05.04.2013 Views

Screening banana cultivars for resistance to bacterial ... - Musalit

Screening banana cultivars for resistance to bacterial ... - Musalit

Screening banana cultivars for resistance to bacterial ... - Musalit

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A.C. Hayward is a consultant<br />

on <strong>bacterial</strong> plant diseases,<br />

32 Clarence Road,<br />

Indooroopilly 4068,<br />

Queensland, Australia.<br />

Bacterial wilt<br />

Buddenhagen I.W. & T.A. Elsasser. 1962. An insectspread<br />

<strong>bacterial</strong> wilt epiphy<strong>to</strong>tic of Bluggoe plantain.<br />

Nature, London 194:164-165.<br />

Cook D., E. Barlow & L. Sequeira. 1989. Genetic diversity<br />

of Pseudomonas solanacearum: detection of restriction<br />

fragment length polymorphisms with DNA probes that<br />

specify virulence and the hypersensitive response.<br />

Molecular Plant-Microbe Interactions 2:113-121.<br />

Eden-Green S.J. 1994. Diversity of Pseudomonas<br />

solanacearum and related bacteria in southeast<br />

Asia. Pp. 25-34 in Bacterial Wilt the Disease and its<br />

Causative Organism, Pseudomonas solanacearum<br />

(A.C. Hayward & G.L. Hartman, eds). CAB<br />

International, Walling<strong>for</strong>d, UK.<br />

Eden-Green S.J. & S.E. Seal. 1993. Bacterial diseases<br />

of <strong>banana</strong> and plantain in southeast Asia. Pp.115-121<br />

in Proceedings of the International Symposium on<br />

Genetic Improvement of Bananas <strong>for</strong> Resistance <strong>to</strong><br />

Diseases and Pests (J.Ganry, ed.). CIRAD/INIBAP,<br />

Montpellier, France.<br />

Fegan M. 2005. Bacterial wilt diseases of <strong>banana</strong>:<br />

evolution and ecology. Pp. 379-386 in Bacterial Wilt<br />

Disease and the Rals<strong>to</strong>nia solanacearum Species<br />

Complex (C. Allen, P. Prior & A.C. Hayward, eds). APS<br />

Press, St. Paul, USA.<br />

Fegan M. & P. Prior. 2006. Diverse members of the<br />

Rals<strong>to</strong>nia solanacearum species complex cause<br />

<strong>bacterial</strong> wilts of <strong>banana</strong>. Australasian Plant Pathology<br />

35:93-101.<br />

French E.R. & L. Sequeira. 1968. Marchitez <strong>bacterial</strong> o<br />

Moko del plátano en el Perú. Fi<strong>to</strong>pa<strong>to</strong>logia 3:27-38.<br />

Hunt P. 1987. Current strategies <strong>for</strong> Moko control<br />

in Grenada: technical and logistical constraints.<br />

Pp.121-129 in Seminar proceedings. Improving citrus<br />

and <strong>banana</strong> production in the Caribbean through<br />

phy<strong>to</strong>sanitation, 2-5 September 1986, St. Lucia, WI.<br />

CTA/CARDI, Wageningen, the Netherlands.<br />

Hyde K.D., B. McCulloch, E. Akiew, R.A. Peterson & A.<br />

Diatloff. 1992. Strategies used <strong>to</strong> eradicate <strong>bacterial</strong><br />

