05.04.2013 Views

Klinefelter Syndrome in Adolescence - The Journal of Clinical ...

Klinefelter Syndrome in Adolescence - The Journal of Clinical ...

Klinefelter Syndrome in Adolescence - The Journal of Clinical ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

0021-972X/04/$15.00/0 <strong>The</strong> <strong>Journal</strong> <strong>of</strong> Cl<strong>in</strong>ical Endocr<strong>in</strong>ology & Metabolism 89(5):2263–2270<br />

Pr<strong>in</strong>ted <strong>in</strong> U.S.A. Copyright © 2004 by <strong>The</strong> Endocr<strong>in</strong>e Society<br />

doi: 10.1210/jc.2003-031725<br />

<strong>Kl<strong>in</strong>efelter</strong> <strong>Syndrome</strong> <strong>in</strong> <strong>Adolescence</strong>: Onset <strong>of</strong> Puberty<br />

Is Associated with Accelerated Germ Cell Depletion<br />

ANNE M. WIKSTRÖM, TANELI RAIVIO, FARUK HADZISELIMOVIC, SAKARI WIKSTRÖM,<br />

TIMO TUURI, AND LEO DUNKEL<br />

Hospital for Children and Adolescents (A.M.W., T.R., S.W., L.D.), University <strong>of</strong> Hels<strong>in</strong>ki, 00029 Hels<strong>in</strong>ki, F<strong>in</strong>land;<br />

Biomedicum Hels<strong>in</strong>ki, Institute <strong>of</strong> Biomedic<strong>in</strong>e/Physiology (T.R.), University <strong>of</strong> Hels<strong>in</strong>ki, 00014 Hels<strong>in</strong>ki, F<strong>in</strong>land;<br />

K<strong>in</strong>dertageskl<strong>in</strong>ik (F.H.), 4410 Liestal, Switzerland; and <strong>The</strong> Family Federation <strong>of</strong> F<strong>in</strong>land (T.T.), 00101 Hels<strong>in</strong>ki, F<strong>in</strong>land<br />

<strong>The</strong> process <strong>of</strong> germ cell depletion <strong>in</strong> patients with <strong>Kl<strong>in</strong>efelter</strong><br />

syndrome (KS) is <strong>in</strong>completely characterized. In the current<br />

work, we evaluated the presence <strong>of</strong> germ cells <strong>in</strong> adolescent<br />

boys with KS for possible future use <strong>in</strong> assisted reproduction<br />

techniques.<br />

Fourteen nonmosaic 47,XXY boys (aged 10–14 yr) were enrolled.<br />

Every fourth month their puberty was staged, and serum<br />

was obta<strong>in</strong>ed for hormone analyses. Each boy underwent<br />

a s<strong>in</strong>gle testicular biopsy. Biopsy specimens <strong>of</strong> seven peripubertal<br />

boys (testicular volume < 2.0 ml) had spermatogonia <strong>of</strong><br />

adult type, whereas older boys with larger testes (> 2.0 ml)<br />

exhibited no germ cells. No meiotic germ cells were detectable<br />

<strong>in</strong> any <strong>of</strong> these subjects. Depletion <strong>of</strong> germ cells was associated<br />

IN 1942 HARRY KLINEFELTER described a syndrome<br />

characterized by gynecomastia; small, firm testes with<br />

hyal<strong>in</strong>ization <strong>of</strong> the sem<strong>in</strong>iferous tubules; elevated gonadotrop<strong>in</strong>s;<br />

and azoospermia (1). With an estimated mean prevalence<br />

<strong>of</strong> 152 per 100,000 males, <strong>Kl<strong>in</strong>efelter</strong> syndrome (KS) is<br />

one <strong>of</strong> the most common sex chromosome anomalies (2). It<br />

is also the among most frequent genetic causes <strong>of</strong> human<br />

<strong>in</strong>fertility affect<strong>in</strong>g approximately 11% <strong>of</strong> azoospermic and<br />

4% <strong>of</strong> <strong>in</strong>fertile men (3). In subjects with the karyotype<br />

47,XXY, the process <strong>of</strong> germ cell depletion is <strong>in</strong>completely<br />

characterized. Some reports suggest that the degeneration <strong>of</strong><br />

germ cells starts <strong>in</strong> <strong>in</strong>fancy, lead<strong>in</strong>g to the absence <strong>of</strong> or to a<br />

significantly reduced number <strong>of</strong> germ cells even before puberty<br />

(4–6). On the other hand, complete absence <strong>of</strong> germ<br />

cells cannot be a uniform phenomenon because some adult,<br />

nonmosaic 47,XXY men may father a child with the aid <strong>of</strong><br />

<strong>in</strong>tracytoplasmic sperm <strong>in</strong>jection (ICSI) (7).<br />

Normally the estimated onset <strong>of</strong> release <strong>of</strong> spermatozoa<br />

(spermarche) occurs at a median age <strong>of</strong> 13.4 yr, at Tanner<br />

stage P2–3, and between testicular volumes <strong>of</strong> 4.7 and 19.5 ml<br />

(8, 9). Healthy boys may have their spermarche as early as at<br />

Tanner stage G2 (10). In boys with KS, testicular volume<br />

peaks at midpuberty, and thereafter testicular growth ceases,<br />

simultaneously with development <strong>of</strong> the hypergonadotro-<br />

Abbreviations: Ad, Spermatogonia <strong>of</strong> adult dark type; AMH, anti-<br />

Müllerian hormone; Ap, spermatogonia <strong>of</strong> adult pale type; CV, coefficient<br />

<strong>of</strong> variation; ICSI, <strong>in</strong>tracytoplasmic sperm <strong>in</strong>jection; KS, <strong>Kl<strong>in</strong>efelter</strong><br />

syndrome.<br />

JCEM is published monthly by <strong>The</strong> Endocr<strong>in</strong>e Society (http://www.<br />

endo-society.org), the foremost pr<strong>of</strong>essional society serv<strong>in</strong>g the endocr<strong>in</strong>e<br />

community.<br />

2263<br />

with an <strong>in</strong>crease <strong>in</strong> testicular volume but was not immediately<br />

reflected <strong>in</strong> levels <strong>of</strong> serum gonadotrop<strong>in</strong>, <strong>in</strong>hib<strong>in</strong> B, or anti-<br />

Müllerian hormone. In contrast, hypergonadotropism and<br />

suppression <strong>of</strong> serum <strong>in</strong>hib<strong>in</strong> B and anti-Müllerian hormone<br />

developed later, dur<strong>in</strong>g midpuberty, after an unequivocal <strong>in</strong>crease<br />

<strong>in</strong> serum testosterone (>2.5 nmol/liter) levels and degeneration<br />

<strong>of</strong> Sertoli cells.<br />

In conclusion, these prepubertal and early pubertal boys<br />

with KS had diploid germ cells that vanished <strong>in</strong> early puberty<br />

when testicular volume <strong>in</strong>creased, whereas serum gonadotrop<strong>in</strong><br />

and <strong>in</strong>hib<strong>in</strong> B levels displayed pathological changes later<br />

dur<strong>in</strong>g midpuberty. (J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 89: 2263–2270,<br />

2004)<br />

pism typical <strong>of</strong> adult KS patients (11, 12). It is thus possible<br />

that at the time that healthy boys experience spermarche,<br />

testicular function <strong>in</strong> boys with KS is relatively normal. We<br />

<strong>in</strong>vestigated testicular biopsies <strong>of</strong> adolescent boys with KS<br />

for the presence <strong>of</strong> germ cells. Our aim was to evaluate<br />

whether germ cells for future use <strong>in</strong> ICSI can be obta<strong>in</strong>ed <strong>in</strong><br />

early adolescence. In addition, we characterized how the<br />

morphological changes <strong>in</strong> the testis were reflected <strong>in</strong> pituitary-gonadal<br />

axis activation and especially <strong>in</strong> peripheral<br />

levels <strong>of</strong> the testicular-specific markers <strong>in</strong>hib<strong>in</strong> B and anti-<br />

