02.04.2013 Views

Multiple orthogonal polynomials as special functions

Multiple orthogonal polynomials as special functions

Multiple orthogonal polynomials as special functions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Multiple</strong> <strong>orthogonal</strong> <strong>polynomials</strong> <strong>as</strong> <strong>special</strong><br />

<strong>functions</strong><br />

Walter Van Assche<br />

April 7, 2011<br />

1 / 27


<strong>Multiple</strong> <strong>orthogonal</strong> <strong>polynomials</strong><br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

definition<br />

type II multiple<br />

<strong>orthogonal</strong> <strong>polynomials</strong><br />

type I multiple<br />

<strong>orthogonal</strong> <strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

Recurrence relations<br />

Various examples<br />

2 / 27


definition<br />

Polynomials of one variable but indexed by a multi-index<br />

n = (n1,n2,...,nr) ∈ N r (r ≥ 1) satisfying <strong>orthogonal</strong>ity<br />

conditions with respect tor positive me<strong>as</strong>ureµ1,...,µr on the<br />

real line.<br />

They appear naturally in Hermite-Padé approximation tor<br />

<strong>functions</strong><br />

fj(z) =<br />

<br />

dµj(x)<br />

, 1 ≤ j ≤ r.<br />

z −x<br />

There are two types: type I and type II<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

definition<br />

type II multiple<br />

<strong>orthogonal</strong> <strong>polynomials</strong><br />

type I multiple<br />

<strong>orthogonal</strong> <strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

Recurrence relations<br />

Various examples<br />

3 / 27


type II multiple <strong>orthogonal</strong> <strong>polynomials</strong><br />

Pn is a monic polynomial of degree|n| = n1 +n2 +···+nr<br />

for which<br />

<br />

Pn(x)x k dµ1(x) = 0, k = 0,1,...,n1 −1<br />

<br />

.<br />

Pn(x)x k dµr(x) = 0, k = 0,1,...,nr −1<br />

|n| linear conditions for|n| unknowns.<br />

Solution exists and unique: n is a normal index for type II.<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

definition<br />

type II multiple<br />

<strong>orthogonal</strong> <strong>polynomials</strong><br />

type I multiple<br />

<strong>orthogonal</strong> <strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

Recurrence relations<br />

Various examples<br />

4 / 27


type I multiple <strong>orthogonal</strong> <strong>polynomials</strong><br />

(An,1,...,An,r) is a vector ofr <strong>polynomials</strong>, withAn,j of<br />

degreenj −1, for which<br />

<br />

<br />

x k<br />

x |n|−1<br />

r<br />

An,j dµj(x) = 0, k = 0,1,...,|n|−2<br />

j=1<br />

r<br />

An,j dµj(x) = 1.<br />

j=1<br />

|n| linear conditions for|n| unknowns.<br />

Solution exists and unique: n is a normal index for type I (⇔for<br />

type II).<br />

Notation:<br />

Qn(x) =<br />

r<br />

j=1<br />

An,j(x)wj(x), wj(x) = dµj(x)<br />

dµ(x) .<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

definition<br />

type II multiple<br />

<strong>orthogonal</strong> <strong>polynomials</strong><br />

type I multiple<br />

<strong>orthogonal</strong> <strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

Recurrence relations<br />

Various examples<br />

5 / 27


Determinantal point processes<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

what?<br />

definition<br />

bi<strong>orthogonal</strong> ensembles<br />

random matrices<br />

random matrices with<br />

external source<br />

non-intersecting<br />

Brownian motions<br />

non-intersecting<br />

Brownian motions<br />

squared Bessel paths<br />

Recurrence relations<br />

Various examples<br />

6 / 27


what?<br />

Surveys<br />

■ A. Borodin: Determinantal point processes, arXiv:0911.1153 [math.PR]<br />

■ T. Tao: http://terrytao.worldpress.com/2009/08/23/determinantal-processes<br />

■ A. Soshnikov: Determinantal random point fields, Russian Math. Surveys 55<br />

(2000)<br />

■ R. Lyons: Determinantal probability me<strong>as</strong>ures, Publ. Math. Inst. Hautes<br />

