwpoort displayed<br />

<strong>the</strong> highest contam<strong>in</strong>ant levels, followed by sea stars from Knokke, Oosten<strong>de</strong>, and Breskens<br />

and lower levels were <strong>de</strong>term<strong>in</strong>ed <strong>in</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g stations. For Cu, three groups of stations<br />

can be dist<strong>in</strong>guished: <strong>the</strong> most contam<strong>in</strong>ated sea stars were smapled <strong>in</strong> Breskens and<br />

Scharendijke, <strong>in</strong>termediate concentrations were found <strong>in</strong> sea stars from Knokke, S01 and 710<br />

and <strong>the</strong> less contam<strong>in</strong>ated were stations GC1, Oosten<strong>de</strong>, Nieuwpoort, 340 and 230. For Pb,<br />

<strong>the</strong> three groups were respectively [Oosten<strong>de</strong>, Knokke and Breskens], [S01, 710, 230 and<br />

Nieuwpoort] and [Scharendijke, GC1 and 340].<br />

PCB concentrations <strong>in</strong> asteroids<br />

The concentrations of PCBs measured <strong>in</strong> <strong>the</strong> two consi<strong>de</strong>red body compartments are<br />

presented <strong>in</strong> Fig 39.<br />

149


Bioaccumulation and effects of PCBs and heavy metals <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> North <strong>Sea</strong><br />

Figure 39. <strong>Asterias</strong> <strong>rubens</strong>. Concentration (ng g -1 total lipids; mean+SD; n=3) of PCB 153 and <strong>the</strong> sum of 6 PCB<br />

congeners measured <strong>in</strong> <strong>the</strong> pyloric caeca and body wall of sea stars sampled <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn North <strong>Sea</strong>.<br />

Histogram bars shar<strong>in</strong>g <strong>the</strong> same superscript do not differ significantly.<br />

Significant differences were found between <strong>the</strong> stations when consi<strong>de</strong>r<strong>in</strong>g PCB<br />

concentrations measured <strong>in</strong> both body compartments. However, <strong>the</strong> pyloric caeca<br />

(p ANOVA≤0.0001) were found to be more discrim<strong>in</strong>ant than <strong>the</strong> body wall (p ANOVA≤0.00067)<br />

When consi<strong>de</strong>r<strong>in</strong>g <strong>the</strong> sum of PCBs <strong>in</strong> <strong>the</strong> pyloric caeca, sea stars sampled <strong>in</strong> Knokke<br />

displayed <strong>the</strong> highest concentrations. <strong>Sea</strong> stars from Breskens and 230 were also among <strong>the</strong><br />

most contam<strong>in</strong>ated, while lower PCB concentration were measured <strong>in</strong> sea stars from <strong>the</strong><br />

rema<strong>in</strong><strong>in</strong>g stations. As expected, a similar rank<strong>in</strong>g, although less discrim<strong>in</strong>ant, was<br />

established when consi<strong>de</strong>r<strong>in</strong>g PCB 153 concentrations alone. A strong and highly significant<br />

regression was calculated between PCB 153 and rema<strong>in</strong><strong>in</strong>g congeners (PCB 52, 101, 118,<br />

138, 180, ∑ 5PCB) concentrations <strong>in</strong> body wall and pyloric caeca (Fig. 40). The contribution<br />

of PCB 153 to <strong>the</strong> total bur<strong>de</strong>n of PCBs accounted for 59±16% <strong>in</strong> body wall, and 36±5.1% <strong>in</strong><br />

pyloric caeca.<br />

150


Bioaccumulation and effects of PCBs and heavy metals <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> North <strong>Sea</strong><br />

A. Bodywall<br />

PCB#153 concentration (ng g -1 lipids)<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

B. Pyloric caeca<br />

PCB#153 concentration (ng g -1 lipids)<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0<br />

151<br />

R 2 = 0,93<br />

p≤0.0001<br />

0 200 400 600 800 1000 1200 1400 1600<br />

∑ 5PCB concentration (ng g -1 lipids)<br />

R 2 = 0,83<br />

p≤0.0001<br />

0 100 200 300 400 500 600 700 800 900<br />

∑ 5PCB concentration (ng g -1 lipids)<br />

Figure 40. <strong>Asterias</strong> <strong>rubens</strong>. L<strong>in</strong>ear regressions between PCB 153 and <strong>the</strong><br />

o<strong>the</strong>r consi<strong>de</strong>red PCB congeners (∑ 5PCB) concentrations (ng g -1 total<br />

lipids) measured <strong>in</strong> <strong>the</strong> body wall (A) or pyloric caeca (B) of sea stars.<br />

Reactive oxygen species (ROS) production<br />

ROS production by amoebocytes is presented <strong>in</strong> Fig. 41. No significant difference between<br />

<strong>the</strong> different sampl<strong>in</strong>g sites (p ANOVA=0.19) was found for ROS production of non-stimulated<br />

amoebocytes . On <strong>the</strong> contrary, significant differences were found for ROS production by<br />

bacteria-stimulated amoebocytes (p ANOVA=0.011). The highest values were measured <strong>in</strong> S01.<br />

<strong>Sea</strong> stars from Scharendijke displayed <strong>the</strong> lowest response. <strong>Sea</strong> stars collected <strong>in</strong> all o<strong>the</strong>r<br />

stations produced <strong>in</strong>termediate amounts of ROS. No significant correlation was found<br />

between this biological effect and contam<strong>in</strong>ant concentrations measured <strong>in</strong> sea stars.


Bioaccumulation and effects of PCBs and heavy metals <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> North <strong>Sea</strong><br />

Figure 41 <strong>Asterias</strong> <strong>rubens</strong>. ROS production (stimulated and non-stimulated; total chemilum<strong>in</strong>escence, Relative<br />

Light Units (RLU) 10 -6 cells; mean+SD; n=5) measured <strong>in</strong> sea stars sampled <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn North <strong>Sea</strong>.<br />

Histogram bars shar<strong>in</strong>g <strong>the</strong> same superscript do not differ significantly.<br />

CYP1A immunopositive prote<strong>in</strong> (CYP1A IPP) <strong>in</strong>duction<br />

CYP1A IPP <strong>in</strong>duction was measured by competitive ELISA <strong>in</strong> sea stars collected <strong>in</strong> <strong>the</strong><br />

different stations (Fig. 42).<br />

Figure 42. <strong>Asterias</strong> <strong>rubens</strong>. CYP1A IPP <strong>in</strong>duction (<strong>in</strong>duction fold; mean+SD; n=5) measured <strong>in</strong> sea stars<br />

sampled <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> us<strong>in</strong>g competitive ELISA. Histogram bars shar<strong>in</strong>g <strong>the</strong> same superscript do not differ<br />

significantly.<br />

152


Bioaccumulation and effects of PCBs and heavy metals <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> North <strong>Sea</strong><br />

Significant differences (p ANOVA≤0.0001) were found between <strong>the</strong> different stations: sea stars<br />

from 230, S01 and Knokke produced more CYP1A IPP. Intermediate values were measured<br />

<strong>in</strong> sea stars from Breskens and Scharendijke, while <strong>the</strong> rema<strong>in</strong><strong>in</strong>g stations displayed lower<br />

CYP1A IPP <strong>in</strong>duction values. Highly significant regressions (p≤0.0001 and p=0.002<br />

respectively) were calculated between CYP1A <strong>in</strong>duction and PCB 153 or ∑ 6PCB<br />

concentrations measured <strong>in</strong> <strong>the</strong> pyloric caeca (Fig. 43). Maximal <strong>in</strong>duction of CYP1A IPP<br />

production reached 43 folds <strong>in</strong> sea stars sampled <strong>in</strong> station 230.<br />

DISCUSSION<br />

CYP1A IPP <strong>in</strong>duction (Time fold)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

R 2 = 0,44<br />

p≤0.0001<br />

∑PCB PCB#153<br />

153<br />

R 2 = 0,32<br />

p=0.002<br />

0<br />

0 200 400 600 800 1000 1200 1400 1600<br />

PCB concentration (ng g -1 lipids)<br />

Figure 43. <strong>Asterias</strong> <strong>rubens</strong>. L<strong>in</strong>ear regressions between CYP1A <strong>in</strong>duction<br />

(<strong>in</strong>duction fold) and PCB 153 or ∑ 6PCB concentrations (ng g -1 total<br />

lipids) measured <strong>in</strong> sea stars pyloric caeca.<br />

<strong>Sea</strong> stars from Breskens and Knokke appeared to be <strong>the</strong> most contam<strong>in</strong>ated by <strong>the</strong> four<br />

consi<strong>de</strong>red metals. <strong>Sea</strong> stars from Oosten<strong>de</strong> and 230 also showed significant levels of Pb and<br />

Cd. Interest<strong>in</strong>gly, all <strong>the</strong>se stations are located <strong>in</strong> <strong>the</strong> plume of <strong>the</strong> Scheldt river which is<br />

known to flow to <strong>the</strong> SW along <strong>the</strong> Belgian coast and <strong>the</strong>n to turn back up to <strong>the</strong> NE <strong>in</strong> front<br />

of Oosten<strong>de</strong> (hydrodynamics mo<strong>de</strong>ls are available at http://www.mumm.ac.be/EN/Mo<strong>de</strong>ls/<br />

Operational/Currents/<strong>in</strong><strong>de</strong>x.php). The Scheldt river is known to be heavily contam<strong>in</strong>ated by<br />

heavy metals (Bayens 1998). In this context, it is surpris<strong>in</strong>g that sea stars from station S01, <strong>in</strong><br />

<strong>the</strong> very mouth of <strong>the</strong> Scheldt river, and those from stations 710 and GC1, located <strong>in</strong> <strong>the</strong><br />

plume, did not appear as much contam<strong>in</strong>ated. Scharendijke was of particular <strong>in</strong>terest, as sea<br />

stars from this station displayed relatively high metallic levels <strong>in</strong> <strong>the</strong>ir body wall. Be<strong>in</strong>g<br />

located <strong>in</strong> a closed estuary system, this station is not affected by tidal currents, allow<strong>in</strong>g <strong>the</strong>


Bioaccumulation and effects of PCBs and heavy metals <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> North <strong>Sea</strong><br />

sedimentation of very f<strong>in</strong>e particles which are enriched <strong>in</strong> Cu (Danis et al. Chap. IV.1). The<br />

orig<strong>in</strong> of Cu <strong>in</strong> this station is unclear.<br />

PCB levels measured <strong>in</strong> sea stars also displayed significant differences between <strong>the</strong> sampl<strong>in</strong>g<br />

stations. Aga<strong>in</strong>, <strong>the</strong> sea stars from Knokke, Breskens and station 230 showed <strong>the</strong> most<br />

contam<strong>in</strong>ated pyloric caeca. In S01, sea stars were collected <strong>in</strong> too low numbers to allow PCB<br />

analysis.<br />

Strong and highly significant regressions were found between <strong>the</strong> concentration of PCB 153<br />

and <strong>the</strong> sum of o<strong>the</strong>r analysed congeners, and PCB 153 accounts for a significant part of <strong>the</strong><br />

total PCB bur<strong>de</strong>n. This suggests that <strong>the</strong> analysis of this sole congener could be sufficient to<br />

screen PCB levels <strong>in</strong> biota, a proposal previously ma<strong>de</strong> by Atuma and collaborators (1996).<br />

PCB 153 contribution to <strong>the</strong> total PCB bur<strong>de</strong>n was found to be <strong>de</strong>pen<strong>de</strong>nt on <strong>the</strong> consi<strong>de</strong>red<br />

body compartment, which is <strong>in</strong> agreement with previous experimental results (Danis et al.<br />

Chap. III.2).<br />

Contam<strong>in</strong>ant levels measured <strong>in</strong> <strong>the</strong> present study were <strong>in</strong> <strong>the</strong> same or<strong>de</strong>r of magnitu<strong>de</strong> as<br />

those <strong>de</strong>term<strong>in</strong>ed <strong>in</strong> previous field studies (Table 30). Previous studies were conducted at<br />

broa<strong>de</strong>r scales, <strong>in</strong>clud<strong>in</strong>g wi<strong>de</strong> areas of <strong>the</strong> North <strong>Sea</strong> and/or sampl<strong>in</strong>g over important<br />

distances (Everaarts et al. 1998, <strong>de</strong>n Besten et al. 2001, Coteur et al. 2003a).<br />

Table 30. Comparisons among contam<strong>in</strong>ants concentrations (ranges <strong>in</strong> sea stars) measured <strong>in</strong> <strong>the</strong> present study<br />

and those reported <strong>in</strong> previous studies <strong>in</strong> <strong>the</strong> North <strong>Sea</strong>.<br />

nm=not measured; PrS=Pre-spawn<strong>in</strong>g period PoS=Post-spawn<strong>in</strong>g period<br />

Body<br />

compartment<br />

Zn<br />

(µg g -1<br />

DW)<br />

Cd<br />

(µg g -1<br />

DW)<br />

Cu<br />

(µg g -1<br />

DW)<br />

Pb<br />

(µg g -1<br />

DW)<br />

PCB<br />

153<br />

(ng g -1<br />

lipids)<br />

154<br />

∑ 6PCB<br />

(ng g -1<br />

lipids)<br />

Area of study PeriodReference<br />

Pyloric<br />

PrS<br />

caeca 110-410 0.28-2.13 10.5-186 0.61-2.51 105-615 330-1700 Along Belgian coast<br />

1 †<br />

45.1-282 0.56-2.36 5.12-51.1 0.63-2.03 104-463 396-1700 Along Belgian coast PrS 2 ‡<br />

Along Dutch and PoS<br />

111-198 0.41-0.95 5.40-28.9 0.57-1.90 nm nm German coasts<br />

3 §<br />

Sou<strong>the</strong>rn and central PrS<br />

nm nm nm nm 40-1050 103-785 areas<br />

4 **<br />

Sou<strong>the</strong>rn and central PoS<br />

nm nm nm nm 25-290 73-2175 areas<br />

4<br />

nm 0.2-3 7.9-52.1 0.7-3.6 41-1054 105-2804 Central region PrS 5 ††<br />

nm 0.2-2.1 6.8-24.2 0.3-1.3 13-314 101-1000 Central region PoS 5<br />

† Present study<br />

‡ Danis et al. Chap. IV.1<br />

§ Coteur et al. 2003a<br />

** Everaarts et al. 1998<br />

†† <strong>de</strong>n Besten et al. 2001


Bioaccumulation and effects of PCBs and heavy metals <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> North <strong>Sea</strong><br />

Body wall 131-525 0.16-2.30 1.36-2.26 0.63-2.35 116-642 395-1550 Along Belgian coast PrS 1<br />

Along Belgian coast PrS<br />

91-210 0.22-0.51 0.04-1.45 0.26-1.43 118-445 430-1480 and Scheldt river<br />

2<br />

Along Dutch and PoS<br />

115-190 0.26-0.41 1.22-2.09 0.71-1.81 155-534 525-1470 German coasts<br />

3<br />

It is noteworthy that a similar range of concentrations was found <strong>in</strong> <strong>the</strong> present small scale<br />

study. This suggests that small scale patterns of contam<strong>in</strong>ation occur and can blur general<br />

trends due to ma<strong>in</strong> contam<strong>in</strong>ation sources like discharges from a contam<strong>in</strong>ated river.<br />

Examples from stations 230, 710 and GC1 <strong>in</strong> <strong>the</strong> present study illustrated much small scale<br />

differences. Large scale studiues should take such aspects <strong>in</strong>to account.<br />

In or<strong>de</strong>r to assess <strong>the</strong> health status of sea stars, <strong>the</strong> ma<strong>in</strong> immune response of <strong>the</strong>se organisms<br />

(ROS production by amoebocytes) was measured <strong>in</strong> collected <strong>in</strong>dividuals. Significant<br />

differences were found between stations regard<strong>in</strong>g ROS production by bacteria-stimulated<br />

amoebocytes. Immunomodulation by xenobiotics has already been shown <strong>in</strong> ech<strong>in</strong>o<strong>de</strong>rms<br />

(Coteur et al. 2002a,c, 2003a,c), and is generally thought to lead to altered <strong>de</strong>fence aga<strong>in</strong>st<br />

<strong>in</strong>fections (Liv<strong>in</strong>gstone et al. 2000). No significant correlation was measured between this<br />

biological effect and <strong>the</strong> various contam<strong>in</strong>ant levels measured <strong>in</strong> sea stars. Coteur and<br />

collaborators (2003a) assessed contam<strong>in</strong>ants effects on ROS production by sea stars immune<br />

cells <strong>in</strong> a large scale study, carried out along <strong>the</strong> Dutch and German coasts up to <strong>the</strong> mouth of<br />

<strong>the</strong> Elbe river, and along a transect from <strong>the</strong> Elbe’s mouth towards <strong>the</strong> centre of <strong>the</strong> North<br />

<strong>Sea</strong>. This study showed an immuno<strong>de</strong>pression of sea stars from stations located <strong>in</strong> <strong>the</strong> mouth<br />

of <strong>the</strong> Elbe river and <strong>in</strong> front of <strong>the</strong> North <strong>Sea</strong> Canal. No immuno<strong>de</strong>pression was observed <strong>in</strong><br />

<strong>the</strong> present study, <strong>in</strong> stations similarly located <strong>in</strong> <strong>the</strong> mouth of a laarge river (viz. Scheldt).<br />

This discripancy can be attributed to <strong>the</strong> different scale at which <strong>the</strong>se studies were carried out<br />

and to probable differences <strong>in</strong> contam<strong>in</strong>ants patterns, lead<strong>in</strong>g to differ<strong>in</strong>g immune response <strong>in</strong><br />

sea stars.<br />

Measures of CYP1A IPP <strong>in</strong>duction <strong>in</strong> <strong>the</strong> pyloric caeca displayed significant variations <strong>in</strong> <strong>the</strong><br />

sampl<strong>in</strong>g area. Highly significant regressions were found between CYP1A IPP <strong>in</strong>duction and<br />

∑ 6PCB or PCB 153 concentrations measured <strong>in</strong> sea stars pyloric caeca. CYP1A is known to<br />

be <strong>in</strong>ductible by a limited range of highly toxic contam<strong>in</strong>ants, such as diox<strong>in</strong>s, furans, or<br />

coplanar PCBs, which are also ubiquitously present <strong>in</strong> <strong>the</strong> environment (Stegeman et al.<br />

2001). In <strong>the</strong> present work, coplanar PCB concentrations were not measured, but <strong>the</strong>ir<br />

presence is generally consi<strong>de</strong>red to be l<strong>in</strong>ked to that of o<strong>the</strong>r, less toxic congeners (Metcalfe<br />

1994). This probably expla<strong>in</strong>s <strong>the</strong> relatively low (though not negligible) values of <strong>the</strong><br />

155


Bioaccumulation and effects of PCBs and heavy metals <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> North <strong>Sea</strong><br />

<strong>de</strong>term<strong>in</strong>ation coefficients calculated for <strong>the</strong>se regressions. Previous large-scale studies by<br />

<strong>de</strong>n Besten et al. (2001) have consi<strong>de</strong>red total cytochrome P450 levels measurements to<br />

assess <strong>the</strong> effects of environmental contam<strong>in</strong>ation on <strong>the</strong> production of this enzyme by sea<br />

stars. Among cytochrome P450 isoforms, CYP1A is <strong>the</strong> only one that is known to be related<br />

to diox<strong>in</strong>-like compounds exposition. Den Besten and collaborators (2001) measured total<br />

cytochrome P450 <strong>in</strong>duction reach<strong>in</strong>g 1.89 <strong>in</strong> a large scale situation. In <strong>the</strong> present study,<br />

maximal <strong>in</strong>duction reached 43 time folds between station 230, and station 340, show<strong>in</strong>g a<br />

high sensitivity of <strong>the</strong> ELISA over <strong>the</strong> commonly used CO-difference spectrum of dithionite<br />

reduced samples approach. It is noteworthy that <strong>the</strong> highest <strong>in</strong>duction value of CYP1A IPP<br />

was found between two closely located stations, emphasiz<strong>in</strong>g <strong>the</strong> importance of variations<br />

occur<strong>in</strong>g at relatively short distance (22.6 km). High <strong>in</strong>duction of CYP1A IPP can potentially<br />

lead to adverse effects <strong>in</strong> sea stars, as this enzyme system is responsible for <strong>the</strong> convertion of<br />

<strong>in</strong>soluble organic compounds to more soluble metabolites, which are often more toxic than<br />

<strong>the</strong> parent compounds (Walker & Peterson 1994). The products result<strong>in</strong>g from CYP1A<br />

enzymatic activities also un<strong>de</strong>rtake <strong>the</strong> oxidation of endogenous substrates, eg fatty acids and<br />

steroid hydroxylation (Nelson et al. 1996). High levels of CYP1A can <strong>the</strong>refore disrupt <strong>the</strong><br />

endocr<strong>in</strong>e system of sea stars, lead<strong>in</strong>g to dysfunctionn<strong>in</strong>g <strong>in</strong> <strong>the</strong> reproduction and<br />

<strong>de</strong>velopment, which can <strong>in</strong> turn affect populations perennity and benthic ecosystem<br />

structuration (Bucheli & Fent 1995).<br />

In conclusion, <strong>the</strong> general contam<strong>in</strong>ation status of <strong>the</strong> Belgian coast and Scheldt mouth was<br />

very much comparable to that measured <strong>in</strong> o<strong>the</strong>r parts of <strong>the</strong> North <strong>Sea</strong>, reach<strong>in</strong>g similar, and<br />

sometimes higher levels <strong>in</strong> sea stars. The present study highlights <strong>the</strong> existence of complex<br />

patterns of contam<strong>in</strong>ation occur<strong>in</strong>g at small scale which can blur obvious sources, such as<br />

river Scheldt contribution. Analyz<strong>in</strong>g <strong>the</strong> contam<strong>in</strong>ants <strong>in</strong> sea stars allowed to take <strong>in</strong>to<br />

account all <strong>the</strong> potential contam<strong>in</strong>ation sources (viz. sediments, seawater and food) and <strong>the</strong>ir<br />

comb<strong>in</strong>ed effects on two essential aspects of sea star biology (ROS production and CYP1A<br />

<strong>in</strong>duction), <strong>in</strong> field conditions. These aspects were found to be affected <strong>in</strong> <strong>the</strong> consi<strong>de</strong>red<br />

region, which can potentially lead to a serious threat to North <strong>Sea</strong> benthic ecosystems.<br />

AKNOWLEDGEMENTS<br />

Research supported by a Belgian Fe<strong>de</strong>ral Research Program (SSTC, Contract MN/11/30).<br />

Grateful thanks are due to S. Dutrieux, D. Gillan, G. Ra<strong>de</strong>nac and R. Morgan for helpful<br />

assistance <strong>in</strong> offshore and sea shore sampl<strong>in</strong>gs. M. Warnau was and Ph. Dubois is Research<br />

Associate, and G. Coteur Senior Research Assistant of <strong>the</strong> National Fund for Scientific<br />

156


Bioaccumulation and effects of PCBs and heavy metals <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> from <strong>the</strong> North <strong>Sea</strong><br />

Research (NFSR, Belgium). We thank <strong>the</strong> capta<strong>in</strong> and crew of RV Belgica for <strong>the</strong>ir very k<strong>in</strong>d<br />

and efficient assistance and <strong>the</strong> Mo<strong>de</strong>ll<strong>in</strong>g Unit of <strong>the</strong> Ma<strong>the</strong>matical Mo<strong>de</strong>l of <strong>the</strong> North <strong>Sea</strong><br />

(MUMM, A. Pollentier) for grant<strong>in</strong>g ship time. Contribution of <strong>the</strong> "Centre Interuniversitaire<br />

<strong>de</strong> Biologie Mar<strong>in</strong>e" (CIBIM).<br />

157


158


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

IV.3 Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators, bioassays and impact assessment tools of<br />

sediment-associated metals and PCBs <strong>in</strong> <strong>the</strong> North <strong>Sea</strong>.<br />

Archives of Environmental Contam<strong>in</strong>ation and Toxicology 45:190-202<br />

Coteur G a , Gossel<strong>in</strong> P b , Wantier P c , Chambost-Manciet Y a , Danis B a , Pernet Ph a Warnau M a<br />

&Dubois Ph a<br />

a. Laboratoire <strong>de</strong> Biologie Mar<strong>in</strong>e (CP 160/15), <strong>Université</strong> <strong>Libre</strong> <strong>de</strong> <strong>Bruxelles</strong>, 50, Av. F. D.<br />

Roosevelt, B-1050 <strong>Bruxelles</strong>, Belgium.<br />

b. Laboratoire <strong>de</strong> Biologie Mar<strong>in</strong>e, <strong>Université</strong> <strong>de</strong> Mons-Ha<strong>in</strong>aut, Av. du Champs <strong>de</strong> Mars,<br />

Pentagone, 7000 Mons.<br />

c. Laboratoire <strong>de</strong> Chimie Organique, <strong>Université</strong> <strong>de</strong> Mons ha<strong>in</strong>aut, Av. Maistriau 19, 7000<br />

Mons.<br />

159


ABSTRACT<br />

Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

The study assessed <strong>the</strong> occurrence, possible toxicity and impact of sediment-associated metals<br />

and PCBs <strong>in</strong> <strong>the</strong> coastal zone of <strong>the</strong> sou<strong>the</strong>rn North <strong>Sea</strong> us<strong>in</strong>g ech<strong>in</strong>o<strong>de</strong>rms as representatives<br />

of <strong>the</strong> macrobenthos. Metals and PCBs were analysed <strong>in</strong> <strong>the</strong> sediments and <strong>in</strong> <strong>the</strong> body<br />

compartments of <strong>the</strong> starfish <strong>Asterias</strong> <strong>rubens</strong> from 11 stations. The general toxicity of<br />

sediment-associated contam<strong>in</strong>ants was assessed by bioassays us<strong>in</strong>g embryonic and larval<br />

<strong>de</strong>velopments of both A. <strong>rubens</strong> and <strong>the</strong> sea urch<strong>in</strong> Psammech<strong>in</strong>us miliaris. The impact of<br />

contam<strong>in</strong>ation was assessed by measur<strong>in</strong>g cellular immune responses of A. <strong>rubens</strong> collected<br />

<strong>in</strong> <strong>the</strong> same stations.<br />

Contam<strong>in</strong>ation of <strong>the</strong> starfish by metals and PCBs closely reflected that of <strong>the</strong> sediments.<br />

However, bioaccumulation was element-specific for metals and <strong>de</strong>pen<strong>de</strong>d on <strong>the</strong> chlor<strong>in</strong>ation<br />

pattern for PCBs. The sediment-associated contam<strong>in</strong>ants appeared to be toxic <strong>in</strong> both <strong>the</strong> A.<br />

<strong>rubens</strong> and P. miliaris <strong>de</strong>velopmental assays. Moreover, metals were shown to affect <strong>the</strong><br />

immune responses of starfishes liv<strong>in</strong>g <strong>in</strong> contam<strong>in</strong>ated stations. The most significant effects<br />

on biological responses were recor<strong>de</strong>d <strong>in</strong> <strong>the</strong> plumes of <strong>the</strong> Scheldt/Rh<strong>in</strong>e/North <strong>Sea</strong> Canal<br />

and <strong>the</strong> Elbe/Weser rivers.<br />

KEYWORDS<br />

North <strong>Sea</strong>, contam<strong>in</strong>ation, heavy metals, PCBs, ech<strong>in</strong>o<strong>de</strong>rms, immunity, early <strong>de</strong>velopment.<br />

160


INTRODUCTION<br />

Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

The North <strong>Sea</strong> is one of <strong>the</strong> most productive bodies of water <strong>in</strong> <strong>the</strong> world. The benthos is an<br />

important part of this ecosystem and can be consi<strong>de</strong>red as a reservoir of biodiversity and of<br />

economic resources (NSTF 1993). Moreover, a part of <strong>the</strong> <strong>de</strong>mersal species <strong>de</strong>pends on <strong>the</strong><br />

benthos for <strong>the</strong>ir food source. The North <strong>Sea</strong> is also <strong>the</strong> catchment bas<strong>in</strong> of fluvial waters<br />

from several important and highly polluted rivers. The dump<strong>in</strong>g of dredge material and <strong>the</strong><br />

atmospheric <strong>de</strong>position br<strong>in</strong>g additional <strong>in</strong>puts of contam<strong>in</strong>ants (NSTF 1993). When enter<strong>in</strong>g<br />

<strong>the</strong> North <strong>Sea</strong>, contam<strong>in</strong>ants of major concern such as heavy metals and polychlor<strong>in</strong>ated<br />

biphenyls (PCBs) tend to adsorb on particulate matter and to precipitate due to <strong>the</strong>ir low<br />

solubility <strong>in</strong> seawater (NSTF 1993a). As a consequence, <strong>the</strong> benthic component represents a<br />

ma<strong>in</strong> target of anthropogenic contam<strong>in</strong>ants.<br />

Ech<strong>in</strong>o<strong>de</strong>rms comprise numerous species that dom<strong>in</strong>ate quantitatively and/or qualitatively <strong>the</strong><br />

benthos and thus play a structur<strong>in</strong>g role <strong>in</strong> this habitat (Saier 2001). Alterations of <strong>the</strong>ir<br />

populations will thus affect <strong>the</strong> whole community and threaten <strong>the</strong> equilibrium of <strong>the</strong><br />

ecosystem where <strong>the</strong>y live. Some ech<strong>in</strong>o<strong>de</strong>rms were shown to be valuable <strong>in</strong>dicators of<br />

contam<strong>in</strong>ation s<strong>in</strong>ce <strong>the</strong>y accumulate metals or PCBs as a function of <strong>the</strong> contam<strong>in</strong>ation level<br />

of <strong>the</strong> environment (Knickmeyer et al. 1992, Temara et al. 1998b, Warnau et al. 1998,<br />

Schweitzer et al. 2000). The embryonic and larval <strong>de</strong>velopments of sea urch<strong>in</strong>s are regular<br />

toxicity assays <strong>in</strong> monitor<strong>in</strong>g and risk assessment programmes (Environmental Canada 1992,<br />

Warnau et al. 1996a). The effects of contam<strong>in</strong>ation on ech<strong>in</strong>o<strong>de</strong>rms have been addressed<br />

ma<strong>in</strong>ly by <strong>the</strong> use of molecular responses as biomarkers of contam<strong>in</strong>ation (e.g., Everaarts et<br />

al. 1998, Den Besten et al. 2001). For <strong>in</strong>stance, <strong>the</strong> acetylchol<strong>in</strong>esterase activity and <strong>the</strong> DNA<br />

<strong>in</strong>tegrity <strong>in</strong> starfishes were lower <strong>in</strong> stations located near important estuaries such as that of<br />

<strong>the</strong> Elbe or <strong>the</strong> Rh<strong>in</strong>e river (Everaarts et al. 1998, Den Besten et al. 2001). However, little is<br />

known on <strong>the</strong> impact of contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong> field at <strong>the</strong> cellular and <strong>in</strong>dividual level. Thus,<br />

<strong>the</strong> risk of contam<strong>in</strong>ation for <strong>the</strong> health of <strong>the</strong>se essential species is poorly <strong>in</strong>vestigated.<br />

The present study is an <strong>in</strong>tegrated approach of sediment-associated contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong><br />

sou<strong>the</strong>rn North <strong>Sea</strong>. Ech<strong>in</strong>o<strong>de</strong>rms were used as bio<strong>in</strong>dicators of contam<strong>in</strong>ation by metals and<br />

PCBs and as bioassays for <strong>the</strong>ir possible toxicity. Moreover, <strong>the</strong> effect of metals and PCBs on<br />

<strong>the</strong> health of a benthos-structur<strong>in</strong>g ech<strong>in</strong>o<strong>de</strong>rm was assessed.<br />

Environmental contam<strong>in</strong>ation by metals and PCBs was <strong>de</strong>term<strong>in</strong>ed by analyz<strong>in</strong>g <strong>the</strong>se<br />

contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong> sediments and <strong>in</strong> <strong>the</strong> starfish <strong>Asterias</strong> <strong>rubens</strong>. This species lives <strong>in</strong> close<br />

contact with <strong>the</strong> sediments (especially <strong>in</strong> North <strong>Sea</strong> subtidal habitats) and is a key-species <strong>in</strong><br />

<strong>the</strong> North <strong>Sea</strong> benthic ecosystem (Saier 2001). These animals were shown to accumulate<br />

161


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

contam<strong>in</strong>ants via seawater, food and sediments (Temara et al. 1996, Warnau et al. 1999,<br />

Danis et al. Chap. III.2). Moreover, this starfish was shown to be an efficient bio<strong>in</strong>dicator of<br />

<strong>the</strong>se contam<strong>in</strong>ants (Knickmeyer et al. 1992, Temara et al. 1998b).<br />

Toxicity of <strong>the</strong> sediment-associated contam<strong>in</strong>ants was assessed us<strong>in</strong>g embryos and larvae of<br />

both <strong>the</strong> starfish A. <strong>rubens</strong> and <strong>the</strong> sea urch<strong>in</strong> Psammech<strong>in</strong>us miliaris as bioassays. In<strong>de</strong>ed,<br />

both sea urch<strong>in</strong> and starfish embryonic stages (from fertilization to gastrula) are particularly<br />

sensitive to <strong>the</strong> presence of metals and PCBs (Pagano et al. 1985, Den Besten 1989,<br />

Kobayashi 1995).<br />

The health of A. <strong>rubens</strong> collected <strong>in</strong> <strong>the</strong> stations was assessed through <strong>the</strong> activity of its<br />

immune system. This was chosen consi<strong>de</strong>r<strong>in</strong>g <strong>the</strong> importance of this system for <strong>the</strong> survival<br />

of <strong>in</strong>dividuals (and thus <strong>the</strong> permanence of ech<strong>in</strong>o<strong>de</strong>rm populations) <strong>in</strong> a pathogen-rich<br />

environment such as <strong>the</strong> North <strong>Sea</strong> (Billen et al. 1990). One of <strong>the</strong> contam<strong>in</strong>ant toxicity<br />

pathways could occur via <strong>the</strong> alteration of <strong>the</strong> immune system and <strong>the</strong> subsequent onset of<br />

<strong>in</strong>fections. The ma<strong>in</strong> immune responses of ech<strong>in</strong>o<strong>de</strong>rms are <strong>the</strong> phagocytosis (<strong>in</strong>gestion of<br />

non-self material by effector cells) and <strong>the</strong> production of reactive oxygen species (ROS,<br />

which represent a cytotoxic mechanism participat<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>de</strong>struction of micro-organisms)<br />

(Chia and X<strong>in</strong>g 1996, Gross et al. 1999). These immune responses are carried out by <strong>the</strong> only<br />

type of circulat<strong>in</strong>g immune cells <strong>in</strong> A. <strong>rubens</strong>, <strong>the</strong> amoebocyte, and have been well<br />

characterized <strong>in</strong> previous studies (Van<strong>de</strong>n Bossche and Jangoux 1976, Coteur et al. 2002a,b).<br />

MATERIALS AND METHODS<br />

Sampl<strong>in</strong>g stations<br />

Sampl<strong>in</strong>g activities were carried out dur<strong>in</strong>g cruise 9910 of Oceanographic R.V. Belgica from<br />

April 19 to 23, 1999. The sampl<strong>in</strong>g sites were distributed regularly along <strong>the</strong> Dutch and<br />

German coasts (LN stations) at similar distances from <strong>the</strong> coast <strong>in</strong> or<strong>de</strong>r to obta<strong>in</strong> more or less<br />

similar environmental conditions (coastal areas with f<strong>in</strong>e sediments) (Fig. 44).<br />

162


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

Figure 44. Map of <strong>the</strong> sou<strong>the</strong>rn North <strong>Sea</strong> show<strong>in</strong>g <strong>the</strong> location of <strong>the</strong> sampl<strong>in</strong>g<br />

stations. Arrows <strong>in</strong>dicate <strong>the</strong> river mouths.<br />

Two stations (BW5 and BW6) are located more offshore. The latter ones, as well as BW3, are<br />

part of a transect <strong>de</strong>scrib<strong>in</strong>g a gradient of contam<strong>in</strong>ation start<strong>in</strong>g from <strong>the</strong> mouth of <strong>the</strong> rivers<br />

Elbe and Weser and extend<strong>in</strong>g offshore (Stebb<strong>in</strong>g & Dethlefsen 1992). These BW stations are<br />

actually located along <strong>the</strong> plume of <strong>the</strong> Elbe/Weser which extends at right angle to <strong>the</strong> coast<br />

(Becker et al. 1992).<br />

Collection and preparation of samples<br />

At each station, a number of environmental variables were measured us<strong>in</strong>g a SCTD <strong>de</strong>vice<br />

(<strong>Sea</strong>cat SBE19). These variables <strong>in</strong>clu<strong>de</strong> <strong>de</strong>pth, bottom water temperature, oxygen, and<br />

sal<strong>in</strong>ity (Table 31). At each station, six sediment samples were collected us<strong>in</strong>g a Re<strong>in</strong>eck box<br />

corer. The upper layer (top 5cm) from each core was collected and two sub-samples placed,<br />

respectively, <strong>in</strong> 400ml and 50ml hermetically-sealed polyethylene (PET) conta<strong>in</strong>ers. These<br />

conta<strong>in</strong>ers were stored at –20°C. Sediment samples from <strong>the</strong> 50ml conta<strong>in</strong>ers were used for<br />

<strong>the</strong> early <strong>de</strong>velopment assays and those from <strong>the</strong> 400ml conta<strong>in</strong>ers were used for metal and<br />

PCB analyses.<br />

163


Table 31. Environmental parameters measured at each station.<br />

Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

Parameters LN1 LN2 LN3 LN4 LN5 LN6 LN7 LN8 BW3 BW5 BW6<br />

Depth (m) 25 25 27 26 26 24 22 25 30 39 40<br />

Water<br />

- temperature (°C) 9.1 8.8 8.8 8.6 8.6 8.5 8.4 7.8 7.3 7.3 7.1<br />

- oxygen (mg l -<br />

1 )<br />

13.0 11.9 11.5 10.5 10.6 10.5 10.9 10.8 9.7 10.2 9.5<br />

- sal<strong>in</strong>ity (psu) 34.4 32.4 31.6 31.6 31.4 32.5 34.1 34.4 34.2 33.9 32.8<br />

Fraction


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

water (Millipore), and filtered on glass microfiber filters (Whatman GF/A). Metal<br />

concentrations were <strong>de</strong>term<strong>in</strong>ed by atomic emission spectrometry us<strong>in</strong>g a Job<strong>in</strong>-Yvon 38+ Ion<br />

Charged Plasma Spectrometer (ICPS). Accuracy of <strong>the</strong> method was tested us<strong>in</strong>g certified<br />

reference material (Mytilus edulis tissues, CRM n°278, Community Bureau of Reference).<br />

Analysed CRM were always with<strong>in</strong> 12% of <strong>the</strong> mean certified values. Detection limits for Zn,<br />

Cu, Cd, and Pb were respectively 0.002, 0.002, 0.001, 0.014µg of metal per ml of digested<br />

sample. The emission <strong>in</strong>tensities were converted to concentrations (µg g -1 ) us<strong>in</strong>g a calibration<br />

curve obta<strong>in</strong>ed by standard-addition over an <strong>in</strong>ternal reference matrix prepared for each<br />

sample type (sediments, pyloric caeca and body wall).<br />

PCB analyses<br />

Seven polychlor<strong>in</strong>ated biphenyls recommen<strong>de</strong>d by <strong>the</strong> ICES (International Council for<br />

Exploration of <strong>the</strong> <strong>Sea</strong>) (viz., IUPAC congeners #28, 52, 101, 118, 138, 153 and 180) were<br />

analysed <strong>in</strong> sediments and <strong>in</strong> <strong>the</strong> starfish body wall. Extraction of <strong>the</strong> samples was carried out<br />

by <strong>the</strong> comb<strong>in</strong>ation of three solvents: dichloromethane, methanol and water accord<strong>in</strong>g to <strong>the</strong><br />

method of Booij & Van <strong>de</strong>n Berg (1994). This technique is known to efficiently extract PCBs<br />

and total lipids. Purification of <strong>the</strong> extracts was carried out on a sodium sulphate, alum<strong>in</strong>ium<br />

oxi<strong>de</strong> and acid silica gel column. For sediments, a purification step with mercury was carried<br />

out <strong>in</strong> or<strong>de</strong>r to remove sulphurs (Goerlitz and Law 1971). Samples were analysed with a<br />

GC/MS GCQ (F<strong>in</strong>nigan) equipped with an auto-sampler AS9000 and a capillary column CP-<br />

Sil 8 (50m length, 0.25mm id, 0.25µm film thickness). Initial temperature of <strong>the</strong> column was<br />

90°C, <strong>the</strong>n <strong>in</strong>creased to 180°C at 15°C/m<strong>in</strong> and held for 6m<strong>in</strong>, <strong>the</strong>n to 220°C at 4°C/m<strong>in</strong> and<br />

held for 2m<strong>in</strong> and f<strong>in</strong>ally <strong>in</strong>creased to 275°C at 5°C/m<strong>in</strong>. The carrier gas used was helium at a<br />

flow rate of 30cm/sec. Injection mo<strong>de</strong> was “splitless”. Mass spectra were acquired <strong>in</strong> electron<br />

impact mo<strong>de</strong> “multiple reaction monitor<strong>in</strong>g”. Accuracy of <strong>the</strong> method was tested us<strong>in</strong>g<br />

certified material reference from <strong>the</strong> BCR (sediments from <strong>the</strong> harbour “Nova Scotian” <strong>in</strong><br />

East of Canada and mackerel oil -CRM n°350-). Analysed CRM were always with<strong>in</strong> 15% of<br />

<strong>the</strong> mean certified values (except for congener 101 analyses that fell with<strong>in</strong> 30% of <strong>the</strong> mean<br />

certified value). The <strong>de</strong>tection limits were between 0.01 and 0.1ng g -1 DW, <strong>de</strong>pend<strong>in</strong>g on <strong>the</strong><br />

PCB congener.<br />

Early <strong>de</strong>velopment assays<br />

The sediment samples were dried at 70°C for 72h. The seawater used for <strong>the</strong>se assays was<br />

collected <strong>in</strong> <strong>the</strong> <strong>in</strong>tertidal zone at Ambleteuse (France), stored at 12-14°C and filtered on<br />

0.22µm mesh-size before use.<br />

165


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

Genitor specimens of <strong>Asterias</strong> <strong>rubens</strong> and Psammech<strong>in</strong>us miliaris were collected <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>tertidal zone at Ambleteuse (Pas-<strong>de</strong>-Calais, France) and Luc-sur-Mer (Normandie, France),<br />

respectively. They were ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> separate aquaria at <strong>the</strong> laboratory <strong>in</strong> Mons (33‰<br />

sal<strong>in</strong>ity, 14°C temperature) and fed ad libitum. Spawn<strong>in</strong>g was <strong>in</strong>duced by <strong>in</strong>jection <strong>in</strong>to <strong>the</strong><br />

general body cavity of 10µl/g body weight of a 100µM 1-methyla<strong>de</strong>n<strong>in</strong>e solution (for A.<br />

<strong>rubens</strong>, Strathmann 1987) or 20µl/g body weight of a 0.5M KCl solution (for P. miliaris,<br />

Gossel<strong>in</strong> & Jangoux 1998). Sperm from three males were pooled before <strong>the</strong>ir use for<br />

fertilization. Eggs from each female were distributed <strong>in</strong> –at least- one plastic Petri dish (15cm<br />

diameter) filled with seawater. Fertilization started by add<strong>in</strong>g 30µl of sperm from <strong>the</strong> same<br />

male pool to <strong>the</strong> Petri dishes. The fertilization quality was assessed by (1) <strong>the</strong> presence of <strong>the</strong><br />

fertilization membrane <strong>in</strong> at least 70% of <strong>the</strong> eggs after 1h at 14°C and (2) <strong>the</strong> success of <strong>the</strong><br />

first embryonic cleavage after 3h at 14°C. Zygotes from 3 to 5 females were mixed before use<br />

<strong>in</strong> <strong>the</strong> early <strong>de</strong>velopment assay.<br />

All assays were conducted simultaneously us<strong>in</strong>g <strong>the</strong> same mixed pooled of zygotes. The<br />

assays were performed <strong>in</strong> Falcon six-well plates. Two plates were used for each sampl<strong>in</strong>g<br />

station, one per studied species. For every station, 0.1g of <strong>the</strong> six sediment samples was ad<strong>de</strong>d<br />

to a correspond<strong>in</strong>g well. Then, 10ml of seawater and 250-300 embryos were ad<strong>de</strong>d <strong>in</strong> each<br />

well (f<strong>in</strong>al sediment concentration: 1% w:v). Control experiments were carried out by<br />

omitt<strong>in</strong>g <strong>the</strong> addition of sediments. Control experiments resulted <strong>in</strong> 67.4 ± 9.6% (mean ± sd,<br />

n=6) and 89.4 ± 3.7% (mean ± sd, n=6) of normal larvae of A. <strong>rubens</strong> and P. miliaris,<br />

respectively. Plates with <strong>de</strong>velop<strong>in</strong>g embryos were <strong>in</strong>cubated at 14°C for 72h. Offspr<strong>in</strong>g<br />

quality, expressed as percentage of normal larvae, was assessed by exam<strong>in</strong>ation of 100 larvae<br />

per well us<strong>in</strong>g an Olympus TO41 <strong>in</strong>verted light microscope. The morphological criteria used<br />

to dist<strong>in</strong>guish normal larvae from abnormal or retar<strong>de</strong>d larvae are adapted from Warnau and<br />

Pagano (1994). Normal larvae are kidney-shaped (A. <strong>rubens</strong>) or cone-shaped (P. miliaris). A<br />

complete archenteron and pairs of coelomic pouches are present. P. miliaris larvae also<br />

present two pairs of larval arms supported by skeletal rods. Abnormal larvae were affected by<br />

anomalies <strong>in</strong> shape, skeleton and/or <strong>in</strong>ternal cavities; <strong>de</strong>layed larvae showed unaltered larval<br />

morphology but were smaller (i.e. with a <strong>de</strong>layed <strong>de</strong>velopment) than normal larvae.<br />

Immune responses of <strong>Asterias</strong> <strong>rubens</strong><br />

Two essential parameters of <strong>the</strong> starfish immune system were consi<strong>de</strong>red, <strong>the</strong> coelomic<br />

amoebocyte concentration (CAC) and <strong>the</strong> production of reactive oxygen species (ROS) by<br />

amoebocytes. Amoebocytes ROS production was measured by <strong>the</strong> peroxidase,<br />

lum<strong>in</strong>ol–enhanced chemilum<strong>in</strong>escence method <strong>de</strong>veloped by Coteur et al. (2002a). Briefly,<br />

166


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

3ml of coelomic fluid were collected <strong>in</strong> an equal volume of anticoagulant buffer. The cell<br />

concentration was measured (by cell count<strong>in</strong>g on a Thoma haemocytometer), allow<strong>in</strong>g<br />

calculation of <strong>the</strong> CAC. This suspension was <strong>the</strong>n centrifuged and eventually resuspen<strong>de</strong>d <strong>in</strong><br />

Ca ++ , Mg ++ -free artificial seawater (CMFASW) to adjust amoebocyte concentration to 10 6<br />

cells ml -1 . A stock solution of lum<strong>in</strong>ol and horseradish peroxidase (HRP) <strong>in</strong> DMSO was<br />

freshly diluted 100 fold <strong>in</strong> artificial seawater (ASW, Sigma) (f<strong>in</strong>al concentrations of HRP and<br />

lum<strong>in</strong>ol were, respectively, 5x10 -1 mg ml -1 and 2.5x10 -1 mg ml -1 ). The reaction started by<br />

add<strong>in</strong>g 400µl of amoebocyte suspension <strong>in</strong> 500µl of lum<strong>in</strong>ol / HRP solution and 100µl of a<br />

Micrococcus luteus suspension (2.5x10 9 bacteria ml -1 ) <strong>in</strong> round bottom test tubes that were<br />

subsequently placed at 13°C. The chemilum<strong>in</strong>escence was measured (<strong>in</strong>tegration time per<br />

tube: 10sec) every 10m<strong>in</strong> over a two-hour period on a Lumat LB 9507 Lum<strong>in</strong>ometer<br />

(Berthold) equipped with a 100 fold attenuation filter. Results are expressed as <strong>the</strong> sum of all<br />

10m<strong>in</strong> <strong>in</strong>terval measurement for 10 6 cells ml -1 (total chemilum<strong>in</strong>escence) for stimulated<br />

amoebocytes.<br />

Data access<br />

Raw data used <strong>in</strong> this study are available <strong>in</strong> <strong>the</strong> IDOD database of <strong>the</strong> Management Unit of<br />

<strong>the</strong> Ma<strong>the</strong>matical Mo<strong>de</strong>l of <strong>the</strong> North <strong>Sea</strong> (Royal Belgian Institute of Natural Sciences)<br />

(http://www.mumm.ac.be/datacentre/) .<br />

Statistical analyses<br />

Differences <strong>in</strong> biological responses and contam<strong>in</strong>ation levels <strong>in</strong> <strong>the</strong> sediments and starfish<br />

body compartments among sampl<strong>in</strong>g stations were tested by analysis of variance (ANOVA),<br />

followed by <strong>the</strong> multiple comparison test of Tukey (Zar 1996). The level of significance was<br />

set at a = 0.05. When us<strong>in</strong>g <strong>the</strong> ANOVA test on <strong>the</strong> percentage of normal larvae, an arcs<strong>in</strong>-<br />

transformation of <strong>the</strong> data (x’=Arcs<strong>in</strong>[√x]) was carried out to ensure normality (Zar 1996).<br />

The relationship between contam<strong>in</strong>ation, environmental and biological variables was studied<br />

by multivariate statistics. In or<strong>de</strong>r to avoid highly <strong>in</strong>tercorrelated variables (which would<br />

<strong>in</strong>troduce a bias <strong>in</strong> <strong>the</strong> factor analysis), hierarchical cluster<strong>in</strong>g (s<strong>in</strong>gle l<strong>in</strong>kage method us<strong>in</strong>g<br />

Pearson distances) was realised on contam<strong>in</strong>ation and environmental variables (Manly 1986).<br />

Variables show<strong>in</strong>g distances below 0.2 (arbitrary limit) were grouped by summ<strong>in</strong>g <strong>the</strong>ir<br />

standardised values for each station. These variables (grouped or not) toge<strong>the</strong>r with biological<br />

ones were <strong>the</strong>n studied by factor analysis us<strong>in</strong>g <strong>the</strong> pr<strong>in</strong>cipal components method with an<br />

extraction matrix based on Pearson correlation coefficients and <strong>the</strong> "varimax" method of<br />

factor rotation (Manly 1986, Wilk<strong>in</strong>son 1988). Additionally, K-means cluster<strong>in</strong>g analysis was<br />

used to show <strong>the</strong> group<strong>in</strong>g of <strong>the</strong> sampl<strong>in</strong>g stations accord<strong>in</strong>g to <strong>the</strong> same variables (Manly<br />

167


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

1986, Wilk<strong>in</strong>son 1988). K-means cluster<strong>in</strong>g splits <strong>the</strong> set of stations <strong>in</strong>to a selected number of<br />

groups by maximiz<strong>in</strong>g between-cluster variation relative to with<strong>in</strong>-cluster variation (it is<br />

similar to do<strong>in</strong>g a one-way analysis of variance where <strong>the</strong> groups are unknown and <strong>the</strong> largest<br />

F value is sought by reassign<strong>in</strong>g members to each group). All statistical analysis were carried<br />

out us<strong>in</strong>g <strong>the</strong> Systat ® software (Wilk<strong>in</strong>son 1988).<br />

RESULTS<br />

Contam<strong>in</strong>ation level of <strong>the</strong> sampl<strong>in</strong>g sites<br />

As shown <strong>in</strong> Table 1, <strong>the</strong> fraction BW5≈BW6) and <strong>in</strong> LN1, while <strong>the</strong> lower levels<br />

were found <strong>in</strong> <strong>the</strong> stations LN3, LN5 and LN7 (Table 33). The discrim<strong>in</strong>ation of <strong>the</strong> stations<br />

was less obvious with <strong>the</strong> metal concentrations <strong>in</strong> <strong>the</strong>


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

SD 1.05 5.16 2.24 4.28 1.99 0.78 1.19 1.30 3.14 4.13 2.11<br />

Pb Means 13.7 36.1 33.0 40.3 18.8 29.9 20.5 24.1 47.2 22.2 39.4<br />

SD 12.6 9.0 15.7 32.4 6.5 6.2 10.2 10.6 3.0 7.5 4.6<br />

Zn Means 29.3 71.7 40.2 66.9 25.5 70.6 38.8 49.2 104.5 62.8 73.7<br />

SD 13.5 14.8 25.6 50.7 7.8 3.8 23.1 10.5 23.3 13.5 6.1<br />

-: miss<strong>in</strong>g samples (lost dur<strong>in</strong>g process<strong>in</strong>g)<br />

Table 33. Comparison of <strong>the</strong> metal concentrations, <strong>in</strong> <strong>the</strong> total and <strong>the</strong> 0.05, Tukey’s test).<br />

Metals <strong>in</strong> sediments p<br />

ANOVA<br />

Total fraction<br />

Cd


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

Table 34. Heavy metal concentrations (means and standard <strong>de</strong>viations, n=10) <strong>in</strong> <strong>the</strong> body wall and <strong>the</strong> pyloric<br />

caeca of <strong>the</strong> starfish <strong>Asterias</strong> <strong>rubens</strong> collected <strong>in</strong> Dutch and German stations <strong>in</strong> April 1999 (µg g -1 dry weight).<br />

Metals <strong>in</strong> A. <strong>rubens</strong> LN1 LN2 LN3 LN4 LN5 LN6 LN7 LN8 BW3 BW5 BW6<br />

Body wall<br />

Cd Means 0.26 0.29 0.38 0.29 0.31 0.34 0.43 0.35 0.32 0.41 0.33<br />

SD 0.11 0.11 0.17 0.13 0.12 0.10 0.13 0.14 0.13 0.06 0.12<br />

Cu Means 2.00 1.59 2.03 1.45 1.78 1.69 1.29 1.53 1.45 1.22 2.09<br />

SD 0.54 0.33 0.50 0.29 0.48 0.32 0.17 0.54 0.33 0.13 0.48<br />

Pb Means 0.71 0.72 1.18 0.77 1.48 0.89 1.26 1.81 0.99 1.22 1.13<br />

SD 0.27 0.21 0.44 0.20 0.54 0.26 0.66 1.68 0.39 0.27 0.32<br />

Zn Means 115.3 129.1 124.2 118.6 124.7 146.8 168.7 129.4 167.6 190.2 168.2<br />

SD 47.2 26.5 23.7 35.0 32.3 31.5 19.4 41.6 53.4 37.5 56.0<br />

Pyloric caeca<br />

Cd Means 0.59 0.53 0.33 0.60 0.43 0.62 0.56 0.81 0.95 0.41 0.77<br />

SD 0.22 0.20 0.19 0.36 0.28 0.39 0.21 0.35 0.81 0.34 0.66<br />

Cu Means 5.7 10.5 5.4 7.8 13.5 17.1 28.6 21.5 30.1 15.9 20.9<br />

SD 2.1 6.3 2.8 4.1 6.5 7.1 23.7 5.9 15.8 5.3 14.1<br />

Pb Means 0.57 0.78 1.45 0.97 1.90 1.20 1.53 1.65 1.33 1.83 1.38<br />

SD 0.19 0.36 1.14 0.42 0.99 0.48 0.76 0.44 0.69 0.69 0.77<br />

Zn Means 198.0 143.5 133.5 110.8 164.2 152.6 168.5 172.5 181.0 148.8 117.4<br />

SD 39.0 34.0 22.3 33.5 62.7 37.6 25.9 25.6 63.5 72.0 37.7<br />

The concentrations of metals <strong>in</strong> <strong>the</strong> starfish body wall were not significantly different among<br />

<strong>the</strong> stations (except for <strong>the</strong> higher concentration of Pb <strong>in</strong> <strong>the</strong> body wall of starfishes collected<br />

<strong>in</strong> LN8 compared to LN1, LN2 and LN4) (Table 35). The classification of <strong>the</strong> stations <strong>in</strong><br />

terms of metal concentrations <strong>in</strong> pyloric caeca varied from one metal to ano<strong>the</strong>r. For Cd and<br />

Cu, BW3 was characterized by <strong>the</strong> highest concentrations <strong>in</strong> contrast to <strong>the</strong> LN3 station. For<br />

Pb, <strong>the</strong> contam<strong>in</strong>ation level was significantly higher <strong>in</strong> LN5 compared to LN1, LN2 and LN4.<br />

For Zn, LN1 and BW3 were significantly more contam<strong>in</strong>ated than LN4 (Table 35).<br />

Table 35. Comparison of <strong>the</strong> metal concentrations, <strong>in</strong> <strong>the</strong> starfish body wall and pyloric caeca, measured <strong>in</strong> <strong>the</strong><br />

different stations. Stations which do not differ <strong>in</strong> terms of metal concentration are un<strong>de</strong>rl<strong>in</strong>ed (p>0.05, Tukey’s<br />

test). NS, not significant.<br />

Metals <strong>in</strong> A. <strong>rubens</strong> p<br />

ANOVA<br />

Body wall<br />

Cd NS LN<br />

7<br />

Cu NS BW<br />

6<br />

BW<br />

5<br />

LN<br />

3<br />

170<br />

LN<br />

3<br />

LN<br />

1<br />

LN<br />

8<br />

LN<br />

5<br />

Increas<strong>in</strong>g contam<strong>in</strong>ation<br />

BW<br />

6<br />

LN<br />

6<br />

LN<br />

6<br />

LN<br />

2<br />

BW<br />

3<br />

LN<br />

8<br />

LN<br />

5<br />

LN<br />

4<br />

LN<br />

2<br />

BW<br />

3<br />

LN<br />

4<br />

LN<br />

7<br />

LN<br />

1<br />

BW<br />

5


Pb 0.006 LN<br />

8<br />

Zn 0.005 BW<br />

5<br />

Pyloric caeca<br />

Cd 0.007 BW<br />

3<br />

Cu


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

PCB 153 Means 4.86 - 1.71 6.56 0.88 2.86 6.07 1.52 6.78 3.45 2.19<br />

SD - - 1.53 5.42 - 2.64 0.81 1.22 3.85 3.54 1.00<br />

PCB 138 Means 6.61 - 1.97 9.99 0.92 3.69 7.46 1.69 7.75 3.97 2.92<br />

SD - - 2.04 9.56 - 3.57 2.62 1.38 4.81 4.14 1.32<br />

PCB 180 Means 2.55 - 0.69 6.73 0.47 1.59 3.33 0.49 1.80 0.98 0.67<br />

SD - - 0.69 6.33 - 2.42 0.58 0.30 0.73 0.97 0.26<br />

Body wall<br />

PCB 28 Mean<br />

s<br />

87.6 68.6 50.5 51.7 68.4 62.1 - 50.7 66.5 73.6 53.5<br />

SD 32.7 36.2 31.1 30.2 20.8 33.4 - 24.9 32.8 34.8 26.6<br />

PCB 52 Mean<br />

s<br />

47.3 37.2 48.1 42.5 43.8 38.1 - 36.9 39.3 45.0 36.5<br />

SD 19.7 5.2 39.4 10.7 11.1 20.8 - 22.2 9.4 13.8 17.4<br />

PCB 101 Mean<br />

s<br />

88.9 92.2 74.6 122.5 75.3 98.6 - 64.1 73.7 62.0 50.9<br />

SD 23.3 15.5 20.2 49.2 16.6 26.1 - 14.7 12.9 13.9 21.3<br />

PCB 118 Mean<br />

s<br />

94.2 102.7 82.1 162.5 101.6 135.0 - 88.7 82.3 67.3 54.2<br />

SD 39.7 32.9 14.6 79.0 26.5 54.2 - 7.4 25.7 19.2 22.8<br />

PCB 153 Mean<br />

s<br />

307.0 371.8 288.0 533.6 275.9 368.4 - 275.2 331.1 198.5 155.0<br />

SD 162.1 123.1 88.5 196.7 74.2 145.8 - 55.5 100.2 30.2 103.4<br />

PCB 138 Mean<br />

s<br />

266.4 334.1 265.2 536.2 280.8 369.6 - 290.1 307.6 217.4 153.8<br />

SD 138.5 113.6 74.8 225.8 80.4 155.6 - 59.1 84.9 52.4 79.6<br />

PCB 180 Mean<br />

s<br />

11.2 14.3 20.4 23.1 11.3 17.3 - 10.3 15.3 10.9 21.0<br />

SD 9.3 11.2 13.0 11.3 6.0 9.6 - 3.9 2.3 1.5 29.9<br />

-: miss<strong>in</strong>g samples (not collected)<br />

Table 37. Comparison of <strong>the</strong> PCB congener concentrations, <strong>in</strong> <strong>the</strong> total sediments and starfish body wall,<br />

measured <strong>in</strong> <strong>the</strong> different stations. Stations which do not differ <strong>in</strong> terms of PCB congener concentrations are<br />

un<strong>de</strong>rl<strong>in</strong>ed (p>0.05, Tukey’s test). NS, not significant. Stations with <strong>in</strong>sufficient replicate samples were omitted.<br />

PCB congener p<br />

ANOVA<br />

Total sediments<br />

PCB 28 0.001 LN<br />

7<br />

PCB 52


PCB 153 NS BW<br />

3<br />

PCB 138 NS BW<br />

3<br />

PCB 180 NS LN<br />

7<br />

Body wall<br />

PCB 28 NS<br />

PCB 52 NS<br />

PCB 101 0.010 LN<br />

4<br />

PCB 118 0.018 LN<br />

4<br />

PCB 153 0.015 LN<br />

4<br />

PCB 138 0.018 LN<br />

4<br />

PCB 180 NS LN<br />

4<br />

Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

LN<br />

7<br />

LN<br />

7<br />

BW<br />

3<br />

LN<br />

6<br />

LN<br />

6<br />

LN<br />

2<br />

LN<br />

6<br />

BW<br />

6<br />

Early <strong>de</strong>velopment of A. <strong>rubens</strong> and P. miliaris<br />

Embryos of both <strong>the</strong> starfish A. <strong>rubens</strong> and <strong>the</strong> sea urch<strong>in</strong> P. miliaris were exposed, dur<strong>in</strong>g<br />

<strong>the</strong>ir <strong>de</strong>velopment, to sediments collected <strong>in</strong> <strong>the</strong> studied stations. For both species, a<br />

significant reduction <strong>in</strong> <strong>the</strong> percentages of normal larvae was observed when embryos were<br />

exposed to sediments of some stations (Fig. 2a and Table 8). This reduction was ma<strong>in</strong>ly due<br />

to <strong>in</strong>creased proportions of <strong>de</strong>layed larvae while <strong>the</strong> frequency of abnormal larvae rema<strong>in</strong>ed<br />

constant (data not shown). The <strong>de</strong>velopment assays performed with P. miliaris larvae clearly<br />

discrim<strong>in</strong>ated <strong>the</strong> LN stations, whose sediments <strong>in</strong>duced no <strong>de</strong>velopmental alterations, from<br />

<strong>the</strong> BW stations (<strong>in</strong> <strong>the</strong> plume of <strong>the</strong> Elbe and Weser rivers), whose sediments <strong>in</strong>duced <strong>the</strong><br />

lowest proportions of normal larvae of all assays (Fig. 2a and Table 8). In contrast, <strong>the</strong><br />

<strong>de</strong>velopment assay us<strong>in</strong>g A. <strong>rubens</strong> larvae <strong>in</strong>dicated that <strong>the</strong> percentages of normal larvae<br />

were significantly reduced by sediments of <strong>the</strong> LN2 station compared to three o<strong>the</strong>r LN<br />

173<br />

BW<br />

5<br />

BW<br />

5<br />

stations (LN1, LN7 and LN8) (Fig. 45a and Table 38).<br />

LN<br />

6<br />

LN<br />

2<br />

LN<br />

2<br />

LN<br />

6<br />

LN<br />

2<br />

LN<br />

3<br />

LN<br />

6<br />

LN<br />

6<br />

BW<br />

5<br />

LN<br />

1<br />

LN<br />

5<br />

BW<br />

3<br />

BW<br />

3<br />

LN<br />

6<br />

BW<br />

6<br />

BW<br />

6<br />

LN<br />

3<br />

LN<br />

5<br />

LN<br />

1<br />

LN<br />

1<br />

LN<br />

8<br />

BW<br />

3<br />

LN<br />

3<br />

LN<br />

3<br />

BW<br />

6<br />

LN<br />

3<br />

LN<br />

8<br />

LN<br />

3<br />

LN<br />

5<br />

LN<br />

2<br />

LN<br />

8<br />

LN<br />

8<br />

LN<br />

8<br />

BW<br />

3<br />

BW<br />

3<br />

LN<br />

5<br />

LN<br />

1<br />

LN<br />

5<br />

LN<br />

8<br />

LN<br />

3<br />

LN<br />

8<br />

LN<br />

3<br />

LN<br />

1<br />

BW<br />

5<br />

BW<br />

5<br />

BW<br />

5<br />

BW<br />

5<br />

BW<br />

5<br />

BW<br />

6<br />

BW<br />

6<br />

BW<br />

6<br />

BW<br />

6<br />

LN<br />

8


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

Figure 45. Biological responses measured <strong>in</strong> Dutch and German stations. (a) Effects of sediments on <strong>the</strong> early<br />

<strong>de</strong>velopment of <strong>Asterias</strong> <strong>rubens</strong> and Psammech<strong>in</strong>us miliaris (means + sd, n=6). (b) Immune responses of<br />

<strong>Asterias</strong> <strong>rubens</strong>: coelomic amoebocyte concentration (CAC) and bacteria-stimulated amoebocyte ROS<br />

production (RLU: Relative Light Units) (means + sd, n=10).<br />

Table 38. Comparison of <strong>the</strong> biological responses measured <strong>in</strong> <strong>the</strong> different stations. Stations which do not differ<br />

<strong>in</strong> terms of biological response are un<strong>de</strong>rl<strong>in</strong>ed (p>0.05, Tukey’s test).<br />

Test p<br />

ANOVA<br />

Embryotoxicity tests<br />

A. <strong>rubens</strong> (% normal<br />

larvae)<br />

P. miliaris (% normal<br />

larvae)<br />

Immunotoxicity test<br />

ROS production<br />

(10 3 RLU / 10 6 cells ml -1 )<br />

0.004 LN2 LN4 BW<br />

3<br />


Immune responses of <strong>Asterias</strong> <strong>rubens</strong><br />

Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

The starfishes collected <strong>in</strong> <strong>the</strong> different stations were assayed for two parameters of <strong>the</strong>ir<br />

immune system: <strong>the</strong> concentration of amoebocytes <strong>in</strong> <strong>the</strong> coelomic fluid (CAC) and <strong>the</strong><br />

production of reactive oxygen species (ROS) by bacteria-stimulated amoebocytes (Fig. 45b).<br />

The CAC did not differ significantly among starfishes from different stations (p ANOVA=0.437).<br />

This seems to be due to <strong>the</strong> high variability commonly associated to this physiological<br />

response. In contrast, <strong>the</strong> ROS production varied significantly among starfishes from <strong>the</strong><br />

studied stations (Table 38). The ROS production by starfishes collected <strong>in</strong> <strong>the</strong> BW stations (<strong>in</strong><br />

<strong>the</strong> Elbe/Weser zone) was <strong>the</strong> lowest and differed significantly from that measured <strong>in</strong> LN5<br />

and LN6 (Table 38). Among <strong>the</strong> LN stations, <strong>the</strong> lowest ROS response was measured <strong>in</strong><br />

starfishes from LN3 which differed significantly from <strong>the</strong> ROS production <strong>in</strong> starfishes from<br />

LN5 (Table 38).<br />

Integrated data analysis<br />

In total, 34 contam<strong>in</strong>ation and environmental variables were available for subsequent<br />

analyses. However, such large data sets are difficult to <strong>in</strong>terpret. Moreover, some of <strong>the</strong>se<br />

variables might be highly <strong>in</strong>tercorrelated (R pearson > 0.8), thus <strong>in</strong>troduc<strong>in</strong>g a bias <strong>in</strong> <strong>the</strong><br />

multivariate analyses. Consequently, a first approach was to <strong>de</strong>term<strong>in</strong>e highly correlated<br />

variables by hierarchical cluster<strong>in</strong>g (Fig. 46). Variables were grouped when <strong>the</strong>ir Pearson's<br />

distances were below 0.2. Six groups were apparent <strong>in</strong> this analysis: (1) metal levels <strong>in</strong> <strong>the</strong><br />