Müllerian hormone (AMH).<br />

Subjects<br />

Subjects and Methods<br />

Fourteen subjects with nonmosaic karyotype 47,XXY were enrolled<br />

from the outpatient cl<strong>in</strong>ic at the Hospital for Children and Adolescents,<br />

University <strong>of</strong> Hels<strong>in</strong>ki. One boy (patient 14, Tables 1 and 2) was diagnosed<br />

by an amniocentesis. <strong>The</strong> other 13 boys were diagnosed between<br />

5 and 10.5 yr <strong>of</strong> age by child neurologists. Karyotype analyses were<br />

performed for nonendocr<strong>in</strong>ological <strong>in</strong>dications (problems with speech,<br />

learn<strong>in</strong>g, and/or behavior). Before the start <strong>of</strong> systematic prospective<br />

surveillance, these patients had been followed up irregularly with visit<br />

<strong>in</strong>tervals <strong>of</strong> 6–24 months <strong>in</strong> the same cl<strong>in</strong>ic. <strong>The</strong>se visits <strong>in</strong>cluded rout<strong>in</strong>e<br />

hormone analyses (measurements <strong>of</strong> gonadotrop<strong>in</strong> and testosterone<br />

levels), physical exam<strong>in</strong>ation with measurement <strong>of</strong> testicular size (width<br />

and length <strong>of</strong> testes measured with a ruler to the nearest millimeter), and<br />

assessment <strong>of</strong> Tanner pubertal stage (8). None <strong>of</strong> these patients had a<br />

history <strong>of</strong> previous cryptorchidism, nor were any on androgen therapy.<br />

Data from these rout<strong>in</strong>e cl<strong>in</strong>ical surveillance visits were collected from<br />

patient records and merged with data obta<strong>in</strong>ed dur<strong>in</strong>g the prospective<br />

part <strong>of</strong> the study.<br />

At the start <strong>of</strong> the systematic follow-up, the median age <strong>of</strong> the subjects<br />

was 11.5 yr (range 10.0–13.9). <strong>The</strong>y were followed prospectively for 4–20<br />

months (median 13 months). Dur<strong>in</strong>g the systematic surveillance, they<br />

visited the Hospital for Children and Adolescents every fourth month.


2264 J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab, May 2004, 89(5):2263–2270 Wikström et al. Testicular Degeneration <strong>in</strong> Adolescent KS Boys<br />

TABLE 1. Histomorphometric analyses <strong>of</strong> testicular biopsies <strong>of</strong> 14 boys with KS, with key characteristics at the time <strong>of</strong> the biopsy<br />

Patient<br />

no.<br />

At each visit, a physical exam<strong>in</strong>ation was carried out as previously<br />

described; testicular volume was calculated with the formula 0.52 <br />

length width (2), and converted to milliliters (13 and was expressed<br />

as the mean volume <strong>of</strong> the left and right testis. Once a year skeletal age<br />

was assessed accord<strong>in</strong>g to the atlas <strong>of</strong> Greulich and Pyle (14). Sera were<br />

obta<strong>in</strong>ed for FSH, LH, <strong>in</strong>hib<strong>in</strong> B, and AMH measurements every fourth<br />

month and for testosterone, SHBG, and estradiol measurements at least<br />

once a year.<br />

<strong>The</strong> parents <strong>of</strong> each boy gave their <strong>in</strong>formed consent for participation<br />

<strong>in</strong> this study that had been approved by the research ethics committee<br />

<strong>of</strong> the hospital.<br />

Assays<br />

Group<br />

no.<br />

Age<br />

(yr)<br />

Tanner<br />

stage<br />

Mean testicular<br />

volume (ml)<br />

Ap Ad<br />

spermatogonia/<br />

tubule<br />

<strong>The</strong> blood samples were drawn between 0830 and 1530 h. After<br />

clott<strong>in</strong>g, the serum was separated by centrifugation and stored at 20<br />

C until required. Serum FSH and LH levels were measured by ultrasensitive<br />

immun<strong>of</strong>luorometric assays, as previously described (15). FSH<br />

and LH concentrations <strong>of</strong> less than 0.1 IU/liter were treated as 0.1<br />

IU/liter. <strong>The</strong> <strong>in</strong>terassay coefficient <strong>of</strong> variation (CV) for FSH was less<br />

than 3.3% and for LH less than 4.4%. <strong>The</strong> <strong>in</strong>traassay CV for FSH was less<br />

than 4.4% and for LH less than 4.1%. Serum testosterone concentrations<br />

were measured by a RIA after separation <strong>of</strong> steroid fractions on Lipidx-<br />

5000 microcolumns (16, 17). <strong>The</strong> detection limit for testosterone was 0.1<br />

nmol/liter. <strong>The</strong> <strong>in</strong>terassay CV was less than 15% and the <strong>in</strong>traassay CV<br />

was less than 9%. Serum <strong>in</strong>hib<strong>in</strong> B (Serotec, Oxford, UK) and AMH<br />

Ad<br />

spermatogonia/<br />

tubule<br />

(Immunotech-Coulter, Marseille, France) levels were measured by commercially<br />

available immunoenzymometric assays accord<strong>in</strong>g to manufacturers’<br />

<strong>in</strong>structions. <strong>The</strong> detection limit for <strong>in</strong>hib<strong>in</strong> B was 15.6 pg/ml.<br />

<strong>The</strong> <strong>in</strong>terassay CV was less than 15% and the <strong>in</strong>traassay CV less than 5%.<br />

<strong>The</strong> detection limit for AMH was 5.5 pmol/liter, and the <strong>in</strong>terassay CV<br />

was 13.4%.<br />

Testicular biopsies<br />

Sertoli cells type<br />

Leydig cell<br />

hyperplasia<br />

Interstitium and<br />

peritubular<br />

connective tissue<br />

1 I 10.1 P1/G1 1.1 1.2 0.01 Sa/Sb fibr ()<br />

2 I 10.1 P1/G1 1.3 0.04 0 Sa/Sb fibr , hyal<strong>in</strong><br />

3 I 10.3 P1/G1 0.8 0.8 0.006 Sa/Sb fibr ()<br />

4 I 10.7 P1/G1 1.6 1.0 0.03 Sa/Sb fibr <br />

5 I 11.6 P1/G1 1.0 0.1 0.01 Sa/Sb, pale fibr <br />

6 I 11.9 P1/G1 1.8 1.2 0.01 Sa/Sb fibr , hyal<strong>in</strong><br />

7 I 12.5 P2/G2 1.7 1.2 0.03 Sa/Sb fibr , hyal<strong>in</strong><br />

8 IIA 11.7 P1/G2 2.0 0 0 Sa/Sb fibr ()<br />

9 IIA 11.9 P1/G2 2.5 0 0 Sa/Sb, degen fibr <br />

10 IIA 13.0 P1/G2 1.8 0 0 Sa/Sb, degen fibr , hyal<strong>in</strong><br />

11 IIB 11.8 P2/G2 3.9 0 0 Sa, pale, degen fibr , hyal<strong>in</strong><br />

12 IIB 13.7 P1/G2 3.4 0 0 pale, degen fibr <br />

13 IIB 14.0 P2/G2 3.2 0 0 pale, degen fibr , hyal<strong>in</strong><br />

14 IIB 14.0 P3/G4 3.1 0 0 pale, degen, hyal<strong>in</strong> fibr , hyal<strong>in</strong><br />

<strong>The</strong> patients are divided <strong>in</strong>to two groups accord<strong>in</strong>g to presence or absence <strong>of</strong> spermatogonia. Group II is divided <strong>in</strong>to subgroups A and B<br />

accord<strong>in</strong>g to presence or absence <strong>of</strong> hypergonadotropic hypogonadism (see Table 2). Puberty staged accord<strong>in</strong>g to Tanner (8). Ap and Ad<br />

spermatogonia counts per cross-section <strong>of</strong> sem<strong>in</strong>iferous tubule. Sertoli cells staged as Sa, Sb, pale, and degenerat<strong>in</strong>g. <strong>The</strong> degree <strong>of</strong> Leydig cell<br />

hyperplasia staged to . <strong>The</strong> degree <strong>of</strong> fibrosis <strong>of</strong> the <strong>in</strong>terstitium are staged to and presence <strong>of</strong> hyal<strong>in</strong>ization is marked hyal<strong>in</strong>.<br />