wilt of Heliconia (race 2) in Cairns, Australia, following<br />

introduction of the disease from Hawaii. Australasian<br />

Plant Pathology 21:29-31.<br />

Llagan Y.A., W.A. Lavina, M.P. Natural & A.K. Raymundo.<br />

2003. Genetic homogeneity of the <strong>banana</strong>-infecting<br />

Rals<strong>to</strong>nia solanacearum (Smith) Yabuuchi et al. in<br />

the Philippines. The Philippine Agricultural Scientist<br />

86:394-402.<br />

Jeger M.J., S. Eden-Green, J.M. Thresh, A. Johanson,<br />

J.M. Waller & A.E. Brown. 1995. Banana diseases. Pp.<br />

316-381 in Bananas and Plantains (S. Gowen, ed.).<br />

Chapman and Hall, London, UK.<br />

Lehmann-Danzinger H. 1987. The distribution of Moko<br />

disease in central and south America and its control<br />

In Ethiopia, <strong>banana</strong>s are cultivated<br />

<strong>to</strong>gether with enset at altitudes between<br />

1050 and 2100 m above sea level. Both<br />

are hosts <strong>to</strong> the <strong>bacterial</strong> wilt pathogen<br />

Xanthomonas campestris pv. musacearum<br />

10<br />

on plantains and <strong>banana</strong>s. Pp.130-152. in Seminar<br />

proceedings. Improving citrus and <strong>banana</strong> production in<br />

the Caribbean through phy<strong>to</strong>sanitation, 2-5 September<br />

1986, St. Lucia, WI. CTA/CARDI, Wageningen, the<br />

Netherlands.<br />

Molina G.C. 1996. Integrated management of ‘Tibaglon’,<br />

a <strong>bacterial</strong> fruit rot disease of cooking <strong>banana</strong>s under<br />

farmer’s field. Philippine Phy<strong>to</strong>pathology 32:83-91.<br />

Ploetz R.C., J.E. Thomas & W.R. Slabaugh 2003.<br />

Diseases of <strong>banana</strong> and plantain. Pp.73-80 in<br />

Diseases of Tropical Fruit Crops (R.C. Ploetz, ed.).<br />

CAB International, Walling<strong>for</strong>d, UK.<br />

Reddy O.R. & R.B. Nikale. 1992. Interception of <strong>bacterial</strong><br />

wilt (Pseudomonas solanacearum race 2) in heliconias<br />

imported from Hawaii (USA). Indian Journal of Plant<br />

Protection 20:242-243.<br />

Roperos N.I. 1965. Notes on the occurrence of a new<br />

disease in cooking <strong>banana</strong> in the Philippines. Coffee<br />

and Cacao Journal 8:135-136.<br />

Roperos N.I. & L.V. Magnaye. 1991. Status of <strong>banana</strong><br />

diseases in the Philippines. Pp. 52-56 in Banana<br />

Diseases in Asia and the Pacific. Proceedings of a<br />

technical meeting on diseases affecting <strong>banana</strong> and<br />

plantain in Asia and the Pacific, 15-18 April, Brisbane,<br />

Australia (R.V. Valmayor, B.E. Umali and C.P. Bejosano,<br />

eds). INIBAP, Montpellier, France.<br />

Sequeira L. 1958. Bacterial wilt of <strong>banana</strong>s: dissemination<br />

of the pathogen and control of the disease.<br />

Phy<strong>to</strong>pathology. 48:64-69.<br />

Soguilon C.E. 1990. Survey, etiology and control of the<br />

‘bug<strong>to</strong>k’ disease of cooking <strong>banana</strong>s. MSc Thesis,<br />

University of the Philippines, Los Baños. 65 pp.<br />

Soguilon C.E, L.V. Magnaye & M.P. Natural. 1994 a.<br />

Bug<strong>to</strong>k disease of cooking <strong>banana</strong>s: I. Etiology and<br />

diagnostic symp<strong>to</strong>ms. Philippine Phy<strong>to</strong>pathology 30:<br />

26-34.<br />

Soguilon C.E., L.V. Magnaye & M.P. Natural. 1994 b.<br />

Bug<strong>to</strong>k disease of cooking <strong>banana</strong>s in the Philippines.<br />

ACIAR Bacterial Wilt Newsletter 10:5-7.<br />

Soguilon C.E., L.V. Magnaye & M.P. Natural. 1995. Bug<strong>to</strong>k<br />

disease of <strong>banana</strong>. Musa Disease Fact Sheet No. 6.<br />

INIBAP, Montpellier, France.<br />

S<strong>to</strong>ver R.H. 1972. Banana, Plantain and Abaca Diseases.<br />

Commonwealth Mycological Institute, Kew, UK.<br />

S<strong>to</strong>ver R.H. 1993. The insect-transmitted SFR strain of<br />

Pseudomonas solanacearum destroys East African<br />

AAA <strong>cultivars</strong> in Honduras. INFOMUSA 2:7.<br />

Thwaites R., S.J. Eden-Green & R. Black. 2000. Pp. 213-<br />

239 in Diseases of Banana, Abaca and Enset (D.R.<br />

Jones, ed.). CAB International, Walling<strong>for</strong>d, UK.<br />

Wardlaw C.W. 1972. Banana Diseases. 2 nd Ed. Longman,<br />

London, UK.<br />

<strong>Screening</strong> <strong>banana</strong> <strong>cultivars</strong> <strong>for</strong> <strong>resistance</strong> <strong>to</strong> <strong>bacterial</strong><br />