PB_A<br />

R<br />

MET_TOT_<br />

MO<br />

MET_INF6<br />

3<br />

TEMP_O<br />

X<br />

HIGH_P<br />

CB<br />

LOW_PC<br />

B<br />

PB_TEG<br />

PB_CP<br />

CD_TEG<br />

ZN_TEG<br />

CU_CP<br />

CD_CP<br />

CU_TOT<br />

PB_TOT<br />

ZN_TOT<br />

CD_TOT<br />

GRAN63<br />

PB_INF63<br />

ZN_INF63<br />

CU_INF63<br />

CD_INF63<br />

P180_TEG<br />

WAT_SAL<br />

CU_TEG<br />

WAT_OX<br />

WAT_TEMP<br />

P118_TEG<br />

P138_TEG<br />

P153_TEG<br />

P101_TEG<br />

P180_SED<br />

P118_SED<br />

P138_SED<br />

P153_SED<br />

P101_SED<br />

P52_SED<br />

P28_SED<br />

P28_TEG<br />

ZN_CP<br />

P52_TEG<br />

Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

0.0 0.1 0.2 0.3 0.4 0.5<br />

Distances<br />

Figure 46. Cluster tree of environmental and contam<strong>in</strong>ation variables. Variables show<strong>in</strong>g Pearson’s distance<br />

below 0.2 were grouped. Six groups were <strong>de</strong>term<strong>in</strong>ed: metals levels <strong>in</strong> <strong>the</strong>


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

Figure 47. Relationships between biological, environmental and contam<strong>in</strong>ation variables. All variables were<br />

used <strong>in</strong> a factor analysis us<strong>in</strong>g <strong>the</strong> pr<strong>in</strong>cipal component method. For abbreviations, see legend of Fig. 3.<br />

The first two factors accounted for 51.0% of <strong>the</strong> total variance of <strong>the</strong> data. A l<strong>in</strong>k between <strong>the</strong><br />

metal contam<strong>in</strong>ation levels of <strong>the</strong> total sediments and of <strong>the</strong> starfishes was observed. In<strong>de</strong>ed<br />

<strong>the</strong> MET_TOT_MO variable and some of <strong>the</strong> variables concern<strong>in</strong>g metal levels <strong>in</strong> A. <strong>rubens</strong><br />

organs were located along <strong>the</strong> X axis (represent<strong>in</strong>g <strong>the</strong> first factor; Fig. 47). However, this<br />

relationship was highly <strong>de</strong>pen<strong>de</strong>nt on <strong>the</strong> metal and <strong>the</strong> body compartment consi<strong>de</strong>red. The<br />

copper concentration <strong>in</strong> <strong>the</strong> pyloric caeca (CU CP) was l<strong>in</strong>ked with <strong>the</strong> MET_TOT_MO<br />

group whilst <strong>in</strong> <strong>the</strong> body wall (CU TEG) it was found <strong>in</strong> <strong>the</strong> opposite quadrant (Fig. 4). On<br />

<strong>the</strong> contrary, <strong>the</strong> concentration of z<strong>in</strong>c <strong>in</strong> <strong>the</strong> body wall (ZN TEG) was located along <strong>the</strong><br />

MET_TOT_MO vector on <strong>the</strong> X axis whilst <strong>in</strong> <strong>the</strong> pyloric caeca (ZN CP) it was located<br />

almost on <strong>the</strong> Y axis (Fig. 47). The PB_AR group was located close to <strong>the</strong> orig<strong>in</strong> of both axes<br />

<strong>in</strong>dicat<strong>in</strong>g that o<strong>the</strong>r factors than those analysed <strong>in</strong> this study <strong>in</strong>fluence <strong>the</strong> accumulation of Pb<br />

<strong>in</strong> A. <strong>rubens</strong> from <strong>the</strong> environment. The ROS production and <strong>the</strong> P. miliaris embryotoxicity<br />

parameters were l<strong>in</strong>ked with <strong>the</strong> metal contam<strong>in</strong>ation cluster (viz. <strong>the</strong>y are located on <strong>the</strong><br />

o<strong>the</strong>r end of <strong>the</strong> X axis compared to <strong>the</strong> metal contam<strong>in</strong>ation cluster; Fig. 47). The coelomic<br />

amoebocyte concentration (CAC) was found along <strong>the</strong> metal contam<strong>in</strong>ation vectors, although<br />

less clearly.<br />

TEMP_OX<br />

EMB_Pm<br />

LOW_PCB<br />

P52_TEG<br />

PLCL_stim<br />

P28_TEG<br />

1<br />

-1 1<br />

CU_TEG<br />

PB_AR CD_CP<br />

HIGH_PCB<br />

WAT_SAL<br />

P180_TEG<br />

-1<br />

FAC<br />

TOR<br />

1<br />

The Y axis (represent<strong>in</strong>g <strong>the</strong> second factor) comprised, at <strong>the</strong> negative end, <strong>the</strong> level of PCB<br />

congener #180 (<strong>the</strong> most highly chlor<strong>in</strong>ated congener studied) <strong>in</strong> <strong>the</strong> body wall of A. <strong>rubens</strong><br />

and, at <strong>the</strong> positive end, <strong>the</strong> level of PCB congener #28 (<strong>the</strong> most weakly chlor<strong>in</strong>ated<br />

177<br />

ZN_CP<br />

EMB_Ar<br />

CAC<br />

CD_TEG<br />

MET_TOT_MO<br />

MET_INF63<br />

CU_CP<br />

ZN_TEG


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

congener studied) <strong>in</strong> <strong>the</strong> body wall of <strong>the</strong> starfish (Fig. 47). The LOW_PCB variable ten<strong>de</strong>d to<br />

place itself on <strong>the</strong> positive part of this axis. The Y axis (factor 2) thus appears to <strong>de</strong>scribe<br />

mostly <strong>the</strong> duality <strong>in</strong> <strong>the</strong> chlor<strong>in</strong>ation pattern of PCB congeners with respect to <strong>the</strong><br />

contam<strong>in</strong>ation of <strong>the</strong> stations. This <strong>in</strong>terpretation is, however, less obvious than that of <strong>the</strong> X<br />

axis (factor 1). As <strong>de</strong>scribed above, <strong>the</strong> concentrations of highly chlor<strong>in</strong>ated PCB congeners<br />

<strong>in</strong> <strong>the</strong> sediments and <strong>in</strong> <strong>the</strong> starfish body wall were strongly <strong>in</strong>tercorrelated (and ga<strong>the</strong>red <strong>in</strong><br />

<strong>the</strong> HIGH_PCB group). Similarly, <strong>the</strong> concentrations of weakly chlor<strong>in</strong>ated PCB congeners<br />

(#28 and 52) <strong>in</strong> <strong>the</strong> starfish body wall were found <strong>in</strong> <strong>the</strong> same quadrant as <strong>the</strong> LOW_PCB<br />

group (#28, 52 and 101 <strong>in</strong> <strong>the</strong> sediments) <strong>in</strong>dicat<strong>in</strong>g a relationship between <strong>the</strong> levels of<br />

weakly chlor<strong>in</strong>ated PCB contam<strong>in</strong>ation of <strong>the</strong> sediment and of <strong>the</strong> starfishes (Fig. 4). The A.<br />

<strong>rubens</strong> embryotoxicity parameter is found on <strong>the</strong> positive part of <strong>the</strong> Y axis, suggest<strong>in</strong>g a l<strong>in</strong>k<br />

with <strong>the</strong> contam<strong>in</strong>ation by PCB congener #180. The position of o<strong>the</strong>r variables such as <strong>the</strong><br />

bottom water characteristics, <strong>the</strong> z<strong>in</strong>c level <strong>in</strong> <strong>the</strong> pyloric caeca of A. <strong>rubens</strong> or <strong>the</strong> levels of<br />

metals <strong>in</strong> <strong>the</strong> f<strong>in</strong>e fraction of <strong>the</strong> sediments are uneasy to <strong>in</strong>terpret.<br />

An attempt was ma<strong>de</strong> to classify <strong>the</strong> different sampl<strong>in</strong>g stations accord<strong>in</strong>g to <strong>the</strong> set of<br />

variables used <strong>in</strong> <strong>the</strong> factor analysis (biological, environmental and contam<strong>in</strong>ation variables).<br />

The K-means cluster<strong>in</strong>g method allows an objective group<strong>in</strong>g of <strong>the</strong>se stations <strong>in</strong> a user-<br />

<strong>de</strong>f<strong>in</strong>ed number of clusters. This technique, us<strong>in</strong>g three groups, <strong>in</strong>dicated that <strong>the</strong> three BW<br />

stations separated from a cluster ma<strong>de</strong> up of <strong>the</strong> LN1 to LN5 stations while <strong>the</strong> last group<br />

consisted <strong>in</strong> <strong>the</strong> LN6 to LN8 stations.<br />

DISCUSSION<br />

All four metals studied (Cd, Cu, Pb and Zn) showed a similar behaviour with respect to <strong>the</strong><br />

contam<strong>in</strong>ation of <strong>the</strong> sediments <strong>in</strong> <strong>the</strong> sampl<strong>in</strong>g stations. This may suggest that <strong>the</strong> differences<br />

<strong>in</strong> physico-chemical properties of <strong>the</strong> four metals are not a <strong>de</strong>term<strong>in</strong><strong>in</strong>g factor for <strong>the</strong><br />

contam<strong>in</strong>ation pattern of <strong>the</strong> stations. The concentrations of metals <strong>in</strong> <strong>the</strong> total sediments are<br />

also highly correlated with <strong>the</strong> percentage of <strong>the</strong> f<strong>in</strong>e fraction <strong>in</strong> <strong>the</strong> sediments (used to<br />

estimate <strong>the</strong> organic matter content). In<strong>de</strong>ed, this fraction is often <strong>the</strong> most contam<strong>in</strong>ated due<br />

to <strong>the</strong> large surface to volume ratio of f<strong>in</strong>e sediment gra<strong>in</strong>s and to its <strong>in</strong>creased organic matter<br />

content. Thus, <strong>the</strong> load of metals <strong>in</strong> <strong>the</strong> total sediments will <strong>in</strong>crease along with <strong>the</strong> percentage<br />

of <strong>the</strong> f<strong>in</strong>e fraction. The BW and LN1 stations showed <strong>the</strong> highest concentrations of metals <strong>in</strong><br />

<strong>the</strong> total sediments, probably reflect<strong>in</strong>g <strong>the</strong> <strong>in</strong>fluence of, respectively, <strong>the</strong> Elbe/Weser and <strong>the</strong><br />

Scheldt rivers. The metal concentration values <strong>in</strong> <strong>the</strong> sediments collected <strong>in</strong> <strong>the</strong> BW stations<br />

178


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

match closely those reported previously <strong>in</strong> <strong>the</strong> same stations (Cof<strong>in</strong>o et al. 1992) except for<br />

Cd that was 10 fold more concentrated <strong>in</strong> <strong>the</strong> sediments collected <strong>in</strong> <strong>the</strong> present study.<br />

The fact that metal concentrations <strong>in</strong> <strong>the</strong> sediments and <strong>in</strong> some of <strong>the</strong> starfish organs are<br />

l<strong>in</strong>ked confirms <strong>the</strong> <strong>in</strong>dicator value of A. <strong>rubens</strong>, <strong>the</strong> contam<strong>in</strong>ation of <strong>the</strong> starfishes reflect<strong>in</strong>g<br />

that of <strong>the</strong> environment. However, it rema<strong>in</strong>s unclear whe<strong>the</strong>r <strong>the</strong> l<strong>in</strong>k between sediment and<br />

starfish contam<strong>in</strong>ations reflects an accumulation of metals directly from <strong>the</strong> sediments or an<br />

<strong>in</strong>direct relationship. The transfer of metals from <strong>the</strong> sediments to <strong>the</strong> starfish might occur via<br />

<strong>the</strong> sediment <strong>in</strong>terstitial waters that are often more contam<strong>in</strong>ated than <strong>the</strong> water column<br />

(Burgess et al. 1992). However, <strong>in</strong> our hands, this relationship varied from one metal to<br />

ano<strong>the</strong>r suggest<strong>in</strong>g that <strong>the</strong> bioavailability of each metal is different. Moreover, each metal<br />

appeared to have an organ-specific accumulation pattern, except Pb, which was uniformly<br />

distributed <strong>in</strong> <strong>the</strong> pyloric caeca and body wall of A. <strong>rubens</strong>. Temara et al. (1997b) already<br />

showed that <strong>the</strong> body compartment is <strong>the</strong> factor expla<strong>in</strong><strong>in</strong>g <strong>the</strong> largest part of <strong>the</strong> variability<br />

associated to metal concentrations <strong>in</strong> <strong>the</strong> starfish A. <strong>rubens</strong>.<br />

The different polychlor<strong>in</strong>ated biphenyl (PCB) congeners separated <strong>in</strong>to two dist<strong>in</strong>ct groups<br />

with respect to <strong>the</strong> contam<strong>in</strong>ation of <strong>the</strong> sediments. The level of chlor<strong>in</strong>ation was found to be<br />

<strong>the</strong> dist<strong>in</strong>ctive feature of <strong>the</strong>se two groups. It has been recently shown that <strong>the</strong> organic carbon<br />

normalised partition coefficient (Kd) between sediment and water of PCB congeners<br />

<strong>in</strong>creased with <strong>the</strong> number of chlor<strong>in</strong>e atoms <strong>in</strong> such a way that weakly chlor<strong>in</strong>ated PCBs<br />

have a lower aff<strong>in</strong>ity for sediments compared to highly chlor<strong>in</strong>ated PCBs (Booij et al. 1997).<br />

Moreover, accord<strong>in</strong>g to <strong>the</strong> chlor<strong>in</strong>e substitution pattern, <strong>the</strong> <strong>de</strong>gradation and <strong>the</strong> transport of<br />

PCB congeners operate differently, weakly chlor<strong>in</strong>ated congeners be<strong>in</strong>g transported on a<br />

larger geographical scale (Boon et al. 1985, Brown et al. 1987, Bedard and May 1996). These<br />

differences <strong>in</strong> physico-chemical properties probably account for <strong>the</strong> group<strong>in</strong>g of <strong>the</strong><br />

congeners observed <strong>in</strong> <strong>the</strong> present study. The station located off <strong>the</strong> Ems river (i.e. LN7) was<br />

heavily contam<strong>in</strong>ated <strong>in</strong> weakly chlor<strong>in</strong>ated PCB congeners while highly chlor<strong>in</strong>ated PCB<br />

congeners appeared uniformly distributed. This suggests that <strong>the</strong> sources of PCB<br />

contam<strong>in</strong>ation which <strong>in</strong>fluence LN7 conta<strong>in</strong> a higher proportion of weakly chlor<strong>in</strong>ated<br />

congeners. The concentrations of <strong>in</strong>dividual congeners measured <strong>in</strong> <strong>the</strong> sediments are<br />

comprised <strong>in</strong> <strong>the</strong> concentration ranges previously reported for <strong>the</strong> North <strong>Sea</strong> (Skei 1994,<br />

Laane et al. 1999).<br />

The concentrations of PCB congeners <strong>in</strong> <strong>the</strong> starfish body wall could not be directly<br />

compared to those found <strong>in</strong> <strong>the</strong> literature s<strong>in</strong>ce <strong>the</strong> latter addressed <strong>the</strong> contam<strong>in</strong>ation of <strong>the</strong><br />

pyloric caeca or <strong>the</strong> whole body. A strong relationship was found between <strong>the</strong> concentrations<br />

179


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

of PCBs <strong>in</strong> <strong>the</strong> sediments and those <strong>in</strong> <strong>the</strong> body wall of <strong>the</strong> starfishes. Thus, A. <strong>rubens</strong> is able<br />

to reflect accurately <strong>the</strong> PCB contam<strong>in</strong>ation level of <strong>the</strong> environment. S<strong>in</strong>ce PCBs are highly<br />

hydrophobic and <strong>the</strong>ir concentration <strong>in</strong> seawater is very low (sediments constitute <strong>the</strong> ma<strong>in</strong><br />

reservoir of PCBs), <strong>the</strong> relationship between sediment and starfish contam<strong>in</strong>ations suggests<br />

that PCBs are directly accumulated from <strong>the</strong> sediments. This was previously shown <strong>in</strong><br />

laboratory experiments for <strong>the</strong> sediment-graz<strong>in</strong>g sea urch<strong>in</strong> Lytech<strong>in</strong>us pictus (Schweitzer et<br />

al. 2000). The accumulation of PCBs <strong>in</strong> <strong>the</strong> starfish body appears to be congener-<strong>de</strong>pen<strong>de</strong>nt;<br />

<strong>the</strong> correlation between sediments and starfish contam<strong>in</strong>ations was strong with respect to <strong>the</strong><br />

highly chlor<strong>in</strong>ated congeners, somewhat less for <strong>the</strong> weakly chlor<strong>in</strong>ated congeners and almost<br />

nonexistent for congener #180. The particular behaviour of congener #180 (<strong>the</strong> most highly<br />

chlor<strong>in</strong>ated congener studied) could be related to its substitution pattern (a 2,3,4,5-substitution<br />

on one biphenyl r<strong>in</strong>g) that was suggested to h<strong>in</strong><strong>de</strong>r its accumulation by starfishes<br />

(Knickmeyer et al. 1992). The relationship between concentrations of weakly chlor<strong>in</strong>ated<br />

PCBs <strong>in</strong> <strong>the</strong> sediments and <strong>in</strong> <strong>the</strong> starfish body wall was less obvious compared to <strong>the</strong> highly<br />

chlor<strong>in</strong>ated congeners, <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong> two groups of congeners are differentially<br />

bioaccumulated (i.e. differentially taken up and/or differentially elim<strong>in</strong>ated) by <strong>the</strong> starfish.<br />

Similarly, Knickmeyer et al. (1992) compared <strong>the</strong> PCB congener patterns <strong>in</strong> <strong>the</strong><br />

"zooplankton" and <strong>in</strong> <strong>the</strong> starfish A. <strong>rubens</strong> <strong>in</strong> or<strong>de</strong>r to study <strong>the</strong> bioaccumulation of specific<br />

congeners along <strong>the</strong> food cha<strong>in</strong>. They found that highly chlor<strong>in</strong>ated congeners (with <strong>the</strong><br />

exception of congener #180) were more efficiently accumulated <strong>in</strong> <strong>the</strong> starfish compared to<br />

weakly chlor<strong>in</strong>ated congeners. In eel (Anguilla anguilla), weakly chlor<strong>in</strong>ated congeners were<br />

more efficiently elim<strong>in</strong>ated than highly chlor<strong>in</strong>ated congeners (De Boer et al. 1994). These<br />

results suggest ei<strong>the</strong>r (or both) a more efficient uptake of highly chlor<strong>in</strong>ated congeners or a<br />

higher elim<strong>in</strong>ation (i.e. biotransformation) of weakly chlor<strong>in</strong>ated congeners.<br />

Biotransformation enzymes of <strong>the</strong> cytochrome P450 family have been <strong>de</strong>monstrated <strong>in</strong> A.<br />

<strong>rubens</strong> (Den Besten 1998). Hence, both mechanisms could be responsible for <strong>the</strong> weaker<br />

relationship between <strong>the</strong> levels of weakly chlor<strong>in</strong>ated congeners <strong>in</strong> <strong>the</strong> sediments and <strong>in</strong> <strong>the</strong><br />

body wall of A. <strong>rubens</strong>.<br />

The concentration of weakly chlor<strong>in</strong>ated PCB congeners <strong>in</strong> <strong>the</strong> body wall did not differ<br />

significantly among <strong>the</strong> stations. In contrast, <strong>the</strong> concentrations of highly chlor<strong>in</strong>ated PCB<br />

congeners <strong>in</strong> <strong>the</strong> starfish body wall were elevated <strong>in</strong> <strong>the</strong> LN4 station and lowest <strong>in</strong> <strong>the</strong> BW<br />

stations. This suggests that <strong>the</strong> Rh<strong>in</strong>e or <strong>the</strong> North <strong>Sea</strong> Canal are important sources of<br />

bioavailable, highly chlor<strong>in</strong>ated, congeners.<br />

180


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

The toxicity of sediments was studied us<strong>in</strong>g ech<strong>in</strong>o<strong>de</strong>rm <strong>de</strong>velopmental bioassays. The results<br />

of <strong>the</strong>se assays, performed with P. miliaris, are negatively related to metal concentrations <strong>in</strong><br />

<strong>the</strong> total fraction of <strong>the</strong> sediments (i.e. <strong>the</strong> fraction used <strong>in</strong> <strong>the</strong> assays). Heavy metals are<br />

known to <strong>in</strong>teract with fertilization process and embryonic <strong>de</strong>velopment of ech<strong>in</strong>o<strong>de</strong>rms (for a<br />

review, see Kobayashi 1995). In <strong>the</strong> present study, <strong>the</strong> highest metal concentrations <strong>in</strong> <strong>the</strong><br />

sediments were measured at <strong>the</strong> station off <strong>the</strong> Scheldt (LN1 station) and at <strong>the</strong> Elbe/Weser<br />

stations (BW stations). Hence, <strong>the</strong>se sediments form a reservoir of metals that appear to be<br />

toxic towards ech<strong>in</strong>o<strong>de</strong>rm embryos and larvae. Contam<strong>in</strong>at<strong>in</strong>g concentrations were probably<br />

much lower <strong>in</strong> <strong>the</strong> present study than those found to be embryotoxic <strong>in</strong> laboratory<br />

experiments. However, <strong>the</strong> observed toxicity could result from an additive effect and/or a<br />

synergy between <strong>the</strong> possible <strong>in</strong>fluences of different metals. It is <strong>in</strong><strong>de</strong>ed well documented that<br />

comb<strong>in</strong>ations of metals are generally more toxic than <strong>the</strong> <strong>in</strong>dividual components (Kobayashi<br />

and Fuj<strong>in</strong>aga 1976, Pagano et al. 1996). In this study, embryonic <strong>de</strong>velopment was never<br />

arrested <strong>in</strong> <strong>the</strong> presence of sediments but only <strong>de</strong>layed. Kobayashi (1995) reported <strong>the</strong> same<br />

effect when embryos were exposed to dissolved metals at very low concentrations.<br />

The higher sensitivity of sea urch<strong>in</strong> embryos (compared to starfish embryos) to metals could<br />

be partly expla<strong>in</strong>ed by <strong>the</strong> differentiation of a larval skeleton (Warnau & Pagano 1994).<br />

Unlike starfish larvae, sea urch<strong>in</strong> plutei <strong>de</strong>velop a larval skeleton dur<strong>in</strong>g <strong>the</strong>ir embryonic<br />

<strong>de</strong>velopment (Burke 1987). Dur<strong>in</strong>g this period, plutei are endotrophic and specifically take up<br />

calcium from seawater for skeletogenesis. Heavy metals could be taken up along with<br />

calcium. This is supported by <strong>the</strong> fact that some heavy metals compete with calcium fixation<br />

<strong>in</strong> <strong>the</strong> skeleton (Pagano et al. 1982, Temara et al. 1996) result<strong>in</strong>g <strong>in</strong> skeletal abnormalities<br />

(Pagano et al. 1982, 1986, Warnau & Pagano 1994). The results of <strong>de</strong>velopmental assays<br />

performed with A. <strong>rubens</strong> seem to be l<strong>in</strong>ked to <strong>the</strong> level of PCB congener #180. As many<br />

chemicals, PCBs have an <strong>in</strong>hibitory effect on ech<strong>in</strong>o<strong>de</strong>rm <strong>de</strong>velopment at high concentrations<br />

(Pagano et al. 1986, Den Besten et al. 1989). The <strong>de</strong>velopmental <strong>de</strong>fects are generally similar<br />

to those observed with heavy metals (Kobayashi 1995). Tests us<strong>in</strong>g A. <strong>rubens</strong> embryos do not<br />

discrim<strong>in</strong>ate <strong>the</strong> stations as clearly as those us<strong>in</strong>g P. miliaris. However, <strong>the</strong> ma<strong>in</strong> effects were<br />

observed <strong>in</strong> <strong>the</strong> stations off <strong>the</strong> Rh<strong>in</strong>e/North <strong>Sea</strong> Canal (LN4 and, to a lesser extent, LN2)<br />

where maximum PCB concentrations <strong>in</strong> <strong>the</strong> starfishes were measured. Fur<strong>the</strong>r studies are<br />

nee<strong>de</strong>d <strong>in</strong> or<strong>de</strong>r to confirm <strong>the</strong> impact of PCBs on <strong>the</strong> <strong>de</strong>velopment of A. <strong>rubens</strong> <strong>in</strong> field<br />

conditions.<br />

The impact of <strong>the</strong> contam<strong>in</strong>ation on adult specimens of A. <strong>rubens</strong> were studied by measur<strong>in</strong>g<br />

<strong>the</strong>ir immune responses, consi<strong>de</strong>r<strong>in</strong>g <strong>the</strong> importance of <strong>the</strong>se responses for <strong>the</strong> survival of<br />

181


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

<strong>the</strong>se animals. The production of ROS by <strong>the</strong> amoebocytes of A. <strong>rubens</strong> was <strong>in</strong>hibited both <strong>in</strong><br />

<strong>the</strong> stations off <strong>the</strong> Elbe/Weser rivers (BW stations) and off <strong>the</strong> North <strong>Sea</strong> Canal (LN3).<br />

Moreover, this immune response was l<strong>in</strong>ked with <strong>the</strong> levels of metals <strong>in</strong> <strong>the</strong> sediments and <strong>in</strong><br />

<strong>the</strong> starfish organs. The impact of mar<strong>in</strong>e contam<strong>in</strong>ants on ROS production by <strong>in</strong>vertebrate<br />

immunocytes is highly variable from one study to ano<strong>the</strong>r, rang<strong>in</strong>g from almost total<br />

suppression to significant stimulation or absence of effect (see Baier-An<strong>de</strong>rson & An<strong>de</strong>rson<br />

2000 for a review). In flatfishes, <strong>the</strong> ROS produced by hepatocytes <strong>in</strong>creased along an<br />

<strong>in</strong>creas<strong>in</strong>g gradient of pollution <strong>in</strong> <strong>the</strong> German Bight (i.e. along BW stations) <strong>de</strong>scribed dur<strong>in</strong>g<br />

<strong>the</strong> Bremerhaven Workshop (Moore 1992). In starfishes, <strong>the</strong> ROS production was enhanced<br />

by contam<strong>in</strong>ation with dietary cadmium while it was <strong>in</strong>hibited <strong>in</strong> starfishes transferred from a<br />

reference site to a heavily metal-contam<strong>in</strong>ated site (Coteur 2002, Coteur et al. <strong>in</strong> press). The<br />

effects of metals on this immune response might thus occur by complex, possibly <strong>in</strong>teract<strong>in</strong>g,<br />

mechanisms <strong>in</strong>stead of by a direct, target-specific action on <strong>the</strong> immune cells that would<br />

hardly expla<strong>in</strong> such variable effects.<br />

The amoebocyte ROS production is enhanced by PCB contam<strong>in</strong>ation of sea urch<strong>in</strong>s or<br />

starfishes (Coteur et al. 2001; Danis et al. Chap. III.1, III.3, III.4). However, among <strong>the</strong><br />

different congeners tested by <strong>the</strong>se authors, only coplanar (non-ortho-substituted) congeners<br />

were effective. The absence of a correlation between A. <strong>rubens</strong> ROS production and PCB<br />

contam<strong>in</strong>ation, as observed <strong>in</strong> this study, might thus reflect this congener specific action s<strong>in</strong>ce<br />

non-ortho-substituted PCBs were not measured.<br />

The concentration of immunocytes <strong>in</strong> <strong>the</strong> body fluids has long been used for ecotoxicological<br />

studies <strong>in</strong> <strong>in</strong>vertebrates. In contrast to o<strong>the</strong>r cellular responses, <strong>the</strong> impact of xenobiotics on<br />

<strong>the</strong> immunocyte concentration is generally constant and consists of an <strong>in</strong>crease of this<br />

parameter upon <strong>in</strong> vivo metal exposure (Coles et al. 1995) or upon complex <strong>in</strong> situ exposure<br />

(Pipe et al. 1995). In ech<strong>in</strong>o<strong>de</strong>rms, <strong>the</strong> amoebocyte concentration was <strong>in</strong>creased by <strong>in</strong> vivo<br />

contam<strong>in</strong>ation with dissolved cadmium or by <strong>in</strong> situ exposure along a metal contam<strong>in</strong>ation<br />

gradient (Coteur 2002, Coteur et al. 2003b). In contrast, <strong>in</strong> <strong>the</strong> present study, <strong>the</strong> CAC did not<br />

differ significantly among starfishes from <strong>the</strong> different stations; nei<strong>the</strong>r did it correlate with<br />

<strong>the</strong> metal or PCB contam<strong>in</strong>ation levels. However, <strong>the</strong> large variability associated to this<br />

immune parameter as well as its sensitivity to o<strong>the</strong>r types of stress (Coteur et al. 2004)<br />

probably prevents an obvious relationship with <strong>the</strong> contam<strong>in</strong>ation levels of <strong>the</strong> stations.<br />

Previous work <strong>in</strong> <strong>the</strong> Sou<strong>the</strong>rn North <strong>Sea</strong> by <strong>de</strong>n Besten et al. (2001) showed that molecular<br />

biomarkers <strong>in</strong> A. <strong>rubens</strong> discrim<strong>in</strong>ated <strong>the</strong> Elbe and Scheldt plumes <strong>in</strong> comparison with off-<br />

shore stations <strong>in</strong> <strong>the</strong> central North <strong>Sea</strong>. However, <strong>the</strong>se biomarkers did not differ significantly<br />

182


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

between coastal stations (ei<strong>the</strong>r <strong>in</strong> <strong>the</strong> river plumes or not). On <strong>the</strong> contrary, <strong>the</strong><br />

<strong>de</strong>velopmental assays and immune responses, <strong>in</strong>vestigated <strong>in</strong> <strong>the</strong> present study, allowed <strong>the</strong><br />

dist<strong>in</strong>ction of sediment toxicity among <strong>the</strong> different coastal stations. Altoge<strong>the</strong>r, <strong>the</strong> biological<br />

responses measured <strong>in</strong> this study characterized three areas: <strong>the</strong> area off <strong>the</strong><br />

Scheldt/Rh<strong>in</strong>e/North <strong>Sea</strong> Canal and <strong>the</strong> area off <strong>the</strong> Elbe/Weser rivers, where biological<br />

responses were affected, and <strong>the</strong> area located between <strong>the</strong> North <strong>Sea</strong> Canal and <strong>the</strong> Weser<br />

plume, where no biological impact was found. However, each biological response was<br />

differentially modulated by <strong>the</strong> contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong>se areas. The ROS production was clearly<br />

affected <strong>in</strong> <strong>the</strong> stations located off <strong>the</strong> Elbe/Weser estuaries (BW stations) and, to a lesser<br />

extent, <strong>in</strong> <strong>the</strong> station off <strong>the</strong> North <strong>Sea</strong> Canal (LN3 station). The early <strong>de</strong>velopment of P.<br />

miliaris was affected only <strong>in</strong> <strong>the</strong> Elbe/Weser zone. The A. <strong>rubens</strong> <strong>de</strong>velopment was impaired<br />

<strong>in</strong> <strong>the</strong> station located off <strong>the</strong> Rh<strong>in</strong>e (LN2). It thus appears that <strong>the</strong> high contam<strong>in</strong>ations <strong>in</strong> <strong>the</strong><br />

area off <strong>the</strong> Scheldt/Rh<strong>in</strong>e/North <strong>Sea</strong> Canal and <strong>in</strong> <strong>the</strong> area off <strong>the</strong> Elbe/Weser rivers are<br />

different <strong>in</strong> term of biological impact. An exclusive study of <strong>the</strong> contam<strong>in</strong>ant concentrations<br />

<strong>in</strong> <strong>the</strong>se stations is <strong>the</strong>refore not sufficient to reflect efficiently <strong>the</strong> potential risk for<br />

ech<strong>in</strong>o<strong>de</strong>rm populations. In contrast, when various biological responses are <strong>in</strong>clu<strong>de</strong>d <strong>in</strong> a<br />

global analysis of <strong>the</strong> stations, it is possible to <strong>de</strong>scribe biologically <strong>de</strong>leterious<br />

contam<strong>in</strong>ations.<br />

It is conclu<strong>de</strong>d that both metals and PCBs are bioavailable to <strong>the</strong> starfish A. <strong>rubens</strong> <strong>in</strong> <strong>the</strong><br />

consi<strong>de</strong>red area and that <strong>the</strong> contam<strong>in</strong>ation of <strong>the</strong> starfish closely reflects that of <strong>the</strong><br />

sediments. However, bioaccumulation is element-specific for metals and <strong>de</strong>pends on <strong>the</strong><br />

chlor<strong>in</strong>ation pattern for PCBs. The sediment-associated contam<strong>in</strong>ants appeared to be toxic <strong>in</strong><br />

both <strong>the</strong> A. <strong>rubens</strong> and P. miliaris <strong>de</strong>velopmental bioassays which showed a high sensitivity<br />

as compared to molecular biomarkers <strong>in</strong> A. <strong>rubens</strong>. Moreover, metals were shown to affect<br />

<strong>the</strong> immune responses of starfishes liv<strong>in</strong>g <strong>in</strong> contam<strong>in</strong>ated stations.<br />

ACKNOWLEDGEMENTS<br />

The authors wish to thank Prof. Pierre Rasmont for his helpful advice concern<strong>in</strong>g multivariate<br />

analysis and Mrs Mitra Razmjoo for review<strong>in</strong>g <strong>the</strong> English writ<strong>in</strong>g. We also wish to thank <strong>the</strong><br />

capta<strong>in</strong> and <strong>the</strong> crew of <strong>the</strong> A962 R.V. Belgica. G. Coteur and B. Danis are hol<strong>de</strong>rs of a FRIA<br />

doctoral grant. P. Gossel<strong>in</strong> and P. Wantier were researchers f<strong>in</strong>anced by <strong>the</strong> “Service <strong>de</strong>s<br />

affaires Scientifiques, Techniques et Culturelles” (SSTC) of <strong>the</strong> Belgian government. Ph.<br />

Dubois and M. Warnau are, respectively, Research Associate and Honorary Research<br />

183


Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators of sediment-associated metals and PCBs<br />

associate of <strong>the</strong> National Fund for Scientific Research (NSFR, Belgium). Research supported<br />

by a Belgian fe<strong>de</strong>ral research program (SSTC, contract MN/11/30). Contribution of <strong>the</strong><br />

“Centre Interuniversitaire <strong>de</strong> Biologie Mar<strong>in</strong>e” (CIBIM).<br />

184


Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

IV.4 Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and<br />

sea stars of <strong>the</strong> <strong>in</strong>tertidal zone <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn North <strong>Sea</strong> and <strong>the</strong> Channel<br />

Danis B a , Debacker V b , Trujilo Miranda C b & Dubois Ph a<br />

a : Mar<strong>in</strong>e Biology Laboratory (CP 160/15), Free University of Brussels, 50 avenue F.D.<br />

Roosevelt, B-1050 <strong>Bruxelles</strong>, Belgium<br />

b : Laboratoire <strong>de</strong> Spectroscopie <strong>de</strong> Masse, Centre for Analysis of Residues <strong>in</strong> Traces<br />

(CART), University of Liège B6c, B-4000 Liège, Belgium<br />

185


ABSTRACT<br />

Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

There is consi<strong>de</strong>rable concern regard<strong>in</strong>g diox<strong>in</strong>-like compounds (DLCs) <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e<br />

environment: <strong>the</strong>se ubiquitous contam<strong>in</strong>ants are highly resistant to <strong>de</strong>gradation, highly<br />

accumulated by mar<strong>in</strong>e organisms and extremely toxic. Concentrations of diox<strong>in</strong>-like<br />

compounds (DLCs) <strong>in</strong>clud<strong>in</strong>g 7 polychlorodibenzo-p-diox<strong>in</strong>s, 10 polychlorodibenzofurans<br />

and 4 coplanar polychlor<strong>in</strong>ated biphenyls were <strong>de</strong>term<strong>in</strong>ed <strong>in</strong> sediments, mussels (Mytilus<br />

edulis) and sea stars (<strong>Asterias</strong> <strong>rubens</strong>) from 5 <strong>in</strong>tertidal stations distributed along <strong>the</strong> Belgian<br />

coast and Channel. The <strong>in</strong>duction of a biomarker, cytochrome P450 immunopositive prote<strong>in</strong><br />

(CYP1A IPP), was also measured <strong>in</strong> sea star pyloric caeca. Although no significant<br />

differences were found between <strong>the</strong> consi<strong>de</strong>red stations, DLC levels were found to be<br />

relatively high <strong>in</strong> biota, especially when consi<strong>de</strong>r<strong>in</strong>g <strong>the</strong> toxicity of <strong>the</strong>se compounds.<br />

Particular concern arises from TEQ values <strong>de</strong>term<strong>in</strong>ed <strong>in</strong> mussels from all locations. <strong>Sea</strong> stars<br />

were found to be more discrim<strong>in</strong>ant between <strong>the</strong> stations. CYP1A IPP <strong>in</strong>duction was found to<br />

be significantly related to DLC levels measured <strong>in</strong> sea stars, and allowed a significant<br />

discrim<strong>in</strong>ation between <strong>the</strong> consi<strong>de</strong>red stations.<br />

KEYWORDS<br />

PCDDs, PCDFs, PCBs, <strong>Asterias</strong> <strong>rubens</strong>, Mytilus edulis, sediments, North <strong>Sea</strong><br />

186


INTRODUCTION<br />

Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

A wi<strong>de</strong> variety of toxic compounds are known to be present <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e environment, at <strong>the</strong><br />

global scale (Clark 1997). Some of <strong>the</strong>se compounds have a natural orig<strong>in</strong> while o<strong>the</strong>rs result<br />

exclusively from anthropogenic activity. These contam<strong>in</strong>ants can be dissolved <strong>in</strong> water,<br />

bound to sediments, or accumulated <strong>in</strong> mar<strong>in</strong>e organisms (Lohse 1991, Elijarrat et al. 1991).<br />

The highest concentrations are usually found <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of harbours or estuaries, where<br />

rivers dra<strong>in</strong> toxicants to <strong>the</strong> sea. Some contam<strong>in</strong>ants, because of <strong>the</strong>ir physico-chemical<br />

properties, have become truly ubiquitous, and have been <strong>de</strong>tected even <strong>in</strong> <strong>the</strong> most remote<br />

locations, such as <strong>the</strong> polar regions, or <strong>the</strong> <strong>de</strong>ep sea (Ballschmiter et al. 1997, Stegeman et al.<br />

2001). Polychlor<strong>in</strong>ated dibenzo-p-diox<strong>in</strong>s (PCDDs), dibenzofurans (PCDFs) and biphenyls<br />

(PCBs) are three families of such global contam<strong>in</strong>ants. The most toxic member of <strong>the</strong>se<br />

families is <strong>the</strong> 2,3,7,8-tetrachloro-dibenzo-p-diox<strong>in</strong> (2,3,7,8-TCDD). This component, and its<br />

chemical relatives, are known to cause pleiotropic responses, at very low doses, <strong>in</strong> a range of<br />

organisms (Payne et al. 1987, Ashley et al. 1996, Behnish et al. 2001). As a consequence,<br />

<strong>the</strong>re is now consi<strong>de</strong>rable public, politic and scientific concern regard<strong>in</strong>g exposure to diox<strong>in</strong>-<br />

like compounds (DLCs), which <strong>in</strong>clu<strong>de</strong> 7 PCDD, 10 PCDF and 12 PCB congeners (WHO<br />

1999, US EPA 2000a,b). These compounds comb<strong>in</strong>e a high resistance to <strong>de</strong>gradation<br />

(biological, chemical, or physical), efficient accumulation by mar<strong>in</strong>e organisms and severe<br />

toxicity. This results <strong>in</strong> serious health hazards for organisms and ecosystems, <strong>in</strong>clud<strong>in</strong>g man,<br />

through consumption of contam<strong>in</strong>ated seafood. Cytochrome P450 (CYP1A) <strong>in</strong>duction is<br />

usually consi<strong>de</strong>red as an early biomarker of contam<strong>in</strong>ation by DLCs (Bucheli & Fent 1995,<br />

Stegeman 1995, Hahn 2002a). The ma<strong>in</strong> function of <strong>the</strong> CYP1A-<strong>de</strong>pen<strong>de</strong>nt monooxygenase<br />

system is to convert relatively <strong>in</strong>soluble organic compounds to soluble metabolites that are<br />

eventually elim<strong>in</strong>ated. However, <strong>the</strong> result<strong>in</strong>g products can be more toxic than <strong>the</strong> parent<br />

compounds (Walker & Peterson 1994).<br />

Mussels and sea stars are <strong>in</strong>terest<strong>in</strong>g test organisms because <strong>the</strong>y are ra<strong>the</strong>r ubiquitous and<br />

se<strong>de</strong>ntary and play an important role <strong>in</strong> structur<strong>in</strong>g several benthic ecosystems (Menge 1982,<br />

Saier 2001). The blue mussel (Mytilus edulis) has been extensively used as a bio<strong>in</strong>dicator<br />

species <strong>in</strong> monitor<strong>in</strong>g programmes (e.g. <strong>the</strong> Mussel Watch). This program began <strong>in</strong> 1986 to<br />

monitor spatial and temporal trends of chemical contam<strong>in</strong>ation by chemically analyz<strong>in</strong>g<br />

mussels (and oysters) collected at fixed sites throughout <strong>the</strong> coastal United States (Goldberg<br />

et al. 1978). Monitor<strong>in</strong>g programmes us<strong>in</strong>g bivalves have also been adopted <strong>in</strong> Europe<br />

(French “RNO” programme). The common sea star (<strong>Asterias</strong> <strong>rubens</strong>, L.) has been used as a<br />

candidate species for monitor<strong>in</strong>g a range of contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> (Everaarts et al.<br />

187


Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

1998, <strong>de</strong>n Besten et al. 2001, Coteur et al. 2003a, Stronkhorst et al. 2003). The effects of<br />

contam<strong>in</strong>ants on its reproductive success (<strong>de</strong>n Besten et al. 1989), <strong>de</strong>velopment (Kobayashi<br />

1995, Coteur et al. 2003a), immune system (Coteur et al. 2003a,b, Danis et al. Chap. III.4),<br />

and DNA <strong>in</strong>tegrity (Sarkar & Everaarts 1995) have been well studied. Available data on<br />

mussels <strong>in</strong>dicate that DLC compounds are accumulated by <strong>the</strong>se organisms, although<br />

apparently not at levels directly dangerous for human health (Karl et al. 2002, Knutzen et al.<br />

2003). Data on DLC levels <strong>in</strong> sea stars are completely lack<strong>in</strong>g. However, recent experimental<br />

studies showed that diox<strong>in</strong>-responsiveness of a CYP1A immunopositive prote<strong>in</strong> (CYP1A<br />

IPP) can be measured <strong>in</strong> sea stars us<strong>in</strong>g a specially <strong>de</strong>veloped ELISA (Danis et al. Chap.<br />

III.4).<br />

The goal of <strong>the</strong> present study is to compare <strong>the</strong> <strong>in</strong>formation provi<strong>de</strong>d by a chemical approach<br />

(measur<strong>in</strong>g DLCs <strong>in</strong> sediments and biota) and by a biomarker (<strong>the</strong> measurement of CYP1A<br />

IPP <strong>in</strong>duction <strong>in</strong> sea stars) for assess<strong>in</strong>g <strong>the</strong> impact of DLCs <strong>in</strong> <strong>in</strong>tertidal stations of <strong>the</strong><br />

sou<strong>the</strong>rn North <strong>Sea</strong> and <strong>the</strong> Channel. The <strong>in</strong>tertidal zone <strong>in</strong> this region is often structured by<br />

mussels and sea stars, is touristically important, and amateur mussels ga<strong>the</strong>r<strong>in</strong>g represents a<br />

regular hobby.<br />

MATERIALS AND METHODS<br />

Field trips and sample preparation<br />

All samples were collected between October and November 2001. Two replicates of <strong>the</strong><br />

upper 5 cm layer of <strong>the</strong> sediments were collected <strong>in</strong> 5 <strong>in</strong>tertidal stations, along <strong>the</strong> French and<br />

Belgian coasts (Table 39), and immediately frozen (-20°C) <strong>in</strong> 400 ml polypropylene<br />

conta<strong>in</strong>ers. <strong>Sea</strong> stars (A. <strong>rubens</strong>) and mussels (M. edulis) were collected by hand (seashore<br />

fish<strong>in</strong>g) <strong>in</strong> <strong>the</strong> same stations.<br />

Table 39. Positions and characteristics of <strong>the</strong> sampl<strong>in</strong>g stations<br />

Station co<strong>de</strong><br />

Coord<strong>in</strong>ates<br />

(N)(E)<br />

188<br />

Sal<strong>in</strong>ity<br />

(‰)<br />

Ambleteuse 50°44.50 1°35.00 33.0<br />

Nieuwpoort 51°08.80 2°42.80 32.5<br />

Oosten<strong>de</strong> 51°13.80 2°54.40 32.0<br />

Wendu<strong>in</strong>e<br />

Knokke<br />

51° 17.80<br />

51°20.80<br />

3°04.40<br />

3°17.80<br />

32.7<br />

32.0


Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

Only specimens belong<strong>in</strong>g to <strong>the</strong> same size-class (5-7 cm from <strong>the</strong> tip of <strong>the</strong> arm to <strong>the</strong> centre<br />

of <strong>the</strong> mouth for sea stars and 3-4 cm shell length for mussels) were consi<strong>de</strong>red. <strong>Sea</strong> stars<br />

collected for contam<strong>in</strong>ants analysis were dissected and pyloric caeca were pooled by 5 (3<br />

pools per station) and frozen at -20°C until analysis. Pyloric caeca of 3 <strong>in</strong>dividuals per pool<br />

were sub-sampled (approx. 1 ml) for CYP1A immunopositive prote<strong>in</strong> (CYP1A IPP)<br />

measurements. These sub-samples (n=9) were frozen <strong>in</strong> liquid nitrogen and transferred to a<br />

<strong>de</strong>ep freezer (-80°C). Collected mussels (3 pools per station; ca. 1kg fresh wt with shells per<br />

pool) were washed with seawater, and frozen with <strong>the</strong> shell (-20°C) before analysis.<br />

PCDD/Fs analysis<br />

All analyses were carried out <strong>in</strong> <strong>the</strong> Laboratory of Mass Spectrometry, Centre for <strong>the</strong> Analysis<br />

of Trace Residues (CART), University of Liège (ISO-17025 accreditation, certificat n°212-<br />

T), us<strong>in</strong>g <strong>the</strong> method <strong>de</strong>scribed by Focant et al. (2001).<br />

Briefly, samples were extracted us<strong>in</strong>g an Accelerated Solvent Extractor (ASE 200, Dionex),<br />

before gravimetricallly <strong>de</strong>term<strong>in</strong><strong>in</strong>g <strong>the</strong>ir lipid content. After dissolv<strong>in</strong>g <strong>the</strong> extracts <strong>in</strong><br />

hexane/dichloromethane (1:1, 50 ml) fat extracts were spiked with 10 µl of <strong>the</strong> <strong>in</strong>ternal<br />

standard (17 13 C-labelled PCDD/F congeners, EDF-4144, LGC Promotion and 4 13 C-labelled<br />

c-PCB congeners, Campro Scientific WP-LCS).<br />

An HCDS column (disposable silica; 28 g acidic, 16 g basic, 6 g neutral) was ad<strong>de</strong>d to <strong>the</strong><br />

classical Power-Prep set of columns (multi-layer silica columns (4 g acid, 2 g base and 1.5 g<br />

neutral), basic alum<strong>in</strong>a (8 g) and PX-21 (2 g) carbon column), all manufactured by Fluid<br />

Management System (USA). Seventeen PCDD/Fs congeners, and 4 coplanar PCBs (IUPAC<br />

#77, 81, 126, 169) were quantified <strong>in</strong> <strong>the</strong> samples us<strong>in</strong>g a gas chromatography column<br />

coupled to a high resolution mass spectrometer (GC-HRMS, Autospec, Ultima). The mass<br />

spectrometer was operated <strong>in</strong> <strong>the</strong> electron impact ionization mo<strong>de</strong> us<strong>in</strong>g selected ion<br />

monitor<strong>in</strong>g (SIM).<br />

Results were expressed ei<strong>the</strong>r as pg g -1 of lipid weight or <strong>in</strong> terms of toxicity, us<strong>in</strong>g WHO fish<br />

TEF (Van <strong>de</strong>n Berg et al. 1998) as pg WHO TEQ g -1 of lipids weight. Quality controls (QCs)<br />

were performed follow<strong>in</strong>g <strong>the</strong> EN1948-3 norms, for both samples and blanks (Focant et al.<br />

2001).<br />

Adaptation of <strong>the</strong> procedure to analyze sediment samples<br />

Sediment samples were analyzed as a whole without previous siev<strong>in</strong>g. However, prior to<br />

analysis, large shell fragments were removed. Samples (ca. 30g) were weighed and dried<br />

overnight <strong>in</strong> an oven (75°C). Samples were extracted us<strong>in</strong>g <strong>the</strong> ASE system, us<strong>in</strong>g toluene<br />

189


Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

<strong>in</strong>stead of hexane/dichloromethane as <strong>the</strong> extract<strong>in</strong>g solvent. The follow<strong>in</strong>g steps were<br />

conducted as above.<br />

Cytochrome P450 immunopositive prote<strong>in</strong> (CYP1A IPP) <strong>in</strong>duction<br />

CYP1A IPP <strong>in</strong>duction was quantified us<strong>in</strong>g competitive ELISA (Danis et al Chap. III.4). The<br />

ELISA was carried out us<strong>in</strong>g competition for anti-CYP1A antibodies between <strong>the</strong> CYP1A<br />

immunopositive prote<strong>in</strong> from sea star samples and biot<strong>in</strong>ylated ß-naphtoflavone (BNF)-<br />

<strong>in</strong>jected trout (Oncorhyncus mykiss) microsomes display<strong>in</strong>g high concentrations of CYP1A<br />

(Biosense, Norway). Multiwell plates were coated with anti-CYP1A (rabbit anti-fish CYP1A<br />

pepti<strong>de</strong>, polyclonal antibody purchased from Biosense, Norway). Wells were washed with<br />

phosphate-buffered sal<strong>in</strong>e (PBS, Sigma, Europe), and nonspecific b<strong>in</strong>d<strong>in</strong>g sites were blocked<br />

with PBS conta<strong>in</strong><strong>in</strong>g bov<strong>in</strong>e serum album<strong>in</strong> (BSA, Sigma, Europe). Wells were washed aga<strong>in</strong>,<br />

and ad<strong>de</strong>d with biot<strong>in</strong>ylated trout microsomes (except for <strong>the</strong> blank wells). Samples or<br />

standards (with adjusted prote<strong>in</strong> concentration) were <strong>the</strong>n ad<strong>de</strong>d to <strong>the</strong> wells. Competition<br />

was allowed to take place and after five wash<strong>in</strong>g steps, extravid<strong>in</strong>-HRP (Sigma, Europe) was<br />

ad<strong>de</strong>d to all <strong>the</strong> wells. The plate was <strong>the</strong>n <strong>in</strong>cubated and <strong>the</strong> wells were washed aga<strong>in</strong> us<strong>in</strong>g<br />

PBS. Chromogen TMB (Pierce, United K<strong>in</strong>gdom) was ad<strong>de</strong>d to all <strong>the</strong> wells and <strong>the</strong> plate<br />

was <strong>in</strong>cubated <strong>in</strong> obscurity. Sulfuric acid (Sigma, Europe) was ad<strong>de</strong>d to <strong>the</strong> wells to stop <strong>the</strong><br />

reaction. Optical <strong>de</strong>nsity was measured <strong>in</strong> <strong>the</strong> 96-well plates at 450 nm us<strong>in</strong>g a Packard<br />

Spectracount microplate rea<strong>de</strong>r.<br />

Data analyses<br />

Differences between measured DLC concentrations or CYP1A IPP <strong>in</strong>duction <strong>in</strong> <strong>the</strong> different<br />

stations were tested us<strong>in</strong>g <strong>the</strong> non-parametric Kruskal-Wallis test followed by a multiple<br />

comparison test of <strong>the</strong> means (Dunn test, Conover 1980). Regressions between <strong>the</strong><br />

concentrations measured <strong>in</strong> sea star pyloric caeca and mean <strong>in</strong>duction of CYP1A IPP<br />

measured <strong>in</strong> correspond<strong>in</strong>g <strong>in</strong>dividuals were tested us<strong>in</strong>g simple l<strong>in</strong>ear regression procedures<br />

(Zar 1996), apply<strong>in</strong>g a Bonferroni criterion to <strong>the</strong> significance level. The level of significance<br />

for statistical analyses was always set at a = 0.05.<br />

RESULTS<br />

cPCB and PCDD/F concentrations <strong>in</strong> sediments<br />

Contam<strong>in</strong>ant concentrations were measured <strong>in</strong> <strong>the</strong> bulk sediment <strong>in</strong> five <strong>in</strong>tertidal stations<br />

(Table 40A and Fig. 48). No significant differences were found between DLC levels<br />

<strong>de</strong>term<strong>in</strong>ed <strong>in</strong> sediments from <strong>the</strong> different sampl<strong>in</strong>g stations (p Kruskal-Wallis>0.1), probably due<br />

190


Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

to <strong>the</strong> low number of replicates. However, some trends are apparent. Levels of ∑ 7PCDDs<br />

were higher <strong>in</strong> sediments sampled <strong>in</strong> Ambleteuse and Nieuwpoort, <strong>in</strong>termediate <strong>in</strong> Knokke<br />

and were below <strong>the</strong> quantification limit <strong>in</strong> Oosten<strong>de</strong> and Wendu<strong>in</strong>e. Sediments from<br />

Nieuwpoort displayed relatively high levels of ∑ 10PCDFs, while <strong>the</strong> concentrations of <strong>the</strong>se<br />

compounds were <strong>in</strong>termediate <strong>in</strong> Oosten<strong>de</strong> and lower <strong>in</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g stations. ∑ 4c-PCB<br />

were slightly higher <strong>in</strong> sediments from Nieuwpoort and were below <strong>the</strong> quantification limits<br />

<strong>in</strong> <strong>the</strong> all <strong>the</strong> o<strong>the</strong>r stations.<br />

Figure 48. Contam<strong>in</strong>ant levels (mean pg g -1 dry wt.; n=2) measured <strong>in</strong> sediments from <strong>the</strong> different sampl<strong>in</strong>g<br />

stations.<br />

Table 40. Concentrations of DLCs measured <strong>in</strong> (A) sediments (Mean; n=2; pg g -1 dry wt.), (B) mussels (Mytilus<br />

edulis; Mean±SD; pg g -1 lipids) or (C) sea stars (<strong>Asterias</strong> <strong>rubens</strong>; Mean±SD; pg g –1 lipids) from <strong>the</strong> sou<strong>the</strong>rn<br />

North <strong>Sea</strong> and <strong>the</strong> Channel. ND=not <strong>de</strong>tected; values


Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

OCDD ND 0.007 ND ND ND<br />

∑ 7PCDDs 1.023 0.929 0.071 0.071 0.354<br />

TCDF 0.008 0.541 0.009 0.008 0.008<br />

PeCDF 1 0.001 0.023 0.171 0.009 0.011<br />

PeCDF 2 0.014 1.074 0.014 0.014 0.014<br />

HxCDF 1 0.005 0.173 0.005 0.005 0.005<br />

HxCDF 2 0.003 0.180 0.005 0.006 0.003<br />

HxCDF 3 0.003 0.150 0.003 0.003 0.003<br />

HxCDF 4 0.003 0.003 0.003 0.003 0.003<br />

HpCDF 1 0.005 0.077 0.005 0.005 0.005<br />

HpCDF 2 ND 0.007 ND ND ND<br />

OCDF ND ND ND ND ND<br />

∑ 10PCDFs 0.042 2.227 0.215 0.053 0.051<br />

∑ 17PCDD/Fs 1.065 3.156 0.286 0.124 0.405<br />

PCB 77 0.001 0.001 0.001 0.001 0.001<br />

PCB 81 ND ND ND ND ND<br />

PCB 126 0.100 0.118 0.100 0.100 0.100<br />

PCB 169 0.001 0.001 0.001 0.001 0.001<br />

∑ 4cPCB 0.102 0.120 0.102 0.102 0.102<br />

B. Mussels<br />

Station<br />

Ambleteuse Nieuwpoort Oosten<strong>de</strong> Wendu<strong>in</strong>e Knokke<br />

(n=3) (n=3) (n=3) (n=1) (n=2)<br />

TCDD ND 4.59 5.74 ± 0.38 7.10 13.1<br />

PeCDD 3.25 ± 0.25 6.26 ± 0.96 5.79 ± 0.75 6.38 7.53<br />

HxCDD 1 4.72 ± 1.64 8.98 ± 5.89 3.85 ± 0.13 4.49 5.16<br />

HxCDD 2 7.41 ± 3.22 9.88 ± 4.65 10.1 ± 1.76 13.3 12.5<br />

HxCDD 3 6.07 ± 1.68 6.46 ± 4.03 5.57 ± 1.20 5.96 6.22<br />

HpCDD 57.3 ± 15.3 87.3 ± 68.8 75.1 ± 4.67 97.3 86.0<br />

OCDD 165 ± 62.0 314 ± 294 293 ± 52.7 489 278<br />

∑ 7PCDDs 240 ± 73.9 431 ± 370 399 ± 60.0 624 408<br />

TCDF 162 ± 43.9 176 ± 25.8 168 ± 30.9 130 178<br />

PeCDF 1 13.3 12.2 13.6 ± 1.18 15.3 21.0<br />

PeCDF 2 36.9 ± 8.07 46.7 ± 14.0 42.9 ± 3.07 39.5 60.8<br />

HxCDF 1 6.27 ± 3.32 19.1 ± 15.6 10.1 ± 3.85 11.7 19.1<br />

HxCDF 2 4.92 ± 2.09 7.12 ± 4.55 4.51 ± 0.89 4.80 8.22<br />

HxCDF 3 0.34 ND 0.24 ND ND<br />

HxCDF 4 6.89 ± 4.42 11.9 ± 8.86 7.70 ± 0.09 8.02 12.5<br />

HpCDF 1 13.8 ± 4.40 32.6 ± 25.9 29.9 ± 9.69 34.4 46.6<br />

HpCDF 2 0.77 ± 0.49 4.77 ± 5.70 1.87 ± 0.43 1.84 3.16<br />

OCDF 12.5 ± 4.34 33.4 ± 22.7 42.3 ± 22.1 62.6 65.6<br />

∑ 10PCDFs 248.4 ± 63.0 332 ± 115 321 ± 62.1 309 415<br />

∑ 17PCDD/Fs 488 ± 123 763 ± 484 721 ± 120 932 823<br />

PCB 77 4120 ± 611 3760 ± 1810 3290 ± 2530 3150 3270<br />

PCB 81 534 ± 460 902 ± 719 195 ± 16.6 179 121<br />

192


Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

PCB 126 833 ± 77.0 705 ± 63.8 861 ± 113 843 927<br />

PCB 169 84.9 ± 8.38 82.6 ± 5.91 86.3 ± 13.4 97.0 117<br />

∑ 4cPCB 5570 ± 970 5450 ± 2428 4430 ± 2670 4270 4430<br />

C. <strong>Sea</strong> stars<br />

Station<br />

Ambleteuse Oosten<strong>de</strong> Wendu<strong>in</strong>e Knokke<br />

(n=3) (n=3) (n=2) (n=2)<br />

TCDD 0.82 ± 0.05 7.73 ± 0.47 7.87 11.8<br />

PeCDD 2.06 7.79 ± 0.23 7.96 7.66<br />

HxCDD 1 1.03 2.72 ± 0.58 3.41 2.97<br />

HxCDD 2 3.21 11.7 ± 0.84 12.3 10.9<br />

HxCDD 3 1.51 ± 0.02 4.62 ± 0.48 5.16 4.32<br />

HpCDD 10.8 ± 0.25 32.9 ± 2.55 31.9 30.6<br />

OCDD 30.3 ± 0.57 78.2 ± 4.95 75.1 69.9<br />

∑ 7PCDDs 47.3 ± 5.68 146 ± 5.28 143.7 138<br />

TCDF 70.3 ± 6.37 124 ± 14.9 134.9 156<br />

PeCDF 1 ND 0.93 ± 0.30 ND 1.50<br />

PeCDF 2 6.75 22.0 ± 3.83 21.4 44.4<br />

HxCDF 1 0.58 0.43 ± 0.19 0.74 0.66<br />

HxCDF 2 ND ND ND 0.47<br />

HxCDF 3 ND ND ND ND<br />

HxCDF 4 0.57 3.50 ± 0.31 2.83 4.27<br />

HpCDF 1 ND 3.61 ND ND<br />

HpCDF 2 ND ND ND ND<br />

OCDF ND ND ND ND<br />

∑ 10PCDFs 75.5 ± 0.84 152 ± 17.6 159 207<br />

∑ 17PCDD/Fs 123 ± 0.27 298 ± 16.7 303 345<br />

PCB 77 7280 ± 1590 7290 ± 1460 6360 2430<br />

PCB 81 355 ± 20.9 96.1 ± 20.4 229 190<br />

PCB 126 552 ± 59.5 1030 ± 141 988 1360<br />

PCB 169 ND 92.7 ± 2.40 95.4 131<br />

∑ 4cPCB 8070 ± 1673 8440 ± 1465 7670 4110<br />

The ratios between <strong>the</strong> most concentrated congener and <strong>the</strong> sum of all congeners of a given<br />

class of contam<strong>in</strong>ants were calculated (Fig. 49). In sediments, PeCDD was <strong>the</strong> most abundant<br />

among PCDDs (except <strong>in</strong> Knokke, where TCDD was <strong>the</strong> most abundant), PeCDF2 was <strong>the</strong><br />

most abundant of PCDFs (except <strong>in</strong> Oosten<strong>de</strong>, where PeCDF1 was <strong>the</strong> most abundant) and<br />

PCB 126 displayed <strong>the</strong> highest concentrations among cPCBs. When consi<strong>de</strong>r<strong>in</strong>g all <strong>the</strong><br />

contam<strong>in</strong>ants, <strong>the</strong> predom<strong>in</strong>ant congener varies from one station to ano<strong>the</strong>r: Ambleteuse<br />

contam<strong>in</strong>ant pattern was dom<strong>in</strong>ated by PeCDD (79% of ∑ 21DLCs), Nieuwpoort by PeCDF2<br />

(33% of ∑ 21DLCs), Oosten<strong>de</strong> by PeCDF1 (44% of ∑ 21DLCs), Knokke by TCDD (61% of<br />

∑ 21DLCs), and Wendu<strong>in</strong>e by PCB 126 (44% of ∑ 21DLCs).<br />

193


% major congener/sum<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

PeCDD<br />

Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

PeCDF2<br />

PCB126<br />

OCDD<br />

Figure 49. Calculated ratios between <strong>the</strong> major congener of a given class<br />

of contam<strong>in</strong>ant and <strong>the</strong> sum of all <strong>the</strong> congeners of that given class, <strong>in</strong><br />

sediments (white), mussel (light grey) and sea stars (dark grey).<br />

The contribution of <strong>the</strong> different contam<strong>in</strong>ants to <strong>the</strong> total toxicity is presented <strong>in</strong> Fig. 50A.<br />

Depend<strong>in</strong>g on <strong>the</strong> consi<strong>de</strong>red station, <strong>the</strong> different contam<strong>in</strong>ant families contribute very<br />

differently to <strong>the</strong> total toxicity: <strong>in</strong> Ambleteuse and Knokke, <strong>the</strong> major part of <strong>the</strong> total TEQ is<br />

attributable to PCDDs, while PCDFs contribute <strong>the</strong> most to toxicity <strong>in</strong> Nieuwpoort and<br />

Oosten<strong>de</strong>.<br />

A.<br />

B.<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

TCDF<br />

194<br />

PCB77<br />

∑PCDDs ∑PCDFs ∑c-PCBs<br />

OCDD<br />

TCDF<br />

PCB77<br />

Ambleteuse Nieuwpoort Oosten<strong>de</strong> Wendu<strong>in</strong>e Knokke<br />

∑PCDDs ∑PCDFs ∑cPCBs<br />

Ambleteuse Nieuwpoort Oosten<strong>de</strong> Wendu<strong>in</strong>e Knokke


C.<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

∑PCDDs ∑PCDFs ∑cPCBs<br />

Ambleteuse Oosten<strong>de</strong> Wendu<strong>in</strong>e Knokke<br />

Figure 50. Contribution to toxicity (%TEQ) of <strong>the</strong> different classes of<br />

contam<strong>in</strong>ants (PCDDs, PCDFs, cPCBs) <strong>in</strong> sediments (A), mussels (B) and<br />

sea stars (C) from <strong>the</strong> different sampl<strong>in</strong>g stations.<br />

PCDD/F and c-PCB concentrations <strong>in</strong> mussels<br />

Mussels (Mytilus edulis) were analyzed for <strong>the</strong>ir content <strong>in</strong> PCDDs, PCDFs and c-PCBs<br />

(Table 40B, Fig. 51). No significant differences were found between DLC levels measured <strong>in</strong><br />

mussels from <strong>the</strong> different sampl<strong>in</strong>g stations (p Kruskal-Wallis>0.1), but some trends could be<br />

highlighted.<br />

Figure 51. Contam<strong>in</strong>ant levels (mean±SD, pg g -1 lipids) measured <strong>in</strong> mussels (Mytilusedulis) from <strong>the</strong> different<br />

sampl<strong>in</strong>g stations.<br />

195


Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

Table 41 presents <strong>the</strong> concentrations (pg TEQ g -1 lipids) measured <strong>in</strong> mussels. Total TEQ<br />

were remarkably constant, with values rang<strong>in</strong>g from 124 pg TEQ g -1 lipids <strong>in</strong> Nieuwpoort to<br />

159 pg TEQ g -1 lipids <strong>in</strong> Knokke. The situation was very different from that found <strong>in</strong><br />

sediments analyses: regardless of <strong>the</strong> consi<strong>de</strong>red station, most of <strong>the</strong> TEQ was attributable to<br />

c-PCBs (Fig. 50B).<br />

Table 41. Contam<strong>in</strong>ant TEQs (ng WHO TEQ g -1 lipids, mean±SD, n = 3, except <strong>in</strong> Knokke (n=2) and Wendu<strong>in</strong>e<br />

(n=1)) measured <strong>in</strong> mussels from <strong>the</strong> different sampl<strong>in</strong>g stations. Values <strong>in</strong> bold represent <strong>the</strong> major congener,<br />

for each sampl<strong>in</strong>g station, and for each contam<strong>in</strong>ant group.<br />

Station<br />

Contam<strong>in</strong>ant Ambleteuse Nieuwpoort Oosten<strong>de</strong> Wendu<strong>in</strong>e Knokke<br />

TCDD 0.18 1.65 ± 2.54 5.74 ± 0.38 7.10 13.1<br />

PeCDD 2.27 ± 1.71 4.28 ± 3.51 5.79 ± 0.75 6.38 7.53<br />

HxCDD 1 0.47 ± 0.16 0.90 ± 0.59 0.39 ± 0.01 0.45 0.52<br />

HxCDD 2 0.50 ± 0.47 0.99 ± 0.46 1.01 ± 0.18 1.33 1.25<br />

HxCDD 3 0.61 ± 0.17 0.44 ± 0.46 0.56 ± 0.12 0.60 0.62<br />

HpCDD 0.57 ± 0.15 0.87 ± 0.69 0.75 ± 0.05 0.97 0.86<br />

OCDD 0.02 ± 0.01 0.03 ± 0.03 0.03 ± 0.01 0.05 0.03<br />

∑ 7PCDDs 4.44 ± 1.68 7.50 ± 4.17 8.52 ± 1.07 9.78 10.8<br />

TCDF 16.2 ± 4.39 17.7 ± 2.58 16.9 ± 3.09 13.1 17.8<br />

PeCDF 1 0.23 ± 0.38 0.21 ± 0.35 0.68 ± 0.06 0.77 1.05<br />

PeCDF 2 18.4 ± 4.03 23.3 ± 7.00 21.4 ± 1.54 19.8 30.4<br />

HxCDF 1 0.63 ± 0.33 1.91 ± 1.56 1.01 ± 0.39 1.17 1.91<br />

HxCDF 2 0.49 ± 0.21 0.48 ± 0.51 0.45 ± 0.09 0.48 0.82<br />

HxCDF 3 0.02 ± 0.01 0.02 0.02 0.02 0.02<br />

HxCDF 4 0.69 ± 0.44 1.19 ± 0.89 0.77 ± 0.01 0.80 1.25<br />

HpCDF 1 0.14 ± 0.04 0.33 ± 0.26 0.30 ± 0.10 0.34 0.47<br />

HpCDF 2 0.01 0.03 ± 0.05 0.02 ± 0.00 0.02 0.03<br />

OCDF 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 0.01<br />

∑ 10PCDFs 36.8 ± 8.75 45.1 ± 12.3 41.5 ± 3.59 36.4 53.8<br />

∑ 17PCDD/Fs 41.3 ± 8.13 52.6 ± 15.5 50.1 ± 4.33 46.2 64.6<br />

PCB 77 0.41 ± 0.06 0.38 ± 0.18 0.33 ± 0.25 0.31 0.33<br />

PCB 81 0.05 ± 0.05 0.09 ± 0.07 0.02 0.02 0.01<br />

PCB 126 83.3 ± 7.70 70.5 ± 6.38 86.1 ± 11.3 84.3 92.7<br />

PCB 169 0.85 ± 0.08 0.83 ± 0.06 0.86 ± 0.13 0.97 1.17<br />

∑ 4cPCB 84.7 ± 7.79 71.8 ± 6.12 87.3 ± 11.7 85.6 94.2<br />

Total TEQ 126 ± 15.9 124 ± 21.6 137 ± 16.00 132 159<br />

The ratios between <strong>the</strong> most concentrated congener and <strong>the</strong> sum of all congeners (for each<br />

class of contam<strong>in</strong>ants) measured <strong>in</strong> mussels is presented <strong>in</strong> Fig. 49. OCDD was <strong>the</strong> most<br />

abundant among diox<strong>in</strong>s, TCDF was <strong>the</strong> most abundant of furans and PCB 77 displayed <strong>the</strong><br />

