06.04.2013 Views

Talk ICCDs

Talk ICCDs

Talk ICCDs

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Welcome<br />

Time-Resolved Spectroscopy<br />

and Imaging with ICCD Detectors<br />

Olaf Koschützke


Overview<br />

ICCD and image intensifier design<br />

Parameters and specifications<br />

Applications


Why <strong>ICCDs</strong>?<br />

Image intensifier acts as ultra-fast shutter<br />

Gate widths (= temporal resolution)<br />

as short as 2 ns<br />

Single photon detection


ICCD Design


MCP lmage Intensifier Design<br />

Ultra-fast optical shutter:<br />

ns gating, 50 kHz gate<br />

repetition rates<br />

High vacuum tube<br />

Input window: quartz,<br />

glass, MgF 2, fiber optic<br />

Photocathode<br />

photons → electrons<br />

(photoelectric effect)<br />

-200 V (on), +50 V (off)


MCP lmage Intensifier Design<br />

Micro Channel Plate (MCP):<br />

multiplying of electrons<br />

input 0 V<br />

output +400 V ... +1,000 V<br />

Phosphor screen:<br />

electrons → photons (fluorescence)<br />

+ 6,000 V<br />

Output window:<br />

fiber optic (standard)<br />

glass


MCP (Micro Channel Plate)<br />

Electroding<br />

(on each face)<br />

Lead Silicate<br />

Glass Wafer<br />

Input Events<br />

Channels<br />

(105 - 107 / cm2 )<br />

Output Electrons<br />

Channel diameter: 6 µm (18 mm intensifiers) - 10 µm<br />

(25 mm intensifiers)<br />

VB<br />

-<br />

+


MCP (Micro Channel Plate)<br />

Gain: 1 ... 10,000 el/el (software gain control<br />

0 - 255)<br />

Gain (el/el)<br />

10.000<br />

1.000<br />

100<br />

10<br />

1<br />

400 500 600 700 800 900 1000<br />

MCP Voltage (V)


ICCD Specifications<br />

Image intensifier generations<br />

Quantum efficiency of photocathodes<br />

Effective quantum efficiency of image intensifiers<br />

Gating & irising<br />

Phosphor<br />

EBI (Equivalent Background Illumination)


Intensifier Generations<br />

1. Generation<br />

Image intensifiers without MCP<br />

2. Generation<br />

MCP image intensifiers with multi-alkali photocathodes<br />

3. Generation (Filmed)<br />

GaAs photocathodes on glass input windows<br />

Susceptible to ion damage<br />

⇒ ion barrier film (Al 2O 3) on MCP input<br />

⇒ 1) reduces effective QE by ≈ 1/4<br />

2) 800 V photocathode voltage (slower gating)


Intensifier Generations<br />

3. Generation (Filmless)<br />

Gen III image intensifiers without ion barrier film<br />

⇒ improved quantum efficiency up to 50%<br />

Large reduction of poison gases<br />

Lifetime comparable to any filmed Gen III or Gen II<br />

ANDOR was the first to offer 16 bit <strong>ICCDs</strong> with filmless<br />

Gen III image intensifiers


Quantum Efficiency<br />

Input Windows<br />

MgF 2 (120 nm)<br />

Quartz (180 nm)<br />

Glass (270 nm)<br />

Fiber optic (380 nm)


Quantum Efficiency Gen II


Quantum Efficiency Gen II


Quantum Efficiency<br />

Filmless Gen III


Quantum Efficiency<br />

Filmless Gen III<br />

Nd:YAG: 1064 nm


Quantum Efficiency<br />

Filmless Gen III<br />

BGT: VIH photocathode + UV coating of<br />

fiber optic input window of image intensifier


Effective Quantum Efficiency<br />

of Image Intensifiers<br />

Noise Factor<br />

N f : = SNR in / SNR out<br />

N f > 1 for all <strong>ICCDs</strong><br />

Loss mechanisms and<br />

electron multiplication<br />

statistics<br />

Gen II + III: 25% of<br />

photoelectrons lost in<br />

MCP (75% active area)<br />

Detector Noise Factor<br />

Gen II 1.6<br />

Gen III filmless 1.6<br />

Gen III filmed 2.0<br />

CCD 1<br />

EMCCD 1.3


Effective Quantum Efficiency<br />

of Image Intensifers<br />

Filmed Gen III:<br />

additional ≈ 25% photoelectrons<br />

lost in ion barrier film<br />

Effective QE : = Photocathode QE / Noise Factor 2<br />

Very important for fair comparison with CCD and<br />

EMCCD sensitivity!


