05.04.2013 Views

Failure Analysis of Boiler Damages.pdf - Sme-gtz.org.vn

Failure Analysis of Boiler Damages.pdf - Sme-gtz.org.vn

Failure Analysis of Boiler Damages.pdf - Sme-gtz.org.vn

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

TÜV Industrie Service GmbH<br />

TÜV SÜD Group<br />

Westendstrasse 199<br />

80686 München<br />

Germany<br />

Page 1<br />

<strong>Failure</strong> <strong>Analysis</strong> <strong>of</strong> Waterside <strong>Boiler</strong> <strong>Damages</strong> and<br />

Risk from Insufficient Maintenance & Inspection<br />

Ludwig Höhenberger, TÜV SÜD, IS-ATW1, Munich<br />

E-mail: Ludwig.Hoehenberger@tuev-sued.de<br />

Waterside damages on steam generators e.g. on condensate or feedwater pre-heater,<br />

economiser, evaporator, super-heater and re-heater are mostly caused by<br />

• Deposition (Scaling) and<br />

• Corrosion or combinations <strong>of</strong> both effects.<br />

Possible, but more rare are damages due to<br />

• Operational Faults and<br />

• Design Defects<br />

Deposition or Scaling is a common problem on steam generators and may lead to<br />

• Lack in material cooling due to reduced heat transfer and/or reduced mass flow<br />

• Material overheating and consequently loss <strong>of</strong> material strength<br />

• Damage<br />

- due to rapid overheating, characterised by thin-lipped ruptures Photo 1<br />

and complete micro-structural transformation at temperatures > 720 °C.<br />

- due to long-term overheating, characterised by thick-lipped ruptures Photo 2<br />

and carbide speroidisation or grain growth at temperatures > ca. 480 °C.<br />

Attention:<br />

– Scaling appears first at spots with high heat transfer (heat flux) and high steam<br />

production<br />

– Silicate scale has ≈10 x lower heat transfer than common carbonate or phosphate scale<br />

– Porous scale with its steam content is more dangerous than compact and dense scale<br />

Causes and Risks:<br />

∗ Insufficient <strong>Boiler</strong> Feedwater (BFW) treatment that includes<br />

- Make up water treatment,<br />

- Condensate polishing,<br />

∗ Inadequate chemical dosing and conditioning <strong>of</strong> BFW and <strong>Boiler</strong> Water (BW) Fig. 1- 3<br />

∗ Coordinated phosphate dosing is not anymore recommended, Fig 4<br />

∗ All Volatile Treatment (AVT) is permitted only with demineralised BFW!<br />

∗ Contaminated BFW as injection water for desuperheating leads to scale in super-heater<br />

&<br />

turbines or caustic stress corrosion cracking in super-heater Photo 3 – 6 or steam<br />

pipe-<br />

work for extracted steam or back pressure steam.<br />

∗ Chemical cleaning must be done properly and pr<strong>of</strong>ound Photo 7 – 9.<br />

TÜV SÜD Industry Services IS-ATW1-MUC, <strong>Boiler</strong> <strong>Failure</strong> 2005/11 - Page 1


TÜV Industrie Service GmbH<br />

TÜV SÜD Group<br />

Westendstrasse 199<br />

80686 München<br />

Germany<br />

Deposition or Scaling may also lead to<br />

Page 2<br />

• Localised concentration <strong>of</strong> impurities within or underneath <strong>of</strong> deposits at heated<br />

surfaces<br />

• ”On Load Corrosion” with acidic or alkaline attack Photo 10 – 12.<br />

Attention:<br />

– Scaling appears first at spots with high heat transfer and high steam production<br />

– Even non corrosive deposits e.g. Photo 13 - 20<br />

- iron oxides may lead to porous, thermal critical scale,<br />

- silicates as Ca-, Mg, Al-silicates to over-heating<br />

– <strong>Boiler</strong> operation according to the BFW and BW requirements for some years lead<br />

mostly<br />

to some deposits <strong>of</strong> iron oxide, which should be preventively removed<br />

