04.04.2013 Views

Harmonic Analysis of Single-Phase Full Bridge Rectifiers Based on ...

Harmonic Analysis of Single-Phase Full Bridge Rectifiers Based on ...

Harmonic Analysis of Single-Phase Full Bridge Rectifiers Based on ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

IEEE ISIE 2006, July 9-12, 2006, M<strong>on</strong>treal, Quebec, Canada<br />

<str<strong>on</strong>g>Harm<strong>on</strong>ic</str<strong>on</strong>g> <str<strong>on</strong>g>Analysis</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Single</str<strong>on</strong>g>-<str<strong>on</strong>g>Phase</str<strong>on</strong>g> <str<strong>on</strong>g>Full</str<strong>on</strong>g> <str<strong>on</strong>g>Bridge</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Rectifiers</str<strong>on</strong>g> <str<strong>on</strong>g>Based</str<strong>on</strong>g> <strong>on</strong> Fast Time Domain Method<br />

K. L. Lian (University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tor<strong>on</strong>to), and P. W. Lehn (University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tor<strong>on</strong>to)<br />

Abstract- <str<strong>on</strong>g>Single</str<strong>on</strong>g>-phase full bridge rectifiers are heavily used in<br />

low voltage distributi<strong>on</strong> system. It is therefore essential to predict<br />

the harm<strong>on</strong>ic levels these c<strong>on</strong>verters produce. In this paper, a fast<br />

time domain method is presented to solve for the current and<br />

voltage harm<strong>on</strong>ics injected by single-phase diode bridge rectifiers.<br />

The method is highly accurate and it does not suffer from<br />

harm<strong>on</strong>ic truncati<strong>on</strong> errors or aliasing effects that exist in<br />

harm<strong>on</strong>ic domain analyses or brute force time domain simulati<strong>on</strong><br />

methods.<br />

I. INTRODUCTION<br />

SINGLE-phase full bridge rectifiers are widely used in low<br />

voltage distributi<strong>on</strong> systems. They c<strong>on</strong>stitute the input<br />

c<strong>on</strong>versi<strong>on</strong> stage for power supplies <str<strong>on</strong>g>of</str<strong>on</strong>g> many electr<strong>on</strong>ic<br />

appliances such as TV sets, computers, light dimmers, and<br />

battery chargers. The main drawback <str<strong>on</strong>g>of</str<strong>on</strong>g> these rectifiers is that<br />

they generate significant harm<strong>on</strong>ic distorti<strong>on</strong>. In some cases,<br />

the total harm<strong>on</strong>ic current distorti<strong>on</strong> can be as high as 100%.<br />

The harm<strong>on</strong>ics injected into the power network can have an<br />

adverse impact <strong>on</strong> the power systems. It is therefore essential<br />

for engineers to be able to predict these harm<strong>on</strong>ics accurately<br />

and to determine how these harm<strong>on</strong>ics may interact with other<br />

system comp<strong>on</strong>ents.<br />

Brute force time domain simulati<strong>on</strong>, in general, can provide<br />

accurate results. However, they require significant computati<strong>on</strong><br />

time to reach steady state at the required accuracy. <str<strong>on</strong>g>Harm<strong>on</strong>ic</str<strong>on</strong>g><br />

domain analysis methods [1], [2] are far more computati<strong>on</strong>ally<br />

efficient, although they suffer from truncati<strong>on</strong> errors. In<br />

particular, truncati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the harm<strong>on</strong>ic series that represent<br />

square-wave or sawtooth waveforms introduces Gibbs<br />

oscillati<strong>on</strong>s at the point <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuity [3]. In case where these<br />

artificial oscillati<strong>on</strong>s occur near a zero crossing <str<strong>on</strong>g>of</str<strong>on</strong>g> a diode<br />

current, incorrect diode turn-<strong>on</strong> or turn-<str<strong>on</strong>g>of</str<strong>on</strong>g>f times result -<br />

leading err<strong>on</strong>eous harm<strong>on</strong>ics.<br />

In this paper, an efficient time domain method is presented to<br />

solve for the current and voltage harm<strong>on</strong>ics injected by<br />

single-phase full bridge rectifiers. The computati<strong>on</strong> time is very<br />

fast compared to brute force time domain simulators such as<br />

PSCAD/EMTDC because the proposed method directly<br />

pinpoints the steady state soluti<strong>on</strong> without stepping through<br />

numerical transients. In additi<strong>on</strong>, the results are highly accurate<br />

because all harm<strong>on</strong>ics are calculated analytically. Therefore,<br />

the results do not suffer from harm<strong>on</strong>ic truncati<strong>on</strong> errors or<br />

