05.04.2013 Views

Using Carbon Dioxide as a Tracer Gas to Measure Air Change Rate ...

Using Carbon Dioxide as a Tracer Gas to Measure Air Change Rate ...

Using Carbon Dioxide as a Tracer Gas to Measure Air Change Rate ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Using</strong> <strong>Carbon</strong> <strong>Dioxide</strong> <strong>as</strong> a <strong>Tracer</strong><br />

G<strong>as</strong> <strong>to</strong> Me<strong>as</strong>ure <strong>Air</strong> <strong>Change</strong> <strong>Rate</strong> in a<br />

Single Zone<br />

C. Simmons, F. Boelter, G. Crawford, Boelter & Yates,<br />

Inc., Park Ridge, IL<br />

Presented by:<br />

Catherine E. Simmons, CIH<br />

Boelter & Yates, Inc. 2004


Situation<br />

Ventilation information w<strong>as</strong> needed <strong>to</strong><br />

perform a retrospective exposure<br />

<strong>as</strong>sessment.<br />

Procedure w<strong>as</strong> needed <strong>to</strong> determine the<br />

ventilation rate in air changes per hour<br />

(ACH) for representative boiler rooms and<br />

an isolation test chamber.<br />

Boelter & Yates, Inc. 2004


Boiler Room Ventilation<br />

Research<br />

Published Information on Boiler Room <strong>Air</strong><br />

<strong>Change</strong> <strong>Rate</strong>s<br />

ASHRAE, BOCA and NFPA reviewed for<br />

ventilation requirements in ACH<br />

Ventilation Models <strong>Using</strong> <strong>Tracer</strong> G<strong>as</strong><br />

Published Ventilation Models using <strong>Tracer</strong> G<strong>as</strong><br />

Standard Test Method for Determining <strong>Air</strong><br />

<strong>Change</strong> in a Single Zone by Means of a <strong>Tracer</strong><br />

G<strong>as</strong> Dilution – ASTM E 741 – 00<br />

Boelter & Yates, Inc. 2004


Problem<br />

Existing methods allow for the use of a variety of tracer<br />

g<strong>as</strong>es <strong>to</strong> be used.<br />

Each h<strong>as</strong> advantages and disadvantages.<br />

Selected method<br />

highly portable<br />

e<strong>as</strong>ily me<strong>as</strong>ured<br />

non-<strong>to</strong>xic or very low <strong>to</strong>xicity<br />

inexpensive<br />

<strong>Tracer</strong> g<strong>as</strong> acceptable <strong>to</strong> school district personnel.<br />

Boelter & Yates, Inc. 2004


Research<br />

Standard Test Method for Determining <strong>Air</strong> <strong>Change</strong> in a<br />

Single Zone by Means of a <strong>Tracer</strong> G<strong>as</strong> Dilution – ASTM E<br />

741 – 00<br />

<strong>Tracer</strong> g<strong>as</strong>es (examples)<br />

CO 2 – PEL 5000 ppm<br />

SF 6 – PEL 1000 ppm<br />

CO – PEL 50 ppm<br />

Selection of test method<br />

Concentration Decay<br />

Constant Injection<br />

Constant Concentration<br />

Boelter & Yates, Inc. 2004


Resolution<br />

Selection of tracer g<strong>as</strong><br />

<strong>Carbon</strong> dioxide<br />

Relatively high PEL<br />

Inexpensive<br />

E<strong>as</strong>y <strong>to</strong> obtain and me<strong>as</strong>ure<br />

