05.04.2013 Views

Polyhedra – Mathematical process It is important that the children ...

Polyhedra – Mathematical process It is important that the children ...

Polyhedra – Mathematical process It is important that the children ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Polyhedra</strong> <strong>–</strong> <strong>Ma<strong>the</strong>matical</strong> <strong>process</strong><br />

<strong>It</strong> <strong>is</strong> <strong>important</strong> <strong>that</strong> <strong>the</strong> <strong>children</strong> are encouraged to use <strong>the</strong>ir own <strong>process</strong> and<br />

strategies to investigate <strong>the</strong> situation. <strong>It</strong> may be helpful for <strong>children</strong> to have access to<br />

<strong>the</strong> models of <strong>the</strong> 3D shapes <strong>that</strong> are to be investigated. The net of each shape <strong>is</strong><br />

available as a printout for <strong>the</strong> <strong>children</strong> to construct.<br />

Problem1<br />

• Be systematic<br />

Hexagonal pr<strong>is</strong>m<br />

• Faces ­ 8<br />

3<br />

4<br />

8<br />

Process/strategy<br />

o Start with <strong>the</strong> simpler shapes and count up <strong>the</strong> faces, edges and<br />

vertices of each shape. <strong>It</strong> <strong>is</strong> <strong>important</strong> <strong>that</strong> <strong>children</strong> keep track of <strong>the</strong><br />

faces/edges/vertices <strong>that</strong> <strong>the</strong>y have already counted. If <strong>the</strong>y are not<br />

using <strong>the</strong> interactive program <strong>the</strong>n it <strong>is</strong> recommended <strong>that</strong> <strong>the</strong>y be allow<br />

to mark <strong>the</strong> shapes in some way so <strong>that</strong> <strong>the</strong>y can keep count<br />

accurately.<br />

2<br />

7<br />

5<br />

1<br />

6<br />

• Edges <strong>–</strong> 18<br />

• Vertices <strong>–</strong> 12


• Tabulate results<br />

Shape Number of<br />

faces<br />

Cube<br />

Cuboid<br />

Number of<br />

vertices<br />

Number of<br />

edges<br />

6 8 12<br />

6 8 12<br />

Triangular<br />

pr<strong>is</strong>m 5 6 9<br />

Hexagonal<br />

pr<strong>is</strong>m 8 12 18<br />

Square based<br />

pyramid 4 4 6<br />

Hexagonal<br />

based pyramid 7 7 12<br />

Tetrahedron<br />

Octahedron<br />

4 4 6<br />

8 6 12<br />

Dodecahedron 12 20 30<br />

Icosahedron<br />

• Look for a pattern in results<br />

20 12 30<br />

If <strong>the</strong> results have been tabulated in th<strong>is</strong> way <strong>the</strong>n <strong>the</strong> relationship between <strong>the</strong><br />

faces, vertices and edges should be fairly easy for <strong>the</strong> <strong>children</strong> to identify. (The<br />

less able worksheet <strong>is</strong> worded in a way <strong>that</strong> leads <strong>the</strong>m towards finding <strong>the</strong><br />

relationship)<br />

Cube<br />

Cuboid<br />

Triangular pr<strong>is</strong>m<br />

Hexagonal pr<strong>is</strong>m<br />

6 + 8 ­ 2 = 12<br />

6 8 12<br />

5 + 6 ­ 2 = 9<br />

8 12 18<br />

The pupils should<br />

notice <strong>that</strong> <strong>the</strong> number<br />

of edges can be found<br />

by adding toge<strong>the</strong>r <strong>the</strong><br />

faces and vertices and<br />

<strong>the</strong>n subtracting 2.