TABLE 2. Laboratory parameters <strong>of</strong> 14 boys with KS at the time <strong>of</strong> testicular biopsy<br />

Patient no. Group no.<br />

FSH<br />

(IU/liter)<br />

S-LH<br />

(IU/liter)<br />

Testosterone<br />

(nmol/liter)<br />

<strong>in</strong>hib<strong>in</strong> B<br />

(pg/ml)<br />

AMH<br />

(pmol/liter)<br />

1 I 0.1 0.1 0.3 103 503<br />

2 I 1.0 0.2 0.3 78 758<br />

3 I 1.5 0.1 0.3 66 345<br />

4 I 1.9 0.4 0.3 127 606<br />

5 I 1.0 0.3 0.8 68 1156<br />

6 I 1.5 0.5 0.8 75 803<br />

7 I 1.1 0.5 1.1 69 1062<br />

8 IIA 1.3 0.5 0.7 301 2658<br />

9 IIA 0.5 0.2 0.3 166 1251<br />

10 IIA 0.7 0.1 0.5 97 878<br />

11 IIB 7.5 1.2 2.3 15.6 81<br />

12 IIB 17.9 6.9 3.9 29 101<br />

13 IIB 33.2 9.7 15.7 15.6 96<br />

14 IIB 38.6 11.4 10.2 15.6 16<br />

Patients are divided <strong>in</strong>to two groups accord<strong>in</strong>g to presence or absence <strong>of</strong> spermatogonia (see Table 1). Group II is divided <strong>in</strong>to subgroups A<br />

and B accord<strong>in</strong>g to presence or absence <strong>of</strong> hypergonadotropic hypogonadism.<br />

An open-knife testicular biopsy was taken under general anesthesia<br />

from each subject. <strong>The</strong> major portion <strong>of</strong> the specimen was cryopreserved<br />

for possible further use <strong>in</strong> ICSI <strong>in</strong> adulthood (see below). A piece was<br />

fixed <strong>in</strong> glutaraldehyde and then further subdivided and embedded <strong>in</strong><br />

Epon, sectioned at 1.0 m, and sta<strong>in</strong>ed with toluid<strong>in</strong>e blue. Histomorphometric<br />

analysis was performed by light microscopy at a total magnification<br />

<strong>of</strong> 400. <strong>The</strong> Leydig cells were morphologically classed as<br />

fetal, juvenile, or adult types by the follow<strong>in</strong>g criteria: Leydig cells were<br />

regarded as fetal if they had an extr<strong>in</strong>sically located large nucleus with<br />

two or more nucleoli, juvenile if they had an irregular nucleus and dark<br />

cytoplasm, and adult if they were large cells with a round nucleus and<br />

a cytoplasm conta<strong>in</strong><strong>in</strong>g crystalloid and lipid droplets. <strong>The</strong> Sertoli cells<br />

were morphologically classed as Sa, Sb, and Sc types and were regarded<br />

as Sa type if they were round with scant cytoplasm and had a round<br />

nucleus, and Sb if they were oval and larger and had an irregular oval<br />

nucleus and cytoplasm with recognizable structures. <strong>The</strong>y were classi-


Wikström et al. Testicular Degeneration <strong>in</strong> Adolescent KS Boys J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab, May 2004, 89(5):2263–2270 2265<br />

fied as Sc or adult if they were large and had a nucleus display<strong>in</strong>g one<br />

or more deep <strong>in</strong>vag<strong>in</strong>ations (18, 19).<br />

For all specimens conta<strong>in</strong><strong>in</strong>g germ cells, germ cell counts (number <strong>of</strong><br />

adult type pale spermatogonia per sem<strong>in</strong>iferous tubule, Ap/tubule, and<br />

number <strong>of</strong> adult type dark spermatogonia, Ad/tubule) were calculated<br />

per cross-section <strong>of</strong> tubule. Spermatogonia were regarded as type A if<br />

they were <strong>of</strong> an irregular shape with a round nucleus. Furthermore, they<br />

were regarded as Ap type if the nucleus had one or two nucleoli and as<br />

Ad if the nucleus had one or two pale round areas (19). All tubules from<br />

an average <strong>of</strong> n<strong>in</strong>e sections (range 6–12) per biopsy specimen were<br />

studied. <strong>The</strong> average number <strong>of</strong> tubules studied per biopsy specimen<br />

was 130 (range 71–177).<br />

Germ cell numbers were quantitatively compared with those <strong>of</strong> available<br />

normal testicular biopsies. Eleven identically prepared testicular<br />

specimens <strong>of</strong> adolescent boys were analyzed (11 yr, n 5; 13 yr, n 4;<br />

15 yr, n 1; and 19 yr, n 1). Indications for these biopsies had been<br />

scrotal pa<strong>in</strong> (n 5), hydatid torsion (n 3), retractile testis (n 1), and<br />

paratesticular fibrosis (n 1); one specimen was taken postmortem<br />

(accidental death).<br />

For electron microscopy, one Epon-embedded specimen was sectioned<br />

at 50 nm with a Reichert E ultramicrotome (Reichert Jung, Vienna,<br />

Austria) and sta<strong>in</strong>ed with uranyl acetate and lead citrate. Observations<br />

were made with a JEOLJEM 1200 EX transmission electron microscope<br />

(JEOL, Tokyo, Japan).<br />

Cryopreservation <strong>of</strong> testicular tissue<br />

Testicular tissue was cut <strong>in</strong>to small pieces <strong>in</strong> <strong>in</strong> vitro fertilization-<br />

Universal medium (Medicult, Copenhagen, Denmark) and diluted<br />

slowly drop by drop with equal volume <strong>of</strong> freez<strong>in</strong>g medium (Irv<strong>in</strong>e<br />

Scientific, Santa Ana, CA). <strong>The</strong> samples were frozen <strong>in</strong> 0.5-ml straws by<br />

exposure <strong>of</strong> the straws first for 15 m<strong>in</strong> to 4 C, then 15 m<strong>in</strong> to 20 C,<br />

and for 45 m<strong>in</strong> <strong>in</strong> nitrogen vapor before plac<strong>in</strong>g them <strong>in</strong>to liquid nitrogen.<br />

Two to seven vials were created per patient.<br />

Statistical analyses<br />

Descriptive data are reported as medians and ranges or means. In<br />

those cases with no laboratory analyses at the time <strong>of</strong> testicular biopsy,<br />

values were <strong>in</strong>terpolated from data obta<strong>in</strong>ed before and after biopsy<br />

with the assumption that changes between the two time po<strong>in</strong>ts had been<br />

l<strong>in</strong>ear. <strong>The</strong> unpaired two-tailed Student’s t test was used for comparisons<br />

between groups; P 0.05 was considered significant.<br />

Results<br />

Results <strong>of</strong> histomorphometric analyses <strong>of</strong> the biopsy specimens,<br />

as well as the key characteristics <strong>of</strong> the 14 patients at<br />

the time <strong>of</strong> testicular biopsy are presented <strong>in</strong> Table 1. <strong>The</strong>se<br />

biopsies were obta<strong>in</strong>ed at a median age <strong>of</strong> 11.8 yr (range<br />

10.1–14.0). Representative specimens from five KS boys and<br />

one boy with a normal karyotype are shown <strong>in</strong> Fig. 1. <strong>The</strong><br />

subjects were divided <strong>in</strong>to two groups accord<strong>in</strong>g to the presence<br />

