07.04.2013 Views

Cleavage and gastrulation in the shrimp Penaeus (Litopenaeus ...

Cleavage and gastrulation in the shrimp Penaeus (Litopenaeus ...

Cleavage and gastrulation in the shrimp Penaeus (Litopenaeus ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Cleavage</strong> <strong>and</strong> <strong>gastrulation</strong> <strong>in</strong> <strong>the</strong> <strong>shrimp</strong> <strong>Penaeus</strong> (<strong>Litopenaeus</strong>) vannamei<br />

(Malacostraca, Decapoda, Dendrobranchiata)<br />

Abstract<br />

Philip L. Hertzler*<br />

Department of Biology, Central Michigan University, Brooks 217, 100 W. Preston Rd, Mt. Pleasant, MI 48859, USA<br />

Received 8 November 2004; accepted 21 January 2005<br />

While most malacostracan crustaceans develop through superficial cleavage, <strong>in</strong> <strong>the</strong> Amphipoda, Euphausiacea, <strong>and</strong> Dendrobranchiata<br />

(Decapoda) cleavage is complete. Euphausiaceans <strong>and</strong> dendrobranchiate <strong>shrimp</strong> share a similar early cleavage pattern, early cleavage arrest<br />

<strong>and</strong> <strong>in</strong>gression of mesendoderm progenitor cells, a r<strong>in</strong>g of crown cells (prospective naupliar mesoderm) around <strong>the</strong> blastopore, <strong>and</strong> hatch<strong>in</strong>g<br />

as a nauplius larva. Yet recent phylogenies do not support a close relationship between Euphausiacea <strong>and</strong> Decapoda. In addition, some<br />

variation is reported <strong>in</strong> <strong>the</strong> tim<strong>in</strong>g of mesendoderm cell arrest <strong>and</strong> number of crown cells for a number of dendrobranchiates. To determ<strong>in</strong>e <strong>the</strong><br />

representative pattern of development <strong>in</strong> <strong>the</strong> Dendrobranchiata, embryos of <strong>the</strong> Pacific white <strong>shrimp</strong> <strong>Penaeus</strong> (<strong>Litopenaeus</strong>) vannamei were<br />

sta<strong>in</strong>ed with Sytox Green to label chromosomes <strong>and</strong> nuclei <strong>and</strong> exam<strong>in</strong>ed with confocal microscopy. The early cleavage pattern,<br />

mesendoblast arrest <strong>and</strong> subsequent <strong>in</strong>gression at <strong>the</strong> 32-cell stage, presence of 8 <strong>in</strong>itial crown cells, <strong>and</strong> fates of <strong>the</strong> mesendoblasts are <strong>the</strong><br />

same for P. vannamei (family Peneaeidae) <strong>and</strong> Sicyonia <strong>in</strong>gentis (family Sicyoniidae). The l<strong>in</strong>eage of <strong>the</strong> primordial endoderm cells differs<br />

from that reported for P. kerathurus. These characters were discussed <strong>in</strong> <strong>the</strong> context of <strong>the</strong> evolution of development <strong>in</strong> <strong>the</strong> Dendrobranchiata<br />

<strong>and</strong> <strong>in</strong> comparison to <strong>the</strong> Euphausiacea.<br />

q 2005 Elsevier Ltd. All rights reserved.<br />

Keywords: <strong>Cleavage</strong>; Gastrulation; Shrimp; Dendrobranchiata; <strong>Litopenaeus</strong> vannamei<br />

1. Introduction<br />

Malacostracan crustaceans develop by a wide variety of<br />

cleavage <strong>and</strong> <strong>gastrulation</strong> modes to a diverse number of<br />

larval forms <strong>and</strong> adult body plans (Anderson, 1973; Scholtz,<br />

1997; Scholtz, 2000; Gerberd<strong>in</strong>g <strong>and</strong> Patel, 2004). <strong>Cleavage</strong><br />

can be total, as <strong>in</strong> <strong>the</strong> primitive Anaspides (Syncarida), krill<br />

(Euphausiacea), penaeoidean <strong>shrimp</strong> (Decapoda, Dendrobranchiata),<br />

<strong>and</strong> Amphipoda, or superficial, as <strong>in</strong> most of <strong>the</strong><br />

rema<strong>in</strong><strong>in</strong>g malacostracan clades (reviewed by Gerberd<strong>in</strong>g<br />

<strong>and</strong> Patel, 2004). In groups which undergo total cleavage,<br />

<strong>gastrulation</strong> can occur by <strong>in</strong>gression <strong>in</strong>to a hollow blastula,<br />

as <strong>in</strong> Anaspides (Hickman, 1937), by <strong>in</strong>gression of<br />

mesendoderm <strong>and</strong> <strong>in</strong>vag<strong>in</strong>ation of naupliar mesoderm, as<br />

<strong>in</strong> penaeoidean <strong>shrimp</strong> <strong>and</strong> krill (Hertzler <strong>and</strong> Clark, 1992;<br />

Alwes <strong>and</strong> Scholtz, 2004), or by variants of <strong>in</strong>gression <strong>and</strong><br />

* Tel.: C1 989 774 2393; fax: C1 989 774 3462.<br />

E-mail address: philip.l.hertzler@cmich.edu.<br />

1467-8039/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.asd.2005.01.009<br />

Arthropod Structure & Development 34 (2005) 455–469<br />

www.elsevier.com/locate/asd<br />

<strong>in</strong>vag<strong>in</strong>ation <strong>in</strong> amphipods (Gerberd<strong>in</strong>g et al., 2002; Scholtz<br />

<strong>and</strong> Wolff, 2002; Wolff <strong>and</strong> Scholtz, 2002).<br />

Comparisons between <strong>the</strong> Dendrobranchiata <strong>and</strong><br />

Euphausiacea are <strong>in</strong>terest<strong>in</strong>g s<strong>in</strong>ce <strong>the</strong>y share adult<br />

morphological features <strong>and</strong> develop to a free-swimm<strong>in</strong>g<br />

nauplius larva, while o<strong>the</strong>r malacostracans pass through an<br />

‘egg-nauplius’ or undergo direct development (Scholtz,<br />

2000). Dendrobranchiate <strong>shrimp</strong> <strong>and</strong> krill also share a<br />

similar pattern of total cleavage <strong>and</strong> mode of <strong>gastrulation</strong><br />

(Taube, 1909, 1915; Zilch, 1978, 1979; Hertzler <strong>and</strong> Clark,<br />

1992; Alwes <strong>and</strong> Scholtz, 2004). However, recent studies<br />

based on an extensive number of characters from morphology,<br />

anatomy, <strong>and</strong> embryology (Richter <strong>and</strong> Scholtz,<br />

2001) <strong>and</strong> 28S rDNA (Jarman et al., 2000) place <strong>the</strong><br />

Euphausiacea closer to malacostracan clades o<strong>the</strong>r than<br />

decapods.<br />

A recent study exam<strong>in</strong>ed cleavage <strong>and</strong> <strong>gastrulation</strong> <strong>in</strong> <strong>the</strong><br />

euphausiacean Meganyctiphanes norvegica by DNA<br />

sta<strong>in</strong><strong>in</strong>g <strong>and</strong> fluorescence microscopy (Alwes <strong>and</strong> Scholtz,<br />

2004). This study confirms <strong>and</strong> extends <strong>the</strong> similarities<br />

between euphausiacean <strong>and</strong> dendrobranchiate cleavage<br />

<strong>and</strong> <strong>gastrulation</strong>, which <strong>in</strong>clude: (1) a similar arrangement


456<br />

of 4-cell stage blastomeres; (2) an <strong>in</strong>variant cleavage<br />

pattern, <strong>in</strong>clud<strong>in</strong>g mirror-image patterns <strong>and</strong> two <strong>in</strong>terlock<strong>in</strong>g<br />

semicircles of cells through <strong>the</strong> early cleavages; (3) <strong>the</strong><br />

cleavage arrest at <strong>the</strong> 32-cell-stage <strong>and</strong> subsequent<br />

<strong>in</strong>gression of two cells Xd <strong>and</strong> Xv at <strong>the</strong> vegetal pole,<br />

which identify <strong>the</strong> dorsal–ventral axis, <strong>and</strong> may give rise to<br />

endoderm <strong>and</strong> germ l<strong>in</strong>e (Taube, 1909, 1915) or mesendoderm<br />

<strong>and</strong> germ l<strong>in</strong>e (Zilch, 1978, 1979; Hertzler <strong>and</strong> Clark,<br />

1992; Hertzler, 2002); <strong>and</strong> (4) <strong>the</strong> radial division of<br />

cleavage-retarded crown cells (Kranzzellen) <strong>in</strong> a r<strong>in</strong>g<br />

around Xd <strong>and</strong> Xv, which later forms <strong>the</strong> naupliar<br />

mesoderm. Differences between euphausiaceans <strong>and</strong><br />

dendranchiates <strong>in</strong>clude <strong>the</strong> cell l<strong>in</strong>eage of <strong>the</strong> crown cells<br />

<strong>and</strong> position of <strong>the</strong> dorsal–ventral axis (Alwes <strong>and</strong> Scholtz,<br />

2004).<br />

The classification of penaeoidean <strong>shrimp</strong> is controversial<br />

at present, centered on <strong>the</strong> question of whe<strong>the</strong>r six<br />

subgenera of <strong>Penaeus</strong> senso lato are natural groups that<br />

should be raised to <strong>the</strong> generic level (Pérez Farfante <strong>and</strong><br />

Kensley, 1997; Baldw<strong>in</strong> et al., 1998; Maggioni et al., 2001;<br />

Lavery et al., 2004). A recent study of 26/28 of <strong>the</strong><br />

recognized species of genus <strong>Penaeus</strong> s.l., based on <strong>the</strong><br />

mitochondrial 16S <strong>and</strong> COI genes, found support for<br />

<strong>the</strong> monophyly of some subgenera, e.g. <strong>Litopenaeus</strong> <strong>and</strong><br />

Farfantepenaeus, but not for o<strong>the</strong>rs, e.g. <strong>Penaeus</strong> s.s. <strong>and</strong><br />

Marsupenaeus (Lavery et al., 2004). The first comprehensive<br />

phylogeny of <strong>Penaeus</strong> provides an opportunity to ask<br />

questions about <strong>the</strong> evolution of development <strong>in</strong> <strong>the</strong><br />

Dendrobranchiata. Embryological characters can be<br />

mapped onto <strong>the</strong> phylogeny to produce hypo<strong>the</strong>ses about<br />

homology versus convergent evolution <strong>and</strong> <strong>the</strong> direction of<br />

evolutionary change (Raff, 1996).<br />

While <strong>the</strong> details of dendrobranchiate development are<br />

best known for <strong>the</strong> ridgeback prawn Sicyonia <strong>in</strong>gentis,<br />

<strong>in</strong>complete data are available for o<strong>the</strong>r species (Table 1),<br />

<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> sergestoidean <strong>shrimp</strong> Lucifer (Brooks, 1882),<br />

<strong>the</strong> kuruma <strong>shrimp</strong> <strong>Penaeus</strong> (Marsupenaeus) japonicus<br />

(Hud<strong>in</strong>aga, 1942; Kajishima, 1951), <strong>the</strong> caramote <strong>shrimp</strong><br />

<strong>Penaeus</strong> (Melicertus) kerathurus (ZP. trisulcatus) (Heldt,<br />

1938; Zilch, 1978, 1979), <strong>the</strong> Green tiger <strong>shrimp</strong> <strong>Penaeus</strong><br />

semisulcatus (Kungvankij et al., 1980), <strong>and</strong> <strong>the</strong> Indian white<br />

<strong>shrimp</strong> <strong>Penaeus</strong> (Fenneropenaeus) <strong>in</strong>dicus (Morelli <strong>and</strong><br />