xanthomonas wilt<br />

G. Welde Michael, K. Bobosha, G. Blomme, T. Addis, S. Mekonnen and T. Mengesha<br />

(Xcm) (Yirgou and Bradbury 1968, 1974).<br />

Since enset plants are harvested be<strong>for</strong>e<br />

flowering, insect vec<strong>to</strong>r transmission from<br />

flower <strong>to</strong> flower is not an issue. Insect vec<strong>to</strong>r<br />

transmission is rarely observed on <strong>banana</strong>s<br />

InfoMusa - Vol. 15 No. 1-2, June-December 2006


grown above 1700 masl, but it occurs at<br />

lower elevations.<br />

The commonly grown <strong>banana</strong> <strong>cultivars</strong><br />

are: ‘Pisang awak’ (ABB), several<br />

‘Cavendish’ <strong>cultivars</strong> (AAA), ‘Uganda red’<br />

(AAA) and East African highland <strong>banana</strong>s<br />

(AAA-EAHB). It was observed that all these<br />

<strong>banana</strong> <strong>cultivars</strong> can develop the disease,<br />

<strong>bacterial</strong> xanthomonas wilt (BXW), after<br />

being infected by contaminated <strong>to</strong>ols.<br />

Finding resistant <strong>banana</strong> <strong>cultivars</strong> would be<br />

a long-term and cost-effective solution. The<br />

objective of this study was <strong>to</strong> assess local<br />

and exotic <strong>banana</strong> <strong>cultivars</strong> <strong>for</strong> <strong>resistance</strong> <strong>to</strong><br />

enset <strong>bacterial</strong> wilt under artificial inoculation<br />

conditions.<br />

Materials and methods<br />

Forty <strong>banana</strong> <strong>cultivars</strong> (Table 1) obtained<br />

from the Melkasa Agricultural Research<br />

Center, Melkasa, Ethiopia were screened<br />

<strong>for</strong> <strong>resistance</strong> <strong>to</strong> BXW one year after planting<br />

in an experimental field at the Awassa<br />

Agricultural Research Center, Awassa,<br />

Ethiopia.<br />

Five sword suckers of each cultivar<br />

were field-established and plant spacing<br />

was 2.5 m between plants in a row and<br />

3 m between the rows. The 5 plants of a<br />

specific genotype were planted in a single<br />

row. One year after planting, 4 motherplants<br />

per cultivar were inoculated with 3 ml of a<br />

virulent Xcm isolate suspension whose cell<br />

concentration was adjusted <strong>to</strong> 1x10 8 cfu/ml.<br />

The Xcm isolate was collected from Hagere<br />

Selam, southern Ethiopia (Quimio 1994).<br />

The motherplants were inoculated at the<br />

base of the petioles of the first two expanded<br />

leaves using a 10 ml hypodermic syringe<br />

with needle. The single control plant in each<br />

row was inoculated with the same volume of<br />

sterile distilled water. Data were collected on<br />

motherplants 7, 15, 21, 30, 45, 60, 75, 90<br />

and 120 days after inoculation.<br />

Results and discussion<br />

All the inoculated <strong>banana</strong> <strong>cultivars</strong> developed<br />

disease symp<strong>to</strong>ms within 45 <strong>to</strong> 120 days<br />

(and 94% within 75 days) of inoculation,<br />

except <strong>for</strong> one plant of the cultivar<br />

‘Kamaramasenge’ (Table 1). Some of the<br />

un-inoculated control plants also developed<br />

typical <strong>bacterial</strong> wilt symp<strong>to</strong>ms, presumably<br />

