07.04.2013 Views

Cleavage and gastrulation in the shrimp Penaeus (Litopenaeus ...

Cleavage and gastrulation in the shrimp Penaeus (Litopenaeus ...

Cleavage and gastrulation in the shrimp Penaeus (Litopenaeus ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

468<br />

arrest at 32-cells suggests that this state was also shared by<br />

<strong>the</strong> common ancestor of <strong>the</strong> Sicyoniidae <strong>and</strong> Penaeidae. The<br />

stage at mesendoderm cell arrest (32-cells) is also known for<br />

P. <strong>in</strong>dicus, fur<strong>the</strong>r support<strong>in</strong>g 32-cells as <strong>the</strong> ancestral<br />

condition. F<strong>in</strong>ally, <strong>in</strong> <strong>the</strong> Euphausiacea, <strong>the</strong> presumptive<br />

mesendoderm cells also arrest at 32-cells, suggest<strong>in</strong>g that<br />

this was <strong>the</strong> condition for <strong>the</strong> last common ancestor of <strong>the</strong><br />

Decapoda <strong>and</strong> <strong>the</strong> Euphausiacea. In <strong>the</strong> clade conta<strong>in</strong><strong>in</strong>g<br />

P. japonicus <strong>and</strong> P. kerathurus, at least two transitions have<br />

occurred for this character, from mesendoderm cell arrest at<br />

32-cells to arrest at ei<strong>the</strong>r 16- or 64-cells. Given that<br />

P. kerathurus is <strong>the</strong> most basal member of this clade<br />

(Lavery et al., 2004), <strong>the</strong> first transition was likely from 32to<br />

16-cells (Fig. 8, step 2), <strong>the</strong>n from 16- to 64-cells (Fig. 8,<br />

step 4).<br />

F<strong>in</strong>ally, <strong>the</strong> l<strong>in</strong>eage of <strong>the</strong> primordial endoderm cell as<br />

Xva is shared <strong>in</strong> S. <strong>in</strong>gentis <strong>and</strong> P. vannamei, while <strong>the</strong><br />

l<strong>in</strong>eage of this cell is Xdpv <strong>in</strong> P. kerathurus. If <strong>the</strong> cell<br />

division pattern can be taken as a reliable <strong>in</strong>dicator of <strong>the</strong><br />

endoblasts, <strong>the</strong>n this <strong>in</strong>dicates that Xva was also <strong>the</strong><br />

primordial endoderm cell <strong>in</strong> <strong>the</strong> last common ancestor of<br />

<strong>the</strong> Sicyoniidae <strong>and</strong> <strong>the</strong> Penaeidae. With <strong>the</strong> data from<br />

P. vannamei, it is more likely that X dpv was <strong>in</strong>correctly<br />

identified as <strong>the</strong> primordial endoblast <strong>in</strong> P. kerathurus, <strong>and</strong><br />

that Xva is likely to be <strong>the</strong> correct identity. An early marker<br />

for endoderm would be very useful for a more def<strong>in</strong>itive<br />

identification of <strong>the</strong> endoderm <strong>and</strong> solution to <strong>the</strong>se<br />

conflict<strong>in</strong>g results.<br />

In summary, <strong>the</strong> cell l<strong>in</strong>eage of P. vannamei provides a<br />

reference for an economically important member of <strong>the</strong><br />

Dendrobranchiata, as well as comparative data for studies of<br />

<strong>the</strong> evolution of development <strong>in</strong> this group <strong>and</strong> <strong>the</strong><br />

Euphausiacea. It will be of <strong>in</strong>terest to obta<strong>in</strong> additional<br />

data for o<strong>the</strong>r members of <strong>the</strong> Penaeidae, as well as for<br />

<strong>the</strong> o<strong>the</strong>r families of <strong>the</strong> Dendrobranchiata to test <strong>the</strong><br />

hypo<strong>the</strong>ses suggested <strong>in</strong> Fig. 8.<br />

Acknowledgements<br />

I thank Robert Shleser, Komarey Moss, Kathy Rasher,<br />

Jane Sylvester, <strong>and</strong> John Ho at Hawaii Oahu Suisan Inc.,<br />

Hawaii for access to <strong>and</strong> assistance with <strong>Penaeus</strong> vannamei<br />

broodstock <strong>and</strong> Athula Wikramanayake, Dept. of Zoology,<br />

University of Hawaii, Manoa for <strong>the</strong> use of laboratory<br />

facilities. This work was completed dur<strong>in</strong>g Spr<strong>in</strong>g 2002<br />