Etudes Sci. 98 (2003)<br />

■ K. Johansson: Random matrices and determinantal processes,<br />

arXiv:math-ph/0510038<br />

7 / 27


definition<br />

A point process onRis determinantal if there exists a kernel<br />

K : R×R → R such that<br />

Pr{∃ particle in each(xi,xi +dxi),1 ≤ i ≤ n}<br />

= det K(xi,xj) n<br />

i,j=1 dx1dx2...dxn.<br />

(provided these probabilities are positive, of course).<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

what?<br />

definition<br />

bi<strong>orthogonal</strong> ensembles<br />

random matrices<br />

random matrices with<br />

external source<br />

non-intersecting<br />

Brownian motions<br />

non-intersecting<br />

Brownian motions<br />

squared Bessel paths<br />

Recurrence relations<br />

Various examples<br />

8 / 27


i<strong>orthogonal</strong> ensembles<br />

If(φi)i=1,2,...,n and(ψi)i=1,2,...,n are <strong>functions</strong> onRand<br />

Zn =<br />

<br />

R n<br />

det φi(xj) n<br />

i,j=1 det ψi(xj) n<br />

i,j=1 dx1...dxn,<br />

then the point process with<br />

P(x1,...,xn) = Z −1<br />

n det φi(xj) n<br />

i,j=1 det ψi(xj) n<br />

i,j=1<br />

is determinantal with<br />

and<br />

K(x,y) =<br />

n<br />

i=1<br />

Gi,j =<br />

<br />

n<br />

(G −1 )i,jφi(x)ψj(y),<br />

j=1<br />

R<br />

φi(x)ψj(x)dx<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

what?<br />

definition<br />

bi<strong>orthogonal</strong> ensembles<br />

random matrices<br />

random matrices with<br />

external source<br />

non-intersecting<br />

Brownian motions<br />

non-intersecting<br />

Brownian motions<br />

squared Bessel paths<br />

Recurrence relations<br />

Various examples<br />

9 / 27


andom matrices<br />

For the Gaussian Unitary Ensemble (GUE) of Hermitiann×n<br />

matricesM with probability distribution<br />

Z −1<br />

n e −2TrV(M) dM<br />

the eigenvalues are a determinantal point process with<br />

K(x,y) =<br />

n−1 <br />

i=0<br />

pi(x)pi(y)e −V(x)−V(y)<br />

wherep0(x),p1(x),p2(x),... are the orthonormal <strong>polynomials</strong><br />

for the weighte −2V(x) :<br />

<br />

pi(x)pj(x)e −2V(x) dx = δm,n<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

what?<br />

definition<br />

bi<strong>orthogonal</strong> ensembles<br />

random matrices<br />

random matrices with<br />

external source<br />

non-intersecting<br />

Brownian motions<br />

non-intersecting<br />

Brownian motions<br />

squared Bessel paths<br />

Recurrence relations<br />

Various examples<br />

10 / 27


andom matrices with external source<br />

IfAis a given Hermitiann×n matrix and the probability<br />

distribution is<br />

Z −1<br />

n e −Tr(V(M)+AM) dM,<br />

then the eigenvalues are a determinantal process with<br />

K(x,y) =<br />

|n|−1<br />

<br />

i=0<br />

Pni (x)Qni+1 (x)<br />

wherePn andQn are multiple <strong>orthogonal</strong> <strong>polynomials</strong> for the<br />

me<strong>as</strong>urese −V(x)−ajx (1 ≤ j ≤ r), witha1,...,ar the<br />

eigenvalues ofAandnj the multiplicity of the eigenvaluesaj.<br />

The multi-indices(n0,...,nn) are a path inN r fromn0 =0 to<br />

n |n| = n such thatni+1 −ni =ej for somej ∈ {1,...,r}<br />

ande1,...,er are the unit vectors inN r .<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

what?<br />

definition<br />

bi<strong>orthogonal</strong> ensembles<br />

random matrices<br />

random matrices with<br />

external source<br />

non-intersecting<br />

Brownian motions<br />

non-intersecting<br />

Brownian motions<br />

squared Bessel paths<br />

Recurrence relations<br />

Various examples<br />

11 / 27


non-intersecting Brownian motions<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