1-4244-0497-5/06/$20.00 © 2006 IEEE 2608<br />

aliasing effects.<br />

The paper is organized as follows: Secti<strong>on</strong> II introduces the<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> a single phase diode bridge rectifier. Secti<strong>on</strong> III and<br />

IV show how to use the proposed method to analyze c<strong>on</strong>tinuous<br />

and disc<strong>on</strong>tinuous c<strong>on</strong>ducti<strong>on</strong> modes [4]. Secti<strong>on</strong> V presents<br />

numerical results, and compares computed results with those<br />

obtained by PSCAD/EMTDC simulati<strong>on</strong> to dem<strong>on</strong>strate the<br />

validity <str<strong>on</strong>g>of</str<strong>on</strong>g> the method.<br />

II. MODEL OF A SINGLE-PHASE FULL BRIDGE RECTIFIER<br />

Fig. 1 shows the single-phase capacitor-filtered diode bridge<br />

rectifier [4], [5], [6], [7] where the dc load is modeled as an<br />

equivalent resistance, Req,<br />

VS<br />

R L idi<br />

LD1I<br />

LD4<br />

LD3<br />

DD2<br />

Fig. I <str<strong>on</strong>g>Single</str<strong>on</strong>g>-phase capacitor-filtered diode bridge rectifier<br />

C Req<br />

If <strong>on</strong>e models the diode as a variable resistor, <strong>on</strong>e can<br />

c<strong>on</strong>vert Fig. 1 to Fig. 2, where Rd= R<strong>on</strong> when the diode turns <strong>on</strong>,<br />

and Rd- Rff when the diode turns <str<strong>on</strong>g>of</str<strong>on</strong>g>f. Note that the diode<br />

voltage drop is neglected to simplify the formulati<strong>on</strong>.<br />

Vs<br />

Fig.2 Equivalent circuit model <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. I<br />

Req<br />

The state space form describing Fig. 2 can be written as in (1).<br />

di = Ax<br />

dt<br />

or<br />

dFX1 FAx N1Fx<br />

dtLzL ° QiLzi<br />

(1)


-(R + Rd)<br />

where x = [id Vo IT Ax = L<br />

I<br />

0<br />

N=0 N L L ~~... L<br />

ii<br />

L<br />

-1I<br />

ReqC<br />

z =uxi uy1 ux2 uy2 |u uyn and<br />

Q= blkdiag {K? 0 0}[2? 0 0'[n j}<br />

Note that:<br />

1. A is a time varying matrix because Rd changes its values<br />

depending <strong>on</strong> the diodes' c<strong>on</strong>ducting or n<strong>on</strong>-c<strong>on</strong>ducting<br />

states. To distinguish these two cases, A,,. and A0ff will be<br />

used to denote Rd= R<strong>on</strong> and Rd= Ro,^ respectively.<br />

2. The source voltage, v, is assumed to take the following<br />

n<br />

general form: vs = E Ak sin(kt + bk) .<br />

k=I<br />

3. uxk and uyk represents a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> kth harm<strong>on</strong>ic oscillator states,<br />

where the source voltage may be expressed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> these<br />

n<br />

states according to: vS = E uyk, provided that the states, uxk<br />

k=I<br />

and uyk are initialized at Akcos(o), and Aksin(o), respectively.<br />

4. A more involved modeling approach, based <strong>on</strong> an ideal<br />

switch model, may also be developed based <strong>on</strong> the c<strong>on</strong>cept<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> injecti<strong>on</strong> and projecti<strong>on</strong> matrices [8], [9].<br />

III. CONTINUOUS CONDUCTION MODE<br />

During the positive half period <str<strong>on</strong>g>of</str<strong>on</strong>g> the fundamental, the diode<br />

D1 and D2 can be characterized by either a single c<strong>on</strong>ducti<strong>on</strong><br />

interval or by multiple c<strong>on</strong>ducti<strong>on</strong> intervals.<br />