196


Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

highest concentration among c-PCBs. When consi<strong>de</strong>r<strong>in</strong>g all contam<strong>in</strong>ants toge<strong>the</strong>r, PCB 77<br />

was always <strong>the</strong> most concentrated congener, whichever station was consi<strong>de</strong>red (proportion<br />

ranged from 60 to 67%, with a low variability) (Table 40B).<br />

PCDD/F and c-PCB concentrations <strong>in</strong> sea stars<br />

Results of <strong>the</strong> analyses are shown <strong>in</strong> Table 40C and Fig. 52 (sea star samples from<br />

Nieuwpoort were lost dur<strong>in</strong>g DLC analysis). The situation was more contrasted than <strong>in</strong> <strong>the</strong><br />

case of sediments and mussels analyses, as significant differences were found between<br />

∑ 10PCDFs levels measured <strong>in</strong> sea stars from <strong>the</strong> different stations, (0.01


Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

among diox<strong>in</strong>s, TCDF was <strong>the</strong> most concentrated among furans and PCB 77 was <strong>the</strong> major<br />

congener among c-PCBs. When consi<strong>de</strong>r<strong>in</strong>g all contam<strong>in</strong>ants toge<strong>the</strong>r, PCB 77 was always<br />

predom<strong>in</strong>ant, but its <strong>de</strong>gree of predom<strong>in</strong>ance was lower <strong>in</strong> Knokke (55%) than <strong>in</strong> <strong>the</strong> o<strong>the</strong>r<br />

sampl<strong>in</strong>g stations (values rang<strong>in</strong>g from 80 to 88%) (Table 40C).<br />

The contribution of <strong>the</strong> different classes of contam<strong>in</strong>ants to <strong>the</strong> total toxicity <strong>in</strong> sea stars<br />

displayed <strong>the</strong> same scheme as <strong>in</strong> mussels (Fig. 50C). The major part of toxicity was due to c-<br />

PCBs, this trend be<strong>in</strong>g even more manifest than <strong>in</strong> <strong>the</strong> case of mussels.<br />

In or<strong>de</strong>r to assess <strong>the</strong> possible biomagnification of <strong>the</strong> different congeners, bioconcentration<br />

factors (BCF; ratio between mean concentration <strong>in</strong> sea stars and mean concentration <strong>in</strong><br />

mussels) were calculated, for each sampl<strong>in</strong>g station (Fig. 53). Coplanar PCBs were found to<br />

be biomagnified <strong>in</strong> almost all cases (BCFs rang<strong>in</strong>g from 0.67 to 3.01), whereas <strong>the</strong> o<strong>the</strong>r<br />

contam<strong>in</strong>ant classes usually displayed BCF values ≤1.<br />

Bioconcentration Factor<br />

2,5<br />

2<br />

1,5<br />

1<br />

0,5<br />

0<br />

TCDD<br />

PeCDD<br />

HxCDD 1<br />

HxCDD 2<br />

HxCDD 3<br />

HpCDD<br />

OCDD<br />

Ambleteuse Oosten<strong>de</strong> Wendu<strong>in</strong>e Knokke<br />

∑7PCDDs<br />

TCDF<br />

198<br />

PeCDF 2<br />

HxCDF 1<br />

DLC congener<br />

HxCDF 4<br />

∑10PCDFs<br />

∑17PCDD/Fs<br />

Figure 53. Bioconcentration factors (ratio between <strong>the</strong> mean concentration measured <strong>in</strong> sea stars and <strong>the</strong> mean<br />

concentration measured <strong>in</strong> mussels) calculated for <strong>the</strong> different congeners, <strong>in</strong> each sampl<strong>in</strong>g station.<br />

CYP1A IPP <strong>in</strong>duction <strong>in</strong> sea stars<br />

The <strong>in</strong>duction of a CYP1A IPP was measured us<strong>in</strong>g competitive ELISA <strong>in</strong> sea stars collected<br />

<strong>in</strong> <strong>the</strong> different stations (Fig. 52). Significant differences (p Kruskal-Wallis≤0.0001) were found<br />

between <strong>the</strong> different stations: sea stars from Knokke displayed <strong>the</strong> highest CYP1A IPP<br />

PCB 77<br />

PCB 81<br />

PCB 126<br />

PCB 169<br />

∑4cPCBs


Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

levels. The lowest <strong>in</strong>duction values were recor<strong>de</strong>d <strong>in</strong> sea stars from Ambleteuse. Values<br />

measured <strong>in</strong> sea stars from Oosten<strong>de</strong>, Nieuwpoort and Wendu<strong>in</strong>e were <strong>in</strong>termediate.<br />

Regressions were calculated between mean CYP1A IPP <strong>in</strong>duction and DLC concentrations or<br />

TEQ <strong>in</strong> correspond<strong>in</strong>g sea star pools. When consi<strong>de</strong>r<strong>in</strong>g concentrations, significant<br />

regressions were found between CYP1A IPP <strong>in</strong>duction and ∑ 10PCDFs or ∑ 17PCDD/Fs<br />

concentrations measured <strong>in</strong> sea stars. Determ<strong>in</strong>ation coefficients respectively reached 0.68<br />

(p=0.002) and 0.63 (p=0.004). Highly significant regressions were also found between<br />

CYP1A IPP <strong>in</strong>duction and TEQs for all contam<strong>in</strong>ant classes (Fig. 54). Determ<strong>in</strong>ation<br />

coefficients ranged between 0.56 (CYP1A IPP <strong>in</strong>duction as a function of ∑ 7PCDDs TEQ <strong>in</strong><br />

sea stars) and 0.79 (CYP1A IPP <strong>in</strong>duction as a function of ∑ 10PCDFs TEQ <strong>in</strong> sea stars).<br />

CYP1A IPP <strong>in</strong>duction (Time fold)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

y = 0,11x + 1,12<br />

R 2 = 0.56<br />

p=0.008<br />

y = 0,10x + 0,52<br />

R 2 = 0.79<br />

p≤0.0001<br />

∑7PCDD ∑10PCDF ∑17PCDD/Fs ∑4cPCB<br />

y = 0,06x + 0,69<br />

R 2 = 0.73<br />

p=0.001<br />

199<br />

y = 0,03x + 0,12<br />

R 2 = 0.73<br />

p=0.001<br />

0<br />

0 20 40 60 80 100 120 140 160 180 200<br />

DLC concentration (pg TEQ g -1 lipids)<br />

Figure 54. Regressions between mean CYP1A IPP <strong>in</strong>duction (Time fold) and TEQs values of <strong>the</strong> different DLC<br />

classes (pg TEQ g -1 lipids) <strong>de</strong>term<strong>in</strong>ed <strong>in</strong> sea star pyloric caeca. R 2 : corrected <strong>de</strong>term<strong>in</strong>ation coefficient.<br />

DISCUSSION<br />

No significant differences <strong>in</strong> DLC levels measured <strong>in</strong> sediments, mussels or sea stars were<br />

found between <strong>the</strong> different sampl<strong>in</strong>g stations, except for ∑ 10PCDFs <strong>in</strong> sea stars. This lack of<br />

significant differences is partly due to <strong>the</strong> relatively low number of replicates. Most DLC<br />

concentrations <strong>in</strong> sediments were below <strong>the</strong> limits of quantification. <strong>Sea</strong> stars were found to


Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

be <strong>the</strong> most discrim<strong>in</strong>ant compartment, display<strong>in</strong>g significant differences for ∑ 10PCDF levels<br />

between <strong>the</strong> stations. Differences <strong>in</strong> <strong>the</strong> discrim<strong>in</strong>at<strong>in</strong>g power of sediments, mussels or<br />

asteroids were probably attributable to a generally low-contrasted contam<strong>in</strong>ation situation,<br />

and to <strong>the</strong> importance of bioavailability: patterns and concentrations of hydrophobic<br />

contam<strong>in</strong>ants <strong>in</strong> aquatic organisms are generally consi<strong>de</strong>red to be <strong>de</strong>term<strong>in</strong>ed not only by<br />

concentrations found <strong>in</strong> <strong>the</strong>ir surround<strong>in</strong>g environment, but also by physiological processes<br />

(Barron 1990). In this context, it is noteworthy that <strong>the</strong> major congeners <strong>in</strong> <strong>the</strong> three<br />

consi<strong>de</strong>red DLC classes are <strong>the</strong> same <strong>in</strong> mussels and sea stars, and that <strong>the</strong>y strongly differ<br />

from those found <strong>in</strong> sediments.<br />

In sea stars, <strong>the</strong> relative contribution of c-PCBs to <strong>the</strong> total DLC bur<strong>de</strong>n ten<strong>de</strong>d to be different<br />

<strong>in</strong> Knokke than <strong>in</strong> <strong>the</strong> o<strong>the</strong>r stations, while <strong>in</strong> mussels, <strong>the</strong>re were no differences among <strong>the</strong><br />

stations. This observation highlights bio<strong>in</strong>dicat<strong>in</strong>g differences between <strong>the</strong> two organisms,<br />

probably due to <strong>the</strong>ir contrasted biology (food source, metabolism rates,…), result<strong>in</strong>g <strong>in</strong><br />

bioaccumulative differences (Pruell et al. 2000). Ano<strong>the</strong>r strik<strong>in</strong>g difference between <strong>the</strong><br />

relative patterns of congeners is found among cPCBs: PCB 77 displays very low levels <strong>in</strong><br />

sediments, whereas <strong>in</strong> mussels and sea stars, it is <strong>the</strong> most abundant PCB congener (1 to 2<br />

or<strong>de</strong>rs of magnitu<strong>de</strong> more concentrated than <strong>the</strong> o<strong>the</strong>r PCB congeners). This can be due to<br />

bioaccumulative capacity by organisms, and/or contam<strong>in</strong>ation occurr<strong>in</strong>g ma<strong>in</strong>ly via seawater<br />

(Danis et al. Chap. III.2, III.3). DLC concentrations measured <strong>in</strong> sea star pyloric caeca<br />

displayed lower variability (measured as standard <strong>de</strong>viation) than those <strong>de</strong>term<strong>in</strong>ed <strong>in</strong><br />

mussels. PCDD/F levels <strong>in</strong> sea stars were lower than those measured <strong>in</strong> mussels, while PCB<br />

77 was found to be more concentrated <strong>in</strong> asteroids. This probably results from differences <strong>in</strong><br />

uptake efficiency and metabolization processes (Walker & Peterson, 1994), which seem to be<br />

more efficient <strong>in</strong> sea stars than <strong>in</strong> mussels.<br />

Biomagnification was found to occur along <strong>the</strong> mussels=>sea stars food cha<strong>in</strong> almost<br />

exclusively for c-PCBs. The o<strong>the</strong>r contam<strong>in</strong>ant groups (highly chlor<strong>in</strong>ated PCDDs and<br />

PCDFs) almost always displayed higher concentrations <strong>in</strong> mussels than <strong>in</strong> sea stars. It is<br />

noteworthy that experimental contam<strong>in</strong>ation of sea stars by PCB 77 via food resulted <strong>in</strong> very<br />

similar BCF values (1.84±0.43 <strong>in</strong> experimental conditions compared to 1.68±0.65 <strong>in</strong> <strong>the</strong><br />

present study) (Danis et al. Chap. III.3).<br />

One of <strong>the</strong> ma<strong>in</strong> sources of human exposure to chemicals such as PCBs (with <strong>the</strong> exception of<br />

acci<strong>de</strong>ntal and occupational exposure) is <strong>in</strong>take via seafood (Friberg 1988, Svensson et al.<br />

1991). Direct evi<strong>de</strong>nce of health hazard attributable to contam<strong>in</strong>ated seafood is poorly<br />

documented. Exist<strong>in</strong>g studies are often subject to consi<strong>de</strong>rable <strong>de</strong>bate (Knutzen et al. 2003)<br />

200


Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

and causal relationships were rarely established. General proposals that PCBs taken up from<br />

diet are associated with breast cancer are controversial (Key & Reeves, 1994; Smith, 2000).<br />

In various studies carried out <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rlands, environmental exposure to diox<strong>in</strong>s and<br />

PCBs has been associated with impaired cognitive <strong>de</strong>velopment and greater susceptibility to<br />

<strong>in</strong>fections and allergy (Patand<strong>in</strong> et al. 1999, Weisglas-Kuperus et al. 2000). TEQs were<br />

calculated for mussels sampled <strong>in</strong> this study, <strong>in</strong> or<strong>de</strong>r to compare <strong>the</strong>m to exist<strong>in</strong>g regulations<br />

and to results from o<strong>the</strong>r studies. Most countries use <strong>the</strong> Tolerable Daily Intake (TDI) for<br />

assess<strong>in</strong>g <strong>the</strong> health risks l<strong>in</strong>ked to exposure to diox<strong>in</strong>-like compounds. The TDI is <strong>de</strong>rived<br />

from <strong>the</strong> assumption that <strong>the</strong>re is a threshold dose level below which no toxic effect is<br />

produced by <strong>the</strong> compound <strong>in</strong> an animal mo<strong>de</strong>l. The World Health Organization (WHO)<br />

Expert Committee recommends a TDI for TCDD at 10 pg kg -1 body weight day -1<br />

(WHO/EURO 1991). The WHO European Centre for Environment and Health (ECEH) and<br />

<strong>the</strong> International Programme on Chemical Safety (IPCS) readjusted <strong>the</strong> threshold level,<br />

consi<strong>de</strong>r<strong>in</strong>g that occasional short-term exposition beyond <strong>the</strong> TDI probably does not represent<br />

a serious health threat, as far as <strong>the</strong> average <strong>in</strong>take was not excee<strong>de</strong>d. ECEH and IPCS<br />

recommen<strong>de</strong>d a TDI of 4 pg WHO TEQ kg -1 body weight day -1 (CoT 2001). The levels<br />

measured <strong>in</strong> mussels <strong>in</strong> this study ranged between 124-159 pg TEQ g -1 lipids, which roughly<br />

represents values of 1 pg TEQ g -1 fresh wt. A normal adult, weigh<strong>in</strong>g around 70 kg, should<br />

not exceed 280 pg TEQ day -1 , that is 280 g fresh wt per day (soft tissues only) of mussels<br />

from <strong>the</strong> area consi<strong>de</strong>red <strong>in</strong> <strong>the</strong> present study. A meal of mussels usually ranges between<br />

500g and 1 kg of mussels (with shells), which corresponds to ca. 125-250 g fresh wt.<br />

The levels measured <strong>in</strong> mussels <strong>in</strong> <strong>the</strong> present study were one or<strong>de</strong>r of magnitu<strong>de</strong> higher than<br />

those found by Karl et al. (2002) <strong>in</strong> blue mussels sampled <strong>in</strong> German supermarkets, Miyata et<br />

al. (1987, 1994) <strong>in</strong> mussels from <strong>the</strong> Osaka bay and <strong>in</strong> coastal areas from Japan, Broman et al.<br />

(1992) <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rn Baltic sea, Haynes and Toohey (1995) <strong>in</strong> Port Philip Bay (Australia)<br />

and Moon et al. (2000) along <strong>the</strong> Korean coast. DLC levels and congener patterns <strong>in</strong> mussels<br />

<strong>de</strong>term<strong>in</strong>ed <strong>in</strong> <strong>the</strong> present study were very similar to those found by Abad et al. (2002) <strong>in</strong><br />

mussels from Catalonia.<br />

Measures of CYP1A IPP <strong>in</strong>duction <strong>in</strong> sea star pyloric caeca displayed highly significant<br />

differences between <strong>the</strong> sampl<strong>in</strong>g stations. <strong>Sea</strong> stars collected <strong>in</strong> Knokke displayed <strong>the</strong> highest<br />

<strong>in</strong>duction factor, while lower <strong>in</strong>duction factors were measured <strong>in</strong> Ambleteuse. The situation<br />

was much more contrasted than <strong>in</strong> <strong>the</strong> case of DLC analyses <strong>in</strong> <strong>the</strong> different compartments.<br />

On <strong>the</strong> o<strong>the</strong>r hand, strong and highly significant regressions were found between DLC levels<br />

(<strong>de</strong>term<strong>in</strong>ed as concentrations or TEQs) <strong>in</strong> sea stars, and CYP1A IPP <strong>in</strong>duction, support<strong>in</strong>g a<br />

201


Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

good responsiveness of sea stars to DLCs. The unexpla<strong>in</strong>ed variations of measured CYP1A<br />

IPP <strong>in</strong>duction could be due ei<strong>the</strong>r to <strong>the</strong> presence of o<strong>the</strong>r CYP1A-<strong>in</strong>duc<strong>in</strong>g contam<strong>in</strong>ants <strong>in</strong><br />

<strong>the</strong> environment (such as PAHs), or to endogenous factors, such as endocr<strong>in</strong>e regulation. If<br />

DLC metabolization occurs <strong>in</strong> sea stars as <strong>in</strong> vertebrates, an assumption supported by<br />

observations reported elsewhere (Danis et al. Chap. III.1, III.4), high levels of CYP1A IPP <strong>in</strong><br />

sea stars can lead to adverse effects, as this enzyme system has an important role <strong>in</strong><br />

endogenous metabolization of steroids and fatty acids (Bucheli & Fent 1995). Disruption of<br />

<strong>the</strong> endocr<strong>in</strong>e system of sea stars can <strong>in</strong> turn affect <strong>the</strong> reproduction and <strong>de</strong>velopment of <strong>the</strong>se<br />

ecosystem-structur<strong>in</strong>g species.<br />

Mean levels of <strong>in</strong>duction measured <strong>in</strong> <strong>the</strong> present study ranged from 1.51 to 4.11 time folds,<br />

which contrasts with higher values reported for <strong>the</strong> same area by Danis et al. (Chap. IV.2),<br />

which reached 43 time folds. In <strong>the</strong> present study, <strong>the</strong> sampl<strong>in</strong>g of sea stars was carried out<br />

dur<strong>in</strong>g <strong>the</strong> fall, which corresponds to <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> gametogenesis period, while, <strong>in</strong> <strong>the</strong><br />

former study, organisms were sampled <strong>in</strong> February, which corresponds to <strong>the</strong> prespawn<strong>in</strong>g<br />

period <strong>in</strong> A. <strong>rubens</strong>. Dur<strong>in</strong>g both periods, sea stars un<strong>de</strong>rgo important changes <strong>in</strong> <strong>the</strong>ir steroid<br />

metabolism (Voogt et al. 1991). The important differences <strong>in</strong> CYP1A IPP <strong>in</strong>duction found<br />

between <strong>the</strong> sampl<strong>in</strong>g periods un<strong>de</strong>rl<strong>in</strong>es <strong>the</strong> importance of <strong>the</strong> choice of <strong>the</strong> sampl<strong>in</strong>g period<br />

for CYP1A IPP measurements <strong>in</strong> sea stars.<br />

CONCLUSIONS<br />

Measur<strong>in</strong>g DLC concentrations <strong>in</strong> sediments and biota (mussels and sea stars) from <strong>the</strong><br />

Belgian coast and <strong>the</strong> Channel allowed us to <strong>in</strong>tegrate <strong>the</strong> differential bioaccumulation<br />

efficiencies of <strong>the</strong>se two bio<strong>in</strong>dicator species. Although <strong>the</strong> levels found <strong>in</strong> sediments were<br />

often below quantification limits, measured concentrations were found to be relatively high <strong>in</strong><br />

biota, given <strong>the</strong> toxicity of <strong>the</strong>se compounds. Special concern arises from TEQ levels<br />

<strong>de</strong>term<strong>in</strong>ed <strong>in</strong> mussels. The <strong>in</strong>duction of CYP1A IPP was found to be related to DLCs levels<br />

measured <strong>in</strong> sea stars. Measurement of this biomarker allowed to highlight significant <strong>in</strong>ter-<br />

station differences, which only appeared as trends when consi<strong>de</strong>r<strong>in</strong>g DLC analyses alone.<br />

ACKNOWKLEDGEMENTS<br />

Grateful thanks are due to Ir Gauthier Eppe for technical advice on PCDD analysis. Research<br />

supported by a Belgian Fe<strong>de</strong>ral Research Programmes (SSTC, Contract MN/12/95 and<br />

EV/ENZ13). BD was hol<strong>de</strong>r of a FRIA doctoral grant. PhD is Research Associate of <strong>the</strong><br />

202


Levels and effects of PCDD/Fs and c-PCBs <strong>in</strong> sediments, mussels and sea stars<br />

National Fund for Scientific Research (NFSR, Belgium). Contribution of <strong>the</strong> "Centre<br />

Interuniversitaire <strong>de</strong> Biologie Mar<strong>in</strong>e" (CIBIM).<br />

203


204


V. GENERAL DISCUSSION<br />

205<br />

GENERAL DISCUSSION<br />

The present study focused on <strong>the</strong> bioaccumulation and effects of PCBs <strong>in</strong> <strong>the</strong> common NE<br />

Atlantic sea star <strong>Asterias</strong> <strong>rubens</strong>. The first part of <strong>the</strong> study was achieved <strong>in</strong> laboratory<br />

conditions <strong>in</strong> or<strong>de</strong>r to exam<strong>in</strong>e <strong>the</strong> biok<strong>in</strong>etics of <strong>the</strong>se compounds and <strong>the</strong>ir effects at<br />

immune and subcellular levels <strong>in</strong> sea stars. The second part focused on <strong>the</strong> sou<strong>the</strong>rn North<br />

<strong>Sea</strong> contam<strong>in</strong>ation status, us<strong>in</strong>g <strong>the</strong> sea star as an <strong>in</strong>dicator of contam<strong>in</strong>ation, and exam<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong> effects of PCBs on various aspects of this organism biology <strong>in</strong> field situations. As each<br />

chapter has already been discussed <strong>in</strong>dividually, <strong>the</strong> present chapter will address some more<br />

<strong>in</strong>tegrated aspects, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> bioaccumulation behaviour of PCBs <strong>in</strong> A. <strong>rubens</strong> <strong>in</strong> field and<br />

experimental conditions, and on PCB effects on immune and subcellular responses <strong>in</strong> <strong>the</strong> sea<br />

star.<br />

F<strong>in</strong>ally, overall recommendations for <strong>the</strong> <strong>de</strong>sign of future monitor<strong>in</strong>g programmes will be<br />

addressed.<br />

The bioaccumulation of PCBs <strong>in</strong> sea stars<br />

The experimental exposures carried out <strong>in</strong> this study have shown that A. <strong>rubens</strong> efficiently<br />

accumulates PCBs. Uptake k<strong>in</strong>etics displayed a strong congener specificity, and were more<br />

specifically related to <strong>the</strong> planar conformation of <strong>the</strong> various congeners. In most body<br />

compartments, non-coplanar PCBs accumulation was <strong>de</strong>scribed us<strong>in</strong>g saturation mo<strong>de</strong>ls.<br />

Saturation concentrations were generally found (1) to be reached quite fast <strong>in</strong> target sites<br />

(whith<strong>in</strong> a few days to a few weeks), whichever contam<strong>in</strong>ation source was consi<strong>de</strong>red, and (2)<br />

to rema<strong>in</strong> constant until <strong>the</strong> end of <strong>the</strong> exposure period, show<strong>in</strong>g that sea stars can be used to<br />

p<strong>in</strong>po<strong>in</strong>t a PCB contam<strong>in</strong>ation quite rapidly after occurrence. Previous studies on PCB<br />

accumulation <strong>in</strong> sediments-exposed mar<strong>in</strong>e <strong>in</strong>vertebrates have shown that PCBs (consi<strong>de</strong>red<br />

as Aroclor mixtures) were also taken up by <strong>the</strong>se organisms follow<strong>in</strong>g saturation k<strong>in</strong>etics<br />

(Courtney & Langston 1978, McLeese et al. 1980).<br />

In contrast, coplanar PCBs were not accumulated follow<strong>in</strong>g saturation k<strong>in</strong>etics, but ra<strong>the</strong>r<br />

appeared to reached a concentration peak, followed by a sud<strong>de</strong>n drop after approximately 9<br />

days of exposure. The fact that this drop only occurred for c-PCBs is a first <strong>in</strong>dication of <strong>the</strong><br />

occurrence of a targeted metabolization of <strong>the</strong>se congeners <strong>in</strong> sea stars. However, this<br />

behaviour was not observed <strong>in</strong> our study on 14 C-PCB 77 bioaccumulation <strong>in</strong> A.<strong>rubens</strong>. This<br />

observation is most probably due to <strong>the</strong> fact that <strong>the</strong> latter experiment was carried out us<strong>in</strong>g a


206<br />

GENERAL DISCUSSION<br />

radiolabelled congener, which implies that if a c-PCB-targeted metabolization takes place <strong>in</strong><br />

sea stars, <strong>the</strong> method does not allow mak<strong>in</strong>g a difference between <strong>the</strong> congener itself and its<br />

<strong>de</strong>gradation products if <strong>the</strong> latter one bears <strong>the</strong> 14 C-labell<strong>in</strong>g. Among coplanar PCBs,<br />

congener 126 is known to be metabolized <strong>in</strong> a range of organisms by cytochrome P450<br />

isozymes (Hong et al. 1998); exist<strong>in</strong>g evaluations of PCB 77 toxicity and metabolization are<br />

blurred by important variations <strong>in</strong> effects and between species (Safe 1994).<br />

The efficiency and rate at which PCBs are accumulated <strong>in</strong> sea stars varied among <strong>the</strong><br />

consi<strong>de</strong>red body compartments and exposure routes. Among <strong>the</strong> consi<strong>de</strong>red body<br />

compartments, body wall often displayed <strong>the</strong> highest bioaccumulative potency, reach<strong>in</strong>g high<br />

PCB levels whichever exposure route was consi<strong>de</strong>red. This feature, along with <strong>the</strong> fact that<br />

body wall is easily dissected and important <strong>in</strong> terms of weight, highlights <strong>the</strong> particular<br />

<strong>in</strong>terest for its use <strong>in</strong> field studies. It would <strong>in</strong>terst<strong>in</strong>gly complement <strong>in</strong>formation ga<strong>the</strong>red via<br />

analysis of <strong>the</strong> pyloric caeca, which are generally <strong>the</strong> only organs consi<strong>de</strong>red separately <strong>in</strong><br />

monitor<strong>in</strong>g studies (Everaarts et al. 1998, <strong>de</strong>n Besten et al. 2001, Stronkhorst et al. 2003). No<br />

differences were found <strong>in</strong> field or experimental conditions between PCB levels <strong>in</strong> aboral or<br />

oral body wall although <strong>the</strong> latter is <strong>in</strong> direct contact with sediments. S<strong>in</strong>ce only oral body<br />

wall is <strong>in</strong> direct contact with sediments, this f<strong>in</strong>d<strong>in</strong>g <strong>in</strong>dicates that PCB translocation<br />

processes readily occur <strong>in</strong> <strong>the</strong> body wall of <strong>the</strong> sea star. Among <strong>the</strong> body compartments<br />

consi<strong>de</strong>red <strong>in</strong> <strong>the</strong> present study, rectal caeca have rised many <strong>in</strong>terest<strong>in</strong>g questions regard<strong>in</strong>g<br />

<strong>the</strong>ir possible <strong>in</strong>volvment <strong>in</strong> regulat<strong>in</strong>g PCB levels <strong>in</strong> sea stars. In this perspective, <strong>the</strong> use of<br />

radiotracer techniques has brought very valuable <strong>in</strong>formation. 14 C-PCB 153 activities reached<br />

<strong>in</strong> <strong>the</strong>se organs were between 1 and 2 or<strong>de</strong>rs of magnitu<strong>de</strong> lower than <strong>in</strong> <strong>the</strong> o<strong>the</strong>r<br />

compartments, while activities measured dur<strong>in</strong>g <strong>the</strong> 14 C-PCB 77 experimental exposure<br />

reached similar values <strong>in</strong> rectal caeca than <strong>in</strong> <strong>the</strong> o<strong>the</strong>r compartments. This discrepancy could<br />

be <strong>the</strong> result of <strong>the</strong> presence of 14 C-labelled PCB 77 <strong>de</strong>gradation products, more soluble than<br />

<strong>the</strong> parent compound, and which would be elim<strong>in</strong>ated via this route (<strong>the</strong> lumen of rectal caeca<br />

are <strong>in</strong> relation with <strong>the</strong> outsi<strong>de</strong> environment via <strong>the</strong> very short rectum). Rectal caeca are<br />

known to play a pivotal role <strong>in</strong> sea star digestion and excretion processes (Jangoux 1982,<br />

Warnau & Jangoux 1999). As no activity <strong>in</strong>crease was recor<strong>de</strong>d <strong>in</strong> seawater at <strong>the</strong> end of <strong>the</strong><br />

exposure period, potential metabolites were not yet elim<strong>in</strong>ated although <strong>the</strong> coplanar PCB<br />

drop was observed around <strong>the</strong> first 9 days of exposure. PCB metabolites are often thought to<br />

be more toxic than <strong>the</strong> parent compounds (Walker & Peterson 1994). Therefore <strong>the</strong> possibly<br />

long resi<strong>de</strong>nce time <strong>in</strong> rectal caeca could <strong>in</strong>duce secondary toxicity on <strong>the</strong> organism, lead<strong>in</strong>g<br />

to adverse effects on various aspects of <strong>the</strong> sea star biology. In <strong>the</strong> framework of <strong>the</strong> present


207<br />

GENERAL DISCUSSION<br />

study, <strong>the</strong> occurrence of PCB metabolites could not be verified us<strong>in</strong>g classical <strong>de</strong>tection<br />

methods, due to <strong>the</strong> extreme m<strong>in</strong>uteness of this organ (15-50 mg wet wt).<br />

Among non-coplanar PCBs, <strong>the</strong> rate at which accumulation occurred <strong>in</strong> body wall of<br />

sediment-exposed sea stars <strong>de</strong>pen<strong>de</strong>d on <strong>the</strong> chlor<strong>in</strong>ation <strong>de</strong>gree of <strong>the</strong> consi<strong>de</strong>red congener:<br />

<strong>the</strong> ‘lighter’ congeners were accumulated faster than <strong>the</strong> o<strong>the</strong>r congeners. In pyloric caeca,<br />

however, <strong>the</strong> accumulation rate displayed a different pattern among <strong>the</strong> congeners, probably<br />

due to variable <strong>in</strong>ter-compartment fluxes.<br />

In both experimental and field conditions, all consi<strong>de</strong>red PCB congeners were<br />

bioconcentrated by A. <strong>rubens</strong>.<br />

All <strong>the</strong> experimental studies <strong>de</strong>monstrated that seawater was <strong>the</strong> most efficient route for PCB<br />

uptake <strong>in</strong> sea stars, reach<strong>in</strong>g relative bioaccumulation efficiency up to 3 or<strong>de</strong>rs of magnitu<strong>de</strong><br />

higher than those measured <strong>in</strong> sediment- or food-exposed organisms. The same observation<br />

was ma<strong>de</strong> for sea urch<strong>in</strong>s and cuttlefish (see Danis et al. Chap VII.1, VII.2), and <strong>in</strong> previous<br />

studies on mar<strong>in</strong>e polychaetes (Courtney & Langston 1978). Therefore, although PCB levels<br />

<strong>in</strong> seawater generally reported <strong>in</strong> field studies are extremely low compared to those measured<br />

<strong>in</strong> sediments (Schulz-Bull et al. 1995), seawater constitutes a non-negligible route for PCB<br />

contam<strong>in</strong>ation <strong>in</strong> mar<strong>in</strong>e <strong>in</strong>vertebrates. This observation can expla<strong>in</strong> certa<strong>in</strong> discrepancies<br />

found between PCB levels and patterns <strong>de</strong>term<strong>in</strong>ed <strong>in</strong> sediments and biota <strong>in</strong> field conditions,<br />

which are probably <strong>the</strong> result of <strong>the</strong> seawater contribution to sea star PCB contam<strong>in</strong>ation.<br />

In <strong>the</strong> experimental work carried out <strong>in</strong> <strong>the</strong> present study, <strong>the</strong> exposure concentrations were<br />

chosen to match those reported <strong>in</strong> <strong>the</strong> field for <strong>the</strong> correspond<strong>in</strong>g compartment (seawater,<br />

sediments or food). The f<strong>in</strong>al concentrations reached <strong>in</strong> exposed sea stars (background +<br />

<strong>in</strong>corporated) generally matched those measured <strong>in</strong> <strong>the</strong> field as well as those <strong>de</strong>term<strong>in</strong>ed <strong>in</strong><br />

previous studies (Everaarts et al. 1998, <strong>de</strong>n Besten 2001, Stronkhorst et al. 2003). This<br />

observation showed that our experimental protocols correctly simulated actual field situations,<br />

and also that work<strong>in</strong>g with experimentally-<strong>de</strong>signed PCB mixtures did not <strong>in</strong>terfere with<br />

uptake efficiencies measured <strong>in</strong> sea stars. The parity beween experimental observations and<br />

levels <strong>de</strong>term<strong>in</strong>ed <strong>in</strong> field situations also shows that <strong>the</strong> <strong>in</strong>terference with o<strong>the</strong>r environmental<br />

contam<strong>in</strong>ants (i.e. heavy metals, PAHs, pestici<strong>de</strong>s) only alters PCB accumulation to a limited<br />

extent.<br />

The use of an organism as a bio<strong>in</strong>dicator implies that contam<strong>in</strong>ant levels measured <strong>in</strong> its<br />

various body compartments reflect those measured <strong>in</strong> <strong>the</strong> surround<strong>in</strong>g environment. Hence, an<br />

organism that is able to regulate its <strong>in</strong>ternal PCB levels cannot be used as a bio<strong>in</strong>dicator. The<br />

sea star A. <strong>rubens</strong> differentially accumulates PCBs, <strong>de</strong>pend<strong>in</strong>g on <strong>the</strong> congeners planarity (viz.


208<br />

GENERAL DISCUSSION<br />

diox<strong>in</strong>-like conformation). Therefore, <strong>the</strong> sea star ability to accurately reflect environmental<br />

levels appears congener-<strong>de</strong>pen<strong>de</strong>nt. It can be consi<strong>de</strong>red as a suitable <strong>in</strong>dicator species for<br />

medium-chlor<strong>in</strong>ated PCB congeners: for certa<strong>in</strong> non-coplanar congeners (e.g. 118 and 138),<br />

strong relationships were found <strong>in</strong> <strong>the</strong> field between concentrations measured <strong>in</strong> sediments<br />

and those <strong>de</strong>term<strong>in</strong>ed <strong>in</strong> <strong>the</strong> sea star body wall. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> sea star appears to be<br />

able to regulate to a certa<strong>in</strong> extent its content <strong>in</strong> coplanar PCBs. The latter observation has<br />

two ma<strong>in</strong> implications: (i) A. <strong>rubens</strong> cannot be strictly consi<strong>de</strong>red as an <strong>in</strong>dicator organism<br />

for c-PCBs and (ii) be<strong>in</strong>g accumulated by sea stars, c-PCBs probably affect essential aspects<br />

of sea star biology <strong>in</strong> field conditions, potentially lead<strong>in</strong>g to <strong>de</strong>leterious effects.<br />

The effects of PCBs <strong>in</strong> sea stars<br />

The present study addressed effects of PCB exposure on A. <strong>rubens</strong> biology <strong>in</strong> experimental as<br />

well as <strong>in</strong> field conditions. Two ma<strong>in</strong> biological aspects were consi<strong>de</strong>red: ROS production by<br />

sea stars amoebocytes and <strong>the</strong> <strong>in</strong>duction of a CYP1A immunopositive prote<strong>in</strong> (CYP1A IPP).<br />

In experimental conditions, PCBs were found to significantly alter ROS production by sea<br />

stars amoebocytes <strong>in</strong> a congener-<strong>de</strong>pen<strong>de</strong>nt manner. The immune system of sea stars <strong>in</strong>jected<br />

with structurally-contrast<strong>in</strong>g PCBs (PCB 153 and PCB 77) was found to respond only to <strong>the</strong><br />

coplanar congener. This response occurred at all consi<strong>de</strong>red doses, except <strong>the</strong> highest, at<br />

which ROS production dropped to control levels. ROS production <strong>in</strong> sea stars experimentally<br />

exposed to PCB 77 via seawater, sediments or food was also found to drop after a vary<strong>in</strong>g<br />

lapse of time, rang<strong>in</strong>g from 4 to 10 days. In <strong>the</strong> multiple exposure experiment, a strict<br />

relationship was found between ROS production and coplanar PCB concentrations measured<br />

<strong>in</strong> sea star tissues. In <strong>the</strong> latter experiment, ROS production was also found to drop after a few<br />

days of exposure. All <strong>the</strong>se observations showed <strong>the</strong> congener-specificity of ROS production<br />

<strong>in</strong> sea stars: among <strong>the</strong> 10 different congeners tested, only <strong>the</strong> coplanar PCBs were found to<br />

significantly affect, and probably impair sea star immune system. The immunomodulation by<br />

coplanar PCB has already been <strong>de</strong>scribed <strong>in</strong> sea urch<strong>in</strong>s (Coteur et al. 2001), amphipods<br />

(Borgmann et al. 1990), fish (Duffy et al. 2001), mar<strong>in</strong>e mammals (Ross et al. 1996) and man<br />

(Vos & Van Loveren 1998).<br />

In our field studies, ROS production by sea stars amoebocytes was found to be affected and<br />

sometimes strongly impaired by contam<strong>in</strong>ant levels. No direct relationships were found<br />

between immunomodulation and non-coplanar PCB levels measured <strong>in</strong> sea stars, which is <strong>in</strong><br />

agreement with <strong>the</strong> c-PCB specific effect on ROS observed <strong>in</strong> our experimental approach.<br />

Therefore, field observed immunomodulation was most probably due to <strong>the</strong> presence of o<strong>the</strong>r


209<br />

GENERAL DISCUSSION<br />

immunotoxic contam<strong>in</strong>ants (viz. c-PCBs, heavy metals). Unfortunately <strong>the</strong> c-PCB<br />

contribution to immunotoxicity could not be <strong>de</strong>term<strong>in</strong>ed because none of our studies<br />

consi<strong>de</strong>red ROS production along with coplanar PCB concentrations measurement.<br />

ROS production by amoebocytes constitutes <strong>the</strong> ma<strong>in</strong> <strong>de</strong>fence l<strong>in</strong>e aga<strong>in</strong>st <strong>in</strong>fectious agents.<br />

Therefore levels of ROS production by sea stars amoebocytes measured <strong>in</strong> <strong>the</strong> field and <strong>the</strong><br />

levels reached after experimental exposure of sea stars to coplanar PCBs can lead to adverse<br />

effects <strong>in</strong> sea stars. Impairment of ROS production can thus <strong>in</strong>duce a higher susceptibility of<br />

sea stars populations to disease (W<strong>in</strong>ston & di Giulio 1991).<br />

ROS measurements carried out <strong>in</strong> field studies displayed quite high variability. Part of this<br />

variability can be expla<strong>in</strong>ed by exogenous factors o<strong>the</strong>r than xenobiotics occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

environment (e.g. temperature, microorganism abundance). As is <strong>the</strong> case for most<br />

physiological processes, temperature for <strong>in</strong>stance has been shown to <strong>in</strong>fluence ROS<br />

production <strong>in</strong> sea stars (Coteur et al. 2004). In <strong>the</strong> latter study, <strong>the</strong> col<strong>de</strong>st months of <strong>the</strong> year<br />

were characterized by an <strong>in</strong>crease <strong>in</strong> ROS production, act<strong>in</strong>g <strong>in</strong> a treshold-<strong>de</strong>pen<strong>de</strong>nt way. It<br />

was shown that ROS production measured <strong>in</strong> January displayed higher variability than dur<strong>in</strong>g<br />

<strong>the</strong> o<strong>the</strong>r months of <strong>the</strong> year; authors conclu<strong>de</strong>d that this period should be avoi<strong>de</strong>d for<br />

sampl<strong>in</strong>g <strong>in</strong> <strong>the</strong> framework of monitor<strong>in</strong>g studies.<br />

Dur<strong>in</strong>g <strong>the</strong> present study a novel ELISA was setup and applied to measure <strong>the</strong> <strong>in</strong>duction of a<br />

cytochrome P450 immunopositive prote<strong>in</strong> (CYP1A IPP) <strong>in</strong> experimental and field conditions.<br />

Experimental work dur<strong>in</strong>g which sea stars were exposed to a mixture of 10 PCB congeners<br />

via sediements has shown that <strong>the</strong> <strong>in</strong>duction of this prote<strong>in</strong> was related to PCB exposure, <strong>in</strong> a<br />

congener-specific fashion: coplanar PCBs alone were found to strongly <strong>in</strong>duce <strong>the</strong><br />

production of CYP1A IPP accord<strong>in</strong>g to a dose-<strong>de</strong>pen<strong>de</strong>nt relationship. When sea stars were<br />

exposed to PCB 77 via three different exposure pathways (seawater, food and sediments),<br />

CYP1A IPP was also found to be <strong>in</strong>duced, whichever uptake route was consi<strong>de</strong>red. In <strong>the</strong><br />

field, CYP1A IPP <strong>in</strong>duction was shown to be a valuable biomarker: it was found to be<br />

strongly related to PCB levels measured <strong>in</strong> sea stars. CYP1A is one of <strong>the</strong> most studied<br />

biomarker <strong>in</strong> mar<strong>in</strong>e ecotoxicology (e.g. Bucheli & Fent 1995, Stegeman 1995, Hahn 2002a).<br />

Its occurrence has been shown <strong>in</strong> mar<strong>in</strong>e molluscs (Stegeman 1985, Michel et al. 1993,<br />

Liv<strong>in</strong>gstone & Goldfarb 1998, Peters et al. 1998), crustaceans (James & Little 1980, S<strong>in</strong>ger et<br />

al. 1980) and annelids (Lee 1981, Lee et al. 1981). The existence of CYP1A has also been<br />

<strong>de</strong>monstrated <strong>in</strong> sea stars (<strong>de</strong>n Besten et al. 1990b, 1993) and, more recently, <strong>the</strong> first<br />

ech<strong>in</strong>o<strong>de</strong>rm CYP genes were i<strong>de</strong>ntified by <strong>in</strong> digestive tissues of a sea urch<strong>in</strong> (Sny<strong>de</strong>r 1998).


210<br />

GENERAL DISCUSSION<br />

However, <strong>the</strong> mechanisms un<strong>de</strong>rly<strong>in</strong>g CYP1A <strong>in</strong>duction <strong>in</strong> <strong>in</strong>vertebrates are still much<br />

<strong>de</strong>bated (see e.g. Hahn 2002a,b).<br />

K<strong>in</strong>etic and biological effect studies carried out <strong>in</strong> <strong>the</strong> present work have highlighted many<br />

similarities between <strong>the</strong> diox<strong>in</strong> responsiveness of CYP1A IPP <strong>in</strong>duction <strong>in</strong> sea stars and that<br />

<strong>de</strong>scribed <strong>in</strong> vertebrates. This strongly suggests <strong>the</strong> existence of similarities <strong>in</strong> <strong>the</strong> mechanism<br />

of toxicity of <strong>the</strong>se compounds. In vertebrates, <strong>the</strong> toxicity of diox<strong>in</strong>-like compounds implies<br />

a cytosolic receptor, <strong>the</strong> Aryl hydrocarbon Receptor (AhR), which occurrence has been<br />

shown <strong>in</strong> certa<strong>in</strong> <strong>in</strong>vertebrate animals (Hahn 2002b). Invertebrates exhibit substantial<br />

differences <strong>in</strong> <strong>the</strong> structural and regulatory characteristics of <strong>the</strong>ir biotransformation systems<br />

and diox<strong>in</strong>-susceptibility as compared to vertebrates (Hahn 1998). In vertebrates, CYP1A<br />

expression is regulated by <strong>the</strong> AhR, and is known to play a pivotal role <strong>in</strong> metaboliz<strong>in</strong>g<br />

endogenous substances such as steroid hormones (Bucheli & Fent 1995). If similarities exist<br />

between CYP1A IPP <strong>in</strong>duction <strong>in</strong> sea stars and <strong>in</strong> vertebrates, several factors are susceptible<br />

to <strong>in</strong>fluence <strong>the</strong> CYP1A enzyme system, hav<strong>in</strong>g potential consequences on its use as a<br />

biomarker. These factors can have an exogenous or endogenous orig<strong>in</strong>. The dom<strong>in</strong>ant abiotic<br />

factor which <strong>in</strong>fluences CYP1A <strong>in</strong>duction <strong>in</strong> vertebrates is temperature, which can affect<br />

measurements by chang<strong>in</strong>g <strong>the</strong> availability of contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong> organism’s surround<strong>in</strong>g<br />

environment, or by affect<strong>in</strong>g <strong>the</strong> <strong>in</strong>duction and activity of <strong>the</strong> enzymatic system (Stegeman &<br />

Hahn 1994). CYP1A IPP <strong>in</strong>duction <strong>in</strong> sea stars may also be affected by factors such as<br />

nutrition, although <strong>in</strong> fish CYP1A is still <strong>in</strong>ducible <strong>in</strong> mo<strong>de</strong>rately starved specimens (Jimenez<br />

& Stegeman 1990, Vigano et al. 1993). F<strong>in</strong>ally, as it is <strong>the</strong> case <strong>in</strong> fish (Elskus et al. 1989,<br />

Lange et al. 1993, Stegeman & Hahn 1994), CYP1A IPP <strong>in</strong>duction can be affected by sex or<br />

by <strong>the</strong> stage <strong>in</strong> reproductive cycle. However, a previous study found no significant differences<br />

between total cytochrome P450 contents <strong>in</strong> male and female sea stars (<strong>de</strong>n Besten et al.<br />

1990b). Our field studies showed significant differences <strong>in</strong> CYP1A IPP <strong>in</strong>duction ranges<br />

accord<strong>in</strong>g to <strong>the</strong> period of <strong>the</strong> year, with lower <strong>in</strong>duction factors measured <strong>in</strong> sea stars<br />

collected <strong>in</strong> automn than <strong>in</strong> those sampled dur<strong>in</strong>g <strong>the</strong> spr<strong>in</strong>g. This difference could be<br />

expla<strong>in</strong>ed by ei<strong>the</strong>r or both factors mentionned before (temperature and reproductive status).<br />

Although fur<strong>the</strong>r research is nee<strong>de</strong>d to better characterize <strong>the</strong> <strong>in</strong>fluence of surround<strong>in</strong>g<br />

seawater temperature and sea star reproductive status on CYP1A IPP <strong>in</strong>duction, this<br />

biomarker was found to be significantly related to contam<strong>in</strong>ant levels measured <strong>in</strong> <strong>the</strong> field. In<br />

<strong>the</strong> consi<strong>de</strong>red area (viz. <strong>the</strong> sou<strong>the</strong>rn North Bay), PCB contam<strong>in</strong>ation may thus represent a<br />

significant threat for sea star populations. Although be<strong>in</strong>g a prerequisite for <strong>de</strong>toxification,<br />

CYP1A can also be <strong>in</strong>volved <strong>in</strong> several toxic mechanisms. This enzyme system can convert


211<br />

GENERAL DISCUSSION<br />

protoxicants to more reactive products, a mechanism which is well <strong>de</strong>scribed for a range of<br />

PAH compounds (Stegeman & Lech 1991, Stegeman et al. 1992, Stegeman & Hahn 1994).<br />

An alteration <strong>in</strong> enzyme activity by xenobiotics may also have adverse effects on endogenous<br />

substrate metabolism and normal physiological processes, and more specifically on <strong>the</strong><br />

steroid metabolism (Elskus et al. 1989, 1992). In female fish, <strong>the</strong> alteration of sexual steroids<br />

by xenobiotic-<strong>in</strong>duced CYP1A has been suggested to be a cause for reduced reproductive<br />

success of fish populations liv<strong>in</strong>g <strong>in</strong> contam<strong>in</strong>ated areas (Spies & Rice 1988). Disturbance of<br />

<strong>the</strong> catalytic cycle of CYP can also lead to <strong>the</strong> production of ROS which are potentially toxic<br />

and mutagenic (Stegeman et al. 1992, Stegeman & Hahn 1994). As it has been reported <strong>in</strong><br />

fish, experimental exposure of sea stars to PCBs have shown that ROS production can be<br />

partly due to CYP1A IPP activity, as ROS production was found to be directly proportional to<br />

CYP1A IPP <strong>in</strong>duction. More research is nee<strong>de</strong>d to characterize <strong>the</strong> consequences of <strong>in</strong>duced<br />

CYP1A IPP levels <strong>in</strong> sea stars, but this does not question <strong>the</strong> clear ecotoxicological relevance<br />

of this biomarker.<br />

In sea stars, CYP1A IPP content was found to <strong>in</strong>crease with <strong>in</strong>creas<strong>in</strong>g exposure<br />

concentrations of coplanar PCBs. Ethoxyresoruf<strong>in</strong>-o-<strong>de</strong>ethylase (EROD) is one of <strong>the</strong><br />

enzymatic activities of <strong>the</strong> CYP system; it is thought to be <strong>the</strong> most sensitive catalytic probe<br />

to <strong>de</strong>term<strong>in</strong>e <strong>the</strong> <strong>in</strong>ductive response of CYP <strong>in</strong> fish (Goksøyr & Förl<strong>in</strong> 1992). EROD activity<br />

has been measured <strong>in</strong> sea stars and plaice (Pleuronectes platessa) (data not shown) us<strong>in</strong>g<br />

sensitive fluorimetric methods. Although lower than <strong>in</strong> flatfish, EROD activity was <strong>de</strong>tected<br />

<strong>in</strong> sea stars, fur<strong>the</strong>r support<strong>in</strong>g <strong>the</strong> possible occurrence of vertebrate-like diox<strong>in</strong>-<br />

responsiveness <strong>in</strong> sea stars. CYP1A isozymes are known to carry out a large range of<br />

activities (phase I AHH, P450RED, and phase II GST, UDPGT) (Van <strong>de</strong>r Oost et al. 2003),<br />

none of which have been addressed <strong>in</strong> <strong>the</strong> present study. In fur<strong>the</strong>r research, it would thus be<br />

<strong>in</strong>terest<strong>in</strong>g to characterize <strong>the</strong>se activities <strong>in</strong> sea stars as it would complement <strong>in</strong>formation<br />

provi<strong>de</strong>d by CYP1A IPP content measurements.<br />

Conclusions-recommendations<br />

The overall results obta<strong>in</strong>ed <strong>in</strong> this study have lead to question <strong>the</strong> exist<strong>in</strong>g <strong>in</strong>ternational<br />

regulations apply<strong>in</strong>g to monitor<strong>in</strong>g PCBs and related compounds <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e environment,<br />

but also questionn<strong>in</strong>g <strong>the</strong> <strong>de</strong>sign of monitor<strong>in</strong>g programmes. The selection of congeners, for<br />

<strong>in</strong>stance, should be revisited because of <strong>the</strong> pivotal <strong>in</strong>fluence of <strong>the</strong> congener planarity on<br />

many aspect of PCBs ecotoxicology. The fact that coplanar PCB are generally not consi<strong>de</strong>red<br />

for monitor<strong>in</strong>g programmes is probably <strong>the</strong> result of historical analytical difficulties


212<br />

GENERAL DISCUSSION<br />

(<strong>in</strong>sufficient <strong>de</strong>tection limits, coelution,…) which have now been technically overcome. As<br />

significant changes on essential aspects of sea stars biology were almost only attributable to<br />

<strong>the</strong>se compounds, <strong>the</strong>y should imperatively be <strong>in</strong>clu<strong>de</strong>d <strong>in</strong> monitor<strong>in</strong>g programmes. Results<br />

obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> present study have also shown that <strong>de</strong>sign<strong>in</strong>g programmes should be done<br />

with caution regard<strong>in</strong>g <strong>the</strong> sampl<strong>in</strong>g season, <strong>the</strong> sampl<strong>in</strong>g scale, <strong>the</strong> body compartments and<br />

<strong>the</strong> congeners to be monitored.<br />

The sea star <strong>Asterias</strong> <strong>rubens</strong> appeared to be quite resistant to a wi<strong>de</strong> range of PCB levels.<br />

However, contam<strong>in</strong>ants levels measured <strong>in</strong> some areas of <strong>the</strong> sou<strong>the</strong>rn North <strong>Sea</strong> subtly affect<br />

its immune and endocr<strong>in</strong>e systems, with relatively low short-term risk for this species. This<br />

does not mean that o<strong>the</strong>r species <strong>in</strong> this region un<strong>de</strong>rgo <strong>the</strong> same low risk level, or that<br />

ecosystems structured by sea stars may not become affected <strong>in</strong> <strong>the</strong> long term. More data is<br />

nee<strong>de</strong>d to apprehend f<strong>in</strong>e mechanisms and long-term variations, by cont<strong>in</strong>uously monitor<strong>in</strong>g<br />

this xenobiotic-stressed region, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> wi<strong>de</strong>st possible range of contam<strong>in</strong>ants and<br />

biological warn<strong>in</strong>g systems.


VI. REFERENCES<br />

213<br />

REFERENCES<br />

Abad E, Llerena JJ, Saul J, Caixach J, Rivera J, 2002. Study on PCDDs/PCDFs and co-PCBs<br />

content <strong>in</strong> food samples from Catalonia (Spa<strong>in</strong>). Chemosphere 46:1435-1441<br />

Adams WJ, Kimerle BA, Barnett JW jr, 1992. sediment quality and aquatic life assessment.<br />

Environ Sci Technol 26 (10):1865-1875<br />

Addison RF, Edwards AJ, 1988. Hepatic microsomal mono-oxygenase activity <strong>in</strong> floun<strong>de</strong>r<br />

Platichthys flesus from polluted sites <strong>in</strong> Langesundfjord and from mesocosms experimentally<br />

dosed with diesel oil and copper. Mar Ecol Prog Ser 46: 51-54.<br />

Ahlborg UG, Beck<strong>in</strong>g GC, Birnbaum LS, Brouwer A, Derks HJGM, Feeley M, Golor G,<br />

Hanberg A, Larsen JC, Liem AKD, Safe SH, Schlatter C, Waern F, Younes F, Yrjanheikki E,<br />

1994. Toxic equivalency factors for diox<strong>in</strong>-like PCBs. Chemosphere 28:1049-1067<br />

Ahlborg UG, Brouwer A, F<strong>in</strong>gerhut MA, Jacobson JL, Jacobson SW, Kennedy SW, Kettrup<br />

AAF, Koeman JH, Poiger H, Rappe C, Safe SH, Seegal RF, Tuomisto J, van <strong>de</strong>n Berg M,<br />

1992. Impact of polychlor<strong>in</strong>ated dibenzo-p-diox<strong>in</strong>s, dibenzofurans, and biphenyls on human<br />

and environmental health, with special emphasis on application of <strong>the</strong> toxic equivalency<br />

factor concept. Eur J Pharmacol Environ Toxicol, Pharmacol Sect 228:179 199.<br />

Alzieu C, Michel P, 1998. L’éta<strong>in</strong> et les organoéta<strong>in</strong>s en milieu mar<strong>in</strong>. Biogéochimie et<br />

écotoxicologie, Repère océan (vol. 15). (Rapport IFREMER)<br />

AMAP, 1998. AMAP Assessment Report: Arctic Pollution Issues. Arctic Monitor<strong>in</strong>g and<br />

Assessment Program (AMAP), Oslo, Norway, xiiq 859 pp. ISBN 82-7655-061-4.<br />

AMAP, 2000. PCB <strong>in</strong> <strong>the</strong> Russian Fe<strong>de</strong>ration: Inventory and Proposals for Priority Remedial<br />

Actions. Executive Summary. AMAP Report 2000: 3, 2000. ISBN 82-7971-008-6. 27 pp.<br />

An<strong>de</strong>rson RS, 1993. Modulation of nonspecific immunity by environmental stressors. In:<br />

Couch JA, Fournie JW (eds): Advances <strong>in</strong> fisheries science, pathobiology of mar<strong>in</strong>e and<br />

estuar<strong>in</strong>e organisms, CRC press, London, pp 483-510<br />

An<strong>de</strong>rson RS, Brubacher LL, Calvo LMR, Burreson EM, Unger MA, 1997. Effect of <strong>in</strong> vitro<br />

exposure to tributylt<strong>in</strong> on generation of oxygen metabolites by oyster hemocytes. Environ Res<br />

74:84-90.<br />

An<strong>de</strong>rson RS, Mora LM, Thomson SA, 1994. Modulation of oyster (Crassostrea virg<strong>in</strong>ica)<br />

hemocyte immune function by copper, as measured by lum<strong>in</strong>ol-enhanced chemilum<strong>in</strong>escence.<br />

Comp Biochem Physiol 108(C):215-220.<br />

Arukwe A, 2001. Cellular and molecular responses to endocr<strong>in</strong>e-modulators and <strong>the</strong> impact<br />

on fish reproduction Mar Pollut Bull 42(8):643-655<br />

Aryoshi N, Yoshimura H, Oguri K, 1993. I<strong>de</strong>ntification of <strong>in</strong> vitro metabolites of<br />

2,4,6,2’,4’,6’-hexachlorobiphenyl from phenobarbital-treated dog liver microsomes. Biol<br />

Pharmacol Bull 16:852-857<br />

Ashley CM, Simpson MG, Holdich DM, Bell DR, 1996. 2,3,7,8-tetrachloro-p-diox<strong>in</strong> is a<br />

potent tox<strong>in</strong> and <strong>in</strong>duces cytochrome P450 <strong>in</strong> <strong>the</strong> crayfish Pacifastacus leniusculus. Aquat<br />

Toxicol 35:157-169


214<br />

REFERENCES<br />

Atuma SS, L<strong>in</strong><strong>de</strong>r CE, An<strong>de</strong>rsson Ö, Bergh A, Hansson L, Wicklund-Glynn A, 1996. CB153<br />

as <strong>in</strong>dicator for congener specific <strong>de</strong>term<strong>in</strong>ation of PCBs <strong>in</strong> diverse fish species from Swedish<br />

waters. Chemosphere 33:1459-1464<br />

Babior M, 1984. The respiratory burst of phagocytes. J Cl<strong>in</strong> Invest 73:599-601<br />

Baier-An<strong>de</strong>rson C, An<strong>de</strong>rson RS, 2000. Immunotoxicity of environmental pollutants <strong>in</strong><br />

mar<strong>in</strong>e <strong>in</strong>vertebrates. Recent Adv Mar Biotechnol 5:189-225.<br />

Baier-An<strong>de</strong>rson C, An<strong>de</strong>rson RS, 2000. Immunotoxicity of environmental pollutants <strong>in</strong><br />

mar<strong>in</strong>e <strong>in</strong>vertebrates. In: F<strong>in</strong>german M, Nagabhushanam R (eds), Recent advances <strong>in</strong> mar<strong>in</strong>e<br />

biotechnology, Vol. 5 Immunobiology and pathology, Sce<strong>in</strong>ce Publishers Inc, Enfield (NH,<br />

USA), pp.189-225<br />

Balls PW, 1988. The control of trace metal concentrations <strong>in</strong> coastal seawater through<br />

partition onto suspen<strong>de</strong>d particulate matter. Neth J <strong>Sea</strong> Res 22:213-218.<br />

Ballschmiter K, Zell M, 1980. Analysis of polychlor<strong>in</strong>ated biphenyls (PCBs) by glass<br />

capillary chromatography. Fresnius Z Anal Chem 302: 20-31<br />

Ballschmiter KH, Froescheis O, Jarman WM Caillet G, 1997. Contam<strong>in</strong>ation of <strong>the</strong> <strong>de</strong>ep-sea.<br />

Mar Pollut Bull 34(5):288-289<br />

Barnes H, Blackstock J, 1973. Estimation of lipids <strong>in</strong> mar<strong>in</strong>e animals and tissues: <strong>de</strong>tailed<br />

<strong>in</strong>vestigation of <strong>the</strong> sulfophosphovanill<strong>in</strong> for «total lipids». J Exp Mar Biol Ecol 12, 103-118<br />

Barron MG, 1990. Bioconcentration. Environ Sci Technol 24: 1612-1618<br />

Barron MG, Yurk JJ, Cro<strong>the</strong>rs DB, 1994. Assessment of potential cancer risk from<br />

consumption of PCBs bioaccumulated <strong>in</strong> fish and shellfish. Environ Health Perspect 102: 562<br />

567.<br />

Baukloh V, Bohnet HG, Trapp M, Heeschen W, Feicht<strong>in</strong>ger W, Kemeter P. Bioci<strong>de</strong>s <strong>in</strong><br />

human follicular fluid. Ann NY Acad Sci. 1985;442:240-50.<br />

Bayens WFJ, 1998. Trace metals <strong>in</strong> <strong>the</strong> Westerschel<strong>de</strong> estuary : a case study of a polluted,<br />

partially anoxic estuary. Hydrobiologia (vol. 366) :167pp.<br />

Bayne BL, Clarke KR, Cray JS, 1988. Biological effects of pollutants. Mar Ecol Prog Ser<br />

(special edition), 278pp. (whole issue).<br />

Becker G, 1990. Review of <strong>the</strong> physical oceanography of <strong>the</strong> North <strong>Sea</strong>. Neth J <strong>Sea</strong> Res<br />

26:161-238.<br />

Becker GA, Dick S, Dippner JW, 1992. Hydrography of <strong>the</strong> German Bight. Mar Ecol Prog<br />

Ser (Special) 91:9-18.<br />

Bedard DL, May RJ, 1996. Characterization of <strong>the</strong> polychlor<strong>in</strong>ated biphenyls <strong>in</strong> <strong>the</strong> sediments<br />

of <strong>the</strong> Woods Pond: evi<strong>de</strong>nce for microbial <strong>de</strong>chlor<strong>in</strong>ation of Aroclor 1260 <strong>in</strong> situ. Environ<br />

Sci Technol 30:237-245.<br />

Bello SM, Franks DG, Stegeman JJ, Hahn ME, 2001. Acquired resistance to aryl hydrocarbon<br />

receptor agonists <strong>in</strong> a population of Fundulus heteroclitus from a mar<strong>in</strong>e Superfund site: <strong>in</strong><br />

vivo and <strong>in</strong> vitro studies on <strong>the</strong> <strong>in</strong>duction of xenobiotic- metaboliz<strong>in</strong>g enzymes. Toxicol Sci<br />

60:77-91.<br />

Benedict JC, L<strong>in</strong> TM, Loeffler IK, Peterson RE, Flaws JA, 2000. Physiological role of <strong>the</strong><br />

aryl hydrocarbon receptor <strong>in</strong> mouse ovary <strong>de</strong>velopment. Toxicol Sci 56:382-388.