due <strong>to</strong> the natural spread of the disease.<br />

Although the inoculation method used was<br />

artificial and could mask differences in<br />

susceptibility, particularly <strong>to</strong> infection via<br />

inflorescences, the trial showed that none of<br />

the <strong>banana</strong> <strong>cultivars</strong> was immune <strong>to</strong> infection<br />

by Xcm.<br />

References<br />

Addis T., F. Handoro & G. Blomme. 2004. Bacterial wilt<br />

(Xanthomonas campestris pv. musacearum) on Enset<br />

and <strong>banana</strong> in Ethiopia. INFOMUSA 13(2):44-45.<br />

Quimio A.J. 1994. Final technical report of the World Bank<br />

(IDA)-funded enset pathology project. September 15,<br />

1993 <strong>to</strong> July 15 1994. 135pp.<br />

Yirgou D. & J.F. Bradbury. 1968. Bacterial wilt of enset<br />

incited by Xanthomonas musacearum. Phy<strong>to</strong>pathology<br />

58:111-112.<br />

Yirgou D. & J.F. Bradbury. 1974. A note on wilt of<br />

<strong>banana</strong> caused by enset wilt organism, Xanthomonas<br />

musacearum. E. Afr. Agric.For. J. 40:11-14.<br />

Table 1. Percentage of plants of 40 local and exotic <strong>banana</strong> genotypes developing <strong>bacterial</strong><br />

xanthomonas wilt after being inoculated with the bacterium (n=4)<br />

Cultivar name Genomic ITC Days after inoculation<br />

group number 45 60 75 90 120<br />

Muracho AAB ITC0036 25 75 75* 100 100<br />

Americani AAA ITC0557 25 100 100 100* 100<br />

Lacatan AAA ITC0768 50 75 100 100* 100<br />

Pisang sri AAA ITC0414 25 100* 100 100 100<br />

Poyo AAA ITC0003 50 100 100 100 100<br />

Grande naine AAA ITC0180 25 75 75 100 100<br />

Robusta AAA ITC0003 25 50 100 100 100<br />

Gaint Cavendish AAA ITC0346 50 50 100 100* 100<br />

Champa nasik AAAA ITC0043 50 100* 100 100 100<br />

Cardaba ABB ITC0394 25 50 100 100 100<br />

Pisang raja AAB ITC0587 25 50* 100 100 100<br />

Ducasse hybrid (Pisang awak) ABB ITC0053 50 75 75* 100 100<br />

Green red AAA ITC0485 25 75 100 100* 100<br />

Cachaco ABB ITC0643 25 50 75* 75 100<br />

Kamaramasenge (Sukari ndizi) AAB ITC0127 25 50 50* 75 75<br />

Dwarf Cavendish AAA ITC0002 50 50 75* 100 100<br />

Bodles alta<strong>for</strong>t AAAA ITC0366 50 75 100 100* 100<br />

Williams-1 AAA ITC0365 50 100 100 100* 100<br />

Williams-2 AAA ITC0365 50 50 100 100 100<br />

InfoMusa - Vol. 15 No. 1-2, June-December 2006 11<br />

G. Welde Michael, T. Addis,<br />

S. Mekonnen and<br />

T. Mengesha work at the<br />

Southern Agricultural Research<br />

Institute (SARI), Awassa<br />

Research Center, P.O. Box 06,<br />

Awassa, Ethiopia,<br />

temesgen_addis@yahoo.com,<br />

K. Bobosha at the Armauer<br />

Hansen Research Institute,<br />

P.O. Box. 1005, Addis Ababa,<br />

Ethiopia, obosha@yahoo.com,<br />

and G. Blomme at the INIBAP<br />

Regional Office <strong>for</strong> Eastern<br />

and Southern Africa, P.O. Box<br />

24384, Kampala, Uganda,<br />

g.blomme@cgiar.org.