G. Carpinelli et. al., name these as "c<strong>on</strong>tinuous" and<br />

"disc<strong>on</strong>tinuous" c<strong>on</strong>ducti<strong>on</strong> modes respectively [4]. These<br />

differing c<strong>on</strong>ducti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s result from differing harm<strong>on</strong>ic<br />

c<strong>on</strong>tents present in the supply system voltage [4].<br />

When the ac source is free <str<strong>on</strong>g>of</str<strong>on</strong>g> harm<strong>on</strong>ics, typically <strong>on</strong>ly the<br />

c<strong>on</strong>tinuous c<strong>on</strong>ducti<strong>on</strong> mode exists. Fig. 3 shows the voltage<br />

and current waveform in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous c<strong>on</strong>ducti<strong>on</strong><br />

mode. In the figure, y represents the time from voltage zero<br />

crossing until the diode starts to c<strong>on</strong>duct, and t represents the<br />

c<strong>on</strong>ducti<strong>on</strong> interval durati<strong>on</strong>.<br />

In order to fully describe the behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> the rectifier in this<br />

mode, <strong>on</strong>e needs to solve for 7, and t.<br />

A. Diode C<strong>on</strong>straint Equati<strong>on</strong>s<br />

To solve for 7, and t, <strong>on</strong>e needs to<br />

diode c<strong>on</strong>straint equati<strong>on</strong>s:<br />

Diode turn-<strong>on</strong> occurs when<br />

formulate appropriate<br />

MD=vo (d ) - Vt(o ) = vo(w) - n uly<br />

Diode turn-<str<strong>on</strong>g>of</str<strong>on</strong>g>f occurs when<br />

(2)<br />

2609<br />

M2= id(y+,u)=Cle <strong>on</strong>X(y (3)<br />

where C1=[1 0 0 0].<br />

In order to solve for (2) and (3), <strong>on</strong>e needs to find an<br />

expressi<strong>on</strong> linking v0 and y. This is characterized by the steady<br />

state c<strong>on</strong>straint equati<strong>on</strong>s.<br />

a1)<br />

>)<br />

-c<br />

o0- 7<br />

Time<br />

-v<br />

Fig. 3 Voltage and current waveforms in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous c<strong>on</strong>ducti<strong>on</strong><br />

B. Steady State C<strong>on</strong>straint Equati<strong>on</strong>s<br />

Since the current waveform exhibit half-wave symmetry, <strong>on</strong>ly<br />

half period needs to be c<strong>on</strong>sidered.<br />

The states at the end points <str<strong>on</strong>g>of</str<strong>on</strong>g> the interval are linked by (4)<br />

x(T /2+ y) =eA<str<strong>on</strong>g>of</str<strong>on</strong>g>f (T 2-u) eAOnYx(y) =4D(Q) (4)<br />

In additi<strong>on</strong>, based <strong>on</strong> half period mapping [10],<br />

x(T /2 +y)=I2x) (5)<br />

where 12= diag([-1,1,-1,-1]);<br />

Combing (2) and (3), <strong>on</strong>e gets<br />

(12 - D)iX(y) =0 (6)<br />

Partiti<strong>on</strong>ing the above equati<strong>on</strong> [10] gives:<br />

K f x(y)0Lo (7)<br />

x(y) = -E- Fz(y) = -E- Fe 2z(0) (8)<br />

Since (2), (3), and (8) are transcendental equati<strong>on</strong>s, numerical<br />

iterati<strong>on</strong> is required to obtain soluti<strong>on</strong>s, which is described in<br />

secti<strong>on</strong> C.<br />

C. Numerical Iterati<strong>on</strong> For Finding Unknowns<br />

Fig. 4 shows the overall flow diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> the proposed<br />

method. First, 4=[y g]t iS initialized, allowing determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

x(y) based <strong>on</strong> (8). Then, x(y) is substituted into the diode<br />

c<strong>on</strong>straint mismatch equati<strong>on</strong>s (2) and (3). The mismatch<br />

equati<strong>on</strong>s then set the stage for a Newt<strong>on</strong>-type iterative method,<br />

which generates the sequence, { }n 0 by (9)<br />

.(k+l) = .(k) j-IM<br />

(9)


4+vl 4+vl Sec<strong>on</strong>d diode turn-<str<strong>on</strong>g>of</str<strong>on</strong>g>f occurs when<br />

where M M 11,and J=<br />

LM2 j<br />

a'<br />

aM2<br />

aJ<br />

/'<br />

aM2<br />

a,J<br />

M4 i(y+a+o)=c e A<strong>on</strong>/<br />

The iterati<strong>on</strong> terminates when the difference between i(k+1)<br />

and 4(k) reaches a required tolerance, F_ egin<br />

D. Analytic <str<strong>on</strong>g>Harm<strong>on</strong>ic</str<strong>on</strong>g> <str<strong>on</strong>g>Analysis</str<strong>on</strong>g> Initialize Y(k) P(k)<br />