Aquacop, 2003). Two embryological characters can be<br />

compared from <strong>the</strong> literature: <strong>the</strong> stage at which mesendoderm<br />

cell arrest occurs, which is 64-cells for P. japonicus<br />

<strong>and</strong> 16-cells for P. kerathurus, <strong>and</strong> <strong>the</strong> <strong>in</strong>itial number of<br />

crown cells, which is 8 for both P. japonicus <strong>and</strong> P.<br />

kerathurus (Kajishima, 1951; Zilch, 1979). In addition,<br />

<strong>the</strong>re are claims of embryos with ‘64-cells’ <strong>and</strong> ‘128-cells’<br />

for P. kerathurus <strong>and</strong> P. semisulcatus (Heldt, 1938;<br />

Kungvankij et al., 1980), which do not account for <strong>the</strong><br />

arrest of <strong>the</strong> mesendoderm cells. It was <strong>the</strong>refore of <strong>in</strong>terest<br />

to exam<strong>in</strong>e <strong>the</strong> pattern of cleavage <strong>and</strong> <strong>gastrulation</strong> <strong>in</strong> detail<br />

<strong>in</strong> ano<strong>the</strong>r representative of <strong>the</strong> Dendrobranchiata, <strong>the</strong><br />

Pacific white <strong>shrimp</strong> <strong>Penaeus</strong> (<strong>Litopenaeus</strong>) vannamei.<br />

This species is <strong>the</strong> most commonly farmed <strong>shrimp</strong> species <strong>in</strong><br />

P.L. Hertzler / Arthropod Structure & Development 34 (2005) 455–469<br />

Table 1<br />

Partial classification of relevant malacostracan crustaceans, with references<br />

referred to <strong>in</strong> <strong>the</strong> text<br />

Class Malacostraca<br />

Superorder Eucarida<br />

Order Euphausiacea<br />

Euphausia sp. (Taube, 1909, 1915)<br />

Meganyctiphanes norvegica (Alwes <strong>and</strong> Schultz, 2004)<br />

Order Decapoda<br />

Suborder Dendrobranchiata<br />

Superfamily Penaeoidea<br />

Family Penaeidae<br />

<strong>Penaeus</strong> (Fenneropenaeus) <strong>in</strong>dicus (Morelli, 2003)<br />

P. (<strong>Litopenaeus</strong>) vannamei (present study)<br />

P. (Marsupenaeus) japonicus (Kajishima, 1951)<br />

P. (Melicertus) kerathurus (Zilch, 1978, 1979)<br />

Family Sicyoniidae<br />

Sicyonia <strong>in</strong>gentis (Hertzler <strong>and</strong> Clark, 1992; Hertzler, 2002)<br />

Family Solenoceridae<br />

Solenocera koelbeli (Lavery et al., 2004)<br />

Superfamily Segestoidea<br />

Family Luciferidae<br />

Lucifer sp. (Brooks, 1882)<br />

Suborder Pleocyemata<br />

After Mart<strong>in</strong> <strong>and</strong> Davis (2001) <strong>and</strong> Pérez Farfante <strong>and</strong> Kensley (1997).<br />

Note that recent studies have questioned <strong>the</strong> close relationship of <strong>the</strong><br />

Euphausiacea to <strong>the</strong> Decapoda (Jarman et al., 2000; Richter <strong>and</strong> Schultz,<br />

2001).<br />

<strong>the</strong> western hemisphere <strong>and</strong> thus represents an important<br />

agricultural model. A comparison with S. <strong>in</strong>gentis showed<br />

an identical pattern of cleavage, time of mesendoderm cell<br />

arrest, <strong>and</strong> number of <strong>in</strong>itial crown cells formed. In<br />

addition, development of <strong>the</strong> mesendodermal derivatives<br />

<strong>in</strong> P. vannamei was identical to that described for<br />

S. <strong>in</strong>gentis. The primordial endoderm cell derived from<br />

<strong>the</strong> ventral mesendoblast X v <strong>in</strong> both P. vannamei <strong>and</strong><br />

S. <strong>in</strong>gentis; <strong>in</strong> contrast, <strong>the</strong> primordial endoderm cell is<br />

reported to derive from <strong>the</strong> dorsal mesendoblast Xd <strong>in</strong> P.<br />

kerathurus.<br />

2. Material <strong>and</strong> methods<br />

2.1. Broodstock <strong>and</strong> spawn<strong>in</strong>g<br />

<strong>Penaeus</strong> vannamei broodstock for this study were<br />

ma<strong>in</strong>ta<strong>in</strong>ed at <strong>the</strong> Hawaii Oahu Suisan, Inc. hatchery <strong>in</strong><br />

Kahuku, Hawaii <strong>in</strong> March 2002, as described <strong>in</strong> Wyban <strong>and</strong><br />

Sweeney (1991). A 12-ft diameter recirculat<strong>in</strong>g maturation<br />

tank, conta<strong>in</strong><strong>in</strong>g about 35 females <strong>and</strong> 45 males, was placed<br />

on a reverse photoperiod so that ‘sunset’ occurred at 6 a.m.<br />

to <strong>in</strong>duce mat<strong>in</strong>g. Mated females were sourced 2 h later <strong>and</strong><br />

placed <strong>in</strong> a bucket with 5-L of seawater with gentle aeration<br />

at 27 8C, <strong>and</strong> monitored for spawn<strong>in</strong>g activity. Animals<br />

were allowed to spawn for 1 m<strong>in</strong> <strong>the</strong>n were removed from<br />

<strong>the</strong> bucket, which was <strong>the</strong>n swirled periodically to keep <strong>the</strong><br />

oocytes <strong>in</strong> suspension while <strong>the</strong> jelly was extruded. The


culture was ma<strong>in</strong>ta<strong>in</strong>ed at 27 8C dur<strong>in</strong>g <strong>the</strong> sampl<strong>in</strong>g period,<br />

through 8 h post-spawn<strong>in</strong>g (ps). Samples were taken every<br />

15 m<strong>in</strong>, passed through a 500 mm nylon mesh to remove <strong>the</strong><br />

jelly, briefly pelleted with a h<strong>and</strong> centrifuge, <strong>and</strong> fixed <strong>and</strong><br />

stored <strong>in</strong> 90% methanol-50 mM EGTA, pH 8.0.<br />

2.2. Fluorochrome sta<strong>in</strong><strong>in</strong>g <strong>and</strong> microscopy<br />

For nuclear label<strong>in</strong>g, eggs or embryos were sta<strong>in</strong>ed with<br />

2.5–5 mM Sytox Green (Molecular Probes Inc.) as described<br />

<strong>in</strong> Hertzler (2002). Observations were made with an<br />

Olympus Fluoview 300 laser scann<strong>in</strong>g confocal microscope<br />

at Central Michigan University, us<strong>in</strong>g argon laser excitation<br />

with a 20X Plan Apo 0.7 NA objective lens with digital<br />

zoom of 2.5–3. O<strong>the</strong>r scann<strong>in</strong>g conditions <strong>and</strong> image<br />

manipulations were performed as <strong>in</strong> Hertzler (2002).<br />

2.3. Cell nomenclature<br />

The cell nomenclature <strong>in</strong> Fig. 1 is based on that proposed<br />

for <strong>the</strong> dendrobranchiate <strong>shrimp</strong> Sicyonia <strong>in</strong>gentis (Hertzler<br />

<strong>and</strong> Clark, 1992; Hertzler, 2002) <strong>and</strong> <strong>the</strong> euphasiacean<br />

Meganyctiphanes norvegica (Alwes <strong>and</strong> Scholtz, 2004).<br />

The four capital letters A, B, C, <strong>and</strong> D are used for <strong>the</strong> 4-cell<br />

blastomeres, with <strong>the</strong> D cell conta<strong>in</strong><strong>in</strong>g <strong>the</strong> vegetal pole <strong>and</strong><br />

giv<strong>in</strong>g rise to <strong>the</strong> mesendoderm cells.<br />

3. Results<br />

3.1. Fertilization <strong>and</strong> zygote<br />

Oocytes are spawned arrested at meiosis I <strong>and</strong> sperm<br />

immediately b<strong>in</strong>d <strong>and</strong> enter. Meiosis is resumed with <strong>the</strong><br />

formation of two polar bodies, one outside <strong>and</strong> one <strong>in</strong>side a<br />

hatch<strong>in</strong>g envelope (not shown). No attempt was made to<br />

follow <strong>the</strong> location of <strong>the</strong> polar bodies dur<strong>in</strong>g cleavage, to<br />

determ<strong>in</strong>e <strong>the</strong> relation of <strong>the</strong> polar axis to <strong>the</strong> first cleavage<br />

plane. Development proceeds with<strong>in</strong> <strong>the</strong> hatch<strong>in</strong>g envelope,<br />

from which <strong>the</strong> nauplius larvae hatch with<strong>in</strong> 12 h. While<br />

newly-spawned oocytes are oblongate, <strong>the</strong> fertilized egg<br />

becomes perfectly spherical, with a diameter of 230 mm <strong>and</strong><br />

a uniform distribution of yolk granules (Fig. 2(A)). Sperm<br />

nuclei were present <strong>in</strong> oocytes by 12.5 m<strong>in</strong> ps, <strong>and</strong><br />

pronuclear migration occurred from 15–25 m<strong>in</strong> ps (data<br />

not shown), <strong>in</strong> a similar fashion as <strong>in</strong> S. <strong>in</strong>gentis (Hertzler<br />

<strong>and</strong> Clark, 1993).<br />

3.2. First division <strong>and</strong> 2-cell stage, second division <strong>and</strong><br />

4-cell stage<br />

The first cleavage occurred at about 40 m<strong>in</strong> ps at 27 8C.<br />

The cleavage pattern of P. vannamei was similar to that<br />

described previously for S. <strong>in</strong>gentis (Hertzler <strong>and</strong> Clark,<br />

1992). A revised nomenclature (Fig. 1) was used to label <strong>the</strong><br />

early blastomeres, based on Hertzler <strong>and</strong> Clark (1992) <strong>and</strong> a<br />

P.L. Hertzler / Arthropod Structure & Development 34 (2005) 455–469 457<br />

recent study on <strong>the</strong> krill M. norvegica (Alwes <strong>and</strong> Scholtz,<br />

2004). First cleavage was complete, result<strong>in</strong>g <strong>in</strong> a 2-cell<br />

stage of approximately equally sized blastomeres, AB <strong>and</strong><br />

CD (Fig. 2(C) <strong>and</strong> (D)). If <strong>the</strong> relation of <strong>the</strong>se cells to <strong>the</strong><br />

polar axis is <strong>the</strong> same as that determ<strong>in</strong>ed for S. <strong>in</strong>gentis, <strong>the</strong><br />

CD blastomere conta<strong>in</strong>s <strong>the</strong> vegetal pole (Hertzler <strong>and</strong><br />

Clark, 1992).<br />

The second division planes formed synchronously at a<br />

458 angle to each o<strong>the</strong>r, result<strong>in</strong>g <strong>in</strong> a 4-cell stage with<br />

blastomeres oriented <strong>in</strong> a close pack<strong>in</strong>g arrangement<br />

(Fig. 2(E)–(H). All four blastomeres appeared to be <strong>the</strong><br />

same size <strong>in</strong> <strong>in</strong>tact embryos, so that no asymmetries could<br />

be detected at <strong>the</strong> 4-cell stage. The cell identities <strong>and</strong> sister<br />

cell relationships <strong>in</strong> Fig. 2 were <strong>in</strong>ferred by trac<strong>in</strong>g sp<strong>in</strong>dle<br />

orientations back from <strong>the</strong> 32-cell stage, <strong>and</strong> from live<br />

embryo l<strong>in</strong>eage trac<strong>in</strong>g <strong>in</strong> S. <strong>in</strong>gentis (Hertzler <strong>and</strong> Clark,<br />

1992; Hertzler et al., 1994). Blastomeres A <strong>and</strong> C contacted<br />

each o<strong>the</strong>r at a cross-furrow runn<strong>in</strong>g <strong>in</strong> <strong>the</strong> mid-sagittal<br />

plane on <strong>the</strong> dorsal side (Fig. 2(F)), while blastomeres B <strong>and</strong><br />