what?<br />

definition<br />

bi<strong>orthogonal</strong> ensembles<br />

random matrices<br />

random matrices with<br />

external source<br />

non-intersecting<br />

Brownian motions<br />

non-intersecting<br />

Brownian motions<br />

squared Bessel paths<br />

Recurrence relations<br />

Various examples<br />

12 / 26


non-intersecting Brownian motions<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

what?<br />

definition<br />

bi<strong>orthogonal</strong> ensembles<br />

random matrices<br />

random matrices with<br />

external source<br />

non-intersecting<br />

Brownian motions<br />

non-intersecting<br />

Brownian motions<br />

squared Bessel paths<br />

Recurrence relations<br />

Various examples<br />

13 / 26


squared Bessel paths<br />

Y(t) = X 2 1(t)+X 2 2(t)+···+X 2 d (t)<br />

where(X1(t),X2(t),...,Xd(t)) is ad-dimensional Brownian<br />

motion starting from(a1,...,ad) and ending at(0,0,...,0).<br />

This is a bi<strong>orthogonal</strong> ensemble which uses modified Bessel<br />

<strong>functions</strong>Iα withd = 2(α+1).<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

what?<br />

definition<br />

bi<strong>orthogonal</strong> ensembles<br />

random matrices<br />

random matrices with<br />

external source<br />

non-intersecting<br />

Brownian motions<br />

non-intersecting<br />

Brownian motions<br />

squared Bessel paths<br />

Recurrence relations<br />

Various examples<br />

14 / 27


Recurrence relations<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

Recurrence relations<br />

nearest neighbor<br />

recurrence relations<br />

compatibility relation<br />

Christoffel-Darboux<br />

formula<br />

Various examples<br />

15 / 27


nearest neighbor recurrence relations<br />

Orthogonal <strong>polynomials</strong> on the real line always satisfy a<br />

three-term recurrence relation.<br />

xpn(x) = an+1pn+1(x)+bnpn(x)+anpn−1(x).<br />

<strong>Multiple</strong> <strong>orthogonal</strong> <strong>polynomials</strong> (with all multi-indices normal)<br />

satisfy a system ofr recurrence relations<br />

xPn(x) = Pn+ek (x)+bn,kPn(x)+<br />

r<br />

j=1<br />

xQn(x) = Qn−ek (x)+bn−ek,kQn(x)+<br />

an,jPn−ej<br />

r<br />

j=1<br />

an,jQn+ej<br />

(x), 1 ≤ k ≤ r.<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

Recurrence relations<br />

nearest neighbor<br />

recurrence relations<br />

compatibility relation<br />

Christoffel-Darboux<br />

formula<br />

Various examples<br />

(x), 1 ≤ k ≤ r.<br />

16 / 27


compatibility relation<br />

The recurrence coefficients satisfy some partial difference<br />

equations (Van Assche, 2011).<br />

Suppose1 ≤ i = j ≤ r, then<br />

bn+ei,j −bn,j = bn+ej,i −bn,i<br />

r r<br />

<br />

bn+ej,i bn,i<br />

an+ej,k − an+ei,k = det<br />

bn+ei,j bn,j<br />

j=1 k=1<br />

an,i<br />

an+ej,i<br />

= bn−ei,j −bn−ei,i<br />

bn,j −bn,i<br />

Re<strong>as</strong>on: Pn+ei+ej (x) can be computed in two ways from the<br />

recurrence relations:<br />

■ first computePn+ei<br />

■ first computePn+ej<br />

(x) and from therePn+ei+ej (x)<br />

(x) and from therePn+ej+ei (x)<br />

<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

Recurrence relations<br />

nearest neighbor<br />

recurrence relations<br />

compatibility relation<br />

Christoffel-Darboux<br />

formula<br />

Various examples<br />

17 / 27


Christoffel-Darboux formula<br />

For <strong>orthogonal</strong> <strong>polynomials</strong> there is the Christoffel-Darboux<br />

relation<br />

n−1 <br />

i=0<br />

pi(x)pi(y) = an<br />

pn(x)pn−1(y)−pn−1(x)pn(y)<br />

x−y<br />

For multiple <strong>orthogonal</strong> <strong>polynomials</strong> there is a similar formula<br />