Once y, t, and x(y) are found, <strong>on</strong>e can proceed to solve for (with k= 0)<br />

the current and voltage harm<strong>on</strong>ics injected by the single-phase Set ;(k) = !yk) A(k)]<br />

full bridge rectifier.<br />

<str<strong>on</strong>g>Based</str<strong>on</strong>g> <strong>on</strong> [11], the system harm<strong>on</strong>ic is a two stage process. +(k)<br />

First, the system matrix is augmented with <strong>on</strong>e additi<strong>on</strong>al Calculate steady state<br />

equati<strong>on</strong> for each harm<strong>on</strong>ic <str<strong>on</strong>g>of</str<strong>on</strong>g> interest, leading to the form: soluti<strong>on</strong>s, x(y) based<br />

x Ax N O x <strong>on</strong> (8)<br />

dt z = O Q O] z (10) x(y)<br />

-Y P<br />

where y=[Idh V0] T<br />

Q_ -Y<br />

and dh and VI represents the hth ac<br />

Mll<br />

current, and lth dc voltage harm<strong>on</strong>ics, respectively, and based <strong>on</strong> (2), and (3)<br />

r2e jh(T/2+y) 0 M<br />

P=T<br />

°+ ~2-jl(T/2+y)<br />

Ae<br />

e A<br />

Calculate M= kk<br />

k kJ 1M whereJ Lam<br />

0 2ejlT<br />

Q Ljh 01.<br />

L0 11w] No<br />

Sec<strong>on</strong>d, the analytical soluti<strong>on</strong> for the augmented system is l (k<br />

found at time, t= T/2+ y by soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the augmented state<br />

equati<strong>on</strong>s. The soluti<strong>on</strong> for the augmented states then yields the Yes<br />

harm<strong>on</strong>ic comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the interest. j<br />

IV. DISCONTINUOUS CONDUCTION MODE Fig. 4 Flow diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> the proposed method<br />

The disc<strong>on</strong>tinuous c<strong>on</strong>ducti<strong>on</strong> mode takes place when the<br />

source voltage is characterized by the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> harm<strong>on</strong>ics<br />

superimposed <strong>on</strong> the fundamental. In such a case, the diodes<br />

can c<strong>on</strong>duct more than <strong>on</strong>e time interval during half period. To<br />

simplify the analysis, <strong>on</strong>ly two c<strong>on</strong>ducti<strong>on</strong> intervals (Fig. 5) are dv<br />

c<strong>on</strong>sidered here. vs<br />

A. Diode C<strong>on</strong>straint Equati<strong>on</strong>s<br />

<str<strong>on</strong>g>Based</str<strong>on</strong>g> <strong>on</strong> Fig. 5, the diode c<strong>on</strong>straint equati<strong>on</strong>s can be m X<br />

formulated as follows: ,<br />

First diode turn-<strong>on</strong> occurs when<br />

n ........ -------------_._._-------- .----f --<br />

M1= vo (y)-vs(y)= vo (Y)- Uyk (Y)= (11)<br />

k=l<br />

First diode turn-<str<strong>on</strong>g>of</str<strong>on</strong>g>f occurs when<br />

M?= id (y+) =Cl eAOng(y) O (12)<br />

Sec<strong>on</strong>d diode turn-<strong>on</strong> occurs when 0* T/ Yc 2 T/2 T<br />

A.ffaA u I fn Time<br />

M3=: C2 eA f e <strong>on</strong>, x(y)-E Uyk (r+,U +aQ) = o (13) Tm<br />

k= ( Fig. 5 Voltage and current waveforms in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous c<strong>on</strong>ducti<strong>on</strong><br />

where C21[0 1 0 0].<br />

2610


U1)<br />

a)<br />

>0<br />

B. Steady State C<strong>on</strong>straint Equati<strong>on</strong>s<br />

The steady state equati<strong>on</strong> in this case is also characterized by<br />

(8).<br />

C. Numerical Iterati<strong>on</strong> To Find Unknowns<br />

With slight modificati<strong>on</strong>s, the numerical analysis described in<br />