Solutions<br />

• To find <strong>the</strong> number of edges add <strong>the</strong> number of faces and <strong>the</strong> number of<br />

vertices and <strong>the</strong>n subtract 2.<br />

• NB Children will most probably use specific values to explain <strong>the</strong>ir logic, not a<br />

general<strong>is</strong>ed one.<br />

• To find <strong>the</strong> general<strong>is</strong>ed statement;<br />

Let <strong>the</strong> faces = f<br />

Let <strong>the</strong> vertices = v<br />

Let <strong>the</strong> edges = e<br />

So if <strong>the</strong> number of edges <strong>is</strong> equal to <strong>the</strong> number of faces added to <strong>the</strong><br />

number of vertices subtract 2 we can write th<strong>is</strong> as<br />

(f + v) <strong>–</strong> 2 = e<br />

• To extend <strong>the</strong> learning of more able <strong>children</strong> you may ask <strong>the</strong>m to find ei<strong>the</strong>r<br />

<strong>the</strong> number of faces or vertices if <strong>the</strong>y have <strong>the</strong> data for <strong>the</strong> o<strong>the</strong>r two.<br />

• Number of faces<br />

Th<strong>is</strong> could be tackled by looking at <strong>the</strong> table of results<br />

Shape Number of<br />

edges<br />

Cube<br />

Number of<br />

vertices<br />

Number of<br />

faces<br />

12 8 6<br />

Triangular<br />

pr<strong>is</strong>m 9 6 5<br />

Hexagonal<br />

pr<strong>is</strong>m 18 12 8<br />

<strong>It</strong> could also be tackled by rearranging <strong>the</strong> formula<br />

(f + v) <strong>–</strong> 2 = e<br />

f <strong>–</strong> 2 = e ­ v (taking v away from both sides)<br />

f = e + v + 2 (adding 2 to both sides)<br />

Our general term <strong>is</strong> f = (e ­ v) + 2<br />

­ + 2 =<br />

They should notice<br />

<strong>that</strong> <strong>the</strong> number of<br />

faces can be found<br />

by taking <strong>the</strong> number<br />

of vertices away<br />

from <strong>the</strong> number of<br />

edges and adding 2.


• Number of vertices<br />

Th<strong>is</strong> could be tackled by looking at <strong>the</strong> table of results<br />

Shape Number of<br />

edges<br />

Cube<br />

Number of<br />

faces<br />

Number of<br />

vertices<br />

12 6 8<br />

Triangular<br />

pr<strong>is</strong>m 9 5 6<br />

Hexagonal<br />

pr<strong>is</strong>m 18 8 12<br />

<strong>It</strong> could also be tackled by rearranging <strong>the</strong> formula<br />

(f + v) <strong>–</strong> 2 = e<br />

v <strong>–</strong> 2 = e ­ f (taking f away from both sides)<br />

v = e + f + 2 (adding 2 to both sides)<br />

Our general term <strong>is</strong> v = (e ­ f) + 2<br />

Problem 2<br />

­<br />

+ 2 =<br />

Process/Strategy<br />

They should notice<br />

<strong>that</strong> <strong>the</strong> number of<br />

vertices can be<br />

found by taking <strong>the</strong><br />

number of faces<br />

away from <strong>the</strong><br />

number of edges<br />

and adding 2.<br />

• Be systematic<br />

NB <strong>It</strong> should be noted <strong>that</strong> <strong>the</strong>se results are based on <strong>the</strong> use of <strong>the</strong> 3D shapes<br />

<strong>that</strong> can be constructed from <strong>the</strong> nets within <strong>the</strong> pack. The results will vary if you<br />

use different 3D shapes (e.g. our pentagonal pr<strong>is</strong>m <strong>is</strong> made up of pentagons and<br />

squares. You may have a pentagonal pr<strong>is</strong>m <strong>that</strong> <strong>is</strong> made up of pentagons and<br />

rectangles.)<br />

Each of <strong>the</strong> 3D shapes needs to be studied and <strong>the</strong> name of <strong>the</strong> different 2D<br />

shapes <strong>that</strong> make up its faces need to be recorded. The <strong>children</strong> could use <strong>the</strong><br />

interactive program to study <strong>the</strong> shapes or <strong>the</strong> nets of <strong>the</strong> shapes can be printed<br />

out and constructed.<br />

5<br />

4 3<br />

1<br />

1<br />

2<br />

Pentagonal based pyramid <strong>is</strong> made up of 5 triangles<br />

and 1 pentagon.