215<br />

REFERENCES<br />

Benisch PA, Hosoe K, Sakai S, 2001. Bioanalytical screen<strong>in</strong>g methods for diox<strong>in</strong> and diox<strong>in</strong>like<br />

compounds - a review of bioassay/biomarker technology. Environ Int 27:413-439<br />

Bergen BJ, Nelson WG, Pruell RJ (1996) Comparison of nonplanar and coplanar PCB<br />

congener partition<strong>in</strong>g <strong>in</strong> seawater and bioaccumulation <strong>in</strong> blue mussels (Mytilus edulis).<br />

Environ Toxicol Chem 15:1517-1523<br />

Bergqvist PA, Bergek S, Hallback H, Rappe C, Slorach SA, 1989. Diox<strong>in</strong>s <strong>in</strong> cod and herr<strong>in</strong>g<br />

from <strong>the</strong> seas around Swe<strong>de</strong>n. Chemosphere 19:513-516.<br />

Ber<strong>the</strong>ussen, K. (1981). Endocytosis by ech<strong>in</strong>oid phagocytes <strong>in</strong> vitro I. Recognition of foreign<br />

matter. Dev. Comp. Immunol. 5, 241-250.<br />

Bidleman TF, Olney CE, 1973. Chlor<strong>in</strong>ated hydrocarbons <strong>in</strong> <strong>the</strong> Sargasso <strong>Sea</strong> atmosphere and<br />

surface water. Science 183 , pp. 516–51<br />

Billen G, Joiris C, Meyer-Reil L, L<strong>in</strong><strong>de</strong>boom H, 1990. Role of bacteria <strong>in</strong> <strong>the</strong> North <strong>Sea</strong><br />

ecosystem. Neth J <strong>Sea</strong> Res 26:265-293.<br />

B<strong>in</strong>yon J, 1978. Some observations upon <strong>the</strong> chemical composition of <strong>the</strong> starfish <strong>Asterias</strong><br />

<strong>rubens</strong> L with particular reference to strontium uptake. J Mar Biol Assoc UK 58:441-449.<br />

Birkeland C, 1989. The <strong>in</strong>fluence of ech<strong>in</strong>o<strong>de</strong>rms on coral reef communities. In: Jangoux M,<br />

Lawrence JM (eds), Ech<strong>in</strong>o<strong>de</strong>rm Studies, Vol. 3, Balkema, Rotterdam, pp. l-80.<br />

Birnbaum LS, 1995. Workshop on per<strong>in</strong>atal exposure to diox<strong>in</strong>-like compounds. V.<br />

Immunologic effects. Environmental Health Perspectives 103 (Suppl.2):157–160.<br />

Bjerregaard P, 1988. Effect of selenium on cadmium uptake <strong>in</strong> selected benthic <strong>in</strong>vertebrates.<br />

Mar Ecol Prog Ser 48: 17-28<br />

Boese BL, Lee H, Echols S, 1997. Evaluation of a first or<strong>de</strong>r mo<strong>de</strong>l for <strong>the</strong> prediction of <strong>the</strong><br />

bioaccumulation of PCBs and DDT from sediment <strong>in</strong>to <strong>the</strong> mar<strong>in</strong>e <strong>de</strong>posit-feed<strong>in</strong>g clam<br />

Macoma nasuta, Environ Toxicol Chem 16(7):1545-1553<br />

Boese BL, Specht DT, Pelletier J, Randall R, 1996. Evaluation of PCB and<br />

hexachlorobenzene biota-sediment accumulation factors based on <strong>in</strong>gested sediment <strong>in</strong> a<br />

<strong>de</strong>posit-feed<strong>in</strong>g clam. Environ Toxicol Chem 15(9):1584-1589<br />

Booij K, van <strong>de</strong>n Berg C, 1994. Comparison of techniques for <strong>the</strong> extraction of lipids and<br />

PCBs from benthic <strong>in</strong>vertebrates. Bull Environ Contam Toxicol 53:71-76.<br />

Booij K, Van <strong>de</strong>r Meer J, Kwast D, De Boer JL, 1997. Sorption of polychlor<strong>in</strong>ated biphenyls<br />

by North <strong>Sea</strong> sediments. J <strong>Sea</strong> Res 37:49-66.<br />

Boon JP, Van Zantvoort MB, Govaert MJMA, Du<strong>in</strong>ker JC, 1985. Organochlor<strong>in</strong>e <strong>in</strong> benthic<br />

polychaetes (Nepthys spp.) and sediments from <strong>the</strong> sou<strong>the</strong>rn North <strong>Sea</strong>. I<strong>de</strong>ntification of<br />

<strong>in</strong>dividual PCB compounds. Neth J <strong>Sea</strong> Res 19:93-109.<br />

Boon JP, Everaarts JM, Ten Hallers CC, Slei<strong>de</strong>r<strong>in</strong>k HM, Beyer J, Goksøyr A, Klungsøyr J,<br />

Wilhelmsen S, Halbrook RS, Shugart LR, Ariese F, Nieuwenhuize J, Van Liere JM, Vethaak<br />

AD, Eggens ML, 1995. The <strong>in</strong>tegrated North <strong>Sea</strong> Programme 1991-92: <strong>the</strong>me<br />

microcontam<strong>in</strong>ants. Mar Environ Res: 39, 345-346<br />

Borgmann J, Norwood WP, Ralph KM, 1990. Chronic toxicity and bioaccumulation of<br />

2,5,2’,5’- and 3,4,3’,4’-tetrachlorobiphenyl and Aroclor 1242 <strong>in</strong> <strong>the</strong> amphipod Hyalella<br />

azteca. Arch Environ Contam Toxicol 19:558-564


216<br />

REFERENCES<br />

Borlakoglu JT, Wilk<strong>in</strong>g JPG, 1993. Correlations between <strong>the</strong> molecular structures of<br />

polyhalogenated biphenyls and <strong>the</strong>ir metabolism by hepatic microsomal monooxygenases.<br />

Comp Biochem Physiol 105(C):113-117<br />

Boucaud-Camou E, 1973. Etu<strong>de</strong> <strong>de</strong> l’appareil digestif <strong>de</strong> Sepia offic<strong>in</strong>alis L. (Mollusque<br />

Céphalopo<strong>de</strong>). Essai d’analyse expérimentale <strong>de</strong>s phénomènes digestifs. PhD Thesis,<br />

University of Caen, France, 208 pp.<br />

Boucaud-Camou E, Boucher-Rodoni R, 1983. Feed<strong>in</strong>g and digestion <strong>in</strong> Cephalopods. In:<br />

Saleudd<strong>in</strong> ASM, Wilbur KM (eds) The Mollusca, vol. 5: Physiology, Part 2, New York and<br />

London, Aca<strong>de</strong>mic Press, pp. 149-187<br />

Boucher-Rodoni R, Boucaud-Camou E, Mangold K, 1987. Feed<strong>in</strong>g and digestion. In: Boyle<br />

PR (ed) Cephalopod life cycles. Vol II. Comparative Reviews. Aca<strong>de</strong>mic Press, New York,<br />

London, p 85-108<br />

Bradford MM, 1976. A rapid and sensitive method for <strong>the</strong> quantitation of microgram<br />

quantities of prote<strong>in</strong> utiliz<strong>in</strong>g <strong>the</strong> pr<strong>in</strong>ciple of prote<strong>in</strong>-dye b<strong>in</strong>d<strong>in</strong>g. Analyt Biochem 72:242-<br />

254<br />

Brattsen LB, 1979. Ecological significance of mixed-function oxidations. Drug. Metabol.<br />

Rev. 10:35–58.<br />

Bright DA, Dushenko WT, Grundy SL, Reimer KJ, 1995. Effect of local and distant<br />

contam<strong>in</strong>ant sources: polychor<strong>in</strong>ated biphenyls and o<strong>the</strong>r organochlor<strong>in</strong>es <strong>in</strong> bottom-dwell<strong>in</strong>g<br />

animals from <strong>the</strong> Arctic estuary. Sci Tot Environ 160/161:265-283<br />

Broman D, Näf C, Rolff C, Zebühr Y, Fry B, Hobbie J, 1992. Us<strong>in</strong>g ratios of stable nitrogen<br />

isotopes to estimate bioaccumulation and flux of polychlor<strong>in</strong>ated dibenzo-p-diox<strong>in</strong>s (PCDDs)<br />

and dibenzofurans (PCDFs) <strong>in</strong> two food cha<strong>in</strong>s from <strong>the</strong> nor<strong>the</strong>rn Baltic. Environ Toxicol<br />

Chem 11:331-345<br />

Brouwer A, Van Den Berg KJ, 1986. B<strong>in</strong>d<strong>in</strong>g of a metabolite of 3,4,3’,4’-tetrachlorobiphenyl<br />

to transthyret<strong>in</strong> reduced vitam<strong>in</strong> A transport by <strong>in</strong>hibit<strong>in</strong>g <strong>the</strong> formation of <strong>the</strong> prote<strong>in</strong><br />

complex carry<strong>in</strong>g both ret<strong>in</strong>ol and thyrox<strong>in</strong>. Toxicol Appl Pharmacol 88:301–312.<br />

Brown BE, 1982. The form and function of metal-conta<strong>in</strong><strong>in</strong>g ‘granules’ <strong>in</strong> <strong>in</strong>vertebrate<br />

tissues. Biol Rev Cam Philos Soc 57:621-667<br />

Brown DG, Lanno RP, van <strong>de</strong>n Heuvel MR, Dixon DG, 1995. HPLC <strong>de</strong>term<strong>in</strong>ation of plasma<br />

thiocyanate concentrations <strong>in</strong> fish blood: application to laboratory pharmacok<strong>in</strong>etic and fieldmonitor<strong>in</strong>g<br />

studies. Ecotox Environ Saf 30: 302-308<br />

Brown ER, S<strong>in</strong>clair T, Keith L, Beamer P, Hazdra JJ, Nair V, Callaghan O, 1977. Chemical<br />

pollutants <strong>in</strong> relation to diseases <strong>in</strong> fish. Ann New York Acad Sci 298:535-546.<br />

Brown JFJr, Bedard DL, Brennan MJ, Carnahan JC, 1987. Polychlor<strong>in</strong>ated biphenyl<br />

<strong>de</strong>chlor<strong>in</strong>ation <strong>in</strong> aquatic sediments. Science 236:709–712.<br />

Brumley CM, Haritos VS, Ahokas J.T, Holdway DA, 1995. Validation of biomarkers of<br />

mar<strong>in</strong>e pollution exposure <strong>in</strong> sand fla<strong>the</strong>ad us<strong>in</strong>g Aroclor 1254. Aquat Toxicol 31: 249-262.<br />

Bruner KS, Fisher S, Landrum P, 1994. The role of <strong>the</strong> zebra mussel, Dreissena polymorpha,<br />

<strong>in</strong> contam<strong>in</strong>ant cycl<strong>in</strong>g: II. Zebra mussel contam<strong>in</strong>ant accumulation from algae and<br />

suspen<strong>de</strong>d particles, and transfer to <strong>the</strong> benthic <strong>in</strong>vertebrate, Gammarus fasciatus. J Great<br />

Lakes Res 20:735-750


217<br />

REFERENCES<br />

Brunner S, Hornung E, Santi H, Wolff E, Pir<strong>in</strong>ger OG, Altschuh J, Bruggeman R, 1990.<br />

Henry’s law constants for polychlor<strong>in</strong>ated biphenyls: Experimental <strong>de</strong>term<strong>in</strong>ation and<br />

structure–property relationships. Environ Sci Technol 24:1751-1754.<br />

Bruno JF, Bertness MD, 2001. Habitat modification and facilitation <strong>in</strong> benthic mar<strong>in</strong>e<br />

communities. In: Bertness MD, Ga<strong>in</strong>es SD, Hay ME, editors. Mar<strong>in</strong>e community ecology.<br />

Sun<strong>de</strong>rland, MA: S<strong>in</strong>auer Associates, Inc, pp. 201-218.<br />

Bruschweiler BJ, Würgler FE, Fent K. 1996. An ELISA assay for cytochrome P4501A <strong>in</strong> fish<br />

liver cells. Environ Toxicol Chem 15(4):592-596<br />

Bryan GW, 1984. Pollution due to heavy metals and <strong>the</strong>ir compounds. In: K<strong>in</strong>ne O (ed):<br />

Mar<strong>in</strong>e Ecology, vol5, Wiley J &sons, Chichester pp. 1289-1432<br />

Bucheli TD, Fent K, 1995. Induction of cytochrome P450 as a biomarker for environmental<br />

contam<strong>in</strong>ation <strong>in</strong> aquatic ecosystems. Crit Rev Environ Sci Technol 25:201-268<br />

Buhler DR, Wang-Buhler JL, 1998. Ra<strong>in</strong>bow trout cytochrome P450s: purification, molecular<br />

aspects, metabolic activity, <strong>in</strong>duction and role <strong>in</strong> environmental monitor<strong>in</strong>g. Comp Biochem<br />

Physiol 121(C):107-137<br />

Burbach KM, Poland A, Bradfield CA, 1992. Clon<strong>in</strong>g of <strong>the</strong> Ah receptor cDNA reveals a<br />

dist<strong>in</strong>ctive ligand-activated transcription factor, Proc Natl Acad Sci USA 89:8185-8189.<br />

Burch SW, Fitzpatrick LC, Goven AJ, Venables BJ, Giggleman MA, 1999. In vitro<br />

earthworm Lumbricus terrestris coelomocyte assay for use <strong>in</strong> terrestrial toxicity i<strong>de</strong>ntification<br />

evaluation. Bull Environ Contam Toxicol 62:547-554.<br />

Burckmeier BFA, Juttner I, Schramm KW, W<strong>in</strong>kler R, Ste<strong>in</strong>berg CEW, Kettrup A, 1997.<br />

PCBs and PCDD/Fs <strong>in</strong> lake sediments of Grosser Arbersee, Bavarian Forest, South Germany.<br />

Environ Pollut 95:19-25<br />

Burgeot T, Bocquéné G, Truquet P, Le Dean L, Galgani F, 1994. Induction of EROD activity<br />

<strong>in</strong> red mullet (Mullus barbatus) along <strong>the</strong> French Mediterranean coasts. Sci Total Environ<br />

142: 213-220.<br />

Burgess RM, Schweitzer KA, McK<strong>in</strong>ney RA, Phelps DK, 1992. Contam<strong>in</strong>ated mar<strong>in</strong>e<br />

sediments: water column and <strong>in</strong>terstitial toxic effects. Environ Toxicol Chem 12:127-138.<br />

Burke M, Mayer R, 1974. Ethoxyresoruf<strong>in</strong>: direct fluometric assay of a microsomal O<strong>de</strong>alkylation<br />

wich is preferentially <strong>in</strong>ducible by 3- methylchloranthrene. Drug Metab Dispos<br />

2: 583-588.<br />

Burke RD, 1987. Ech<strong>in</strong>o<strong>de</strong>rm metamorphosis: comparative aspects of <strong>the</strong> change <strong>in</strong> form. In:<br />

Jangoux M, Lawrence JM (eds) Ech<strong>in</strong>o<strong>de</strong>rm Studies. Vol 3, Balkema, Rotterdam pp 81-108.<br />

Bustamante P, 1998. Etu<strong>de</strong> <strong>de</strong>s processus <strong>de</strong> bioaccumulation et <strong>de</strong> détoxication d'éléments<br />

traces (métaux lourds et terres rares) chez les mollusques céphalopo<strong>de</strong>s et bivalves pect<strong>in</strong>idés.<br />

Implication <strong>de</strong> leur biodisponibilité pour le transfert vers les prédateurs. PhD Thesis,<br />

University of La Rochelle, France, 290 pp.<br />

Bustamante P, Caurant F, Fowler SW, Miramand P, 1998a. Cephalopods as a vector for <strong>the</strong><br />

transfer of cadmium to top mar<strong>in</strong>e predators <strong>in</strong> <strong>the</strong> north-east Atlantic Ocean. Sci Tot Environ<br />

220:71-80<br />

Bustamante P, Cherel Y, Caurant F, Miramand P, 1998b. Cadmium, copper and z<strong>in</strong>c <strong>in</strong><br />

octopuses from Kerguelen Islands, Sou<strong>the</strong>rn Indian Ocean. Polar Biol 19:264-271


218<br />

REFERENCES<br />

Bustamante P, Cosson RP, Gallien I, Caurant F, Miramand P, 2002. Cadmium <strong>de</strong>toxification<br />

processes <strong>in</strong> <strong>the</strong> digestive gland of cephalopods <strong>in</strong> relation to accumulated cadmium<br />

concentrations. Mar Environ Res 53:227-241<br />

Bustamante P, Grigioni S, Boucher-Rodoni R, Caurant F, Miramand P, 2000.<br />

Bioaccumulation of 12 trace elements <strong>in</strong> <strong>the</strong> tissues of <strong>the</strong> nautilus Nautilus macromphalus<br />

from New-Caledonia. Mar Pollut Bull 40(8):688-696<br />

Butcher JB, Gauthier TD, Garvey EA, 1997, Use of historical PCB aroclors measurement:<br />

hudson river fish data. Environ Toxicol Chem 16(8):1618-1623<br />

Butler RB, Kelley ML, Powell WH, Hahn ME, Van Bene<strong>de</strong>n RJ, 2001. An aryl hydrocarbon<br />

receptor homologue from <strong>the</strong> soft-shell clam, Mya arenaria: evi<strong>de</strong>nce that <strong>in</strong>vertebrate AHR<br />

homologues lack TCDD and BNF b<strong>in</strong>d<strong>in</strong>g. Gene 278:223-234.<br />

Butty JS, Holdway DA, 1997. Assessment of <strong>the</strong> octopus Octopus pallidus, as a potential<br />

bio<strong>in</strong>dicator of xenobiotic challenge: basel<strong>in</strong>e studies. Mar Pollut Bull 34(7): 564-570<br />

Cairns J, 1983. Are s<strong>in</strong>gle species toxicity tests alone a<strong>de</strong>quate for estimat<strong>in</strong>g environmental<br />

hazard? Hydrobiologia 100:47-57.<br />

Cairns T, Doose GM, Froberg JE, Jacobson RA, Siegmund EG, 1989. Analytical chemistry of<br />

PCBs. In: Waid JS (ed): PCBs and <strong>the</strong> environment. CRC Press, Boca Ration, FL.<br />

Canicatti C, 1990. Lysosomal enzyme pattern <strong>in</strong> Holothuria polii coelomocytes. J Invert<br />

Pathol 56:70-74.<br />

Carr RS, Long ER, W<strong>in</strong>dom HL, Chapman DC, Thursby G, 1996. Sediment quality<br />

assessment studies of Tampa Bay, Florida. Environ Toxicol Chem 15, 1218-1231<br />

Castro BG, Guerra A, 1990. The diet of Sepia offic<strong>in</strong>alis (L<strong>in</strong>naeus 1758) and Sepia elegans<br />

(D’Orbigny 1835) (Cephalopoda, Sepioi<strong>de</strong>a) from <strong>the</strong> Ria <strong>de</strong> Vigo (NW Spa<strong>in</strong>). Scientia<br />

Mar<strong>in</strong>a 54, 375-388<br />

Celan<strong>de</strong>r M, Förl<strong>in</strong> L. 1991. Catalytic activity and immunochemical quantification of hepatic<br />

cytochrome P450 <strong>in</strong> beta-naphtoflavone and isosafrol treated ra<strong>in</strong>bow trout (Oncorhyncus<br />

mykiss). Fish Physiol Biochem 9:189-197<br />

Chapman PM, 1995. Ecotoxicology and Pollution: key issues. Mar Pollut Bull 31:167-177<br />

Chapman PM, 1996. A test of sediment effects concentrations: DDT and PCB <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn<br />

California bight. Environ Toxicol Chem 15(7):1197-1198<br />

Cheah DMY, Wright PFA, Holdway DA, Ahokas JT, 1995. Octopus pallidus cytochrome P-<br />

450: characterization and <strong>in</strong>duction studies with ß-naphthoflavone and Aroclor 1254. Aquat<br />

Toxicol 33, 201-214<br />

Chia FS, X<strong>in</strong>g J, 1996. Ech<strong>in</strong>o<strong>de</strong>rm coelomocytes. Zool Studies 35:231-254<br />

Chiu A, Chiu N, Beaubier J, Nalsnik R, S<strong>in</strong>gh D, Hill WR, Lau C, Riebow J, 2000. Effects<br />

and mechanisms of PCB ecotoxicity <strong>in</strong> food cha<strong>in</strong>s: algae=>fish=>seal=>polar bear. J<br />

Environ Sci Health C18(2):127-152<br />

Christensen ER, Lo CK, 1986. Polychlor<strong>in</strong>ated biphenyls <strong>in</strong> dated sediments of Milwaukee<br />

Harbour, Wiscons<strong>in</strong>, USA. Environ Pollut (Series B) 12:217-232.<br />

Clark RB, 1997. Mar<strong>in</strong>e Pollution. Oxford University Press, 161 pp.<br />

Clarke MR, 1996. Cephalopods as prey. III. Cetaceans. Philosophical Transactions of <strong>the</strong><br />

Royal Society of London Ser B 351, 1053-1065


219<br />

REFERENCES<br />

Clements WH, Kiffney PM. Assess<strong>in</strong>g contam<strong>in</strong>ant effects at higher levels of biological<br />

organization. Environ Toxicol Chem 1994;13:357-359.<br />

Cof<strong>in</strong>o WP, Sme<strong>de</strong>s F, <strong>de</strong> Jong SA, Abarnou A, Boon JP, Oost<strong>in</strong>gh I, Davies IM, Klungsøyr<br />

J, Wilhelmsen S, Law RJ, Wh<strong>in</strong>nett JA, Schmidt D, Wilson S (1992) The chemistry<br />

programme. Mar Ecol Prog Ser (Special) 91:47-56.<br />

Coles JA, Farley SR, Pipe RK, 1995. Alteration of <strong>the</strong> immune response of <strong>the</strong> common<br />

mar<strong>in</strong>e mussel Mytilus edulis result<strong>in</strong>g from exposure to cadmium. Dis Aquat Org 22:59-65.<br />

Conover WJ, 1980. Practical nonparametric statistics. Wiley & Sons, NY, 493 pp.<br />

Coombs TL, George SG (1978) Mechanisms of immobilisation and <strong>de</strong>toxification of metals<br />

<strong>in</strong> mar<strong>in</strong>e organisms. In: Mclusky DS & Berry AJ (eds) Physiology and behaviour of mar<strong>in</strong>e<br />

organisms. Pergamon Press, New York, p 179-187<br />

Cooper EL, 1992. The capacities of earthworms to heal wounds and to <strong>de</strong>stroy allografts are<br />

modified by polychlor<strong>in</strong>ated biphenyls (PCB). J Invert Pathol 60:59-63.<br />

Cooper KR, 1989. Efects of polychlor<strong>in</strong>ated dibenzo-p-diox<strong>in</strong>s and polychlor<strong>in</strong>ated<br />

dibenzofurans on aquatic organisms. Rev Aquat Sci 1:227-242<br />

CoT, 2001. Committee on Toxicity of Chemicals <strong>in</strong> Food, Consumer Products and <strong>the</strong><br />

Environment. Statement on <strong>the</strong> tolerable daily <strong>in</strong>take for diox<strong>in</strong>s and diox<strong>in</strong>-like<br />

polychlor<strong>in</strong>ated biphenyls. Available at:<br />

http://www.foodstandards.gov.uk/committees/cot/cot_diox<strong>in</strong>_stat.pdf.<br />

Coteur G, Danis B, Fowler SW, Teyssié JL, Dubois Ph, Warnau M, 2001. Effects of PCBs on<br />

reactive oxygen species (ROS) production by <strong>the</strong> immune cells of Paracentrotus lividus<br />

(Ech<strong>in</strong>o<strong>de</strong>rmata). Mar Pollut Bull 42(8):667-672<br />

Coteur G, 2002a. The cellular immunity of <strong>Asterias</strong> <strong>rubens</strong> L. (Ech<strong>in</strong>o<strong>de</strong>rmata):<br />

characterization and impact of metal contam<strong>in</strong>ations. PhD <strong>the</strong>sis (<strong>in</strong> French). <strong>Université</strong> <strong>Libre</strong><br />

<strong>de</strong> <strong>Bruxelles</strong>, Brussels. 179 pp.<br />

Coteur G, DeBecker G, Warnau M, Jangoux M, Dubois Ph, 2002b. Differentiation of immune<br />

cells challenged by bacteria <strong>in</strong> <strong>the</strong> common European starfish, <strong>Asterias</strong> <strong>rubens</strong><br />

(Ech<strong>in</strong>o<strong>de</strong>rmata). Eur J Cell Biol 81:413-418.<br />

Coteur G, Warnau M, Jangoux M, Dubois Ph, 2002c. Reactive oxygen species (ROS)<br />

production by amoebocytes of <strong>Asterias</strong> <strong>rubens</strong> (Ech<strong>in</strong>o<strong>de</strong>rmata). Fish & Shellfish Immunol.<br />

12(3):187-200<br />

Coteur G, Gossel<strong>in</strong> P, Wantier P, Chambost-Manciet Y, Warnau M, Danis B, Pernet Ph,<br />

Dubois Ph, 2003a. Ech<strong>in</strong>o<strong>de</strong>rms as bio<strong>in</strong>dicators, bioasssays and impact assessment tools of<br />

sediment associated metals and PCBs <strong>in</strong> <strong>the</strong> North <strong>Sea</strong>, Arch. Environ Toxicol Chem 45<br />

(2):190-202<br />

Coteur G, Pernet Ph, Gillan D, Joly G, Maage A, Dubois Ph, 2003b. Field contam<strong>in</strong>ation of<br />

<strong>the</strong> starfish <strong>Asterias</strong> <strong>rubens</strong> by metals. Part 1: Short- and long-term accumulation along a<br />

pollution gradient. Environ Toxicol Chem 22(9):2136-2144<br />

Coteur G, Gillan D, Joly G, Pernet Ph, Dubois, 2003c. Field contam<strong>in</strong>ation of <strong>the</strong> starfish<br />

<strong>Asterias</strong> <strong>rubens</strong> by metals. Part 2: Effects on <strong>the</strong> cellular immunity. Environ Toxicol Chem<br />

22(9):2145-2151<br />

Coteur G, Corriere N, Dubois Ph, 2004. Environmental factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> immune<br />

responses of <strong>the</strong> common European starfish (<strong>Asterias</strong> <strong>rubens</strong>), Fish & Shellf Immunol 16:51-<br />

63


220<br />

REFERENCES<br />

Courtney WAM, Langston WJ, 1978. Uptake of polychlor<strong>in</strong>ated biphenyls (Aroclor 1254)<br />

from sediment and from seawater <strong>in</strong> two <strong>in</strong>tertidal polychaetes. Environ Pollut 15: 303-309<br />

Creutzberg F, Wapenaar P, Du<strong>in</strong>eveld G, Lopez Lopez N, 1984. Distribution and <strong>de</strong>nsity of<br />

<strong>the</strong> benthic fauna <strong>in</strong> <strong>the</strong> Sou<strong>the</strong>rn North <strong>Sea</strong> <strong>in</strong> relation to bottom characteristics and<br />

hydrographic conditions. Rapp P-v Réun Cons Perm Int Explor Mer 183:226-233.<br />

Croxall JP, Pr<strong>in</strong>ce PA, 1996. Cephalopods as prey. I. <strong>Sea</strong>birds. Phil Trans Roy Soc London<br />

Ser B 351, 1023-1043<br />

Cumm<strong>in</strong>s JE, 1988. Ext<strong>in</strong>ction: <strong>the</strong> PCB threat to mar<strong>in</strong>e mammals. Ecologist 18(6):193-195.<br />

Daan R, Lewis WE, Mul<strong>de</strong>r M, 1990. Biological effects of discharged oil-contam<strong>in</strong>ated drill<br />

cutt<strong>in</strong>gs <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> (Report NIOZ 1990-5). Ne<strong>the</strong>rlands Institute for <strong>Sea</strong><br />

Research/NIOZ. Den Burg, Texel, The Ne<strong>the</strong>rlands.<br />

Dahlgaard H, 1981. Bio<strong>in</strong>dicators for monitor<strong>in</strong>g radioactive pollution of <strong>the</strong> mar<strong>in</strong>e<br />

environment-experiments on <strong>the</strong> feasibility of Mytilus as a bio<strong>in</strong>dicator <strong>in</strong> estuar<strong>in</strong>e<br />

environments with some comparisons to Fucus. Risø Reports 15. Risø, Roskil<strong>de</strong>, Denmark<br />

Daston GP, Gooch JW, Bresl<strong>in</strong> WJ, Shuey DL, Nikiforov AI, Fico TA, Gorsuch JW, 1997.<br />

Environmental estrogens and reproductive health: A discussion of <strong>the</strong> human and<br />

environmental data. Reproductive Toxicol 11:465-481.<br />

Daumas RA, Labor<strong>de</strong> PL, Marty JC, Saliot A, 1976. Influence of sampl<strong>in</strong>g method on <strong>the</strong><br />

chemical composition of water surface film. Limnol Oceanogr 21:319-326<br />

<strong>de</strong> Boer J, Stronck CJN,Traag WA,van <strong>de</strong>r Meer J, 1993. Non-ortho and mono-ortho<br />

substituted chlorobiphenyls and chlor<strong>in</strong>ated dibenzo-p-diox<strong>in</strong>s and dibenzofurans <strong>in</strong> mar<strong>in</strong>e<br />

and freshwater fish and shellfish from <strong>the</strong> Ne<strong>the</strong>rlands. Chemosphere 26,1823-18 42.<br />

<strong>de</strong> Boer J, Van <strong>de</strong>r Valk F, Kerkhoff MAT, Hagel P (1994) 8-Year study on <strong>the</strong> elim<strong>in</strong>ation<br />

of PCBs and o<strong>the</strong>r organochlor<strong>in</strong>e compounds from eel (Anguilla anguilla) un<strong>de</strong>r natural<br />

conditions. Environ Sci Technol 28:2242-2248.<br />

Dean M, Hamon Y, Chim<strong>in</strong>i G, 2001. The human ATP-b<strong>in</strong>d<strong>in</strong>g cassette (ABC) transporter<br />

superfamily, J. Lipid Res. 42:1007–1017.<br />

Deiana L, Congiu AM, Arena N, 1983. Effetti embrio-tossici <strong>de</strong>l nickel solfato sul<br />

Paracentrotus lividus: osservazioni prelim<strong>in</strong>ari. Bollet<strong>in</strong>o <strong>de</strong>lla Societa Italiana di Biologia<br />

Sperimentale 11:1718-1724<br />

<strong>de</strong>n Besten PJ, 1998a. Cytochrome P450 monooxygenase system <strong>in</strong> ech<strong>in</strong>o<strong>de</strong>rms. Comp<br />

Biochem Physiol 121(C):139-146<br />

<strong>de</strong>n Besten PJ, 1998b. Concepts for <strong>the</strong> implementation of biomarkers <strong>in</strong> environmental<br />

monitor<strong>in</strong>g. Mar Environ Res 46(1-5): 253-256<br />

<strong>de</strong>n Besten PJ, Herwig HJ, Zan<strong>de</strong>e DI, Voogt PA, 1989. Effect of cadmium and PCBs on<br />

reproduction of <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong>: aberration <strong>in</strong> <strong>the</strong> early <strong>de</strong>velopment. Ecotoxicol<br />

Environ Saf 18:173-180<br />

<strong>de</strong>n Besten PJ, Hervig HJ, Zan<strong>de</strong>e DI, Voogt PA, 1990a. Cadmium accumulation and<br />

metallothione<strong>in</strong>-like prote<strong>in</strong>s <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong>. Arch Env Contam Toxicol<br />

19:856-862.<br />

<strong>de</strong>n Besten PJ, Herwig HJ, Van Donselaar EG, Liv<strong>in</strong>gstone DR, 1990b. Cytochrome P450<br />

monooxygenase system and benzo(a)pyrene metabolism <strong>in</strong> ech<strong>in</strong>o<strong>de</strong>rms. Mar Biol 107:171-<br />

177


221<br />

REFERENCES<br />

<strong>de</strong>n Besten PJ, Elenbaas JML, Maas JR, Dieleman SJ, Herwig HJ Voogt PA, 1991. Effects of<br />

cadmium and polychlor<strong>in</strong>ated biphenyls (Clophen A50) on steroid metabolism and<br />

cytochrome P-450 monooxygenase system <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> L, Aquat Toxicol<br />

20 (1-2):95-110<br />

<strong>de</strong>n Besten PJ, Lemaire P, Liv<strong>in</strong>gstone DR, Wood<strong>in</strong> B, Stegeman JJ, Herwig HJ, Se<strong>in</strong>en W.<br />

1993. Time-course and dose-response of <strong>the</strong> apparent <strong>in</strong>duction of <strong>the</strong> cytochrome p450<br />

monooxygenase system of pyloric caeca microsomes of <strong>the</strong> female sea star <strong>Asterias</strong> <strong>rubens</strong> L.<br />

by benzo(a)pyrene and polychlor<strong>in</strong>ated biphenyls. Aquat Toxicol 26:23-40<br />

<strong>de</strong>n Besten PJ, Valk S, van Weerlee E, Nolt<strong>in</strong>g RF, Postma JF, Everaarts JM, 2001.<br />

Bioaccumulation and biomarkers <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> (Ech<strong>in</strong>o<strong>de</strong>rmata: Asteroi<strong>de</strong>a):<br />

a North <strong>Sea</strong> field study. Mar Environ Res 51:365-387<br />

Denison MS, Sei<strong>de</strong>l SD, Rogers WJ, Ziccardi M, W<strong>in</strong>ter GM, Heath-Pagliuso S, 1998.<br />

Natural and syn<strong>the</strong>tic ligands for <strong>the</strong> Ah receptor, <strong>in</strong>: A. Puga, K. Wallace (Eds.), Molecular<br />

Biology of <strong>the</strong> Toxic Response, Taylor & Francis, Phila<strong>de</strong>lphia, pp. 393-410<br />

Dickhut RM, Andren AW, Armstrong DE, 1986. Aqueous solubilities of six polychlor<strong>in</strong>ated<br />

biphenyl congeners at four temperatures. Environ Sci Technol 20:807-810.<br />

Dikkeboom R, Tijnagel J, Mul<strong>de</strong>r E, Van Der Knaap W, 1987. Hemocytes of <strong>the</strong> pond snail<br />

Lymnea stagnalis generate reactive forms of oxygen. J Invert Pathol 49:321-331.<br />

D<strong>in</strong>nel PA, Pagano G, Oshida PS, 1988. A sea urch<strong>in</strong> test system for mar<strong>in</strong>e environmental<br />

monitor<strong>in</strong>g. In: Burks RD, Mla<strong>de</strong>nov PV, Lambert PV, Parsley RL (eds): ech<strong>in</strong>o<strong>de</strong>rm<br />

biology, Balkema, Rotterdam,<br />

Duce RA, Qu<strong>in</strong>n JG, Olney CE, Piotrowicz SR, Ray BJ, Wa<strong>de</strong> TL, 1972. Enrichment of<br />

heavy metals and organic compounds <strong>in</strong> <strong>the</strong> surface microlayer of Narraganset Bay, Rho<strong>de</strong><br />

Island. Science 176:161-163<br />

Duffy JE, Carlson E, Li Y, Prophete C, Zelikoff JT, 2002. Impact of polychlorobiphenyls<br />

(PCBs) on <strong>the</strong> immune function of fish: age as a variable <strong>de</strong>term<strong>in</strong><strong>in</strong>g adverse outcome. Mar<br />

Environ Res 54:559-563<br />

Du<strong>in</strong>ker JC, Schultz DE, Petrick G, 1988. Selection of polychlor<strong>in</strong>ated biphenyl congeners<br />

for analysis <strong>in</strong> environmental samples. Mar Pollut Bull 19:19-25<br />

Du<strong>in</strong>ker JC, Hillebrandt MTJ, Ze<strong>in</strong>stra T, Boon JP, 1989. Individual chlor<strong>in</strong>ated biphenyls<br />

and pestici<strong>de</strong>s <strong>in</strong> tissues of some cetacean species from <strong>the</strong> North <strong>Sea</strong> and <strong>the</strong> Atlantic Ocean;<br />

tissue distribution and biotransformation. Aquat Mamm15:95-124.<br />

Du<strong>in</strong>ker JC, Schulz DE, Petrick G, 1991. Analysis and <strong>in</strong>terpretation of chlorobiphenyls:<br />

possibilities and problems. Chemosphere 23:1009-1028.<br />

Duncan DM, Burgess EA, Duncan I, 1998. Control of distal antennal i<strong>de</strong>ntity and tarsal<br />

<strong>de</strong>velopment <strong>in</strong> Drosophila by sp<strong>in</strong>eless-aristapedia, a homolog of <strong>the</strong> mammalian diox<strong>in</strong><br />

receptor, Genes Dev 12:1290-1303<br />

Dyrynda EA, Law RJ, Dyrynda PEJ, Kelly CA, Pipe RK, Ratcliffe NA, 2000. Changes <strong>in</strong><br />

immune parameters of natural mussel Mytilus edulis populations follow<strong>in</strong>g a major oil spill<br />

(‘<strong>Sea</strong> Empress’, Wales, UK). Mar Ecol Prog Ser 206:155-170<br />

Eganhouse RP, Gossett RW, 1991. Sources and magnitu<strong>de</strong> of bias associated with<br />

<strong>de</strong>term<strong>in</strong>ation of polychlor<strong>in</strong>ated biphenyls <strong>in</strong> environmental samples. Anal Chem<br />

63:2130–2137.


222<br />

REFERENCES<br />

Eggens M, Bergman A, Vethaak D, 1995. <strong>Sea</strong>sonal variation of hepatic EROD activity <strong>in</strong><br />

floun<strong>de</strong>r (Platichtys flesus) <strong>in</strong> <strong>the</strong> dutch Wad<strong>de</strong>n <strong>Sea</strong>. Mar Environ Res 39:231-234<br />

Eggens M, Galgani F, 1992. Ethoxyresoruf<strong>in</strong>-O-<strong>de</strong>ethylase (EROD) activity <strong>in</strong> flatfish: fast<br />

<strong>de</strong>term<strong>in</strong>ation with a fluorescence plate rea<strong>de</strong>r. Mar Environ Res 33: 213-221.<br />

Eisma D, 1973. Sediment distribution <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> <strong>in</strong> relation to mar<strong>in</strong>e pollution. In:<br />

Goldberg, D. (ed.), North <strong>Sea</strong> Science. The MIT Press, Cambridge, pp. 131–152.<br />

Eisma D, Kalf J, 1987. Dispersal, concentration and <strong>de</strong>position of suspen<strong>de</strong>d matter <strong>in</strong> <strong>the</strong><br />

North <strong>Sea</strong>. J Geol Soc London 144, 161–178.<br />

Eisma D, Irion G, 1988. Suspen<strong>de</strong>d matter and sediment transport. In: Salomons, W., Bayne,<br />

B.L., Duursma, E.K., Fo¨rstner, U. (eds.), Pollution of <strong>the</strong> North <strong>Sea</strong>: an Assessment.<br />

Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, pp. 20–35.<br />

El<strong>de</strong>r D, 1976. PCBs <strong>in</strong> NW Mediterranean coastal waters. Mar Pollut Bull 7:63-64<br />

Elijarrat E, Caiyach J, Rivera J, De Torres M, C<strong>in</strong>ebrada A, 2001. Toxic potency assessment<br />

of non- and mono-ortho PCBs, PCDDs, PCDFs and PAHs <strong>in</strong> <strong>the</strong> Northwestern Mediterranean<br />

sediments (Catalonia, Spa<strong>in</strong>). Environ Sci Technol 35:3589-3594<br />

Elskus AA, Stegeman JJ, Susani LC, Black D, Pruell RJ, Fluck SJ, 1989. Polychlor<strong>in</strong>ated<br />

biphenyls concentration and cytochrome P450E expression <strong>in</strong> w<strong>in</strong>ter floun<strong>de</strong>r from<br />

contam<strong>in</strong>ated environments. Mar Environ Res 28: 25-30<br />

Elskus AA, Pruell RJ, Stegeman JJ, 1992. Endogenously-mediated, pretranslational<br />

suppression of cytochrome P4501A <strong>in</strong> PCB-contam<strong>in</strong>ated floun<strong>de</strong>rs. Mar Environ Res 34:97-<br />

101<br />

Ema M, Sogawa K, Watanabe N, Chujoh Y, Matsushita N, Gotoh O, Funae Y, Fujii-<br />

Kuriyama Y, 1992. cDNA clon<strong>in</strong>g and structure of mouse putative Ah receptor, Biochem.<br />

Biophys Res Commun 184:246–253.<br />

Environment Canada, 1992. Biological test method: fertilization assay us<strong>in</strong>g ech<strong>in</strong>oids (sea<br />

urch<strong>in</strong>s and sand dollars). Report EPS 1/RM/27. Environment Canada, Ottawa.<br />

Eppe G, 1996. Mise au po<strong>in</strong>t d’une métho<strong>de</strong> d’analyse <strong>de</strong>s diox<strong>in</strong>es dans <strong>de</strong>s émissions<br />

<strong>in</strong>dustrielles. Mémoire présenté en vue <strong>de</strong> l’obtention du gra<strong>de</strong> d’Ingénieur Civil Chimiste,<br />

University of Liège, 65 pp.<br />

Everaarts JM, Fischer CV, 1989. Micro contam<strong>in</strong>ants <strong>in</strong> surface sediments and macrobenthic<br />

<strong>in</strong>vertebrates of <strong>the</strong> North <strong>Sea</strong>. NIOZ-Rapport (6). Ne<strong>de</strong>rlands Instituut voor On<strong>de</strong>rzoek <strong>de</strong>r<br />

Zee. North <strong>Sea</strong> Benthos Survey (ICES).<br />

Everaarts JM, Otter E, Fischer CV, 1990. Cadmium and polychlor<strong>in</strong>ated biphenyls: different<br />

distribution patterns <strong>in</strong> North <strong>Sea</strong> benthic biota. Neth J <strong>Sea</strong> Res 26:75-82<br />

Everaarts JM, Sarkar A, 1996. DNA damage as a biomarker of mar<strong>in</strong>e pollution: strand<br />

breaks <strong>in</strong> seastars (<strong>Asterias</strong> <strong>rubens</strong>) from <strong>the</strong> North <strong>Sea</strong>. Wat Sci Tech 34(7-8):157-162<br />

Everaarts JM, <strong>de</strong>n Besten PJ, Hillebrand MThJ, Halbrook RS, Shugart LR, 1998. DNA strand<br />

breaks, cytochrome P-450-<strong>de</strong>pendant monooxygenase system activity and levels of<br />

chlor<strong>in</strong>ated biphenyl congeners <strong>in</strong> <strong>the</strong> pyloric caeca of <strong>the</strong> sea star (<strong>Asterias</strong> <strong>rubens</strong>) from <strong>the</strong><br />

North <strong>Sea</strong>. Ecotoxicology 7:69-79<br />

Everaarts JM, Booij K, Fischer CV, Maas YEM, Nieuwenhuize J, 1999. Ecology of <strong>the</strong><br />

Chagos Archipelago. CRC Sheppard, MRD <strong>Sea</strong>ward.<br />

Falandysz J, Kannan K, Kawano M, Rappe C, 2000. Relative contribution of chlor<strong>in</strong>ated


223<br />

REFERENCES<br />

naphtalenes,-biphenyls,- dibenzofurans and -dibenzo-p-diox<strong>in</strong>s to toxic equivalents <strong>in</strong> biota<br />

from <strong>the</strong> south coast of <strong>the</strong> Baltic <strong>Sea</strong>. Organohalogen Compd 47:9-12.<br />

Feldman KL, Armstrong DA, Dumbauld BR, Dewitt TH, Doty DC, 2000. Oysters, crabs, and<br />

burrow<strong>in</strong>g shrimp: review of an environmental conflict over aquatic resources and pestici<strong>de</strong><br />

use <strong>in</strong> Wash<strong>in</strong>gton State’s (USA) coastal estuaries. Estuaries 23:141-176.<br />

Fernan<strong>de</strong>z-Salguerro PM, Hilbert DM, Rudikoff S, Ward JM, Gonzalez FJ, 1996.<br />

Arylhydrocarbon receptor-<strong>de</strong>ficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-diox<strong>in</strong><br />

<strong>in</strong>duced toxicity. Toxicol Appl Pharmacol 140:73-179.<br />

Fernan<strong>de</strong>z-Salguero PM, Ward JM, Sundberg JP, Gonzalez FJ, 1997. Lesions of arylhydrocarbon<br />

receptor-<strong>de</strong>ficient mice. Vet Pathol 34:605-614.<br />

Fichet D, Ra<strong>de</strong>nac G, Miramand P, 1998. Experimental studiesof impacts of harbour<br />

sediments resuspension to mar<strong>in</strong>e <strong>in</strong>vertebrates larvae: bioavailability of Cd, Cu, Pb and Zn.<br />

Mar Pollut Bull 36(7-12):509-518<br />

F<strong>in</strong>ger JM, Smith JD, 1987. Molecular association of Cu, Zn, Cd and 210Po <strong>in</strong> <strong>the</strong> digestive<br />

gland of <strong>the</strong> squid Nototodarus gouldi. Mar Biol 95:87-91<br />

Fischer WS, 1988. Environmental <strong>in</strong>fluence on bivalve hemocyte function. In: Fischer WS<br />

(ed): disease processes <strong>in</strong> mar<strong>in</strong>e bivalve molluscs. American fisheries society special<br />

publication, Vol l18:225-237<br />

Fisher NS, Nolan CV, Fowler SW, 1991. Scaveng<strong>in</strong>g and retention of metals by zooplankton<br />

fecal pellets and mar<strong>in</strong>e snow. Deep <strong>Sea</strong> Res 38:1261-1275<br />

Fisher NS, Teyssié JL, Fowler SW, Wang WX, 1996. Accumulation and retention of metals<br />

<strong>in</strong> mussels from food and water: a comparison un<strong>de</strong>r field and laboratory conditions. Env Sci<br />

Technol 30(11):3232-3242<br />

Fitzpatrick LC, Sassani R, Venables BJ, Goven AJ, 1992. Comparative toxicity of<br />

polychlor<strong>in</strong>ated biphenyls to earthworms Eisenia foetida and Lumbricus terrestris. Environ<br />

Pollut 77:65-69<br />

Focant JF, Eppe G, Pirard C, De Pauw E, 2001. Fast clean-up for polychlor<strong>in</strong>ated dibenzo-pdiox<strong>in</strong>s,<br />

dibenzofurans and coplanar polychlor<strong>in</strong>ated biphenyls analysis of high-fat content<br />

biological samples. J Chromato 925(A):207-221<br />

Förl<strong>in</strong> L, Balk L, Celan<strong>de</strong>r M, Bergek S, Hjelt M, Rappe C, <strong>de</strong> Wit C, Jansson B. 1992.<br />

Biotransformation enzyme activities and PCDD/F levels <strong>in</strong> pike caught <strong>in</strong> a Swedish lake.<br />

Mar Environ Res 34:169-173<br />

Forsy<strong>the</strong> JW, Heukelem WF, 1987. Growth, In: Boyle, P.R. (ed), Cephalopod life cycles,<br />

vol. 2, Aca<strong>de</strong>mic Press London, pp. 351-365<br />

Fowler SW, 1990. Critical review of selected heavy metal and chlor<strong>in</strong>ated hydrocarbon<br />

concentrations <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e environment. Mar Environ Res 29:1-64.<br />

Fowler SW, Oregioni B, 1976, Trace metals <strong>in</strong> mussels from <strong>the</strong> NW Mediterranean, Mar.<br />

Pollut. Bull. 7:26-29<br />

Fowler SW, Polikarpov GG, El<strong>de</strong>r DL, Parsi P & Villeneuve JP, 1978. Polychlor<strong>in</strong>ated<br />

biphenyls: accumulation from contam<strong>in</strong>ated sediments and water by <strong>the</strong> polychaete Nereis<br />

diversicolor. Mar Biol 48:303-309<br />

Friberg L, 1988. The GESAMP evaluation of potentially harmful substances <strong>in</strong> fish and o<strong>the</strong>r<br />

seafood with special reference to carc<strong>in</strong>ogenic substances. Aquat Toxicol 11:379-393


224<br />

REFERENCES<br />

Furukawa K, 1982. Microbial <strong>de</strong>gradation of polychlor<strong>in</strong>ated biphenyls. In A.M.<br />

Chakrabarty, ed., Bio<strong>de</strong>gradation and Detoxification of Environmental Pollutants. CRC, Boca<br />

Raton, FL, USA, pp. 32-57<br />

Galgani F, Bocquéné G, Luçon M, Grzebyk D, Letrouit F, Claisse D, 1991. Erod<br />

measurements <strong>in</strong> fish from <strong>the</strong> Northwest part of France. Mar Pollut Bull 22: 494-500.<br />

Galgani F, Payne JF, 1991. Biological effects of contam<strong>in</strong>ants: microplate method for<br />

measurement of ethoxyresoruf<strong>in</strong>-O-<strong>de</strong>ethylase (EROD) <strong>in</strong> fish. Palæga<strong>de</strong> 2-4, Copenhagen,<br />

Denmark. ICES Tech Mar Environ Sci 13: 11 pp.<br />

Galgani F, Bocquéné G, Truquet P, Burgeot T, Chiffoleau JF, Claisse D, 1992. Monitor<strong>in</strong>g of<br />

pollutant biochemical effects on mar<strong>in</strong>e organisms of <strong>the</strong> French coasts. Oceanol Acta 15:<br />

355-364<br />

Garabetian F, Romano JC, Paul R, Sigoillot JC, 1993. Organic matter composition and<br />

pollutant enrichment of sea surface microlayer <strong>in</strong>si<strong>de</strong> and outsi<strong>de</strong> slicks. Mar Environ Res<br />

35:323-339<br />

George SG, Olsson PE, 1994. Metallothione<strong>in</strong>s as <strong>in</strong>dicators of trace metal pollution. In:<br />

Framer KJM (ed), Biomonitor<strong>in</strong>g of coastal waters and estuaries. CRC, Boca Raton, FL. Pp.<br />

151-171<br />

Gerpe MS, <strong>de</strong> Moreno JEA, Moreno VJ, Patat ML, 2000. Cadmium, z<strong>in</strong>c and copper<br />

accumulation <strong>in</strong> <strong>the</strong> squid Illex argent<strong>in</strong>us from <strong>the</strong> Southwest Atlantic Ocean. Mar Biol<br />

136:1039-1044<br />

Gibson GC, Skett P (eds), 1994. Introduction to drug metabolism. 2 nd edition, Blackwell<br />

aca<strong>de</strong>mic and professional, Chapman & Hall, Glasgow, 266 pp.<br />

Gillesby BE, Zacharewsky TR, 1998. Exoestrogens: mechanisms of action and strategies for<br />

i<strong>de</strong>ntification and assessment. Environ Toxicol Chem 17(1):3-14<br />

Gnezdilova SM, Khristoforova NK, Lip<strong>in</strong>a IG, 1985. Gonadotoxic and embryotoxic effects of<br />

cadmium <strong>in</strong> sea urch<strong>in</strong>s. Symposia Biologica Hungarica 2929:239-251<br />

Goerke H, Ernst W, 1977, Fate of 14C-labelled di-, tri-, and pentachlorobiphenyl <strong>in</strong> <strong>the</strong><br />

mar<strong>in</strong>e annelid Nereis virens. Chemosphere 9:551-558<br />

Goerlitz DF, Law LM, 1971. Note on removal of sulfur <strong>in</strong>terferences from sediment extracts<br />

for pestici<strong>de</strong> analysis. Bull Environ Contam Toxicol 6:9-10.<br />

Goksøyr A, 1991. Semi quantitative cytochrome P450 1A1 ELISA: a simple method for<br />

study<strong>in</strong>g <strong>the</strong> monooxygenase <strong>in</strong>duction response <strong>in</strong> environmental monitor<strong>in</strong>g and<br />

ecotoxicological test<strong>in</strong>g of fish. Sci Tot Environ 101:253-261<br />

Goksøyr A, 1995. Use of cytochrome P4501A (CYP1A) <strong>in</strong> fish as a biomaker of aquatic<br />

pollution. Arch Toxicol 17:80-95<br />

Goksøyr A, Husøy AM, Larsen HE, Klungsøyr J, Wilhelmsen S, Maage A, Brevik EM,<br />

An<strong>de</strong>rsson T, Celan<strong>de</strong>r M, Pesonen M, Förl<strong>in</strong> L, 1991. Environmental contam<strong>in</strong>ants and<br />

biochemical responses <strong>in</strong> flatfish from <strong>the</strong> Hvaler Archipelago <strong>in</strong> Norway. Arch Environ<br />

Contam Toxicol 21:486-495<br />

Goksøyr A, Förl<strong>in</strong> L, 1992. The cytochrome P450 system <strong>in</strong> fish, aquatic toxicology and<br />

environmental monitor<strong>in</strong>g. Aquat Toxicol 22:287-312<br />

Goldberg ED, Bowen VT, Farr<strong>in</strong>gton JW, Harvey G, Mart<strong>in</strong> JH, Parker PL, Risebrough RW,<br />

Robertson W, Schnei<strong>de</strong>r E, Gamble E, 1978. The mussel watch. Environ Conservation 5:


101-125<br />

225<br />

REFERENCES<br />

Gol<strong>de</strong>n RJ, Noller KL, Ernstoff LT, Kaufman RH, Mittendorf R, Stillman R, Reese EA,<br />

1998. Environmental endocr<strong>in</strong>e modulators and human health: an assessment of <strong>the</strong> biological<br />

evi<strong>de</strong>nce. Crit Rev Toxicol 28:109-227.<br />

Goldste<strong>in</strong> BD, 1995. The concept of biological markers <strong>in</strong> <strong>the</strong> field of risk assessment. Stem<br />

Cells 13(suppl.):30-32<br />

Goldste<strong>in</strong> JA, Hickman P, Bergman H, McK<strong>in</strong>ney JD, Walker MP, 1977, Separation of pure<br />

polychlor<strong>in</strong>ated biphenyl isomers <strong>in</strong>to two types of <strong>in</strong>ducers on <strong>the</strong> basis of <strong>in</strong>duction of<br />

cytochrome P-450 or P-448, Chem-Biol Interact 17:69–87.<br />

Gonzalez AF, Guerra A, Pascual S, Briand P, 1998. Vulcanoctopus hydro<strong>the</strong>rmalis gen. et sp.<br />

nov. (Mollusca, Cephalopoda): an octopod from a <strong>de</strong>ep-sea hydro<strong>the</strong>rmal vent site. Cah Biol<br />

Mar 39:169-184<br />

Gonzalez FJ, Nebert DW, 1990. Evolution of <strong>the</strong> P450 gene superfamily, Trends Genet<br />

6:182-186.<br />

Gooch JA, Hamdy MK, 1982, Depuration and biological half-life of 14 C-PCB <strong>in</strong> aquatic<br />

organisms. Bull Environ Contam Toxicol 28:305-312<br />

Gooch JW, Elskus AA, Kloeper-Sams PJ, Hahn ME, Stegeman JJ. 1989. Effects of ortho and<br />

non-ortho substituted polychlor<strong>in</strong>ated biphenyl congeners on <strong>the</strong> hepatic monooxygenase<br />

system <strong>in</strong> scup (Stenomus chrysops). Toxicol Appl Pharmacol 98:422-427<br />

Gossel<strong>in</strong> P, Jangoux M, 1998. From competent larvae to exotrophic juvenile: a<br />

morphofunctional study of <strong>the</strong> perimetamorphic period of Paracentrotus lividus<br />

(Ech<strong>in</strong>o<strong>de</strong>rmata: Ech<strong>in</strong>oi<strong>de</strong>a). Zoomorphol 118:31-43.<br />

Gould JC, Cooper KR, Scanes CG. 1997. Effects of polychlor<strong>in</strong>ated biphenyl mixtures and<br />

three specific congeners on growth and circulat<strong>in</strong>g growth-related hormones. Gen Comp<br />

Endocr<strong>in</strong>ol 106(2):221-230<br />

Goven AJ, Eyambe GS, Fitzpatrick LC, Venables BJ, Cooper EL, 1993. Cellular biomarkers<br />

for measur<strong>in</strong>g toxicity of xenobiotics: effects of polychlor<strong>in</strong>ated biphenyls on earthworm<br />

Lumbricus terrestris coelomocytes. Environ Toxicol Chem 12:863-870.<br />

Goven AJ, Fitzpatrick LC, Venables BJ, 1994. Chemical toxicity and host <strong>de</strong>fence <strong>in</strong><br />

earthworms: an <strong>in</strong>vertebrate mo<strong>de</strong>l. In: Beck G, Cooper EL, Habicht GS, Marchalonis JJ<br />

(eds), Primordial Immunity: Foundations for <strong>the</strong> Vertebrate Immune System, Annals of <strong>the</strong><br />

New York Aca<strong>de</strong>my of Sciences, volume 712, The New York Aca<strong>de</strong>my of Sciences, New<br />

York, USA, pp. 280-300<br />

Gray JS, 1989. Do bioassays a<strong>de</strong>quately predict ecological effects of pollutants?<br />

Hydrobiologia 188/189:397-402<br />

Green JD, Mwatibo JM, Swartz WJ, 1997. The effects of methoxychlor on early sea urch<strong>in</strong><br />

<strong>de</strong>velopment. Environ. Res. 72:56-64<br />

Green NM, 1965. A spectrophotometric assay for avid<strong>in</strong> and biot<strong>in</strong> based on b<strong>in</strong>d<strong>in</strong>g dyes by<br />

avid<strong>in</strong>. Biochem J 94:23c-24c.<br />

Gross PS, Al-Sharif WZ, Clow LA, Smith LC, 1999. Ech<strong>in</strong>o<strong>de</strong>rm immunity and <strong>the</strong> evolution<br />

of <strong>the</strong> complement system. Develop Comp Immunol 23:429-442


226<br />

REFERENCES<br />

Grzebyk D, Galgani F, 1991. Measurement of <strong>the</strong> effect of organic pollution on mar<strong>in</strong>e<br />

organisms: rapid <strong>de</strong>term<strong>in</strong>antion of EROD <strong>in</strong>duction us<strong>in</strong>g plate rea<strong>de</strong>r. Aquat Liv<strong>in</strong>g Resour<br />

4: 53-59.<br />

Guary JC, 1980. Recherches sur les transferts et la fixation du plutonium, <strong>de</strong> l'américium et<br />

du neptunium dans le milieu mar<strong>in</strong>. PhD Thesis, University of Aix-Marseille II, France, 303<br />

pp.<br />

Guary JC, Higgo JJW, Cherry RD, Heyraud M, 1981. High concentrations of transuranic and<br />

natural radioactive elements <strong>in</strong> <strong>the</strong> branchial hearts of <strong>the</strong> cephalopods Octopus vulgaris. Mar<br />

Ecol Prog Ser 4:123-126<br />

Guary JC, Fowler SW, 1982. Experimental studies on <strong>the</strong> biok<strong>in</strong>etics of plutonium and<br />

americium <strong>in</strong> <strong>the</strong> cephalopod Octopus vulgaris. Mar Ecol Prog Ser 7:327-335<br />

Guns M, Van Hoeyweghen P, Vyncke W, Hillewaert H, 1999. Trace metals <strong>in</strong> selected<br />

benthic <strong>in</strong>vertebrates from Belgian coast waters (1981-1996). Mar Pollut Bull 38(12):1184-<br />

1193.<br />

Gun<strong>the</strong>r AJ, Spies RB, Stegeman JJ, Wood<strong>in</strong> B, Carney D, Oak<strong>de</strong>n J, Ha<strong>in</strong> L, 1997. EROD<br />

activity <strong>in</strong> fish is an <strong>in</strong><strong>de</strong>pen<strong>de</strong>nt measure of contam<strong>in</strong>ated-<strong>in</strong>duced mortality of <strong>in</strong>vertebrates<br />

<strong>in</strong> sediment bioassays. Mar Environ Res 44: 41-49.<br />

Hahn ME, 1998. The aryl hydrocarbon receptor: a comparative perspective. Comp Biochem<br />

Physiol 121(C):23-53<br />

Hahn ME, 2002a. Biomarker and bioassays for <strong>de</strong>tect<strong>in</strong>g diox<strong>in</strong>-like compounds <strong>in</strong> <strong>the</strong><br />

mar<strong>in</strong>e environment. Sci Tot Environ 289:49-69<br />

Hahn ME, 2002b. Aryl hydrocarbon receptors: diversity and evolution. Chem Biol Interact<br />

141:131-160<br />

Hahn ME, Lamb TM, Shultz ME, Smolowitz RM, Stegeman JJ, 1993. Cytoochrome P4501A<br />

<strong>in</strong>duction and <strong>in</strong>hibition by 3,3’,4,4’-tetrachlorobiphenyl <strong>in</strong> an Ah receptor-conta<strong>in</strong><strong>in</strong>g fish<br />

hepatoma cell l<strong>in</strong>e (PHLC-1). Aquat Toxicol 310:218-228<br />

Hahn ME, Wood<strong>in</strong> BR, Stegeman JJ, Tillitt DE. 1998. Aryl hydrocarbon receptor function <strong>in</strong><br />

early vertebrates: <strong>in</strong>ducibility of cytochrome P450 <strong>in</strong> agnathan and elasmobranch fish. Comp.<br />

Biochem. Physiol. 120(C):67-75<br />

Hansen SN, Bjerregaard P, 1995. Manganese k<strong>in</strong>etics <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> (L.)<br />

exposed via food or water. Mar Pollut Bull 31:127-132.<br />

Hard<strong>in</strong>g GC, Addison RF, 1986. Accumulation and effects of PCBs <strong>in</strong> mar<strong>in</strong>e <strong>in</strong>vertebrates<br />

and vertebrates. In JS Wood (Ed) PCBs and <strong>the</strong> Environment, Vol II CRC Press, 1986, pp. 9-<br />

30<br />

Hardy JT, Cleary J, 1992. Surface microlayer contam<strong>in</strong>ation and toxicity <strong>in</strong> <strong>the</strong> German<br />

Bight. Mar Ecol Prog Ser 91:203–210.<br />

Hardy JT, Coley JA, Antrim LD, Kiesser SL, 1988. A hydrophobic large-volume sampler for<br />

collect<strong>in</strong>g aquatic surface microlayers: characterization and comparison with <strong>the</strong> glass plate<br />

method. Can J Fish Aquat Sci 45:822-826.<br />

Hardy JT, Crecelius EA, Antrim LD, Kiesser SL, Broadhurst PD, Boehm PD, Ste<strong>in</strong>hauer<br />

WG, Coogan TH, 1990. Aquatic surface microlayer contam<strong>in</strong>ation <strong>in</strong> Chesapeake Bay. Mar<br />

Chem 28:333-351


227<br />

REFERENCES<br />

Harper N, Connor K, Ste<strong>in</strong>berg M, and Safe S, 1995. Immunosuppressive activity of<br />

polychlor<strong>in</strong>ated biphenyl mixtures and congeners: Nonadditive (antagonistic) <strong>in</strong>teractions.<br />

Fundam Appl Toxicol 27:131–139.<br />

Harrold C, Pearse JS, 1987. The ecological role of ech<strong>in</strong>o<strong>de</strong>rms <strong>in</strong> kelp forests. In: Jangoux<br />

M, Lawrence JM (eds), Ech<strong>in</strong>o<strong>de</strong>rm studies, Balkema, Rotterdam, The Ne<strong>the</strong>rlands, pp 137-<br />

233<br />

Harvey GR, Ste<strong>in</strong>hauer WG, 1976. Biogeochemistry of PCB and DDT <strong>in</strong> <strong>the</strong> North Atlantic.<br />

In: Nriagu JO (ed) Environmental Biogeochemistry, vol. 1. Ann Arbor Science Publ, Ann<br />

Arbor, pp. 203-221<br />

Haynes D, Müller J, Carter S, 2000. Pestici<strong>de</strong> and herbici<strong>de</strong> residues <strong>in</strong> sediments and<br />

seagrasses from <strong>the</strong> great barrier reef world heritage area and Queensland Coast. Mar Pollut<br />

Bull 41:279-287.<br />

Haynes D, Toohey D, 1995. Temporal variation <strong>in</strong> polychlor<strong>in</strong>ated dibenzo-pdiox<strong>in</strong>s,dibenzofu<br />

rans,extractable organohalogens (EOX) and heavy metals <strong>in</strong> commercially<br />

cultured mussels (Mytilus edulis) from Port Philip Bay, Victoria,Austalia. Mar Pollut Bull<br />

30:885-891<br />

Hayward JM, Ryland JS, 1990. The mar<strong>in</strong>e fauna of <strong>the</strong> British Isles and north western<br />

Europe. II: Molluscs to Chordates. Oxford Science Publications, NY, 627 pp.<br />

Hewitt S, Fenet H, Casellas C, 1998. Induction of EROD activity <strong>in</strong> European eel (Anguilla<br />

anguilla) by different polychlorobiphenyls. Wat Sci Technol 38:245-252.<br />

Higg<strong>in</strong>botham GR, Huang A, Firestone D, Verrett J, Ress J, Campbell AD, 1968. Chemical<br />

and toxicological evaluations of isolated and syn<strong>the</strong>tic chloro <strong>de</strong>rivatives of dibenzo-p-diox<strong>in</strong>,<br />

Nature 220:702-703.<br />

H<strong>in</strong>ton DE, 1994. Cells, cellular responses, and <strong>the</strong>ir markers <strong>in</strong> chronic toxicity of fishes. In:<br />

Mal<strong>in</strong>s DC, Ostran<strong>de</strong>r GK (Eds.), Aquatic Toxicology; Molecular, Biochemical and Cellular<br />

Perspectives. Lewis Publishers CRC press, pp. 207-240.<br />

H<strong>in</strong>ton DE, Baumann PC, Gardner GC, Hawk<strong>in</strong>s WE, Hendricks JD, Murchelano RA,<br />

Okihiro MS, 1992. Histopathologic biomarkers. In: Huggett RJ, Kimerly RA, Mehrle PMJr,<br />

Bergman HL (Eds), Biomarkers: Biochemical, Physiological and Histological Markers of<br />

Anthropogenic Stress. Lewis Publishers, Chelsea, MI, USA, pp. 155-210.<br />

Hodgson E, Levi P, 1993. Introduction to biochemical toxicity, 2nd edition, Norwalk CT:<br />

Appleton and Lange,<br />

Hoff JT, Mackay D, Gillham R, Shiu WY, 1993. Partition<strong>in</strong>g of organic chemicals at <strong>the</strong><br />

air–water <strong>in</strong>terface <strong>in</strong> environmental systems. Environ Sci Technol 27:2174–2180.<br />

Holdway DA, Brennan SE, Ahokas JT, 1994. Use of hepatic MFO and blood enzyme<br />

biomarkers <strong>in</strong> sand fla<strong>the</strong>ad (Platycephalus bassensis) as <strong>in</strong>dicators of pollution <strong>in</strong> Port<br />

Phillip Bay, Australia. Mar Pollut Bull 28: 683-695.<br />

Hong CS, Xiao J, Bush B, Shaw SD, 1998. Environmental occurrence and potential toxicity<br />

of planar, mono-, and di-ortho polychlor<strong>in</strong>ated biphenyls <strong>in</strong> <strong>the</strong> biota. Chemosphere,<br />

36(7):1637-1651<br />

Honkakoski P, Negishi M, 2000. Regulation of cytochrome P450 (CYP) genes by nuclear<br />

receptors, Biochem J 347:321-337.


228<br />

REFERENCES<br />

Hostens K, Hammerl<strong>in</strong>ck O, 1994. The mobile epifauna of <strong>the</strong> soft bottoms <strong>in</strong> <strong>the</strong> subtidal<br />

Oosterschel<strong>de</strong> estuary: structure, function and impact of <strong>the</strong> storm-surge barrier.<br />

Hydrobiologia 282/283:479-496<br />

Howard P, Boethl<strong>in</strong>g R, Jarvis W, Meylan W, Michalenko EN, 1991. Handbook of<br />

Environmental Degradation Rates. Lewis Publishers, Chelsea, USA,<br />

Hubell SP, Sikora A, Paris OH, 1965. Radiotracer, gravimetric, and calorimetric studies of<br />

<strong>in</strong>gestion and assimilation rates of an isopod. Health Physiol 11:1485-1501<br />

Huggett RJ, 1992. Biomarkers for chemical contam<strong>in</strong>ation. CRC Press, Boca Raton FL,<br />

Huhey JE, 1983. Inorganic chemistry, 3rd ed. Harper International, Cambridge,<br />

Hun<strong>de</strong>iker C, P<strong>in</strong>eau T, Cassar G, Betensky RA, Gleichmann E, Esser C, 1999. Thymocyte<br />

<strong>de</strong>velopment <strong>in</strong> Ah-receptor-<strong>de</strong>ficient mice is refractory to TCDD-<strong>in</strong>ducible changes. Int J<br />

Immunopharmacol 21:841-859.<br />

Hushka LJ, Williams JS, Greenlee WF, 1998. Characterization of 2,3,7,8tetrachlorodibenzofuran<strong>de</strong>pen<strong>de</strong>nt<br />

suppression and AH receptor pathway gene expression <strong>in</strong><br />

<strong>the</strong> <strong>de</strong>velop<strong>in</strong>g mouse mammary gland. Toxicol Appl Pharmacol 152:200-210.<br />

Hutz<strong>in</strong>ger O, Safe S, Zitko V, 1974. The Chemistry of PCBs. CRC, Cleveland, OH, USA,<br />

Hylland K, Sandvik M, Skaare JU, Beyer J, Egaas E, Goksøyr A, 1996. Biomarkers <strong>in</strong><br />

floun<strong>de</strong>r (Platichtys flesus): an evaluation of <strong>the</strong>eir use <strong>in</strong> pollution monitor<strong>in</strong>g. Mar Environ<br />

Res 42:223-227<br />

IPCS, 1993. Environmental Health Criteria 140. Polychlor<strong>in</strong>ated Biphenyls and Terphenyls.<br />

WHO, Geneva,<br />

Ito T, Matsutani T, Mori K, Nomura T, 1992. Phagocytosis and hydrogen peroxi<strong>de</strong><br />

production by phagocytes of <strong>the</strong> sea urch<strong>in</strong> Strongylocentrotus nudus. Dev Comp Immunol<br />

16:287-294.<br />

Iwata H, Tanabe S, Sakai N, Nishimura A, Tatsukawa R, 1994. Geographical distribution of<br />

persistent organochlor<strong>in</strong>es <strong>in</strong> air, water and sediments from Asia and Oceania, and <strong>the</strong>ir<br />

implications for global redistribution from lower latitu<strong>de</strong>s. Environ Pollut 85:15-33.<br />

Jacobson JL, Jacobson SW, 1996. Intellectual impairment <strong>in</strong> children exposed to<br />

polychlor<strong>in</strong>ated biphenyls <strong>in</strong> utero. New Engl JMed 335:783-789<br />

James MO, 1989. Cytochrome P450 monooxygenases <strong>in</strong> crustaceans. Xenobiotica 19:1063-<br />

1076<br />

Jangoux M, 1982. Digestive systems: Asteroi<strong>de</strong>a. In: Jangoux M, Lawrence JM (eds)<br />

Ech<strong>in</strong>o<strong>de</strong>rm Nutrition. Balkema, Rotterdam, pp. 235-272<br />

Jans D, Dubois Ph, Jangoux M, 1996. Defensive mechanisms of holothuroids<br />

(Ech<strong>in</strong>o<strong>de</strong>rmata): formation, role and fate of <strong>in</strong>tracoelomic brown bodies <strong>in</strong> <strong>the</strong> sea cucumber<br />

Holothuria tubulosa. Cell Tissue Res 283:99-106.<br />

Jensen S, 1966. Report of a new chemical hazard. New Sci 32:612-615<br />

Jensen S, Johnels AG, Olsson M, Ottlerl<strong>in</strong>d G, 1969. DDT and PCB <strong>in</strong> mar<strong>in</strong>e animals from<br />

swedish waters. Nature 224:247–250.<br />

Jimenez BD, Stegeman JJ, 1990. Detoxication enzymes as <strong>in</strong>dicators of environmental stress<br />

on fish. In: Adams SM (ed), Biological <strong>in</strong>dicators of stress <strong>in</strong> fish, American Fisheries<br />

Symposium 8, American fisheries society, Be<strong>the</strong>sda, MD, 67 pp.