(group I) or absence (group II) <strong>of</strong> germ cells <strong>in</strong> the<br />

biopsies.<br />

Germ cells<br />

Spermatogonia <strong>of</strong> Ap type were found <strong>in</strong> seven <strong>of</strong> 14 and<br />

<strong>of</strong> Ad type <strong>in</strong> six <strong>of</strong> 14 biopsy specimens (Table 1). In the<br />

specimens with germ cells present, the average number <strong>of</strong> Ap<br />

spermatogonia per sem<strong>in</strong>iferous tubule was reduced; mean<br />

number <strong>of</strong> Ap spermatogonia was 0.77 (range 0.04–1.17), and<br />

average number <strong>of</strong> Ad spermatogonia per tubule was 0.01,<br />

whereas all normal controls had consistently more than 0.46<br />

(mean 1.5) Ad spermatogonia per tubule (P 0.001). No<br />

meiotically divid<strong>in</strong>g germ cells (spermatocytes) or postmeiotic<br />

spermatids appeared <strong>in</strong> any <strong>of</strong> the biopsy specimens <strong>of</strong><br />

the KS subjects. Furthermore, at the time <strong>of</strong> cryopreservation<br />

<strong>of</strong> testicular tissue, no spermatozoa were seen <strong>in</strong> any <strong>of</strong> the<br />

specimens. <strong>The</strong> parents and the older boys have received this<br />

<strong>in</strong>formation, and we have thoroughly discussed these results<br />

with them.<br />

Sertoli cells, Leydig cells, and <strong>in</strong>terstitial tissue<br />

In the biopsy specimens <strong>of</strong> patients 1–10, the Sertoli cells<br />

were <strong>of</strong> Sa and Sb type and exhibited relatively normal appearance<br />

(Table 1, and Figs. 1, A and B, and 2). However,<br />

marked degeneration <strong>of</strong> Sertoli cells was evident <strong>in</strong> patients<br />

11–14 (Table 1, Fig. 1, C and D). Boys 1–10 had Leydig cells<br />

<strong>of</strong> juvenile type that showed none or only moderate hyperplasia,<br />

whereas the older subjects 11–14 had huge hyperplastic<br />

Leydig cells (Table 1, Fig. 1, C and D). Group II could<br />

thus be subdivided <strong>in</strong>to two groups based on absence (group<br />

IIA) or presence (group IIB) <strong>of</strong> Sertoli cell degeneration and<br />

Leydig cell hyperplasia. Fibrosis and hyal<strong>in</strong>ization <strong>of</strong> the<br />

<strong>in</strong>terstitium and peritubular connective tissue were visible <strong>in</strong><br />

all groups; <strong>in</strong> addition, these signs <strong>of</strong> degeneration <strong>in</strong>creased<br />

with age (Table 1). Figure 1, A–D, show the differ<strong>in</strong>g degrees<br />

<strong>of</strong> the degeneration process. <strong>The</strong> degeneration was not uniformly<br />

detectable throughout the relatively small biopsy<br />

specimens, whereas we found with<strong>in</strong> the same biopsies areas<br />

with marked degeneration and areas with only moderate<br />

changes (Fig. 1E).<br />

Testicular morphology reflected <strong>in</strong> hormone levels<br />

Patients <strong>in</strong> group I (n 7) (spermatogonia present <strong>in</strong><br />

biopsy specimen) showed no signs <strong>of</strong> hypergonadotropic<br />

hypogonadism (Table 2). <strong>The</strong>re occurred, however, an overlap<br />

<strong>in</strong> serum FSH, LH, testosterone, <strong>in</strong>hib<strong>in</strong> B, and AMH<br />

levels with group II (no spermatogonia <strong>in</strong> the specimen).<br />

Subjects <strong>in</strong> group IIA (n 3) ma<strong>in</strong>ta<strong>in</strong>ed normal gonadotrop<strong>in</strong>,<br />

<strong>in</strong>hib<strong>in</strong> B, and AMH levels, whereas those <strong>in</strong> more<br />

advanced puberty (group IIB, n 4) had clear hypergonadotropism<br />

and low levels <strong>of</strong> circulat<strong>in</strong>g Sertoli cell markers,<br />

<strong>in</strong>hib<strong>in</strong> B, and AMH (Table 2). Testicular volume was therefore<br />

the only statistically significant variable that could fully<br />

differentiate between groups I and II (Fig. 3A). Although<br />

differences <strong>in</strong> FSH and testosterone levels were not statistically<br />

significant between these two groups, levels were<br />

higher <strong>in</strong> group II (Fig. 3A and Table 2). Furthermore, all<br />

subjects with FSH and LH concentrations above 7 IU/liter<br />

showed depletion <strong>of</strong> germ cells and clear degeneration <strong>of</strong><br />

Sertoli cells (i.e. f<strong>in</strong>d<strong>in</strong>gs consistent with group IIB) (Tables<br />

1 and 2).<br />

Longitud<strong>in</strong>al changes <strong>in</strong> serum hormone levels<br />

Serum <strong>in</strong>hib<strong>in</strong> B <strong>in</strong>creased <strong>in</strong> early puberty, but this <strong>in</strong>itial<br />

rise was followed by a rapid suppression accompanied by a<br />

simultaneous <strong>in</strong>crease <strong>in</strong> serum testosterone (Figs. 4 and 5).<br />

A strong, <strong>in</strong>verse nonl<strong>in</strong>ear correlation existed between serum<br />

<strong>in</strong>hib<strong>in</strong> B and testosterone levels (Fig. 4B).<br />

Dur<strong>in</strong>g prepuberty and early puberty, serum AMH levels<br />

were high, but with advanc<strong>in</strong>g puberty, AMH was suppressed<br />

simultaneously with <strong>in</strong>hib<strong>in</strong> B (Figs. 4 and 5). <strong>The</strong>re<br />

also existed a strong, <strong>in</strong>verse nonl<strong>in</strong>ear relationship between<br />

serum AMH and testosterone levels (Figs. 4 and 5). Before


2266 J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab, May 2004, 89(5):2263–2270 Wikström et al. Testicular Degeneration <strong>in</strong> Adolescent KS Boys<br />

FIG. 1. Testicular biopsies <strong>of</strong> five adolescent boys with KS from list <strong>in</strong> Table 1 and one normal boy. Sta<strong>in</strong>, Toluid<strong>in</strong>e blue. A, Patient 4, two<br />

types <strong>of</strong> sem<strong>in</strong>iferous tubules identifiable: those with no spermatogonia on the right and those with spermatogonia <strong>of</strong> adult pale type (Ap) on<br />

the left. Ad, Spermatogonia <strong>of</strong> adult dark type. Sertoli cells, Sa and Sb type; Leydig cells, juvenile type, some hyperplasia; <strong>in</strong>terstitium, <strong>in</strong>creased<br />

fibrosis (magnification, 400). B, Patient 8, no spermatogonia. Sertoli cells, Sa and Sb type; Leydig cells, juvenile type. Interstitial compartment<br />

appears normal (magnification, 400). C, Patient 12, no spermatogonia. Sertoli cells, Sa and Sb type, pale and degenerative. Interstitial<br />

compartment has <strong>in</strong>creased volume, hyperplastic Leydig cells, and some fibrosis (magnification, 400). D, Patient 14, sem<strong>in</strong>iferous tubules<br />

completely hyal<strong>in</strong>ized. Interstitial compartment has hyperplastic Leydig cells and extensive fibrosis (magnification, 400). E, Patient 7,<br />

centrally sem<strong>in</strong>iferous tubules with Ap and/or Ad spermatogonia. This area is surrounded by tubules <strong>in</strong> which the degeneration process is<br />

evident: tubules with pale degenerative Sertoli cells and small tubules with dark small apoptotic cells (magnification, 200). F, Normal control,<br />

age 11 yr, testicular biopsy taken at surgical exploration because <strong>of</strong> scrotal pa<strong>in</strong> (magnification, 200).