Causes and Risks:<br />

∗ Insufficient on-line quality control <strong>of</strong> make-up water, condensate return or BFW<br />

∗ Measurement <strong>of</strong> “Acid Conductivity” amplifies detection <strong>of</strong> ingress <strong>of</strong> impurities like<br />

cooling<br />

water and some process media but do not indicate ingress <strong>of</strong> free caustics!<br />

∗ Lack in Inspection <strong>of</strong> not safety related components like heat exchangers and<br />

condensers<br />

∗ Preventive cleaning during operation or at shut down must be done according to the<br />

specifications<br />

Corrosion on boiler steel (carbon or low alloyed steel) can be mainly avoided, if the BFW<br />

and BW requirements were kept. Deviations may leads to<br />

• Dissolution <strong>of</strong> the important protective layer, material attack and loss in form <strong>of</strong><br />

- Uniform or General Corrosion or - more dangerous - to<br />

- Localised Corrosion (Pitting, On-load corrosion, etc.) Figs. 2 - 4<br />

• Crack formation in specific cases<br />

Attention:<br />

– Uniform or General Corrosion isn’t problem if the material loss is less than 0.1 mm/year<br />

(is easy to achieve with normal protective iron oxide layer)<br />

– Localised corrosion during operation underneath <strong>of</strong> deposits and within heated gaps as<br />

well<br />

as during stand still in form <strong>of</strong> oxygen corrosion (pitting formation)<br />

– Crack formation due to high concentration <strong>of</strong> free caustics in presence <strong>of</strong> high tensile<br />

stress (Caustic SCC) Photos 3 - 6<br />

Causes and Risks:<br />

∗ Insufficient BFW and BW composition, which do not meet the requirements <strong>of</strong> the boiler<br />

manufacturer or approved standards<br />

∗ Inadequate preservation during shut down<br />

∗ Localised concentration <strong>of</strong> acidic acting impurities e. g. cooling water or sea water<br />

ingress<br />

∗ Localised concentration <strong>of</strong> caustic acting impurities or free caustic underneath deposits<br />

within heated gaps or at heated phase boundaries<br />

TÜV SÜD Industry Services IS-ATW1-MUC, <strong>Boiler</strong> <strong>Failure</strong> 2005/11 - Page 2


TÜV Industrie Service GmbH<br />

TÜV SÜD Group<br />

Westendstrasse 199<br />

80686 München<br />

Germany<br />

Page 3<br />

∗ Caustic SCC in case <strong>of</strong> contamination <strong>of</strong> super-heater due to mechanical carry over <strong>of</strong><br />

BW<br />

or contaminated injection water for desuperheating Photo 3 - 6<br />

Corrosion due to non-corrosive BFW and BW conditions but elevated temperatures or<br />

distinct temperature fluctuations may lead to<br />

• Excessive Iron Oxide formation – particularly > 570 °C Photo 19 -20<br />

• Hydrogen production<br />

• Hydrogen damage that includes<br />

- Decarburisation<br />

- Hydrogen Embrittlement<br />

- Fissuring (micro cracks)<br />

- Sudden brittle rupture Photo 21<br />

• Thermo shock Photos 22 - 23<br />

Iron reacts very fast at temperatures > 570 °C with water or steam<br />

[1] Fe + H20 → FeO + 2 {H} to wustite (FeO) and atomic hydrogen {H}<br />

[2] 2 {H} → H2 that later recombines to molecular hydrogen<br />

(H2)<br />

Causes and Risks:<br />

Insufficient water (mass) flow e.g. due to<br />

– Steam/Water separation in tubes with low slope (Design problem) or<br />

– Too much refractory material (Design or repair problem)<br />

– Insufficient mass flow due to deposits within headers<br />

– Excessive localised heat input e. g. due to misalignment <strong>of</strong> burners<br />