Endophytic fungi<br />

Table 1 (cont.). Percentage of plants of 40 local and exotic <strong>banana</strong> genotypes developing <strong>bacterial</strong><br />

xanthomonas wilt after being inoculated with the bacterium (n=4) (cont.)<br />

Cultivar name Genomic ITC Days after inoculation<br />

group number 45 60 75 90 120<br />

Valery AAA ITC0048 50 75 100* 100 100<br />

Prata AAB ITC0207 50 50 75 100 100<br />

Chibulangombe AAA ITC0138 50 50 100* 100 100<br />

Kibungo I AAA ITC0172 25 50 100* 100 100<br />

Figue Sucree AA ITC0107 50 75 100* 100 100<br />

Saba ABB ITC1138 25 75 100 100* 100<br />

Silk AAB ITC0348 50 75 100 100 100<br />

Red AAA ITC0486 50 100 100 100 100*<br />

Gitty AAA - 50 100 100* 100 100<br />

Uganda red AAA - 50 75 100 100 100<br />

Butuza AAA - 50 50* 75 100 100<br />

Nijuru AAA - 25 75 100 100* 100<br />

Ikamaga AAA - 25 75 100 100 100<br />

Ma<strong>to</strong>oke AAA-EAHB - 50 100 100 100 100<br />

Kenya-1 AAA - 50 100 100* 100 100<br />

Wondogenet-1 AAA - 25 75 100 100 100<br />

Wondogenet-2 AAA - 50 50 100 100* 100<br />

Wondogenet-3 AAA - 25 50* 100 100 100<br />

Wondogenet-4 AAA - 50 75 100 100* 100<br />

Ginir-1 AAA - 50 100 100 100 100<br />

Ginir-2 AAA - 50 100 100* 100 100<br />

*Un-inoculated/control plants that showed wilt symp<strong>to</strong>ms<br />

Effect of combined inoculations of endophytic fungi<br />

on the biocontrol of Radopholus similis<br />

A. zum Felde, L.E. Pocasangre, C.A. Carñizares Monteros, R.A. Sikora, F.E. Rosales and<br />

A.S. Riveros<br />

Of the various plant-parasitic nema<strong>to</strong>des<br />

affecting <strong>banana</strong>s and plantain<br />

worldwide, Radopholus similis is<br />

recognised as the most important (Gowen<br />

et al. 2005). Damage caused by R. similis<br />

begins with tunnels of necrotic tissue in<br />

roots and corms, which affect water and<br />

nutrient uptake thereby lengthening the<br />

growing period. Eventually, roots rot due <strong>to</strong><br />

secondary infection of damaged tissue by<br />

bacteria and fungi, leading <strong>to</strong> the <strong>to</strong>ppling of<br />

<strong>banana</strong> plants as a result of root destruction<br />

and loss of anchorage (Gowen et al. 2005,<br />

Sarah et al. 1996). R. similis migrates<br />

from necrotic root tissue <strong>to</strong> adjoining fresh<br />

tissue and through the soil <strong>to</strong> gain access<br />

<strong>to</strong> non-infested tissue from the same<br />

plant or another plant (Sarah et al. 1996).<br />

Substantial yield gains of between 20% and<br />

75% have been demonstrated following the<br />

application nematicides <strong>to</strong> control R. similis<br />

and nema<strong>to</strong>des in general (Broadley 1979,<br />

12<br />

McSorley and Parrado 1986, Sarah 1989,<br />

Gowen 1994).<br />

In commercial <strong>banana</strong> plantations of Latin<br />

America, nema<strong>to</strong>de control basically relies<br />

on the use of granular organophosphate<br />

and carbamate nematicides (Marín 2005).<br />

Cultural practices, such as the use of<br />

organic amendments, crop rotations, fallows<br />

and clean planting material are also used,<br />

but with varying success. Some biocontrol<br />

products, which contain bacteria, such as<br />

Blue Circle (Burkholderia cepacia), a<br />

fungus, such as Paecil (Paecilomyces<br />

lilacinus), or the killed fermentation products<br />

of a fungus, such as DiTera (Myrothecium<br />

verrucaria), are available <strong>for</strong> nema<strong>to</strong>de<br />

management (APS Biological Control<br />

Committee 2005), but <strong>banana</strong> producers do<br />

not generally use them because of a lack of<br />

adequate control.<br />

To improve the activity and thereby<br />

increase the options <strong>for</strong> the biological<br />

management of R. similis in <strong>banana</strong>, novel<br />

InfoMusa - Vol. 15 No. 1-2, June-December 2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!