Wikström et al. Testicular Degeneration <strong>in</strong> Adolescent KS Boys J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab, May 2004, 89(5):2263–2270 2267<br />

FIG. 2. Patient 2, group I (Table 1). Electron micrograph <strong>of</strong> testicular<br />

biopsy <strong>of</strong> boy with KS at age 10.1 yr and Tanner stage P1G1. Undifferentiated<br />

Sertoli cells resembl<strong>in</strong>g Sa type with a round nucleus with<br />

a small nucleolus lack<strong>in</strong>g lamellar body and with crystalloids from<br />

Charcot-Bötscher. In the center, one degenerat<strong>in</strong>g Sertoli cell<br />

(magnification, 2500).<br />

testosterone had reached 2.5 nmol/liter, a marked drop <strong>in</strong><br />

serum AMH had already occurred (Fig. 4B).<br />

Discussion<br />

With the aid <strong>of</strong> modern <strong>in</strong>fertility treatment technologies<br />

such as ICSI, some men with KS may father children. However,<br />

<strong>in</strong> adulthood, when these treatments come <strong>in</strong>to consideration,<br />

the testes <strong>of</strong> most KS men are completely atrophied.<br />

In the current work we <strong>in</strong>vestigated whether<br />

adolescent patients with KS have germ cells and evaluated<br />

whether early puberty is the optimal period for retriev<strong>in</strong>g<br />

germ cells for further use <strong>in</strong> ICSI. Although this concept has<br />

ga<strong>in</strong>ed further actuality with the recent report <strong>of</strong> a successful<br />

extraction <strong>of</strong> sperm-conta<strong>in</strong><strong>in</strong>g tissue from a 15-yr-old boy<br />

with KS (20), it has not been previously <strong>in</strong>vestigated<br />

systematically.<br />

We found, surpris<strong>in</strong>gly, that <strong>in</strong> early adolescence as many<br />

as 50% <strong>of</strong> the boys with KS had germ cells <strong>in</strong> their testes and<br />

that the depletion <strong>of</strong> these cells accelerated at the onset <strong>of</strong><br />

puberty. This presence <strong>of</strong> germ cells dur<strong>in</strong>g peripuberty contrasts<br />

with results <strong>of</strong> a report by Müller et al. (5), <strong>in</strong> which no<br />

germ cells were detectable <strong>in</strong> KS boys beyond the age <strong>of</strong> 2 yr.<br />

A probable explanation is that all boys <strong>in</strong> Müller’s publication<br />

were cryptorchid, whereas none <strong>in</strong> our group had any<br />

history <strong>of</strong> testicular maldescendent. Cryptorchidism is<br />

known to cause marked decrease <strong>in</strong> germ cell numbers also<br />

<strong>in</strong> boys with a normal karyotype (21, 22).<br />

Ad spermatogonia that develop postnatally from fetal<br />

spermatogonia under gonadotrop<strong>in</strong> and testosterone stimulation<br />

are <strong>of</strong> fundamental importance for the development<br />

<strong>of</strong> male fertility (23). In the boys with KS, the fact that the<br />

number <strong>of</strong> these cells was markedly reduced <strong>in</strong>dicates a<br />

severely impaired fertility potential even <strong>in</strong> early puberty.<br />

Furthermore, we observed only type A spermatogonia <strong>in</strong> our<br />

boys with KS, which suggests an arrest <strong>in</strong> germ cell development<br />

at the stage <strong>of</strong> A spermatogonia. Normally, type A<br />

spermatogonia transform <strong>in</strong>to type B spermatogonia and<br />

further to the first primary spermatocytes at the age <strong>of</strong> 5 yr<br />

(18, 24). At present, whether this defect <strong>in</strong> spermatogenesis<br />

<strong>in</strong> the XXY testis is <strong>in</strong>tr<strong>in</strong>sic to germ cells or due to the<br />

<strong>in</strong>ability <strong>of</strong> the Sertoli cells to support normal germ cell<br />

development is unknown. A defect <strong>in</strong> Sertoli and germ cell<br />

communication <strong>in</strong> the differentiat<strong>in</strong>g XXY testis has been<br />

suggested (25).<br />

Activation <strong>of</strong> the hypothalamic pituitary testicular axis<br />

was associated with depletion <strong>of</strong> germ cells. A strong correlation<br />

appeared between an <strong>in</strong>creas<strong>in</strong>g testosterone level<br />

and suppression <strong>of</strong> the Sertoli cell markers <strong>in</strong>hib<strong>in</strong> B and<br />

AMH. It is possible that the molecular mechanisms <strong>in</strong>duced<br />

by the altered dosage <strong>of</strong> X-encoded genes <strong>in</strong> testicular cells<br />

may accelerate loss <strong>of</strong> germ cells. For example, the androgen<br />

receptor gene is located on the X chromosome (26).<br />

<strong>The</strong> testicular volume <strong>of</strong> KS boys is already below normal<br />

dur<strong>in</strong>g childhood (1.0–1.5 ml; normally 1.8 ml) (27, 28). Dur<strong>in</strong>g<br />

puberty their testes grow (11, 12), which was also observed<br />

<strong>in</strong> the current work (Figs. 3 and 5). In healthy boys,<br />

the proliferation <strong>of</strong> germ cells is predom<strong>in</strong>antly responsible<br />

for the pubertal growth <strong>of</strong> the testes (29, 30). Because we<br />

could detect no spermatogenesis beyond the development <strong>of</strong><br />

type A spermatogonia and the number <strong>of</strong> these cells was low,<br />

the pubertal testicular growth <strong>in</strong> KS boys was due almost<br />

solely to the proliferation <strong>of</strong> Sertoli cells and <strong>in</strong>terstitial cells.<br />

This might suggest that the immature Sertoli cells <strong>of</strong> boys<br />

with KS are respond<strong>in</strong>g to the pubertal <strong>in</strong>crease <strong>in</strong> FSH<br />

stimulation, as seen <strong>in</strong> boys with a normal karyotype. On the<br />

other hand, the prepubertal Sa and Sb cells were not capable<br />

<strong>of</strong> transform<strong>in</strong>g <strong>in</strong>to the adult Sc cell type, and the degeneration<br />

<strong>of</strong> Sertoli cells <strong>in</strong>creased markedly dur<strong>in</strong>g puberty. It<br />

is therefore tempt<strong>in</strong>g to hypothesize that the regression <strong>of</strong> the<br />

testes <strong>in</strong> KS <strong>in</strong>cludes Sertoli cell degeneration. Consistently,<br />

electron microscopy revealed degenerat<strong>in</strong>g Sertoli cells, a<br />

rare f<strong>in</strong>d<strong>in</strong>g <strong>in</strong> testes <strong>of</strong> healthy early pubertal boys.<br />

<strong>The</strong> concept <strong>of</strong> Sertoli cells <strong>in</strong> boys with KS regress<strong>in</strong>g after<br />

the <strong>in</strong>itial phase <strong>of</strong> Sertoli cell proliferation dur<strong>in</strong>g early<br />

puberty is <strong>in</strong> agreement with changes observed <strong>in</strong> serum<br />

levels <strong>of</strong> <strong>in</strong>hib<strong>in</strong> B (31). This glycoprote<strong>in</strong> is thought to reflect<br />

Sertoli cell function dur<strong>in</strong>g prepuberty and become germ cell<br />

dependent dur<strong>in</strong>g midpuberty (32). In our cohort <strong>of</strong> boys<br />

with KS, serum <strong>in</strong>hib<strong>in</strong> B levels dur<strong>in</strong>g prepuberty and early<br />

puberty were normal (33–35), and measurable <strong>in</strong>hib<strong>in</strong> B levels<br />

did not fully correlate with the presence <strong>of</strong> germ cells <strong>in</strong><br />

the testes. This suggests that dur<strong>in</strong>g early puberty, serum<br />

<strong>in</strong>hib<strong>in</strong> B levels <strong>in</strong> boys with KS reflect the <strong>in</strong>tegrity or number<br />