229<br />

REFERENCES<br />

Jones JM & An<strong>de</strong>rson JW, 1999. Relative potencies of PAHs and PCBs based on <strong>the</strong><br />

response of human cells. Environ Toxicol Pharmacol 7(1):19-26<br />

Karbe L, Aletsee CD, Diirselen K, Heyer U, Kammann M, Kraux HJ, Rick H, Ste<strong>in</strong>hout H.<br />

Bioaccumulation and effects of plankton and benthos on <strong>the</strong> fate of contam<strong>in</strong>ant. In:<br />

S<strong>in</strong><strong>de</strong>rmann, editor. Circulation and fluxes <strong>in</strong> <strong>the</strong> North <strong>Sea</strong>. Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, 1994,<br />

pp 556-597.<br />

Karl H, Ruoff U, Blüthgen A, 2002. Levels of diox<strong>in</strong>s <strong>in</strong> fish and fishery products on <strong>the</strong><br />

German market. Chemosphere 49:765-773<br />

Kawano M, Matsushita S, Inoue T, Tanaka H, Tatsukawa R, 1986. Biological accumulation<br />

of chlordane compounds <strong>in</strong> mar<strong>in</strong>e organisms from <strong>the</strong> nor<strong>the</strong>rn North Pacific and Ber<strong>in</strong>g<br />

<strong>Sea</strong>. Mar Pollut Bull 17:512-516<br />

Keklak MM, Newman MC, Mulvey M, 1994. Enhanced uranium tolerance of an exposed<br />

population of <strong>the</strong> eastern mosquitofish (Gambusia holbrooki Girard 1859). Arch Envrion<br />

Contam Toxicol 27:20-24<br />

Kelce WR, Christy RS, Laws SC, Gray LE, Kemppaven JA, Wilson EM, 1995. Persistent<br />

DDT metabolite p,p-DDE is a potent androgen receptor antagonist. Nature 375:581–585.<br />

Kennedy DM, 1991. A practical gui<strong>de</strong> to ELISA. Pergamon, Oxford, UK,<br />

Kennedy SW, Jones SP, 1994. Simultaneous measurement of cytochrome P450IA catalytic<br />

activity and total prote<strong>in</strong> concentration with a fluorescent plate rea<strong>de</strong>r. Anal Biochem 222:<br />

217-223.<br />

Kerkvliet NI, 1995. Immunological effects of chlor<strong>in</strong>ated dibenzo-p-diox<strong>in</strong>s. Environ Health<br />

Perspect 103(Suppl. 9), 47–53.<br />

Kersten M, Kröncke I, 1991. Bioavailability of lead <strong>in</strong> North <strong>Sea</strong> sediments. Helgölan<strong>de</strong>r<br />

Meeresuntersuschungen .45:403-409<br />

Kersten M, Balls PW, van Enk RJ, Green N, Kramer KJM, Monteny F, Zwolsman JJG, 1994.<br />

Background concentratrions for mmetals <strong>in</strong> <strong>the</strong> North <strong>Sea</strong>: sediments, water, mussels and<br />

atmosphere. In: Sün<strong>de</strong>rman (ed), Circulation and contam<strong>in</strong>ant fluxes <strong>in</strong> <strong>the</strong> North <strong>Sea</strong>,<br />

Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, pp. 290-316<br />

Key T, Reeves G, 1994. Organochlor<strong>in</strong>es <strong>in</strong> <strong>the</strong> environment and breast cancer. The data so<br />

far produced provi<strong>de</strong> reassurance ra<strong>the</strong>r than anxiety. Brit Med J 308, 1520–1521<br />

Kimura T, Taniguchi N, Tomita I, K<strong>in</strong>ea N, Yoshizaki K, Ito M, Ishikawa T, 1984.<br />

Correlation of epizootiological observation with experimental data: chemical <strong>in</strong>duction of<br />

chromatophoromas <strong>in</strong> <strong>the</strong> croaker, Nibea mitsukurii. Natl Cancer Inst Monogr 65:139-154.<br />

Klages NTW, 1996. Cephalopods as prey. II. <strong>Sea</strong>ls. Phil Trans Royal Soc London Ser<br />

351:1045-1052<br />

Kliewer SA, Lehmann JM, Milburn MV, Willson TM, 1999a. The PPARs and PXRs: nuclear<br />

xenobiotic receptors that <strong>de</strong>f<strong>in</strong>e novel hormone signal<strong>in</strong>g pathways, Recent Prog Horm Res<br />

54:345-367.<br />

Kliewer SA, Lehmann JM, Willson TM, 1999b. Orphan nuclear receptors: shift<strong>in</strong>g<br />

endocr<strong>in</strong>ology <strong>in</strong>to reverse. Science 284:757–760.<br />

Knickmeyer R, Landgraff O, Ste<strong>in</strong>hart H, 1992. Cyclic organochlor<strong>in</strong>es <strong>in</strong> <strong>the</strong> seastar <strong>Asterias</strong><br />

<strong>rubens</strong> from <strong>the</strong> German Bight, December 1988-May 1989. Mar Environ Res 33:127-143<br />

Knutzen J, Bjerkeng B, Kristoffer N, Schlabach M, 2003. Polychlor<strong>in</strong>ated


230<br />

REFERENCES<br />

dibenzofurans/dibenzo-p-diox<strong>in</strong>s (PCDF/PCDDs) and o<strong>the</strong>r diox<strong>in</strong>-like substances <strong>in</strong> mar<strong>in</strong>e<br />

organisms from <strong>the</strong> Grenland fjords,S. Norway, 1975-2001: present contam<strong>in</strong>ation<br />

levels,trends and species specific accumulation of PCDF/PCDD congeners. Chemosphere<br />

52:745-760<br />

Kobayashi N, 1984. Mar<strong>in</strong>e ecotoxicological test<strong>in</strong>g with ech<strong>in</strong>o<strong>de</strong>rms. In: Persoone G,<br />

Jaspers E, Claus C (eds). Ecotoxicological test<strong>in</strong>g for <strong>the</strong> mar<strong>in</strong>e environment, vol 1. State<br />

univ Ghent and Inst Mar Scient Res Bre<strong>de</strong>ne pp. 341-405<br />

Kobayashi N, 1995. Bioassay data for mar<strong>in</strong>e pollution us<strong>in</strong>g ech<strong>in</strong>o<strong>de</strong>rms. In: Cheremis<strong>in</strong>off<br />

PN (ed), Encyclopedia of environmental control technology, vol 9, Gulf Publ. Co. Houston,<br />

pp. 539-609<br />

Kobayashi N, Fuj<strong>in</strong>aga K, 1976. Synergism of <strong>in</strong>hibit<strong>in</strong>g actions of heavy metal upon <strong>the</strong><br />

fertilization and <strong>de</strong>velopment of sea urch<strong>in</strong> eggs. Sci Eng Rev Doshisha Univ 17:54-69.<br />

Kohn HW, 1983. The significance of DNA damage assays and carc<strong>in</strong>ogenecity assessment.<br />

Ann NY Acad Sci 407:106-118<br />

Koponen K, Kukkonen JVK, L<strong>in</strong>dstrom-Seppa P, 1998. Chemical accumulation and<br />

biotransformation enzyme acitvities of ra<strong>in</strong>bow trout embryos <strong>in</strong> waterborne exposure to<br />

PCB77. Mar Environ Res 46(1-5):475-478<br />

Koyama J, Nanamori N, Segawa S, 2000. Bioaccumulation of waterborne and dietary<br />

cadmium by oval squid Sepioteuthis lessoniana, and its distribution among organs. Mar Pollut<br />

Bull 40(11):961-967<br />

Krogenaes AK, Nafstad I, Skare JU, Farstad W, Hafne AL, 1998. In vitro reproductive<br />

toxicity of polychlor<strong>in</strong>ated biphenyl congener 153 and 126. Reproductive Toxicol<br />

12(6):575–580,<br />

Laane RWPM, Sonneveldt HLA, Van<strong>de</strong>r Wey<strong>de</strong>n AJ, Loch JPG, Groenveld G, 1999. Trend<br />

<strong>in</strong> <strong>the</strong> spatial and temporal distribution of metals (Cd, Cu, Zn and Pb) and organic compounds<br />

(PCBs and PAHs) <strong>in</strong> <strong>the</strong> dutch coastal zone sediments from 1981 to 1996: a mo<strong>de</strong>l case study<br />

for Cd and PCBs. J <strong>Sea</strong> Res 41:1-17<br />

Lahvis GP, L<strong>in</strong><strong>de</strong>ll SL, Thomas RS, McCuskey RS, Murphy C, Glover E, Bentz M, Southard<br />

J, Bradfield CA, 2000. Portosystemic shunt<strong>in</strong>g and persistent fetal vascular structures <strong>in</strong> aryl<br />

hydrocarbon receptor-<strong>de</strong>ficient mice. Proc Natl Acad Sci USA 97:10442–10447.<br />

Lambert C, Nicolas JL, 1998. Specific <strong>in</strong>hibition of chemilum<strong>in</strong>escent activity by pathogenic<br />

vibrios <strong>in</strong> hemocytes of two mar<strong>in</strong>e bivalves: Pecten maximus and Crassostrea gigas. J Invert<br />

Pathol 71:53-63.<br />

Langston WJ, 1990. Toxic effects of metals and <strong>the</strong> <strong>in</strong>ci<strong>de</strong>nce of metal pollution <strong>in</strong> mar<strong>in</strong>e<br />

ecosystems. In: Furness RW, Ra<strong>in</strong>bow PS (eds), Heavy metals and <strong>the</strong> mar<strong>in</strong>e environment,<br />

CRC Press, Boca Raton, FL. Pp. 101-122<br />

Lara R, Ernst W, 1989. Interaction between polychlor<strong>in</strong>ated biphenyls and mar<strong>in</strong>e humic<br />

substances: Determ<strong>in</strong>ation of association coefficients. Chemosphere 19:1655–1664.<br />

Larson KG, Roberson BS, Hetrick FM, 1989. Effect of environmental pollutants on <strong>the</strong><br />

chemilum<strong>in</strong>escence of hemocytes from <strong>the</strong> American oyster Crassostrea virg<strong>in</strong>ica. Dis Aquat<br />

Org 6:131-136.<br />

Lee RF, 1981. Mixed function oxidase (MFO) <strong>in</strong> mar<strong>in</strong>e <strong>in</strong>vertebrates. Mar Biol Lett 2:87-<br />

105<br />

Lee RF, S<strong>in</strong>ger SC, Page DS, 1981. Responses of cytochrome P-450 systems <strong>in</strong> mar<strong>in</strong>e crab


and polychaetes to organic pollutants. Aquat Toxicol 1:355–365.<br />

231<br />

REFERENCES<br />

Leece B, Denomme MA, Towner R, Li SMA, Safe S, 1985. Polychlor<strong>in</strong>ated biphenyls:<br />

correlation between <strong>in</strong> vivo and <strong>in</strong> vitro quantitative structure-activity relationships (QSARs).<br />

J Toxicol Environ Health 16:379-388.<br />

Letcher RJ, Klasson-Wehler E, Bergman A (2000) Methyl sulfone and hydroxylated<br />

metabolites of polychlor<strong>in</strong>ated biphenyls. In: Paasivirta J (ed) The handbook of<br />

environmental chemistry Vol 3, Part K: New types of persistent halogenated compounds.<br />

Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong>, Hei<strong>de</strong>lberg, pp. 315-359<br />

Lewis DFV (ed). 1996. Cytochromes P450. Structure, function, mechanism. TJ press, UK.<br />

348 pp.<br />

Lewis JR, 1978. The implications of community structure of benthic monitor<strong>in</strong>g studies. Mar<br />

Pollut Bull 9: 64-67<br />

L<strong>in</strong> TM, Ko K, Moore RW, Buchanan DL, Cooke PS, Peterson RE, 2001, Role of <strong>the</strong> aryl<br />

hydrocarbon receptor <strong>in</strong> <strong>the</strong> <strong>de</strong>velopment of control and 2,3,7,8-tetrachlorodibenzo-p-diox<strong>in</strong>exposed<br />

male mice, J. Toxicol. Environ. Health 64(A):327–342.<br />

Liv<strong>in</strong>gstone DR, 1991. Organic xenobiotic metabolism <strong>in</strong> mar<strong>in</strong>e <strong>in</strong>vertebrates, <strong>in</strong>: R. Gilles<br />

(Ed.), Advances <strong>in</strong> Comparative and Environmental Physiology, vol. 7, Spr<strong>in</strong>ger-Verlag,<br />

Berl<strong>in</strong>, Hei<strong>de</strong>lberg pp. 45–185.<br />

Liv<strong>in</strong>gstone DR, 1998. The fate of organic xenobiotics <strong>in</strong> aquatic ecosystems: quantitative<br />

and qualitative differences <strong>in</strong> biotransformation by <strong>in</strong>vertebrates and fish. Comp Biochem<br />

Physiol 120(A):43-49<br />

Liv<strong>in</strong>gstone DR, Kirch<strong>in</strong> MA, Wiseman A, 1989. Cytochrome P450 and oxidative<br />

metabolism <strong>in</strong> molluscs. Xenobiotica 19: 1041-1062<br />

Liv<strong>in</strong>gstone DR, Donk<strong>in</strong> P, Walker CH, 1992. Pollutants <strong>in</strong> mar<strong>in</strong>e ecosystems: an overview.<br />

In: Walker CH, Liv<strong>in</strong>gstone DR, editors. Persistent Pollutants <strong>in</strong> Mar<strong>in</strong>e Ecosystems. Oxford:<br />

Pergamon, SETAC special publication, 1992:235–263<br />

Liv<strong>in</strong>gstone DR, Nasci C, Solé M, Da Ros L, O’Hara SCM, Peters LD, Fossato V, Wootton<br />

AN, Goldfarb PS. 1997. Apparent <strong>in</strong>duction of a cytochrome P450 with immunochemical<br />

similarities to CYP1A <strong>in</strong> digestive gland of <strong>the</strong> common mussel (Mytilus galloprov<strong>in</strong>cialis L.)<br />

with exposure to 2,2’,3,4,4’,5’-hexachlorobiphenyl and Arochlor 1254. Aquat Toxicol<br />

38:205-224<br />

Liv<strong>in</strong>gstone DR, Goldfarb PS, 1998. Aquatic environmental biomonitor<strong>in</strong>g: use of<br />

cytochrome P450 and o<strong>the</strong>r molecular biomarkers <strong>in</strong> fish and mussels. In: Lynch J, Wiseman<br />

A (eds): biotechnology research series, environmental biomonitor<strong>in</strong>g. The biotechnology<br />

ecotoxicology <strong>in</strong>terface, vol 6. Cambridge University Press, Cambridge, pp. 101-129<br />

Liv<strong>in</strong>gstone DR, Chipman JK, Lowe DM, M<strong>in</strong>ier C, Mitchelmore CL, Moore MN, Peters LD,<br />

Pipe RK, 2000. Development of biomarkers to <strong>de</strong>tect <strong>the</strong> effects of organic pollution on<br />

aquatic <strong>in</strong>vertebrates: recent molecular, genotoxic, cellular and immunological studies on <strong>the</strong><br />

common mussel (Mytilus edulis L.) and o<strong>the</strong>r mytilids. Int J Environ Pollut 13(1-6):56-91<br />

Lizen V, 1990. Caractérisation Géobiochimique <strong>de</strong> la matière particulaire en baie sud <strong>de</strong> Mer<br />

du Nord. Master <strong>the</strong>sis, University of Liège.<br />

Lohse J, 1991. Distribution of organochlor<strong>in</strong>e pollutants <strong>in</strong> North <strong>Sea</strong> sediments. Wat Sci<br />

Technol 21:273-278


232<br />

REFERENCES<br />

Long ER, Macdonald D, Smith SL, Cal<strong>de</strong>r FD, 1995. Inci<strong>de</strong>nce of adverse biological effects<br />

with<strong>in</strong> ranges of chemical concentrations <strong>in</strong> mar<strong>in</strong>e and estuar<strong>in</strong>e sediments. Environ<br />

Managm 19:81-97.<br />

Lourens JM, 1996. Speciemanagement; effecten van het reguleren van het storten van zoute<br />

baggerspecie <strong>in</strong> zee. Report RIKZ-96.017, Rijkswaterstaat, The Hague, 106 pp.<br />

Luoma SN, Carter JL, 1991. Effects of trace metals on aquatic benthos. In: Newman MC,<br />

McIntosh AW (eds), Metal ecotoxicology: concepts and applications, Lewis Publ, Chelsea,<br />

MI. Pp. 261-300<br />

Luster MI, Munson AE, Thomas PT, Holsapple MP, Fenters J, White KL, Laver LD, Dean<br />

JH, 1988. Development oof a test<strong>in</strong>g battery to assess chemical-<strong>in</strong>duced immunotoxicity.<br />

Fund Appl Toxicol 10:2-19<br />

Mal<strong>in</strong>s DC, Krahn MM, Brown DW, Rho<strong>de</strong>s LD, Myers MS, McCa<strong>in</strong> BB, Chan SL, 1985.<br />

Toxic chemicals <strong>in</strong> mar<strong>in</strong>e sediment and biota from Mukilteo, Wash<strong>in</strong>gton: relationships with<br />

hepatic neoplasms and o<strong>the</strong>r hepatic lesions <strong>in</strong> English sole (Parophrys vetulus). J Natl<br />

Cancer Inst 74:487-494.<br />

Mallefet J, Ajuzie CC, Baguet F, 1994. Aspects of calcium <strong>de</strong>pen<strong>de</strong>nce of light emission <strong>in</strong><br />

<strong>the</strong> ophiuroid Amphipholis squamata (Ech<strong>in</strong>o<strong>de</strong>rmata). In: David B, Guille A, Féral JP, Roux<br />

(eds), Ech<strong>in</strong>o<strong>de</strong>rms through time, Balkema, Rotterdam, The Ne<strong>the</strong>rlands, pp. 455-460<br />

Mangold K, Bid<strong>de</strong>r AM, Boletzky SV, 1989. Appareils excréteurs et excrétion. In: Grassé PP<br />

(ed) Traité <strong>de</strong> Zoologie, Tome V. Mangold K (ed) Céphalopo<strong>de</strong>s. Masson, Paris, pp. 437-457<br />

Manly BFJ, 1986. Multivariate statistical methods: a primer. Chapman and Hall Ltd, London.<br />

Mann T, Mart<strong>in</strong> AW, French M, 1988. Entry of pollutants from seawater <strong>in</strong>to <strong>the</strong><br />

spermatophore and spermatozoa of <strong>the</strong> giant octopus of <strong>the</strong> North Pacific. Mar Pollut Bull<br />

19(12):669-671<br />

Mantovani A, Stazi AV, Macri C, Maranghi F, Ricciardi C, 1999. Problems <strong>in</strong> test<strong>in</strong>g and risk<br />

assessment of endocr<strong>in</strong>e disrupt<strong>in</strong>g chemicals with regard to <strong>de</strong>velopmental toxicology.<br />

Chemosphere, 39:1293-1300<br />

Marchand M, Abarnou A, Marcaillou-Lebaut C, 1990. Les polychlorobyphényles (PCB) en<br />

milieu mar<strong>in</strong>: biogéochimie et écotoxicologie. Rapp Scient Techn IFREMER 18, 162 pp.<br />

Mart<strong>in</strong> JH, Flegal AR, 1975. High copper concentrations <strong>in</strong> squid livers <strong>in</strong> association with<br />

elevated levels of silver, cadmium, and z<strong>in</strong>c. Mar Biol 30:51-55<br />

McCarthy JF, Shugart LR (eds), 1990. Biomarkers of environmental contam<strong>in</strong>ation, Lewis<br />

publishers, Boca Raton Florida,<br />

McLeese DW, Metcalfe CD, Pezzack DS, 1980. Uptake of PCBs from sedieemnts by Nereis<br />

virens and Crangon septemsp<strong>in</strong>osa. Arch Environ Contam Toxicol 9:507-518<br />

McManus JP, Prandle D, 1997. Development of a mo<strong>de</strong>l to reproduce observed suspen<strong>de</strong>d<br />

sediment distribution <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn North <strong>Sea</strong> us<strong>in</strong>g pr<strong>in</strong>cipal component analysis and<br />

multiple l<strong>in</strong>ear regression. Cont Shelf Res 17:761-778.<br />

Meador JP, Casillas E, Sloan CA, Varanasi U, 1995, Comparative bioaccumulation of<br />

polycyclic aromatic hydrocarbons from sediment by two <strong>in</strong>faunal <strong>in</strong>vertebrates, Mar Ecol<br />

Prog Ser, 123:107-124<br />

Menge BA, 1982. Effects of feed<strong>in</strong>g on <strong>the</strong> environment: Asteroi<strong>de</strong>a. In: Jangoux M,<br />

Lawrence JM. Ech<strong>in</strong>o<strong>de</strong>rm nutrition. Balkema, Rotterdam: pp. 521-551


233<br />

REFERENCES<br />

Menge BA, Berlow EL, Blanchette CA, Navarrete SA, Yamada SB, 1994. The keystone<br />

species concept: variation <strong>in</strong> <strong>in</strong>teraction strength <strong>in</strong> a rocky <strong>in</strong>tertidal habitat. Ecol<br />

Monographs 64:249-286<br />

Menge BA, Berlow EL, Blanchette CA, Navarrete SA, Yamada SB, 1994. The keystone<br />

species concept: variation <strong>in</strong> <strong>in</strong>teraction strength <strong>in</strong> a rocky <strong>in</strong>tertidal habitat. Ecol<br />

Monographs 64:249-286<br />

Metcalfe CD, 1994. Polychlor<strong>in</strong>ated biphenyls, In: Kiceniuk JW & Ray S (eds), Analysis of<br />

contam<strong>in</strong>ants <strong>in</strong> edible aquatic resources, VCH pp. 305-338<br />

Michel XR, Suteau P, Robertson LW, Narbonne JF. 1993. Effects of benzo(a)pyrene,<br />

3,3’,4,4’-tetrachlorobiphenyl and 2,2’,4,4’,5,5’-hexachlorobiphenyl on <strong>the</strong> xenobioticmetaboliz<strong>in</strong>g<br />

enzymes <strong>in</strong> <strong>the</strong> mussel (Mytilus galloprov<strong>in</strong>cialis). Aquat Toxicol 27:335-344<br />

Miller K, 1985. Review: immunotoxicology. Cl<strong>in</strong> Exptl Immunol 61:219-223<br />

Miramand P, Guary JC, 1980. High concentrations of some heavy metals <strong>in</strong> tissues of <strong>the</strong><br />

Mediterranean octopus. Bull Environ Contam Toxicol 24:783-788<br />

Miramand P, Bentley D, 1992. Concentration and distribution of heavy metals <strong>in</strong> tissues of<br />

two cephalopods, Eledone cirrhosa and Sepia offic<strong>in</strong>alis, from <strong>the</strong> French coast of <strong>the</strong> English<br />

Channel. Mar Biol 114:407-414<br />

Mix MC, 1986. Cancerous diseases <strong>in</strong> aquatic animals and <strong>the</strong>ir association with<br />

environmental pollutants: a critical literature review. Mar Environ Res 20:1-141.<br />

Miyata H, Takayama K, Ogaki J, Kashimoto T, Fukushima S,1987. Monitor<strong>in</strong>g of PCDDs <strong>in</strong><br />

Osaka Bay us<strong>in</strong>g blue mussels. Chemosphere 16:1817-1822<br />

Miyata H, Aozasa O, Yamamori K, Fujiwara A, Yasuda Y,1994. Survey on pollution by<br />

diox<strong>in</strong> and related compounds monitored by blue mussels as a biological <strong>in</strong>dicator at 24<br />

coastal areas <strong>in</strong> Japan. Organohalogen Compd 20:187-190<br />

Mohn WW, Tiej<strong>de</strong> JL, 1992. Microbial reductive <strong>de</strong>halogenation. Microbiol Rev 56:482–507.<br />

Mommaerts JP, Van<strong>de</strong>n Clooster A, Roose P, 1994. Contam<strong>in</strong>ants <strong>in</strong> seawater and sediments<br />

of <strong>the</strong> North <strong>Sea</strong> (Belgian cont<strong>in</strong>ental shelf and western Scheldt estuary). Report of<br />

September 1994,<br />

Moon HB, Choi HG, Kim SS, Lee PY, Ok G, 2000. Monitor<strong>in</strong>g of polychlor<strong>in</strong>ated dibenzop-diox<strong>in</strong>s<br />

and polychlor<strong>in</strong>ated dibenzofurans <strong>in</strong> <strong>the</strong> Korean coast us<strong>in</strong>g mussel and oyster.<br />

Organohalogen Compd 46:526-529<br />

Moore MN, 1992. Molecular cell pathology of pollutant-<strong>in</strong>duced liver <strong>in</strong>jury <strong>in</strong> flatfish: use of<br />

fluorescent probes. Mar Ecol Prog Ser (Special) 91:127-133.<br />

Moore MN, Liv<strong>in</strong>gstone DR, Donk<strong>in</strong> P, Bayne BL, Widdows J, Lowe DM, 1980. Mixed<br />

function oxygenases and xenobiotic <strong>de</strong>toxication/toxication systems <strong>in</strong> bivalve molluscs.<br />

Helgol Wiss Meereunters 33:278<br />

Moore MR, Vetter W, Gaus C, Shaw GR, Müller JF, 2002. Trace organic ccompound s<strong>in</strong> <strong>the</strong><br />

mar<strong>in</strong>e environment. Mar Pollut Bull 45:62-68<br />

Muir CG, Norstrom RJ, Simon M, 1988. Organochlor<strong>in</strong>e contam<strong>in</strong>ants <strong>in</strong> Arctic mar<strong>in</strong>e food<br />

cha<strong>in</strong>s: accumulation of specific polychlor<strong>in</strong>ated biphenyls and chlordane-related compounds.<br />

Environ Sci Technol 22:1071-1079.<br />

Munkittrick KR, van <strong>de</strong>n Heuvel MR, Metner MR, Lockhart WL, Stegeman JJ, 1993.<br />

Interlaboratory comparison and optimisation of hepatic microsomal ethoxyresoruf<strong>in</strong> O-


234<br />

REFERENCES<br />

<strong>de</strong>ethylase <strong>in</strong> white sucker (Catostomas commersoni) exposed to bleached kraft pulp mill<br />

effluent. Environ Toxicol Chem 12: 1273-1283.<br />

Murdoch MH, Chapman PM, Norman DM, Qu<strong>in</strong>t<strong>in</strong>o VM, 1997. Spik<strong>in</strong>g sediment with<br />

organochlor<strong>in</strong>es for toxicity test<strong>in</strong>g. Environ Toxicol Chem 16:1504-1509<br />

Myers MS, Stehr CM, Olsen OP, Johnson LL, McCa<strong>in</strong> BB, Chan SL, Varanasi U, 1994.<br />

Relationships between toxicopathic hepatic lesions and exposure to chemical contam<strong>in</strong>ants <strong>in</strong><br />

English sole (Pleuronectus vetulus), starry floun<strong>de</strong>r (Platichthys stellatus), and white croaker<br />

(Genyonemus l<strong>in</strong>eatus) from selected mar<strong>in</strong>e sites on <strong>the</strong> Pacific coast, USA. Environ Health<br />

Perspect 102:200-215.<br />

Nacci D, Jackim E, Walsh R, 1986. Comparative evaluation of three rapid mar<strong>in</strong>e toxicity<br />

tests: sea urch<strong>in</strong> early embryo growth test, sea urch<strong>in</strong> sperm cell toxicity test and microtox.<br />

Environ Toxicol Chem 5:521-525<br />

Nagayama J, Kurastune M, Masuda Y, 1976. Determ<strong>in</strong>ation of dibenzofurans <strong>in</strong> Kanechlor<br />

and Yucho oil. Bull Environ Contam Toxicol 15:9-13<br />

Nakahara M, Koyanagi T, Ueda T, Shimizu C, 1979. Peculiar accumulation of cobalt-60 by<br />

<strong>the</strong> branchial hearts of Octopus. Bull Jap Soc Scient Fish 45:539-545<br />

Napolitano GE, Richmond JE, 1995. Enrichment of biogenic lipids, hydrocarbons and PCBs<br />

<strong>in</strong> stream-surface foams. Environ Toxicol Chem 14:197-201.<br />

Navarro JC, Villanueva R, 2000. Lipid and fatty acid composition of early stages of<br />

cephalopods: an approach to <strong>the</strong>ir lipid requirements. Aquaculture 183:161-177<br />

Nebert DW, Goujon FM, Gielen JE, 1972. Aryl hydrocarbon hydroxylase <strong>in</strong>duction by<br />

polycyclic hydrocarbons: simple autosomal trait <strong>in</strong> <strong>the</strong> mouse, Nature New Biol 236:107-<br />

110.<br />

Nebert DW, Gonzalez FJ, 1987. P450 genes: structure, evolution, and regulation. Ann Rev<br />

Biochem 56:945-993.<br />

Nebert DW, Mat<strong>the</strong>w ALR, Dieter Z, Solis WA, Yang Y, Dalton TP, 2000. Role of <strong>the</strong><br />

Aromatic Hydrocarbon Receptor and [Ah] Gene Battery <strong>in</strong> <strong>the</strong> Oxidative Stress Response,<br />

Cell Cycle Control, and Apoptosis. Biochem Pharmacol 59(1):65-85<br />

Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyreissen R, Waxman DJ, Waterman<br />

MR, Gotoh O, Coon MJ, Estaabrook RW, Gunsalus IC, Nebert DW, 1996. P450<br />

superfamily: update on new sequences, gene mapp<strong>in</strong>g, accession numbers and nomenclature.<br />

Pharmacogenetics 6:1-42<br />

Nieboer E, Richardson DHS, 1980. The replacement of <strong>the</strong> non<strong>de</strong>script term ‘heavy metal’ by<br />

a biologically and chemically significant classification of metal ions. Environ Pollut Ser B<br />

Chem Phys 1:3-26<br />

Noble PB, 1970. Coelomocyte aggregation <strong>in</strong> Cucumaria frondosa: effect of<br />

ethylenediam<strong>in</strong>e tetracetate, a<strong>de</strong>nos<strong>in</strong>e and a<strong>de</strong>nos<strong>in</strong>e nucleoti<strong>de</strong>s. Biol Bull 139:549-556<br />

Noël D, Bachere E, Mialhe E, 1993. Phagocytosis associated chemilum<strong>in</strong>escence of<br />

hemocytes <strong>in</strong> Mytilus edulis (Bivalvia). Dev Comp Immunol 17:483-493.<br />

Nolan C, Dahlgaard H, 1991. Accumulation of metal radiotracers by Mytilus edulis. Mar Ecol<br />

Prog Ser 70:165-174<br />

Norstrom RJ, Muir DCG, 1994. Chlor<strong>in</strong>ated hydrocarbon contam<strong>in</strong>ants <strong>in</strong> arctic mar<strong>in</strong>e<br />

mammals. Sci Total Environ 154:107-128.


235<br />

REFERENCES<br />

North <strong>Sea</strong> Task Force, 1993a. North <strong>Sea</strong> quality status report 1993. Oslo and Paris<br />

Commission. International Council for <strong>the</strong> Exploration of <strong>the</strong> <strong>Sea</strong>, London, 346 pp.<br />

North <strong>Sea</strong> Task Force, 1993b. North <strong>Sea</strong> subregion 4 assessment report. Oslo and Paris<br />

Commission. International Council for <strong>the</strong> Exploration of <strong>the</strong> <strong>Sea</strong>. London, 132 pp.<br />

Oh JR (ed.), 2000. POPs <strong>in</strong> <strong>the</strong> Mar<strong>in</strong>e Environment: Analysis, Bioaccumulation and<br />

Toxicity. Korea Research and Development Institute,<br />

Olsen CR, Cutshall NH, Larsen IL, 1982. Pollutant–particle association and dynamics <strong>in</strong><br />

coastal mar<strong>in</strong>e environments: a review. Mar Chem 11:501-533.<br />

OSPAR Commission for <strong>the</strong> Protection of <strong>the</strong> Mar<strong>in</strong>e Environment of <strong>the</strong> North-East<br />

Atlantic, 2000. Quality Status Report for <strong>the</strong> North-East Atlantic, OSPAR Commission,<br />

London, 108 pp.<br />

Otto LJ, Zimmerman TF, Furnes GK, Mork M, Saetre R, Becker G, 1990. Review of <strong>the</strong><br />

physical oceanography of <strong>the</strong> North <strong>Sea</strong>. Neth J <strong>Sea</strong> Res 26:161-238.<br />

Pagano G, Esposito A, Giordano GG, 1982. Fertilization and larval <strong>de</strong>velopment <strong>in</strong> sea<br />

urch<strong>in</strong>s follow<strong>in</strong>g exposure of gametes and embryos to cadmium. Arch Environ Contam<br />

Toxicol 11:47-55<br />

Pagano G, Cipollaro M, Corsale G, Esposito A, Ragucci E, Giordano GG, Trieff NM, 1985.<br />

Comparative toxicities of chlor<strong>in</strong>ated biphenyls on sea urch<strong>in</strong> egg fertilisation and<br />

embryogenesis. Mar Environ Res 17:240-244.<br />

Pagano G, Cipollaro M, Corsale G, Esposito E, Ragucci E, Giordano GG, Trieff NM, 1986.<br />

The sea urch<strong>in</strong>: bioessay for <strong>the</strong> assessment of damage from environmental contam<strong>in</strong>ants. In:<br />

Cra<strong>in</strong>s JJr (ed) Community Toxicity Test<strong>in</strong>g. ASTM Phila<strong>de</strong>lphia, PA, USA, pp. 66-92.<br />

Pagano G, Corsale G, Esposito A, D<strong>in</strong>nel PA, Romana LA, 1989. Use of sea urch<strong>in</strong> sperm<br />

and embryo bioassay <strong>in</strong> test<strong>in</strong>g <strong>the</strong> sublethal toxicity of realistic pollutant levels. Adv Appl<br />

Biotechnol Ser (5):153-163<br />

Pagano G, His E, Beiras R, De Biase A, Kork<strong>in</strong>a LG, Iaccar<strong>in</strong>o M, Oral R, Qu<strong>in</strong>iou F,<br />

Warnau M, Trieff NM, 1996. Cytogenetic, <strong>de</strong>velopmental, and biochemical effects of<br />

alum<strong>in</strong>ium, iron and <strong>the</strong>ir mixtures <strong>in</strong> sea urch<strong>in</strong>s and mussels. Arch Environ Contam Toxicol<br />

31:466-474<br />

Pagano G, Bonassi S, De Biase A, Degan P, Deeva IB, Doron<strong>in</strong> YK, Iaccar<strong>in</strong>o M, Oral R,<br />

Warnau M, Kork<strong>in</strong>a LG, 1997. L-methion<strong>in</strong>e <strong>in</strong>duces stage-<strong>de</strong>pen<strong>de</strong>nt changes of<br />

differentiation and oxidative activity <strong>in</strong> sea urch<strong>in</strong> embryogenesis. Pharmacol Toxicol<br />

81:134-143.<br />

Patand<strong>in</strong> S, Lant<strong>in</strong>g CI, Mul<strong>de</strong>r PGH, Boersma ER, Sauer PJJ, Weisglas-Kuperus N, 1999.<br />

Effects of environmental exposure to polychlor<strong>in</strong>ated biphenyls and diox<strong>in</strong>s on cognitive<br />

abilities <strong>in</strong> Dutch children at 42m onths of age. J Pediatrics 134:33–41<br />

Patno<strong>de</strong> KA, Curtis LR, 1994. 2,2’,4,4 ,5,5-Hexachlorobiphenyl alteration of uter<strong>in</strong>e<br />

progesterone and estrogen receptors co<strong>in</strong>ci<strong>de</strong>s with embryotoxicity <strong>in</strong> m<strong>in</strong>k (must & vison).<br />

Toxicol Appl Pharmacol 127:9-18.<br />

Payne JF, 1976. Field evaluation of benzopyrene hydroxylase <strong>in</strong>duction as a monitor for<br />

mar<strong>in</strong>e pollution. Science 191:945-946<br />

Payne JF, Penrose WR, 1975. Induction of aryl hydrocarbon (beenzo(a)pyrene) hydroxylase<br />

<strong>in</strong> fish by petroleum. Bull Environ Contam Toxicol 14:112-116


236<br />

REFERENCES<br />

Payne JF, May N, 1979. Fur<strong>the</strong>r studies on <strong>the</strong> effect of petroleum hydrocarbons on mixedfunction<br />

oxidases <strong>in</strong> mar<strong>in</strong>e organisms. In Kahn MAQ, Lech JJ, Menn JJ (eds): Pestici<strong>de</strong> and<br />

xenobiotic metabolism <strong>in</strong> aquatic organisms. American Chemical Society, Wash<strong>in</strong>gton, D. C.,<br />

USA, pp. 339-347<br />

Payne JF, Fancey LL, Rahimtula AD, Porter EL, 1987. Review and perspective on <strong>the</strong> use of<br />

mixed-function oxygenase enzymes <strong>in</strong> biological monitor<strong>in</strong>g. Comp Biochem Physiol<br />

86C:233-245<br />

Peakall D (ed), 1994. Animal biomarkers as pollution <strong>in</strong>dicators Ecotoxicology series 1,<br />

Chapman & Hall, London, 291 pp.<br />

Peters JM, Narotsky MG, Elizondo G, Fernan<strong>de</strong>z-Salguero PM, Gonzalez FJ, Abbott BD,<br />

1999. Amelioration of TCDD-<strong>in</strong>duced teratogenesis <strong>in</strong> aryl hydrocarbon receptor (AhR)-null<br />

mice, Toxicol Sci 47:86–92.<br />

Peters LD, Nasci C, Liv<strong>in</strong>gstone DR. 1998. Variation <strong>in</strong> level of cytochrome P4501A, 2B, 2E,<br />

3A and 4A immunopositive prote<strong>in</strong>s <strong>in</strong> digestive glands of <strong>in</strong>digenous and transplanted<br />

mussel Mytilus galloprov<strong>in</strong>cialis <strong>in</strong> Venice lagoon, Italy. Mar Environ Res 46(1-5):295-299<br />

Philips DJH, 1976, The common mussel Mytilus edulis as an <strong>in</strong>dicator of pollution by z<strong>in</strong>c,<br />

cadmium, lead and copper. I. Effects of environmental variables on uptake of metals. Mar<br />

Biol 38:59-69<br />

Philips DJH, 1990. Use of macroalgae and <strong>in</strong>vertebrates as monitors of metal levels <strong>in</strong><br />

estuaries and coastal waters. In: Furness RW, Ra<strong>in</strong>bow PS (eds), Heavy Metals <strong>in</strong> <strong>the</strong> Mar<strong>in</strong>e<br />

Environment, CRC Press, Boca Raton, pp. 81-99<br />

Pipe RK, Coles JA, 1995. Environmental contam<strong>in</strong>ants <strong>in</strong>fluenc<strong>in</strong>g immune function <strong>in</strong><br />

mar<strong>in</strong>e bivalve molluscs. Fish and Shellfish Immunol 5:581-595<br />

Pipe RK, Coles JA, Thomas ME, Fossato VU, Pulsford AL, 1995. Evi<strong>de</strong>nce for<br />

environmentally <strong>de</strong>rived immunomodulation <strong>in</strong> mussels from <strong>the</strong> Venice Lagoon. Aquat<br />

Toxicol 32:59-73.<br />

Pipe RK, Coles JA, Carissan FMM, Ramanathan K, 1999. Copper <strong>in</strong>duced<br />

immunomodulation <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e mussel, Mytilus edulis. Aquat Toxicol 46:43-54.<br />

Pohjanvirta R, Tuomisto J, 1994. Short-term toxicity of 2,3,7,8-tetrachlorodibenzo-p-diox<strong>in</strong><br />

<strong>in</strong> laboratory animals: effects, mechanisms, and animal mo<strong>de</strong>ls. Pharmacol Rev 46:483–549.<br />

Poland A, Glover E, 1973a. 2,3,7,8-Tetrachlorodibenzo-p-diox<strong>in</strong>: potent <strong>in</strong>ducer of<br />

am<strong>in</strong>olevul<strong>in</strong>ic acid syn<strong>the</strong>tase. Science 179:476-477.<br />

Poland A, Glover E, 1973b. Chlor<strong>in</strong>ated dibenzo-p-diox<strong>in</strong>s: potent <strong>in</strong>ducers of <strong>de</strong>ltaam<strong>in</strong>olevul<strong>in</strong>ic<br />

acid syn<strong>the</strong>tase and aryl hydrocarbon hydroxylase. II. A study of <strong>the</strong> structureactivity<br />

relationship, Mol Pharmacol 9:736-747.<br />

Poland A, Glover E, 1974. Comparison of 2,3,7,8-tetrachlorodibenzo-p-diox<strong>in</strong>, a potent<br />

<strong>in</strong>ducer of aryl hydrocarbon hydroxylase, with 3-methyl-cholanthrene. Mol Pharmacol<br />

10:349-359.<br />

Poland A, Glover E, Rob<strong>in</strong>son JR, Nebert DW, 1974. Genetic expression of aryl hydrocarbon<br />

hydroxylase activity. Induction of monooxygenase activities and cytochrome P1-450<br />

formation by 2,3,7,8-tetrachlorodibenzo-p-diox<strong>in</strong> <strong>in</strong> mice genetically ‘nonresponsive’ to o<strong>the</strong>r<br />

aromatic hydrocarbons. J Biol Chem 248:5599-5606.


237<br />

REFERENCES<br />

Poland A, Glover E, 1975. Genetic expression of aryl hydrocarbon hydroxylase by 2,3,7,8tetrachlorodibenzo-p-diox<strong>in</strong>:<br />

evi<strong>de</strong>nce for a receptor mutation <strong>in</strong> genetically non-responsive<br />

mice. Mol Pharmacol 11:389-398.<br />

Poland A, Glover E, Ken<strong>de</strong> AS, 1976. Stereospecific, high-aff<strong>in</strong>ity b<strong>in</strong>d<strong>in</strong>g of 2,3,7,8tetrachlorodibenzo-p-diox<strong>in</strong><br />

by hepatic cytosol. J Biol Chem 251:4936–4946.<br />

Poland A, Glover E, 1977. Chlor<strong>in</strong>ated biphenyl <strong>in</strong>duction of aryl hydrocarbon hydroxylase<br />

activity: a study of <strong>the</strong> structure–activity relationship. Mol Pharmacol 13:924–938.<br />

Poland A, Knutson JC, 1982. 2,3,7,8-Tetrachlorodibenzo-p-diox<strong>in</strong> and related halogenated<br />

aromatic hydrocarbons: exam<strong>in</strong>ation of <strong>the</strong> mechanism of toxicity. Annu Rev Pharmacol<br />

Toxicol 22:517–554.<br />

Poland A, Glover E, 1987. Variation <strong>in</strong> <strong>the</strong> molecular mass of <strong>the</strong> Ah receptor among<br />

vertebrate species and stra<strong>in</strong>s of rats. Biochem Biophys Res Commun 146:1439-1451<br />

Poulicek M, 1982. Coquilles et autres structure squelettiques <strong>de</strong>s mollusques. Composition<br />

chimique, biomasse et biodégradation en milieu mar<strong>in</strong>. PhD Thesis, Liège University,<br />

Powell-Coffman JA, Bradfield CA, Wood WD, 1998. Caenorhabditis elegans orthologs of<br />

<strong>the</strong> aryl hydrocarbon receptor and its heterodimerization partner <strong>the</strong> aryl hydrocarbon receptor<br />

nuclear translocator, Proc Natl Acad Sci USA 95:2844-2849.<br />

Pruell RJ, Tapl<strong>in</strong> BK, McGovern DG, McK<strong>in</strong>ney R, Norton SB, 2000. Organic contam<strong>in</strong>ant<br />

distribution <strong>in</strong> sediments, polychaetes (Nereis virens) and American lobster (Homarus<br />

americanus) from a laboratory food cha<strong>in</strong> experiment. Mar Environ Res 49:19-36<br />

Quensen JF, Boyd SA, Tiedje JM, 1990. Dechlor<strong>in</strong>ation of four commercial polychlor<strong>in</strong>ated<br />

biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Appl Environ<br />

Microbiol 56:2360–2369.<br />

Qu<strong>in</strong>iou F, Guillou M, Judas A, 1999. Arrest and <strong>de</strong>lay <strong>in</strong> embryonic <strong>de</strong>velopment <strong>in</strong> sea<br />

urch<strong>in</strong> populations of <strong>the</strong> bay of Brest (Brittany, France): l<strong>in</strong>k with environmental factors.<br />

Mar Pollut Bull 38(5):401-406<br />

Ra<strong>de</strong>nac G, Fichet D, Miramand P, 2001. Bioaccumulation and toxicity of four dissolved<br />

metals <strong>in</strong> Paracentrotus lividus sea-urch<strong>in</strong> embryo. Mar Environ Res 51:151-166<br />

Rapaport RA, Eisenreich SJ, 1988. Historical atmospheric <strong>in</strong>puts of high molecular weight<br />

chlor<strong>in</strong>ated hydrocarbons to eastern North America. Environ Sci Technol, 22:931 –941.<br />

Raulf M, König W, 1991. Induction of mediator generation <strong>in</strong> human <strong>in</strong>flammatory cells by<br />

polychlor<strong>in</strong>ated biphenyls. In New Trends <strong>in</strong> Allergy III (J. R<strong>in</strong>g and B. Przybilla, eds), pp.<br />

489-499. Spr<strong>in</strong>ger, Berl<strong>in</strong>, Germany.<br />

Regoli F, Pr<strong>in</strong>cipato G, 1995. Glutathione, glutathione-<strong>de</strong>pen<strong>de</strong>nt and antioxidant enzymes <strong>in</strong><br />

mussel, Mytilus galloprov<strong>in</strong>cialis, exposed to metals un<strong>de</strong>r field and laboratory conditions:<br />

implications for <strong>the</strong> use of biochemical biomarkers. Aquat Toxicol, 31:143–164.<br />

Regoli F, Gorbi S, Frenzilli G, Nigro M, Corsi I, Focardi S, W<strong>in</strong>ston GW. 2002. Oxidative<br />

stress <strong>in</strong> ecotoxicology: from <strong>the</strong> analysis of <strong>in</strong>dividual antioxidants to a more <strong>in</strong>tegrated<br />

approach. Mar Environ Res 54:419-423<br />

Reichle DE, 1967. radioisotope turnover and energy flow <strong>in</strong> terrestrial isopod populations.<br />

Ecology 48:351-366<br />

Reichle DE, Dunaway PB, Nelson DJ, 1970. Turnover and concentration of radionucli<strong>de</strong>s <strong>in</strong><br />

food cha<strong>in</strong>s. Nucl Saf 11:43-55


238<br />

REFERENCES<br />

Re<strong>in</strong>fel<strong>de</strong>r JR, Fisher NS, 1991. The assimilation of elements <strong>in</strong>gested by mar<strong>in</strong>e copepods.<br />

Science 251:794-796<br />

Rijnsdorp AD, Vethaak AD, Van Leeuwen PI, 1992. Population biology of dab Limanda<br />

limanda <strong>in</strong> <strong>the</strong> sou<strong>the</strong>astern North <strong>Sea</strong>. Mar Ecol Prog Ser 91:19-35.<br />

Riley JP, Segar DA. The distribution of <strong>the</strong> major and some of <strong>the</strong> m<strong>in</strong>or elements <strong>in</strong> mar<strong>in</strong>e<br />

animals. I: Ech<strong>in</strong>o<strong>de</strong>rms and Coelenterates. J Mar Biol Ass UK 1970; 50:721-730<br />

Robles R, Morita Y, Mann KK, Perez GI, Yang S, Matika<strong>in</strong>en T, Sherr DH, Tilly JH, 2000.<br />

The aryl hydrocarbon receptor, a basic helix-loop-helix transcription factor of <strong>the</strong> PAS gene<br />

family, is required for normal ovarian germ cell dynamics <strong>in</strong> <strong>the</strong> mouse. Endocr<strong>in</strong>ology<br />

141:450-453.<br />

Rodhouse PG, Nigmatull<strong>in</strong> CM, 1996. Role as consumers. Phil Trans Roy Soc London B<br />

351:1003-1022<br />

Roesijadi G, Brubacher LL, Unger ME, An<strong>de</strong>rson RS, 1997. Metallothione<strong>in</strong> mRNA<br />

<strong>in</strong>duction and generation of reactive oxygen species <strong>in</strong> molluscan hemocytes exposed to<br />

cadmium <strong>in</strong> vitro. Comp Biochem Physiol 118(C), 171 /176<br />

Rouleau C, Pelletier E, Tjälve H, 1993. The uptake and distribution of 203 HgCl 2 and CH 3HgCl 2<br />

<strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> after 24-h exposure studied by impulse count<strong>in</strong>g and whole<br />

body autoradiography. Aquat Toxicol 26:103-116.<br />

Rygg B, 1985. Effect of sediment copper on benthic fauna. Mar Ecol Prog Ser 25:83-89<br />

Safe S, 1990. Polychlor<strong>in</strong>ated biphenyls (PCBs), dibenzo-p-diox<strong>in</strong>s (PCDDs), dibenzofurans<br />

(PCDFs), and related compounds: environmental and mechanistic consi<strong>de</strong>rations which<br />

support <strong>the</strong> <strong>de</strong>velopment of toxic equivalency factors (TEFs). CRC Crit Rev Toxicol: 21:51-<br />

88<br />

Safe S, 1994. Polychlor<strong>in</strong>ated biphenyls (PCBs): Environmental impact, biochemical and<br />

toxic responses, and implications for risk assessment. Crit Rev Toxicol 24:87-149.<br />

Safe S, 1995. Modulation of gene expression and endocr<strong>in</strong>e response pathways by 2378tetrachlorodibenzo-p-diox<strong>in</strong><br />

and related compounds. Pharmac Ther 67(2):247-281<br />

Safe S, Bandiera S, Sawyer T, Robertson L, Safe L, Park<strong>in</strong>son A, Thomas PE, Ryan DE, Reik<br />

LM, Lev<strong>in</strong> W, Denomme MA, Fujita T, 1985. PCBs: Structure-function relationships and<br />

mechanism of action. Environ Health Perspect 60:47-56.<br />

Sager DB, Girard DM Long-term effects on reproductive parameters <strong>in</strong> female rats after<br />

translactational exposure to PCBs. Environ Res. 1994;66:52-76.<br />

Saier B, 2001. Direct and <strong>in</strong>direct effects of seastars <strong>Asterias</strong> <strong>rubens</strong> on mussel beds (Mytilus<br />

edulis) <strong>in</strong> <strong>the</strong> Wad<strong>de</strong>n <strong>Sea</strong>. J <strong>Sea</strong> Res 46:29-42.<br />

San<strong>de</strong>rs G, Jones KC, Hamilton-Taylor J, Dorr H, 1992. Historical <strong>in</strong>puts of polychlor<strong>in</strong>ated<br />

biphenyls and o<strong>the</strong>r organochlor<strong>in</strong>es to a dated lacustr<strong>in</strong>e sediment core <strong>in</strong> rural England.<br />

Environ Sci Technol 26:1815 –1821<br />

Sarkar A, Everaarts JM, 1995. DNA strandbreaks as a biological response to chlor<strong>in</strong>ated<br />

biphenyls congeners CB28, CB 52 and CB77, and benzo(a)pyrene: <strong>in</strong> vitro studies with sea<br />

star DNA (<strong>Asterias</strong> <strong>rubens</strong>). In: Everaarts JM (ed), Contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong> Mar<strong>in</strong>e Environment:<br />

<strong>the</strong>ir Fate <strong>in</strong> <strong>the</strong> Abiotic and Biotic Compartments with Emphasis on Biological Responses<br />

(biomarkers) of Organisms. First annual progress report of <strong>the</strong> EC Indo-Dutch research<br />

project. Ne<strong>the</strong>rlands Institute of <strong>Sea</strong> Research/NIOZ, Den Berg, Texel, <strong>the</strong> Ne<strong>the</strong>rlands, pp.<br />

34-37.


239<br />

REFERENCES<br />

Satar AA, 2000. The immune system as a potential target for environmental estrogens<br />

(endocr<strong>in</strong>e disrupters): a new emerg<strong>in</strong>g field. Toxicology 150:191-206<br />

Savas U, Griff<strong>in</strong> KJ, Johnson EF, 1999. Molecular mechanisms of cytochrome P-450<br />

<strong>in</strong>duction by xenobiotics: an expan<strong>de</strong>d role for nuclear hormone receptors. Mol Pharmacol<br />

56:851–857.<br />

Sawyer T, Safe S, 1982. PCB isomers and congeners: <strong>in</strong>duction of aryl hydrocarbon<br />

hydroxylase and ethoxyresoruf<strong>in</strong>-o-<strong>de</strong>ethylase enzyme activities <strong>in</strong> rat hepatoma cells.<br />

Toxicol Lett 13:87-94.<br />

Schlebusch H, Wagner U, van <strong>de</strong>r Ven H, Al-Hasani S, Krebs D, 1989. Polychlor<strong>in</strong>ated<br />

biphenyls: <strong>the</strong> ma<strong>in</strong> occurrence of <strong>the</strong> ma<strong>in</strong> congeners <strong>in</strong> follicular and sperm fluids. J Cl<strong>in</strong><br />

Chem Cl<strong>in</strong> Biochem 27:663-667.<br />

Schlenk D, 1996. The role of biomarkers <strong>in</strong> risk assessment. Human Ecol Risk Assess,<br />

2:251-256<br />

Schlenk D, Perk<strong>in</strong>s EJ, Layher WG, Zhang YS, 1996. Correlat<strong>in</strong>g metrics of fish heaklth with<br />

cellular <strong>in</strong>dicators of stress <strong>in</strong> Arkansas bayou. Mar Environ Res 42:247-251<br />

Schmidt JV, Su GH-T, Reddy JK, Simon MC, Bradfield CA, 1996. Characterization of a<br />

mur<strong>in</strong>e Ahr null allele: <strong>in</strong>volvement of <strong>the</strong> Ah receptor <strong>in</strong> hepatic growth and <strong>de</strong>velopment.<br />

Proc Natl Acad Sci USA 93, pp. 6731-6736<br />

Schramm M, Müller E, Triebskorn R, 1998. Brown trout (Salmo trutta f. Fario) liver<br />

ultrastructure as a biomarker for assessment of small stream pollution. Biomarkers 3:93-108.<br />

Schreitmüller J, Vigneron M, Bacher R, Ballschmiter K, 1994. Pattern analysis of<br />

polychlor<strong>in</strong>ated biphenyls (PCBs) <strong>in</strong> mar<strong>in</strong>e air of <strong>the</strong> Atlantic ocean. Intern J Environ Anal<br />

Chem 57:33-52<br />

Schultz-Bull DE, Petrick G, Kannan N, Du<strong>in</strong>ker JC, 1995. Distribution of <strong>in</strong>dividual<br />

chlorobiphenyls (PCB) <strong>in</strong> solution and suspension <strong>in</strong> <strong>the</strong> Baltic <strong>Sea</strong>. Mar Chem 48:245-270<br />

Schulz DE, Petrick G, Du<strong>in</strong>ker JC, 1989. Complete characterization of polychlor<strong>in</strong>ated<br />

biphenyl congeners <strong>in</strong> commercial Aroclor and Clophen mixtures by multidimensional<br />

electron capture <strong>de</strong>tection. Environ Sci Technol 23:852–859.<br />

Schweitzer LE, Hose JE, Suffet IH, Bay SM, 1997. Differential toxicity of three PCB<br />

congeners <strong>in</strong> <strong>de</strong>velop<strong>in</strong>g sea urch<strong>in</strong> embryos. Environ Toxicol Chem 16(7):1510-1514<br />

Schweitzer LE, Bay SM, Suffet IH, 2000. Dietary assimilation of a polychlor<strong>in</strong>ated biphenyl<br />

<strong>in</strong> adult sea urch<strong>in</strong>s (Lytech<strong>in</strong>us pictus) and maternal transfer to <strong>the</strong>ir offspr<strong>in</strong>g, Environ<br />

Toxicol Chem 19(7):1919-1924<br />

Schwetz BA, Norris JM, Sparschu GL, Rowe VK, Gehr<strong>in</strong>g P, Emerson JL, Gerbig CG, 1973.<br />

Toxicology of chlor<strong>in</strong>ated dibenzo-p-diox<strong>in</strong>s. Environ Health Perspect 5:87-89<br />

Seiler P, Fischer B, L<strong>in</strong><strong>de</strong>nau A, Beier HM, 1994. Effects of persistent chlor<strong>in</strong>ated<br />

hydrocarbons on fertility and embryonic <strong>de</strong>velopment <strong>in</strong> <strong>the</strong> rabbit. Hum Reprod. 9:1920-<br />

1926<br />

Shaw GR, Connell DW, 1987. Comparative k<strong>in</strong>etics for bioaccumulation of polychlor<strong>in</strong>ated<br />

biphenyls by <strong>the</strong> polychaete (Capitella capitella) and Fish (Mugil cephalus), Ecotoxicol<br />

Environ Saf 13:84-91<br />

Shen GT, Boyle EA, 1988. Determ<strong>in</strong>ation of lead, cadmium, and o<strong>the</strong>r trace metals <strong>in</strong><br />

annually-ban<strong>de</strong>d corals. Chem Geol 67:47-62


240<br />

REFERENCES<br />

Sh<strong>in</strong>a A, Gross J, Lifshitz A, Sklarz B, 1978. Carotenoids of <strong>the</strong> <strong>in</strong>vertebrates of <strong>the</strong> Red <strong>Sea</strong><br />

(Eilat shore) – II. Carotenoid pigments <strong>in</strong> <strong>the</strong> gonads of <strong>the</strong> sea urch<strong>in</strong> Tripneustes gratila<br />

(Ech<strong>in</strong>o<strong>de</strong>rmata). Comp Biochem Physiol 61(B):123-128.<br />

Shugart LR, Bickham J, Jackim G, McMahon G, Ridley W, Ste<strong>in</strong> J, Ste<strong>in</strong>ert S, 1992. DNA<br />

alterations. In: Huggett RJ, Kimerle RA, Mehrle PM, Bergman HL (eds): Biomarkers:<br />

biochemical, physiological and histological markers of anthropogenic stress. Chelsea MI:<br />

Lewis publishers, pp. 125-163<br />

Shugart LR, Peakall DB, Walkes CH, Everaarts JM, 1993. Overview. In: DB Peakall and LR<br />

Shugart (Eds): Biomarkers: Research and application <strong>in</strong> <strong>the</strong> assessment of environmental<br />

health. NATO ASI Series. Series H: Cell Biology 68:XII-XIX<br />

S<strong>in</strong>ger SC, March PE, Goncoul<strong>in</strong> F, Lee RF, 1980. Mixed function oxygenase activity <strong>in</strong> <strong>the</strong><br />

blue crab Call<strong>in</strong>ectes sapidus: characterization of enzyme activity from stomach tissue.<br />

Comp Biochem Physiol 65C:129-134<br />

Sipes IG, Schnellmann RG, 1987. Biotransformation of PCBs: metabolic pathways and<br />

mechanisms. In: Safe S (ed), Polychlor<strong>in</strong>ated biphenyls: mammalian and environmental<br />

toxicology, Spr<strong>in</strong>ger Verlag, Berl<strong>in</strong>, pp. 97-110<br />

Skei JM, 1994. Tiltaksorienterte miljøun<strong>de</strong>rsøkelser i Sørfjor<strong>de</strong>n og Hardangerfjor<strong>de</strong>n 1992.<br />

NIVA-report (<strong>in</strong> Norwegian) 2, N° 3038,<br />

Skerfv<strong>in</strong>g E, Svensson BG, Asplund L, Hagmar L, 1994. Exposure to mixtures and congeners<br />

of polychlor<strong>in</strong>ated biphenyls. Cl<strong>in</strong> Chem 40:1409-1415<br />

Slei<strong>de</strong>r<strong>in</strong>k HM, Oostigh I, Goksøyr A, Boon JP, 1995. Sensitivity of cytochrome P450 1A<br />

<strong>in</strong>duction <strong>in</strong> dab (Limanda limanda) of different age and sex as a biomarker for<br />

environmental contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn north sea. Arch Environ Contam Toxicol 28:<br />

423-430.<br />

Smale MJ, 1996. Cephalopods as prey. IV. Fishes. Philosophical Transactions of <strong>the</strong> Royal<br />

Society of London B 351, 1067-1081<br />

Smith AG, 2000. How toxic is DDT. Lancet 356:267–268<br />

Smith AG, D<strong>in</strong>sdale D, Cabral JRP, Wright AL, 1987. Goitre and wast<strong>in</strong>g <strong>in</strong>duced <strong>in</strong><br />

hamsters by hexachlorobenzene. Arch Toxicol 60:343-349.<br />

Smith AG, Gangoli SD, 2002. Organochlor<strong>in</strong>e chemicals <strong>in</strong> seafood: occurrence and health<br />

concerns. Food Chem Toxicol 40:767–779<br />

Smith CR, Barker CM, Barker LF, Jessen-Eller K, Re<strong>in</strong>ish CL, 1999. Polychlor<strong>in</strong>ated<br />

biphenyls (PCBs) selectively disrupt serotogenic cell growth <strong>in</strong> <strong>the</strong> <strong>de</strong>velop<strong>in</strong>g Spisula<br />

embryo. Toxicol Sci 50:54-63<br />

Smith JE, 1968. Toxicity experiments. In: Torrey Canyon pollution and mar<strong>in</strong>e life. Smith JE<br />

(ed), Cambridge Univ. Press, London, pp. 115-149<br />

Sny<strong>de</strong>r MJ, 1998. CYP4 Cytochrome P450 enzymes belong<strong>in</strong>g to <strong>the</strong> CYP4 family from<br />

mar<strong>in</strong>e <strong>in</strong>vertebrates. Biochem Biophys Res Commun 249:187-190.<br />

Sny<strong>de</strong>r MJ, 2000. Cytochrome P450 enzymes <strong>in</strong> aquatic <strong>in</strong>vertebrates: recent advances and<br />

future directions. Aquat Toxicol 48:529-547.<br />

Sny<strong>de</strong>r MJ, Mul<strong>de</strong>r EP, 2001. Environmental endocr<strong>in</strong>e disruption <strong>in</strong> <strong>de</strong>capod crustacean<br />

larvae: hormone titers, cytochrome P450, and stress prote<strong>in</strong> responses to heptachlor exposure.<br />

Aquat Toxicol 55:177-190


241<br />

REFERENCES<br />

Sørensen M, Bjerregaard P, 1991. Interactive accumulation of mercury and selenium <strong>in</strong> <strong>the</strong><br />

sea star <strong>Asterias</strong> <strong>rubens</strong>. Mar Biol 108:269-270.<br />

Spies RB, Rice DWJr, Felton J, 1988. Effects of organic contam<strong>in</strong>ants on reproduction of <strong>the</strong><br />

starry floun<strong>de</strong>r Phatichthys stellatus <strong>in</strong> San Francisco Bay, I. Hepatic contam<strong>in</strong>ation and<br />

mixed-function oxidase (MFO) activity dur<strong>in</strong>g <strong>the</strong> reproductive season. Mar Biol 98:181-189.<br />

Spies RB, Stegeman JJ, H<strong>in</strong>ton DE, Wood<strong>in</strong> B, Smolowitz R, Okihiro M, Shea D, 1996.<br />

Biomarkers of hydrocarbon exposure and sublethal effects <strong>in</strong> embiotocid fishes from a natural<br />

petroleum seep <strong>in</strong> <strong>the</strong> Santa Barbara channel. Aquat Toxicol 34:195-219.<br />

Spromberg JA, John BM, Landis WG, 1998. Metapopulation dynamics: <strong>in</strong>direct effects and<br />

multiple dist<strong>in</strong>ct outcomes <strong>in</strong> ecological risk assessment. Environ Toxicol Chem 17:1640-<br />

1649.<br />

Stagg R, McIntosh A, 1998. Biological effects of contam<strong>in</strong>ants: <strong>de</strong>term<strong>in</strong>ation of CYP1A<strong>de</strong>pen<strong>de</strong>nt<br />

mono-oxygenase activity <strong>in</strong> dab by fluorimetric measurement of EROD activity.<br />

ICES Tech Mar Environ Sc 23: 16pp.<br />

Stebb<strong>in</strong>g ARD, Dethlefsen V, Carr M (eds), 1992. Biological effects of contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong><br />

North <strong>Sea</strong>. Results of <strong>the</strong> ICES/IOC Bremerhaven workshop. Mar Ecol Prog Ser (whole<br />

issue), 361 pp<br />

Stegeman JJ, 1985. Benzo(a)pyrene oxidation and microsomal enzyme activity <strong>in</strong> <strong>the</strong> mussel<br />

(Mytilus edulis) and o<strong>the</strong>r bivalve mollusc species from <strong>the</strong> Western North Atlantic. Mar Biol<br />

89:21-30<br />

Stegeman JJ, 1995. Diversity and regulation of cytochrome P450 <strong>in</strong> aquatic species. In: Ar<strong>in</strong>ç<br />

E, Hodgson E, Schenkman JB (eds): Molecular aspects of oxidative drug metaboliz<strong>in</strong>g<br />

enzymes: <strong>the</strong>ir significance <strong>in</strong> environmental toxicology, chemical carc<strong>in</strong>ogenesis and health.<br />

NATO-ASI series. New-York. Spr<strong>in</strong>ger-Verlag. pp 135-158<br />

Stegeman JJ, Lech JJ, 1991. Cytochrome P450 momooxygenase systems <strong>in</strong> aquatic species:<br />

carc<strong>in</strong>ogen metabolism and biomarkers for carc<strong>in</strong>ogen and pollutant exposure. Environ<br />

Health Perspect 90:101-109.<br />

Stegeman JJ, Brouwer M, Di Giulio RT, Förl<strong>in</strong> L, Fowler BA, San<strong>de</strong>rs BM, Van Veld PA,<br />

1992a. Enzyme and prote<strong>in</strong> syn<strong>the</strong>sis as <strong>in</strong>dicators of contam<strong>in</strong>ant exposure and effect. In:<br />

Hugget RJ, Kimerle RA, Mehrle PM Jr, Bergman HL (eds) Biomarkers - Biochemical,<br />

Physiological and Histological Markers of Anthropogenic Stress. Lewis Publ., Chelsea, MI.<br />

pp. 235-335<br />

Stegeman JJ, Brouwer M, DiGiulio RT, Forl<strong>in</strong> L, Fowler BM, San<strong>de</strong>rs BM, Van Veld PA,<br />

1992b. Molecular responses to environmental contam<strong>in</strong>ation: enzyme and prote<strong>in</strong> systems as<br />

<strong>in</strong>dicators of contam<strong>in</strong>ant exposure and effect. In: Huggett RJ (ed), Biomarkers for chemical<br />

contam<strong>in</strong>ants, CRC Press, pp. 87-206<br />

Stegeman JJ, Hahn ME, 1994. Biochemistry and molecular biology of monooxygenases:<br />

current perspectives on forms, functions, and regulation of cytochrome P450 <strong>in</strong> aquatic<br />

species, <strong>in</strong> Ostran<strong>de</strong>r GK & Mal<strong>in</strong>s D (eds), Aquatic Toxicology: Molecular, biochemical and<br />

cellular perspectives, Lewis Pubs, Boca Raton, FL, pp. 87-95<br />

Stegeman JJ, Schlez<strong>in</strong>ger JJ, Craddock KE, Tillitt DE, 2001. Cytochrome P4501A expression<br />

<strong>in</strong> midwater fishes: potential effects of chemical contam<strong>in</strong>ants <strong>in</strong> remote oceanic zones.<br />

Environ Sci Tech 35:54-62


242<br />

REFERENCES<br />

Strathmann MF, 1987. Reproduction and <strong>de</strong>velopment of mar<strong>in</strong>e <strong>in</strong>vertebrates of <strong>the</strong><br />

Nor<strong>the</strong>rn Pacific Coast. Chapter 26. Phylum Ech<strong>in</strong>o<strong>de</strong>rmata, Class Asteroi<strong>de</strong>a. University of<br />

Wash<strong>in</strong>gton Press, <strong>Sea</strong>ttle and London, pp. 535-555.<br />

Stronkhorst J, Ariese F, van Hattum B, Postma JF, <strong>de</strong> Kluijverc M, <strong>de</strong>n Besten PJ, Bergman<br />

MJN, Daan R, Murk AJ, Vethaak AD, 2003. Environmental impact and recovery at two<br />

dump<strong>in</strong>g sites for dredged material <strong>in</strong> <strong>the</strong> North <strong>Sea</strong>. Environ Pollut 124:17-31<br />

Sturesson U, 1976 Lead enrichment <strong>in</strong> shells of Mytilus edulis. AMBIO 5:253-256<br />

Sue<strong>de</strong>l BC, Dillon TM, Benson WH, 1997. Subchronic effects of five di-ortho PCB<br />

congeners on survival growth and reproduction <strong>in</strong> <strong>the</strong> fa<strong>the</strong>ad m<strong>in</strong>now Pimephales promelas.<br />

Environ Toxicol Chem 16(7):1526–1532<br />

Sulaiman N, George S, Burke MD, 1991. Assessment of sublethal pollutant impact on<br />

floun<strong>de</strong>rs <strong>in</strong> an <strong>in</strong>dustrialised estuary us<strong>in</strong>g hepatic biochemical <strong>in</strong>dices. Mar Ecol Prog Ser<br />

68: 207-212.<br />

Suter GW, 1993. Ecological risk assessment. Boca Raton, FL: Lewis Publishers,<br />

Svensson BG, Nilsson A, Hansson M, Rappe C, Akesson B, 1991. Exposure to diox<strong>in</strong>s and<br />

dibenzofurans through <strong>the</strong> consumption of fish. New Engl J Med 324: 8–12<br />

Tanabe S, 1988. PCB problems <strong>in</strong> <strong>the</strong> future : foresight from current knowledge. Environ Poll<br />

50:5-28.<br />

Tanabe S, Tanaka H, Tatsukawa R, 1984. Polychlorobiphenyls, DDT, and<br />

hexachlorocyclohexane isomers <strong>in</strong> <strong>the</strong> western North Pacific ecosystem. Arch Environ<br />

Contam Toxicol 13:731-738<br />

Tanabe S, Tatsukawa R, 1992. Chemical mo<strong>de</strong>rnization and vulnerability of cetaceans:<br />

<strong>in</strong>creas<strong>in</strong>g toxic threat of organochlor<strong>in</strong>e contam<strong>in</strong>ants. In: Walker CH, Liv<strong>in</strong>gstone DR,<br />

editors. Persistent pollutants <strong>in</strong> mar<strong>in</strong>e ecosystems. Pergamon pp. 161-177.<br />

Taylor MG, Simkiss K, 1984. Inorganic <strong>de</strong>posits <strong>in</strong> <strong>in</strong>vertebrates tissues. Environ Chem<br />

3:102-138<br />

Telli-Karakoç F, Tolun L, Henkelmann B, Klimm C, Okay O, Schramm KW, 2002.<br />

Polycyclic hydrocarbons (PAHs) and polychlor<strong>in</strong>ated biphenyls (PCBs) distributions <strong>in</strong> <strong>the</strong><br />

Bay of Marmara sea: Izmit Bay. Environ Pollut 119:383-397<br />

Temara A, Le<strong>de</strong>nt G, Warnau M, Paucot M, Jangoux M, Dubois Ph, 1996. Experimental<br />

cadmium contam<strong>in</strong>ation of <strong>Asterias</strong> <strong>rubens</strong> (Ech<strong>in</strong>o<strong>de</strong>rmata). Mar Ecol Prog Ser 140:83-90.<br />

Temara A, Warnau M, Jangoux M, Dubois Ph, 1997a. Factors <strong>in</strong>fluenc<strong>in</strong>g <strong>the</strong> concentrations<br />

of heavy metals <strong>in</strong> <strong>the</strong> asteroid <strong>Asterias</strong> <strong>rubens</strong> L. (Ech<strong>in</strong>o<strong>de</strong>rmata). Sci Tot Environ 203:51-<br />

63<br />

Temara A, Nguyen, QA, Hogarth AN, Warnau M, Jangoux M, Dubois Ph, 1997b. High<br />

sensitivity of skeletogenesis to Pb <strong>in</strong> <strong>the</strong> asteroid <strong>Asterias</strong> <strong>rubens</strong> (Ech<strong>in</strong>o<strong>de</strong>rmata). Aquat<br />

Toxicol 40:1-10.<br />

Temara A, Aboutboul P, Warnau M, Jangoux M, Dubois Ph, 1998a. Uptake and fate of lead<br />

<strong>in</strong> <strong>the</strong> common asteroid <strong>Asterias</strong> <strong>rubens</strong> (Ech<strong>in</strong>o<strong>de</strong>rmata). Water Ail- Soil Poll 102:201-208<br />

Temara A, Skei JM, Gillan D, Warnau M, Jangoux M, Dubois Ph, 1998b. Validation of <strong>the</strong><br />

asteroid <strong>Asterias</strong> <strong>rubens</strong> (Ech<strong>in</strong>o<strong>de</strong>rmata) as a bio<strong>in</strong>dicator of spatial and temporal trends of<br />

Pb, Cd, and Zn contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong> field. Mar Environ Res 45, 341-356


243<br />

REFERENCES<br />

Temara A, Warnau M, Dubois Ph, 2002. Heavy metals <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong><br />

(Ech<strong>in</strong>o<strong>de</strong>rmata): basis for <strong>the</strong> construction of an efficient biomonitor<strong>in</strong>g program. In:<br />

Fernan<strong>de</strong>z JM, Fichez R (eds) Environmental changes and Radioactive tracers. IRD Editions,<br />

Paris, pp. 71-91<br />

Thurmond TS, Silverstone AE, Baggs RB, Quimby FW, Staples JE, Gasiewicz TA, 1999. A<br />

chimeric aryl hydrocarbon receptor knockout mouse mo<strong>de</strong>l <strong>in</strong>dicates that aryl hydrocarbon<br />

receptor activation <strong>in</strong> hematopoietic cells contributes to <strong>the</strong> hepatic lesions <strong>in</strong>duced by<br />

2,3,7,8-tetrachlorodibenzo-p-diox<strong>in</strong>, Toxicol Appl Pharmacol 158:33-40.<br />

Thurmond TS, Staples JE, Silverstone AE, Gasiewicz TA, 2000. The aryl hydrocarbon<br />

receptor has a role <strong>in</strong> <strong>the</strong> <strong>in</strong> vivo maturation of mur<strong>in</strong>e bone marrow B lymphocytes and <strong>the</strong>ir<br />

response to 2,3,7,8-tetrachlorodibenzo-p-diox<strong>in</strong>. Toxicol Appl Pharmacol 165:227-236.<br />

Tijet NC, Feyereisen HR, 2001. The cytochrome P450 gene superfamily <strong>in</strong> Drosophila<br />

melanogaster: annotation, <strong>in</strong>tron-exon organization and phylogeny, Gene 262:189-198.<br />

Torreilles J, Guér<strong>in</strong> MC, Roch P, 1999. Modified Alsever’s solution is not a good medium for<br />

reactive oxygen metabolite study <strong>in</strong> bivalves. Fish Shellfish Immunol 8:65-69.<br />

Triebskorn R, Köhler HR, Honnen W, Schramm M, Adams SM, Müller EF, 1997. Induction<br />

of heat shock prote<strong>in</strong>s, changes <strong>in</strong> liver ultrastructure, and alterations of fish behaviour: are<br />

<strong>the</strong>se biomarkers related and are <strong>the</strong>y useful to reflect <strong>the</strong> state of pollution <strong>in</strong> <strong>the</strong> field. J<br />

Aquat Ecosyst Stress Rec 6:57-73.<br />

Trieff NM, Cipollaro M, Corsale, G, Esposito A, Ragucci E, Giordano GG, Ramanujam SVN,<br />

Liv<strong>in</strong>gstone DR, Pagano G, 1988, Aroclor 1254 toxicity <strong>in</strong> sea urch<strong>in</strong> embryos and gametes.<br />

Exp Oncol (Life Science Adv) 7: 57-64<br />

Tryphonas H, 1998. The impact of PCBS and diox<strong>in</strong>s on children’s health: immunological<br />

consi<strong>de</strong>rations. Can J Public Health 89:S49-S52.<br />

Ueda T, Nakahara M, Ishii T, Suzuki Y, Suzuki H, 1979. Amounts of trace elements <strong>in</strong><br />

mar<strong>in</strong>e cephalopods. J Radiat Res 20:338-342<br />

Ueno D, Inoue S, Ikeda K, Tanaka H, Yamada H, Tanabe S, 2003. Specific accumulation of<br />

polychlor<strong>in</strong>ated biphenyls and organochlor<strong>in</strong>e pestici<strong>de</strong>s <strong>in</strong> Japanese common squid as a<br />

bio<strong>in</strong>dicator. Environmental Pollution 125:227-235<br />

UN-ECE, 1998. Draft Protocol to <strong>the</strong> Convention on Long-range Air Pollution on Persistent<br />

Organic Pollutants, (EB.AIR:1998:2), Convention on Long-range Transboundary Air<br />

Pollution, United Nations Economic and Social Council, Economic Commission for Europe,<br />

UNEP/IOC/IAEA/FAO, 1990. Reference Method No 57. Contam<strong>in</strong>ant monitor<strong>in</strong>g programs<br />

us<strong>in</strong>g mar<strong>in</strong>e organisms: Quality assurance and good laboratory practice. UNEP,<br />

UNEP/FAO/IAEA/IOC, 1991. Reference Method No 12 Rev.2. Sampl<strong>in</strong>g of selected mar<strong>in</strong>e<br />

organisms and sample preparation for <strong>the</strong> analysis of chlor<strong>in</strong>ated hydrocarbons. UNEP,<br />

UNEP/FAO/IOC/IAEA, 1993. Reference Method No 6. Gui<strong>de</strong>l<strong>in</strong>es for monitor<strong>in</strong>g chemical<br />

contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong> sea us<strong>in</strong>g mar<strong>in</strong>e organisms. UNEP,<br />

UNEP, 2001. The Stockholm Convention on Persistent Organic Pollutants. United Nations<br />

Environmental Programme: http://www.chem.unep.ch/sc/<strong>de</strong>fault.htm<br />

US EPA (Environment Protection Agency), 2000a. National Center for Environmental<br />

Assessment. Draft Diox<strong>in</strong> Report: www.epa.gov/ncea/pdfs/diox<strong>in</strong>/dioxreass.htm.