D touched <strong>in</strong> a transverse furrow on <strong>the</strong> ventral side<br />

(Fig. 2(H)). A <strong>and</strong> C thus became left <strong>and</strong> right territories<br />

while B <strong>and</strong> D were anterior <strong>and</strong> posterior, respectively.<br />

3.3. Third division <strong>and</strong> 8-cell stage<br />

The third division, from 4- to 8-cells, was now<br />

orthogonal to <strong>the</strong> preced<strong>in</strong>g one, with A <strong>and</strong> C sp<strong>in</strong>dles<br />

<strong>and</strong> B <strong>and</strong> D sp<strong>in</strong>dles orient<strong>in</strong>g end to end. As <strong>in</strong> S. <strong>in</strong>gentis<br />

<strong>and</strong> M. norvegica, this resulted <strong>in</strong> two <strong>in</strong>terlock<strong>in</strong>g<br />

semicircles of cells, AC <strong>and</strong> BD. A divided <strong>in</strong>to <strong>the</strong> dorsal<br />

cell A I <strong>and</strong> ventral A II, while C divided <strong>in</strong>to <strong>the</strong> dorsal cell<br />

CI <strong>and</strong> ventral CII (Fig. 2(J) <strong>and</strong> (L)). AI <strong>and</strong> CI thus met at<br />

<strong>the</strong> AC cross-furrow, while AII <strong>and</strong> CII lay at <strong>the</strong> ends of <strong>the</strong><br />

AC b<strong>and</strong>. From left ventral to right ventral, <strong>the</strong> cells <strong>in</strong> <strong>the</strong><br />

AC b<strong>and</strong> consisted of AII, AI, CI <strong>and</strong> CII. B divided <strong>in</strong>to<br />

<strong>the</strong> dorsal BII <strong>and</strong> ventral BI, while D divided <strong>in</strong>to <strong>the</strong> dorsal<br />

DII <strong>and</strong> ventral DI (Fig. 2(J) <strong>and</strong> (L)). BI <strong>and</strong> DI met at <strong>the</strong><br />

BD cross-furrow, while B II <strong>and</strong> D II lay at <strong>the</strong> ends of <strong>the</strong> BD<br />

b<strong>and</strong>. From <strong>the</strong> dorsal, anterior to <strong>the</strong> dorsal, posterior, <strong>the</strong><br />

cells <strong>in</strong> <strong>the</strong> BD b<strong>and</strong> consisted of BII, BI, DI, <strong>and</strong> DII.<br />

3.4. Fourth division <strong>and</strong> 16-cell stage<br />

The fourth division was synchronous, with sp<strong>in</strong>dles <strong>in</strong><br />

<strong>the</strong> AC <strong>and</strong> BD b<strong>and</strong>s <strong>in</strong> a row of four side-by-side sp<strong>in</strong>dles,<br />

yield<strong>in</strong>g a 16-cell stage (Fig. 2(J) <strong>and</strong> (L). The AC b<strong>and</strong><br />

divided <strong>in</strong> <strong>the</strong> anterior–posterior direction, with A II form<strong>in</strong>g<br />

AIIa <strong>and</strong> AIIp, AI form<strong>in</strong>g AIa <strong>and</strong> AIp, CI form<strong>in</strong>g CIa <strong>and</strong><br />

CIp <strong>and</strong> AII form<strong>in</strong>g AIIa <strong>and</strong> AIIp(Fig. 2(N)). The BD b<strong>and</strong><br />

divided left <strong>and</strong> right, with BII form<strong>in</strong>g BIIr <strong>and</strong> BIIl, BI<br />

form<strong>in</strong>g BIr <strong>and</strong> BIl, DI form<strong>in</strong>g DIr <strong>and</strong> DIl, <strong>and</strong> DII form<strong>in</strong>g<br />

DIIr <strong>and</strong> DIIl (Fig. 2(N) <strong>and</strong> (P)).<br />

3.5. Fifth division <strong>and</strong> 32-cell stage<br />

In <strong>the</strong> synchronous fifth division, <strong>the</strong> sp<strong>in</strong>dles of <strong>the</strong> AC


458<br />

Fig. 1. Cell l<strong>in</strong>eage of <strong>Penaeus</strong> vannamei, show<strong>in</strong>g <strong>the</strong> relative tim<strong>in</strong>g of cleavage divisions <strong>in</strong> m<strong>in</strong> ps at 27 8C (A) <strong>and</strong> naupliar mesoderm <strong>and</strong> mesendoderm<br />

detail (B–E). (A) The overall l<strong>in</strong>eage is color coded as to germ layer, with ectoderm <strong>in</strong> blue, mesoderm <strong>in</strong> red, endoderm <strong>in</strong> yellow, <strong>and</strong> germ l<strong>in</strong>e <strong>in</strong> purple. The<br />

nomenclature refers to <strong>the</strong> most commonly observed cleavage pattern, where DIIrZX, <strong>the</strong> progenitor of <strong>the</strong> two mesendoderm cells. The AB blastomere<br />

conta<strong>in</strong>s <strong>the</strong> animal pole, while <strong>the</strong> CD blastomere conta<strong>in</strong>s <strong>the</strong> vegetal pole. A <strong>and</strong> C make cross-furrow contact, as do B <strong>and</strong> D. The subscript I refers to <strong>the</strong><br />

cell adjacent to <strong>the</strong> cross-furrow (e.g. A I), while <strong>the</strong> subscript II refers to <strong>the</strong> cell away from <strong>the</strong> cross furrow (e.g. A II). Additional designations are based on relative<br />

axial positions, ei<strong>the</strong>r anterior–posterior (a, p), dorsal–ventral (d, v) or left–right (l, r). L<strong>in</strong>eage of <strong>the</strong> ectoderm is shown through 7 cell divisions. The l<strong>in</strong>eage <strong>and</strong><br />

nomenclature of <strong>the</strong> 9 crown cells K1–K9 are shown through two additional divisions. The derivatives of <strong>the</strong> mesendoderm are: <strong>the</strong> endodermal yolk cells,<br />

primordial endoderm cell E, mesoteloblast M, <strong>and</strong> germ cell G. (B) 122-cell stage, vegetal view show<strong>in</strong>g replicated crown cells. (C) Dorsal (X d) <strong>and</strong> ventral (X v)<br />

mesendoblasts, with <strong>the</strong> rest of <strong>the</strong> embryo omitted for clarity. (D) Result of first (anterior–posterior) mesendoderm division, posterior view. (E) Result of second<br />

mesendoderm division, posterior view. Endodermal yolk cells (Xdpd, Xdal, Xdar, Xval, Xvar), primordial endoderm cell (E), primordial germ cell (G), <strong>and</strong><br />

primordial mesoteloblast (M) are labeled. (F) Result of third mesendoderm division, posterior view. (G) Result of fourth mesendoderm division, posterior view.<br />

<strong>and</strong> BD b<strong>and</strong>s formed two rows of four cells with sp<strong>in</strong>dles<br />

oriented end-to-end, result<strong>in</strong>g <strong>in</strong> a 32-cell stage embryo<br />

(Fig. 2(M)–(P), Fig. 3(A), (D) <strong>and</strong> (G)). The AC <strong>and</strong> BD<br />

b<strong>and</strong>s divided dorsal–ventrally. AIIa formed AIIad <strong>and</strong><br />

P.L. Hertzler / Arthropod Structure & Development 34 (2005) 455–469<br />

AIIav, AIIp formed AIIpd <strong>and</strong> AIIpv, AIa formed AIad <strong>and</strong><br />

AIav, <strong>and</strong> AIp formed AIpd <strong>and</strong> AIpv (Fig. 3(B), (C), (E) <strong>and</strong><br />

(F)). CIIa formed CIIad <strong>and</strong> CIIav, CIIp formed CIIpd<br />

<strong>and</strong> CIIpv, CIa formed CIad <strong>and</strong> CIav, <strong>and</strong> CIp formed CIpd


<strong>and</strong> CIpv (Fig. 3(B), (C), (E) <strong>and</strong> (F)). BIIr formed BIIad <strong>and</strong><br />

BIIav, BIIl formed BIIpd <strong>and</strong> BIIpv, BIa formed BIad <strong>and</strong><br />

BIav, <strong>and</strong> BIp formed BIpd <strong>and</strong> BIpv (Fig. 3(E) <strong>and</strong> (F)).<br />

DIIr formed DIIad <strong>and</strong> DIIav, DIIl formed DIIpd <strong>and</strong> DIIpv,<br />

DIa formed DIad <strong>and</strong> DIav, <strong>and</strong> DIp formed DIpd <strong>and</strong> DIpv<br />

(Fig. 3(B) <strong>and</strong> (C)).<br />

P.L. Hertzler / Arthropod Structure & Development 34 (2005) 455–469 459<br />

Fig. 2. 1-cell through 16-cell stages of <strong>Penaeus</strong> vannamei, sta<strong>in</strong>ed with Sytox Green for chromosomes <strong>and</strong> nuclei. Optical sections (A, C, E, G, I, K, M, O) <strong>and</strong><br />

correspond<strong>in</strong>g <strong>in</strong>terpretive draw<strong>in</strong>gs (B, D, F, H, J, L, N, P) are shown. Arrows <strong>in</strong>dicate direction of cell division. Asterices <strong>in</strong>dicate division towards <strong>and</strong> away<br />

from plane of view. Colors <strong>in</strong>dicate 4-cell stage derivatives, with A white (yellow <strong>in</strong> electronic annex), B dark medium gray (red), C light medium gray (green),<br />

<strong>and</strong> D dark gray (blue). Note that s<strong>in</strong>ce embryos cannot be oriented until <strong>the</strong> 32-cell stage, <strong>the</strong> colors are arbitrarily assigned from 4 to 16 cells to illustrate <strong>the</strong><br />

pattern. Scale barsZ60 mm. Times <strong>in</strong> m<strong>in</strong>utes post-spawn<strong>in</strong>g are <strong>in</strong>dicated <strong>in</strong> upper right of panels. (A, B) 1-cell stage, s<strong>in</strong>gle optical section. (C, D) 2-cell<br />

stage, composite of optical sections. (E, F) 4-cell stage, composite of <strong>the</strong> front 1/2 of <strong>the</strong> embryo. (G, H) Same 4-cell stage as <strong>in</strong> E, F, composite of <strong>the</strong> back 1/2<br />

of <strong>the</strong> embryo (rotated 1808). (I, J) 8-cell stage, composite of front 1/2 of <strong>the</strong> embryo. (K, L) Same 8-cell stage as <strong>in</strong> I, J, composite of back 1/2 of <strong>the</strong> embryo.<br />

(M, N) 16-cell stage, composite of front 1/2 of <strong>the</strong> embryo. (O, P) Same 16-cell stage as <strong>in</strong> M, N, composite of back 1/2 of <strong>the</strong> embryo.<br />

3.6. Sixth division <strong>and</strong> 62-cell stage<br />

The sixth division was synchronous <strong>in</strong> all but two 32-cell<br />

stage blastomeres. The two mesendoblasts arrested <strong>the</strong>ir cell<br />

division, while <strong>the</strong> rema<strong>in</strong><strong>in</strong>g blastomeres cont<strong>in</strong>ued divid<strong>in</strong>g<br />

(Fig. 3(A)–(C), (G)–(I)). The two mesendoblasts def<strong>in</strong>ed


460<br />

Fig. 3. 32-cell stage <strong>Penaeus</strong> vannamei, sta<strong>in</strong>ed with Sytox Green for chromosomes <strong>and</strong> nuclei. Half-embryo projection of optical sections (A, D, G), with<br />

correspond<strong>in</strong>g draw<strong>in</strong>gs show<strong>in</strong>g cleavage planes (B, E, H) <strong>and</strong> labeled cells (C, F, I). <strong>Cleavage</strong> type I (D IIrZX) is shown <strong>in</strong> posterior view (A, B, C) <strong>and</strong> same<br />

embryo <strong>in</strong> anterior view (D, E, F). <strong>Cleavage</strong> type II (D IlZX) is shown <strong>in</strong> posterior view (G, H, I). Scale barsZ60 mm. TimeZ150 m<strong>in</strong>.<br />