<strong>of</strong> Sertoli cells or both. A normal <strong>in</strong>hib<strong>in</strong> B level and a low<br />

testosterone level were also shown to be <strong>in</strong>consistent with the<br />

presence <strong>of</strong> spermatogonia (group IIA <strong>in</strong> Tables 1 and 2 and<br />

Fig. 4A).<br />

AMH or Müllerian-<strong>in</strong>hibit<strong>in</strong>g substance, a glycoprote<strong>in</strong><br />

dimer <strong>of</strong> the TGF family, is expressed <strong>in</strong> prepubertal but not<br />

adult Sertoli cells (36). Serum AMH levels rema<strong>in</strong> high


2268 J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab, May 2004, 89(5):2263–2270 Wikström et al. Testicular Degeneration <strong>in</strong> Adolescent KS Boys<br />

FIG. 3. A, Testicular volumes and serum FSH,<br />

testosterone, <strong>in</strong>hib<strong>in</strong> B, and AMH levels <strong>in</strong> 14<br />

boys with KS with spermatogonia present or<br />

absent <strong>in</strong> the biopsy specimen (n 7, both<br />

groups). Horizontal l<strong>in</strong>es, 10th, 25th, 50th,<br />

75th, and 90th percentiles, and extreme values<br />

are shown separately. B, Longitud<strong>in</strong>al changes<br />

<strong>in</strong> <strong>in</strong>dividual testis volumes. Black circles,<br />

group I, white circles, group II (see Table 1).<br />

FIG. 4. A, Longitud<strong>in</strong>al changes <strong>in</strong> <strong>in</strong>hib<strong>in</strong><br />

B, testosterone, and AMH concentrations<br />

<strong>in</strong> 14 boys with KS. B, Correlations between<br />

<strong>in</strong>hib<strong>in</strong> B and testosterone and AMH<br />

and testosterone. Dashed l<strong>in</strong>es, serum testosterone<br />

2.5 nmol/liter. Black circles,<br />

group I; white circles, group II (see Table 1).


Wikström et al. Testicular Degeneration <strong>in</strong> Adolescent KS Boys J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab, May 2004, 89(5):2263–2270 2269<br />

FIG. 5. Distributions <strong>of</strong> serum FSH,<br />

LH, testosterone, <strong>in</strong>hib<strong>in</strong> B, and AMH<br />

concentrations and testicular volume <strong>in</strong><br />

14 boys with KS followed up dur<strong>in</strong>g puberty.<br />

Tanner G stages. <strong>The</strong>re were<br />

22–32 observations at stage G1, 13–21<br />

observations at G2, 14–16 observations<br />

at G3, and five to six observations at G4.<br />

Horizontal l<strong>in</strong>es, 10th, 25th, 50th, 75th,<br />

and 90th percentiles, and extreme values<br />

are shown separately (white circles).<br />

throughout childhood and wane at puberty (37). We observed<br />

high AMH values <strong>in</strong> KS boys dur<strong>in</strong>g prepuberty and<br />

early puberty, followed by a decl<strong>in</strong>e as serum testosterone<br />

<strong>in</strong>creased: the tim<strong>in</strong>g and magnitude <strong>of</strong> this decrease was<br />

similar to that <strong>in</strong> normal boys (37, 38) and <strong>in</strong> agreement with<br />

the <strong>in</strong>verse correlation between serum AMH and testosterone<br />

dur<strong>in</strong>g normal puberty (38). It has been proposed that the<br />

dramatic suppression <strong>of</strong> AMH production requires meiotic<br />

entry <strong>in</strong> spermatogenesis (39). Rajpert-De Myets et al. (40) <strong>in</strong><br />

their 1999 study noted, however, that the switch <strong>in</strong> AMH<br />

expression occurred also <strong>in</strong> adolescent boys without germ<br />

cells. Our observations, be<strong>in</strong>g consistent with these f<strong>in</strong>d<strong>in</strong>gs,<br />

suggest that meiotic activity is unnecessary for down regulation<br />

<strong>of</strong> AMH expression (Table 2). <strong>The</strong> decrease <strong>in</strong> serum<br />

AMH levels thus cannot serve as an <strong>in</strong>dicator <strong>of</strong> spermatogenetic<br />

activity <strong>in</strong> KS boys because the biopsy specimens <strong>of</strong><br />

the boys with low AMH values showed no spermatocytes<br />

(group IIB, Tables 1 and 2).<br />

We obta<strong>in</strong>ed only a s<strong>in</strong>gle biopsy from each subject, but<br />

even <strong>in</strong> these very small specimens, we could demonstrate<br />

the focal nature <strong>of</strong> the sem<strong>in</strong>iferous epithelium degeneration<br />

(Fig. 1E), perhaps expla<strong>in</strong><strong>in</strong>g the fact that some adult men<br />

with KS display areas <strong>of</strong> spermatogenesis. It is possible that<br />

<strong>in</strong> our work such areas or their predecessors may have escaped<br />

detection. In adult subjects with KS, the success rate<br />

for obta<strong>in</strong><strong>in</strong>g spermatozoa with sperm-conta<strong>in</strong><strong>in</strong>g tissue is<br />

currently at least 50% (41), but multiple testicular biopsies are<br />

always required for successful sperm recovery (42). We<br />

therefore hypothesize that if several biopsies had been performed,<br />

more germ cells would have been found <strong>in</strong> our<br />

subjects. <strong>The</strong> diagnosis <strong>of</strong> <strong>in</strong>fertility <strong>in</strong> KS boys cannot be<br />

made on the basis <strong>of</strong> only one biopsy. <strong>The</strong>se issues were<br />

thoroughly discussed with the boys and their parents.<br />

Only a m<strong>in</strong>ority <strong>of</strong> subjects with KS is diagnosed before<br />

puberty (2). Later the condition may come to attention dur<strong>in</strong>g<br />

evaluation <strong>of</strong> hypogonadism and <strong>in</strong>fertility. In the current<br />

work, all boys were diagnosed prepubertally, and 13 <strong>of</strong> 14<br />

patients <strong>in</strong>itially presented with language and behavioral<br />

problems. We cannot formally exclude the possibility that<br />

these boys differ from other KS subjects <strong>in</strong> terms <strong>of</strong> fertility<br />

prognosis. However, to our knowledge there is no evidence<br />

<strong>in</strong> the literature <strong>in</strong>dicat<strong>in</strong>g that early neurological problems<br />

<strong>in</strong> KS are related to testicular function.<br />

<strong>The</strong> possible future use <strong>of</strong> the cryopreserved testicular<br />

samples <strong>of</strong> KS patients <strong>in</strong> <strong>in</strong>fertility treatments most probably<br />

requires <strong>in</strong> vitro maturation <strong>of</strong> spermatogonia <strong>in</strong>to mature<br />

spermatozoa or at least <strong>in</strong>to late/elongated spermatids. Recent<br />

studies (43, 44) <strong>in</strong>dicate that human testicular tissue can<br />

be cultured for at least up to 3 wk without essential loss <strong>of</strong><br />

spermatogonia. Early results also suggest that meiosis and<br />

spermatogenesis may resume under culture conditions,<br />

yield<strong>in</strong>g normal spermatids with some fertiliz<strong>in</strong>g potential<br />

(44).<br />

In conclusion, we <strong>in</strong>vestigated whether early adolescence<br />

is a suitable time period <strong>in</strong> life for obta<strong>in</strong><strong>in</strong>g germ cells for<br />

future <strong>in</strong>fertility treatment <strong>in</strong> subjects with KS. Our results<br />

show that early adolescent boys with KS have testicular germ<br />

cells that display a maturational arrest at the level <strong>of</strong> type A<br />

spermatogonia. No meiotic cells were detected <strong>in</strong> any <strong>of</strong> the<br />

biopsy specimens, and onset <strong>of</strong> puberty was associated with<br />

depletion <strong>of</strong> spermatogonia. Based on these results, it seems<br />

that early puberty does not provide an unique w<strong>in</strong>dow <strong>of</strong><br />

opportunity to <strong>in</strong>crease fertility potential <strong>of</strong> subjects with KS.<br />