244<br />

REFERENCES<br />

US EPA, (Environment Protection Agency), 2000b. Method 4425: screen<strong>in</strong>g extracts of<br />

environmental samples for planar organic compounds (PAHs, PCBs, PCDD/Fs) by a reporter<br />

gene on a human cell l<strong>in</strong>e. EPA Office of Solid Waste, SW 846 Methods, Update IVB,<br />

Vallack HW, Bakker DJ, Brandt I, Brorstrom-Lun<strong>de</strong>n E, Brouwer A, Bull KR, Gough C,<br />

Guardans R, Holoubek I, Jansson B, Koch R, Kuylenstierna J, Lecloux A, Mackay D,<br />

McCutcheon P, Mocarelli P, Taalman RDF, 1998. Controll<strong>in</strong>g persistent organic pollutants —<br />

what next? Environ Toxicol Pharmacol 6:143-175.<br />

Valsaraj KT, 1994. Hydrophobic compounds <strong>in</strong> <strong>the</strong> environment: adsorption equilibrium at<br />

<strong>the</strong> air–water <strong>in</strong>terface. Water Res 28:819-830<br />

Van Alphen JSLJ, 1990. A mud balance for Belgian-Dutch coastal waters between 1969 and<br />

1986. Neth J <strong>Sea</strong> Res 25:19-30.<br />

Van <strong>de</strong>n Berg M, Birnbaum L, Bosveld ATC, Brunström B, Cook P, Feeley M, Giesy JP,<br />

Hanberg A, Hasegawa R, Kennedy SW, Kubiak T, Larsen JC, Van Leeuwen FXR, Djien AK<br />

D, Nolt C, Peterson RE, Poell<strong>in</strong>ger L, Safe S, Schrenk D, Tillitt D, Tyskl<strong>in</strong>d M, Younes M,<br />

Waern F, Zacharewski T. 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs<br />

for humans and wildlife. Environ Health Persp 106 (12): 775-792.<br />

Van <strong>de</strong>r Oost R, Opperhuizen A, Satumalay K, Heida H, Vermeulen NPE, 1996.<br />

Biomonitor<strong>in</strong>g aquatic pollution with feral eel (Anguilla anguilla) I. Bioaccumulation: biotasediment<br />

ratios of PCBs, OCPs, PCDDs and PCDFs. Aquat Toxicol 35:21-46.<br />

Van <strong>de</strong>r Oost R, Beyer J, Vermeulen NPE, 2003, Fish bioaccumulation and biomarkers <strong>in</strong><br />

environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57-49<br />

Van<strong>de</strong>n Bossche JP, Jangoux M, 1976. Epi<strong>the</strong>lial orig<strong>in</strong> of starfish coelomocytes. Nature<br />

261:227-228.<br />

Verlaan PAJ, Donze M, Kuik P, 1998. Mar<strong>in</strong>e vs. fluvial suspen<strong>de</strong>d matter <strong>in</strong> <strong>the</strong> Scheldt<br />

estuary. Est Coast Shelf Sci 46:873-883<br />

Vethaak AD, Rhe<strong>in</strong>allt T, 1992. Fish disease as a monitor for mar<strong>in</strong>e pollution: <strong>the</strong> case of <strong>the</strong><br />

North <strong>Sea</strong>. Rev Fish Biol Fish 2:1-32.<br />

Viarengo A, 1985. Biochemical effects of trace metals. Mar Pollut Bull 16:153-158<br />

Vigano L, Arillo A, Bagnasco M, Bennicelli C, Melodia F, 1993. Xenobiotic metaboliz<strong>in</strong>g<br />

enzymes <strong>in</strong> un<strong>in</strong>duced and <strong>in</strong>duced ra<strong>in</strong>bow trout (Oncorhyncus mykiss): efffects of diets and<br />

food <strong>de</strong>privation. Comp Biochem Physiol 104(C): 51-55<br />

Ville P, Roch P, Cooper EL, Masson P, Narbonne JF, 1995. PCBs <strong>in</strong>crease molecular-related<br />

activities (Lysozyme, antibacterial, hemolysis, proteases) but <strong>in</strong>hibit macrophage-related<br />

functions (phagocytosis, wound heal<strong>in</strong>g) <strong>in</strong> earthworms. J Invert Pathol 65:217-224.<br />

Voie OA, Fonnum F. 2000. effects of polychlorobiphenyls on production of reactive oxygen<br />

species (ROS) <strong>in</strong> rat synaptosomes. Arch Toxicol 73:588-593<br />

Voie OA, Wiik P, Fonnum F, 1998. Ortho-substituted polychlor<strong>in</strong>ated biphenyls activate<br />

respiratory burst measured as lum<strong>in</strong>ol-amplified chemolum<strong>in</strong>escence <strong>in</strong> human granulocytes.<br />

Toxicol. Appl. Pharmacol. 150, 369–375.<br />

Voldner EC, Li YF, 1995. Global usage of selected persistent organochlor<strong>in</strong>es. Sci Total<br />

Environ 160/161:201-210.<br />

Von Boletzky S, 1983. Sepia offic<strong>in</strong>alis. In : Boyle PR (ed) Cephalopod Life Cycles, Vol. 1.<br />

Species accounts. Aca<strong>de</strong>mic Press, London, pp. 31-52


245<br />

REFERENCES<br />

Voogt PA, Van Ieperen S, Van Rooyen BJCB, Wynne HJ, Janssen M, 1991. Effect of<br />

photoperiod on steroid metabolism <strong>in</strong> <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong> L. Comp Biochem Physiol<br />

100(B):37-43<br />

Vor<strong>de</strong>rstrasse BA, Steppan LB, Silverstone AE, Kerkvliet NI, 2001. Aryl hydrocarbon<br />

receptor<strong>de</strong>ficient mice generate normal immune responses to mo<strong>de</strong>l antigens and are resistant<br />

to TCDD-<strong>in</strong>duced immune suppression. Toxicol Appl Pharmacol 171:157-164.<br />

Vos JG, 1980. Immunotoxicity assessement: screen<strong>in</strong>g and function studies. Arch Toxicol<br />

Suppl 4:95-108<br />

Vos JG, De Heer C, Van Loveren H, 1998. Immunotoxic effects of TCDD and toxic<br />

equivalency factors. Teratogenesis, Carc<strong>in</strong>ogenesis, and Mutagenesis 17:275–284.<br />

Walker MK, Peterson RE, 1991. Potencies of polychlor<strong>in</strong>ated dibenzo-p-diox<strong>in</strong>,<br />

dibenzofuran, and biphenyl congeners, relative to 2,3,7,8-tetrachlorodibenzo-p-diox<strong>in</strong>, for<br />

produc<strong>in</strong>g early life stage mortality <strong>in</strong> ra<strong>in</strong>bow trout (Oncorhynchus mykiss). Aquat Toxicol<br />

21:219-238<br />

Walker CH, Liv<strong>in</strong>gstone DR (eds), 1992. Persistent pollutants <strong>in</strong> mar<strong>in</strong>e ecosystems.<br />

Pergamon, pp. 161-177.<br />

Walker CH, Hopk<strong>in</strong> SP, Sibly RM, Peakall DB, 1996. Pr<strong>in</strong>ciples of ecotoxicology. Taylor &<br />

Francis, London, 321 pp.<br />

Walker MK, Peterson RE, 1994. Aquatic toxicity of diox<strong>in</strong>s and related chemicals. In:<br />

Schecter A (ed), Diox<strong>in</strong>s and health, Plenum Press, NY pp. 347-387<br />

Wallace WG, Lopez GR, 1997. Bioavailability of biologically sequestered cadmium and <strong>the</strong><br />

implications of metal <strong>de</strong>toxification. Mar Ecol Prog Ser 147:149-157<br />

Wang WX, Fisher NS, Luoma SN, 1996. K<strong>in</strong>etic <strong>de</strong>term<strong>in</strong>ation of trace element<br />

bioaccumulation <strong>in</strong> <strong>the</strong> mussel Mytilus edulis. Mar Ecol Prog Ser 140:91-113<br />

Wania F, Daly GL, 2002. Estimat<strong>in</strong>g <strong>the</strong> contribution of <strong>de</strong>gradation <strong>in</strong> air and <strong>de</strong>position to<br />

<strong>the</strong> <strong>de</strong>ep sea to <strong>the</strong> global loss of PCBs. Atmospheric Environment 36:5581–5593<br />

Wania F, Mackay D, 1996. Track<strong>in</strong>g <strong>the</strong> distribution of persistent organic pollutants. Environ<br />

Sci Technol 30(9):390-396<br />

Warnau M, Pagano G, 1995a. Developmental toxicity of PbCl 2 <strong>in</strong> <strong>the</strong> ech<strong>in</strong>oid Paracentrotus<br />

lividus (Ech<strong>in</strong>o<strong>de</strong>rmata) Bull Environ Contam Toxicol 53:434-441<br />

Warnau M, Le<strong>de</strong>nt G, Temara A Jangoux M, Dubois Ph, 1995b. Experimental cadmium<br />

contam<strong>in</strong>ation of <strong>the</strong> ech<strong>in</strong>oid Paracentrotus lividus: <strong>in</strong>fluence of exposure mo<strong>de</strong> and<br />

distribution of <strong>the</strong> metal <strong>in</strong> <strong>the</strong> organism. Mar Ecol Prog Ser 116: 117-124<br />

Warnau M, Le<strong>de</strong>nt G, Temara A, Alva V, Jangoux M, Dubois Ph, 1995c. Allometry of heavy<br />

metal bioconcentration <strong>in</strong> <strong>the</strong> ech<strong>in</strong>oid Paracentrotus lividus (Ech<strong>in</strong>o<strong>de</strong>rmata), Arch Environ<br />

Contam Toxicol 29:393-399<br />

Warnau M, Iaccar<strong>in</strong>o M, De Biase A, Temara A, Jangoux M, Dubois Ph, Pagano G, 1996a.<br />

Spermiotoxicity and embryotoxicity of heavy metals <strong>in</strong> <strong>the</strong> ech<strong>in</strong>oid Paracentrotus lividus,<br />

Environ Toxicol Chem 15:1931-1936<br />

Warnau M, Teyssié JL, Fowler SW, 1996b. Biok<strong>in</strong>etics of selected heavy metals and<br />

radionucli<strong>de</strong>s <strong>in</strong> <strong>the</strong> common Mediterranean ech<strong>in</strong>oid Paracentrotus lividus: seawater and<br />

food exposures. Mar Ecol Prog Ser 141:83-94


246<br />

REFERENCES<br />

Warnau M, Biondo R, Temara A, Bouquegneau JM, Jangoux M, Dubois Ph, 1998.<br />

Distribution of heavy metals <strong>in</strong> <strong>the</strong> ech<strong>in</strong>oid Paracentrotus lividus from <strong>the</strong> Mediterranean<br />

Posidonia oceanica ecosystem: seasonnal and geographical variations. J <strong>Sea</strong> Res 39:267-280<br />

Warnau M, Fowler SW, Teyssié JL, 1999. Biok<strong>in</strong>etics of radiocobalt <strong>in</strong> <strong>the</strong> asteroid <strong>Asterias</strong><br />

<strong>rubens</strong>: seawater and food exposures. Mar Pollut Bull 39: 159-164<br />

Warnau M, Jangoux M, 1999. In vitro and <strong>in</strong> vivo <strong>in</strong>vestigations of <strong>the</strong> excretory function of<br />

<strong>the</strong> rectal caeca <strong>in</strong> <strong>the</strong> asteroid <strong>Asterias</strong> <strong>rubens</strong> (Ech<strong>in</strong>o<strong>de</strong>rmata). Comp Biochem Physiol<br />

123(A):263-267<br />

Waxman DJ, 1999. P450 gene <strong>in</strong>duction by structurally diverse xenochemicals: central role of<br />

nuclear receptors CAR, PXR, and PPAR. Arch Biochem Biophys 369:11–23.<br />

Weeks BA, An<strong>de</strong>rson DP, DuFour AP, Fairbro<strong>the</strong>r A, Goven AJ, Lahvis GP, Peters G, 1992.<br />

Immunological biomarkers to assess environmental stress. In: Huggett RJ, Kimerle RA,<br />

Mehrle PM, Bergman HL (eds). Biomarkers: biochemical, physiological and histological<br />

markers of anthropogenic stress. Lewis publishers, Boca Raton, London, Tokyo, pp. 211-234<br />

Weis P, Weis JS, 1991. The <strong>de</strong>velopmental toxicity of metals and methalloids <strong>in</strong> fish. In:<br />

Newman MC, McIntosh AW (eds), Metal Ecotoxicology: Concepts and Applications. Lewis<br />

Publ., Chelsea, MI, pp. 145-169<br />

Weisberg S, Francisco C, Hallock D, eds, 1996. Bioaccumulation and toxicity of<br />

polychlor<strong>in</strong>ted biphenyl <strong>in</strong> sea urch<strong>in</strong>s exposed to contam<strong>in</strong>ated sediments, Sou<strong>the</strong>rn<br />

California Coastal Water Research Project Annual Report 1996, Westm<strong>in</strong>ster, CA, USA,<br />

Weisberg S, Francisco C, Hallock D, eds, 1997, Relative toxicity of PCB congeners to sea<br />

urch<strong>in</strong> embryos, Sou<strong>the</strong>rn California Coastal Water Research Project Annual Report 1996,<br />

Westm<strong>in</strong>ster, CA, USA,<br />

Weisbrod A, Shea D, Leblanc G, Moore M, Stegeman JJ, 2000. Organochlor<strong>in</strong>e<br />

bioaccumulation and risk for whales <strong>in</strong> a Northwest Atlantic food web. Mar Environ Res<br />

50:431-441<br />

Weisbrod A, Shea D, Moore M, Stegeman JJ, 2001. Species, tissue and gen<strong>de</strong>r-related<br />

organochlor<strong>in</strong>e bioaccumulation <strong>in</strong> white-si<strong>de</strong>d dolph<strong>in</strong>s, pilot whales and <strong>the</strong>ir common prey<br />

<strong>in</strong> <strong>the</strong> Northwest Atlantic. Mar Environ Rese 51:29-50<br />

Weisglas-Kuperus N, Patand<strong>in</strong> S, Berbers GA, Sas TC, Mul<strong>de</strong>r PG, Sauer PJ, Hooijkass H,<br />

2000. Immunologic effects of background exposure to polychlor<strong>in</strong>ated biphenyls and diox<strong>in</strong>s<br />

<strong>in</strong> Dutch preschool children. Environ Health Persp 108:1203–1207<br />

Wenn<strong>in</strong>g RJ, Di Giulio ET, Gallagher FP, 1988. Oxidant-mediated biochemical effects of<br />

paraquat <strong>in</strong> <strong>the</strong> ribbed mussel, Geukensia <strong>de</strong>missa. Aquat Toxicol 12:157-170.<br />

West CW, GT Ankley, JW Nichols, GE Elonen and DE Nessa. 1997. Toxicity and<br />

bioaccumulation of 2,3,7,8-tetrachlorodibenzo-p-diox<strong>in</strong> <strong>in</strong> long term tests with <strong>the</strong> freshwater<br />

benthic <strong>in</strong>vertebrates Chironomus tentans and Lumbriculus variegatus. Environ Toxicol<br />

Chem 16:1287-1294<br />

Wester PW, Vethaak D, van Muisw<strong>in</strong>kel WB, 1994. Fish as biomarkers <strong>in</strong><br />

immunotoxicology. Toxicology 86:213-232.<br />

Whicker FW, Schultz V, 1982. Radioecology: nuclear energy and <strong>the</strong> environment, Vol. 2.<br />

CRC Press, Boca Raton FL,<br />

White E, Prives C, 1999. DNA damage enables p73. Nature 399:734-737


Whitlock JP, 1993. Mechanistic aspects of diox<strong>in</strong> action. Chem Res Toxicol 6:754-760<br />

247<br />

REFERENCES<br />

Whitlock JP, 1999. Induction of cytochrome P4501A1. Annu Rev Pharmacol Toxicol<br />

39:103-125.<br />

WHO International Programme on Chemical Safety (IPCS), 1993. Biomarkers and risk<br />

assessment: concepts and pr<strong>in</strong>ciples. Environmental Health Criteria 155, World Health<br />

Organization, Geneva.<br />

WHO, 1997. Derivation of toxic equivalency factors (TEFs) for diox<strong>in</strong>-like compounds <strong>in</strong><br />

humans and wildlife. Organohalogen Compd 34:237–40.<br />

WHO, 1999. Diox<strong>in</strong>s and <strong>the</strong>ir effects on human health. Fact sheet n°225 (www.who.<strong>in</strong>t/<strong>in</strong>ffs/en/fact225.html)<br />

WHO/EURO, 1991. Consultation on tolerable daily <strong>in</strong>take from food of PCDDs and PCDFs:<br />

Summary report. Bilthoven, The Ne<strong>the</strong>rlands, 4–7 December 1990. EUR/IPC/PCS 030(5).<br />

World Health Organization, Regional Office for Europe, Copenhagen,<br />

Widdows J, Donk<strong>in</strong> P, 1992. Mussels and environmental contam<strong>in</strong>ation: bioaccumulation<br />

and physiological aspects. In: Gosl<strong>in</strong>g E (ed), The mussel Mytilus: Ecology, physiology,<br />

genetics and culture, Developments <strong>in</strong> aquacuolture and fisheries science, Vol 25, Elsevier<br />

science publishers, Amsterdam, The Ne<strong>the</strong>rlands,<br />

Wiesner L, Powell WH, Karchner SI, Franks DG, Cooper EL, Kauschke E, Hahn ME, 2001.<br />

cDNA clon<strong>in</strong>g of aryl hydrocarbon receptor (AhR) homologues <strong>in</strong> zebra mussel (Dreissena<br />

polymorpha) and blue mussel (Mytilus edulis), <strong>in</strong>: Pollutant Responses <strong>in</strong> Mar<strong>in</strong>e Organisms<br />

(PRIMO 11), Plymouth, England,<br />

Wilbr<strong>in</strong>k M, Treskes M, De Vlieger TA, Vermenlen NPE, 1991. Comparative toxicok<strong>in</strong>etics<br />

of 2,2’- and 4,4’-dichlorobiphenyls <strong>in</strong> <strong>the</strong> pond snail Lymnea stagnalis (L.). Arch Environ<br />

Contam Toxicol 19:565-571<br />

Wilk<strong>in</strong>son L, 1988. Systat: <strong>the</strong> system to statistics. Systat Inc, Evanston, IL,<br />

W<strong>in</strong>dal I, 2001. Développement <strong>de</strong> métho<strong>de</strong>s rapi<strong>de</strong>s d’analyse <strong>de</strong>s diox<strong>in</strong>es dans les<br />

poussières d’<strong>in</strong>c<strong>in</strong>érateurs et <strong>de</strong>struction <strong>de</strong>s diox<strong>in</strong>es par eaux subcritique. Ph.D. Thesis,<br />

University of Liège, 135 pp.<br />

W<strong>in</strong>ston GW, Di Giulio RT, 1991. Prooxidant and antioxidant mechanisms <strong>in</strong> aquatic<br />

organisms. Aquat Toxicol 19:137-161<br />

Wood L, O’Keefe P, Bush B, 1997. Similarity analysis of PAH and PCB bioaccumulation<br />

patterns <strong>in</strong> sediment-exposed Chironomus tentans larvae. Environ Toxicol Chem 16:283-292<br />

Xhoffer C, Wouters L, Grieken R, 1992. Characterization of <strong>in</strong>dividual particles <strong>in</strong> <strong>the</strong> North<br />

<strong>Sea</strong> surface microlayer and un<strong>de</strong>rly<strong>in</strong>g seawater: comparison with atmospheric particles.<br />

Environ Sci Technol 26:2151–2162<br />

Yamada H, Takayanagi K, Tateishi M, Tagata H, Ikeda K, 1997. Organot<strong>in</strong> compounds and<br />

polychlor<strong>in</strong>ated biphenyls of livers <strong>in</strong> squid collected from coastal waters and open ocean.<br />

Environ Pollut 96(2):217-226<br />

Yasuda M, Katsuki M, Fujii-Kuriyama Y, 1997. Loss of teratogenic response to 2,3,7,8tetrachlorodibenzo-p-diox<strong>in</strong><br />

(TCDD) <strong>in</strong> mice lack<strong>in</strong>g <strong>the</strong> Ah (diox<strong>in</strong>) receptor, Genes Cells<br />

2:645–654.


248<br />

REFERENCES<br />

Yawetz A, Manelis R, Fishelson L, 1992. The effects of Aroclor 1254 and petrochemiocal<br />

pollutants on cytochrome p450 from <strong>the</strong> digestive gland microsomes of four species of<br />

Mediterranean molluscs. Comp Biochem Physiol 103(C):607-614<br />

Zabel AW, Cook PM, Peterson RE, 1995. Toxic equivalency factors of PCDD, PCDF, and<br />

PCB congeners based on early life stage mortality <strong>in</strong> raibow trout (Oncorhynchus mykiss).<br />

Aquat Toxicol 31:315-328<br />

Zahner H, Fernan<strong>de</strong>z-Salgero PM, Letterio J, Sheikh MS, Fornace AJ Jr, Roberts AB,<br />

Gonzalez FJ, 1998. The <strong>in</strong>volvement of aryl hydrocarbon receptor <strong>in</strong> <strong>the</strong> activation of 350<br />

transform<strong>in</strong>g growth factor-ß and apoptosis. Mol Pharmacol 54:313-321<br />

Zar JH, 1996. Biostatistical analysis. Simon & Schuster/A Viacom company. Upper Saddle<br />

River. NJ 07458. 3rd edition, 850 pp.


VII. ANNEX STUDIES<br />

249


250


Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> sea urch<strong>in</strong> Paracentrotus lividus<br />

VII.1 Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> sea urch<strong>in</strong> Paracentrotus lividus:<br />

seawater and food exposures to a 14 C-radiolabelled congener (PCB 153).<br />

Environmental Pollution (<strong>in</strong> press)<br />

Danis B a , Cotret O b , Teyssié JL b , Bustamante P c , Fowler SW b & Warnau M b<br />

a. Laboratoire <strong>de</strong> Biologie Mar<strong>in</strong>e, <strong>Université</strong> <strong>Libre</strong> <strong>de</strong> <strong>Bruxelles</strong>, Belgium<br />

b. International Atomic Energy Agency, Mar<strong>in</strong>e Environmental Laboratory, Monaco<br />

c. Laboratoire <strong>de</strong> Biologie et d'Environnement Mar<strong>in</strong>s, <strong>Université</strong> <strong>de</strong> La Rochelle, France<br />

251


ABSTRACT<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> sea urch<strong>in</strong> Paracentrotus lividus<br />

Adult Paracentrotus lividus were exposed to a 14 C-labelled PCB congener (PCB 153) us<strong>in</strong>g<br />

two different exposure mo<strong>de</strong>s: (1) <strong>the</strong> surround<strong>in</strong>g seawater and (2) <strong>the</strong> food (viz. <strong>the</strong><br />

phanerogam Posidonia oceanica and <strong>the</strong> brown alga Taonia atomaria). Uptake k<strong>in</strong>etics from<br />

water and loss k<strong>in</strong>etics after s<strong>in</strong>gle feed<strong>in</strong>g were followed <strong>in</strong> four body compartments of <strong>the</strong><br />

sea urch<strong>in</strong>s (body wall, sp<strong>in</strong>es, gut and gonads). Results <strong>in</strong>dicate that PCB bioaccumulation <strong>in</strong><br />

P. lividus varies from one body compartment to ano<strong>the</strong>r, with <strong>the</strong> exposure mo<strong>de</strong> and <strong>the</strong><br />

nature of <strong>the</strong> food. The ech<strong>in</strong>oids accumulate PCB 153 more efficiently when exposed via<br />

water than via <strong>the</strong> food (<strong>the</strong> transfer efficiency is higher by one or<strong>de</strong>r of magnitu<strong>de</strong>). Target<br />

body compartments of PCB 153 were found to be body wall and sp<strong>in</strong>es when <strong>in</strong>dividuals<br />

were exposed via water, and gut when <strong>the</strong>y were exposed via food. It is conclu<strong>de</strong>d that P.<br />

lividus is an efficient bioaccumulator of PCB and that it could be consi<strong>de</strong>red as an <strong>in</strong>terest<strong>in</strong>g<br />

<strong>in</strong>dicator for monitor<strong>in</strong>g PCB contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e environment.<br />

KEYWORDS<br />

PCB; bioaccumulation; seawater; food; ech<strong>in</strong>o<strong>de</strong>rm; Paracentrotus lividus<br />

252


INTRODUCTION<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> sea urch<strong>in</strong> Paracentrotus lividus<br />

Polychlor<strong>in</strong>ated biphenyls (PCBs) are hydrophobic contam<strong>in</strong>ants that have been shown to<br />

cause various adverse effects on a wi<strong>de</strong> variety of liv<strong>in</strong>g species (see e.g. Hard<strong>in</strong>g & Addison<br />

1986). Because of <strong>the</strong>ir toxic potential, <strong>the</strong>ir production and use have been strictly regulated<br />

and <strong>the</strong>n banned <strong>in</strong> many countries s<strong>in</strong>ce <strong>the</strong> mid-seventies (Metcalfe 1994). However, due to<br />

<strong>the</strong>ir extreme resistance to physicochemical and biological <strong>de</strong>gradation, PCBs have become<br />

wi<strong>de</strong>ly spread <strong>in</strong> <strong>the</strong> environment, and particularly <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e environment.<br />

Information on PCB bioaccumulation <strong>in</strong> mar<strong>in</strong>e benthic organisms is scarce and is generally<br />

limited to experiments us<strong>in</strong>g laboratory-contam<strong>in</strong>ated sediments as a source of contam<strong>in</strong>ation<br />

(Meador et al. 1995, Weisberg et al. 1996, Boese et al. 1997). In addition, few studies have<br />

taken <strong>in</strong>to account essential species, upon which <strong>de</strong>pends <strong>the</strong> ecosystem structure and/or<br />

functionn<strong>in</strong>g (Fowler & Oregioni 1976, Phillips 1976).<br />

The ech<strong>in</strong>oid Paracentrotus lividus qualifies as an excellent bio<strong>in</strong>dicator species of PCB<br />

contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong> Mediterranean sea. It is <strong>in</strong><strong>de</strong>ed a wi<strong>de</strong>ly distributed, se<strong>de</strong>ntary and<br />

abundant species that plays key roles <strong>in</strong> various Mediterranean ecosystems (Hayward &<br />

Ryland 1990), <strong>in</strong>clud<strong>in</strong>g seagrass meadows where usual <strong>in</strong>dicators such as mussels are poorly<br />

represented. Its value as bio<strong>in</strong>dicator species for metal contam<strong>in</strong>ation is well documented by<br />

numerous laboratory and field studies (e.g. Warnau et al. 1995b,c, 1996a,b, 1998). Several<br />

studies have <strong>in</strong>vestigated <strong>the</strong> toxicological effects of PCBs on sea urch<strong>in</strong> early <strong>de</strong>velopment<br />

(e.g. Trieff et al. 1988, Kobayashi 1995, Weisberg et al. 1997, Schweitzer et al. 1997, 2000)<br />

or immune system (Coteur et al. 2001), but virtually noth<strong>in</strong>g is known about PCB<br />

bioaccumulation k<strong>in</strong>etics <strong>in</strong> ech<strong>in</strong>o<strong>de</strong>rms <strong>in</strong> general and <strong>in</strong> P. lividus <strong>in</strong> particular.<br />

The aim of this study was to fur<strong>the</strong>r assess <strong>the</strong> value of P. lividus as an <strong>in</strong>dicator species of<br />

environmental PCB contam<strong>in</strong>ation. Therefore, PCB bioaccumulation was <strong>in</strong>vestigated <strong>in</strong> P.<br />

lividus exposed through its two ma<strong>in</strong> contam<strong>in</strong>ation pathways: seawater and food.<br />

Congener IUPAC#153 (2,2’,4,4’,5,5’ hexachlorobiphenyl) was selected as representative of<br />

PCBs for this study: it is <strong>the</strong> most abundant congener <strong>in</strong> mar<strong>in</strong>e biota (Stebb<strong>in</strong>g et al. 1992)<br />

and has been shown to be an excellent <strong>in</strong>dicator congener <strong>in</strong> PCB monitor<strong>in</strong>g programmes<br />

(e.g., Metcalfe 1994, Atuma et al. 1996). F<strong>in</strong>ally, <strong>in</strong> or<strong>de</strong>r to study environmentally-realistic<br />

simulated contam<strong>in</strong>ant levels, <strong>the</strong> selected PCB congener was 14 C-labelled and measured<br />

us<strong>in</strong>g a sensitive radio<strong>de</strong>tection technique (liquid sc<strong>in</strong>tillation).<br />

253


MATERIALS AND METHODS<br />

Sampl<strong>in</strong>g<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> sea urch<strong>in</strong> Paracentrotus lividus<br />

The ech<strong>in</strong>oid Paracentrotus lividus (Lamarck), <strong>the</strong> phanerogam Posidonia oceanica (L.) and<br />

<strong>the</strong> brown alga Taonia atomaria were collected <strong>in</strong> June 1999 by SCUBA div<strong>in</strong>g between 5<br />

and 10 m <strong>de</strong>pth <strong>in</strong> a P. oceanica meadow off "la Po<strong>in</strong>te <strong>de</strong>s Douaniers" (Cap d'Ail, France).<br />

Prior to experimentation, specimens were acclimated to laboratory conditions for 1 month<br />

(constantly aerated open circuit aquaria, sal<strong>in</strong>ity 36 ‰, 17 ± 0.5°C, 12/12 h dark/light cycle).<br />

Radiotracer<br />

14 C-labelled 2,2',4,4',5,5' hexachlorobiphenyl (purity > 95%) was purchased from Sigma<br />

Chemicals, USA. Specific activity was 925 mCi mmol -1 . Stock solutions were prepared <strong>in</strong><br />

acetone at a concentration of 1 µg ml -1 .<br />

Sample treatment and liquid sc<strong>in</strong>tillation count<strong>in</strong>g<br />

Water samples (2 ml) were directly transfered to 20 ml glass sc<strong>in</strong>tillation vials (Packard,<br />

USA) and to 10 ml of Ultima Gold XR ® (Packard Instruments) sc<strong>in</strong>tillation liquid were<br />

ad<strong>de</strong>d. Subsamples of vegetal and ech<strong>in</strong>oid tissues were placed <strong>in</strong> a vial conta<strong>in</strong><strong>in</strong>g 2 ml of<br />

Acetonitrile ® <strong>in</strong> an ultrasonic bath for 10 m<strong>in</strong>. Acetonitrile ® was <strong>the</strong>n collected and replaced<br />

by ano<strong>the</strong>r 2 ml of Acetonitrile ® and <strong>the</strong> ultrasonic operation was repeated for a fur<strong>the</strong>r 10<br />

m<strong>in</strong>. This treatment gave 4 ml of liquid phase (<strong>the</strong> extraction) and a residue. The residue was<br />

digested overnight at 70°C with 2 ml of Soluene ® , and 10 ml of Hionic Fluor ® sc<strong>in</strong>tillation<br />

liquid were <strong>the</strong>n ad<strong>de</strong>d . The liquid phase (4 ml) was ad<strong>de</strong>d to 16 ml of filtered seawater and<br />

extracted twice us<strong>in</strong>g 2 ml of n-hexane (Sigma, USA) un<strong>de</strong>r constant agitation. The organic<br />

phase (4 ml) and <strong>the</strong> aqueous phase (20 ml) were treated separately. The entire organic phase<br />

and 2 ml of <strong>the</strong> aqueous phase were each ad<strong>de</strong>d separately to 10 ml of Ultima Gold XR ®<br />

sc<strong>in</strong>tillation liquid.<br />

14 C-radioactivity was measured us<strong>in</strong>g a 1600 TR Liquid Sc<strong>in</strong>tillation Analyzer (Packard),<br />

compared to standards of known activities, and corrected for quench<strong>in</strong>g, background and<br />

physical <strong>de</strong>cay of <strong>the</strong> tracer. Count<strong>in</strong>g times were adjusted to obta<strong>in</strong> cout<strong>in</strong>g rates with<br />

relative errors lower than 5%. PCB concentrations were eventually expressed on a total lipid<br />

content basis. Lipids were <strong>de</strong>term<strong>in</strong>ed accord<strong>in</strong>g to <strong>the</strong> method of Barnes & Blackstock<br />

(1973).<br />

Experimental procedure<br />

<strong>Sea</strong>water exposure<br />

10 sea urch<strong>in</strong>s (diameter: 50 ± 7 mm) were placed for 9 days <strong>in</strong> a 20 l glass aquarium<br />

(constantly aerated closed circuit aquarium, sal<strong>in</strong>ity 36 ‰, 17 ± 0.5°C, 12/12 h dark/light<br />

254


Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> sea urch<strong>in</strong> Paracentrotus lividus<br />

cycle) conta<strong>in</strong><strong>in</strong>g natural seawater spiked with 14 C-labelled PCB 153. One day before start<strong>in</strong>g<br />

<strong>the</strong> experiment, two 5 l glass beakers were filled with filtered seawater (36 ‰, 17 ± 0.5°C),<br />

spiked with <strong>the</strong> radiolabelled PCB, and constantly stirred for 24 h us<strong>in</strong>g an orbital agitation<br />

plate. Contam<strong>in</strong>ated water was <strong>the</strong>n poured <strong>in</strong>to <strong>the</strong> glass aquarium and uncontam<strong>in</strong>ated<br />

seawater was ad<strong>de</strong>d to obta<strong>in</strong> a f<strong>in</strong>al volume of 20 l. <strong>Sea</strong>water and radiotracer were renewed<br />

daily throughout <strong>the</strong> experiment. Activity was checked before and after each renewal to<br />

assess <strong>the</strong> stability of <strong>the</strong> labelled PCB concentration <strong>in</strong> seawater (Table 42). The ech<strong>in</strong>oids<br />

were fed unlabelled fresh Posidonia oceanica leaves every second day, just before <strong>the</strong> water<br />

renewal. After 2 h, un<strong>in</strong>gested leaves were removed <strong>in</strong> or<strong>de</strong>r to avoid as much as possible<br />

PCB <strong>in</strong>corporation via <strong>the</strong> food. At different times (0, 2, 5 and 8 days) ech<strong>in</strong>oids (n = 3) were<br />

collected, dissected <strong>in</strong>to 4 body compartments (body wall, sp<strong>in</strong>es, gut, gonads), and<br />

radioanalyzed to <strong>de</strong>term<strong>in</strong>e <strong>the</strong> body distribution of <strong>the</strong> PCB.<br />

Food exposure<br />

Table 42. Characteristics of <strong>the</strong> background and ad<strong>de</strong>d concentrations of PCB<br />

153. Background concentrations were measured <strong>in</strong> seawater <strong>the</strong> day before<br />

start<strong>in</strong>g <strong>the</strong> experiments; ad<strong>de</strong>d concentrations were measured <strong>in</strong> samples of<br />

seawater, Posidonia oceanica shoots, and Taonia atomaria thallia regularly<br />

collected <strong>in</strong> <strong>the</strong> experimental microcosms throughout <strong>the</strong> experiment.<br />

Compartment PCB 153 concentration<br />

Background <strong>Sea</strong>water 0.026 ng l -1 (n = 6)<br />

Ad<strong>de</strong>d<br />

<strong>Sea</strong>water<br />

(dissolved +<br />

particulate)<br />

31.4 ± 15.6 ng l -1 (n = 36)<br />

P.oceanica 5.5 ± 0.5 ng g -1 wet wt (n = 12)<br />

T. atomaria 17.9 ± 5.6 ng g -1 wet wt (n = 12)<br />

Shoots of Posidonia oceanica and thallia of Taonia atomaria were exposed for 14 d <strong>in</strong> two<br />

separate glass aquaria conta<strong>in</strong><strong>in</strong>g 10 l natural seawater spiked with 14 C-labelled PCB 153<br />

(Table 42). <strong>Sea</strong>water and tracer were renewed daily. Two groups of 20 sea urch<strong>in</strong>s (diameter:<br />

52 ± 6 mm) were placed <strong>in</strong> two 20 l polyv<strong>in</strong>ylchlori<strong>de</strong> aquaria (constantly aerated open<br />

circuit, sal<strong>in</strong>ity 36 ‰, 17 ± 0.5°C, 12/12 h dark/light cycle) and allowed to feed overnight on<br />

<strong>the</strong> previously contam<strong>in</strong>ated food. In parallel, two groups of 3 ech<strong>in</strong>oids were placed <strong>in</strong><br />

separate parts <strong>in</strong> both aquaria, and fed with uncontam<strong>in</strong>ated food to serve as a control for<br />

possible cross-contam<strong>in</strong>ation through seawater. After a 18 h feed<strong>in</strong>g period, rema<strong>in</strong><strong>in</strong>g<br />

labelled food was removed and ech<strong>in</strong>oids were fed ad libitum with uncontam<strong>in</strong>ated<br />

P.oceanica or T. atomaria until <strong>the</strong> end of <strong>the</strong> experiment. Faeces were removed twice a day<br />

255


Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> sea urch<strong>in</strong> Paracentrotus lividus<br />

<strong>in</strong> or<strong>de</strong>r to avoid as much as possible any cross contam<strong>in</strong>ation via PCB leach<strong>in</strong>g from <strong>the</strong><br />

faeces. At different times (days 2, 4, 9, 11, 14, and 17 after feed<strong>in</strong>g), <strong>in</strong>dividuals (n = 3) were<br />

dissected <strong>in</strong>to 3 body compartments (body wall, gut, gonads) <strong>in</strong> or<strong>de</strong>r to <strong>de</strong>term<strong>in</strong>e loss<br />

k<strong>in</strong>etics and body distribution of <strong>in</strong>gested PCB.<br />

Data analyses<br />

Uptake of PCB 153 from seawater was expressed as change <strong>in</strong> PCB concentration (ng g -1 total<br />

lipids) over time. Uptake k<strong>in</strong>etics were <strong>de</strong>scribed by us<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g exponential mo<strong>de</strong>l<br />

(Equation 10):<br />

k t<br />

Equation 10: C(t) = A e<br />

where C(t) is <strong>the</strong> PCB concentration taken up at time t (d) (ng g -1 total lipids) and k is <strong>the</strong> rate<br />

constant (d -1 ).<br />

Regard<strong>in</strong>g elim<strong>in</strong>ation of <strong>the</strong> radiotracer <strong>in</strong>gested with food, loss k<strong>in</strong>etics were best <strong>de</strong>scribed<br />

us<strong>in</strong>g a simple exponential mo<strong>de</strong>l (Equation 11):<br />

-k t<br />

Equation 11: C(t) = C(0) e<br />

where C(0) and C(t) are <strong>the</strong> 14 C-PCB 153 concentrations (ng g -1 total lipids) at time 0<br />

(beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> loss experiment) and at time t (d), and k is <strong>the</strong> rate constant (d -1 ).<br />

Constants of <strong>the</strong> mo<strong>de</strong>l and <strong>the</strong>ir statistics were calculated by iterative adjustment and Hessian<br />

matrix computation, respectively, us<strong>in</strong>g <strong>the</strong> nonl<strong>in</strong>ear curve-fit<strong>in</strong>g rout<strong>in</strong>es <strong>in</strong> <strong>the</strong> Systat ® 5.2.1<br />

software (Wilk<strong>in</strong>son 1988).<br />

Differences between PCB 153 concentrations <strong>in</strong> <strong>the</strong> different body compartments of <strong>the</strong><br />

ech<strong>in</strong>oid were tested by one-way ANOVA and <strong>the</strong> multiple comparison test of Tukey (Zar<br />

1996). Changes <strong>in</strong> PCB distribution among body compartents were tested for significance<br />

us<strong>in</strong>g <strong>the</strong> G-test (adapted from <strong>the</strong> log-likelihood ratio test) for 2xk cont<strong>in</strong>gency tables (Zar<br />

1996). Prior to this test, data were arcs<strong>in</strong>-transformed, us<strong>in</strong>g <strong>the</strong> correction of Freeman-Tukey<br />

(1950) as <strong>de</strong>scribed <strong>in</strong> Zar (1996). The level of significance for statistical tests was always set<br />

at a = 0.05.<br />

RESULTS<br />

<strong>Sea</strong>water experiment<br />

The uptake of PCB #153 by P. lividus exposed to contam<strong>in</strong>ated seawater was followed <strong>in</strong> four<br />

body compartments (body wall, sp<strong>in</strong>es, gut and gonads) (Fig. 55). Parameters and statistics of<br />

256


Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> sea urch<strong>in</strong> Paracentrotus lividus<br />

<strong>the</strong> uptake k<strong>in</strong>etics are given <strong>in</strong> Table 43. Estimated uptake rate constants were quite<br />

homogeneous among <strong>the</strong> different body compartments. This <strong>in</strong>dicates that bioaccumulation<br />

efficiency was similar, particularly <strong>in</strong> body wall and sp<strong>in</strong>es and <strong>in</strong> gut and gonads.<br />

PCB conentration (ng g -1 lipids)<br />

PCB conentration (ng g -1 lipids)<br />

300<br />

200<br />

100<br />

Body wall<br />

0<br />

0 2 4 6 8 10<br />

400<br />

300<br />

200<br />

100<br />

Sp<strong>in</strong>es<br />

Time (d)<br />

0<br />

0 2 4 6 8 10<br />

Time (d)<br />

Figure 55. Paracentrotus lividus. Uptake k<strong>in</strong>etics of 14 C-PCB 153 from seawater <strong>in</strong><br />

4 body compartments of <strong>the</strong> sea urch<strong>in</strong> (mean concentration ng g -1 total lipids ± SD,<br />

n=3)<br />

Table 43. Paracentrotus lividus. Parameters and statistics of <strong>the</strong> equation fitt<strong>in</strong>g<br />

<strong>the</strong> uptake of 14 C-PCB 153 <strong>in</strong> <strong>the</strong> body compartments of ech<strong>in</strong>oids exposed via<br />

seawater: C(t) = A e k.t . C(t): 14 C-PCB 153 concentration (ng g -1 lipids) at time t<br />

(d); A: ord<strong>in</strong>ate at <strong>the</strong> orig<strong>in</strong> (ng g -1 lipids); k: rate constant (d -1 ); ASE:<br />

asymptotic standard error; R 2 : <strong>de</strong>term<strong>in</strong>ation coefficient.<br />

A (ASE) k (ASE) R 2<br />

Body wall 7.05 (4.8) 0.45 (0.09) 0.93<br />

Sp<strong>in</strong>es 20.5 (5.2) 0.34 (0.03) 0.97<br />

Gut 0.53 (0.88) 0.53 (0.21) 0.80<br />

Gonads 0.86 (1.4) 0.53 (0.21) 0.80<br />

Table 44 presents <strong>the</strong> concentrations of stable PCB 153 correspond<strong>in</strong>g to <strong>the</strong> radiolabelled<br />

congener <strong>in</strong>corporated at different times over <strong>the</strong> exposure period (Table 44A) and <strong>the</strong><br />

correspond<strong>in</strong>g distribution among <strong>the</strong> consi<strong>de</strong>red body compartments (Table 44B). The body<br />

wall and sp<strong>in</strong>es concentrated C 14 -PCB 153 to <strong>the</strong> highest <strong>de</strong>gree, reach<strong>in</strong>g mean<br />

257<br />

PCB conentration (ng g -1 lipids)<br />

PCB conentration (ng g -1 lipids)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Digestive tract<br />

0<br />

0 2 4<br />

Time (d)<br />

6 8 10<br />

Gonads<br />

0<br />

0 2 4 6 8 10<br />

Time (d)


Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> sea urch<strong>in</strong> Paracentrotus lividus<br />

concentrations up to 262 and 319 ng g -1 lipids, respectively. These concentrations were one<br />

or<strong>de</strong>r of magnitu<strong>de</strong> higher than <strong>in</strong> gut and gonads (p Tukey test < 0.0001; Table 44A). Body<br />

distribution of <strong>the</strong> 14 C-PCB 153 varied significantly (G-test; p < 0.05) among sampl<strong>in</strong>g days<br />

(Table 44B). However, sp<strong>in</strong>es and, secondarily, body wall always displayed <strong>the</strong> highest<br />

proportion (29-62%) of total body load of <strong>in</strong>corporated PCB.<br />

Table 44. Paracentrotus lividus. Concentrations and distribution of PCB 153 <strong>in</strong>corporated <strong>in</strong> <strong>the</strong> different body<br />

compartments of <strong>the</strong> ech<strong>in</strong>oids exposed to <strong>the</strong> congener via seawater. A. PCB 153 concentrations (mean ng g -1<br />

lipids ± SD, n = 3). Mean concentrations shar<strong>in</strong>g <strong>the</strong> same superscript do not differ significantly between each<br />

o<strong>the</strong>r. B. PCB 153 distribution (mean % ± SD, n = 3) among body compartments.<br />

A.<br />

Body wall Sp<strong>in</strong>es Gut Gonads<br />

Day 2 27.6 a ± 20.8 23.5 a ± 4.480 1.43 a ± 1.71 1.56 a ± 2.39<br />

Day 5 62.7 b ± 25.8 130 c ± 7.450 7.35 d ± 3.16 12.0 d ± 5.15<br />

Day 8 262 e ± 54.3 319 e ± 35.90 35.4 f ± 15.3 57.6 f ± 24.9<br />

B.<br />

Body wall Sp<strong>in</strong>es Gut Gonads<br />

Day 2 46.3 ± 23.3 50.5 ± 26.3 1.8 ± 2.5 2.0 ± 2.9<br />

Day 5 28.7 ± 7.8 62.3 ± 8.1 8.7 ± 2.7 5.7 ± 2.1<br />

Day 8 38.6 ± 5.2 47.3 ± 1.8 9.9 ± 4.6 9.2 ± 4.8<br />

Food experiment<br />

Two sets of sea urch<strong>in</strong>s were allowed to feed overnight ei<strong>the</strong>r on P. oceanica or on T.<br />

atomaria previously exposed to 14 C-labelled PCB 153. <strong>Sea</strong> urch<strong>in</strong>s were <strong>the</strong>n placed <strong>in</strong><br />

uncontam<strong>in</strong>ated conditions <strong>in</strong> or<strong>de</strong>r to <strong>de</strong>term<strong>in</strong>e <strong>the</strong> loss k<strong>in</strong>etics of <strong>the</strong> <strong>in</strong>gested PCB.<br />

Analysis of control animals showed that <strong>the</strong>re was no significant cross contam<strong>in</strong>ation through<br />

seawater due to food leach<strong>in</strong>g.<br />

A latency time of 2 to 4 days was observed before <strong>the</strong> contam<strong>in</strong>ant concentration reached a<br />

maximum <strong>in</strong> <strong>the</strong> body compartments (Fig 56, Table 45). Loss k<strong>in</strong>etics were calculated tak<strong>in</strong>g<br />

<strong>in</strong>to account <strong>the</strong> period between that maximal value and <strong>the</strong> end of <strong>the</strong> experiment.<br />

258


15<br />

10<br />

5<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> sea urch<strong>in</strong> Paracentrotus lividus<br />

Figure 56. Paracentrotus lividus. Loss k<strong>in</strong>etics of 14 C-PCB 153 (mean concentration ng g -1 total lipids ± SD, n =<br />

3) <strong>in</strong> three body compartments of <strong>the</strong> sea urch<strong>in</strong> after a s<strong>in</strong>gle feed<strong>in</strong>g on radiolabelled food (Posidonia oceanica,<br />

(left) or Taonia atomaria (right)).<br />

Table 45. Paracentrotus lividus. PCB concentrations (ng g -1 lipids; mean ± SD, n = 3)<br />

measured <strong>in</strong> <strong>the</strong> sea urch<strong>in</strong> body compartments after a s<strong>in</strong>gle feed<strong>in</strong>g, us<strong>in</strong>g two different<br />

food (Posidonia oceanica vs Taonia atomaria). Mean concentrations shar<strong>in</strong>g <strong>the</strong> same<br />

superscript do not differ significantly among each o<strong>the</strong>r (p Tukey test > 0.05).<br />

P. oceanica<br />

Body wall<br />

0<br />

0<br />

30<br />

5 10<br />

Time (d)<br />

15 20<br />

20<br />

10<br />

Gut<br />

0<br />

0 5 10<br />

Time (d)<br />

15 20<br />

30<br />

20<br />

10<br />

Gonads<br />

0<br />

0 5 10<br />

Time (d)<br />

15 20<br />

Body wall Gut Gonads<br />

Day 2 10.0 a ± 1.74 10.8 a ± 2.03 2.26 a ± 0.064<br />

Day 4 11.8 c ± 2.59 20.8 c ± 4.47 25.9 c ± 8.79<br />

Day 9 4.58 e ± 0.69 4.60 e ± 1.95 3.28 e ± 0.96<br />

Day 11 5.51 g ± 2.07 3.87 g ± 0.52 3.31 g ± 0.81<br />

Day 14 2.37 h ± 1.08 0.095 h ± 0.106 1.00 h ± 0.64<br />

Day 17 1.83 i ± 1.40 0.16 i ± 0.057 0.59 i ± 0.13<br />

259<br />

30<br />

20<br />

10<br />

0<br />

0 5 10 15 20<br />

10<br />

Time (d)<br />

8<br />

6<br />

4<br />

2<br />

Body wall<br />

Gut<br />

0<br />

0 5 10 15 20<br />

Time (d)<br />

3<br />

2<br />

1<br />

0<br />

0 5 10 15 20<br />

Time (d)<br />

Gonads


T. atomaria<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> sea urch<strong>in</strong> Paracentrotus lividus<br />

Body wall Gut Gonads<br />

Day 2 19.6 j ± 6.22 5.94 j ± 0.26 2.75 j ± 0.23<br />

Day 4 12.7 k ± 2.02 7.90 k ± 1.35 2.59 k ± 1.73<br />

Day 9 4.86 l ± 1.96 6.13 l ± 0.90 1.65 l ± 0.23<br />

Day 11 3.01 m ± 1.82 5.74 m ± 1.14 1.14 m ± 0.071<br />

Day 14 3.26 o ± 1.30 1.57 o ± 0.35 1.31 o ± 0.26<br />

Day 17 0.77 p ± 0.43 1.09 p ± 0.26 1.12 p ± 0.47<br />

Loss k<strong>in</strong>etics were similar for both food consi<strong>de</strong>red (P. oceanica and T. atomaria). The ma<strong>in</strong><br />

differences between <strong>the</strong> two feed<strong>in</strong>gs was <strong>the</strong> <strong>de</strong>crease of radioactivity <strong>in</strong> <strong>the</strong> gut contents:<br />

after P. oceanica feed<strong>in</strong>g, 14 C-PCB activity <strong>de</strong>creased exponentially <strong>in</strong> <strong>the</strong> gut contents,<br />

whereas, with T. atomaria, it <strong>de</strong>creased l<strong>in</strong>early as a function of time (data not shown).<br />

Loss of <strong>in</strong>gested 14 C-PCB 153 followed a one-component exponential mo<strong>de</strong>l <strong>in</strong> each body<br />

compartments (Table 46). The k<strong>in</strong>etics were characterized by rapid loss of <strong>in</strong>gested PCB:<br />

calculated biological half-lives (Tb 1/2) ranged between 2.5 and 9.2 days.<br />

Table 46. Paracentrotus lividus. Parameters and statistics of <strong>the</strong> equation <strong>de</strong>scrib<strong>in</strong>g <strong>the</strong> loss of PCB<br />

#153 from <strong>the</strong> sea urch<strong>in</strong> body compartments after a s<strong>in</strong>gle feed<strong>in</strong>g on Posidonia oceanica and<br />

Taonia atomaria. Equation is C(t) = C(0) e -k t ; where C(t) and C(0) are 14 C-PCB 153 concentrations<br />

(ng g -1 lipids) at time t (d) and time 0, respectively, and k is <strong>the</strong> rate constant (d -1 ). ASE: asymptotic<br />

standard error; R 2 : corrected <strong>de</strong>term<strong>in</strong>ation coefficient; Tb 1/2: Biological half-life (d).<br />

P. oceanica<br />

C(0) (ASE) k (ASE) R 2<br />

Tb1/2 Body wall 11.7 (0.99) 0.145 (0.023) 0.83 4.8<br />

Gut 20.8 (1.30) 0.282 (0.042) 0.94 2.5<br />

Gonads 29.9 (1.14) 0.376 (0.049) 0.98 1.8<br />

T. atomaria<br />

C(0) (ASE) k (ASE) R 2<br />

Tb1/2 Body wall 19.3 (1.43) 0.193 (0.031) 0.87 3.6<br />

Gut 8.5 (0.84) 0.095 (0.019) 0.71 7.3<br />

Gonads 2.49 (0.46) 0.075 (0.031) 0.42 9.2<br />

DISCUSSION<br />

The present study reports <strong>the</strong> first experimental data on <strong>the</strong> bioaccumulation k<strong>in</strong>etics of a key<br />

PCB congener <strong>in</strong> <strong>the</strong> sea urch<strong>in</strong> Paracentrotus lividus, a common species wi<strong>de</strong>ly distributed<br />

<strong>in</strong> <strong>the</strong> Mediterranean <strong>Sea</strong> and on <strong>the</strong> NE Atlantic coast.<br />

260


Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> sea urch<strong>in</strong> Paracentrotus lividus<br />

The biok<strong>in</strong>etic experiments carried out <strong>in</strong> this study were performed us<strong>in</strong>g a 14 C-labelled PCB<br />

congener (2,2',4,4',5,5' hexachlorobiphenyl) and were <strong>de</strong>signed <strong>in</strong> or<strong>de</strong>r to expose sea urch<strong>in</strong>s<br />

to mo<strong>de</strong>rate to high PCB concentrations as commonly found <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e environment.<br />

PCB 153 was shown to be efficiently accumulated from seawater by <strong>the</strong> sea urch<strong>in</strong>. This<br />

observation matches o<strong>the</strong>r uptake experiments us<strong>in</strong>g for example polychaetes and fish<br />

exposed to Aroclor (Fowler et al. 1978, Shaw & Connell 1987). All <strong>the</strong> consi<strong>de</strong>red body<br />

compartments (body wall, sp<strong>in</strong>es, gut, gonads) accumulated <strong>the</strong> congener follow<strong>in</strong>g<br />

exponential uptake k<strong>in</strong>etics. Even if <strong>the</strong> exposure period was ra<strong>the</strong>r short (8 d), concentration<br />

factors (ratio between 14 C-PCB <strong>in</strong> body compartments and <strong>in</strong> surround<strong>in</strong>g seawater) were<br />

quite elevated and ranged between 10 3 (<strong>in</strong> <strong>the</strong> soft tissues: gut and gonads) and 10 5 (<strong>in</strong> <strong>the</strong><br />

calcified tissues: body wall and sp<strong>in</strong>es). This <strong>in</strong>dicates <strong>the</strong> efficiency of <strong>the</strong> sea urch<strong>in</strong> organs<br />

as bioaccumulator compartments and, hence, <strong>the</strong>ir usefulness as tools for <strong>the</strong> survey and<br />

biomonitor<strong>in</strong>g of PCB contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e environment. Be<strong>in</strong>g easily dissected and<br />

constitut<strong>in</strong>g ca. 90% of <strong>the</strong> total body weight, body wall and sp<strong>in</strong>es are of particular <strong>in</strong>terest<br />

with respect to field studies, and <strong>the</strong>y should be recommen<strong>de</strong>d as body compartments to<br />

monitor.<br />

After feed<strong>in</strong>g with common food of radiolabelled, loss of PCB 153 displayed exponential<br />

k<strong>in</strong>etics. The loss was quite rapid <strong>in</strong> each compartment. Biological half-lives of <strong>the</strong> PCB<br />

congener ranged between 2.5 and 9 d. This <strong>in</strong>dicates a low retention of <strong>the</strong> PCB taken up<br />

through <strong>the</strong> trophic cha<strong>in</strong>. Never<strong>the</strong>less, over <strong>the</strong> long term, this pathway could contribute<br />

significantly to <strong>the</strong> total load of PCB <strong>in</strong> <strong>the</strong> sea urch<strong>in</strong>. It is notewothy that, even if PCB 153<br />

was 3 times more concentrated <strong>in</strong> T. atomaria thallia given as food than <strong>in</strong> P. oceanica leaves<br />

(see Table 42), <strong>the</strong> congener concentration <strong>in</strong>coporated <strong>in</strong> <strong>the</strong> sea urch<strong>in</strong> soft tissues (gut and<br />

gonads) were higher when <strong>the</strong> animals were exposed via P. oceanica. (see Tables 45 and 46).<br />

This would <strong>in</strong>dicate a higher bioavailability of <strong>the</strong> PCB congener when it is <strong>in</strong>corporated <strong>in</strong><br />

<strong>the</strong> P. oceanica tissues than <strong>in</strong> those of T. atomaria. Conversely, retention of <strong>in</strong>gested PCB<br />

was 3 to 5 fold stronger <strong>in</strong> soft tissues of sea urch<strong>in</strong>s fed T. atomaria (see Table 46).<br />

While this work constitutes <strong>the</strong> first report on PCB bioaccumulation k<strong>in</strong>etics <strong>in</strong> an adult sea<br />

urch<strong>in</strong>, previous studies have used radiolabelled 14 C-PCB to exam<strong>in</strong>e bioaccumulation <strong>in</strong><br />

o<strong>the</strong>r aquatic organisms (e.g., Goerke et al. 1973, Gooch & Hamdy 1982, Schweitzer et al.<br />

1997). However, <strong>the</strong>se studies are few and mostly concern PCBs as Aroclor mixtures (see e.g.<br />

Butcher et al. 1997). The ma<strong>in</strong> advantage of <strong>the</strong> 14 C approach to measure PCB<br />

bioaccumulation <strong>in</strong> aquatic biota is obviously <strong>the</strong> high sensitivity and <strong>the</strong> rapidity of <strong>the</strong><br />

<strong>de</strong>tection, compared to analytical techniques us<strong>in</strong>g gas chromatography. Fur<strong>the</strong>rmore, it<br />

261


Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> sea urch<strong>in</strong> Paracentrotus lividus<br />

allows work<strong>in</strong>g with low, realistic PCB concentrations, and assess<strong>in</strong>g uptake <strong>in</strong> <strong>in</strong>dividual<br />

organs which are often too small to be analyzed by classical chemical without pool<strong>in</strong>g.<br />

ACKNOWLEDGEMENTS<br />

The IAEA Mar<strong>in</strong>e Environment Laboratory operates un<strong>de</strong>r a bipartite agreement between <strong>the</strong><br />

International Atomic Energy Agency and <strong>the</strong> Government of <strong>the</strong> Pr<strong>in</strong>cipality of Monaco. B.D.<br />

is hol<strong>de</strong>r of a FRIA doctoral grant. M.W. is a Honorary Research Associate of <strong>the</strong> National<br />

Fund for Scientific Research (NFSR, Belgium). Research was partially supported by a<br />

Belgian Fe<strong>de</strong>ral Research Programme (SSTC, Contract MN/11/30) and a NFSR fellowship to<br />

M.W.<br />

262


263<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> cuttlefish Sepia offic<strong>in</strong>alis<br />

VII.2 Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> cuttlefish Sepia offic<strong>in</strong>alis from<br />

seawater, sediment and food pathways.<br />

Environmental Pollution (submitted)<br />

Danis B a , Bustamante P b , Cotret O c , Teyssié JL c , Fowler SW c & Warnau M c<br />

a. Laboratoire <strong>de</strong> Biologie Mar<strong>in</strong>e (CP 160-15), <strong>Université</strong> <strong>Libre</strong> <strong>de</strong> <strong>Bruxelles</strong>, 50 Av. F.D.<br />

Roosevelt, B-1050 Brussels, Belgium<br />

b.Laboratoire <strong>de</strong> Biologie et Environnement Mar<strong>in</strong>s, UPRES-EA 3168, <strong>Université</strong> <strong>de</strong> La<br />

Rochelle, 22 Av. Michel Crépeau, F-17042 La Rochelle Ce<strong>de</strong>x, France<br />

c. Mar<strong>in</strong>e Environment Laboratory - International Atomic Energy Agency, 4 Quai Anto<strong>in</strong>e I er ,<br />

MC-98000 Monaco


ABSTRACT<br />

264<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> cuttlefish Sepia offic<strong>in</strong>alis<br />

The cuttlefish Sepia offic<strong>in</strong>alis was selected as a mo<strong>de</strong>l cephalopod to study PCB<br />

bioaccumulation via seawater, sediments and food. Newly hatched, juvenile cuttlefish were<br />

exposed for 17 days to environmentally realistic concentrations of 14 C-labelled 2,2',4,4',5,5'-<br />

hexachlorobiphenyl (PCB 153) (18 ng PCB l -1 seawater; 30 ng PCB g -1 dry wt sediments;<br />

Artemia sal<strong>in</strong>a exposed to 18 ng PCB l -1 seawater). Accumulation of PCB 153 was followed<br />

<strong>in</strong> three body compartments: digestive gland, cuttlebone and <strong>the</strong> comb<strong>in</strong>ed rema<strong>in</strong><strong>in</strong>g tissues.<br />

Results showed that (1) uptake k<strong>in</strong>etics were source- and body compartment-<strong>de</strong>pen<strong>de</strong>nt, (2)<br />

for each body compartment, <strong>the</strong> accumulation was far greater when S. offic<strong>in</strong>alis was exposed<br />

via seawater, (3) <strong>the</strong> cuttlebone accumulated little of <strong>the</strong> contam<strong>in</strong>ant regardless of <strong>the</strong> source,<br />

and (4) <strong>the</strong> PCB congener showed a similar distribution pattern among <strong>the</strong> different body<br />

compartments follow<strong>in</strong>g exposure to contam<strong>in</strong>ated seawater, sediment or food with <strong>the</strong> lowest<br />

concentrations <strong>in</strong> <strong>the</strong> cuttlebone and <strong>the</strong> highest <strong>in</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g tissues. The use of<br />

radiotracer techniques allowed <strong>de</strong>l<strong>in</strong>eat<strong>in</strong>g PCB k<strong>in</strong>etics <strong>in</strong> small whole organisms as well as<br />

<strong>in</strong> <strong>the</strong>ir separate tissues. The results un<strong>de</strong>rscore <strong>the</strong> enhanced ability of cephalopods to<br />

concentrate organic pollutants such as PCBs, and raise <strong>the</strong> question of potential risk to <strong>the</strong>ir<br />

predators <strong>in</strong> contam<strong>in</strong>ated areas.<br />

KEYWORDS<br />

Cephalopods, persistent organic pollutants, k<strong>in</strong>etics, transfer, distribution


INTRODUCTION<br />

265<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> cuttlefish Sepia offic<strong>in</strong>alis<br />

Among persistent organic pollutants (POPs), polychlorobiphenyls (PCBs) are a class of<br />

anthropogenic contam<strong>in</strong>ants of long-stand<strong>in</strong>g environmental concern (Liv<strong>in</strong>gstone et al.,<br />

2000). Represented by 209 congeners, PCBs are wi<strong>de</strong>spread, highly conservative and are<br />

readily accumulated <strong>in</strong> liv<strong>in</strong>g organisms. PCBs enter<strong>in</strong>g mar<strong>in</strong>e waters become available for<br />

mar<strong>in</strong>e organisms whose biology can be affected at various organizational levels (Metcalfe<br />

1994). Moreover, <strong>the</strong>se contam<strong>in</strong>ants may also be biomagnified <strong>in</strong> food webs rais<strong>in</strong>g a<br />

potential risk for high trophic level predators. Mar<strong>in</strong>e <strong>in</strong>vertebrates take up <strong>the</strong>se<br />

contam<strong>in</strong>ants via three ma<strong>in</strong> routes: ambient seawater (through gills and body surfaces), direct<br />

contact with sediments, and <strong>in</strong>gestion of food. Previous studies us<strong>in</strong>g sea stars and sea urch<strong>in</strong>s<br />

(Danis et al. Chap. III.2, VII.1) have shown that <strong>the</strong> efficiency of PCBs bioaccumulation<br />

<strong>de</strong>pends on <strong>the</strong> source of contam<strong>in</strong>ation (viz. seawater is probably <strong>the</strong> ma<strong>in</strong> contam<strong>in</strong>ation<br />

source) and on <strong>the</strong> consi<strong>de</strong>red congener (Danis et al. Chap. III.1).<br />

Cephalopods, <strong>in</strong>clud<strong>in</strong>g benthic (octopus), nectobenthic (cuttlefish), neritic and oceanic<br />

(squids) species, are wi<strong>de</strong>ly distributed <strong>in</strong> <strong>the</strong> world oceans. They generally display short life<br />

span and high growth rates. Ow<strong>in</strong>g to <strong>the</strong> economic value of many cephalopod species, <strong>the</strong>y<br />

are of high commercial <strong>in</strong>terest for fisheries (Forsy<strong>the</strong> & Heukelem 1987, Navarro &<br />

Villanueva 2000). Moreover, cephalopods play key roles <strong>in</strong> mar<strong>in</strong>e ecosystems, be<strong>in</strong>g both<br />

active predators of fish and crustaceans (Castro & Guerra 1990, Rodhouse & Nigmatull<strong>in</strong><br />

1996) and important prey items for mar<strong>in</strong>e mammals, seabirds and fish (Clarke 1996, Croxall<br />

& Pr<strong>in</strong>ce 1996, Klages 1996, Smale 1996). Therefore, cephalopods can be consi<strong>de</strong>red as an<br />

important vector for transferr<strong>in</strong>g potentially hazardous contam<strong>in</strong>ants to top mar<strong>in</strong>e predators<br />

(Bustamante et al. 1998, Weisbrod et al. 2000, 2001).<br />

Cephalopods are known to accumulate numerous contam<strong>in</strong>ants among which are POPs such<br />

as organochlor<strong>in</strong>e pestici<strong>de</strong>s or PCBs (Tanabe et al. 1984, Kawano et al. 1986, Yamada et al.<br />

1997, Weisbrod et al. 2000, 2001, Ueno et al. 2003). However, very little is known about<br />

bioaccumulation capacity <strong>de</strong>pend<strong>in</strong>g upon <strong>the</strong> routes of exposure to <strong>the</strong>se contam<strong>in</strong>ants; such<br />

data are nee<strong>de</strong>d to fur<strong>the</strong>r assess <strong>the</strong> potential impact of organic pollutants on cephalopod<br />

populations. For <strong>the</strong>se reasons, experiments were <strong>de</strong>signed to study <strong>the</strong> bioaccumulation of<br />

PCBs by <strong>the</strong> common cuttlefish Sepia offic<strong>in</strong>alis follow<strong>in</strong>g exposure via seawater, sediments<br />

and food.<br />

PCB biok<strong>in</strong>etics were <strong>de</strong>term<strong>in</strong>ed us<strong>in</strong>g radiotracer techniques <strong>in</strong> or<strong>de</strong>r to measure fluxes at<br />

environmentally realistic concentrations (Danis et al. Chap. III.2, VII.1). These techniques<br />

have already proven useful when exam<strong>in</strong><strong>in</strong>g k<strong>in</strong>etic behaviour <strong>in</strong> organs that are too small for


266<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> cuttlefish Sepia offic<strong>in</strong>alis<br />

employ<strong>in</strong>g classical PCB analytical measurements have to be consi<strong>de</strong>red. The PCB congener<br />

#153 (2,2’,4,4’,5,5’ hexachlorobiphenyl) was selected as a mo<strong>de</strong>l PCB, s<strong>in</strong>ce it is <strong>the</strong> most<br />

abundant <strong>in</strong> mar<strong>in</strong>e biota and has been recognized as an <strong>in</strong>dicator of total PCB contam<strong>in</strong>ation<br />

(see e.g., Stebb<strong>in</strong>g et al. 1992, Atuma et al. 1996).<br />

MATERIALS AND METHODS SECTION<br />

Organisms<br />

Seven- to n<strong>in</strong>e-day old newly hatched cuttlefish (hereafter called juveniles) were used <strong>in</strong> <strong>the</strong><br />

experiments. Cuttlefish eggs were spawned <strong>in</strong> <strong>the</strong> laboratory by adults collected by net fish<strong>in</strong>g<br />

off Monaco and were ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> aquaria until hatch<strong>in</strong>g. Young cuttlefish were kept <strong>in</strong> a<br />

separate aquarium (open circuit, 20 l h -1 flow rate, constant aeration, 36 p.s.u., 16.5 ± 0.5 °C,<br />

12h/12h light/dark cycle) and fed br<strong>in</strong>e shrimp (Artemia sal<strong>in</strong>a) until used <strong>in</strong> <strong>the</strong> experiments.<br />

Radiotracer<br />

The PCB radiotracer ( 14 C-labelled 2,2',4,4',5,5'-hexachlorobiphenyl; purity ≥ 95%) was<br />

purchased from Sigma Chemicals, USA. Specific activity was 925 MBq mmol -1 and stock<br />

solutions were prepared <strong>in</strong> acetone at a concentration of 1 µg ml -1 and stored at –20°C until<br />

used.<br />

Liquid sc<strong>in</strong>tillation count<strong>in</strong>g<br />

Water samples (2 ml) conta<strong>in</strong><strong>in</strong>g <strong>the</strong> radiotracer were directly transferred to 20 ml glass<br />

sc<strong>in</strong>tillation vials (Packard, USA) and mixed with 10 ml of sc<strong>in</strong>tillation liquid (Ultima Gold<br />

XR ® , Packard, USA). Sediment and biota samples (cuttlefish tissues and br<strong>in</strong>e shrimp) were<br />

ultrasonified twice for 10 m<strong>in</strong>, each time with 2 ml of Acetonitrile ® (Packard, USA). This<br />

treatment produced a liquid phase (4 ml) conta<strong>in</strong><strong>in</strong>g <strong>the</strong> extracted 14 C-PCB and a residue. The<br />

residue was digested overnight at 70°C with 2 ml of Soluene ® (Packard, USA) and mixed<br />

with 10 ml of sc<strong>in</strong>tillation liquid (Hionic Fluor ® , Packard, USA). The liquid phase was ad<strong>de</strong>d<br />

to 16 ml of filtered seawater and extracted twice us<strong>in</strong>g 2 ml of n-Hexane (Sigma, USA) un<strong>de</strong>r<br />

agitation. The organic phase (4 ml) and <strong>the</strong> aqueous phase (20 ml) were treated separately.<br />

The whole organic phase, and 2 ml of <strong>the</strong> aqueous phase were mixed separately with 10 ml of<br />

Ultima Gold XR ® sc<strong>in</strong>tillation liquid. The treatment is summarized <strong>in</strong> Figure 57.