Gating<br />

Requirement for ns-Gating<br />

High conductivity of photocathode or<br />

Nickel underlayer or<br />

Metal grid:<br />

Advanced Grid<br />

Technology AGT TM<br />

⇒ fast gating,<br />

higher QE


Gating<br />

18 mm Image Intensifiers<br />

Ultra-fast: 2 ns - 5 ns<br />

Fast: 5 ns - 10 ns<br />

Slow (without Nickel underlay): only 50 ns – 100 ns but<br />

up to 40% higher QE<br />

25 mm Image Intensifiers<br />

Ultra-fast: 3 ns<br />

Fast: 7 ns


Irising<br />

Irising<br />

Delay between center<br />

and edge<br />

Irising < 1/3 of specified<br />

minimum optical gate<br />

Measured for each<br />

ICCD


Phosphors<br />

Phosphors are matched to CCD quantum<br />

efficiency<br />

For fast readout, a fast phosphor is required<br />

Phosphor decays are not a simple exponential<br />

Phosphor Decay Time (10%) Relative Light Output<br />

P43 2 ms 100%<br />

P46 200 ns 20%


Resolution<br />

Resolution of Image Intensifers<br />

Depending on channel diameter, MCP design,<br />

electrical field strength, phosphor grain size<br />

18 mm: Gen II 25 µm, Gen III 30 µm<br />

25 mm: 35 µm<br />

Resolution of ICCD Detectors<br />

Depending on intensifier, coupling, CCD pixel size<br />

1.5 to 2 times effective CCD pixel size ⇒ 20 µm – 50 µm<br />

Reduced in lens coupled ICCD


EBI<br />

EBI (Equivalent Background Illumination):<br />

input illuminance required to produce the same output<br />

brightness as thermal electrons<br />

Output Brightness B<br />

2 B0<br />

Background Brightness B0<br />

EBI<br />

B = G I + B0<br />

Input Illumination I


EBI<br />

Dark current of photocathodes<br />

EBI sets lower detection limit<br />

EBI = 0.02 ... 0.1 photoelectrons/pixel/s<br />

Higher for red sensitive photocathodes (lower work<br />

functions)<br />

EBI can be minimized by:<br />

- storing intensifier in darkness (> 1 h)<br />

- cooling the photocathode<br />

(not necessary in a gated application)


EBI<br />

Negligible in gated applications<br />

1 s<br />

10 ms<br />

100 ms<br />

1 ms


Coupling<br />

2 Methods<br />

1) Fiber Optic Coupling<br />

High efficiency (≈ 30%)<br />

⇒ lower gain ⇒ better dynamic range (> 15 bit)


Coupling<br />

Compact<br />

Low optical distortions<br />

2) Lens Coupling<br />

Flexible (convert ICCD to CCD)<br />

No “chicken wire” effect<br />

Low efficiency ⇒ reduced dynamic range<br />

Larger<br />

Optical distortions


Features<br />

Digital Delay Generator (DDG TM ) built into head<br />

Lowest total propagation delay available (35 ns)<br />

Optical gate width as short as 2 ns<br />

Gate repetition rate up to 50 kHz<br />

Wireless remote control<br />

Ultra-compact design


Digital Delay Generator<br />

Built directly into the camera head<br />

Micro components reduce both total propagation delay<br />

and signal jitter (35 ns ± 2 ns)<br />

Programmable gate pulse delay, width, and TTL trigger<br />

output:<br />

0 ns - 25 s<br />

Resolution:<br />

25 ps (gate pulse delay and width)<br />

16 ns (TTL trigger output)


Fine-tune experiment from any location<br />

around optics table (up to a distance of 12 m)<br />

Change remotely:<br />

- Gate pulse width<br />

- Gate pulse delay<br />

- TTL output delay<br />

- MCP gain<br />

1 4<br />

Operate Windows as with<br />

2 3<br />

an ordinary mouse


Ultra-Compact Design<br />

Only a single PCI controller card,<br />

does not require an external controller box<br />

Design eliminates the need for additional bulky<br />

apparatus:<br />

- Saves space<br />

- Enhances performance<br />

- Easy interface to control complete system<br />

Optional power supply for extra cooling to as low as<br />

–15° at 20°C air temperature and –35°C with 10°C water<br />

Optional input/output box with BNC connectors


Applications<br />

Laser Induced Fluorescence (LIF)<br />

Time Resolved Fluorescence (TRF)<br />

Time Resolved Transient Absorption<br />

Time Resolved Resonance Raman<br />

Spectroscopy (TR3)<br />

UV Resonance Raman Spectroscopy<br />

Single Photon Spectroscopy<br />

Single Molecule Detection<br />

Combustion<br />

Butane flame


Applications<br />

Laser Induced Breakdown Spectroscopy<br />

(LIBS)


Applications<br />

1 µs<br />

typical spectrum from<br />

solution of potassium<br />

pertechnetate dissolved in<br />

0.1 mol/l nitric acid<br />

5 µs<br />

atomic emission lines<br />

start to become visible through<br />

the broadened ionic lines


Applications<br />

10 µs<br />

atomic spectral lines dominate,<br />

clear identification of atomic<br />

species is possible


Applications<br />

Laser Induced Plasma Spectroscopy (LIPS)<br />

Pulsed Laser Deposition (PLD)<br />

Laser Ablation


Applications<br />

1 µs<br />

2 µs<br />

3 µs<br />

O 2 (0,24 mbar) Vacuum<br />

20 ns gate width


Applications<br />

Laser Induced Fluorescence (LIF)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!