|n|−1<br />

<br />

i=0<br />

Pni (x)Qni+1 (y) = Pn(x)Qn(y)− r<br />

j=1<br />

an,jPn−ej (x)Qn+ej (y)<br />

x−y<br />

where(ni) i=0,1,...,|n| is a path inN r fromn0 =0 ton |n| = n<br />

such that for eachi ∈ {0,1,...,|n|−1} one h<strong>as</strong><br />

ni+1 −ni =ej for somej ∈ {1,2,...,r} (Kuijlaars &<br />

Daems).<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

Recurrence relations<br />

nearest neighbor<br />

recurrence relations<br />

compatibility relation<br />

Christoffel-Darboux<br />

formula<br />

Various examples<br />

.<br />

18 / 27


Various examples<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

Recurrence relations<br />

Various examples<br />

multiple Hermite<br />

<strong>polynomials</strong><br />

multiple Laguerre<br />

<strong>polynomials</strong>, first kind<br />

multiple Laguerre<br />

<strong>polynomials</strong>, second<br />

kind<br />

multiple Jacobi<br />

<strong>polynomials</strong><br />

multiple Jacobi<br />

<strong>polynomials</strong><br />

multiple <strong>orthogonal</strong><br />

<strong>polynomials</strong> and<br />

modified Bessel<br />

<strong>functions</strong>I<br />

multiple <strong>orthogonal</strong><br />

<strong>polynomials</strong> and<br />

modified Bessel<br />

<strong>functions</strong>K<br />

references<br />

19 / 27


multiple Hermite <strong>polynomials</strong><br />

∞<br />

−∞<br />

x k Hn(x)e −x2 +cjx dx = 0, k = 0,1,...,nj −1<br />

whereci ≤ cj wheneveri = j.<br />

random matrices with external source (Kuijlaars & Bleher),<br />

non-intersection Brownian motions (Kuijlaars, Daems, Delvaux,<br />

Bleher)<br />

Rodrigues formula<br />

e −x2<br />

Hn(x) = (−1) |n| 2 −|n|<br />

⎛<br />

⎝<br />

r<br />

e<br />

j=1<br />

Recurrence relations: for1 ≤ k ≤ r<br />

ck 1<br />

xHn(x) = Hn+ek (x)+ Hn(x)+<br />

2 2<br />

−cjx dnj<br />

dx<br />

r<br />

j=1<br />

nj ecjx<br />

⎞<br />

⎠e −x2<br />

.<br />

njHn−ej (x).<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

Recurrence relations<br />

Various examples<br />

multiple Hermite<br />

<strong>polynomials</strong><br />

multiple Laguerre<br />

<strong>polynomials</strong>, first kind<br />

multiple Laguerre<br />

<strong>polynomials</strong>, second<br />

kind<br />

multiple Jacobi<br />

<strong>polynomials</strong><br />

multiple Jacobi<br />

<strong>polynomials</strong><br />

multiple <strong>orthogonal</strong><br />

<strong>polynomials</strong> and<br />

modified Bessel<br />

<strong>functions</strong>I<br />

multiple <strong>orthogonal</strong><br />

<strong>polynomials</strong> and<br />

modified Bessel<br />

<strong>functions</strong>K<br />

references<br />

20 / 27


multiple Laguerre <strong>polynomials</strong>, first kind<br />

∞<br />

0<br />

x k Ln(x)x αj e −x dx = 0, k = 0,1,...,nj −1<br />

whereα1,...,αr > −1 andαi −αj /∈ Z.<br />

(−1) |n| e −x Ln(x) =<br />

r<br />

j=1<br />

<br />

x<br />

−αj dnj<br />

dx<br />

xLn(x) = Ln+ek (x)+bn,kLn(x)+<br />

an,j = nj(nj +αj)<br />

r<br />

i=1,i=j<br />

nj xnj+αj<br />

r<br />

j=1<br />

bn,j = |n|+nj +αj +1.<br />

nj +αj −αi<br />

<br />

e −x<br />

an,jLn−ej (x)<br />

nj −ni +αj −αi<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

Recurrence relations<br />

Various examples<br />

multiple Hermite<br />

<strong>polynomials</strong><br />

multiple Laguerre<br />

<strong>polynomials</strong>, first kind<br />

multiple Laguerre<br />

<strong>polynomials</strong>, second<br />