Acceptable <strong>to</strong> School personnel<br />

Selection of method<br />

Concentration Decay Test Method<br />

Me<strong>as</strong>ures the decay rate of carbon dioxide over<br />

time <strong>to</strong> calculate the air exchange rate.<br />

Regression Analysis<br />

InC(t) = -At + C(0)<br />

<br />

Boelter & Yates, Inc. 2004


Sample Time<br />

<strong>Air</strong> <strong>Change</strong> <strong>Rate</strong> (1/hr)<br />

0.25<br />

0.5<br />

1<br />

2<br />

4<br />

Boelter & Yates, Inc. 2004<br />

Minimum Duration (hour)<br />

4<br />

2<br />

1<br />

.5<br />

.25<br />

Minimum sample duration b<strong>as</strong>ed on 10% uncertainty at the 95%<br />

confidence level in the detection of air change rate, a tracer g<strong>as</strong><br />

concentration me<strong>as</strong>urement precision error of 5% of reading and<br />

various air change rate. <strong>Using</strong> the regression method reduces the<br />

minimum test duration due <strong>to</strong> more than 2 data points.


Boiler Room Ventilation<br />

Testing <strong>Using</strong> <strong>Tracer</strong> G<strong>as</strong><br />

Representative Boiler Rooms<br />

Elementary School - IN<br />

Elementary School - IL<br />

Middle School - IL<br />

Boelter & Yates, Inc. 2004


G<strong>as</strong> Injection and Distribution<br />

Boelter & Yates, Inc. 2004


Direct Reading Equipment<br />

TSI Q-Trak<br />

Log Data<br />

Boelter & Yates, Inc. 2004


School<br />

Indiana<br />

• 5500 ft 3 Boiler Room<br />

• Volume of g<strong>as</strong> needed<br />

• Calculated b<strong>as</strong>ed on room<br />

size and target<br />

concentration of 4000 ppm<br />

V tracer = C target X V zone<br />

• 2 boilers<br />

– Input BTU/hr. - 117,000<br />

– Input BTU/hr. – 156,000<br />

• Both boilers operating<br />

during the testing<br />

• No mechanical ventilation<br />

Boelter & Yates, Inc. 2004


<strong>Carbon</strong> <strong>Dioxide</strong><br />

Concentration in Parts Per<br />

Million (PPM)<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Average CO2 Concentration vs Time<br />

Indiana Boiler Room - 2 Boilers Operating<br />

March 26, 2003<br />

1 7 13 19 25 31 37 43 49 55 61 67 73<br />

Time in Minutes<br />

Trial 1 – 5.2 ACH Trial 2 – 5.3 ACH<br />

Average 5.2 ACH<br />

Boelter & Yates, Inc. 2004<br />

Trial 1 - Average<br />

CO2 Concentration<br />

(PPM) 5.2 <strong>Air</strong><br />

<strong>Change</strong>s Per Hour<br />

Trial 2 - Average<br />

CO2 Concentration<br />

(PPM) 5.3 <strong>Air</strong><br />

<strong>Change</strong>s Per Hour


Elementary School<br />

Illinois<br />

• Me<strong>as</strong>ured Volume –<br />

24,322 ft3 .<br />

• 2 Boilers<br />

• Ventilation tracer<br />

g<strong>as</strong> testing<br />

conducted with<br />

boilers on and off.<br />

Boelter & Yates, Inc. 2004


4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Ventilation <strong>Rate</strong> - Boilers Off<br />

1.8 <strong>Air</strong> <strong>Change</strong>s Per Hour<br />

March 27, 2003<br />

0 18.75 37.5 56.25<br />

Time in Minutes<br />

Trial 1<br />

Boilers Off - 1.8 ACH<br />

Elementary School<br />

<strong>Carbon</strong> <strong>Dioxide</strong><br />

Concentration<br />

(ppm)<br />

<strong>Carbon</strong> <strong>Dioxide</strong><br />

Concentration<br />

(ppm)<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Boelter & Yates, Inc. 2004<br />