<strong>the</strong> dorsal–ventral axis, with Xd dorsal <strong>and</strong> Xv ventral. As <strong>in</strong><br />

S. <strong>in</strong>gentis, two pairs of mirror image patterns were<br />

observed at <strong>the</strong> 32-cell stage. In <strong>the</strong> DII pattern, <strong>the</strong><br />

mesendoblasts derived from ei<strong>the</strong>r DIIl or DIIr (e.g. <strong>in</strong><br />

Fig. 3(A)–(C)), while <strong>in</strong> <strong>the</strong> DI pattern, <strong>the</strong> mesendoblasts<br />

derived from ei<strong>the</strong>r DIl orDIr (e.g. <strong>in</strong> Fig. 3(G)–(I)). The<br />

frequencies of <strong>the</strong>se patterns differed from S. <strong>in</strong>gentis,<br />

however, with <strong>the</strong> DIIr pattern (designated Ddr <strong>in</strong> Hertzler<br />

<strong>and</strong> Clark, 1992) much more common than <strong>the</strong> DIIl (Ddl),<br />

P.L. Hertzler / Arthropod Structure & Development 34 (2005) 455–469<br />

DIr (Dvr) <strong>and</strong> DIl (Dvl) patterns. 25 embryos were optically<br />

sectioned <strong>and</strong> reconstructed for 3-D analysis. The DIIr<br />

pattern accounted for 64% of <strong>the</strong> embryos (Table 2).<br />

Therefore, this pattern was used as <strong>the</strong> reference cell l<strong>in</strong>eage<br />

<strong>in</strong> Fig. 1 <strong>and</strong> designated as cleavage type I. The<br />

mesendoblasts Xd <strong>and</strong> Xv <strong>in</strong>gressed <strong>in</strong>to <strong>the</strong> blastocoel<br />

dur<strong>in</strong>g <strong>the</strong> 62-cell stage, to become surrounded by <strong>the</strong> rest of<br />

<strong>the</strong> embryo <strong>and</strong> exposed only at <strong>the</strong> blastopore at <strong>the</strong><br />

posterior end (Fig. 4(A)–(C)).


Table 2<br />

Frequencies of cleavage patterns <strong>in</strong> P. vannamei embryos<br />

Progenitor cell<br />

at 8-cell stage<br />

D IIr D IIl D Ir D Il<br />

Number 16 7 1 1<br />

Percent 64 28 4 4<br />

Four C cell derivatives <strong>and</strong> five D cell derivatives<br />

adjacent to <strong>the</strong> mesendoblasts divided so that <strong>the</strong> posterior<br />

descendants rema<strong>in</strong>ed <strong>in</strong> contact with <strong>the</strong> mesendoblasts<br />

(Fig. 4(A)–(C)). In embryos where <strong>the</strong> mesendoblasts<br />

derived from DII, <strong>the</strong> C derivatives CIpdp (K1), CIpvp<br />

(K2), CIIpdp (K3), <strong>and</strong> CIIpvp (K4) adjacent to <strong>the</strong><br />

mesendoblasts were delayed <strong>in</strong> <strong>the</strong>ir cell cycles relative to<br />

<strong>the</strong> ectoderm cells, as were <strong>the</strong> D derivatives adjacent to <strong>the</strong><br />

mesendoderm cells, DIrdr (K5), DIrdl (K6), DIldr (K7),<br />

D IIlvr (K8) <strong>and</strong> D IIldr (K9). These cells were designated<br />

crown cells, homologous to <strong>the</strong> 9 cells found <strong>in</strong> S. <strong>in</strong>gentis<br />

<strong>and</strong> 8 cells found <strong>in</strong> euphausiaceans (Taube, 1909; Alwes<br />

<strong>and</strong> Scholtz, 2004).<br />

The division of <strong>the</strong> crown cells was delayed relative to<br />

that of <strong>the</strong> ectoderm cells, <strong>and</strong> asynchronous relative to one<br />

ano<strong>the</strong>r. Embryos <strong>in</strong> various stages of crown cell division<br />

were observed at 195 m<strong>in</strong> ps (Fig. 4(A), (G), (I)–(K)). The<br />

dorsal–ventral orientation of <strong>the</strong> embryo could be determ<strong>in</strong>ed<br />

by <strong>the</strong> position of <strong>the</strong> AC b<strong>and</strong> of ectoderm cells <strong>and</strong><br />

by <strong>the</strong> pattern of crown cells surround<strong>in</strong>g <strong>the</strong> mesendoblasts.<br />

Five crown cells made contact with Xd, while 6 crown cells<br />

made contact with Xv. After <strong>the</strong>ir division, 18 crown cells<br />

were present <strong>in</strong> two concentric r<strong>in</strong>gs (Fig. 4(L)). In later<br />

stage embryos, <strong>the</strong> crown cells gave rise to <strong>the</strong> naupliar<br />

mesoderm, as described <strong>in</strong> o<strong>the</strong>r penaeoidean <strong>shrimp</strong> (Zilch,<br />

1979; Hertzler <strong>and</strong> Clark, 1992).<br />

3.7. Seventh <strong>and</strong> eight cleavages to 122- <strong>and</strong> 244-cell<br />

stages, first mesendoblast division<br />

The two mesendoderm cells rema<strong>in</strong>ed <strong>in</strong> <strong>in</strong>terphase,<br />

while <strong>the</strong> rema<strong>in</strong><strong>in</strong>g cells went through <strong>the</strong> 7th cleavage<br />

division to form a 122-cell embryo (Fig. 4(K) <strong>and</strong> (L)). By<br />

210 m<strong>in</strong> ps, <strong>the</strong> ectoderm was <strong>in</strong> mitosis of <strong>the</strong> 8th cleavage,<br />

with <strong>the</strong> crown cells aga<strong>in</strong> lagg<strong>in</strong>g beh<strong>in</strong>d <strong>the</strong> ectoderm cells<br />

(data not shown). The tim<strong>in</strong>g of cell divisions <strong>in</strong> <strong>the</strong><br />

ectoderm was not followed fur<strong>the</strong>r. The outer r<strong>in</strong>g of crown<br />

cells entered mitosis several m<strong>in</strong>utes before <strong>the</strong> <strong>in</strong>ner r<strong>in</strong>g of<br />

crown cells (Fig. 5(A)). The mesendoderm cells, which had<br />

rema<strong>in</strong>ed <strong>in</strong> <strong>in</strong>terphase for <strong>the</strong> preced<strong>in</strong>g three cell cycles,<br />

underwent <strong>the</strong>ir first division after arrest (correspond<strong>in</strong>g to<br />

<strong>the</strong>ir 6th cycle) at 240 m<strong>in</strong> ps (Fig. 5(B) <strong>and</strong> (C)). Xd <strong>and</strong> Xv<br />

both divided <strong>in</strong> an anterior–posterior direction, result<strong>in</strong>g <strong>in</strong><br />

X da, X dp, X va, <strong>and</strong> X vp.<br />

3.8. Second mesendoblast division<br />

At 270 m<strong>in</strong> ps, <strong>the</strong> four mesendoblast derivatives entered<br />

P.L. Hertzler / Arthropod Structure & Development 34 (2005) 455–469 461<br />

mitosis aga<strong>in</strong> (<strong>the</strong>ir 7th cycle), with <strong>the</strong> anterior cells Xda<br />

<strong>and</strong> Xva divid<strong>in</strong>g left–right to form Xdal, Xdar, Xval, <strong>and</strong><br />

Xvar (Figs. 5(D) <strong>and</strong> (G); 6(A) <strong>and</strong> (B)). The posterior cells<br />

Xdp <strong>and</strong> Xvp divided <strong>in</strong> an oblique dorsal–ventral direction<br />

(Fig. 5(E) <strong>and</strong> (H)). Xdp formed Xdpd at <strong>the</strong> dorsal<br />

anterior <strong>and</strong> X dpv at <strong>the</strong> ventral posterior, while X vp formed<br />

X vpaZM at <strong>the</strong> ventral anterior <strong>and</strong> X vppZG at <strong>the</strong> dorsal<br />

posterior. The naupliar mesoderm, descended from <strong>the</strong><br />

crown cells, cont<strong>in</strong>ued to proliferate around <strong>the</strong> mesendodermal<br />

pyramid (Fig. 6(E)–(H)), <strong>and</strong> fur<strong>the</strong>r posterior <strong>in</strong> a<br />

layer beneath <strong>the</strong> ectoderm (Fig. 5(F) <strong>and</strong> (I)). The result<strong>in</strong>g<br />

8 mesendodermal derivatives were oriented as described for<br />

P. kerathurus as a ‘mesendodermal pyramid’ (Zilch, 1979).<br />

In <strong>the</strong> 285 m<strong>in</strong> ps embryo, <strong>the</strong> four endodermal yolk cells<br />

X dpd, X dar, X dal (Fig. 6(A) <strong>and</strong> (B)) <strong>and</strong> X dpv (Fig. 6(C)<br />

<strong>and</strong> (D)) were present dorsally. These are thought to give<br />

rise to <strong>the</strong> midgut-coeca digestive gl<strong>and</strong>s (Zilch, 1979). Xvar<br />

<strong>and</strong> Xval lie below <strong>the</strong> yolk endoderm <strong>and</strong> are slightly larger<br />

than <strong>the</strong> yolk endoderm cells (Fig. 6(A) <strong>and</strong> (B)). These are<br />

<strong>the</strong> primordial endoderm cells Er <strong>and</strong> El, which undergo two<br />

subsequent anterior–posterior divisions by 7 h ps <strong>and</strong> later<br />

form <strong>the</strong> midgut epi<strong>the</strong>lium (Zilch, 1979). The largest cell at<br />

<strong>the</strong> ventral anterior is <strong>the</strong> primordial mesoteloblast M<br />

(Fig. 6(A) <strong>and</strong> (B)). This stem cell undergoes teloblastic cell<br />

divisions to form <strong>the</strong> post-naupliar mesoderm (Zilch, 1979;<br />

Hertzler, 2002). Its sister cell G is thought to be <strong>the</strong><br />

primordial germ cell (Fig. 6(C) <strong>and</strong> (D); Zilch, 1979;<br />

Hertzler, 2002).<br />

3.9. Divisions <strong>and</strong> arrest of endoblasts <strong>and</strong> mesoteloblast<br />

By 315 m<strong>in</strong> ps, <strong>the</strong> first <strong>in</strong>dications of segmentation are<br />

evident <strong>in</strong> <strong>the</strong> ectoderm of embryos oriented on <strong>the</strong>ir dorsal<br />

or ventral sides (Fig. 6(E)–(L)). The primordial mesoteloblast<br />

M rema<strong>in</strong>s undivided as <strong>the</strong> largest cell <strong>in</strong> <strong>the</strong> embryo,<br />

reliably mark<strong>in</strong>g <strong>the</strong> ventral side (Fig. 6(E) <strong>and</strong> (I)). The<br />

primordial germ cell G is also undivided, <strong>and</strong> positioned as a<br />

‘cap’ at <strong>the</strong> ventral posterior of <strong>the</strong> mesendodermal pyramid<br />

(Fig. 6(F) <strong>and</strong> (J)). The endodermal derivatives Xdal, Xdar<br />

(Fig. 6(G) <strong>and</strong> (K)), <strong>and</strong> Xdpd (Fig. 6(H) <strong>and</strong> (L)) divided<br />

slightly before El, Er (Fig. 6(F) <strong>and</strong> (J)) <strong>and</strong> Xdpv (Fig. 6(G)<br />