Operational Faults may lead to <strong>Boiler</strong> / Super-Heater damages for instance<br />

• Short-term increasing steam production or over-load may lead to<br />

Fast pressure drop → Increasing BW level → BW carry over<br />

• Immediate boiler pressure drop may lead to<br />

BW carry over → steam contamination → super-heater/turbine damages<br />

• Operation significantly below design pressure leads to<br />

Increasing specific steam volume and poor steam/water separation that may lead to<br />

steam contamination → BW carry over → SH/turbine deposits<br />

• Quick start up from cold shut down may lead to<br />

- Thermal stress on components with thick wall thickness (may cause crack)<br />

- Local overheating due to insufficient BW circulation (lack in steam production)<br />

• Quick start up from hot stand by may lead to<br />

Local overheating due to insufficient BW circulation (lack in steam production)<br />

• BFW Temperature significant below design temperature may lead to<br />

- Material over-heating due to lack <strong>of</strong> steam production<br />

- Under cooled boiling (→ erosion corrosion, FAC)<br />

Design Problems may lead to several problems or damages, for instance<br />

• Low slope riser tubes (on the way to the drum) heated also from top may lead to steam/<br />

water separation → Steam-side tube over-heating → Loss in material strength →<br />

TÜV SÜD Industry Services IS-ATW1-MUC, <strong>Boiler</strong> <strong>Failure</strong> 2005/11 - Page 3


TÜV Industrie Service GmbH<br />

TÜV SÜD Group<br />

Westendstrasse 199<br />

80686 München<br />

Germany<br />

Page 4<br />

Steam-<br />

side excessive iron oxidation → Material loss → Hydrogen damage Photos 19 & 21<br />

• Heated down-comer tubes may cause circulation problems like stagnant flow →<br />

Insufficient<br />

water supply for riser tubes → Lack in cooling <strong>of</strong> evaporator tubes → Material overheating<br />

• Heavily fluctuating water level in the boiler drum may lead to<br />

Fluctuating steam space load and problems with the steam purity<br />

• Refractory material reduces heat input to evaporator tubes but may<br />

also affect the steam production and water circulation (mass flow)<br />

• Defects at drum internals e. g leaks at baffle sheets, incorrect installed demisters<br />

or cyclones may affect the steam purity<br />

Annexes: Photos 1 – 23<br />

Figures 1 – 4<br />

Photographs<br />

Photo 1<br />

TÜV SÜD Industry Services IS-ATW1-MUC, <strong>Boiler</strong> <strong>Failure</strong> 2005/11 - Page 4


TÜV Industrie Service GmbH<br />

TÜV SÜD Group<br />

Westendstrasse 199<br />

80686 München<br />

Germany<br />

Photo 2<br />

Photo 3<br />

Page 5<br />

TÜV SÜD Industry Services IS-ATW1-MUC, <strong>Boiler</strong> <strong>Failure</strong> 2005/11 - Page 5


TÜV Industrie Service GmbH<br />

TÜV SÜD Group<br />

Westendstrasse 199<br />

80686 München<br />

Germany<br />

Photo 4<br />

Photo 5<br />

Page 6<br />

TÜV SÜD Industry Services IS-ATW1-MUC, <strong>Boiler</strong> <strong>Failure</strong> 2005/11 - Page 6


TÜV Industrie Service GmbH<br />

TÜV SÜD Group<br />

Westendstrasse 199<br />

80686 München<br />

Germany<br />

Photo 6<br />

Photo 7<br />

Page 7<br />

TÜV SÜD Industry Services IS-ATW1-MUC, <strong>Boiler</strong> <strong>Failure</strong> 2005/11 - Page 7