Research Professorship <strong>and</strong> Fall 2004 sabbatical leaves<br />

from Central Michigan University.<br />

References<br />

Alwes, F., Scholtz, G., 2004. <strong>Cleavage</strong> <strong>and</strong> <strong>gastrulation</strong> of <strong>the</strong><br />

euphausiacean Meganyctiphanes norvegica (Crustacea, Malacostraca).<br />

Zoomorphology 123, 125–137.<br />

P.L. Hertzler / Arthropod Structure & Development 34 (2005) 455–469<br />

Anderson, D.T., 1973. Embryology <strong>and</strong> Phylogeny <strong>in</strong> Annelids <strong>and</strong><br />

Arthropods. Pergaman Press, Oxford.<br />

Baldw<strong>in</strong>, J.D., Bass, A.L., Bowen, B.W., Clark Jr., W.H., 1998. Molecular<br />

phylogeny <strong>and</strong> biogeography of <strong>the</strong> mar<strong>in</strong>e <strong>shrimp</strong> <strong>Penaeus</strong>. Molecular<br />

Phylogenetics <strong>and</strong> Evolution 10, 399–407.<br />

Brooks, W.K., 1882. Lucifer, a study <strong>in</strong> morphology. Philosophical<br />

Transactions of <strong>the</strong> Royal Society of London B 173, 57–137.<br />

Duman-Scheel, M., Weng, L., X<strong>in</strong>, S., Du, W., 2002. Hedgehog regulates<br />

cell growth <strong>and</strong> proliferation by <strong>in</strong>duc<strong>in</strong>g cycl<strong>in</strong> D <strong>and</strong> cycl<strong>in</strong> E. Nature<br />

417, 299–304.<br />

Gerberd<strong>in</strong>g, M., Brown, W.E., Patel, N.H., 2002. Cell l<strong>in</strong>eage analysis of<br />

<strong>the</strong> amphipod crustaean Parhyale hawaiensis reveals an early<br />

restriction of cell fates. Development 129, 5789–5801.<br />

Gerberd<strong>in</strong>g, M., Patel, N.H., 2004. In: Stern, C.D. (Ed.), Gastrulation <strong>in</strong><br />

crustaceans: germ layers <strong>and</strong> cell l<strong>in</strong>eages Gastrulation: from Cells to<br />

Embryo. Cold Spr<strong>in</strong>g Harbor Laboratory Press, Cold Spr<strong>in</strong>g Harbor,<br />

New York, pp. 79–89.<br />

Harada, Y., Hosoiri, Y., Kuroda, R., 2004. Isolation <strong>and</strong> evaluation of<br />

dextral-specific <strong>and</strong> dextral-enriched cDNA clones as c<strong>and</strong>idates for <strong>the</strong><br />

h<strong>and</strong>edness-determ<strong>in</strong><strong>in</strong>g gene <strong>in</strong> a freshwater gastropod, Lymnaea<br />

stagnalis. Development Genes <strong>and</strong> Evolution 214, 159–169.<br />

Heldt, J.H., 1938. La reproduction chez les crustacés decapods de la famille<br />

des Pénéides. Annales de l’Institut Océanographique 18, 31–206.<br />

Hertzler, P.L., 2002. Development of <strong>the</strong> mesendoderm <strong>in</strong> <strong>the</strong> dendrobranchiate<br />

<strong>shrimp</strong> Sicyonia <strong>in</strong>gentis. Arthropod Structure <strong>and</strong> Development<br />

31, 33–49.<br />

Hertzler, P.L., Clark Jr., W.H., 1992. <strong>Cleavage</strong> <strong>and</strong> <strong>gastrulation</strong> <strong>in</strong> <strong>the</strong><br />