kind<br />

multiple Jacobi<br />

<strong>polynomials</strong><br />

multiple Jacobi<br />

<strong>polynomials</strong><br />

multiple <strong>orthogonal</strong><br />

<strong>polynomials</strong> and<br />

modified Bessel<br />

<strong>functions</strong>I<br />

multiple <strong>orthogonal</strong><br />

<strong>polynomials</strong> and<br />

modified Bessel<br />

<strong>functions</strong>K<br />

references<br />

21 / 27


multiple Laguerre <strong>polynomials</strong>, second kind<br />

∞<br />

0<br />

x k Ln(x)x α e −cjx dx = 0, k = 0,1,...,nj −1<br />

withc1,...,cr > 0 andci = cj wheneveri = j.<br />

Wishart ensembles in random matrix theory.<br />

(−1) |n|<br />

⎛<br />

⎝<br />

r<br />

j=1<br />

c nj<br />

j<br />

⎞<br />

⎠x α Ln(x) =<br />

r<br />

j=1<br />

<br />

e<br />

xLn(x) = Ln+ek (x)+bn,kLn(x)+<br />

an,j = |n|+α)nj<br />

c 2 j<br />

cjx dnj<br />

dx<br />

r<br />

j=1<br />

, bn,j = |n|+α+1<br />

cj<br />

nj e−cjx<br />

<br />

x |n|+α<br />

an,jLn−ej (x)<br />

+<br />

r<br />

i=1<br />

ni<br />

ci<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

Recurrence relations<br />

Various examples<br />

multiple Hermite<br />

<strong>polynomials</strong><br />

multiple Laguerre<br />

<strong>polynomials</strong>, first kind<br />

multiple Laguerre<br />

<strong>polynomials</strong>, second<br />

kind<br />

multiple Jacobi<br />

<strong>polynomials</strong><br />

multiple Jacobi<br />

<strong>polynomials</strong><br />

multiple <strong>orthogonal</strong><br />

<strong>polynomials</strong> and<br />

modified Bessel<br />

<strong>functions</strong>I<br />

multiple <strong>orthogonal</strong><br />

<strong>polynomials</strong> and<br />

modified Bessel<br />

<strong>functions</strong>K<br />

references<br />

22 / 27


multiple Jacobi <strong>polynomials</strong><br />

1<br />

0<br />

x k Pn(x)x αj (1−x) β dx = 0, k = 0,1,...,nj −1<br />

withα1,...,αr,β > −1 andαi −αj /∈ Z.<br />

(−1) |n|<br />

r<br />

(|n|+αj +β +1)nj (1−x)β Pn(x)<br />

j=1<br />

=<br />

r<br />

j=1<br />

<br />

x<br />

−αj dnj<br />

dx<br />

nj xnj+αj<br />

<br />

(1−x) |n|+β<br />

<strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong><br />

Determinantal point<br />

processes<br />

Recurrence relations<br />

Various examples<br />

multiple Hermite<br />

<strong>polynomials</strong><br />

multiple Laguerre<br />

<strong>polynomials</strong>, first kind<br />

multiple Laguerre<br />

<strong>polynomials</strong>, second<br />

kind<br />

multiple Jacobi<br />

<strong>polynomials</strong><br />

multiple Jacobi<br />

<strong>polynomials</strong><br />

multiple <strong>orthogonal</strong><br />

<strong>polynomials</strong> and<br />

modified Bessel<br />

<strong>functions</strong>I<br />

multiple <strong>orthogonal</strong><br />

<strong>polynomials</strong> and<br />

modified Bessel<br />

<strong>functions</strong>K<br />

references<br />

23 / 27


multiple Jacobi <strong>polynomials</strong><br />

xPn(x) = Pn+ek (x)+bn,kPn(x)+<br />

r<br />

j=1<br />

an,jPn−ej (x)<br />

Letqr(x) = r<br />

j=1 (x−αj) andQr,n(x) = r<br />

j=1 (x−nj −αj), then<br />

an,j = qr(−|n|−β)qr(nj +αj)<br />

Qr,n(−|n|−β)Q ′ r,n (nj +αj)<br />

(nj +αj)(|n|+β)<br />

(|n|+nj +αj +β +1)(|n|+nj +αj +β)(|n|+nj +αj +β −1)<br />

bn,j = δn −δn+ej , δn = −(|n|+β) qr(−|n|−β)<br />

Qr,n(−|n|−β) .<br />

24 / 27


multiple <strong>orthogonal</strong> <strong>polynomials</strong> and modified Bessel<br />

