02.04.2013 Views

Primordial non-Gaussianity in the cosmological perturbations - CBPF

Primordial non-Gaussianity in the cosmological perturbations - CBPF

Primordial non-Gaussianity in the cosmological perturbations - CBPF

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

3 Entropy<br />

Throughout most of <strong>the</strong> history of <strong>the</strong> universe <strong>the</strong> reaction rates of particles <strong>in</strong> <strong>the</strong> <strong>the</strong>rmal bath<br />

were much greater than <strong>the</strong> expansion rate of <strong>the</strong> universe and local <strong>the</strong>rmal equilibrium (LTE) was<br />

atta<strong>in</strong>ed. In this case <strong>the</strong> entropy per comov<strong>in</strong>g volume element rema<strong>in</strong>s constant. The entropy <strong>in</strong> a<br />

comov<strong>in</strong>g volume provides a very useful quantity dur<strong>in</strong>g <strong>the</strong> expansion of <strong>the</strong> universe. The second<br />

law of <strong>the</strong>ormodynamics as applied to a comov<strong>in</strong>g volume elementof unit coord<strong>in</strong>ate volume and<br />

physical volume V = a 3 , implies that (we assume small chemical potentials)<br />

The <strong>in</strong>tegrability condition<br />

relates <strong>the</strong> energy density and pressure<br />

or, equivalently,<br />

We <strong>the</strong>refore obta<strong>in</strong> from Eq. (118) that<br />

dS = 1<br />

T<br />

T dS = d(ρV ) + P dV = d[(ρ + P )V ] − V dP. (118)<br />

∂ 2 S<br />

∂T ∂V = ∂2 S<br />

∂V ∂T<br />

T dP<br />

dT<br />

dP =<br />

(119)<br />

= ρ + P, (120)<br />

ρ + P<br />

T<br />

<br />

dT (ρ + P )V<br />

d[(ρ + P )V ] − (ρ + P )V = d<br />

T 2 T<br />

That is, up to an additional constant, <strong>the</strong> entropy per comov<strong>in</strong>g volume is<br />

Reacll that <strong>the</strong> first law (energy conservation) can be written as<br />

Thus substitut<strong>in</strong>g (121) <strong>in</strong> Eq. (124), we obta<strong>in</strong><br />

dT. (121)<br />

<br />

+ const. . (122)<br />

3 (ρ + P )<br />

S = a . (123)<br />

T<br />

d[(ρ + P )V ] = V dP. (124)<br />

<br />

(ρ + P )V<br />

d<br />

= 0. (125)<br />

T<br />

This implies that <strong>in</strong> <strong>the</strong>rmal equilibrium <strong>the</strong> entropy per comov<strong>in</strong>g volume V , S, is conserved. It is<br />

useful to def<strong>in</strong>e <strong>the</strong> entropy density s as<br />

32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!