<strong>and</strong> (K)). El <strong>and</strong> Er divided to form <strong>the</strong> smaller cells el1 <strong>and</strong><br />

er1 at <strong>the</strong> anterior <strong>and</strong> <strong>the</strong> larger cells El1 <strong>and</strong> Er1 at <strong>the</strong><br />

posterior (Fig. 7(B) <strong>and</strong> (F)). The naupliar mesoderm<br />

cont<strong>in</strong>ued to proliferate, ly<strong>in</strong>g underneath <strong>the</strong> ectoderm<br />

(Fig. 6(E)–(L)). By 330 m<strong>in</strong> ps, <strong>the</strong> primordial mesoteloblast<br />

divided <strong>in</strong> an anterior–posterior direction, leav<strong>in</strong>g a<br />

smaller daughter m1 at <strong>the</strong> anterior <strong>and</strong> a larger daughter<br />

M1 at <strong>the</strong> posterior (Fig. 7(A), (E), (I) <strong>and</strong> (M)). The<br />

primordial germ cell rema<strong>in</strong>ed undivided with a large<br />

nucleus, posterior to M (Fig. 7(A), (E), (I) <strong>and</strong> (M)). The<br />

yolk endoderm cells <strong>and</strong> primordial endoderm cells El <strong>and</strong><br />

Er were present <strong>in</strong> more dorsal sections (Fig. 7(B)–(D), (F)–<br />

(H)). By 375 m<strong>in</strong> ps, El1 <strong>and</strong> Er1 aga<strong>in</strong> divided anterior–<br />

posterior to form <strong>the</strong> smaller cells el2 <strong>and</strong> er2 at <strong>the</strong> anterior<br />

<strong>and</strong> larger cells El2 <strong>and</strong> Er2 at <strong>the</strong> posterior (Fig. 7(J), (N),


462<br />

P.L. Hertzler / Arthropod Structure & Development 34 (2005) 455–469


(S) <strong>and</strong> (T)). By 390 m<strong>in</strong> ps, <strong>the</strong> mesoteloblast M1 divided<br />

to form m2 at <strong>the</strong> anterior <strong>and</strong> M2 at <strong>the</strong> poster (Fig. 7(K),<br />

(O), (Q) <strong>and</strong> (R)). At 420 m<strong>in</strong> ps (7 h ps) <strong>the</strong> stem cells M2,<br />

G, El2, <strong>and</strong> Er2 were located <strong>in</strong> <strong>the</strong> m<strong>and</strong>ibular segment.<br />

The endoblasts El2 <strong>and</strong> Er2 shifted from <strong>the</strong>ir orig<strong>in</strong>al left–<br />

right relationship to a more anterior–posterior one (Fig. 7(S)<br />

<strong>and</strong> (T)), as has been observed for P. kerathurus (Zilch,<br />

1979) <strong>and</strong> S. <strong>in</strong>gentis (Hertzler, 2002). This is a second<br />

<strong>in</strong>dication of left–right asymmetry, although it is not clear<br />

whe<strong>the</strong>r El2 or Er2 is <strong>the</strong> cell that is shifted to <strong>the</strong> posterior.<br />

P.L. Hertzler / Arthropod Structure & Development 34 (2005) 455–469 463<br />

Fig. 5. Later stages of <strong>gastrulation</strong> <strong>in</strong> <strong>Penaeus</strong> vannamei, sta<strong>in</strong>ed with Sytox Green for chromosomes <strong>and</strong> nuclei. (A) Projection of optical sections from 224cell<br />

stage (225 m<strong>in</strong> ps), posterior view, show<strong>in</strong>g gradient of cell division among crown cell derivatives. Crown cells <strong>in</strong> <strong>the</strong> <strong>in</strong>ner r<strong>in</strong>g adjacent to <strong>the</strong> blastopore<br />

are still <strong>in</strong> <strong>in</strong>terphase, while those <strong>in</strong> <strong>the</strong> outer r<strong>in</strong>g, adjacent to <strong>the</strong> ectoderm, are <strong>in</strong> mitosis. (B, C) S<strong>in</strong>gle optical section <strong>and</strong> <strong>in</strong>terpretive draw<strong>in</strong>g at 240 m<strong>in</strong> ps,<br />

show<strong>in</strong>g metaphase of first mesendoderm division occurr<strong>in</strong>g anterior–posterior. Anterior is at <strong>the</strong> top, posterior at <strong>the</strong> bottom. (D–I) S<strong>in</strong>gle optical sections (D,<br />

E, F) <strong>and</strong> <strong>in</strong>terpretive draw<strong>in</strong>gs (G, H, I) of embryo at 270 m<strong>in</strong> ps, show<strong>in</strong>g four mesendoderm derivatives. Xda <strong>and</strong> Xva divide left <strong>and</strong> right (D, G), while Xdp<br />

<strong>and</strong> Xvp divide dorsal–ventrally (E, H). Crown cell derivatives (naupliar mesoderm), shaded dark gray (red <strong>in</strong> electronic annex) form a layer beneath <strong>the</strong><br />

ectoderm (F, I). Scale barsZ60 mm.<br />

4. Discussion<br />

4.1. Homologous patterns of early cleavage pattern <strong>and</strong><br />

mesendoblast arrest <strong>in</strong> dendrobranchiate <strong>shrimp</strong><br />

Compar<strong>in</strong>g P. vannamei (family Penaeidae) <strong>and</strong> S.<br />

<strong>in</strong>gentis (family Sicyoniidae) confirms that a shared,<br />

<strong>in</strong>variant, early cleavage pattern occurs <strong>in</strong> dendrobranchiate<br />

<strong>shrimp</strong>. Homologous patterns of early cleavage <strong>and</strong><br />

mesendoblast arrest <strong>and</strong> subsequent development occur <strong>in</strong><br />

Fig. 4. 62-cell to 122-cell stage <strong>Penaeus</strong> vannamei, sta<strong>in</strong>ed with Sytox Green for chromosomes <strong>and</strong> nuclei. Half-embryo projection of optical sections (A, D, G,<br />

I, J, K), with correspond<strong>in</strong>g draw<strong>in</strong>gs show<strong>in</strong>g cleavage planes (B, E, H, L) <strong>and</strong> labeled cells (C, F). <strong>Cleavage</strong> type I (D IIrZX) is shown <strong>in</strong> posterior view (A, B,<br />

C) <strong>and</strong> same embryo <strong>in</strong> anterior view (D, E, F). (G, H) Posterior view of ano<strong>the</strong>r embryo, slightly advanced from <strong>the</strong> one <strong>in</strong> A–F, show<strong>in</strong>g 9 crown cells <strong>in</strong><br />

metaphase, oriented radially around <strong>the</strong> blastopore. (I, J) Posterior view of two o<strong>the</strong>r embryos, slightly advanced from <strong>the</strong> one <strong>in</strong> G, H, show<strong>in</strong>g asymmetric<br />

transition to anaphase <strong>in</strong> crown cells. (K, L) Posterior view of ano<strong>the</strong>r embryo, slightly later than those <strong>in</strong> I <strong>and</strong> J, show<strong>in</strong>g completed cleavage <strong>in</strong> 8/9 of <strong>the</strong><br />

crown cells. In panel L, ectoderm is dark gray (blue <strong>in</strong> electronic annex), naupliar mesoderm is light gray (red <strong>in</strong> electronic annex), mesendoblasts are white (X d<br />

is yellow <strong>in</strong> electronic annex). Scale barsZ60 mm. TimeZ195 m<strong>in</strong>.


464<br />

Fig. 6. P. vannamei mesendoderm derivatives at 285 m<strong>in</strong> ps, sta<strong>in</strong>ed with Sytox Green for chromosomes <strong>and</strong> nuclei, <strong>in</strong> transverse sections (A–D) <strong>and</strong> 315 m<strong>in</strong><br />

ps, <strong>in</strong> frontal sections (E–L). Dorsal is at <strong>the</strong> top <strong>and</strong> ventral at <strong>the</strong> bottom <strong>in</strong> A–D, with anterior on <strong>the</strong> left <strong>and</strong> posterior on <strong>the</strong> right <strong>in</strong> E–L. (A, B) Anterior<br />

sections show<strong>in</strong>g yolk endoderm cells X dpd, X dal, X dar, <strong>the</strong> endoderm cells X valZEl <strong>and</strong> X varZEr <strong>and</strong> primordial mesoteloblast M. (C, D) More posterior<br />

sections show<strong>in</strong>g yolk endoderm cell X dpv <strong>and</strong> primordial germ cell G, surrounded by naupliar mesoderm cells (shaded unlabeled cells; red <strong>in</strong> electronic<br />

annex). (E, I) Ventral section, show<strong>in</strong>g position of primordial mesoteloblast M. (F, J) More dorsal section, show<strong>in</strong>g posterior position of primordial germ cell G<br />

<strong>and</strong> anterior–posterior division of endoderm cells El <strong>and</strong> Er. (G, K) More dorsal section, show<strong>in</strong>g division of endodermal yolk cells Xdal <strong>and</strong> Xdar <strong>and</strong> Xdpv.<br />

(H, L) Fur<strong>the</strong>r dorsal section, show<strong>in</strong>g division of endodermal yolk cell X dpd. Scale barsZ60 mm.<br />

<strong>the</strong> Dendrobranchiata, but <strong>the</strong> stage at mesendoderm arrest<br />

varies by genus (summarized <strong>in</strong> Fig. 8). The 4-cell stage is<br />

composed of blastomeres <strong>in</strong> a close-packed arrangement,<br />

with B <strong>and</strong> D form<strong>in</strong>g a transverse cross furrow <strong>and</strong> A <strong>and</strong> C<br />

form<strong>in</strong>g a sagittal cross furrow. The next cleavages are<br />

tangential, with each subsequent division orthogonal to <strong>the</strong><br />

preced<strong>in</strong>g one, which forms two semicircles of <strong>in</strong>terlock<strong>in</strong>g<br />

cells. Evidence of this pattern exists as well for P.<br />

kerathurus <strong>and</strong> Parapenaeus longirostris (Heldt, 1938,<br />

Figs. 35 <strong>and</strong> 38). <strong>Cleavage</strong> is complete <strong>and</strong> synchronous<br />

P.L. Hertzler / Arthropod Structure & Development 34 (2005) 455–469<br />

until <strong>the</strong> 32-cell stage <strong>in</strong> S. <strong>in</strong>gentis <strong>and</strong> P. vannamei, at<br />

which time <strong>the</strong> two mesendoblasts arrest for <strong>the</strong> next three<br />

cell cycles of <strong>the</strong> rest of <strong>the</strong> embryo, produc<strong>in</strong>g first a 62-cell<br />

<strong>the</strong>n a 122-cell stage. In P. <strong>in</strong>dicus (family Penaeidae), <strong>the</strong><br />

mesendoblasts also arrest at <strong>the</strong> 32-cell stage (Morelli <strong>and</strong><br />

Aquacop, 2003). This contrasts with reports for<br />

P. kerathurus <strong>and</strong> P. japonicus (both family Penaeidae),<br />

where <strong>the</strong> mesendoderm cells arrest at <strong>the</strong> 16- <strong>and</strong> 64-cell<br />

stage, respectively (Zilch, 1978, 1979; Kajishima, 1951).<br />

This consequently would produce embryos of 30- <strong>and</strong> 58-,<br />

Fig. 7. P. vannamei embryos at 330 m<strong>in</strong> ps (A–H), 375 m<strong>in</strong> ps (I, J, M, N), 390 m<strong>in</strong> ps (K, L, O, P) <strong>and</strong> 420 m<strong>in</strong> ps (Q–T), sta<strong>in</strong>ed with Sytox Green for<br />

chromosomes <strong>and</strong> nuclei, <strong>in</strong> frontal sections. (A, E) Ventral section, show<strong>in</strong>g anterior–posterior division of primordial mesoteloblast M. The primordial germ<br />

cell G is posterior to M. (B, F) More dorsal section, show<strong>in</strong>g endoderm cells er1, el1, Er1, <strong>and</strong> El1. (C, G) Fur<strong>the</strong>r dorsal section, show<strong>in</strong>g yolk endoderm cells<br />

X dala, X dalp, X dara, X darp, X dpvl, X dpvr. (D, H) Fur<strong>the</strong>r dorsal section, show<strong>in</strong>g yolk endoderm cells X dpdl <strong>and</strong> X dpdr. Scale barZ60 mm. (I, M) Ventral


P.L. Hertzler / Arthropod Structure & Development 34 (2005) 455–469 465<br />

section with ventral mesoderm cell m1, mesoteloblast M1, <strong>and</strong> primordial germ cell G. (J, N) More dorsal section from same embryo as I, M with division of<br />

El1 <strong>and</strong> Er1. (K, O) Ventral section with division of mesoteloblast M1. (L, P) More dorsal section from same embryo as K, O show<strong>in</strong>g position of El2, Er2, <strong>and</strong><br />

G. (Q, R) Ventral section with positions of ventral mesoderm cell m2, mesoteloblast M2, <strong>and</strong> G. (S, T) More dorsal section from same embryo as Q, R show<strong>in</strong>g<br />

shifted positions of El2 <strong>and</strong> Er2.