Future research is thus required to elucidate the mechanisms<br />

activated at puberty that ultimately lead to hypogonadism<br />

characteristic for the syndrome.<br />

Acknowledgments<br />

Received October 3, 2003. Accepted February 10, 2004.<br />

Address all correspondence and requests for repr<strong>in</strong>ts to: Leo Dunkel,<br />

Hospital for Children and Adolescents, University <strong>of</strong> Hels<strong>in</strong>ki, P.O. Box<br />

281, 00029 Hels<strong>in</strong>ki, F<strong>in</strong>land. E-mail: leo.dunkel@hus.fi.<br />

This work was supported by grants from the Medical Society <strong>of</strong><br />

F<strong>in</strong>land (F<strong>in</strong>ska Läkaresällskapet) (to A.M.W.), the Mjölbolsta Founda-


2270 J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab, May 2004, 89(5):2263–2270 Wikström et al. Testicular Degeneration <strong>in</strong> Adolescent KS Boys<br />

tion (to A.M.W.), the Foundation for Pediatric Research (to T.R.), and<br />

Hels<strong>in</strong>ki University Central Hospital.<br />

References<br />

1. <strong>Kl<strong>in</strong>efelter</strong> HF, Reifenste<strong>in</strong> EC, Albright F 1942 <strong>Syndrome</strong> characterized by<br />

gynecomastia, aspermatogenesis without a-Leydigism, and <strong>in</strong>creased excretion<br />

<strong>of</strong> follicle-stimulat<strong>in</strong>g hormone. J Cl<strong>in</strong> Endocr<strong>in</strong>ol 2:615–627<br />

2. Bojesen A, Juul S, Gravholt CH 2003 Prenatal and postnatal prevalence <strong>of</strong><br />

<strong>Kl<strong>in</strong>efelter</strong> syndrome: a national registry study. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 88:<br />

622–626<br />

3. Van Assche E, Bonduelle M, Tournaye H, Joris H, Verheyen G, Devroey P,<br />

Van Steirteghem A, Liebaers I 1996 Cytogenetics <strong>of</strong> <strong>in</strong>fertile men. Hum<br />

Reprod 11(Suppl 4):1–24; discussion 25–26<br />

4. Mikamo K, Aguercif M, Hazeghi P, Mart<strong>in</strong>-Du Pan R 1968 Chromat<strong>in</strong>positive<br />

<strong>Kl<strong>in</strong>efelter</strong>’s syndrome. A quantitative analysis <strong>of</strong> spermatogonial<br />

deficiency at 3, 4, and 12 months <strong>of</strong> age. Fertil Steril 19:731–739<br />

5. Muller J, Skakkebaek NE, Ratcliffe SG 1995 Quantified testicular histology<br />

<strong>in</strong> boys with sex chromosome abnormalities. Int J Androl 18:57–62<br />

6. Ferguson-Smith MA 1959 <strong>The</strong> prepubertal testicular lesion <strong>in</strong> chromat<strong>in</strong>positive<br />

<strong>Kl<strong>in</strong>efelter</strong>’s syndrome (primary micro-orchidism) as seen <strong>in</strong> mentally<br />

handicapped children. Lancet i:219–222<br />

7. Tachdjian G, Frydman N, Morichon-Delvallez N, Du AL, Fanch<strong>in</strong> R, Vekemans<br />

M, Frydman R 2003 Reproductive genetic counsell<strong>in</strong>g <strong>in</strong> non-mosaic<br />

47,XXY patients: implications for preimplantation or prenatal diagnosis: case<br />

report and review. Hum Reprod 18:271–275<br />

8. Tanner JM 1962 Growth at adolescence. 2nd ed. Oxford, UK: Blackwell<br />

9. Nielsen CT, Skakkebaek NE, Richardson DW, Darl<strong>in</strong>g JA, Hunter WM,<br />

Jorgensen M, Nielsen A, Ingerslev O, Keid<strong>in</strong>g N, Muller J 1986 Onset <strong>of</strong> the<br />

release <strong>of</strong> spermatozoa (spermarche) <strong>in</strong> boys <strong>in</strong> relation to age, testicular<br />

growth, pubic hair, and height. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 62:532–535<br />

10. Hirsch M, Lunenfeld B, Modan M, Ovadia J, Shemesh J 1985 Spermarche—<br />

the age <strong>of</strong> onset <strong>of</strong> sperm emission. J Adolesc Health Care 6:35–39<br />

11. Topper E, Dickerman Z, Prager-Lew<strong>in</strong> R, Kaufman H, Maimon Z, Laron Z<br />

1982 Puberty <strong>in</strong> 24 patients with <strong>Kl<strong>in</strong>efelter</strong> syndrome. Eur J Pediatr 139:8–12<br />

12. Salbenblatt JA, Bender BG, Puck MH, Rob<strong>in</strong>son A, Faiman C, W<strong>in</strong>ter JS 1985<br />

Pituitary-gonadal function <strong>in</strong> <strong>Kl<strong>in</strong>efelter</strong> syndrome before and dur<strong>in</strong>g puberty.<br />

Pediatr Res 19:82–86<br />

13. Hansen PF, With TK 1952 Cl<strong>in</strong>ical measurements <strong>of</strong> testes <strong>in</strong> boys and men.<br />

Acta Med Scand Suppl 206:457–465<br />

14. Greulich WW, Pyle SL 1959 Atlas <strong>of</strong> skeletal development <strong>of</strong> the hand and<br />

wrist. 2nd ed. Stanford, CA: Stanford University Press<br />

15. Dunkel L, Alfthan H, Stenman UH, Perheentupa J 1990 Gonadal control <strong>of</strong><br />

pulsatile secretion <strong>of</strong> lute<strong>in</strong>iz<strong>in</strong>g hormone and follicle-stimulat<strong>in</strong>g hormone <strong>in</strong><br />

prepubertal boys evaluated by ultrasensitive time-resolved immun<strong>of</strong>luorometric<br />

assays. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 70:107–114<br />

16. Apter D, Janne O, Karvonen P, Vihko R 1976 Simultaneous determ<strong>in</strong>ation <strong>of</strong><br />

five sex hormones <strong>in</strong> human serum by radioimmunoassay after chromatography<br />

on Lipidex-5000. Cl<strong>in</strong> Chem 22:32–38<br />

17. Janne O, Apter D, Vihko R 1974 Assay <strong>of</strong> testosterone, progesterone and<br />

17-hydroxyprogesterone <strong>in</strong> human plasma by radioimmunoassay after separation<br />

on hydroxyalkoxypropyl sephadex. J Steroid Biochem 5:155–162<br />

18. Seguchi H, Hadziselimovic F 1974 Ultramikroskopische untersuchungen am<br />

tubulus sem<strong>in</strong>iferus bei k<strong>in</strong>dern von der geburt bis zur pubertät. I spermatogonienentwicklung.<br />

Verh Anat Ges 68:133–148<br />

19. Hadziselimovic F, Herzog B 1990 Hodenerkrankungen im k<strong>in</strong>desalter. Stuttgart,<br />

Germany: Hippokrates Verlag<br />

20. Damani MN, Mittal R, Oates RD 2001 Testicular tissue extraction <strong>in</strong> a young<br />

male with 47,XXY <strong>Kl<strong>in</strong>efelter</strong>’s syndrome: potential strategy for preservation<br />

<strong>of</strong> fertility. Fertil Steril 76:1054–1056<br />

21. Hed<strong>in</strong>ger C 1971 Über den frühest erkennbarer hodenveränderungen beim<br />

kryptorchismus des kle<strong>in</strong>k<strong>in</strong>des. Verh Dtsch Ges Pathol 55:172–175<br />

22. Hadziselimovic F, Herzog B, Seguchi H 1975 Surgical correction <strong>of</strong> cryptorchism<br />

at 2 years: electron microscopic and morphometric <strong>in</strong>vestigations.<br />