Average CO2 Concentration vs Time<br />

March 27, 2003<br />

0<br />

2.25<br />

4.5<br />

6.75<br />

9<br />

11.3<br />

13.5<br />

15.8<br />

18<br />

20.3<br />

22.5<br />

24.8<br />

27<br />

29.3<br />

31.5<br />

Time in Minutes<br />

Boilers On<br />

Trial 2 – 3.5 ACH<br />

Trial 3 – 3.9 ACH<br />

Average 3.7 ACH<br />

Trial 2 - Average <strong>Carbon</strong><br />

<strong>Dioxide</strong> Concentrations<br />

with 2 Boilers Operating<br />

Trial 3 - Average <strong>Carbon</strong><br />

<strong>Dioxide</strong> Concentrations<br />

with 2 Boilers Operating


Middle School<br />

Illinois<br />

16,372 ft 3<br />

Boiler<br />

Room<br />

2 Identical<br />

Boilers<br />

Boelter & Yates, Inc. 2004


5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Average <strong>Carbon</strong> <strong>Dioxide</strong> Concentration (ppm) vs<br />

Time<br />

Middle School<br />

March 21, 2003<br />

0 25 50<br />

Time in Minutes<br />

75<br />

Boilers Off<br />

1.2 ACH<br />

Middle School<br />

<strong>Carbon</strong> <strong>Dioxide</strong><br />

Concentration (ppm)<br />

<strong>Carbon</strong> <strong>Dioxide</strong><br />

Concentration (PPM)<br />

Boelter & Yates, Inc. 2004<br />

Average CO2 Concentration vs Time<br />

Boiler Room - 2 Boilers<br />

March 31, 2003<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

1 112131415161718191<br />

Time in Minutes<br />

Boilers On<br />

Trial 2 - 4.4 ACH<br />

Trial 3 - 5.3 ACH<br />

Average – 4.9 ACH<br />

Boilers On (1 boiler on part<br />

time): Trial 2 - Average CO2<br />

Concentration 4.4 <strong>Air</strong><br />

<strong>Change</strong>s Per Hour,<br />

GlenCrest School March 31,<br />

2003<br />

Boilers On: Trial 3 - Average<br />

CO2 Concentration 5.3 <strong>Air</strong><br />

<strong>Change</strong>s Per Hour,<br />

GlenCrest School March 31,<br />

2003


Me<strong>as</strong>ured Range of Boiler Room<br />

Ventilation<br />

Summary<br />

Boilers Off<br />

Range: 1.2 <strong>to</strong> 1.8 ACH<br />

Boilers On<br />

Range: 3.7 <strong>to</strong> 4.9 ACH<br />

Boelter & Yates, Inc. 2004


Isolation Test Chamber<br />

• Approximately 20’ x 20’ x 9’<br />

(3600 ft3 )<br />

• Wood Frame<br />

• Polyethylene sheeting on<br />

walls and floors<br />

Boelter & Yates, Inc. 2004<br />

• 2 viewing windows<br />

• Entrance airlock<br />

• Decontamination Shower (if<br />

needed)<br />

• HEPA filtered exhaust<br />

machines for ventilation


HEPA Filtered Exhaust Machines<br />

for Chamber Ventilation System<br />

Note: <strong>Using</strong> various configurations, both machines operated<br />

<strong>as</strong> exhaust (tubing w<strong>as</strong> attached <strong>to</strong> machines <strong>to</strong> exhaust<br />

outside the building).<br />

Boelter & Yates, Inc. 2004


Installation and Me<strong>as</strong>urement of<br />

Ventilation System<br />

Various configurations <strong>to</strong> achieve<br />

approximately 1, 3, 5 and 10 ACH<br />

<strong>Carbon</strong> dioxide tracer g<strong>as</strong> used <strong>to</strong><br />

me<strong>as</strong>ure ventilation rate.<br />

Each rate tested twice <strong>to</strong> <strong>as</strong>sure<br />

repeatability.<br />

Final ventilation rates were: 1.2, 2.9, 5.7,<br />

10.7 ACH.<br />

Boelter & Yates, Inc. 2004


<strong>Carbon</strong> <strong>Dioxide</strong><br />

Concentration (ppm)<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

<strong>Carbon</strong> <strong>Dioxide</strong> Concentration (ppm) vs Time<br />