466<br />

<strong>and</strong> 114-cells <strong>in</strong> P. kerathurus, <strong>and</strong> a 126-cell stage for<br />

P. japonicus. Reports of dendrobranchiate embryos with 64cells<br />

<strong>in</strong> <strong>the</strong> older literature should be viewed with caution<br />

until confirmed by detailed analysis.<br />

Mapp<strong>in</strong>g <strong>the</strong> stage at mesendoblast arrest onto a<br />

dendrobranchiate phylogeny (Fig. 8) suggests that arrest at<br />

<strong>the</strong> 32-cell stage is <strong>the</strong> basal condition, s<strong>in</strong>ce <strong>the</strong> outgroup<br />

species to <strong>the</strong> Penaeidae, S. <strong>in</strong>gentis (family Sicyoniidae),<br />

shares this character with two members of <strong>the</strong> family<br />

Penaeidae. Fur<strong>the</strong>rmore, <strong>the</strong> Euphausiacea, an outgroup to<br />

<strong>the</strong> Dendrobranchiata, also have an arrest at 32-cells of<br />

apparently homologous cells. Two clades of <strong>the</strong> genus<br />

<strong>Penaeus</strong> s.l. have been recently identified, based on<br />

mitochondrial DNA sequences: MelicertusCMarsupenaeus<br />

<strong>and</strong> <strong>Penaeus</strong> s.s.CFenneropenaeusCFarfantepenaeusC<br />

<strong>Litopenaeus</strong> (Lavery et al., 2004). Mesendoderm cell arrest<br />

at a stage o<strong>the</strong>r than 32-cells (ei<strong>the</strong>r 16- or 64-cells) is<br />

consistent with <strong>the</strong> group<strong>in</strong>g of P. (Melicertus) kerathurus<br />

<strong>and</strong> P. (Marsupenaeus) japonicus <strong>in</strong> <strong>the</strong> Melicertus clade<br />

(Baldw<strong>in</strong> et al., 1998; Lavery et al., 2004) <strong>and</strong> may be an<br />

autapomorphy of this group.<br />

What molecular mechanism might account for <strong>the</strong><br />

different tim<strong>in</strong>g of mesendoderm cell arrest? It seems likely<br />

that <strong>the</strong> mesendoderm fate <strong>and</strong> cell division pattern is<br />

specified by cytoplasmic determ<strong>in</strong>ants at <strong>the</strong> vegetal pole,<br />

<strong>in</strong>clud<strong>in</strong>g cell cycle regulators (Hertzler et al., 1994).<br />

Perhaps larger or smaller areas of localized cell cycle<br />

determ<strong>in</strong>ants may be present, so that <strong>the</strong> threshold<br />

concentration for <strong>the</strong>ir effect is reached earlier <strong>in</strong> P.<br />

kerathurus <strong>and</strong> later <strong>in</strong> P. japonicus. Alternatively, <strong>the</strong><br />

different tim<strong>in</strong>g of arrest of <strong>the</strong> mesendoderm cells may be<br />

due to a differential tim<strong>in</strong>g of translation of cell cycle<br />

regulators. One c<strong>and</strong>idate for an <strong>in</strong>tr<strong>in</strong>sic cell cycle<br />

regulator is <strong>the</strong> Ret<strong>in</strong>oblastoma (Rb) prote<strong>in</strong>. Maternal Rb<br />

mRNA could be localized at <strong>the</strong> vegetal pole <strong>the</strong>n translated<br />

<strong>in</strong>to prote<strong>in</strong> <strong>in</strong> <strong>the</strong> mesendoblasts to cause <strong>the</strong>ir arrest <strong>in</strong> G1.<br />

The resumption of mitosis <strong>in</strong> <strong>the</strong> mesendoblasts might<br />

require <strong>the</strong> <strong>in</strong>activation of Rb, perhaps by signal<strong>in</strong>g through<br />

<strong>the</strong> hedgehog pathway as has been shown <strong>in</strong> <strong>the</strong> Drosophila<br />

eye (Duman-Scheel et al., 2002). Mesendoblast arrest <strong>and</strong><br />

P.L. Hertzler / Arthropod Structure & Development 34 (2005) 455–469<br />

resumption of cell division <strong>in</strong> dendrobranchiate <strong>shrimp</strong><br />

offers a simple model to study <strong>the</strong> regulation of <strong>the</strong> cell<br />

cycle dur<strong>in</strong>g development.<br />

Mirror-image cleavage patterns were observed <strong>in</strong> P.<br />

vannamei, as for S. <strong>in</strong>gentis, but <strong>the</strong> frequency of <strong>the</strong>se<br />

patterns differed between <strong>the</strong> two. In S. <strong>in</strong>gentis, <strong>the</strong> D II<br />

(Dd) pattern occurred <strong>in</strong> about 3/4 of <strong>the</strong> observed cases,<br />

while <strong>the</strong> DI (Dv) pattern occurred about 1/4 of <strong>the</strong> time<br />

(Hertzler <strong>and</strong> Clark, 1992). In P. vannamei, <strong>the</strong> DII pattern<br />

occurred <strong>in</strong> 92% of <strong>the</strong> embryos exam<strong>in</strong>ed, while <strong>the</strong> DI<br />

pattern occurred <strong>in</strong> 8%. Of <strong>the</strong> DII embryos, <strong>in</strong> S. <strong>in</strong>gentis<br />

about 1/2 were of <strong>the</strong> DIIl (Ddl) <strong>and</strong> 1/2 were DIIr (Ddr),<br />

while <strong>in</strong> P. vannamei, 64% of <strong>the</strong> embryos were of <strong>the</strong> DIIr<br />

type. Thus <strong>in</strong> P. vannamei <strong>the</strong>re is a bias towards <strong>the</strong> D II<br />

(<strong>and</strong> perhaps <strong>the</strong> D IIr) pattern of cleavage, so <strong>the</strong> cell l<strong>in</strong>eage<br />

<strong>in</strong> Fig. 1 is based on this pattern. The mechanism of this bias<br />

is a matter of speculation, but <strong>the</strong> observations may <strong>in</strong>dicate<br />

that one pattern of genetic ‘h<strong>and</strong>edness’ is favored over <strong>the</strong><br />

o<strong>the</strong>r, as has been documented for some gastropod<br />

mollusks. The isolation <strong>and</strong> characterization of <strong>the</strong>se<br />

determ<strong>in</strong>ants is underway <strong>in</strong> Lymnaea (Harada et al.,<br />

2004). Similar genes may cause <strong>the</strong> mirror-image patterns<br />

observed <strong>in</strong> P. vannamei, but whe<strong>the</strong>r <strong>the</strong> observed patterns<br />

occur <strong>in</strong> a dom<strong>in</strong>ant-recessive maternal effect is beyond <strong>the</strong><br />

scope of this study.<br />

4.2. Homologous patterns of crown cell division <strong>and</strong> fate <strong>in</strong><br />

dendrobranchiate <strong>shrimp</strong><br />

In both S. <strong>in</strong>gentis <strong>and</strong> P. vannamei, <strong>the</strong> crown cells<br />

(prospective naupliar mesoderm) form a r<strong>in</strong>g of n<strong>in</strong>e<br />

division-retarded cells around <strong>the</strong> <strong>in</strong>gressed mesendoderm<br />

cells. The l<strong>in</strong>eage <strong>and</strong> division of <strong>the</strong> crown cells was<br />

exam<strong>in</strong>ed <strong>in</strong> more detail <strong>in</strong> <strong>the</strong> present study. Their l<strong>in</strong>eage<br />

was <strong>in</strong>ferred from several l<strong>in</strong>es of evidence, <strong>in</strong>clud<strong>in</strong>g (1)<br />

<strong>the</strong>ir position with<strong>in</strong> <strong>the</strong> semicircular b<strong>and</strong>s of cells<br />

identified <strong>in</strong> previous cleavage stages, <strong>and</strong> (2) l<strong>in</strong>eage<br />

trac<strong>in</strong>g studies performed <strong>in</strong> live S. <strong>in</strong>gentis embryos<br />

(Hertzler <strong>and</strong> Clark, 1992; Hertzler et al., 1994). In<br />

S. <strong>in</strong>gentis, 4-cell <strong>in</strong>jections of l<strong>in</strong>eage tracer revealed that<br />

Fig. 8. Partial phylogeny of <strong>the</strong> Dendrobranchiata (modified from Baldw<strong>in</strong> et al., 1998; Lavery et al., 2004), mapp<strong>in</strong>g embryological characters onto <strong>the</strong> tree.<br />

Representative species from each clade with<strong>in</strong> <strong>the</strong> family Penaeoidea are shown, with representatives of family Sicyoniidae <strong>and</strong> Order Euphausiacea shown as<br />

outgroups. Three embryological character states are shown adjacent to <strong>the</strong> tree: <strong>the</strong> stage at mesendoderm cell arrest (#X), <strong>the</strong> number of <strong>in</strong>itial crown cells<br />

(#C), <strong>and</strong> <strong>the</strong> identity of <strong>the</strong> primordial endoderm cell (E). Hypo<strong>the</strong>sized transitions <strong>in</strong> embryological characters are: (1) change from 8 to 9 crown cells, (2)<br />

mesendoderm cell arrest from 32-cell stage to 16 cells, (3) change from 9 to 8 crown cells, <strong>and</strong> (4) mesendoderm cell arrest from 16 cells to 64 cells.