267<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> cuttlefish Sepia offic<strong>in</strong>alis<br />

Figure 57. Diagrammatic representation of sample process<strong>in</strong>g prior to<br />

liquid sc<strong>in</strong>tillation count<strong>in</strong>g.<br />

ß-emission of <strong>the</strong> tracer was measured <strong>in</strong> <strong>the</strong> samples us<strong>in</strong>g a 1600 TR Liquid Sc<strong>in</strong>tillation<br />

Analyzer (Packard). The count<strong>in</strong>g time was selected to obta<strong>in</strong> count<strong>in</strong>g rates with relative<br />

propagated errors less than 5% (maximum count<strong>in</strong>g duration: 2 h). Radioactivity measured <strong>in</strong><br />

<strong>the</strong> samples was compared to standards and corrected for quench<strong>in</strong>g, background and physical<br />

<strong>de</strong>cay of <strong>the</strong> tracer. PCB concentrations were expressed on a total lipid content basis where<br />

lipids were <strong>de</strong>term<strong>in</strong>ed accord<strong>in</strong>g to <strong>the</strong> method of Barnes & Blackstock (1973).<br />

Experimental procedures.<br />

Uptake from seawater<br />

Juvenile cuttlefish (mean wet wt ± SD = 0.141 ± 0.039 g; n = 25) were placed for 20 d <strong>in</strong> a 70<br />

l glass aquarium conta<strong>in</strong><strong>in</strong>g natural seawater spiked with 18 ng 14 C-PCB 153 l -1 seawater. This<br />

concentration corresponds to a mo<strong>de</strong>rate level of contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> (Stebb<strong>in</strong>g et<br />

al. 1992). One day before start<strong>in</strong>g <strong>the</strong> experiment, four 5 l glass beakers were filled with<br />

filtered seawater (36 p.s.u., 16.5 ± 0.5°C), spiked with <strong>the</strong> PCB stock solution, and constantly<br />

stirred us<strong>in</strong>g an orbital agitation plate. Contam<strong>in</strong>ated seawater was poured <strong>in</strong>to <strong>the</strong> glass<br />

aquarium which was subsequently filled to a f<strong>in</strong>al volume of 70 l with uncontam<strong>in</strong>ated


268<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> cuttlefish Sepia offic<strong>in</strong>alis<br />

seawater. This operation (spiked seawater preparation) was performed daily throughout <strong>the</strong><br />

duration of <strong>the</strong> experiment and radiolabelled seawater was renewed daily <strong>in</strong> <strong>the</strong> aquarium.<br />

Radioactivity was checked before and after each seawater renewal to assess <strong>the</strong> stability of <strong>the</strong><br />

labelled PCB concentration. All cuttlefish were fed twice a day with Artemia sal<strong>in</strong>a and were<br />

periodically sampled. After 1 h, un<strong>in</strong>gested br<strong>in</strong>e shrimp were removed to limit as much as<br />

possible <strong>in</strong>corporation of PCB through <strong>the</strong> food. At each sampl<strong>in</strong>g time, 3 <strong>in</strong>dividuals were<br />

dissected to <strong>de</strong>term<strong>in</strong>e <strong>the</strong> distribution of <strong>the</strong> radiotracer among digestive gland, cuttlebone<br />

and <strong>the</strong> rema<strong>in</strong><strong>in</strong>g tissues.<br />

Uptake from sediments<br />

Sediments (2.5 kg dry wt) from <strong>the</strong> North <strong>Sea</strong> (Audresselles, Pas-<strong>de</strong>-Calais, France) were<br />

contam<strong>in</strong>ated for 4 d with <strong>the</strong> 14 C-labelled PCB us<strong>in</strong>g <strong>the</strong> roll<strong>in</strong>g jar method (Murdoch et al.,<br />

1997). Sediments were <strong>the</strong>n placed <strong>in</strong> a 70 l glass aquarium and ma<strong>in</strong>ta<strong>in</strong>ed overnight un<strong>de</strong>r<br />

flow<strong>in</strong>g seawater (open circuit, 20 l h -1 flow rate, 36 p.s.u., 16.5 ± 0.5 °C) to allow any loosely<br />

bound contam<strong>in</strong>ant to leach. The seawater level <strong>in</strong> <strong>the</strong> aquarium was <strong>the</strong>n reduced so that a 2<br />

cm layer of natural seawater was runn<strong>in</strong>g over <strong>the</strong> 3 cm layer of spiked sediments. This was<br />

done <strong>in</strong> or<strong>de</strong>r to m<strong>in</strong>imize cuttlefish movements required for feed<strong>in</strong>g and to optimize <strong>the</strong>ir<br />

contact time with sediments. Juvenile cuttlefish (mean wet wt ± SD = 0.124 ± 0.046 g; n =<br />

25) were <strong>the</strong>n placed for 17 d <strong>in</strong> <strong>the</strong> aquarium dur<strong>in</strong>g which time <strong>the</strong> sediment and seawater<br />

radioactivity was periodically checked. These measurements showed that 14 C-PCB<br />

radioactivity and concentration (9.49 ± 1.14 ng g -1 dry wt) rema<strong>in</strong>ed constant <strong>in</strong> <strong>the</strong> sediments<br />

throughout <strong>the</strong> experiment, and that no radioactivity could be <strong>de</strong>tected <strong>in</strong> seawater. Cuttlefish<br />

were fed twice daily with Artemia sal<strong>in</strong>a and any un<strong>in</strong>gested food was removed after 1 h and<br />

ß-counted. No activity could be <strong>de</strong>tected <strong>in</strong> <strong>the</strong> br<strong>in</strong>e shrimp. Cuttlefish were periodically<br />

sampled to follow PCB uptake k<strong>in</strong>etics and distribution among <strong>the</strong> tissues over time.<br />

Uptake from food<br />

Before <strong>the</strong> feed<strong>in</strong>g experiment, br<strong>in</strong>e shrimp were exposed for 7 d <strong>in</strong> a glass aquarium<br />

conta<strong>in</strong><strong>in</strong>g 4 l of filtered seawater spiked with 18 ng 14 C-PCB 153 l -1 (24-h water spik<strong>in</strong>g<br />

procedure as <strong>de</strong>scribed above for seawater). Radiolabelled seawater was renewed daily and<br />

br<strong>in</strong>e shrimp were regularly fed a mixture of phytoplankton. After 7 d, br<strong>in</strong>e shrimp were<br />

used to feed <strong>the</strong> juvenile cuttlefish. (Fresh br<strong>in</strong>e shrimp were labelled daily to have 7-d<br />

labelled food available each day throughout <strong>the</strong> experiment.) Juvenile cuttlefish (mean wet wt<br />

± SD = 0.130 ± 0.029 g; n = 25) were placed <strong>in</strong> <strong>in</strong>dividual plastic conta<strong>in</strong>ers (10 cm diameter,<br />

5 cm height) and held <strong>in</strong> a 70 l glass aquarium (open circuit, 20 l h -1 flow rate, 36 p.s.u., 16.5<br />

± 0.5 °C). Dur<strong>in</strong>g <strong>the</strong> entire experiment (17 d), <strong>in</strong>dividuals were allowed to <strong>in</strong>gest


269<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> cuttlefish Sepia offic<strong>in</strong>alis<br />

radiolabelled A. sal<strong>in</strong>a twice a day for 1 h; food was given <strong>in</strong> excess and any non-<strong>in</strong>gested<br />

shrimp rema<strong>in</strong><strong>in</strong>g after <strong>the</strong> feed<strong>in</strong>g period were immediately removed). Cuttlefish were<br />

periodically sampled over time to follow PCB uptake k<strong>in</strong>etics and distribution among <strong>the</strong><br />

tissues.<br />

Data analyses<br />

Uptake of <strong>the</strong> 14 C-PCB congener from seawater, sediments and food was expressed as change<br />

<strong>in</strong> PCB concentration (ng g -1 total lipids) over time. Radiotracer uptake k<strong>in</strong>etics were<br />

<strong>de</strong>scribed ei<strong>the</strong>r by us<strong>in</strong>g a l<strong>in</strong>ear mo<strong>de</strong>l (Equation 12), a saturation exponential mo<strong>de</strong>l<br />

(Equation 13), or a comb<strong>in</strong>ed mo<strong>de</strong>l (logistic plus exponential) (Equation 14):<br />

Equation 12: C(t) = C o +k.t<br />

Equation 13: C(t) = C ss (1-e -k.t )<br />

Equation 14: C(t) = C ss (1-e -k.t ) / 1+e -k.(t-I)<br />

where C(t), C o, and C ss are <strong>the</strong> 14 C-PCB concentrations (ng g -1 total lipids), respectively, at<br />

time t (d), at time 0, and at steady-state, k is <strong>the</strong> rate constant (d -1 ) and I is <strong>the</strong> time (d) at <strong>the</strong><br />

<strong>in</strong>flexion po<strong>in</strong>t. The mo<strong>de</strong>l show<strong>in</strong>g <strong>the</strong> most accurate fit (based on <strong>the</strong> calculation of <strong>the</strong><br />

<strong>de</strong>term<strong>in</strong>ation coefficient, R 2 , and exam<strong>in</strong>ation of <strong>the</strong> residuals) was used. Constants and<br />

statistics of <strong>the</strong> different mo<strong>de</strong>ls were estimated by iterative adjustment of <strong>the</strong> mo<strong>de</strong>ls and<br />

Hessian matrix computation, respectively, us<strong>in</strong>g <strong>the</strong> nonl<strong>in</strong>ear curve-fitt<strong>in</strong>g rout<strong>in</strong>es <strong>in</strong> Systat ®<br />

5.2.1 (Wilk<strong>in</strong>son 1988). Differences among 14 C-PCB concentrations <strong>in</strong> <strong>the</strong> different body<br />

compartments were tested us<strong>in</strong>g one-way ANOVA and <strong>the</strong> multiple comparison test of Tukey<br />

(Zar 1996). After arcs<strong>in</strong>e-transformation of data (us<strong>in</strong>g <strong>the</strong> correction of Freeman-Tukey<br />

1950; <strong>in</strong> Zar 1996), changes <strong>in</strong> 14 C-PCB body distribution were tested for significance us<strong>in</strong>g<br />

<strong>the</strong> G-test (adapted from <strong>the</strong> log-likelihood ratio test) for 2 x k cont<strong>in</strong>gency tables (Zar 1996).<br />

The level of significance for statistical tests was always set at a = 0.05.<br />

RESULTS<br />

Uptake k<strong>in</strong>etics of 14 C-PCB 153 by S. offic<strong>in</strong>alis were <strong>de</strong>term<strong>in</strong>ed by expos<strong>in</strong>g juveniles via<br />

three different pathways: seawater, sediments and food. Accumulation was followed <strong>in</strong> three<br />

body compartments: digestive gland, cuttlebone and rema<strong>in</strong><strong>in</strong>g tissues (which <strong>in</strong>clu<strong>de</strong>d all <strong>the</strong><br />

o<strong>the</strong>r tissues and organs). Accumulation was also consi<strong>de</strong>red <strong>in</strong> whole-body organisms us<strong>in</strong>g<br />

reconstituted data of <strong>the</strong> separate tissues.


Uptake from seawater<br />

270<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> cuttlefish Sepia offic<strong>in</strong>alis<br />

Bioaccumulation k<strong>in</strong>etics and <strong>the</strong>ir parameters <strong>in</strong> <strong>the</strong> different body compartments of <strong>the</strong><br />

cuttlefish follow<strong>in</strong>g exposure to environmentally realistic seawater PCB concentrations (18<br />

ng l -1 ) are shown <strong>in</strong> Fig. 59 and Table 47.<br />

Figure 58. Sepia offic<strong>in</strong>alis. Uptake of 14 C-PCB 153 from seawater <strong>in</strong> <strong>the</strong> different body<br />

compartments and <strong>in</strong> whole-body juvenile cuttlefish (mean ng g -1 total lipids ± SD; n = 3)<br />

Table 47. Sepia offic<strong>in</strong>alis. Parameters and statistics of <strong>the</strong> equations <strong>de</strong>scrib<strong>in</strong>g <strong>the</strong> uptake of 14 C-PCB #153 <strong>in</strong><br />

different body compartments of <strong>the</strong> cuttlefish exposed via seawater, sediments and food.<br />

L (l<strong>in</strong>ear mo<strong>de</strong>l): C(t) = C 0.+ k.t<br />

S (saturation mo<strong>de</strong>l): C(t) = Css.(1-e -k.t );<br />

C (comb<strong>in</strong>ed mo<strong>de</strong>l): C(t) = Css.(1-e -k.t )/(1+e -k.(t-I) );<br />

C 0, C(t), Css: PCB concentrations (ng g -1 lipids) at, respectively, time 0, time t (d) and steady-state; k: rate<br />

constant (d -1 ); I: time (d) at <strong>the</strong> <strong>in</strong>flexion po<strong>in</strong>t; ASE: asymptotic standard error; R 2 : corrected<br />

<strong>de</strong>term<strong>in</strong>ation coefficient.<br />

Body compartment Mo<strong>de</strong>l C 0 (ASE) Css (ASE) k (ASE) I (ASE) R 2<br />

<strong>Sea</strong>water<br />

Digestive gland L 0 1.25 (0.05) 0.92<br />

Cuttlebone -<br />

Rema<strong>in</strong><strong>in</strong>g tissues L 0 7.45 (0.22) 0.95<br />

Whole body L 3.86 (3.76) 6.36 (0.38) 0.94


271<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> cuttlefish Sepia offic<strong>in</strong>alis<br />

Sediments<br />

Digestive gland C 6.94 (0.52) 4.40 (16.6) 2.22 (0.82) 0.75<br />

Cuttlebone -<br />

Rema<strong>in</strong><strong>in</strong>g tissues S 47.9 (3.11) 0.44 (0.09) 0.78<br />

Whole body S 39.0 (1.94) 0.49 (0.08) 0.77<br />

Food<br />

Digestive gland C 6.71 (0.44) 0.97 (0.55) 2.85 (0.54) 0.82<br />

Cuttlebone -<br />

Rema<strong>in</strong><strong>in</strong>g tissues L -1.14 (0.69) 1.25 (0.07) 0.91<br />

Whole body L -1.28 (0.64) 0.94 (0.07) 0.91<br />

Except for cuttlebone, uptake of <strong>the</strong> contam<strong>in</strong>ant was best <strong>de</strong>scribed us<strong>in</strong>g l<strong>in</strong>ear mo<strong>de</strong>ls.<br />

Cuttlebone took up little, if any, PCB congener. Among <strong>the</strong> compartments, <strong>the</strong> rema<strong>in</strong><strong>in</strong>g<br />

tissues concentrated PCB 153 to <strong>the</strong> greatest <strong>de</strong>gree, almost one or<strong>de</strong>r of magnitu<strong>de</strong> higher<br />

than <strong>in</strong> <strong>the</strong> digestive gland and two or<strong>de</strong>rs of magnitu<strong>de</strong> higher than <strong>in</strong> <strong>the</strong> cuttlebone (p Tukey test<br />

≤ 0.0001). Concentration factors (ratio between PCB concentration <strong>in</strong> organism and <strong>in</strong> an<br />

equal weight of seawater) were calculated for <strong>the</strong> compartments consi<strong>de</strong>red and for <strong>the</strong><br />

whole-body (Table 48).<br />

Table 48. Sepia offic<strong>in</strong>alis. Concentration factors and transfer factors (CF, TF; mean ± SD; n = 3) <strong>in</strong> <strong>the</strong> body<br />

compartments and <strong>in</strong> whole-body juvenile cuttlefish at <strong>the</strong> end of <strong>the</strong> experimental exposures.<br />

CFs are calculated as <strong>the</strong> ratio between PCB 153 concentration <strong>in</strong> <strong>the</strong> body compartments (ng g -1 total lipids) and<br />

its concentration <strong>in</strong> seawater (ng g -1 ). TFs are calculated as <strong>the</strong> ratio between PCB 153 concentration <strong>in</strong> <strong>the</strong> body<br />

compartments (ng g -1 total lipids) and its concentration <strong>in</strong> sediments (ng g -1 dry wt) or food (ng g -1 lipids).<br />

Digestive gland Cuttlebone Rema<strong>in</strong><strong>in</strong>g tissues Whole body<br />

<strong>Sea</strong>water 527 ± 120 37.0 ± 24.7 3280 ± 513 2990 ± 449<br />

Sediments 0.74 ± 0.26 0.00 ± 0.00 5.31 ± 0.77 4.65 ± 0.47<br />

Food 1.81 ± 0.24 0.01 ± 0.03 3.72 ± 0.71 3.45 ± 0.61<br />

The tissue distribution of 14 C-PCB 153 varied significantly (log-likelihood ratio, G-test)<br />

throughout <strong>the</strong> experiment (Fig. 59). At <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> experiment, all of <strong>the</strong><br />

contam<strong>in</strong>ant (100 %) was found <strong>in</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g tissues. Then, dur<strong>in</strong>g <strong>the</strong> first days of<br />

exposure, a progressive transfer to <strong>the</strong> digestive gland took place, reach<strong>in</strong>g a peak of about<br />

15% of <strong>the</strong> total load after 4 d. The rema<strong>in</strong><strong>in</strong>g tissues always conta<strong>in</strong>ed <strong>the</strong> major fraction (80-<br />

100%) of <strong>the</strong> total 14 C-PCB body load, whereas very low proportions were found <strong>in</strong> <strong>the</strong><br />

cuttlebone (0-2.5%).


100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

Uptake from sediments<br />

272<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> cuttlefish Sepia offic<strong>in</strong>alis<br />

Digestive Gland Cuttlebone Rema<strong>in</strong><strong>in</strong>g Tissues<br />

day1 day2 day4 day7 day11 day14 day17<br />

Figure 59. Sepia offic<strong>in</strong>alis. 14 C-PCB 153 distribution (mean %) among <strong>the</strong><br />

different body compartments dur<strong>in</strong>g <strong>the</strong> seawater experiment.<br />

As observed <strong>in</strong> <strong>the</strong> seawater experiment, cuttlebone did not appear to accumulate 14 C-PCB<br />

dur<strong>in</strong>g sediment exposure. Accumulation k<strong>in</strong>etics <strong>in</strong> <strong>the</strong> digestive gland were best <strong>de</strong>scribed<br />

by a comb<strong>in</strong>ed mo<strong>de</strong>l (logistic + exponential components), whereas accumulation <strong>in</strong> <strong>the</strong><br />

rema<strong>in</strong><strong>in</strong>g tissues and <strong>in</strong> whole organisms was best fitted by a saturation exponential mo<strong>de</strong>l<br />

(Fig. 60, Table 47). Similar to <strong>the</strong> seawater experiment, <strong>the</strong> body compartment that took up<br />

PCB 153 to <strong>the</strong> greatest <strong>de</strong>gree was <strong>the</strong> rema<strong>in</strong><strong>de</strong>r. Never<strong>the</strong>less, transfer factors between<br />

sediments and organisms rema<strong>in</strong>ed low, reach<strong>in</strong>g maximum values of 5.3 (Table 48).


273<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> cuttlefish Sepia offic<strong>in</strong>alis<br />

Figure 60. Sepia offic<strong>in</strong>alis. Uptake of 14 C-PCB 153 from sediments <strong>in</strong> <strong>the</strong> different body<br />

compartments and <strong>in</strong> whole-body juvenile cuttlefish (mean ng g -1 total lipids ± SD; n = 3)<br />

The tissue distribution of 14 C-PCB was <strong>de</strong>term<strong>in</strong>ed at different times dur<strong>in</strong>g <strong>the</strong> experiment<br />

(Fig. 61). The rema<strong>in</strong><strong>in</strong>g tissues conta<strong>in</strong>ed <strong>the</strong> major fraction (84-99%) of <strong>the</strong> total PCB body<br />

load, whereas <strong>the</strong> lowest proportions were found <strong>in</strong> <strong>the</strong> cuttlebone (0-1.3%). At day 1, <strong>the</strong><br />

rema<strong>in</strong><strong>in</strong>g tissues conta<strong>in</strong>ed 99 % of <strong>the</strong> radiotracer, with a progressive transfer to <strong>the</strong><br />

digestive gland tak<strong>in</strong>g place dur<strong>in</strong>g <strong>the</strong> first days of exposure and reach<strong>in</strong>g a peak of about 13<br />

% of <strong>the</strong> total load after 4 d.<br />

100%<br />

80%<br />

60%<br />

40%<br />

20%<br />

0%<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

Digestive Gland<br />

C(t)=6.94.(1-e -4.40.t )/(1+e -4.40.(t-2.22) )<br />

Cuttlebone<br />

Time (d)<br />

0.0<br />

0 5 10 15 20<br />

0<br />

0 5 10 15 20<br />

Digestive Gland Cuttlebone Rema<strong>in</strong><strong>in</strong>g Tissues<br />

day1 day2 day4 day7 day11 day14 day17<br />

Figure 61. Sepia offic<strong>in</strong>alis. 14 C-PCB 153 distribution (mean %) among <strong>the</strong><br />

different body compartments dur<strong>in</strong>g <strong>the</strong> sediment experiment.<br />

100<br />

60<br />

50<br />

40<br />

30<br />

20<br />

80<br />

60<br />

40<br />

20<br />

Rema<strong>in</strong><strong>in</strong>g tissues<br />

C(t)=47.9.(1-e -0.44.t )<br />

R 2 =0.75 R 2 =0.78<br />

Whole-body<br />

Time (d)<br />

C(t)=39.0.(1-e -0.49t )<br />

10<br />

0 5 10 15 20<br />

Time (d) Time (d)<br />

R 2 =0.77


Uptake from food<br />

274<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> cuttlefish Sepia offic<strong>in</strong>alis<br />

Throughout <strong>the</strong> experiment, juvenile cuttlefish were fed radiolabelled br<strong>in</strong>e shrimp ad libitum<br />

for 1 h, twice a day. Uptake k<strong>in</strong>etics of 14 C-PCB 153 <strong>in</strong>gested with food followed <strong>the</strong><br />

comb<strong>in</strong>ed (logistic + exponential) mo<strong>de</strong>l <strong>in</strong> <strong>the</strong> digestive gland and <strong>the</strong> l<strong>in</strong>ear mo<strong>de</strong>l <strong>in</strong> <strong>the</strong><br />

rema<strong>in</strong><strong>in</strong>g tissues and <strong>in</strong> whole organisms (Fig. 62, Table 47). The separate body<br />

compartments (except cuttlebone) displayed PCB concentrations and transfer factors of <strong>the</strong><br />

same or<strong>de</strong>r of magnitu<strong>de</strong> (Fig. 62, Table 48).<br />

Figure 62. Sepia offic<strong>in</strong>alis. Uptake of 14 C-PCB 153 <strong>in</strong> <strong>the</strong> different body compartments<br />

and <strong>in</strong> whole-body juvenile cuttlefish (mean ng g -1 total lipids ± SD; n = 3) follow<strong>in</strong>g<br />

<strong>in</strong>gestion of radiolabelled food (Artemia sal<strong>in</strong>a).<br />

As expected, <strong>the</strong> distribution of <strong>the</strong> contam<strong>in</strong>ant among cuttlefish tissues <strong>de</strong>term<strong>in</strong>ed at<br />

different times showed that at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> experiment, <strong>the</strong> <strong>in</strong>gested radiotracer was<br />

entirely associated with <strong>the</strong> digestive gland (Fig. 63). Over time, <strong>the</strong> proportion of 14 C-PCB<br />

activity significantly <strong>de</strong>creased <strong>in</strong> <strong>the</strong> digestive gland and <strong>in</strong>creased <strong>in</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g tissues<br />

(G test, p < 0.05).<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Digestive Gland<br />

Cuttlebone<br />

Time (d)<br />

0<br />

0 5 10 15 20<br />

Time (d)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20<br />

20<br />

15<br />

10<br />

5<br />

Rema<strong>in</strong><strong>in</strong>g tissues<br />

C(t)=6.71.(1-e -0.97.t )/(1+e -0.97.(t-2.85) ) C(t)=-1.14+1.25.t<br />

R 2 =0.82<br />

Whole-Body<br />

Time (d)<br />

C(t)=-1.28+0.94.t<br />

0<br />

0 5 10 15 20<br />

Time (d)<br />

R 2 =0.91<br />

R 2 =0.91


DISCUSSION<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

275<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> cuttlefish Sepia offic<strong>in</strong>alis<br />

Digestive Gland Cuttlebone Rema<strong>in</strong><strong>in</strong>g Tissues<br />

day1 day2 day4 day7 day11 day14 day17<br />

Figure 63. Sepia offic<strong>in</strong>alis. 14 C-PCB 153 distribution (mean %) among <strong>the</strong><br />

different body compartments dur<strong>in</strong>g <strong>the</strong> food experiment.<br />

Cephalopods are well-known for <strong>the</strong>ir capacity to accumulate radioactive, metallic or organic<br />

contam<strong>in</strong>ants to relatively high levels (see e.g. Ueda et al. 1979, Miramand & Bentley 1992,<br />

Yamada et al. 1997, Bustamante et al. 2000). However, only few studies have aimed at<br />

<strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> concentrations and distribution of PCBs <strong>in</strong> <strong>the</strong>se molluscs, and most of <strong>the</strong>se<br />

studies have only consi<strong>de</strong>red whole organisms as a source of contam<strong>in</strong>ant for <strong>the</strong>ir predators<br />

(Tanabe et al. 1984, Kawano et al. 1986, Weisbrod et al. 2000, 2001). Some studies have<br />

employed cephalopods as bio<strong>in</strong>dicators of local or global PCB contam<strong>in</strong>ation (Butty &<br />

Holdway 1997, Yamada et al. 1997), and o<strong>the</strong>r ones have <strong>de</strong>monstrated cellular or tissue<br />

effect of organic pollutants (Mann et al. 1988, Cheah et al. 1995). Never<strong>the</strong>less, a review of<br />

available literature clearly shows a general lack of <strong>in</strong>formation regard<strong>in</strong>g bioaccumulation<br />

processes <strong>in</strong> cephalopods.<br />

The present experimental work, expos<strong>in</strong>g <strong>the</strong> common cuttlefish S. offic<strong>in</strong>alis to<br />

environmentally realistic concentrations of a radiolabelled PCB congener, <strong>de</strong>monstrated <strong>the</strong><br />

potential of <strong>the</strong>se organisms to bioconcentrate PCBs to high levels. The bioconcentration<br />

efficiency was far greater when cuttlefish were exposed through seawater compared to ei<strong>the</strong>r<br />

<strong>the</strong> food or sediment pathways. In<strong>de</strong>ed, PCB 153 concentration factors (CFs) from seawater<br />

were 2 to 3 or<strong>de</strong>rs of magnitu<strong>de</strong> higher than transfer factors from sediment or food. These<br />

differences are <strong>in</strong> close agreement with observations from sea stars and sea urch<strong>in</strong>s exposed<br />

to <strong>the</strong> same contam<strong>in</strong>ant un<strong>de</strong>r similar conditions (Danis et al. Chap. III.2, VII.1).


276<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> cuttlefish Sepia offic<strong>in</strong>alis<br />

The distribution of <strong>the</strong> radiolabelled PCB congener was exam<strong>in</strong>ed <strong>in</strong> three body<br />

compartments (<strong>the</strong> digestive gland, cuttlebone and <strong>the</strong> rema<strong>in</strong><strong>in</strong>g tissues of juvenile cuttlefish)<br />

and <strong>the</strong> <strong>de</strong>sign of <strong>the</strong> experiments allowed follow<strong>in</strong>g <strong>the</strong> uptake k<strong>in</strong>etics of <strong>the</strong> PCB <strong>in</strong> <strong>the</strong><br />

separate body compartments. The digestive gland was selected, s<strong>in</strong>ce this organ plays a major<br />

role <strong>in</strong> <strong>the</strong> energetic metabolism of cephalopods (Boucaud-Camou & Boucher-Rodoni 1983)<br />

and has been documented to accumulate PCBs to high levels (Yamada et al. 1997, Ueno et al.<br />

2003). The cuttlebone was also exam<strong>in</strong>ed as this calcareous compartment acts as an <strong>in</strong>ternal<br />

skeleton and represents ca. 3 % of <strong>the</strong> total body weight of <strong>the</strong> juveniles. F<strong>in</strong>ally, <strong>the</strong> third<br />

compartment (rema<strong>in</strong><strong>in</strong>g tissues) comprises <strong>the</strong> rest of <strong>the</strong> animal (ca. 90 % of <strong>the</strong> total body<br />

weight) and ma<strong>in</strong>ly consists of muscles. The tracer experiments showed a similar distribution<br />

pattern between <strong>the</strong> three compartments irrespective of <strong>the</strong> source of exposure: fractions of<br />

<strong>the</strong> radiolabelled PCB were always much higher <strong>in</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g tissues, followed by <strong>the</strong><br />

digestive gland and with very little amounts <strong>in</strong> <strong>the</strong> cuttlebone. Follow<strong>in</strong>g exposure via<br />

seawater, sediments and food, <strong>the</strong> cuttlebone did not significantly concentrate <strong>the</strong> PCB<br />

congener. In fact, <strong>the</strong> cuttlebone conta<strong>in</strong>ed less than 2.5 % of <strong>the</strong> total contam<strong>in</strong>ant load and<br />

only for a limited period of time. This is likely due to <strong>the</strong> <strong>in</strong>ternal localization of <strong>the</strong><br />

cuttlebone which appears to have no direct contact with ambient seawater and to <strong>the</strong> low fat<br />

content of this tissue.<br />

In contrast to <strong>the</strong> cuttlebone, <strong>the</strong> digestive gland readily accumulates PCB 153. The highest<br />

concentrations <strong>in</strong> <strong>the</strong> digestive gland were reached follow<strong>in</strong>g seawater exposure. After 17 d of<br />

exposure, juvenile cuttlefish cont<strong>in</strong>ued to concentrate <strong>the</strong> PCB <strong>in</strong> <strong>the</strong>ir digestive gland <strong>in</strong> a<br />

l<strong>in</strong>ear fashion. On <strong>the</strong> o<strong>the</strong>r hand, PCB 153 uptake <strong>in</strong> <strong>the</strong> digestive gland displayed saturation<br />

k<strong>in</strong>etics follow<strong>in</strong>g both sediment and food exposures. These results are particularly surpris<strong>in</strong>g<br />

for <strong>the</strong> digestive gland as it (a) has no direct contact with ambient seawater and (b) plays a<br />

major role <strong>in</strong> <strong>the</strong> digestive processes, <strong>in</strong>clud<strong>in</strong>g nutrient absorption. However, this organ is<br />

also <strong>in</strong>volved <strong>in</strong> <strong>de</strong>toxification processes of xenobiotics <strong>in</strong> cephalopods (Cheah et al. 1995,<br />

Bustamante et al. 2002). Therefore, elevated concentrations <strong>in</strong> <strong>the</strong> digestive gland could result<br />

more from transfers from o<strong>the</strong>r organs accumulat<strong>in</strong>g compounds to be <strong>de</strong>toxified than from<br />

actual bioconcentration <strong>in</strong> <strong>the</strong> digestive gland itself. At this stage, it is difficult to expla<strong>in</strong> <strong>the</strong><br />

precise role of <strong>the</strong> cuttlefish digestive gland <strong>in</strong> <strong>the</strong> metabolism of PCBs; however, complex<br />

PCB redistribution processes clearly do occur among <strong>the</strong> tissues of this cephalopod.<br />

Therefore, it would be of major <strong>in</strong>terest to characterize precisely <strong>the</strong> distribution of PCBs <strong>in</strong><br />

adult cephalopods by mak<strong>in</strong>g a f<strong>in</strong>er separation of all tissues and organs.


277<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> cuttlefish Sepia offic<strong>in</strong>alis<br />

Among <strong>the</strong> three compartments exam<strong>in</strong>ed <strong>in</strong> <strong>the</strong>se experiments, most of <strong>the</strong> PCB 153 taken<br />

up (≥ 80 %) was located <strong>in</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g tissues regardless of <strong>the</strong> exposure pathway.<br />

However, <strong>the</strong> PCB concentration factors (CFs) calculated <strong>in</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g tissues follow<strong>in</strong>g<br />

<strong>the</strong> seawater experiment was three or<strong>de</strong>rs of magnitu<strong>de</strong> higher than transfer factors (TFs)<br />

computed at <strong>the</strong> end of <strong>the</strong> sediment or food experiments. The fact that <strong>the</strong> rema<strong>in</strong><strong>in</strong>g tissues<br />

are <strong>in</strong> direct contact with seawater could expla<strong>in</strong> such a very high <strong>de</strong>gree of accumulation<br />

follow<strong>in</strong>g seawater exposure. However, cuttlefish also spend a substantial part of <strong>the</strong>ir time <strong>in</strong><br />

very close contact with sediments; <strong>the</strong>refore, differences between CFs and TFs most probably<br />

also reflect differences <strong>in</strong> PCB bioavailability between <strong>the</strong> seawater and sediment pathways.<br />

The uptake k<strong>in</strong>etics of PCB 153 <strong>in</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g tissues followed a l<strong>in</strong>ear mo<strong>de</strong>l when<br />

cuttlefish were exposed via seawater or food, and a saturation mo<strong>de</strong>l when exposed via<br />

sediments. Saturation concentrations were relatively low if compared to studies with sea stars<br />

exposed to sediments spiked with similar PCB 153 concentrations (Danis et al. Chap. III.2).<br />

<strong>Sea</strong> stars displayed <strong>the</strong> same uptake k<strong>in</strong>etics but reached much higher PCB 153<br />

concentrations, especially <strong>in</strong> compartments <strong>in</strong> direct contact with sediments (≥ 3,000 ng g -1<br />

lipids <strong>in</strong> <strong>the</strong> body wall).<br />

CONCLUSIONS<br />

Although <strong>the</strong> cuttlefish used <strong>in</strong> this study were early juveniles, <strong>the</strong> results follow<strong>in</strong>g seawater,<br />

sediment and food exposures have shown that PCBs are <strong>in</strong>corporated to high levels <strong>in</strong> <strong>the</strong>ir<br />

tissues. Even if this study was a first approach to un<strong>de</strong>rstand<strong>in</strong>g <strong>the</strong> pathways of PCB<br />

contam<strong>in</strong>ation <strong>in</strong> cephalopods, it highlights <strong>the</strong> general lack of knowledge concern<strong>in</strong>g<br />

mechanisms un<strong>de</strong>rly<strong>in</strong>g PCB bioaccumulation, distribution and <strong>de</strong>puration. F<strong>in</strong>ally, <strong>the</strong> ma<strong>in</strong><br />

f<strong>in</strong>d<strong>in</strong>g from this study is that seawater appears to be <strong>the</strong> ma<strong>in</strong> route for PCB <strong>in</strong>corporation <strong>in</strong><br />

juvenile cuttlefish. Therefore, cuttlefish might be useful bio<strong>in</strong>dicators of ambient water PCB<br />

contam<strong>in</strong>ation. Assum<strong>in</strong>g that cuttlefish are representative of cephalopods <strong>in</strong> general, many<br />

species from contam<strong>in</strong>ated areas could play a major role <strong>in</strong> <strong>the</strong> transfer of <strong>the</strong>se persistent<br />

organic pollutants to <strong>the</strong>ir predators.<br />

ACKNOWLEDGEMENTS<br />

We thank Prof. E. Boucaud-Camou for advice on rear<strong>in</strong>g cuttlefish. The IAEA Mar<strong>in</strong>e<br />

Environment Laboratory operates un<strong>de</strong>r a bipartite agreement between <strong>the</strong> International<br />

Atomic Energy Agency and <strong>the</strong> Government of <strong>the</strong> Pr<strong>in</strong>cipality of Monaco. BD is hol<strong>de</strong>r of a


278<br />

Bioaccumulation of PCBs <strong>in</strong> <strong>the</strong> cuttlefish Sepia offic<strong>in</strong>alis<br />

FRIA and of a Van Buuren doctoral grants. MW is a Honorary Research Associate of <strong>the</strong><br />

National Fund for Scientific Research (NFSR, Belgium). Research was supported by a<br />

Belgian Fe<strong>de</strong>ral Research Programme (SSTC, Contract MN/11/30) and by a NFSR short-term<br />

fellowship to M. Warnau.


279<br />

Measurement of EROD activity<br />

VII.3 Measurement of EROD activity: Caution on <strong>the</strong> spectral properties of<br />

<strong>the</strong> standards used<br />

Mar<strong>in</strong>e Biotechnology (<strong>in</strong> press)<br />

Ra<strong>de</strong>nac G a , Coteur G b , Danis B b , Dubois Ph b & Warnau M c<br />

a. Laboratoire <strong>de</strong> Biologie & Environnement Mar<strong>in</strong>s, EA 3168 – <strong>Université</strong> <strong>de</strong> La Rochelle,<br />

La Rochelle, France.<br />

b. Laboratoire <strong>de</strong> Biologie Mar<strong>in</strong>e, <strong>Université</strong> <strong>Libre</strong> <strong>de</strong> <strong>Bruxelles</strong>, Brussels, Belgium.<br />

c. International Atomic Energy Agency - Mar<strong>in</strong>e Environment Laboratory, Pr<strong>in</strong>cipality of<br />

Monaco.


ABSTRACT<br />

280<br />

Measurement of EROD activity<br />

The activity of <strong>the</strong> enzyme EROD has been extensively used <strong>in</strong> biomonitor<strong>in</strong>g studies for<br />

more than a <strong>de</strong>ca<strong>de</strong>. Although <strong>the</strong> analytical procedure is quite simple, it is often poorly<br />

characterized. In this study, spectral properties of particular standard compounds used for<br />

EROD activity measurement (viz. ethoxyresoruf<strong>in</strong> and resoruf<strong>in</strong>, standards from Molecular<br />

Probes®) were tested <strong>in</strong> or<strong>de</strong>r to optimise excitation and emission wavelengths to be used <strong>in</strong><br />

<strong>the</strong> fluorimetric assay of EROD activity. The optimal excitation wavelength for <strong>the</strong> <strong>de</strong>tection<br />

of resoruf<strong>in</strong> was 560 nm. In<strong>de</strong>ed, at this wavelength, <strong>the</strong> excitation represents only 37% of its<br />

maximum level for ethoxyresoruf<strong>in</strong> while it represents 86% for resoruf<strong>in</strong>. This allows<br />

discrim<strong>in</strong>ation between <strong>the</strong> fluorescence emitted by both standards favour<strong>in</strong>g <strong>the</strong> formed<br />

resoruf<strong>in</strong>. Our results <strong>de</strong>monstrate that any analytical work us<strong>in</strong>g spectrofluorometry to<br />

measure EROD activity should be prece<strong>de</strong>d by a precise <strong>de</strong>term<strong>in</strong>ation of <strong>the</strong> spectral<br />

characteristics of each set of standards used.<br />

KEYWORDS<br />

EROD, ethoxyresoruf<strong>in</strong>, resoruf<strong>in</strong>, spectral characteristics, fluorimetry, biomarker


INTRODUCTION<br />

281<br />

Measurement of EROD activity<br />

The use of <strong>the</strong> enzyme 7-ethoxy-resoruf<strong>in</strong>-O-<strong>de</strong>ethylase (EROD) activity as an environmental<br />

biomarker was suggested some thirty years ago (Burke & Mayer 1974). From that time, <strong>the</strong><br />

ma<strong>in</strong> objective of <strong>the</strong> numerous studies <strong>de</strong>al<strong>in</strong>g with EROD activity has been to assess <strong>the</strong><br />

effects of contam<strong>in</strong>ation by specific pollutants on target organisms <strong>in</strong> <strong>the</strong> mar<strong>in</strong>e environment<br />

(Addison & Edwards 1988, Galgani et al. 1991, Holdway et al. 1994). In<strong>de</strong>ed, a few organic<br />

compounds such as polyaromatic hydrocarbons (PAHs) and polychlor<strong>in</strong>ated biphenyls<br />

(PCBs) <strong>in</strong>duce <strong>the</strong> EROD activity of <strong>the</strong> enzyme CYP1A, an enzyme that is <strong>in</strong>volved <strong>in</strong> <strong>the</strong><br />

<strong>de</strong>toxication of <strong>the</strong>se organic pollutants (Sulaiman et al. 1991). Because of <strong>the</strong> good<br />

sensitivity of this biomarker <strong>in</strong> mar<strong>in</strong>e vertebrates, it has been wi<strong>de</strong>ly used <strong>in</strong> biomonitor<strong>in</strong>g<br />

studies for more than a <strong>de</strong>ca<strong>de</strong> (Galgani et al. 1992).<br />

The analytical procedure for EROD activity measurement is quite simple and consists <strong>in</strong><br />

<strong>de</strong>term<strong>in</strong><strong>in</strong>g (generally us<strong>in</strong>g spectrofluorimetry) <strong>the</strong> efficiency of a given biological sample<br />

to convert an experimentally-ad<strong>de</strong>d substrate (ethoxy-resoruf<strong>in</strong>) <strong>in</strong>to a specific product<br />

(resoruf<strong>in</strong>) (Grzebyk & Galgani 1991). However, several studies highlighted <strong>the</strong> lack of<br />

knowledge on <strong>the</strong> "natural" variability of this enzymatic activity (Galgani & Payne 1991).<br />

More recently, it has been shown that factors such as season (Eggens et al. 1995), sexual<br />

maturity stage <strong>in</strong> female <strong>in</strong>dividuals (Burgeot et al. 1994) or growth (Slei<strong>de</strong>r<strong>in</strong>k et al. 1995)<br />

strongly <strong>in</strong>fluence EROD activity. In addition, it is now well known that experimental<br />

parameters (e.g., storage temperature, pH of extraction buffers, <strong>in</strong>cubation temperature)<br />

govern<strong>in</strong>g <strong>in</strong> <strong>the</strong> laboratory dur<strong>in</strong>g sample treatments may also affect this activity (Grzebyk &<br />

Galgani 1991, Burgeot et al. 1994). Surpris<strong>in</strong>gly, except <strong>in</strong> some cases (e.g. Burke & Mayer<br />

1974, 1983) optimal wavelengths for <strong>the</strong> measurement of this enzymatic activity are not<br />

systematically characterized and reported <strong>in</strong> published studies , even if several technical<br />

reports questioned <strong>the</strong> purity of <strong>the</strong> standards used (Eggens & Galgani 1992, Munkittrick et<br />

al. 1993, Stagg & McIntosh 1998).<br />

When test<strong>in</strong>g for EROD activity, low amounts of resoruf<strong>in</strong> are formed compared to <strong>the</strong><br />

amounts of ethoxyresoruf<strong>in</strong> ad<strong>de</strong>d to <strong>the</strong> samples. In addition, <strong>the</strong>se two products have similar<br />

chemical (and thus spectral) properties. This implies that even slight <strong>de</strong>parture from optimal<br />

spectral parameters could easily result <strong>in</strong> <strong>in</strong>accurate measurement of <strong>the</strong> fluorescence due<br />

specifically to <strong>the</strong> end-product resoruf<strong>in</strong>. Therefore, <strong>the</strong> aim of <strong>the</strong> present work was to test<br />

<strong>the</strong> spectral properties of <strong>the</strong> reference standards (viz. ethoxyresoruf<strong>in</strong> and resoruf<strong>in</strong>) used for<br />

EROD activity <strong>de</strong>term<strong>in</strong>ation, <strong>in</strong> or<strong>de</strong>r to <strong>de</strong>term<strong>in</strong>e <strong>the</strong> optimal excitation and emission


282<br />

Measurement of EROD activity<br />

wavelengths which should be used to measure accurately <strong>the</strong> apparition of <strong>the</strong> resoruf<strong>in</strong> <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>cubation mixture.<br />

MATERIALS AND METHODS<br />

The standards tested <strong>in</strong> this study (R–352 for ethoxyresoruf<strong>in</strong> –EthR– and R–363 for resoruf<strong>in</strong><br />

–Res –; references from Molecular Probes®) were stored un<strong>de</strong>r optimal conditions:<br />

refrigerated (4°C) and protected from light <strong>in</strong> or<strong>de</strong>r to avoid any <strong>de</strong>gradation.<br />

Stock solutions were prepared <strong>in</strong> DMSO (Stagg and McIntosh, 1998); <strong>the</strong>ir concentrations<br />

were first <strong>de</strong>term<strong>in</strong>ed by spectrophotometry us<strong>in</strong>g an ext<strong>in</strong>ction coefficient of 54.0 cm -1 mM -1<br />

for Res (absorbance read at l = 572 nm) and of 16.0 cm -1 mM -1 for EthR (absorbance read at<br />

l = 494 nm) (Molecular Probes-®, unpublished data). Homogenisation of <strong>the</strong> Res stock<br />

solution was exten<strong>de</strong>d overnight and was facilitated us<strong>in</strong>g ultrasonication dur<strong>in</strong>g 10 m<strong>in</strong>utes<br />

at room temperature (Kennedy and Jones, 1994). Work<strong>in</strong>g solutions were freshly prepared <strong>in</strong><br />

a 0.1M phosphate buffer, pH = 7.6 and kept at 4°C <strong>in</strong> <strong>the</strong> dark. The f<strong>in</strong>al concentrations of<br />

EthR and Res used <strong>in</strong> this study were 2µM and 2.5 nM, respectively. These concentrations<br />

were selected s<strong>in</strong>ce <strong>the</strong>y represent <strong>the</strong> less favorable conditions to <strong>de</strong>tect <strong>the</strong> fluorescence due<br />

specifically to Res. In<strong>de</strong>ed, 2.5 nM Res corresponds to <strong>the</strong> lowest concentration that can be<br />

measured accurately with this method and 2 µM EthR is <strong>the</strong> concentration that displays <strong>the</strong><br />

maximum of fluorescence activity (Stagg and McIntosh, 1998).<br />

Fluorimetric measurements were performed dur<strong>in</strong>g <strong>the</strong> first m<strong>in</strong>ute of <strong>in</strong>cubation with<strong>in</strong> a 2ml<br />

cuvette at a temperature of 20°C, us<strong>in</strong>g a RF-5001 PC Shimadzu fluorimeter. Excitation and<br />

emission spectra of <strong>the</strong> tested standards (EthR and Res) were carried out <strong>in</strong> or<strong>de</strong>r to <strong>de</strong>term<strong>in</strong>e<br />

<strong>the</strong> maximum excitation and emission wavelengths for each chemical.<br />

RESULTS AND DISCUSSION<br />

A wi<strong>de</strong> range of excitation wavelengths for EROD activity measurement are reported <strong>in</strong><br />

published studies: e.g. 510 nm (Galgani & Payne 1991), 530 nm (Holdway et al. 1994,<br />

Brumley et al. 1995), 535 nm (Stagg & McIntosh 1998), 537 nm (Hewitt et al. 1998), 538 nm<br />

(Gun<strong>the</strong>r et al. 1997), 544 nm (Burke & Mayer 1974, Grzebyk & Galgani 1991, Burgeot et al.<br />

1994). In or<strong>de</strong>r to <strong>de</strong>term<strong>in</strong>e <strong>the</strong> optimal excitation wavelength to be used for <strong>the</strong> <strong>de</strong>tection of<br />

Res <strong>in</strong> a mixture of EthR and Res, excitation spectra of both compounds were recor<strong>de</strong>d with a<br />

fixed emission wavelength correspond<strong>in</strong>g to <strong>the</strong> peak emission of Resoruf<strong>in</strong> (i.e. 584 nm).


283<br />

Measurement of EROD activity<br />

Maximum excitation was reached at l = 494 nm for EthR and l = 572 nm for Res (Fig. 64).<br />

The shape of each spectrum differed quite significantly. Res showed a narrow excitation<br />

spectrum whereas, for EthR, <strong>the</strong> spectrum displayed a large plateau from 494 nm (<strong>the</strong><br />

maximum of excitation) to 535 nm: at this wavelength, <strong>the</strong> excitation of EthR still represented<br />

86% of its maximum value.<br />

900<br />

800<br />

Fluorescence <strong>in</strong>tensity (F.U.)<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

100%<br />

0<br />

450 470 490<br />

494<br />

510 530<br />

535<br />

550<br />

560<br />

570 572<br />

Figure 64. Excitation spectra of ethoxyresoruf<strong>in</strong> (2 µM) and resoruf<strong>in</strong> (2.5 nM) standards from Molecular<br />

Probes® - Emission values at 584 nm are expressed as relative values compared to <strong>the</strong> maximum of fluorescence<br />

<strong>in</strong>tensity. Y-scales of both curves are <strong>in</strong><strong>de</strong>pen<strong>de</strong>nt.<br />

This plateau was not <strong>de</strong>tected <strong>in</strong> ano<strong>the</strong>r study (Galgani & Payne 1991) test<strong>in</strong>g <strong>the</strong> same<br />

products purchased from ano<strong>the</strong>r company (Sigma®). These authors recor<strong>de</strong>d a narrower<br />

peak characterized by a maximum of excitation at 457 nm while less than 20% of <strong>the</strong><br />

maximum excitation rema<strong>in</strong>ed at 535 nm. In our case, it appears that an excitation of 535 nm<br />

(which is <strong>the</strong> most commonly used wavelength) would be most <strong>in</strong>appropriate to <strong>de</strong>tect Res <strong>in</strong><br />

<strong>the</strong> reaction mixture. In<strong>de</strong>ed, EthR would be <strong>the</strong> ma<strong>in</strong> excited (and thus <strong>de</strong>tected) compound.<br />

This hypo<strong>the</strong>sis was tested by compar<strong>in</strong>g emission spectra of both molecules excited at 535<br />

nm (Fig. 65). They showed very close wavelengths of maximal emission: 576 nm for EthR<br />

and 584 nm for Res. This is consistent with <strong>the</strong> similarity of <strong>the</strong>ir chemical conformation.<br />

Moreover, <strong>the</strong> emission at l = 584 nm from <strong>the</strong> EthR was greater than <strong>the</strong> one from <strong>the</strong><br />

product to be <strong>de</strong>tected, i.e. Res (Fig. 65).<br />

86%<br />

41%<br />

Excitation wavelenght (nm)<br />

Ethoxyresoruf<strong>in</strong><br />

Resoruf<strong>in</strong><br />

86%<br />

37%<br />

100%


Fluorescence <strong>in</strong>tensity (F.U.)<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

576<br />

111 %<br />

584<br />

284<br />

Measurement of EROD activity<br />

540 560 580 600 620 640 660<br />

Emission wavelenght (nm)<br />

Figure 65. Emission spectra of ethoxyresoruf<strong>in</strong> (2 µM) and resoruf<strong>in</strong> (2.5 nM) standards from Molecular<br />

Probes® - Excitation values at 535 nm are expressed as relative values compared to <strong>the</strong> maximum of<br />

fluorescence <strong>in</strong>tensity. Same Y-scales for both curves.<br />

It appears that an optimal <strong>de</strong>tection of <strong>the</strong> reaction product would consist of excit<strong>in</strong>g at a<br />

wavelength close to <strong>the</strong> peak of excitation of Resoruf<strong>in</strong> (572 nm) but not close to <strong>the</strong> emission<br />

peak (584 nm) <strong>in</strong> or<strong>de</strong>r to prevent any <strong>in</strong>terference by <strong>the</strong> excitation beam. For this reason,<br />

standards were excited at l = 560 nm; emission at l = 584 nm due to EthR was about four<br />

times lower (23%) than that of resoruf<strong>in</strong> (Fig. 66). At this wavelength, <strong>the</strong> excitation<br />

represents only 37% of its maximum level for EthR and 86% for Res (Fig. 64). Therefore,<br />

although close to <strong>the</strong> emission wavelength, this excitation wavelength (560 nm) would be<br />

efficient to discrim<strong>in</strong>ate between <strong>the</strong> set of standards tested here. To solve <strong>the</strong> problem of<br />

wavelength proximity, slits were reduced, <strong>the</strong>reby prevent<strong>in</strong>g any <strong>in</strong>terference between<br />

excitation and emission beams (3 and 5 nm respectively).<br />

Ethoxyresoruf<strong>in</strong><br />

Resoruf<strong>in</strong>


Fluorescence <strong>in</strong>tensity (F.U.)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

285<br />

Measurement of EROD activity<br />

Figure 66. Emission spectra of ethoxyresoruf<strong>in</strong> (2 µM) and resoruf<strong>in</strong> (2.5 nM) standards from Molecular<br />

Probes® - Excitation values at 560 nm are expressed as relative values compared to <strong>the</strong> maximum of<br />

fluorescence <strong>in</strong>tensity. Same Y-scales for both curves.<br />

CONCLUSIONS<br />

23 %<br />

584<br />

540 560 580 600 620 640 660<br />

In addition to common analytical controls, spectral characterization of standards used should<br />

also be carefully and systematically checked before any assay of EROD activity us<strong>in</strong>g a new,<br />

unknown batch of EthR as substrate. The lack of such control could question <strong>the</strong> accuracy of<br />

<strong>the</strong> assay. For <strong>the</strong> standard used <strong>in</strong> <strong>the</strong> present study (references from Molecular Probes®),<br />

optimum excitation wavelength was <strong>de</strong>term<strong>in</strong>ed to be 560 nm, a wavelength which is much<br />

higher than those used <strong>in</strong> previous works.<br />

Emission wavelenght (nm)<br />

These recommendations are particularly relevant for users of plate-rea<strong>de</strong>r fluorimeters.<br />

In<strong>de</strong>ed, <strong>the</strong>se very easy-to-use and powerful equipements are more and more commonly used<br />

for EROD assays. However, most of <strong>the</strong> plate-rea<strong>de</strong>rs are equipped with filters of limited<br />

wavelength range. They are thus not able to run scans over a wi<strong>de</strong> range of wavelengths and<br />

hence to check <strong>the</strong> spectral characteristics of <strong>the</strong> substrate.<br />

Resoruf<strong>in</strong><br />

Ethoxyresoruf<strong>in</strong>


ACKNOWLEDGEMENTS<br />

286<br />

Measurement of EROD activity<br />

We gratefully thank <strong>the</strong> team of <strong>the</strong> Organic Chemistry Laboratory (ULB) for provid<strong>in</strong>g<br />

access to analytical facilities and for <strong>in</strong>sightful advises. Ph.D. and M.W. are, respectively,<br />

Research Associate and Honorary Research Associate of <strong>the</strong> National Fund for Scientific<br />

Research (NFSR, Belgium). G.C. and B.D. were hol<strong>de</strong>rs of a FRIA doctoral grant. This work<br />

was supported by <strong>the</strong> SSTC covenant MN-11-30 (Prime M<strong>in</strong>ister Services, Belgium). This is<br />

a contribution of <strong>the</strong> "Centre <strong>in</strong>teruniversitaire <strong>de</strong> Biologie mar<strong>in</strong>e (CIBIM)". The IAEA<br />

Mar<strong>in</strong>e Environment Laboratory operates un<strong>de</strong>r a bipartite agreement between <strong>the</strong><br />

International Atomic Energy Agency and <strong>the</strong> Government of <strong>the</strong> Pr<strong>in</strong>cipality of Monaco.