<strong>shrimp</strong> Sicyonia <strong>in</strong>gentis: <strong>in</strong>vag<strong>in</strong>ation is accompanied by oriented cell<br />

division. Development 116, 127–140.<br />

Hertzler, P.L., Clark Jr., W.H., 1993. The late events of fertilisation <strong>in</strong> <strong>the</strong><br />

penaeoidean <strong>shrimp</strong> Sicyonia <strong>in</strong>gentis. Zygote 1, 287–296.<br />

Hertzler, P.L., Wang, S., Clark Jr., W.H., 1994. Mesendoderm cell <strong>and</strong><br />

archenteron formation <strong>in</strong> isolated blastomeres from <strong>the</strong> <strong>shrimp</strong> Sicyonia<br />

<strong>in</strong>gentis. Developmental Biology 164, 333–344.<br />

Hickman, V., 1937. The embryology of <strong>the</strong> syncarid crustacean Anaspides<br />

tasmaniae. Paper of Royal Society Tasmania 1936, 1–35.<br />

Hud<strong>in</strong>aga, M., 1942. Reproduction, development <strong>and</strong> rear<strong>in</strong>g of <strong>Penaeus</strong><br />

japonicus Bate. Japanese Journal of Zoology 10, 305–393.<br />

Jarman, S.N., Nicol, S., Elliott, N.G., McM<strong>in</strong>n, A., 2000. 28S rDNA<br />

evolution <strong>in</strong> <strong>the</strong> Eumalacostraca <strong>and</strong> <strong>the</strong> phylogenetic position of krill.<br />

Molecular Phylogenetics <strong>and</strong> Evolution 17, 26–36.<br />

Kajishima, T., 1951. Development of isolated blastomeres of <strong>Penaeus</strong><br />

japonicus. Zoological Magaz<strong>in</strong>e 60, 258–262.<br />

Kungvankij, P., Ruangpanit, N., Dangsakul, S., Chrastit, C., 1980. An<br />

experiment on artificial propagation of <strong>Penaeus</strong> semisulcatus de Haan.<br />

Contrib. No. 2, Repr<strong>in</strong>t No. 2, Phuket Fisheries Station, Phuket, Thail<strong>and</strong>.<br />

Lavery, S., Chan, T.Y., Tam, Y.K., Chu, K.H., 2004. Phylogenetic<br />

relationships <strong>and</strong> evolutionary history of <strong>the</strong> <strong>shrimp</strong> genus <strong>Penaeus</strong> s.l.<br />

derived from mitochondrial DNA. Molecular Phylogenetics <strong>and</strong><br />

Evolution 31, 39–49.<br />

Maggioni, R., Rogers, A.D., Maclean, N., D’Incao, F., 2001. Molecular<br />

phylogeny of western Atlantic Farfantepenaeus <strong>and</strong> <strong>Litopenaeus</strong><br />

<strong>shrimp</strong> based on mitochondrial 16S partial sequences. Molecular<br />

Phylogenetics <strong>and</strong> Evolution 18, 66–73.<br />

Mart<strong>in</strong>, J.W., Davis, G.E., 2001. An Updated Classification of <strong>the</strong> Recent<br />

Crustacea. Natural History Museum of Los Angeles County, Los<br />

Angeles.<br />

Morelli, M., Aguacop, 2003. Effects of heat-shock on cell division <strong>and</strong><br />

microtubule organization <strong>in</strong> zygotes of <strong>the</strong> <strong>shrimp</strong> <strong>Penaeus</strong> <strong>in</strong>dicus<br />

(Crustacea, Decapoda) observed with confocal microscopy. Aquaculture<br />

216, 39–53.<br />

Pérez Farfante, I., Kensley, B., 1997. Penaeoid <strong>and</strong> sergestoid <strong>shrimp</strong>s <strong>and</strong><br />

prawns of <strong>the</strong> world: keys <strong>and</strong> diagnoses for <strong>the</strong> families <strong>and</strong> genera.<br />

Mémoires du Muséum National d’Histoire Naturelle 175, 1–233.<br />

Raff, R.A., 1996. The Shape of Life: Genes, Development, <strong>and</strong> <strong>the</strong><br />

Evolution of Animal Form. University of Chicago Press, Chicago.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!