J Pediatr Surg 10:19–26<br />

23. Hadziselimovic F, Herzog B 2001 <strong>The</strong> importance <strong>of</strong> both an early orchidopexy<br />

and germ cell maturation for fertility. Lancet 358:1156–1157<br />

24. Nistal M, Paniagua R 1984 Occurrence <strong>of</strong> primary spermatocytes <strong>in</strong> the <strong>in</strong>fant<br />

and child testis. Andrologia 16:532–536<br />

25. Hunt PA, Worthman C, Lev<strong>in</strong>son H, Stall<strong>in</strong>gs J, LeMaire R, Mroz K, Park<br />

C, Handel MA 1998 Germ cell loss <strong>in</strong> the XXY male mouse: altered X-chromosome<br />

dosage affects prenatal development. Mol Reprod Dev 49:101–111<br />

26. Quigley CA, De Bellis A, Marschke KB, el-Awady MK, Wilson EM, French<br />

FS 1995 Androgen receptor defects: historical, cl<strong>in</strong>ical, and molecular perspectives.<br />

Endocr Rev 16:271–321<br />

27. Laron Z, Hochman IH 1971 Small testes <strong>in</strong> prepubetal boys with <strong>Kl<strong>in</strong>efelter</strong>’s<br />

syndrome. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 32:671–672<br />

28. Rob<strong>in</strong>son A, Bender BG, Borelli JB, Puck MH, Salbenblatt JA, W<strong>in</strong>ter JS 1986<br />

Sex chromosomal aneuploidy: prospective and longitud<strong>in</strong>al studies. Birth<br />

Defects Orig Artic Ser 22:23–71<br />

29. Cortes D, Muller J, Skakkebaek NE 1987 Proliferation <strong>of</strong> Sertoli cells dur<strong>in</strong>g<br />

development <strong>of</strong> the human testis assessed by stereological methods. Int J<br />

Androl 10:589–596<br />

30. Muller J, Skakkebaek NE 1983 Quantification <strong>of</strong> germ cells and sem<strong>in</strong>iferous<br />

tubules by stereological exam<strong>in</strong>ation <strong>of</strong> testicles from 50 boys who suffered<br />

from sudden death. Int J Androl 6:143–156<br />

31. Christiansen P, Andersson AM, Skakkebaek NE 2003 Longitud<strong>in</strong>al studies<br />

<strong>of</strong> <strong>in</strong>hib<strong>in</strong> B levels <strong>in</strong> boys and young adults with <strong>Kl<strong>in</strong>efelter</strong> syndrome. J Cl<strong>in</strong><br />

Endocr<strong>in</strong>ol Metab 88:888–891<br />

32. Andersson AM, Muller J, Skakkebaek NE 1998 Different roles <strong>of</strong> prepubertal<br />

and postpubertal germ cells and Sertoli cells <strong>in</strong> the regulation <strong>of</strong> serum <strong>in</strong>hib<strong>in</strong><br />

B levels. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 83:4451–4458<br />

33. Raivio T, Perheentupa A, McNeilly AS, Groome NP, Anttila R, Siimes MA,<br />

Dunkel L 1998 Biphasic <strong>in</strong>crease <strong>in</strong> serum <strong>in</strong>hib<strong>in</strong> B dur<strong>in</strong>g puberty: a longitud<strong>in</strong>al<br />

study <strong>of</strong> healthy F<strong>in</strong>nish boys. Pediatr Res 44:552–556<br />

34. Andersson AM, Juul A, Petersen JH, Muller J, Groome NP, Skakkebaek NE<br />

1997 Serum <strong>in</strong>hib<strong>in</strong> B <strong>in</strong> healthy pubertal and adolescent boys: relation to age,<br />

stage <strong>of</strong> puberty, and follicle-stimulat<strong>in</strong>g hormone, lute<strong>in</strong>iz<strong>in</strong>g hormone, testosterone,<br />

and estradiol levels. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 82:3976–3981<br />

35. Cr<strong>of</strong>ton PM, Evans AE, Groome NP, Taylor MR, Holland CV, Kelnar CJ 2002<br />

Inhib<strong>in</strong> B <strong>in</strong> boys from birth to adulthood: relationship with age, pubertal stage,<br />

FSH and testosterone. Cl<strong>in</strong> Endocr<strong>in</strong>ol (Oxf) 56:215–221<br />

36. Lee MM, Donahoe PK 1993 Mullerian <strong>in</strong>hibit<strong>in</strong>g substance: a gonadal hormone<br />

with multiple functions. Endocr Rev 14:152–164<br />

37. Lee MM, Donahoe PK, Hasegawa T, Silverman B, Crist GB, Best S, Hasegawa<br />

Y, Noto RA, Schoenfeld D, MacLaughl<strong>in</strong> DT 1996 Mullerian <strong>in</strong>hibit<strong>in</strong>g<br />

substance <strong>in</strong> humans: normal levels from <strong>in</strong>fancy to adulthood. J Cl<strong>in</strong> Endocr<strong>in</strong>ol<br />

Metab 81:571–576<br />

38. Rey R, Lordereau-Richard I, Carel JC, Barbet P, Cate RL, Roger M, Chaussa<strong>in</strong><br />

JL, Josso N 1993 Anti-Mullerian hormone and testosterone serum levels are<br />

<strong>in</strong>versely dur<strong>in</strong>g normal and precocious pubertal development. J Cl<strong>in</strong> Endocr<strong>in</strong>ol<br />

Metab 77:1220–1226<br />

39. Al-Attar L, Noel K, Dutertre M, Belville C, Forest MG, Burgoyne PS, Josso<br />

N, Rey R 1997 Hormonal and cellular regulation <strong>of</strong> Sertoli cell anti-Mullerian<br />

hormone production <strong>in</strong> the postnatal mouse. J Cl<strong>in</strong> Invest 100:1335–1343<br />

40. Rajpert-De Meyts E, Jorgensen N, Graem N, Muller J, Cate RL, Skakkebaek<br />

NE 1999 Expression <strong>of</strong> anti-Mullerian hormone dur<strong>in</strong>g normal and pathological<br />

gonadal development: association with differentiation <strong>of</strong> Sertoli and granulosa<br />

cells. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 84:3836–3844<br />

41. Ron-El R, Raziel A, Strassburger D, Schachter M, Bern O, Friedler S 2000<br />

Birth <strong>of</strong> healthy male tw<strong>in</strong>s after <strong>in</strong>tracytoplasmic sperm <strong>in</strong>jection <strong>of</strong> frozenthawed<br />

testicular spermatozoa from a patient with nonmosaic <strong>Kl<strong>in</strong>efelter</strong><br />

syndrome. Fertil Steril 74:832–833<br />

42. Tournaye H, Staessen C, Liebaers I, Van Assche E, Devroey P, Bonduelle M,<br />

Van Steirteghem A 1996 Testicular sperm recovery <strong>in</strong> n<strong>in</strong>e 47,XXY <strong>Kl<strong>in</strong>efelter</strong><br />

patients. Hum Reprod 11:1644–1649<br />

43. Larsen HP, Thorup J, Skovgaard LT, Cortes D, Byskov AG 2002 Long-term<br />

cultures <strong>of</strong> testicular biopsies from boys with cryptorchidism: effect <strong>of</strong> FSH and<br />

LH on the number <strong>of</strong> germ cells. Hum Reprod 17:383–389<br />

44. Sousa M, Cremades N, Alves C, Silva J, Barros A 2002 Developmental potential<br />

<strong>of</strong> human spermatogenic cells cocultured with Sertoli cells. Hum Reprod<br />

17:161–172<br />

JCEM is published monthly by <strong>The</strong> Endocr<strong>in</strong>e Society (http://www.endo-society.org), the foremost pr<strong>of</strong>essional society serv<strong>in</strong>g the<br />

endocr<strong>in</strong>e community.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!