III. C. may again be applied. In the flow chart <str<strong>on</strong>g>of</str<strong>on</strong>g> Fig. 4, 4 is<br />

redefined as [y g oc H- , and the mismatch matrix, M is<br />

redefined as [Ml I2 I3 M4]T.<br />

D. Analytic <str<strong>on</strong>g>Harm<strong>on</strong>ic</str<strong>on</strong>g> <str<strong>on</strong>g>Analysis</str<strong>on</strong>g><br />

The harm<strong>on</strong>ics <str<strong>on</strong>g>of</str<strong>on</strong>g> interest can be easily found by evaluating<br />

(1O) at t=T/2+ ,which has the form <str<strong>on</strong>g>of</str<strong>on</strong>g> (15).<br />

x(T12+ Fx(y)<br />

z(T12+ Y) =e e <strong>on</strong>, eAOff eA<strong>on</strong>A z()<br />

-y(T1/2+ y) A(Y(Y)T)<br />

(15)<br />

where A is equal to the state matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> (10), with subscript,<br />

"<strong>on</strong>", and "<str<strong>on</strong>g>of</str<strong>on</strong>g>f' representing the cases when Rd- R<strong>on</strong> and Rd-<br />

R<str<strong>on</strong>g>of</str<strong>on</strong>g>f respectively.<br />

V. EXAMPLES<br />

In order to dem<strong>on</strong>strate the validity <str<strong>on</strong>g>of</str<strong>on</strong>g> the proposed method,<br />

two sets <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters are chosen to result in c<strong>on</strong>tinuous and<br />

disc<strong>on</strong>tinuous c<strong>on</strong>ducti<strong>on</strong> modes. Soluti<strong>on</strong>s are compared with<br />

those <str<strong>on</strong>g>of</str<strong>on</strong>g> PSCAD/EMTDC.<br />

A. C<strong>on</strong>tinuous C<strong>on</strong>ducti<strong>on</strong> Mode<br />

System parameters are as follows: R= 0.005Q, L= 0.5mH,<br />

C= lOOOgF, Req=IOQ, R<strong>on</strong>= 0.005Q, R<str<strong>on</strong>g>of</str<strong>on</strong>g>f-106Q and vs<br />

= X x 1 12 sin(t), c<strong>on</strong>tinuous c<strong>on</strong>ducti<strong>on</strong> mode results. Fig. 6<br />

shows the ac current waveform, id, dc capacitor voltage, vo,<br />

together with the source voltage, vs, predicted by<br />

PSCAD/EMTDC.<br />

250 0<br />

0o<br />

-50<br />

-100<br />

-150<br />

d<br />

-v<br />

0 Y- < > 0.0083 0.0167<br />

Time (secs)<br />

Fig. 6 Voltage and current waveforms in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous c<strong>on</strong>ducti<strong>on</strong><br />

V<br />

2611<br />

Table I shows the diode c<strong>on</strong>ducti<strong>on</strong> instant, y, c<strong>on</strong>ducti<strong>on</strong><br />

interval, t and steady state capacitor voltage, v0 at t= y,<br />

predicted by both PSCAD/EMTDC, and the proposed fast time<br />

domain method. As can be noted, excellent agreement exists.<br />

TABLE I<br />

RESULTS FROM PSCAD/EMTDC AND THE FAST TIME DOMAIN METHOD IN<br />

CONTINUOUS CONDUCTION MODE<br />

PSCAD/EMTDC Fast Time Domain<br />

0.0021s 0.0021s<br />

RL 0.0032s 0.0031s<br />

vo(y) 113.5273V 113.7460V<br />

Fig. 7 and 8 compare ac current and dc voltage harm<strong>on</strong>ics<br />

obtained from PSCAD/EMTDC, and from the fast time domain<br />

method.<br />

Ac Current (Q) Spectrum<br />

30<br />

- PSCAD/EMTDC<br />

Fast Time Domain<br />

25<br />

< 20<br />

E 15<br />

.a<br />

I 10<br />

1 3 5 7<br />

<str<strong>on</strong>g>Harm<strong>on</strong>ic</str<strong>on</strong>g> number<br />

Fig. 7 Current harm<strong>on</strong>ics for the case <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous c<strong>on</strong>ducti<strong>on</strong><br />

150<br />

> 100<br />

E c<br />

.g<br />

co<br />

I 50-<br />

u<br />

0<br />

Dc Voltage (VO) Spectrum<br />

2 4<br />

<str<strong>on</strong>g>Harm<strong>on</strong>ic</str<strong>on</strong>g> number<br />