B & Y Test Chamber<br />

5.7 <strong>Air</strong> <strong>Change</strong>s Per Hour<br />

April 29, 2003<br />

0<br />

16:28<br />

16:30<br />

16:32<br />

16:34<br />

16:36<br />

16:38<br />

16:40<br />

Time<br />

Trial 1 – 5.8 ACH Trial 2 – 5.8 ACH<br />

Trial 1 – 5.8 ACH Trial 2 – 5.5 ACH<br />

16:42<br />

16:44<br />

Boelter & Yates, Inc. 2004<br />

Average 5.7<br />

16:46<br />

16:48<br />

16:50<br />

Trial 1 - high<br />

Trial 1 - low<br />

Trial 2 - high<br />

Trial 2 - low


Conclusions<br />

Ventilation rates for representative boiler<br />

rooms were between 1 and 5 ACH.<br />

<strong>Using</strong> carbon dioxide <strong>as</strong> a tracer g<strong>as</strong> and<br />

following ASTM E 741 – 00, Standard Test<br />

Method for Determining <strong>Air</strong> <strong>Change</strong> in a<br />

Single Zone by Means of a <strong>Tracer</strong> G<strong>as</strong><br />

Dilution met the objectives and goals of the<br />

project.<br />

Boelter & Yates, Inc. 2004


Benefits<br />

<strong>Carbon</strong> <strong>Dioxide</strong> <strong>as</strong> a tracer g<strong>as</strong><br />

Inexpensive, reliable procedure for IH’s <strong>to</strong> determine<br />

ventilation rates.<br />

Me<strong>as</strong>uring Equipment is readily available<br />

The method provides an additional <strong>to</strong>ol for<br />

industrial hygienists <strong>to</strong> better characterize<br />

workplace conditions during the initial stages of<br />

an exposure <strong>as</strong>sessment.<br />

Ventilation information is critical <strong>to</strong> the ability <strong>to</strong><br />

perform and validate mathematical modeling for<br />

exposure estimation.<br />

Boelter & Yates, Inc. 2004


C(t)<br />

Well Mixed Room Model - Constant<br />

Contaminant Emission <strong>Rate</strong><br />

G + C ⋅ Q ⎡ ⎛ Q + k ⋅ V ⎞⎤<br />

⎛ Q + k ⋅ V ⎞<br />

IN ⎢ ⎜<br />

L ⎟⎥<br />

+ ⎜<br />

L<br />

= 1−<br />

exp − t C exp − t ⎟<br />

Q + k ⋅ V ⎢ ⎜<br />

⎟⎥<br />

⎜<br />

⎟<br />

⎣ ⎝<br />

V<br />

0<br />

⎠⎦<br />

⎝<br />

V<br />

L<br />

⎠<br />

Input Variables<br />

C IN<br />

V m 3<br />

K L<br />

C 0<br />

mg/m 3<br />

G mg/min<br />

Q m 3/min<br />

per min<br />

mg/m 3<br />

Boelter & Yates, Inc. 2004<br />

Concentration in incoming air<br />

Generation <strong>Rate</strong><br />

Exhaust air flow<br />

Volume of Room<br />

Loss Pathway (sinks)<br />

Initial concentration


0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0<br />

3<br />

6<br />

9<br />

Predicted Concentration at 0.01, 0.1, 1, 3, 4, 5 and 10<br />

<strong>Air</strong> <strong>Change</strong>s Per Hour<br />

12<br />

Effect of Ventilation <strong>Rate</strong> on<br />

Concentration of Contaminant<br />

15<br />

18<br />

21<br />

24<br />

27<br />

30<br />

33<br />

36<br />

Boelter & Yates, Inc. 2004<br />

39<br />

42<br />

45<br />

0.01<br />

ACH<br />

0.1<br />

ACH<br />

1 ACH<br />

3 ACH<br />

4 ACH<br />

5 ACH<br />

10<br />

ACH


Thank you!<br />

Questions?<br />

Speaker Contact Information:<br />

Catherine E. Simmons, CIH<br />

Boelter & Yates, Inc.<br />

Park Ridge, IL<br />

csimmons@boelter-yates.com<br />

Boelter & Yates, Inc. 2004

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!