• Tabulate results<br />

Shape Triangular<br />

face<br />

Square<br />

face<br />

Look for shapes <strong>that</strong> share a face<br />

Rectangular<br />

face<br />

Pentagonal<br />

face<br />

Hexagonal<br />

face<br />

Cube × × × ×<br />

Cuboid × × ×<br />

Square<br />

based<br />

pyramid<br />

Pentagonal<br />

based<br />

pyramid<br />

Hexagonal<br />

based<br />

pyramid<br />

× × ×<br />

× × ×<br />

× × × <br />

Triangular<br />

pr<strong>is</strong>m × × ×<br />

Pentagonal<br />

pr<strong>is</strong>m × × ×<br />

Hexagonal<br />

pr<strong>is</strong>m × × × <br />

Triangular<br />

face<br />

Square based<br />

pyramid<br />

Pentagonal<br />

based<br />

pyramid<br />

Hexagonal<br />

based<br />

pyramid<br />

Triangular<br />

pr<strong>is</strong>m<br />

Square<br />

face<br />

Cube<br />

Cuboid<br />

Square<br />

based<br />

pyramid<br />

Pentagonal<br />

pr<strong>is</strong>m<br />

Triangular<br />

pr<strong>is</strong>m<br />

Rectangular<br />

face<br />

Cuboid<br />

Hexagonal<br />

pr<strong>is</strong>m<br />

Pentagonal<br />

face<br />

Pentagonal<br />

based<br />

pyramid<br />

Pentagonal<br />

pr<strong>is</strong>m<br />

Hexagonal<br />

face<br />

Hexagonal<br />

based<br />

pyramid<br />

Hexagonal<br />

pr<strong>is</strong>m


Making branching trees for each shape may help<br />

Follow <strong>the</strong> lines of <strong>the</strong> branching tree to complete <strong>the</strong> polyhedral chain<br />

Cube<br />

Square based<br />

pyramid<br />

Pentagonal<br />

pr<strong>is</strong>m<br />

Cube<br />

Cuboid Square based<br />

pyramid<br />

Hexagonal<br />

pr<strong>is</strong>m<br />

Pentagonal<br />

based<br />

pyramid<br />

Hexagonal<br />

based<br />

pyramid<br />

Cuboid<br />

Triangular<br />

pr<strong>is</strong>m<br />

Pentagonal<br />

pr<strong>is</strong>m<br />

Triangular<br />

pr<strong>is</strong>m<br />

Hexagonal<br />

pr<strong>is</strong>m<br />

Pentagonal<br />

based<br />

pyramid<br />

Hexagonal<br />

based<br />

pyramid<br />

There are many solutions to <strong>the</strong> polyhedral chain. The <strong>children</strong> should be<br />

encouraged to adopt <strong>the</strong>ir own strategies and explain <strong>the</strong>ir reasoning.


Some possible solutions are as follows:<br />

Square based pyramid <strong>–</strong> Pentagonal based pyramid ­ Pentagonal pr<strong>is</strong>m ­ Cube<br />

<strong>–</strong> Cuboid <strong>–</strong> Hexagonal pr<strong>is</strong>m <strong>–</strong> Hexagonal based pyramid <strong>–</strong>Triangular pr<strong>is</strong>m <strong>–</strong><br />

Square based pyramid<br />

Hexagonal based pyramid <strong>–</strong> Square based pyramid <strong>–</strong> Triangular pr<strong>is</strong>m <strong>–</strong><br />

Pentagonal based pyramid ­ Pentagonal pr<strong>is</strong>m <strong>–</strong> Cube <strong>–</strong> Cuboid <strong>–</strong>Hexagonal<br />

pr<strong>is</strong>m ­ Hexagonal based pyramid<br />

Pentagonal pr<strong>is</strong>m <strong>–</strong> Cuboid <strong>–</strong> Hexagonal pr<strong>is</strong>m <strong>–</strong> Hexagonal based pyramid <strong>–</strong><br />

Pentagonal based pyramid <strong>–</strong> Triangular pr<strong>is</strong>m <strong>–</strong>Cube <strong>–</strong>Square based pyramid <strong>–</strong><br />

Pentagonal pr<strong>is</strong>m<br />

Triangular pr<strong>is</strong>m <strong>–</strong> Hexagonal based pyramid <strong>–</strong> Hexagonal pr<strong>is</strong>m <strong>–</strong> Cuboid <strong>–</strong><br />

Cube ­ Pentagonal pr<strong>is</strong>m <strong>–</strong>Pentagonal based pyramid <strong>–</strong> Square based pyramid <strong>–</strong><br />

Triangular pr<strong>is</strong>m

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!