<strong>functions</strong>I<br />

∞<br />

0<br />

∞<br />

0<br />

x k Pn,m(x)x ν/2 Iν(2 √ x)e −cx dx = 0, k = 0,1,...,n−1<br />

x k Pn,m(x)x (ν+1)/2 Iν+1(2 √ x)e −cx dx = 0, k = 0,1,...,m−1<br />

withν > −1 andc > 0. Ifp2n(x) = Pn,n(x) andp2n+1(x) = Pn+1,n(x),<br />

then<br />

with<br />

bn =<br />

xpn(x) = pn+1(x)+bnpn(x)+cnpn−1(x)+dnpn−2(x)<br />

c(2n+ν +1))+1<br />

c 2<br />

andy = pn(x) satisfies<br />

, cn = n(2+c(n+ν))<br />

c3 , dn = n(n−1)<br />

c4 xy ′′′ +(−2cx+ν +2)y ′′ +(c 2 x+c(n−ν −2)−1)y ′ −c 2 ny = 0.<br />

25 / 27


multiple <strong>orthogonal</strong> <strong>polynomials</strong> and modified Bessel<br />

<strong>functions</strong>K<br />

∞<br />

0<br />

∞<br />

0<br />

x k Pn,m(x)x α+ν/2 Kν(2 √ x)dx = 0, k = 0,1,...,n−1<br />

x k Pn,m(x)x α+(ν+1)/2 Kν+1(2 √ x)dx = 0, k = 0,1,...,m−1<br />

withα > −1 andν ≥ 0. Letp2n(x) = Pn,n(x) andp2n+1(x) = Pn+1,n(x)<br />

xpn(x) = pn+1(x)+bnpn(x)+cnpn−1(x)+dnpn−2(x)<br />

bn = (n+α+1)(3n+α+2ν)−(α+1)(ν −1),<br />

cn = n(n+α)(n+α+ν)(3n+2α+ν),<br />

dn = n(n−1)(n+α−1)(n+α)(n+α+ν −1)(n+α+ν)<br />

andy = pn(x) satisfies<br />

x 2 y ′′′ +x(2α+ν +3)y ′′ +[(α+1)(α+ν +1)−x]y ′ +ny = 0.<br />

26 / 27


eferences<br />

■ Chapter 23: <strong>Multiple</strong> Orthogonal Polynomials in “Cl<strong>as</strong>sical and Quantum<br />

Orthogonal Polynomials of one Variable” (M.E.H. Ismail), Cambridge<br />

University Press, 2005.<br />

■ A.I. Aptekarev, A. Branquinho, W. Van Assche, <strong>Multiple</strong> <strong>orthogonal</strong><br />

<strong>polynomials</strong> for cl<strong>as</strong>sical weights, Trans. Amer. Math. Soc. 355 ((2003)<br />

■ E. Coussement, W. Van Assche, <strong>Multiple</strong> <strong>orthogonal</strong> <strong>polynomials</strong> <strong>as</strong>sociated<br />

with the modified Bessel <strong>functions</strong> of the first kind, Constr. Approx. 19 (2003)<br />

■ J. Coussement, W. Van Assche, Differential equations for multiple <strong>orthogonal</strong><br />

<strong>polynomials</strong> with respect to cl<strong>as</strong>sical weights: raising and lowering operators,<br />

J. Phys. A: Math. Gen. 39 (2006)<br />

■ W. Van Assche, Nearest neighbor recurrence relations for multiple <strong>orthogonal</strong><br />

<strong>polynomials</strong>, manuscript<br />

■ A.B.J. Kuijlaars, <strong>Multiple</strong> <strong>orthogonal</strong> polynomial ensembles, Contemporary<br />

Mathematics 507 (2010)<br />

27 / 27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!