TÜV Industrie Service GmbH<br />

TÜV SÜD Group<br />

Westendstrasse 199<br />

80686 München<br />

Germany<br />

Photo 8<br />

Photo 9<br />

Page 8<br />

TÜV SÜD Industry Services IS-ATW1-MUC, <strong>Boiler</strong> <strong>Failure</strong> 2005/11 - Page 8


TÜV Industrie Service GmbH<br />

TÜV SÜD Group<br />

Westendstrasse 199<br />

80686 München<br />

Germany<br />

Photo 10<br />

Photo 11<br />

Page 9<br />

TÜV SÜD Industry Services IS-ATW1-MUC, <strong>Boiler</strong> <strong>Failure</strong> 2005/11 - Page 9


TÜV Industrie Service GmbH<br />

TÜV SÜD Group<br />

Westendstrasse 199<br />

80686 München<br />

Germany<br />

Photo 12<br />

Photo 13<br />

Page 10<br />

TÜV SÜD Industry Services IS-ATW1-MUC, <strong>Boiler</strong> <strong>Failure</strong> 2005/11 - Page 10


TÜV Industrie Service GmbH<br />

TÜV SÜD Group<br />

Westendstrasse 199<br />

80686 München<br />

Germany<br />

Photo 14<br />

Photo 15<br />

Page 11<br />

TÜV SÜD Industry Services IS-ATW1-MUC, <strong>Boiler</strong> <strong>Failure</strong> 2005/11 - Page 11


TÜV Industrie Service GmbH<br />

TÜV SÜD Group<br />

Westendstrasse 199<br />

80686 München<br />

Germany<br />

Photo 16<br />

Photo 17<br />

Page 12<br />

TÜV SÜD Industry Services IS-ATW1-MUC, <strong>Boiler</strong> <strong>Failure</strong> 2005/11 - Page 12


TÜV Industrie Service GmbH<br />

TÜV SÜD Group<br />

Westendstrasse 199<br />

80686 München<br />

Germany<br />

Photo 18<br />

Photo 19<br />

Page 13<br />

TÜV SÜD Industry Services IS-ATW1-MUC, <strong>Boiler</strong> <strong>Failure</strong> 2005/11 - Page 13


TÜV Industrie Service GmbH<br />

TÜV SÜD Group<br />

Westendstrasse 199<br />

80686 München<br />

Germany<br />

Photo 20<br />

Photo 21<br />

Page 14<br />

TÜV SÜD Industry Services IS-ATW1-MUC, <strong>Boiler</strong> <strong>Failure</strong> 2005/11 - Page 14


TÜV Industrie Service GmbH<br />

TÜV SÜD Group<br />

Westendstrasse 199<br />

80686 München<br />

Germany<br />

Photo 22<br />

Photo 23<br />

Figures :<br />

Page 15<br />

TÜV SÜD Industry Services IS-ATW1-MUC, <strong>Boiler</strong> <strong>Failure</strong> 2005/11 - Page 15


TÜV Industrie Service GmbH<br />

TÜV SÜD Group<br />

Westendstrasse 199<br />

80686 München<br />

Germany<br />

Fig.1<br />

Fig.2<br />

Page 16<br />

TÜV SÜD Industry Services IS-ATW1-MUC, <strong>Boiler</strong> <strong>Failure</strong> 2005/11 - Page 16


TÜV Industrie Service GmbH<br />

TÜV SÜD Group<br />

Westendstrasse 199<br />

80686 München<br />

Germany<br />

Fig. 3<br />

Page 17<br />

TÜV SÜD Industry Services IS-ATW1-MUC, <strong>Boiler</strong> <strong>Failure</strong> 2005/11 - Page 17


TÜV Industrie Service GmbH<br />

TÜV SÜD Group<br />

Westendstrasse 199<br />

80686 München<br />

Germany<br />

Fig. 4<br />

Page 18<br />

TÜV SÜD Industry Services IS-ATW1-MUC, <strong>Boiler</strong> <strong>Failure</strong> 2005/11 - Page 18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!