Effects of PCBs on ROS production by Paracentrotus lividus<br />

VII.4 Effects of PCBs on reactive oxygen species (ROS) production by <strong>the</strong><br />

immune cells of Paracentrotus lividus (Ech<strong>in</strong>o<strong>de</strong>rmata).<br />

Mar<strong>in</strong>e Pollution Bullet<strong>in</strong> 42(8):667-672<br />

Coteur G a , Danis B a , Fowler SW b , Teyssié JL b , Dubois Ph a & Warnau M b<br />

a. Laboratoire <strong>de</strong> Biologie Mar<strong>in</strong>e, CP 160/15, <strong>Université</strong> <strong>Libre</strong> <strong>de</strong> <strong>Bruxelles</strong>, Av. F. D.<br />

Roosevelt, 50, B-1050 Brussels, Belgium.<br />

b. Mar<strong>in</strong>e Environment Laboratory, International Atomic Energy Agency, P.O. Box 800, 4<br />

Quai Anto<strong>in</strong>e 1 er , MC-98000 Monaco.<br />

287


ABSTRACT<br />

Effects of PCBs on ROS production by Paracentrotus lividus<br />

The impact of four PCB congeners: 3,3’,4,4’-tetrachlorobiphenyl (IUPAC congener #77),<br />

3,3’,4,4’,5-pentachlorobiphenyl (IUPAC #126), 2,2’,4,4’,5,5’-hexachlorobiphenyl (IUPAC<br />

#153) and 3,3’,4,4’,5,5’-hexachlorobiphenyl (IUPAC #169) was <strong>in</strong>vestigated on <strong>the</strong> reactive<br />

oxygen species (ROS) production by coelomocytes of <strong>the</strong> ech<strong>in</strong>oid Paracentrotus lividus, an<br />

important species <strong>in</strong> mar<strong>in</strong>e benthic ecosystems. PCBs were found to <strong>in</strong>crease ROS<br />

production and to <strong>de</strong>lay <strong>the</strong> time of peak production. These effects were stronger on bacteria-<br />

stimulated cells and were congener-specific: coplanar congeners (#77, 126 and 169) had more<br />

effect than <strong>the</strong> non-coplanar PCB 153. Among coplanar congeners, PCB 169 showed dose-<br />

<strong>de</strong>pen<strong>de</strong>nt effects whereas PCB 77 and 126 were more toxic at high and low doses,<br />

respectively. The relative immunotoxicity of <strong>the</strong> different PCB congeners is discussed <strong>in</strong> <strong>the</strong><br />

light of <strong>the</strong>ir structural properties and biological aff<strong>in</strong>ities.<br />

KEYWORDS<br />

Polychlor<strong>in</strong>ated biphenyls, immune system, reactive oxygen species, coelomocytes, congener-<br />

specific immunotoxicity, ech<strong>in</strong>o<strong>de</strong>rms, chemilum<strong>in</strong>escence.<br />

288


INTRODUCTION<br />

Effects of PCBs on ROS production by Paracentrotus lividus<br />

Ech<strong>in</strong>o<strong>de</strong>rms are a major phylum of <strong>de</strong>uterostome <strong>in</strong>vertebrates that <strong>in</strong>clu<strong>de</strong>s a number of<br />

species play<strong>in</strong>g key-roles <strong>in</strong> numerous mar<strong>in</strong>e ecosystems (Harrold & Pearse 1987, Birkeland<br />

1989, Menge et al. 1994). By <strong>the</strong>ir occurrence <strong>in</strong> coastal and estuar<strong>in</strong>e waters, <strong>the</strong>y are<br />

directly exposed to anthropogenic contam<strong>in</strong>ants. A number of <strong>the</strong>se contam<strong>in</strong>ants have been<br />

shown to affect several aspects of <strong>the</strong> physiology of ech<strong>in</strong>o<strong>de</strong>rms such as <strong>the</strong>ir reproduction<br />

(<strong>de</strong>n Besten et al. 1989), early <strong>de</strong>velopment (Kobayashi 1995, Warnau et al. 1996a), somatic<br />

growth (Temara et al. 1997b), and neurophysiology (Mallefet et al. 1994). Surpris<strong>in</strong>gly, <strong>the</strong><br />

impact of contam<strong>in</strong>ants on <strong>the</strong> immune system of ech<strong>in</strong>o<strong>de</strong>rms has never been assessed.<br />

Ech<strong>in</strong>o<strong>de</strong>rms lack a specific adaptive immune system and rely on <strong>in</strong>nate responses <strong>in</strong>volv<strong>in</strong>g<br />

both humoral and cellular components (Chia & X<strong>in</strong>g 1996). Effector cells are <strong>the</strong> so-called<br />

coelomocytes, i.e. free-circulat<strong>in</strong>g cells found <strong>in</strong> <strong>the</strong> coelomic cavities. Five different types of<br />

coelomocytes (amoebocytes, spherule cells, vibratile cells, crystal cells and progenitor cells)<br />

are <strong>in</strong>volved <strong>in</strong> responses such as encapsulation (Jans et al. 1996), phagocytosis (Ber<strong>the</strong>ussen<br />

1981), hydrolytic enzyme secretion (Canicatti, 1990) and reactive oxygen species (ROS)<br />

production (Ito et al. 1992). These processes appear very efficient and constitute <strong>the</strong> ma<strong>in</strong> l<strong>in</strong>e<br />

of <strong>in</strong>ternal <strong>de</strong>fence aga<strong>in</strong>st non-self material. ROS production has recently received much<br />

attention <strong>in</strong> <strong>the</strong> field of <strong>in</strong>vertebrate immunology and appears highly sensitive to xenobiotic<br />

exposure (An<strong>de</strong>rson et al. 1997). ROS production most probably occurs via <strong>the</strong> activation of a<br />

membrane-associated NAD(P)H-oxidase univalently reduc<strong>in</strong>g molecular oxygen to<br />

superoxi<strong>de</strong> anion ( . -<br />

O2 ) which <strong>in</strong> turn can lead to <strong>the</strong> production of o<strong>the</strong>r oxidants (Babior<br />

1984).<br />

By <strong>the</strong>ir very long persistence <strong>in</strong> <strong>the</strong> environment and <strong>the</strong> fact that <strong>the</strong>y are readily<br />

bioaccumulated and highly toxic for organisms, polychlor<strong>in</strong>ated biphenyls (PCBs) are among<br />

<strong>the</strong> contam<strong>in</strong>ants of highest concern <strong>in</strong> mar<strong>in</strong>e ecosystems. Most of <strong>the</strong> studies on PCB<br />

immunotoxicity <strong>in</strong> <strong>in</strong>vertebrates have concerned <strong>the</strong> impact of commercial mixtures (e.g.<br />

Aroclor®) <strong>in</strong> annelids (Ville et al. 1995; Burch et al. 1999). However, it is now wi<strong>de</strong>ly<br />

accepted that <strong>the</strong> toxicity of such mixtures is ma<strong>in</strong>ly due to a few congeners, viz. <strong>the</strong> non-<br />

ortho-substituted and mono-ortho-substituted congeners (Du<strong>in</strong>ker et al. 1989, Safe 1990,<br />

Metcalfe 1994). Moreover, <strong>the</strong> relative proportions of PCB congeners <strong>in</strong> <strong>the</strong>se mixtures are<br />

very different from those found <strong>in</strong> contam<strong>in</strong>ated environments (Metcalfe 1994). We thus<br />

chose to work on a congener-specific basis, with <strong>the</strong> most toxic (<strong>the</strong> non-ortho-substituted<br />

289


Effects of PCBs on ROS production by Paracentrotus lividus<br />

coplanar 3,3’,4,4’-tetrachlorobiphenyl [IUPAC congener #77], 3,3’,4,4’,5-<br />

pentachlorobiphenyl [#126] and 3,3’,4,4’,5,5’-hexachlorobiphenyl [#169]; Safe et al. 1985)<br />

and <strong>the</strong> most abundant (2,2’,4,4’,5,5’-hexachlorobiphenyl [#153]; Muir et al., 1988)<br />

congeners. PCBs were <strong>in</strong>jected <strong>in</strong>to <strong>the</strong> coelomic cavity <strong>in</strong> or<strong>de</strong>r to obta<strong>in</strong> f<strong>in</strong>al concentrations<br />

comparable to those found <strong>in</strong> natural seawater <strong>in</strong> mo<strong>de</strong>rately contam<strong>in</strong>ated environments<br />

(around 1 ng l -1 for oceanic water; for a review, see Fowler 1990). The impact of <strong>the</strong>se<br />

congeners was evaluated on <strong>the</strong> ROS production (measured as peroxidase/lum<strong>in</strong>ol – enhanced<br />

chemilum<strong>in</strong>escence) <strong>in</strong> ech<strong>in</strong>o<strong>de</strong>rms. The edible ech<strong>in</strong>oid Paracentrotus lividus, a well-<br />

known key-species of commercial importance <strong>in</strong> <strong>the</strong> Atlantic ocean and <strong>in</strong> <strong>the</strong> Mediterranean,<br />

was used as a mo<strong>de</strong>l for this study.<br />

MATERIALS AND METHODS<br />

Test organisms<br />

Adult specimens of Paracentrotus lividus (5.8 ± 0.5 cm ambital diameter, 90 ± 5 g wet<br />

weight) were collected at Cap d’Ail, France. They were immediately brought to <strong>the</strong> laboratory<br />

and acclimated for 1 week <strong>in</strong> open circuit aquarium (capacity: 3000 l, sal<strong>in</strong>ity: 38‰,<br />

temperature: 17 ± 0.5°C, flow rate: 50-100 l h -1 with constant aeration). They were fed ad<br />

libitum <strong>the</strong> brown alga Taonia atomaria.<br />

PCB exposures<br />

Stock solutions of <strong>the</strong> different congeners (Promochem, Germany) were prepared accord<strong>in</strong>g<br />

to <strong>the</strong> method of Murdoch et al. (1997). Briefly, aliquots of PCB stock solutions (prepared <strong>in</strong><br />

acetone) were ad<strong>de</strong>d to <strong>de</strong>canted natural seawater to obta<strong>in</strong> f<strong>in</strong>al concentrations of 5 µg l -1<br />

(PCB 153) or 1.25 µg l -1 (PCBs 77, 126 and 169). Samples were constantly agitated for 3h to<br />

allow for acetone evaporation and solution homogeneity, and f<strong>in</strong>ally serially diluted <strong>in</strong><br />

<strong>de</strong>canted natural seawater (with 3 h agitation between each dilution).<br />

Eventually, 0.5 ml of <strong>the</strong> PCB solutions was <strong>in</strong>jected <strong>in</strong>to <strong>the</strong> coelomic cavity of <strong>the</strong> sea<br />

urch<strong>in</strong>s. A control group was <strong>in</strong>jected with seawater alone; blank animals were not <strong>in</strong>jected.<br />

Injected doses of PCBs were: 2.5, 0.28 and 0.03 ng for PCB 153 and 0.625, 0.069 and 0.008<br />

ng for PCBs 77, 126 and 169). Assum<strong>in</strong>g a total volume of coelomic fluid of 50 ml per sea<br />

urch<strong>in</strong>, coelomic PCB concentration range would be: 0.6 – 50 ng l -1 for PCB #153 and 0.16 –<br />

12.5 ng l -1 for PCBs 77, 126 and 169. Four replicates (i.e. four animals) per treatment were<br />

sampled 43 h after <strong>the</strong> PCB (or control) <strong>in</strong>jection.<br />

290


ROS production measurements<br />

Effects of PCBs on ROS production by Paracentrotus lividus<br />

An aliquot of 3 ml of coelomic fluid, obta<strong>in</strong>ed by cutt<strong>in</strong>g <strong>the</strong> peristomial membrane of <strong>the</strong> sea<br />

urch<strong>in</strong>s, was poured <strong>in</strong>to 3 ml anticoagulant buffer (0.012 M EDTA <strong>in</strong> Ca-, Mg-free artificial<br />

seawater -CMFASW-; Noble, 1970) at 4°C. The coelomocyte concentration of this<br />

suspension was <strong>de</strong>term<strong>in</strong>ed us<strong>in</strong>g a Thoma haemocytometer. The suspension was <strong>the</strong>n<br />

centrifuged (400xg for 10 m<strong>in</strong>, 4°C) and <strong>the</strong> supernatant replaced by CMFASW to obta<strong>in</strong> a<br />

f<strong>in</strong>al concentration of 1 ± 0.25 x 10 6 cells ml -1 . This concentration was double-checked as<br />

<strong>de</strong>scribed above.<br />

Reactive oxygen species were measured by <strong>the</strong> lum<strong>in</strong>ol-enhanced chemilum<strong>in</strong>escence method<br />

(Lambert & Nicolas 1998) with <strong>the</strong> follow<strong>in</strong>g modification: horseradish peroxidase (HRP)<br />

was ad<strong>de</strong>d <strong>in</strong> or<strong>de</strong>r to <strong>in</strong>crease <strong>the</strong> chemilum<strong>in</strong>escence signal and to ren<strong>de</strong>r <strong>the</strong> reaction more<br />

specific to peroxi<strong>de</strong>s (Pagano et al. 1997). For peroxidase/lum<strong>in</strong>ol-enhanced<br />

chemilum<strong>in</strong>escence (PLCL) measurement, 500 µl of lum<strong>in</strong>ol (0.1 mg ml -1 ) / HRP (0.05 mg<br />

ml -1 ) <strong>in</strong> artificial seawater (ASW, Sigma) was ad<strong>de</strong>d to 100 µl of a suspension of autoclaved<br />

bacteria (Micrococcus luteus, 2.5 x 10 9 bacteria ml -1 <strong>in</strong> ASW) (stimulated ROS production) or<br />

an equivalent volume of ASW (unstimulated ROS production). The chemical background (i.e.<br />

<strong>the</strong> chemilum<strong>in</strong>escence of <strong>the</strong> above-<strong>de</strong>scribed medium) was measured and, subsequently,<br />

400 µl of coelomocyte suspension (1 x 10 6 cells ml -1 ) was ad<strong>de</strong>d. Samples were placed at<br />

13°C and <strong>the</strong> PLCL (summed on a 5 sec period) was measured every 10 m<strong>in</strong> over a 2 h period<br />

us<strong>in</strong>g a EG&G LB-9507 lum<strong>in</strong>ometer equipped with a 100-fold attenuation filter.<br />

Measurements were normalised with <strong>the</strong> actual coelomocyte concentration <strong>in</strong> each sample<br />

and usually expressed ei<strong>the</strong>r as <strong>the</strong> sum of all 10 m<strong>in</strong>-<strong>in</strong>terval measurements for 10 6 cells<br />

(“total chemilum<strong>in</strong>escence”) or as <strong>the</strong> time nee<strong>de</strong>d to reach <strong>the</strong> peak PLCL value (“time-to-<br />

peak”).<br />

Statistical analyses<br />

The occurrence of a dose-response relationship was tested by l<strong>in</strong>ear and non-l<strong>in</strong>ear<br />

regressions. When regression statistics were not significant for a given congener, differences<br />

among immune responses observed for <strong>the</strong> different doses of this PCB were tested for<br />

significance us<strong>in</strong>g analysis of variance (one-way ANOVA) followed by <strong>the</strong> multiple<br />

comparison test of Tukey (Zar 1996). All statistical analyses were carried out us<strong>in</strong>g <strong>the</strong> Systat<br />

5.2.1‚ software (Wilk<strong>in</strong>son 1988).<br />

291


RESULTS<br />

K<strong>in</strong>etics of reactive oxygen species (ROS) production<br />

Effects of PCBs on ROS production by Paracentrotus lividus<br />

In control and blank animals stimulated coelomocytes showed 4-5 times more ROS<br />

production compared to unstimulated cells (Fig. 67). The peak chemilum<strong>in</strong>escence of<br />

stimulated coelomocytes was reached after 30-50 m<strong>in</strong>, <strong>the</strong> signal <strong>the</strong>n <strong>de</strong>creased slowly and<br />

levelled off at 90 m<strong>in</strong>. The ROS production by coelomocytes of seawater-<strong>in</strong>jected sea urch<strong>in</strong>s<br />

(controls) was never significantly different from non-<strong>in</strong>jected animals (blanks) (p > 0.1);<br />

results from both <strong>the</strong>se controls were thus pooled for fur<strong>the</strong>r statistical analyses.<br />

Chemilum<strong>in</strong>escence<br />

(RLU /10 6 cells)<br />

250<br />

200<br />

150<br />

100<br />

Figure 67. Stimulated vs. unstimulated ROS production by coelomocytes<br />

of P. lividus: chemilum<strong>in</strong>escence (mean ± SE, n=4) of bacteria-stimulated<br />

(black squares) or unstimulated (white dots) coelomocytes over time.<br />

Effects of PCB congeners on ROS production<br />

50<br />

0<br />

0 50 100 150<br />

In or<strong>de</strong>r to get an <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> effects of PCB congeners, three different parameters were<br />

analysed: total chemilum<strong>in</strong>escence of unstimulated and bacteria-stimulated coelomocytes and<br />

time-to-peak of stimulated ROS production k<strong>in</strong>etics.<br />

Concern<strong>in</strong>g unstimulated chemilum<strong>in</strong>escence, none of <strong>the</strong> four PCB congeners tested showed<br />

significant effects (Fig. 68). When coelomocytes were bacteria-stimulated, different<br />

behaviours of ROS production were observed accord<strong>in</strong>g to <strong>the</strong> congener tested (Fig. 69).<br />

Whereas treatment with congener #153 showed no significant effect over <strong>the</strong> consi<strong>de</strong>red dose<br />

range, congener #169 affected ROS production dose-<strong>de</strong>pen<strong>de</strong>ntly accord<strong>in</strong>g to <strong>the</strong> follow<strong>in</strong>g<br />

l<strong>in</strong>ear relationship: Y = 5386 X + 3093 (R 2 =0.253, p regression=0.047), where Y is <strong>the</strong><br />

chemilum<strong>in</strong>escence (<strong>in</strong> Relative Light Units, RLU, per 10 6 cells) and X is <strong>the</strong> <strong>in</strong>jected dose<br />

292<br />

Time (m<strong>in</strong>)


Effects of PCBs on ROS production by Paracentrotus lividus<br />

(ng). No dose-response relationships were significant (p>0.1) for PCBs #77 and 126.<br />

However, congener #126 significantly affected ROS production (p Tukey=0.017) at <strong>the</strong> lowest<br />

dose <strong>in</strong>jected (0.008 ng), whereas congener #77 significantly affected ROS production<br />

(p Tukey=0.029) only at <strong>the</strong> highest dose tested (0.625 ng). As for ROS production, effect on<br />

time-to-peak also varied accord<strong>in</strong>g to <strong>the</strong> consi<strong>de</strong>red congener (Fig. 70). Treatment with PCB<br />

#153 showed no significant effect.<br />

Unstimulated ROS production<br />

(RLU / 10 6 cells)<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

control 0.001 0.01 0.1 1 10<br />

PCB dose <strong>in</strong>jected (ng)<br />

Figure 68. ROS production (total chemilum<strong>in</strong>escence) by<br />

unstimulated coelomocytes of P. lividus accord<strong>in</strong>g to <strong>the</strong> PCB dose<br />

<strong>in</strong>jected: PCB #77 (black dots), #126 (white squares), #153<br />

(asterisks) and #169 (black triangles). Controls were <strong>in</strong>jected with<br />

seawater alone. (Mean ± SE, n=4).<br />

Stimulated ROS production<br />

(RLU/ 10 6 cells)<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

*<br />

0<br />

control<br />

0.001 0.01 0.1 1 10<br />

PCB dose <strong>in</strong>jected (ng)<br />

Figure 69. ROS production (total chemilum<strong>in</strong>escence) by stimulated<br />

coelomocytes of P. lividus accord<strong>in</strong>g to <strong>the</strong> PCB dose <strong>in</strong>jected: PCB<br />

#77 (black dots), #126 (white squares), #153 (asterisks) and #169<br />

(black triangles). Controls were <strong>in</strong>jected with seawater alone. (Mean ±<br />

SE, n=4). (*) significantly different from <strong>the</strong> control; (¥) significant<br />

dose-response relationship.<br />

293<br />

*<br />

¥


Stimulated time-to-peak (m<strong>in</strong>)<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

*<br />

*<br />

Effects of PCBs on ROS production by Paracentrotus lividus<br />

0<br />

control 0.001 0.01 0.1 1 10<br />

PCB dose <strong>in</strong>jected (ng)<br />

Figure 70. Time-to-peak of <strong>the</strong> ROS production k<strong>in</strong>etics of<br />

stimulated P. lividus coelomocytes accord<strong>in</strong>g to <strong>the</strong> PCB dose<br />

<strong>in</strong>jected: PCB #77 (black dots), #126 (white squares), #153<br />

(asterisks) and #169 (black triangles). Controls were <strong>in</strong>jected with<br />

seawater alone. (Mean ± SE, n=4). (*) significantly different from<br />

<strong>the</strong> control.<br />

Congeners #77 and 126 failed to show dose–response relationships but both congeners<br />

significantly <strong>in</strong>creased <strong>the</strong> time-to-peak (p Tukey=0.02 and 0.001, respectively) at low PCB dose<br />

(0.008 ng).<br />

Regard<strong>in</strong>g congener #169, <strong>the</strong> time-to-peak ten<strong>de</strong>d (p regression=0.086) to be affected accord<strong>in</strong>g<br />

to a dose-response relationship that was best <strong>de</strong>scribed by <strong>the</strong> follow<strong>in</strong>g logarithmic equation:<br />

Y = 2.7 log(X) + 57.7 (R 2 =0.196), where Y is <strong>the</strong> time-to-peak (m<strong>in</strong>) and X is <strong>the</strong> <strong>in</strong>jected<br />

dose (ng).<br />

Table 49 summarises <strong>the</strong> effects of <strong>the</strong> four PCB congeners on parameters of ROS production<br />

by coelomocytes of P. lividus. It appears that congeners #77, 126 and 169 have <strong>the</strong> most<br />

potent immunomodulatory activity <strong>in</strong> contrast to PCB 153 that has none.<br />

Table 49. Summary of <strong>the</strong> observed effects of different PCB congeners on ROS production by Paracentrotus<br />

lividus coelomocytes. Legend: +, significant stimulation (p < 0.05); (+), significant stimulation (0.05 < p < 0.1);<br />

X, no significant effect (p > 0.1); hc, effect observed at high concentration; lc, effect observed at low<br />

concentration; dr, significant dose-response relationship.<br />

ROS production parameter<br />

PCB congener Unstimulated ROS Stimulated ROS Stimulated time-to-peak<br />

production<br />

production<br />

#77 X +, hc +, lc<br />

#126 X +, lc +, lc<br />

#169 X +, dr (+), dr<br />

#153 X X X<br />

294


DISCUSSION<br />

Effects of PCBs on ROS production by Paracentrotus lividus<br />

In <strong>the</strong> ech<strong>in</strong>oid P. lividus, PCBs stimulated <strong>the</strong> cellular response of ROS production while<br />

<strong>de</strong>lay<strong>in</strong>g <strong>the</strong> time of peak production. PCBs are known to <strong>in</strong>hibit a number of cellular<br />

responses <strong>in</strong> <strong>in</strong>vertebrates such as <strong>the</strong> formation of secretory-rosettes and erythrocyte-rosettes,<br />

wound heal<strong>in</strong>g and phagocytosis (Cooper 1992, Fitzpatrick et al. 1992, Goven et al. 1993,<br />

1994). On <strong>the</strong> contrary, an <strong>in</strong>creased respiratory burst <strong>in</strong> response to PCBs has been <strong>de</strong>scribed<br />

<strong>in</strong> human polymorphonuclear cells and granulocytes (Raulf & König 1991; Voie et al. 1998).<br />

It was <strong>de</strong>monstrated that <strong>the</strong>se latter effects were due to <strong>the</strong> stimulation of enzymatic activities<br />

<strong>in</strong>volved <strong>in</strong> signal transduction such as phospholipase and prote<strong>in</strong> k<strong>in</strong>ase activities (Voie et al.<br />

1998). Interest<strong>in</strong>gly, <strong>in</strong> <strong>in</strong>vertebrates, <strong>the</strong> oxidative activity of <strong>the</strong> immune cells can be<br />

triggered by <strong>the</strong> prote<strong>in</strong> k<strong>in</strong>ase C activator PMA (phorbol myristate acetate) (Dikkeboom et<br />

al. 1987). Moreover, this immune response is calcium-<strong>de</strong>pen<strong>de</strong>nt (Torreilles et al. 1999) and<br />

most probably <strong>in</strong>volves a NAD(P)H-oxidase (Noël et al. 1993). It thus seems that ROS<br />

production <strong>in</strong> <strong>in</strong>vertebrates is very similar to <strong>the</strong> respiratory burst of vertebrate phagocytes.<br />

Therefore, we suggest that, <strong>in</strong> ech<strong>in</strong>o<strong>de</strong>rms, PCBs act on targets correspond<strong>in</strong>g to those found<br />

<strong>in</strong> vertebrates (i.e. <strong>the</strong> signal transduction pathway lead<strong>in</strong>g to <strong>the</strong> activation of <strong>the</strong> ROS-<br />

produc<strong>in</strong>g oxidase). This is supported by <strong>the</strong> fact that PCBs act differentially accord<strong>in</strong>g to <strong>the</strong><br />

activation status of coelomocytes: while bacteria-stimulated ROS production was <strong>in</strong>creased,<br />

unstimulated cells rema<strong>in</strong>ed unaffected. While ROS production acts as an efficient cytotoxic<br />

mechanism aga<strong>in</strong>st non-self material, this <strong>in</strong>creased production could be <strong>de</strong>trimental by<br />

trigger<strong>in</strong>g peroxidation of self-tissues.<br />

PCB congeners were found to affect differentially <strong>the</strong> immune response <strong>in</strong> P. lividus: non-<br />

ortho-substituted coplanar congeners (#77, 126 and 169) enhanced and <strong>de</strong>layed ROS<br />

production; <strong>the</strong> non-coplanar congener #153 failed to affect this response. The former ones<br />

show close structural similarities with <strong>the</strong> well-known highly toxic 2,3,7,8-<br />

tetrachlorodibenzo-p-diox<strong>in</strong> (2,3,7,8-T 4CDD), whereas non-coplanar congeners are known to<br />

<strong>in</strong>teract to a lesser extent with physiological mechanisms (Metcalfe 1994, Schweitzer et al.<br />

1997). Our results are thus <strong>in</strong> good agreement with previous studies on <strong>the</strong> toxicity of s<strong>in</strong>gle<br />

PCB congeners <strong>in</strong> relation to <strong>the</strong>ir chemical properties (for a review, see Metcalfe 1994).<br />

Among coplanar PCBs, differences were found <strong>in</strong> <strong>the</strong>ir relative toxicity: PCB #126 stimulated<br />

ROS production at low dose only; PCB 169 affected <strong>the</strong> ROS production accord<strong>in</strong>g to a dose-<br />

<strong>de</strong>pen<strong>de</strong>nt relationships; and PCB 77 had <strong>in</strong>termediate effects. The particular response to<br />

PCB126 could suggest <strong>the</strong> <strong>in</strong>duction of antioxidant enzymes or molecules at higher doses of<br />

this congener. In<strong>de</strong>ed, superoxi<strong>de</strong> dismutase (SOD, scaveng<strong>in</strong>g superoxi<strong>de</strong> anions), catalase<br />

295


Effects of PCBs on ROS production by Paracentrotus lividus<br />

(scaveng<strong>in</strong>g hydrogen peroxi<strong>de</strong>) or glutathione peroxidase (GPx) activities were <strong>de</strong>monstrated<br />

<strong>in</strong> a number of <strong>in</strong>vertebrate phyla (for a review, see Liv<strong>in</strong>gstone 1991). They were showed to<br />

be <strong>in</strong>ducible by xenobiotics such as paraquat (Wenn<strong>in</strong>g et al. 1988). Although noth<strong>in</strong>g is<br />

known on <strong>the</strong>se enzymes <strong>in</strong> ech<strong>in</strong>o<strong>de</strong>rms, occurrence of antioxidant molecules of <strong>the</strong><br />

carotenoid family were <strong>de</strong>monstrated <strong>in</strong> sea urch<strong>in</strong>s (Sh<strong>in</strong>a et al. 1978). Alternatively, <strong>the</strong><br />

absence of ROS production stimulation at higher doses of PCB 126 could reflect <strong>the</strong><br />

<strong>in</strong>duction of <strong>de</strong>toxication mechanisms: components of <strong>the</strong> cytochrome P450 monooxygenase<br />

(MO) system, responsible for <strong>the</strong> biotransformation of aromatic compounds, have been<br />

reported <strong>in</strong> seastars (<strong>de</strong>n Besten et al. 1990b, 1993) and sea urch<strong>in</strong>s (Payne & May 1979). It<br />

was <strong>de</strong>monstrated that, among PCB congeners 118, 126 and 153, only <strong>the</strong> coplanar congener<br />

#126 <strong>in</strong>duced <strong>the</strong> cytochrome P450 monooxygenase (MO) system <strong>in</strong> <strong>the</strong> seastar <strong>Asterias</strong><br />

<strong>rubens</strong> (<strong>de</strong>n Besten et al. 1993). In fact, PCB 126 is known to be a 3-methylcholanthrene (3-<br />

MC)-type <strong>in</strong>ducer of <strong>the</strong> mammalian MO system. The <strong>in</strong>duction of a MO system <strong>in</strong> P. lividus<br />

by PCB 126 could thus expla<strong>in</strong> <strong>the</strong> disappearance of <strong>the</strong> effect of this congener at <strong>in</strong>creas<strong>in</strong>g<br />

doses, although <strong>the</strong> concentration range of PCB 126 used <strong>in</strong> this study (correspond<strong>in</strong>g to<br />

2.6x10 -7 to 2.0x10 -5 µmole kg -1 wet weight animal) were much lower than what was<br />

<strong>de</strong>monstrated as MO-<strong>in</strong>duc<strong>in</strong>g (10 µmole kg -1 ) by <strong>de</strong>n Besten et al. (1993).<br />

In conclusion, all of <strong>the</strong> tested PCB congeners showed different pattern of effects (Table 1):<br />

PCB 153 shows no dose-response relationship nor effects at specific doses, PCB 77 shows no<br />

dose-response relationship but affect ROS production at high dose, PCB 126 shows no dose-<br />

response relationship but affect ROS production at low dose and eventually PCB 169 affects<br />

ROS production accord<strong>in</strong>g to a dose-response relationship. Therefore, <strong>the</strong> effect is <strong>de</strong>pen<strong>de</strong>nt<br />

on <strong>the</strong> congener tested and can thus be consi<strong>de</strong>red as congener-specific. In<strong>de</strong>ed, it has been<br />

reported that PCB congeners act differentially <strong>in</strong> relation to <strong>the</strong>ir biological reactivity<br />

(Borgman et al. 1990; Wilbr<strong>in</strong>k et al. 1991).<br />

It is conclu<strong>de</strong>d that PCBs affect (and possibly impair) <strong>the</strong> immune system of ech<strong>in</strong>o<strong>de</strong>rms <strong>in</strong> a<br />

congener-<strong>de</strong>pen<strong>de</strong>nt manner, <strong>the</strong>reby suggest<strong>in</strong>g that PCBs, particularly coplanar congeners,<br />

actually represent a threat to macrobenthos communities. Fur<strong>the</strong>r work is nee<strong>de</strong>d to <strong>de</strong>term<strong>in</strong>e<br />

<strong>the</strong> exact mechanism(s) un<strong>de</strong>rly<strong>in</strong>g <strong>the</strong> enhancement of ROS production by <strong>the</strong>se xenobiotics.<br />

ACKNOWLEDGEMENTS<br />

The IAEA Mar<strong>in</strong>e Environment Laboratory operates un<strong>de</strong>r a bipartite agreement between <strong>the</strong><br />

International Atomic Energy Agency and <strong>the</strong> Government of <strong>the</strong> Pr<strong>in</strong>cipality of Monaco. G.<br />

Coteur is hol<strong>de</strong>r of a FRIA doctoral grant. Ph. Dubois and M. Warnau are Research<br />

296


Effects of PCBs on ROS production by Paracentrotus lividus<br />

Associates of <strong>the</strong> National Fund for Scientific Research (NFSR, Belgium). This research was<br />

supported by a Belgian Fe<strong>de</strong>ral Research Programme (SSTC, Contract MN/11/30) and by a<br />

special fund<strong>in</strong>g of <strong>the</strong> National Bank of Belgium (BNB) and a NFSR (Belgium) short-term<br />

fellowship to M. Warnau. Contribution of <strong>the</strong> “Centre Interuniversitaire <strong>de</strong> Biologie Mar<strong>in</strong>e”<br />

(CIBIM).<br />

297


298


APPENDIX I: CAPTIONS TO FIGURES<br />

299<br />

APPENDIX I : CAPTIONS TO FIGURES<br />

Figure 1. Number<strong>in</strong>g system for sites of chlor<strong>in</strong>e on a biphenyl molecule (Metcalfe 1994) .. 15<br />

Figure 2. Molecular configuration of 2,3,7,8 TCDD and PCB 169 (Metcalfe 1994) ............. 18<br />

Figure 3. Contam<strong>in</strong>ants transfers between compartments <strong>in</strong> a coastal mo<strong>de</strong>l (Moore et al.<br />

2002) ........................................................................................................................... 20<br />

Figure 4. Mo<strong>de</strong>l <strong>de</strong>scrib<strong>in</strong>g <strong>the</strong> fate of lipophilic xenobiotics <strong>in</strong> organisms (Hodgson & Levi<br />

1993) ........................................................................................................................... 22<br />

Figure 5. Pathways for activation and <strong>de</strong>toxification of organic chemicals (Walker et al. 1996)<br />

.................................................................................................................................... 23<br />

Figure 6. Hypo<strong>the</strong>sized <strong>in</strong>duction mechanism of CYP1A (Bucheli & Fent 1995)................. 24<br />

Figure 7. Diagram of <strong>the</strong> general water circulation <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> (NSTF 1993) ............... 31<br />

Figure 8. The common NE Atlantic sea star <strong>Asterias</strong> <strong>rubens</strong> L. (Hayward & Ryland 1996) . 34<br />

Figure 9. Uptake k<strong>in</strong>etics of <strong>the</strong> sum of 10 PCB congeners (mean concentration <strong>in</strong> ng g –1 total<br />

lipids) <strong>in</strong> bodywall and pyloric caeca of A. <strong>rubens</strong> exposed to spiked sediments........... 47<br />

Figure 10. Uptake k<strong>in</strong>etics of 7 non coplanar PCB congeners (mean concentration <strong>in</strong> ng g –1<br />

total lipids) <strong>in</strong> (A) bodywall and (B) pyloric caeca of A. <strong>rubens</strong> exposed to spiked<br />

sediments..................................................................................................................... 48<br />

Figure 11. Individual uptake k<strong>in</strong>etics of 3 c-PCB congeners (mean concentration <strong>in</strong> ng g –1<br />

total lipids ± SD, n = 3) <strong>in</strong> (A) bodywall and (B) pyloric caeca of A. <strong>rubens</strong> exposed to<br />

spiked sediments. ......................................................................................................... 48<br />

Figure 12. Variation of <strong>the</strong> ratio between PCB 153 and c-PCBs 77, 126 and 169 <strong>in</strong> sediments<br />

(yellow) and sea stars bodywall (orange) and pyloric caeca (green) at different times<br />

dur<strong>in</strong>g <strong>the</strong> exposure period. Time 0: background ratios (before spik<strong>in</strong>g). To fit <strong>the</strong> figure,<br />

PCB 153:169 ratio is divi<strong>de</strong>d by a factor 100 <strong>in</strong> sea stars bodywall, and by 1000 <strong>in</strong><br />

pyloric caeca. ............................................................................................................... 51<br />

Figure 13. Comparison between c-PCB 77 (A), 126 (B) and 169 (C) concentrations (pg WHO<br />

TEQ g -1 lipids; except PCB 169 <strong>in</strong> pyloric caeca: 100 pg WHO TEQ g -1 total lipids) <strong>in</strong><br />

bodywall (white bars) and pyloric caeca (grey bars), and ROS production by bacteriastimulated<br />

amoebocytes (white dots; total chemilum<strong>in</strong>escence, RLU) of A. <strong>rubens</strong><br />

exposed to spiked sediments......................................................................................... 53<br />

Figure 14. Comparison between ROS production by nonstimulated (black dots) and bacteriastimulated<br />

(white dots) amoebocytes (total chemilum<strong>in</strong>escence, RLU) and c-PCB 77<br />

(white squares) 126 (light grey squares) and 169 (dark grey squares) concentrations (ng<br />

g -1 total lipids; except PCB 169 <strong>in</strong> pyloric caeca: pg g -1 total lipids) <strong>in</strong> (A) bodywall and<br />

(B) pyloric caeca of A. <strong>rubens</strong> exposed to spiked sediments. ........................................ 54<br />

Figure 15. Schematic representation of sample process<strong>in</strong>g before ß-spectrometry analysis... 64<br />

Figure 16. <strong>Asterias</strong> <strong>rubens</strong>-<strong>Sea</strong>water experiment. Uptake of 14 C-PCB 153 from seawater <strong>in</strong><br />

different body compartments of <strong>the</strong> sea star (mean concentration <strong>in</strong> ng g -1 total lipids ±<br />

SD, n=3) ...................................................................................................................... 66<br />

Figure 17. <strong>Asterias</strong> <strong>rubens</strong>-Sediment experiment. Uptake of 14 C-PCB 153 from sediments <strong>in</strong><br />

different body compartments of <strong>the</strong> sea star (mean concentration <strong>in</strong> ng g -1 total lipids ±<br />

SD, n=3). ..................................................................................................................... 67<br />

Figure 18. Schematic representation of sample process<strong>in</strong>g before liquid sc<strong>in</strong>tillation count<strong>in</strong>g<br />

.................................................................................................................................... 77


300<br />

APPENDIX I : CAPTIONS TO FIGURES<br />

Figure 19. <strong>Asterias</strong> <strong>rubens</strong>. Uptake of 14 C-PCB 77 from seawater <strong>in</strong> different body<br />

compartments of <strong>the</strong> sea star (mean concentration <strong>in</strong> ng g –1 total lipids ± SD, n = 3)..... 81<br />

Figure 20. L<strong>in</strong>ear regression between 14 C-PCB 77 concentrations (ng g –1 total lipids)<br />

measured <strong>in</strong> oral and aboral body walls of sea stars exposed to contam<strong>in</strong>ated seawater<br />

for 15 d. r: correlation coefficient................................................................................. 83<br />

Figure 21. <strong>Asterias</strong> <strong>rubens</strong>. Uptake of 14 C-PCB 77 from sediments <strong>in</strong> different body<br />

compartments of <strong>the</strong> sea star (mean concentration <strong>in</strong> ng g –1 total lipids ± SD, n = 3)..... 84<br />

Figure 22. L<strong>in</strong>ear regression between 14 C-PCB 77 concentrations (ng g –1 total lipids)<br />

measured <strong>in</strong> rectal and pyloric caeca of sea stars exposed for 34 d to contam<strong>in</strong>ated<br />

sediments. r: correlation coefficient.............................................................................. 85<br />

Figure 23. <strong>Asterias</strong> <strong>rubens</strong>. Uptake of 14 C-PCB 77 from food (Mytilus galloprov<strong>in</strong>cialis) <strong>in</strong><br />

different body compartments of <strong>the</strong> sea star (mean concentration <strong>in</strong> ng g –1 total lipids ±<br />

SD, n = 3). ................................................................................................................... 86<br />

Figure 24. L<strong>in</strong>ear regression between 14 C-PCB 77 concentrations (ng g –1 total lipids)<br />

measured <strong>in</strong> rectal and pyloric caeca of sea stars fed contam<strong>in</strong>ated food for 34 d. r:<br />

correlation coefficient. ................................................................................................. 86<br />

Figure 25. <strong>Asterias</strong> <strong>rubens</strong>. ROS production (sum LCL; non-stimulated and bacteriastimulated<br />

amoebocytes; mean±SD; n = 3) measured <strong>in</strong> sea stars exposed to 14 C-PCB<br />

77 via (A) seawater, (B) sediments, or (C) food............................................................ 88<br />

Figure 26 <strong>Asterias</strong> <strong>rubens</strong>. CYP1A IPP <strong>in</strong>duction (ratio of experimental response to control<br />

group; mean±SD; n = 3) measured us<strong>in</strong>g competitive ELISA <strong>in</strong> sea stars exposed to<br />

14 C-PCB 77 via seawater, sediments or food................................................................. 89<br />

Figure 27. Schematic representation of CYP1A IPP competitive ELISA method. .............. 100<br />

Figure 28. Western blot SDS-PAGE gel. Lanes are: (A) molecular weight standards (kD), (B)<br />

BNF-<strong>in</strong>jected trout microsomes, (C) PCB 126-<strong>in</strong>jected sea star PMS extract and (D)<br />

seawater-<strong>in</strong>jected sea star PMS extract....................................................................... 103<br />

Figure 29 CYP1A IPP <strong>in</strong>duction (<strong>in</strong>duction fold, mean ± SD, n = 3) <strong>in</strong> sea stars <strong>in</strong>jected with<br />

coplanar (126) or non-coplanar (153) PCB................................................................. 104<br />

Figure 30. CYP1A IPP <strong>in</strong>duction (ratio of experimental response to control group) as a<br />

function of <strong>in</strong>jected PCB dose (ng g -1 FW; log scale) for two structurally contrast<strong>in</strong>g<br />

congeners. Curve fitt<strong>in</strong>g: l<strong>in</strong>ear regression of CYP1A <strong>in</strong>duction as a function of <strong>in</strong>jected<br />

dose. .......................................................................................................................... 105<br />

Figure 31. ROS production (total chemilum<strong>in</strong>escence) by non-stimulated amoebocytes as a<br />

function of <strong>in</strong>jected PCB dose (ng g -1 FW; log scale) for two structurally contrast<strong>in</strong>g<br />

congeners. Curve fitt<strong>in</strong>g: l<strong>in</strong>ear regression of ROS production as a function of <strong>in</strong>jected<br />

dose (exclud<strong>in</strong>g data of <strong>the</strong> highest dose); Basel<strong>in</strong>e: ROS production value <strong>in</strong> control<br />

group (n = 15). ........................................................................................................... 106<br />

Figure 32. ROS production (total chemilum<strong>in</strong>escence) by bacteria-stimulated amoebocytes as<br />

a function of <strong>in</strong>jected PCB dose (ng g -1 FW; log scale) for two structurally contrast<strong>in</strong>g<br />

congeners. Curve fitt<strong>in</strong>g: l<strong>in</strong>ear regression of ROS production as a function of <strong>in</strong>jected<br />

dose (exclud<strong>in</strong>g data of <strong>the</strong> highest dose); Basel<strong>in</strong>e: ROS production value <strong>in</strong> control<br />

group (n = 15). ........................................................................................................... 107<br />

Figure 33. Regressions between ROS production (total chemilum<strong>in</strong>escence) and CYP1A IPP<br />

<strong>in</strong>duction (ratio of experimental response to control group) <strong>in</strong> <strong>the</strong> case of non-stimulated<br />

and bacteria-stimulated amoebocytes from PCB 77-<strong>in</strong>jected sea stars. Curve fitt<strong>in</strong>g:<br />

l<strong>in</strong>ear regression of CYP1A IPP <strong>in</strong>duction as a function of ROS production; R 2 :<br />

<strong>de</strong>term<strong>in</strong>ation coefficient............................................................................................ 108<br />

Figure 34. Sampl<strong>in</strong>g stations and transects along and off <strong>the</strong> Belgian coast........................ 118


301<br />

APPENDIX I : CAPTIONS TO FIGURES<br />

Figure 35 Correlation between ∑ 6PCBs (ng g -1 dry weight) and lipid content (g 100g -1 dry wt)<br />

<strong>in</strong> four body compartments of <strong>the</strong> asteroid A. <strong>rubens</strong> for stations Nieuwpoort and 250.<br />

.................................................................................................................................. 125<br />

Figure 36. Correlation between concentration ratio (CR) of PCBs <strong>in</strong> <strong>the</strong> A. <strong>rubens</strong> pyloric<br />

caeca (CR = ∑ 6 PCBs <strong>in</strong> asteroids -ng g -1 lipids-/ ∑ 6 PCBs <strong>in</strong> sediments -ng g -1 dry wt-)<br />

and <strong>the</strong> percentage of <strong>the</strong> gra<strong>in</strong>-size fraction 250-500µm <strong>in</strong> <strong>the</strong> sediments of <strong>the</strong> sampl<strong>in</strong>g<br />

stations (%)................................................................................................................ 126<br />

Figure 37. <strong>Asterias</strong> <strong>rubens</strong>. Concentrations (µg g -1 ; mean+SD; n=5) of heavy metals (Zn, Cu,<br />

Cd, Pb) measured <strong>in</strong> <strong>the</strong> body wall of sea stars sampled <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn North <strong>Sea</strong>.<br />

Histogram bars shar<strong>in</strong>g <strong>the</strong> same superscript do not differ significantly. Cu<br />

concentrations do not differ significantly between stations. ........................................ 148<br />

Figure 38. <strong>Asterias</strong> <strong>rubens</strong>. Concentrations (µg g -1 ; mean+SD; n=5) of heavy metals (Zn, Cu,<br />

Cd, Pb) measured <strong>in</strong> <strong>the</strong> pyloric caeca of sea stars sampled <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn North <strong>Sea</strong>.<br />

Histogram bars shar<strong>in</strong>g <strong>the</strong> same superscript do not differ significantly...................... 149<br />

Figure 39. <strong>Asterias</strong> <strong>rubens</strong>. Concentration (ng g -1 total lipids; mean+SD; n=3) of PCB 153 and<br />

<strong>the</strong> sum of 6 PCB congeners measured <strong>in</strong> <strong>the</strong> pyloric caeca and body wall of sea stars<br />

sampled <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn North <strong>Sea</strong>. Histogram bars shar<strong>in</strong>g <strong>the</strong> same superscript do not<br />

differ significantly...................................................................................................... 150<br />

Figure 40. <strong>Asterias</strong> <strong>rubens</strong>. L<strong>in</strong>ear regressions between PCB 153 and <strong>the</strong> o<strong>the</strong>r consi<strong>de</strong>red<br />

PCB congeners (∑ 5PCB) concentrations (ng g -1 total lipids) measured <strong>in</strong> <strong>the</strong> body wall<br />

(A) or pyloric caeca (B) of sea stars. .......................................................................... 151<br />

Figure 41 <strong>Asterias</strong> <strong>rubens</strong>. ROS production (stimulated and non-stimulated; total<br />

chemilum<strong>in</strong>escence, Relative Light Units (RLU) 10 -6 cells; mean+SD; n=5) measured <strong>in</strong><br />

sea stars sampled <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn North <strong>Sea</strong>. Histogram bars shar<strong>in</strong>g <strong>the</strong> same superscript<br />

do not differ significantly........................................................................................... 152<br />

Figure 42. <strong>Asterias</strong> <strong>rubens</strong>. CYP1A IPP <strong>in</strong>duction (<strong>in</strong>duction fold; mean+SD; n=5) measured<br />

<strong>in</strong> sea stars sampled <strong>in</strong> <strong>the</strong> North <strong>Sea</strong> us<strong>in</strong>g competitive ELISA. Histogram bars shar<strong>in</strong>g<br />

<strong>the</strong> same superscript do not differ significantly........................................................... 152<br />

Figure 43. <strong>Asterias</strong> <strong>rubens</strong>. L<strong>in</strong>ear regressions between CYP1A <strong>in</strong>duction (<strong>in</strong>duction fold) and<br />

PCB 153 or ∑ 6PCB concentrations (ng g -1 total lipids) measured <strong>in</strong> sea stars pyloric<br />

caeca.......................................................................................................................... 153<br />

Figure 44. Map of <strong>the</strong> sou<strong>the</strong>rn North <strong>Sea</strong> show<strong>in</strong>g <strong>the</strong> location of <strong>the</strong> sampl<strong>in</strong>g stations.<br />

Arrows <strong>in</strong>dicate <strong>the</strong> river mouths................................................................................ 163<br />

Figure 45. Biological responses measured <strong>in</strong> Dutch and German stations. (a) Effects of<br />

sediments on <strong>the</strong> early <strong>de</strong>velopment of <strong>Asterias</strong> <strong>rubens</strong> and Psammech<strong>in</strong>us miliaris<br />

(means + sd, n=6). (b) Immune responses of <strong>Asterias</strong> <strong>rubens</strong>: coelomic amoebocyte<br />

concentration (CAC) and bacteria-stimulated amoebocyte ROS production (RLU:<br />

Relative Light Units) (means + sd, n=10)................................................................... 174<br />

Figure 46. Cluster tree of environmental and contam<strong>in</strong>ation variables. Variables show<strong>in</strong>g<br />

Pearson’s distance below 0.2 were grouped. Six groups were <strong>de</strong>term<strong>in</strong>ed: metals levels<br />

<strong>in</strong> <strong>the</strong>


302<br />

APPENDIX I : CAPTIONS TO FIGURES<br />

Figure 47. Relationships between biological, environmental and contam<strong>in</strong>ation variables. All<br />

variables were used <strong>in</strong> a factor analysis us<strong>in</strong>g <strong>the</strong> pr<strong>in</strong>cipal component method. For<br />

abbreviations, see legend of Fig. 3.............................................................................. 177<br />

Figure 48. Contam<strong>in</strong>ant levels (mean pg g -1 dry wt.; n=2) measured <strong>in</strong> sediments from <strong>the</strong><br />

different sampl<strong>in</strong>g stations. ........................................................................................ 191<br />

Figure 49. Calculated ratios between <strong>the</strong> major congener of a given class of contam<strong>in</strong>ant and<br />

<strong>the</strong> sum of all <strong>the</strong> congeners of that given class, <strong>in</strong> sediments (white), mussel (light grey)<br />

and sea stars (dark grey)............................................................................................. 194<br />

Figure 50. Contribution to toxicity (%TEQ) of <strong>the</strong> different classes of contam<strong>in</strong>ants (PCDDs,<br />

PCDFs, cPCBs) <strong>in</strong> sediments (A), mussels (B) and sea stars (C) from <strong>the</strong> different<br />

sampl<strong>in</strong>g stations........................................................................................................ 195<br />

Figure 51. Contam<strong>in</strong>ant levels (mean±SD, pg g -1 lipids) measured <strong>in</strong> mussels (Mytilusedulis)<br />

from <strong>the</strong> different sampl<strong>in</strong>g stations. .......................................................................... 195<br />

Figure 52. Contam<strong>in</strong>ant levels (mean±SD, pg g -1 lipids), and CYP1A immunopositive prote<strong>in</strong><br />

<strong>in</strong>duction (mean±SD, n=9) measured <strong>in</strong> sea stars (<strong>Asterias</strong><strong>rubens</strong>) from <strong>the</strong> different<br />

sampl<strong>in</strong>g stations........................................................................................................ 197<br />

Figure 53. Bioconcentration factors (ratio between <strong>the</strong> mean concentration measured <strong>in</strong> sea<br />

stars and <strong>the</strong> mean concentration measured <strong>in</strong> mussels) calculated for <strong>the</strong> different<br />

congeners, <strong>in</strong> each sampl<strong>in</strong>g station............................................................................ 198<br />

Figure 54. Regressions between mean CYP1A IPP <strong>in</strong>duction (Time fold) and TEQs values of<br />

<strong>the</strong> different DLC classes (pg TEQ g -1 lipids) <strong>de</strong>term<strong>in</strong>ed <strong>in</strong> sea star pyloric caeca. R 2 :<br />

corrected <strong>de</strong>term<strong>in</strong>ation coefficient. ........................................................................... 199<br />

Figure 55. Paracentrotus lividus. Uptake k<strong>in</strong>etics of 14 C-PCB 153 from seawater <strong>in</strong> 4 body<br />

compartments of <strong>the</strong> sea urch<strong>in</strong> (mean concentration ng g -1 total lipids ± SD, n=3)..... 257<br />

Figure 56. Paracentrotus lividus. Loss k<strong>in</strong>etics of 14 C-PCB 153 (mean concentration ng g -1<br />

total lipids ± SD, n = 3) <strong>in</strong> three body compartments of <strong>the</strong> sea urch<strong>in</strong> after a s<strong>in</strong>gle<br />

feed<strong>in</strong>g on radiolabelled food (Posidonia oceanica, (left) or Taonia atomaria (right)). 259<br />

Figure 57. Diagrammatic representation of sample process<strong>in</strong>g prior to liquid sc<strong>in</strong>tillation<br />

count<strong>in</strong>g..................................................................................................................... 267<br />

Figure 58. Sepia offic<strong>in</strong>alis. Uptake of 14 C-PCB 153 from seawater <strong>in</strong> <strong>the</strong> different body<br />

compartments and <strong>in</strong> whole-body juvenile cuttlefish (mean ng g -1 total lipids ± SD; n =<br />

3) ............................................................................................................................... 270<br />

Figure 59. Sepia offic<strong>in</strong>alis. 14 C-PCB 153 distribution (mean %) among <strong>the</strong> different body<br />

compartments dur<strong>in</strong>g <strong>the</strong> seawater experiment. .......................................................... 272<br />

Figure 60. Sepia offic<strong>in</strong>alis. Uptake of 14 C-PCB 153 from sediments <strong>in</strong> <strong>the</strong> different body<br />

compartments and <strong>in</strong> whole-body juvenile cuttlefish (mean ng g -1 total lipids ± SD; n =<br />

3) ............................................................................................................................... 273<br />

Figure 61. Sepia offic<strong>in</strong>alis. 14 C-PCB 153 distribution (mean %) among <strong>the</strong> different body<br />

compartments dur<strong>in</strong>g <strong>the</strong> sediment experiment........................................................... 273<br />

Figure 62. Sepia offic<strong>in</strong>alis. Uptake of 14 C-PCB 153 <strong>in</strong> <strong>the</strong> different body compartments and<br />

<strong>in</strong> whole-body juvenile cuttlefish (mean ng g -1 total lipids ± SD; n = 3) follow<strong>in</strong>g<br />

<strong>in</strong>gestion of radiolabelled food (Artemia sal<strong>in</strong>a)......................................................... 274<br />

Figure 63. Sepia offic<strong>in</strong>alis. 14 C-PCB 153 distribution (mean %) among <strong>the</strong> different body<br />

compartments dur<strong>in</strong>g <strong>the</strong> food experiment.................................................................. 275<br />

Figure 64. Excitation spectra of ethoxyresoruf<strong>in</strong> (2 µM) and resoruf<strong>in</strong> (2.5 nM) standards<br />

from Molecular Probes® - Emission values at 584 nm are expressed as relative values<br />

compared to <strong>the</strong> maximum of fluorescence <strong>in</strong>tensity. Y-scales of both curves are<br />

<strong>in</strong><strong>de</strong>pen<strong>de</strong>nt................................................................................................................ 283


303<br />

APPENDIX I : CAPTIONS TO FIGURES<br />

Figure 65. Emission spectra of ethoxyresoruf<strong>in</strong> (2 µM) and resoruf<strong>in</strong> (2.5 nM) standards from<br />

Molecular Probes® - Excitation values at 535 nm are expressed as relative values<br />

compared to <strong>the</strong> maximum of fluorescence <strong>in</strong>tensity. Same Y-scales for both curves. 284<br />

Figure 66. Emission spectra of ethoxyresoruf<strong>in</strong> (2 µM) and resoruf<strong>in</strong> (2.5 nM) standards from<br />

Molecular Probes® - Excitation values at 560 nm are expressed as relative values<br />

compared to <strong>the</strong> maximum of fluorescence <strong>in</strong>tensity. Same Y-scales for both curves. 285<br />

Figure 67. Stimulated vs. unstimulated ROS production by coelomocytes of P. lividus:<br />

chemilum<strong>in</strong>escence (mean ± SE, n=4) of bacteria-stimulated (black squares) or<br />

unstimulated (white dots) coelomocytes over time. .................................................... 292<br />

Figure 68. ROS production (total chemilum<strong>in</strong>escence) by unstimulated coelomocytes of P.<br />

lividus accord<strong>in</strong>g to <strong>the</strong> PCB dose <strong>in</strong>jected: PCB #77 (black dots), #126 (white squares),<br />

#153 (asterisks) and #169 (black triangles). Controls were <strong>in</strong>jected with seawater alone.<br />

(Mean ± SE, n=4)....................................................................................................... 293<br />

Figure 69. ROS production (total chemilum<strong>in</strong>escence) by stimulated coelomocytes of P.<br />

lividus accord<strong>in</strong>g to <strong>the</strong> PCB dose <strong>in</strong>jected: PCB #77 (black dots), #126 (white squares),<br />

#153 (asterisks) and #169 (black triangles). Controls were <strong>in</strong>jected with seawater alone.<br />

(Mean ± SE, n=4). (*) significantly different from <strong>the</strong> control; (¥) significant doseresponse<br />

relationship.................................................................................................. 293<br />

Figure 70. Time-to-peak of <strong>the</strong> ROS production k<strong>in</strong>etics of stimulated P. lividus<br />

coelomocytes accord<strong>in</strong>g to <strong>the</strong> PCB dose <strong>in</strong>jected: PCB #77 (black dots), #126 (white<br />

squares), #153 (asterisks) and #169 (black triangles). Controls were <strong>in</strong>jected with<br />

seawater alone. (Mean ± SE, n=4). (*) significantly different from <strong>the</strong> control. .......... 294


APPENDIX II: CAPTIONS TO TABLES<br />

304<br />

APPENDIX II : CAPTIONS TO TABLES<br />

Table 1. Protective and non-protective responses to chemicals (Walker et al. 1996)............. 24<br />

Table 2. Biomarkers at different organizational levels (Walker et al. 1996).......................... 28<br />

Table 3. Sediments characteristics: total and organic carbon content (mg C g -1 ), and gra<strong>in</strong>size<br />

distribution (%)..................................................................................................... 43<br />

Table 4. Concentration of different PCB congeners <strong>in</strong> <strong>the</strong> sediments (mean concentration; ng<br />

g -1 dry wt; n=3). ........................................................................................................... 49<br />

Table 5. Parameters and statistics of <strong>the</strong> equations <strong>de</strong>scrib<strong>in</strong>g uptake k<strong>in</strong>etics of <strong>the</strong> noncoplanar<br />

PCB congeners accumulated from sediments <strong>in</strong> two body compartments of<br />

<strong>Asterias</strong> <strong>rubens</strong>. Mo<strong>de</strong>l used: C(t)=C 0+C ss.(1-e -k.t ) where C(t) and C 0 are PCB<br />

concentrations (ng g -1 lipids) respectively at time t (d) and at time 0 and C ss is <strong>the</strong> PCB<br />

concentration <strong>in</strong>corporated at steady-state; k is <strong>the</strong> <strong>de</strong>puration rate constant (d -1 ); ASE is<br />

<strong>the</strong> asymptotic standard error; C BKD is <strong>the</strong> background PCB concentrations, measured <strong>in</strong><br />

sea stars before start<strong>in</strong>g <strong>the</strong> experiment; R 2<br />

corr is <strong>the</strong> corrected <strong>de</strong>term<strong>in</strong>ation coefficient.<br />

.................................................................................................................................... 50<br />

Table 6. PCB concentrations over time (d) (mean ± SD; ng g -1 lipids) <strong>in</strong> <strong>the</strong> bodywall (A) and<br />

pyloric caeca (B) of <strong>the</strong> sea star.................................................................................... 50<br />

Table 7. Characteristics of <strong>the</strong> background and ad<strong>de</strong>d concentrations of PCB 153.<br />

Background concentrations were measured <strong>in</strong> sediments, seawater and sea stars (body<br />

wall and pyloric caeca) <strong>the</strong> day before start<strong>in</strong>g <strong>the</strong> experiment; ad<strong>de</strong>d concentrations<br />

were measured <strong>in</strong> subsamples of sediments and seawater regularly collected <strong>in</strong> <strong>the</strong><br />

experimental microcosms throughout <strong>the</strong> experiment. Ranges of values of PCB 153<br />

(unless specified) reported for sediments and seawater <strong>in</strong> <strong>the</strong> field are given for<br />

comparison. ................................................................................................................. 62<br />

Table 8. <strong>Asterias</strong> <strong>rubens</strong>. Parameters and statistics of <strong>the</strong> equations <strong>de</strong>scrib<strong>in</strong>g <strong>the</strong> uptake of<br />

14 C-PCB #153 from seawater and sediments <strong>in</strong> <strong>the</strong> body compartments of <strong>the</strong> sea star. 67<br />

Table 9 <strong>Asterias</strong> <strong>rubens</strong>. Concentration factors (CF; maximum, m<strong>in</strong>imum and mean values) <strong>in</strong><br />

<strong>the</strong> body compartments of <strong>the</strong> sea star after 34 days of exposure via seawater (A).<br />

Transfer factors (TF; maximum, m<strong>in</strong>imum, and mean values) <strong>in</strong> <strong>the</strong> body compartments<br />

of <strong>the</strong> sea star after 34 days of exposure via sediments (B). CFs are calculated as <strong>the</strong> ratio<br />

between PCB 153 concentration <strong>in</strong> <strong>the</strong> sea star body compartments (ng g -1 total lipids)<br />

and its concentration <strong>in</strong> seawater (ng g -1 ). TFs are calculated as <strong>the</strong> ratio between PCB<br />

153 concentration <strong>in</strong> <strong>the</strong> sea star body compartments (ng g -1 total lipids) and its<br />

concentration <strong>in</strong> sediments (ng g -1 dry wt). ................................................................... 68<br />

Table 10 <strong>Asterias</strong> <strong>rubens</strong>. PCB distribution (mean % ± SD, n = 3) <strong>in</strong> <strong>the</strong> different body<br />

compartments of <strong>the</strong> sea star after 34 days of exposure via seawater or sediments........ 68<br />

Table 11 <strong>Asterias</strong> <strong>rubens</strong>. Comparisons among PCB #153 concentrations obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong><br />

present study (background + <strong>in</strong>corporated concentrations) and previous field studies <strong>in</strong><br />

<strong>the</strong> North <strong>Sea</strong>. .............................................................................................................. 70<br />

Table 12 <strong>Asterias</strong> <strong>rubens</strong>. Parameters and statistics of <strong>the</strong> equations <strong>de</strong>scrib<strong>in</strong>g <strong>the</strong> uptake of<br />

14 C-PCB #77 <strong>in</strong> different body compartments of <strong>the</strong> sea star. L (l<strong>in</strong>ear mo<strong>de</strong>l): C(t)=kt;<br />

S (saturation mo<strong>de</strong>l): C(t)=Css.(1-e -kt ); where C(t) and Css: 14 C-PCB #77 concentrations


305<br />

APPENDIX II : CAPTIONS TO TABLES<br />

(ng g -1 lipids) respectively at time t (d) and at steady-state; k: rate constant (d -1 ); ASE:<br />

asymptotic standard error; R 2 : corrected <strong>de</strong>term<strong>in</strong>ation coefficient. .............................. 81<br />

Table 13 <strong>Asterias</strong> <strong>rubens</strong>. Concentration and Transfer factors, CF and TF (mean ± SD; n=24<br />

for seawater exposure and n=33 for sediments and food exposures) <strong>in</strong> body<br />

compartments at <strong>the</strong> end of exposure periods via seawater, sediments or food. CFs<br />

calculated as ratio between PCB 77 concentration <strong>in</strong> body compartments (ng g –1 total<br />

lipids) and its concentration <strong>in</strong> seawater (ng g -1 ). TFs calculated as ratio between PCB 77<br />

concentration <strong>in</strong> body compartments (ng g –1 total lipids) and its concentration <strong>in</strong><br />

sediments (ng g -1 dry wt) or <strong>in</strong> food (ng g -1 total lipids). BW: bodywall, Pyl. Caec.:<br />

pyloric caeca, Rect. Caec.: rectal caeca, C.D.S.: central digestive system ..................... 82<br />

Table 14 <strong>Asterias</strong> <strong>rubens</strong>. Parameters and statistics of <strong>the</strong> equations <strong>de</strong>scrib<strong>in</strong>g <strong>the</strong> <strong>in</strong>duction<br />

of CYP1A immunopositive prote<strong>in</strong> dur<strong>in</strong>g <strong>the</strong> exposure experiments. K<strong>in</strong>etics were<br />

<strong>de</strong>scribed us<strong>in</strong>g a saturation mo<strong>de</strong>l: C(t)=Css(1-e -lt ) where l is <strong>the</strong> rate constant (d -1 ).<br />

O<strong>the</strong>r symbols as <strong>in</strong> Table 12. ...................................................................................... 89<br />

Table 15. Optical <strong>de</strong>nsities measured <strong>in</strong> a representative ELISA (mean ± SD). Ab = rabbit<br />

antitrout CYP1A antibody; SW = seawater <strong>in</strong>jected sea stars (100 µg ml -1 ); AC =<br />

acetone <strong>in</strong>jected sea stars (100 µg ml -1 ); Tµ = trout microsomes (100 µg ml -1 ); B * Tµ =<br />

biot<strong>in</strong>ylated trout microsomes; Av-HRP = avid<strong>in</strong>e-coupled horse radish peroxidase;<br />

O.D. = optical <strong>de</strong>nsity (mean ± SD, biological triplicates); - = no sample/treatment .. 104<br />

Table 16. Positions and characteristics of <strong>the</strong> sampl<strong>in</strong>g stations ......................................... 118<br />

Table 17. Certified and measured PCB concentrations (ng g -1 dry wt ± sd, n = 4) <strong>in</strong> a certified<br />

material reference (sediments from <strong>the</strong> harbour “Nova Scotian” <strong>in</strong> East of Canada) ... 120<br />

Table 18. Certified (C; mean value ± 95% CI) and measured (M; m<strong>in</strong> and max values, n = 6)<br />

metal concentrations (mg g -1 dry wt) of certified reference material (Mytilus edulis<br />

tissues, CRM n°278; BCR). ....................................................................................... 121<br />

Table 19. PCB concentrations (mean ± sd; mg g -1 dry wt, n = 6) <strong>in</strong> <strong>the</strong> bulk fraction of <strong>the</strong><br />

sediments. Superscripts <strong>in</strong>dicate rank<strong>in</strong>g of stations accord<strong>in</strong>g to <strong>de</strong>creas<strong>in</strong>g<br />

concentrations of a given PCB congener (a>b>c>…). Stations with concentrations<br />

shar<strong>in</strong>g a common superscript are not significantly different from each o<strong>the</strong>r (multiple<br />

comparison test of Tukey; a = 0.05). nm = not measured ........................................... 122<br />

Table 20. PCB concentrations (mean ± sd; ng g -1 total lipids, n = 3 pools of 3) <strong>in</strong> <strong>the</strong> different<br />

body compartments of <strong>the</strong> asteroid <strong>Asterias</strong> <strong>rubens</strong>. Superscripts <strong>in</strong>dicate rank<strong>in</strong>g of<br />

stations accord<strong>in</strong>g to <strong>de</strong>creas<strong>in</strong>g concentrations of a given congener (a>b>c>…).<br />

Stations with concentrations shar<strong>in</strong>g a common superscript are not significantly different<br />

from each o<strong>the</strong>r (multiple comparison test of Tukey; a = 0.05). nm = not measured... 123<br />

Table 21. Gra<strong>in</strong>-size distribution (mean % ± sd, n = 6) <strong>in</strong> <strong>the</strong> dried sediments for <strong>the</strong> 19<br />

sampl<strong>in</strong>g stations. Predom<strong>in</strong>ant gra<strong>in</strong>-size fractions are <strong>in</strong>dicated <strong>in</strong> bold................... 126<br />

Table 22 Metal concentrations (mean ± sd; mg g -1 dry wt, n = 6) <strong>in</strong> <strong>the</strong> different gra<strong>in</strong>-size<br />

fractions of <strong>the</strong> sediments. Superscripts <strong>in</strong>dicate rank<strong>in</strong>g of stations accord<strong>in</strong>g to<br />

<strong>de</strong>creas<strong>in</strong>g concentrations of a given metal (a>b>c>…). Stations with concentrations<br />

shar<strong>in</strong>g a common superscript are not significantly different from each o<strong>the</strong>r (multiple<br />

comparison test of Tukey; a = 0.05)........................................................................... 127<br />

Table 23 Correlation coefficients (r) between metal concentrations measured <strong>in</strong> <strong>the</strong> different<br />

gra<strong>in</strong>-size fractions of <strong>the</strong> sediments (pcorrelation always < 0.0001 except when ns -non<br />

significant correlation- is <strong>in</strong>dicated) ........................................................................... 129<br />

Table 24. Variability (%) <strong>in</strong> metal concentrations measured <strong>in</strong> sediments expla<strong>in</strong>ed by <strong>the</strong><br />

factors consi<strong>de</strong>red (station, gra<strong>in</strong>-size) and <strong>the</strong>ir <strong>in</strong>teraction........................................ 130<br />

Table 25 Metal concentrations (mean ± sd; mg g -1 dry wt, n = 5 pools of 3) <strong>in</strong> <strong>the</strong> different<br />

body compartments of <strong>the</strong> sea star <strong>Asterias</strong> <strong>rubens</strong>. Superscripts <strong>in</strong>dicate rank<strong>in</strong>g of<br />

stations accord<strong>in</strong>g to <strong>de</strong>creas<strong>in</strong>g concentrations of a given metal (a>b>c>…). Stations


306<br />

APPENDIX II : CAPTIONS TO TABLES<br />

with concentrations shar<strong>in</strong>g a common superscript are not significantly different from<br />

each o<strong>the</strong>r (multiple comparison test of Tukey; a = 0.05)........................................... 132<br />

Table 26. Correlation coefficients (r) between metal concentrations measured <strong>in</strong> <strong>the</strong> different<br />

sea star body compartments (p correlation always


307<br />

APPENDIX II : CAPTIONS TO TABLES<br />

oceanica shoots, and Taonia atomaria thallia regularly collected <strong>in</strong> <strong>the</strong> experimental<br />

microcosms throughout <strong>the</strong> experiment. ..................................................................... 255<br />

Table 43. Paracentrotus lividus. Parameters and statistics of <strong>the</strong> equation fitt<strong>in</strong>g <strong>the</strong> uptake of<br />

14 C-PCB 153 <strong>in</strong> <strong>the</strong> body compartments of ech<strong>in</strong>oids exposed via seawater: C(t) = A e k.t .<br />

C(t): 14 C-PCB 153 concentration (ng g -1 lipids) at time t (d); A: ord<strong>in</strong>ate at <strong>the</strong> orig<strong>in</strong> (ng<br />

g -1 lipids); k: rate constant (d -1 ); ASE: asymptotic standard error; R 2 : <strong>de</strong>term<strong>in</strong>ation<br />

coefficient.................................................................................................................. 257<br />

Table 44. Paracentrotus lividus. Concentrations and distribution of PCB 153 <strong>in</strong>corporated <strong>in</strong><br />

<strong>the</strong> different body compartments of <strong>the</strong> ech<strong>in</strong>oids exposed to <strong>the</strong> congener via seawater.<br />

A. PCB 153 concentrations (mean ng g -1 lipids ± SD, n = 3). Mean concentrations<br />

shar<strong>in</strong>g <strong>the</strong> same superscript do not differ significantly between each o<strong>the</strong>r. B. PCB 153<br />

distribution (mean % ± SD, n = 3) among body compartments................................... 258<br />

Table 45. Paracentrotus lividus. PCB concentrations (ng g -1 lipids; mean ± SD, n = 3)<br />

measured <strong>in</strong> <strong>the</strong> sea urch<strong>in</strong> body compartments after a s<strong>in</strong>gle feed<strong>in</strong>g, us<strong>in</strong>g two different<br />

food (Posidonia oceanica vs Taonia atomaria). Mean concentrations shar<strong>in</strong>g <strong>the</strong> same<br />

superscript do not differ significantly among each o<strong>the</strong>r (p Tukey test > 0.05). .................. 259<br />

Table 46. Paracentrotus lividus. Parameters and statistics of <strong>the</strong> equation <strong>de</strong>scrib<strong>in</strong>g <strong>the</strong> loss<br />

of PCB #153 from <strong>the</strong> sea urch<strong>in</strong> body compartments after a s<strong>in</strong>gle feed<strong>in</strong>g on Posidonia<br />

oceanica and Taonia atomaria. Equation is C(t) = C(0) e -k t ; where C(t) and C(0) are 14 C-<br />

PCB 153 concentrations (ng g -1 lipids) at time t (d) and time 0, respectively, and k is <strong>the</strong><br />

rate constant (d -1 ). ASE: asymptotic standard error; R 2 : corrected <strong>de</strong>term<strong>in</strong>ation<br />

coefficient; Tb 1/2: Biological half-life (d).................................................................... 260<br />

Table 47. Sepia offic<strong>in</strong>alis. Parameters and statistics of <strong>the</strong> equations <strong>de</strong>scrib<strong>in</strong>g <strong>the</strong> uptake of<br />

14 C-PCB #153 <strong>in</strong> different body compartments of <strong>the</strong> cuttlefish exposed via seawater,<br />

sediments and food..................................................................................................... 270<br />

Table 48. Sepia offic<strong>in</strong>alis. Concentration factors and transfer factors (CF, TF; mean ± SD; n<br />

= 3) <strong>in</strong> <strong>the</strong> body compartments and <strong>in</strong> whole-body juvenile cuttlefish at <strong>the</strong> end of <strong>the</strong><br />

experimental exposures.............................................................................................. 271<br />

Table 49. Summary of <strong>the</strong> observed effects of different PCB congeners on ROS production by<br />

Paracentrotus lividus coelomocytes. Legend: +, significant stimulation (p < 0.05); (+),<br />

significant stimulation (0.05 < p < 0.1); X, no significant effect (p > 0.1); hc, effect<br />

observed at high concentration; lc, effect observed at low concentration; dr, significant<br />

dose-response relationship.......................................................................................... 294


APPENDIX III: CAPTIONS TO EQUATIONS<br />

308<br />

APPENDIX III : CAPTIONS TO EQUATIONS<br />

Equation 1: C t = C 0 + C ss (1 - e -kt ),........................................................................................ 46<br />

Equation 2: C(t) = Css (1-e -k.t ) .............................................................................................. 65<br />

Equation 3: C(t) = C 0 e k.t ...................................................................................................... 65<br />

Equation 4: Ct = Css (1-e -k.t ) / 1+e -k.(t-I) .................................................................................. 65<br />

Equation 5: C(t) = Css (1-e -k e .t ) ............................................................................................. 80<br />

Equation 6: C(t) = k u.t.......................................................................................................... 80<br />

Equation 7: y = a . e b.CYPi .................................................................................................... 102<br />

Equation 8: CYP i = 100 – (100 . A/A max)............................................................................ 102<br />

Equation 9: CYP I = (a . e b.CYPi )/(CYP ic)............................................................................... 102<br />

Equation 10: C(t) = A e k t ................................................................................................... 256<br />

Equation 11: C(t) = C(0) e -k t .............................................................................................. 256<br />

Equation 12: C(t) = C o +k.t ................................................................................................ 269<br />

Equation 13: C(t) = C ss (1-e -k.t ) ........................................................................................... 269<br />

Equation 14: C(t) = C ss (1-e -k.t ) / 1+e -k.(t-I) ............................................................................. 269

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!