- PSCAD/EMTDC<br />

= Fast Time Domain<br />

El . F-.<br />

6<br />

Fig. 8 Voltage harm<strong>on</strong>ics for the case <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous c<strong>on</strong>ducti<strong>on</strong><br />

B. Disc<strong>on</strong>tinuous C<strong>on</strong>ducti<strong>on</strong> Mode<br />

To analyze disc<strong>on</strong>tinuous c<strong>on</strong>ducti<strong>on</strong> mode the following<br />

system parameters are used: R= 0.005Q, L= 0.5mH, C=500gF,<br />

Req= 1OQ, R<strong>on</strong>= 0.005Q, R<str<strong>on</strong>g>of</str<strong>on</strong>g>0 106Q and v5<br />

= Xx 112 sin(S) + 2x 11.2 sin(3t) .<br />

Fig.<br />

9 shows the ac<br />

current waveform, id, dc capacitor voltage, vo, together with the<br />

source voltage, vs, predicted by PSCAD/EMTDC.<br />

9


2 142.<br />

: 75.,<br />

8<br />

c 0 6<br />

0 -50<br />

-100<br />

-150<br />

0 -Y- P -a- 0 X 0.0083<br />

Time (secs)<br />

0.0167<br />

Fig. 9 Voltage and current waveforms in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous c<strong>on</strong>ducti<strong>on</strong><br />

Table II shows the values <str<strong>on</strong>g>of</str<strong>on</strong>g> y, t, cc, j, vo(y), and vo(y+±+oc)<br />

predicted by both PSCAD/EMTDC, and the proposed fast time<br />

domain method. As can be clearly noted, the values are in<br />

perfect agreement.<br />

TABLE II<br />

THE RESULTS FROM PSCAD AND FAST TIME DOMAIN METHOD IN<br />

DISCONTINUOUS CONDUCTION MODE<br />

PSCAD/EMTDC Fast Time Domain<br />

0.001 s 0.001 ls<br />

0.0025s 0.0025s<br />

cc 9.1520x 10-4s 9.3397x10-4s<br />

0.0021s 0.0021s<br />

vO(Y) 75.8683V 75.8982V<br />

vI(y±+±L+o) 142.4148V 142.4172V<br />

Furthermore, as shown in Fig. 10 and 11, good agreement<br />

exists between PSCAD/EMTDC, and the fast time domain<br />

method for predicting ac current and dc voltage harm<strong>on</strong>ics.<br />

VI. CONCLUSIONS<br />

A method for the computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the ac current and dc<br />

voltage harm<strong>on</strong>ic generated by a capacitor filtered<br />

single-phase rectifier is presented. The approach employs<br />

numerical iterati<strong>on</strong> to determine the diode c<strong>on</strong>ducti<strong>on</strong> and<br />

n<strong>on</strong>-c<strong>on</strong>ducti<strong>on</strong> period, and steady state soluti<strong>on</strong>s. <str<strong>on</strong>g>Based</str<strong>on</strong>g> <strong>on</strong><br />

the determined c<strong>on</strong>ducti<strong>on</strong> intervals, harm<strong>on</strong>ics <str<strong>on</strong>g>of</str<strong>on</strong>g> interest<br />

are solved analytically through a state augmentati<strong>on</strong> method.<br />

The results have been validated with those <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

PSCAD/EMTDC to show the accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> the method.<br />

One potential applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the proposed model would be<br />

to incorporate it into a harm<strong>on</strong>ic power flow program to<br />

improve the accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> the existing harm<strong>on</strong>ic domain<br />

methods.<br />

ACKNOWLEDGMENT<br />

The authors would like to thank Dr. Brian Perkins for his<br />

valuable input to this paper.<br />

2612<br />

25r<br />

20<br />

c 15<br />

E<br />

10 E<br />

Ac Current (Q) Spectrum<br />

<str<strong>on</strong>g>Harm<strong>on</strong>ic</str<strong>on</strong>g> number<br />

- PSCAD/EMTDC<br />

Fast Time Domain<br />

Fig. 9 Current harm<strong>on</strong>ics for the case <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous c<strong>on</strong>ducti<strong>on</strong><br />