<strong>the</strong> naupliar mesoderm derived from <strong>the</strong> C <strong>and</strong> <strong>the</strong> D<br />

blastomeres. As <strong>in</strong>ferred <strong>in</strong> this study, <strong>the</strong> crown cells K1,<br />

K2, K3, <strong>and</strong> K4 derive from <strong>the</strong> C blastomere, with K1 <strong>the</strong><br />

dorsal-most cell <strong>in</strong> <strong>the</strong> r<strong>in</strong>g, while K5, K6, K7, K8, <strong>and</strong> K9<br />

derive from <strong>the</strong> D blastomere, with K5 <strong>and</strong> K6 be<strong>in</strong>g <strong>the</strong><br />

only sister pair, at <strong>the</strong> ventral side. In P. japonicus <strong>and</strong><br />

P. kerathurus, 8 crown cells are present (Kajishima, 1951;<br />

Zilch, 1979). The number of crown cells that form correlates<br />

with <strong>the</strong> time at which <strong>the</strong> mesendoderm cells arrest <strong>and</strong><br />

<strong>in</strong>gress <strong>in</strong>side <strong>the</strong> embryo; species were <strong>the</strong> mesendoderm<br />

cells arrest at 32-cells have 9 crown cells, while species<br />

where <strong>the</strong> mesendoderm cells arrest at 16- or 64-cells have 8<br />

crown cells. Embryos with n<strong>in</strong>e <strong>in</strong>itial crown cells may be<br />

<strong>the</strong> basal character state for <strong>the</strong> Dendrobranchiata, s<strong>in</strong>ce <strong>the</strong><br />

outgroup Sicyonia has this condition.<br />

In P. vannamei, <strong>the</strong> crown cells were observed to divide<br />

later than <strong>the</strong> ectoderm, but asynchronously with each o<strong>the</strong>r.<br />

In both P. vannamei <strong>and</strong> S. <strong>in</strong>gentis, <strong>the</strong> first crown cell<br />

division is oriented radially <strong>in</strong>to <strong>the</strong> blastopore. Subsequent<br />

divisions occur along <strong>the</strong> anterior–posterior axis to build up<br />

a layer of mesoderm basal to <strong>the</strong> overly<strong>in</strong>g ectoderm. By<br />

follow<strong>in</strong>g <strong>the</strong>ir development over sequential stages, it is<br />

clear that <strong>the</strong> crown cell derivatives are naupliar mesoderm,<br />

as opposed to <strong>the</strong> posterior teloblastic mesoderm that<br />

orig<strong>in</strong>ates from <strong>the</strong> primordial mesoteloblast.<br />

4.3. Homologous fates of <strong>the</strong> mesendoderm <strong>in</strong><br />

dendrobranchiate <strong>shrimp</strong>?<br />

As first described by Zilch (1978, 1979) for<br />

P. kerathurus, <strong>the</strong> mesendoderm divides <strong>in</strong> an <strong>in</strong>variant<br />

pattern <strong>and</strong> is hypo<strong>the</strong>sized to produce yolk endoderm cells,<br />

<strong>the</strong> primordial endoblast, <strong>the</strong> primordial mesoteloblast, <strong>and</strong><br />

<strong>the</strong> primordial germ cell. These cell types were identified by<br />

morphological <strong>and</strong> ontogenetic criteria. The endodermal<br />

yolk cells cont<strong>in</strong>ue a regular series of cell divisions <strong>and</strong> later<br />

become vacuolated <strong>in</strong> <strong>the</strong> course of <strong>the</strong>ir differentiation to<br />

<strong>the</strong> epi<strong>the</strong>lium of <strong>the</strong> digestive gl<strong>and</strong>. Their nuclei become<br />

highly condensed <strong>in</strong> S. <strong>in</strong>gentis (Hertzler, 2002). The<br />

primordial endoblast is retarded <strong>in</strong> division relative to <strong>the</strong><br />

yolk endoderm <strong>and</strong> divides to form <strong>the</strong> midgut epi<strong>the</strong>lium;<br />

<strong>the</strong> primordial mesoteloblast is <strong>the</strong> largest side at <strong>the</strong> ventral<br />

side, <strong>and</strong> undergoes teloblastic divisions to eventually form<br />

an arc of cells on <strong>the</strong> ventral side. The primordial germ cell<br />

has ‘an extremely large nucleus with clearly visible<br />

chromosomes’ (Zilch, 1979). These fate designations,<br />

while likely to be accurate, should be considered provisional<br />

until <strong>the</strong>y can be confirmed by molecular markers. With this<br />

caveat, homologous cells to P. kerathurus were found <strong>in</strong><br />

P. vannamei by position relative to o<strong>the</strong>r cells <strong>and</strong> tim<strong>in</strong>g<br />

<strong>and</strong> orientation of cell division. The primordial endoderm<br />

cell was Xva <strong>in</strong> both S. <strong>in</strong>gentis (Hertzler, 2002) <strong>and</strong><br />

P. vannamei. In contrast, <strong>in</strong> P. kerathurus <strong>the</strong> primordial<br />

endoderm cell is proposed to be a dorsal mesendoblast<br />

derivative, equivalent to Xdpd (Zilch, 1979).<br />

P.L. Hertzler / Arthropod Structure & Development 34 (2005) 455–469 467<br />

4.4. Comparison to Euphausiacea<br />

A number of authors have noted <strong>the</strong> similarities of<br />

early cleavage <strong>and</strong> <strong>gastrulation</strong> <strong>in</strong> dendrobranchiate <strong>and</strong><br />

euphausiacean <strong>shrimp</strong>s (Taube, 1909; Shi<strong>in</strong>o, 1957;<br />

Zilch, 1979; Hertzler <strong>and</strong> Clark, 1992; Alwes <strong>and</strong><br />

Scholtz, 2004). A recent study of <strong>the</strong> euphausiacean M.<br />

norvegica has revealed <strong>the</strong> similarity of early cleavage<br />

<strong>in</strong> detail, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> <strong>in</strong>terlock<strong>in</strong>g b<strong>and</strong>s of cells <strong>and</strong><br />

arrest at 32-cells of two presumed mesendoblasts<br />

(Alwes <strong>and</strong> Scholtz, 2004). Fur<strong>the</strong>rmore, a similar<br />

pattern of crown cells (presumptive naupliar mesoderm)<br />

forms <strong>in</strong> both dendrobranchiates <strong>and</strong> euphausiaceans.<br />

Based on <strong>the</strong>ir dist<strong>in</strong>ctiveness <strong>and</strong> complexity, <strong>the</strong>se<br />

patterns are hypo<strong>the</strong>sized to be homologous (Alwes <strong>and</strong><br />

Scholtz, 2004). Alwes <strong>and</strong> Scholtz were careful not to<br />

assign fates to <strong>the</strong> presumed mesendoblasts <strong>and</strong> naupliar<br />

mesoderm cells <strong>in</strong> M. norvegica, but it seems reasonable<br />

to use <strong>the</strong>m as a work<strong>in</strong>g hypo<strong>the</strong>sis until more<br />

detailed l<strong>in</strong>eage trac<strong>in</strong>g studies become available <strong>in</strong> both<br />

taxa. It will be of particular <strong>in</strong>terest to follow <strong>the</strong> fates<br />

of <strong>the</strong> mesendoblasts. In Euphausia, one is reported to<br />

generate endoderm, while <strong>the</strong> o<strong>the</strong>r forms endoderm <strong>and</strong><br />

<strong>the</strong> germ cells (Taube, 1909, 1915; Shi<strong>in</strong>o, 1957). This<br />

corresponds with dendrobranchiates, where <strong>the</strong> dorsal<br />

mesendoblast gives rise to endoderm only (endodermal<br />

yolk cells), while <strong>the</strong> ventral mesendoblast gives rise to<br />

<strong>the</strong> endoblasts, primordial germ cell, <strong>and</strong> mesoteloblast<br />

(Zilch, 1978; Hertzler, 2002; present study). The fates<br />

of <strong>the</strong> mesendoblasts may <strong>the</strong>refore be homologous as<br />

well, provid<strong>in</strong>g fur<strong>the</strong>r embryological evidence for a<br />

sister relationship between <strong>the</strong> Euphausiacea <strong>and</strong> <strong>the</strong><br />

Dendrobranchiata. In contrast, some recent studies have<br />

suggested that Euphausiaceans are <strong>the</strong> sister group to<br />

<strong>the</strong> Peracarida/Pancarida (Jarman et al., 2000; Richter<br />

<strong>and</strong> Scholtz, 2001). The resolution of this conflict must<br />

await fur<strong>the</strong>r embryological <strong>and</strong> molecular evidence.<br />

4.5. Conclusions on <strong>the</strong> evolution of development <strong>in</strong> <strong>the</strong><br />

Dendrobranchiata<br />

An embryo with 9 crown cells was likely <strong>the</strong> condition<br />

for <strong>the</strong> last common ancestor of <strong>the</strong> Penaeidae <strong>and</strong><br />

Sicyoniidae. The number of crown cells is predicted to be<br />

n<strong>in</strong>e for P. <strong>in</strong>dicus, based on <strong>the</strong> pattern that holds for<br />

species that have mesendoderm arrest at 32-cells. In<br />

contrast, <strong>in</strong> <strong>the</strong> Euphausiacea, 8 crown cells form, so a<br />

transition from 8 to 9 crown cells must have occurred after<br />

<strong>the</strong> divergence of <strong>the</strong> Dendrobranchiata <strong>and</strong> Euphausiacea<br />

from <strong>the</strong>ir last common ancestor (Fig. 8, step 1). The<br />

number of crown cells has reverted to 8 <strong>in</strong> <strong>the</strong> clade<br />

conta<strong>in</strong><strong>in</strong>g P. japonicus <strong>and</strong> P. kerathurus, which <strong>in</strong>dicates<br />

that this character may be l<strong>in</strong>ked to a change <strong>in</strong> <strong>the</strong> stage at<br />

mesendoderm cell arrest (Fig. 8, step 3.)<br />

The observation that both S. <strong>in</strong>gentis <strong>and</strong> P. vannamei<br />

share <strong>the</strong> embryological character of mesendoderm cell


468<br />

arrest at 32-cells suggests that this state was also shared by<br />

<strong>the</strong> common ancestor of <strong>the</strong> Sicyoniidae <strong>and</strong> Penaeidae. The<br />

stage at mesendoderm cell arrest (32-cells) is also known for<br />

P. <strong>in</strong>dicus, fur<strong>the</strong>r support<strong>in</strong>g 32-cells as <strong>the</strong> ancestral<br />

condition. F<strong>in</strong>ally, <strong>in</strong> <strong>the</strong> Euphausiacea, <strong>the</strong> presumptive<br />

mesendoderm cells also arrest at 32-cells, suggest<strong>in</strong>g that<br />

this was <strong>the</strong> condition for <strong>the</strong> last common ancestor of <strong>the</strong><br />

Decapoda <strong>and</strong> <strong>the</strong> Euphausiacea. In <strong>the</strong> clade conta<strong>in</strong><strong>in</strong>g<br />

P. japonicus <strong>and</strong> P. kerathurus, at least two transitions have<br />

occurred for this character, from mesendoderm cell arrest at<br />

32-cells to arrest at ei<strong>the</strong>r 16- or 64-cells. Given that<br />

P. kerathurus is <strong>the</strong> most basal member of this clade<br />

(Lavery et al., 2004), <strong>the</strong> first transition was likely from 32to<br />

16-cells (Fig. 8, step 2), <strong>the</strong>n from 16- to 64-cells (Fig. 8,<br />

step 4).<br />

F<strong>in</strong>ally, <strong>the</strong> l<strong>in</strong>eage of <strong>the</strong> primordial endoderm cell as<br />

Xva is shared <strong>in</strong> S. <strong>in</strong>gentis <strong>and</strong> P. vannamei, while <strong>the</strong><br />

l<strong>in</strong>eage of this cell is Xdpv <strong>in</strong> P. kerathurus. If <strong>the</strong> cell<br />

division pattern can be taken as a reliable <strong>in</strong>dicator of <strong>the</strong><br />

endoblasts, <strong>the</strong>n this <strong>in</strong>dicates that Xva was also <strong>the</strong><br />

primordial endoderm cell <strong>in</strong> <strong>the</strong> last common ancestor of<br />

<strong>the</strong> Sicyoniidae <strong>and</strong> <strong>the</strong> Penaeidae. With <strong>the</strong> data from<br />

P. vannamei, it is more likely that X dpv was <strong>in</strong>correctly<br />

identified as <strong>the</strong> primordial endoblast <strong>in</strong> P. kerathurus, <strong>and</strong><br />

that Xva is likely to be <strong>the</strong> correct identity. An early marker<br />

for endoderm would be very useful for a more def<strong>in</strong>itive<br />

identification of <strong>the</strong> endoderm <strong>and</strong> solution to <strong>the</strong>se<br />

conflict<strong>in</strong>g results.<br />

In summary, <strong>the</strong> cell l<strong>in</strong>eage of P. vannamei provides a<br />

reference for an economically important member of <strong>the</strong><br />

Dendrobranchiata, as well as comparative data for studies of<br />

<strong>the</strong> evolution of development <strong>in</strong> this group <strong>and</strong> <strong>the</strong><br />

Euphausiacea. It will be of <strong>in</strong>terest to obta<strong>in</strong> additional<br />

data for o<strong>the</strong>r members of <strong>the</strong> Penaeidae, as well as for<br />