140<br />

120<br />

100 _<br />

w' 80<br />

E<br />

I<br />

-<br />

60 -<br />

40<br />

20-<br />

0<br />

Dc Voltage (VO) Spectrum<br />

I1 I<br />

- PSCAD/EMTDC<br />

Fast Time Domain<br />

0 2 4 6<br />

<str<strong>on</strong>g>Harm<strong>on</strong>ic</str<strong>on</strong>g> number<br />

Fig. 10 Voltage harm<strong>on</strong>ics for the case <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous c<strong>on</strong>ducti<strong>on</strong><br />

REFERENCES<br />

[1] M. Chen, Z. Qian, and X. Yuan "Frequency-domain analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

unc<strong>on</strong>trolled rectifiers," Applied Power Electr<strong>on</strong>ics C<strong>on</strong>ference and<br />

Expositi<strong>on</strong>, vol. 2, pp. 804-809, 2004<br />

[2] A. D. Graham "Frequency-domain analysis for multiple c<strong>on</strong>trolled<br />

rectifiers," Fifth European C<strong>on</strong>ference <strong>on</strong> Power Electr<strong>on</strong>ics and<br />

Applicati<strong>on</strong>s, vol.8, pp.205-210, 1993.<br />

[3] A. V. Oppenheim, and A. S. Willsky, and H. Nawab, Signal and Systems,<br />

Prentice Hall, 2nd editi<strong>on</strong>, 1996.<br />

[4] G. Carpinelli, F. lacov<strong>on</strong>e, P. Varil<strong>on</strong>e, and P. Verde, "<str<strong>on</strong>g>Single</str<strong>on</strong>g> phase<br />

voltage source c<strong>on</strong>verters: analytical modeling for harm<strong>on</strong>ic analysis in<br />

c<strong>on</strong>tinuous and disc<strong>on</strong>tinuous current c<strong>on</strong>diti<strong>on</strong>s," Internati<strong>on</strong>al Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>Power and Energy Systems, vol. 23, No. 1, pp. 37-48, 2003.<br />

[5] A. Mansoor, W. M. Grady, R. S. Thallam, M. T. Doyle, S. D. Krein, and<br />

M. J. Samotyj, "Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> supply voltage harm<strong>on</strong>ics <strong>on</strong> the input current <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

single -phase diode bridge rectifier loads," IEEE Transacti<strong>on</strong>s <strong>on</strong> Power<br />

Delivery, vol. 10, No. 3, pp. 1416-1421, July 1995.<br />

[6] A. Mansoor, W. M. Grady, A. H. Chowdhury, and M. J. Samotyj, "An<br />

investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> harm<strong>on</strong>ic attenuati<strong>on</strong> and diversity am<strong>on</strong>g distributed<br />

single -phase power electr<strong>on</strong>ic loads," IEEE Transacti<strong>on</strong>s <strong>on</strong> Power<br />

Delivery, vol. 10, No. 3, pp. 1416-1421, July 1995.<br />

[7] N. Mohan, T. Undeland, and W. Robins, Power Electr<strong>on</strong>ics: C<strong>on</strong>verters,<br />

Applicati<strong>on</strong>s, and Design, John Wiley & S<strong>on</strong>s, 2nd editi<strong>on</strong> 1995.<br />

[8] I. Dobs<strong>on</strong>, and S. G. Jalali, "Suprising simplificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Jacobian <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

diode switching circuit," IEEE Internati<strong>on</strong>al Symposium <strong>on</strong> Circuits and<br />

Systems, pp. 2652-2655, May 1993.<br />

[9] B. K. Perkins, and M. R. Iravani, "Novel calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HVDC c<strong>on</strong>verter<br />

harm<strong>on</strong>ics by linearizati<strong>on</strong> in the time-domain," IEEE Transacti<strong>on</strong> <strong>on</strong><br />

Power Delivery, vol. 12, No. 2, pp. 867-873.


[10] P. W. Lehn, "Exact modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> the voltage source c<strong>on</strong>verter," IEEE<br />

Transacti<strong>on</strong>s <strong>on</strong> Power Delivery, vol. 17, No. 1, pp. 217-222, January<br />

2002.<br />

[11] P. W. Lehn, "Direct harm<strong>on</strong>ic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> voltage source c<strong>on</strong>verter," IEEE<br />

Transacti<strong>on</strong>s <strong>on</strong> Power Delivery, vol. 18, No. 3, pp. 1034-1042, July<br />

2003.<br />

2613

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!