<strong>the</strong> o<strong>the</strong>r families of <strong>the</strong> Dendrobranchiata to test <strong>the</strong><br />

hypo<strong>the</strong>ses suggested <strong>in</strong> Fig. 8.<br />

Acknowledgements<br />

I thank Robert Shleser, Komarey Moss, Kathy Rasher,<br />

Jane Sylvester, <strong>and</strong> John Ho at Hawaii Oahu Suisan Inc.,<br />

Hawaii for access to <strong>and</strong> assistance with <strong>Penaeus</strong> vannamei<br />

broodstock <strong>and</strong> Athula Wikramanayake, Dept. of Zoology,<br />

University of Hawaii, Manoa for <strong>the</strong> use of laboratory<br />

facilities. This work was completed dur<strong>in</strong>g Spr<strong>in</strong>g 2002<br />

Research Professorship <strong>and</strong> Fall 2004 sabbatical leaves<br />

from Central Michigan University.<br />

References<br />

Alwes, F., Scholtz, G., 2004. <strong>Cleavage</strong> <strong>and</strong> <strong>gastrulation</strong> of <strong>the</strong><br />

euphausiacean Meganyctiphanes norvegica (Crustacea, Malacostraca).<br />

Zoomorphology 123, 125–137.<br />

P.L. Hertzler / Arthropod Structure & Development 34 (2005) 455–469<br />

Anderson, D.T., 1973. Embryology <strong>and</strong> Phylogeny <strong>in</strong> Annelids <strong>and</strong><br />

Arthropods. Pergaman Press, Oxford.<br />

Baldw<strong>in</strong>, J.D., Bass, A.L., Bowen, B.W., Clark Jr., W.H., 1998. Molecular<br />

phylogeny <strong>and</strong> biogeography of <strong>the</strong> mar<strong>in</strong>e <strong>shrimp</strong> <strong>Penaeus</strong>. Molecular<br />

Phylogenetics <strong>and</strong> Evolution 10, 399–407.<br />

Brooks, W.K., 1882. Lucifer, a study <strong>in</strong> morphology. Philosophical<br />

Transactions of <strong>the</strong> Royal Society of London B 173, 57–137.<br />

Duman-Scheel, M., Weng, L., X<strong>in</strong>, S., Du, W., 2002. Hedgehog regulates<br />

cell growth <strong>and</strong> proliferation by <strong>in</strong>duc<strong>in</strong>g cycl<strong>in</strong> D <strong>and</strong> cycl<strong>in</strong> E. Nature<br />

417, 299–304.<br />

Gerberd<strong>in</strong>g, M., Brown, W.E., Patel, N.H., 2002. Cell l<strong>in</strong>eage analysis of<br />

<strong>the</strong> amphipod crustaean Parhyale hawaiensis reveals an early<br />

restriction of cell fates. Development 129, 5789–5801.<br />

Gerberd<strong>in</strong>g, M., Patel, N.H., 2004. In: Stern, C.D. (Ed.), Gastrulation <strong>in</strong><br />

crustaceans: germ layers <strong>and</strong> cell l<strong>in</strong>eages Gastrulation: from Cells to<br />

Embryo. Cold Spr<strong>in</strong>g Harbor Laboratory Press, Cold Spr<strong>in</strong>g Harbor,<br />

New York, pp. 79–89.<br />

Harada, Y., Hosoiri, Y., Kuroda, R., 2004. Isolation <strong>and</strong> evaluation of<br />

dextral-specific <strong>and</strong> dextral-enriched cDNA clones as c<strong>and</strong>idates for <strong>the</strong><br />

h<strong>and</strong>edness-determ<strong>in</strong><strong>in</strong>g gene <strong>in</strong> a freshwater gastropod, Lymnaea<br />

stagnalis. Development Genes <strong>and</strong> Evolution 214, 159–169.<br />

Heldt, J.H., 1938. La reproduction chez les crustacés decapods de la famille<br />

des Pénéides. Annales de l’Institut Océanographique 18, 31–206.<br />

Hertzler, P.L., 2002. Development of <strong>the</strong> mesendoderm <strong>in</strong> <strong>the</strong> dendrobranchiate<br />

<strong>shrimp</strong> Sicyonia <strong>in</strong>gentis. Arthropod Structure <strong>and</strong> Development<br />

31, 33–49.<br />

Hertzler, P.L., Clark Jr., W.H., 1992. <strong>Cleavage</strong> <strong>and</strong> <strong>gastrulation</strong> <strong>in</strong> <strong>the</strong><br />

<strong>shrimp</strong> Sicyonia <strong>in</strong>gentis: <strong>in</strong>vag<strong>in</strong>ation is accompanied by oriented cell<br />

division. Development 116, 127–140.<br />

Hertzler, P.L., Clark Jr., W.H., 1993. The late events of fertilisation <strong>in</strong> <strong>the</strong><br />

penaeoidean <strong>shrimp</strong> Sicyonia <strong>in</strong>gentis. Zygote 1, 287–296.<br />

Hertzler, P.L., Wang, S., Clark Jr., W.H., 1994. Mesendoderm cell <strong>and</strong><br />

archenteron formation <strong>in</strong> isolated blastomeres from <strong>the</strong> <strong>shrimp</strong> Sicyonia<br />

<strong>in</strong>gentis. Developmental Biology 164, 333–344.<br />

Hickman, V., 1937. The embryology of <strong>the</strong> syncarid crustacean Anaspides<br />

tasmaniae. Paper of Royal Society Tasmania 1936, 1–35.<br />

Hud<strong>in</strong>aga, M., 1942. Reproduction, development <strong>and</strong> rear<strong>in</strong>g of <strong>Penaeus</strong><br />

japonicus Bate. Japanese Journal of Zoology 10, 305–393.<br />

Jarman, S.N., Nicol, S., Elliott, N.G., McM<strong>in</strong>n, A., 2000. 28S rDNA<br />

evolution <strong>in</strong> <strong>the</strong> Eumalacostraca <strong>and</strong> <strong>the</strong> phylogenetic position of krill.<br />

Molecular Phylogenetics <strong>and</strong> Evolution 17, 26–36.<br />

Kajishima, T., 1951. Development of isolated blastomeres of <strong>Penaeus</strong><br />

japonicus. Zoological Magaz<strong>in</strong>e 60, 258–262.<br />

Kungvankij, P., Ruangpanit, N., Dangsakul, S., Chrastit, C., 1980. An<br />

experiment on artificial propagation of <strong>Penaeus</strong> semisulcatus de Haan.<br />

Contrib. No. 2, Repr<strong>in</strong>t No. 2, Phuket Fisheries Station, Phuket, Thail<strong>and</strong>.<br />

Lavery, S., Chan, T.Y., Tam, Y.K., Chu, K.H., 2004. Phylogenetic<br />

relationships <strong>and</strong> evolutionary history of <strong>the</strong> <strong>shrimp</strong> genus <strong>Penaeus</strong> s.l.<br />

derived from mitochondrial DNA. Molecular Phylogenetics <strong>and</strong><br />

Evolution 31, 39–49.<br />

Maggioni, R., Rogers, A.D., Maclean, N., D’Incao, F., 2001. Molecular<br />

phylogeny of western Atlantic Farfantepenaeus <strong>and</strong> <strong>Litopenaeus</strong><br />

<strong>shrimp</strong> based on mitochondrial 16S partial sequences. Molecular<br />

Phylogenetics <strong>and</strong> Evolution 18, 66–73.<br />

Mart<strong>in</strong>, J.W., Davis, G.E., 2001. An Updated Classification of <strong>the</strong> Recent<br />

Crustacea. Natural History Museum of Los Angeles County, Los<br />

Angeles.<br />

Morelli, M., Aguacop, 2003. Effects of heat-shock on cell division <strong>and</strong><br />

microtubule organization <strong>in</strong> zygotes of <strong>the</strong> <strong>shrimp</strong> <strong>Penaeus</strong> <strong>in</strong>dicus<br />

(Crustacea, Decapoda) observed with confocal microscopy. Aquaculture<br />

216, 39–53.<br />

Pérez Farfante, I., Kensley, B., 1997. Penaeoid <strong>and</strong> sergestoid <strong>shrimp</strong>s <strong>and</strong><br />

prawns of <strong>the</strong> world: keys <strong>and</strong> diagnoses for <strong>the</strong> families <strong>and</strong> genera.<br />

Mémoires du Muséum National d’Histoire Naturelle 175, 1–233.<br />

Raff, R.A., 1996. The Shape of Life: Genes, Development, <strong>and</strong> <strong>the</strong><br />

Evolution of Animal Form. University of Chicago Press, Chicago.


Richter, S., Scholtz, G., 2001. Phylogenetic analysis of <strong>the</strong> Malacostraca<br />

(Crustacea). Journal of Zoological Systematics <strong>and</strong> Evolution Research<br />

39, 113–136.<br />

Scholtz, G., 1997. <strong>Cleavage</strong>, germ b<strong>and</strong> formation <strong>and</strong> head segmentation:<br />

<strong>the</strong> ground pattern of <strong>the</strong> Euarthropoda. In: Fortey, R., Thomas, R.<br />

(Eds.), Arthropod Relationships. Chapman <strong>and</strong> Hall, London, UK,<br />

pp. 317–332.<br />

Scholtz, G., 2000. Evolution of <strong>the</strong> nauplius stage <strong>in</strong> malacostracan<br />

crustaceans. Journal of Zoological Systematics <strong>and</strong> Evolution Research<br />

38, 175–187.<br />

Scholtz, G., Wolff, C., 2002. <strong>Cleavage</strong>, <strong>gastrulation</strong> <strong>and</strong> germ disc<br />

formation of <strong>the</strong> amphipod Orchestia cavimana (Crustacea, Malacostraca,<br />

Peracarida). Contributions Zoology 71, 9–28.<br />

Shi<strong>in</strong>o, S.M., 1988. Arthropoda. In: Kumé, M., Dan, K. (Eds.), Invertebrate<br />

Embryology. Bai Fu Kan Press, Tokyo, pp. 333–484 (Published <strong>in</strong><br />

English (translation by J.C. Dan) by NOLIT Publish<strong>in</strong>g House,<br />

Belgrade, Yugoslavia (1968). Republished by Garl<strong>and</strong> Publish<strong>in</strong>g,<br />

Inc., New York (1988)).<br />

P.L. Hertzler / Arthropod Structure & Development 34 (2005) 455–469 469<br />

Taube, E., 1909. Beiträge zur Entwicklungsgeschichte der Euphausiden. I.<br />

Die Furchung des Eis bis zur Gastrulation. Zeitschrift für Wissenschaftliche<br />

Zoologie 92, 427–464.<br />

Taube, E., 1915. Beiträge zur Entwicklungsgeschichte der Euphausiden. II.<br />

Von der Gastrula bis zum Furciliastadium. Zeitschrift für Wissenschaftliche<br />

Zoologie 114, 577–656.<br />

Wolff, C., Scholtz, G., 2002. Cell l<strong>in</strong>eage, axis formation, <strong>and</strong> <strong>the</strong> orig<strong>in</strong> of<br />

germ layers <strong>in</strong> <strong>the</strong> amphipod crustacean Orchestia cavimana. Developmental<br />

Biological 250, 44–58.<br />

Wyban, J.A., Sweeney, J.N., 1991. Intensive Shrimp Production Technology:<br />

<strong>the</strong> Oceanic Institute Shrimp Manual. The Oceanic Institute,<br />

Honolulu, Hawaii.<br />

Zilch, R., 1978. Embryologische Untersuchungen an der holoblastischen<br />

Ontogenese von <strong>Penaeus</strong> trisulcatus Leach (Crustacea, Decapoda).<br />

Zoomorphology 90, 67–100.<br />

Zilch, R., 1979. Cell l<strong>in</strong>eage <strong>in</strong> arthropods? Journal of Zoological<br />

Systematics <strong>and</strong> Evolution Research 1, 19–41.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!