07.04.2013 Views

Phase splitter Concertina Phase Splitter

Phase splitter Concertina Phase Splitter

Phase splitter Concertina Phase Splitter

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Phase</strong> <strong>splitter</strong><br />

<strong>Concertina</strong> <strong>Phase</strong> <strong>Splitter</strong><br />

This circuit provides two output signals in phase opposition. The output resistances of<br />

the two outputs are very different. Therefore, the signals should be fed into high-inputresistance<br />

circuits if the correct relative signal magnitudes are to be maintained.<br />

Rs<br />

Vs<br />

+<br />

Vin<br />

-<br />

C1<br />

R1<br />

VB<br />

R2<br />

RC<br />

VC<br />

BJT<br />

VE<br />

RE<br />

VCC<br />

VO1<br />

VO2<br />

Assembly on the breadboard.


<strong>Phase</strong> <strong>splitter</strong><br />

Synthesis<br />

The biasing voltages of the collector (V CQ) and emitter (V EQ) are chosen so to ensure<br />

maximum dynamic of the signals on the collector and emitter.<br />

V CQ=3V CC/4 e V EQ=V CC/4 consequently V CEQ=V CC/2<br />

1) On R C and R E there is the same voltage drop, therefore the two resistors must have the<br />

same value (R) which is obtained by the equation on the output mesh:<br />

R1<br />

R2<br />

V B<br />

I C<br />

BJT<br />

V CC<br />

Rc<br />

V CQ<br />

V EQ<br />

R E<br />

V −V<br />

VCC = I CQ·2·R+ VCEQ ⇒ R=<br />

I ·2<br />

2) Calculate R 2 :<br />

3) Calculate R 1:<br />

CC CEQ<br />

CQ<br />

1 1<br />

R2 = ⋅hFE ⋅ R = ⋅<br />

10 10<br />

h FE min·hFEmax ⋅R<br />

or<br />

VB R2= I<br />

VB =<br />

10⋅I VB<br />

=<br />

10⋅I<br />

⋅ h FE min·hFEmax R2BQ CQ<br />

V −V<br />

R = R<br />

CC B<br />

1<br />

VB<br />

2


<strong>Phase</strong> <strong>splitter</strong><br />

Long-tailed pair <strong>Phase</strong> <strong>Splitter</strong><br />

This circuit is known as a long-tailed pair because the two BJT's share the resistor REE. A signal applied at the CEC input causes an opposite signal Vout1 and a signal with same<br />

phase at the CBC input.<br />

So, the signal Vout2 has same phase of the signals at the input of the CBC.<br />

Consequently the signals Vout1and Vout2 have opposite phase.<br />

|Vout1|=|Vout2| results if the signal current iREE=0 (and iQ1=iQ2) or for real conditions |Vout1|º|Vout2| if iREE 100<br />

1+ h<br />

fe<br />

CEC<br />

For the BC107 (h ie=4kΩ, h fe=250)<br />

R EE > 1.6kΩ<br />

V in<br />

R1<br />

C1<br />

R2<br />

Rc<br />

V out1<br />

V CC<br />

Rc<br />

Q1 Q2<br />

i Q1<br />

i REE<br />

-V EE<br />

V out2<br />

R EE<br />

i Q2<br />

R1<br />

R2<br />

C2<br />

+<br />

CBC


C 1<br />

V in<br />

R 1<br />

V B1<br />

R 2<br />

V C1<br />

R c<br />

V out1<br />

V CC<br />

R c<br />

V out2<br />

Q1 Q2<br />

I REE<br />

V E<br />

R EE<br />

-V EE<br />

V C2<br />

R 1<br />

V B2<br />

R 2<br />

+<br />

C 2<br />

+<br />

V in<br />

Vout1 RCRC =− ≅− h<br />

V h + R h<br />

in ie ie<br />

-<br />

i b<br />

R 1//R 2<br />

fe<br />

h fei b<br />

h ie<br />

R C<br />

V out1<br />

R C<br />

R EE<br />

h fei b<br />

i b<br />

h ie<br />

hie hie<br />

R= R EE // ≅<br />

1+ h 1+ h<br />

fe fe


<strong>Phase</strong> <strong>splitter</strong><br />

Synthesis<br />

The circuit is symmetric so the emitter resistor can be divided in two parallel resistors with<br />

value 2REE and the synthesis can be done considering half circuit.<br />

The following assumptions are used VCC=-VEE=10V,VBEQ=0.65V, ICQ=1 mA,VCEQ=5V, VEQ=0. CC CEQ<br />

1) Calculate RC : RC= = 5kΩ<br />

ICQ<br />

2) Calculate 2R EE :<br />

3) Calculate R 2 :<br />

4) Calculate R 1:<br />

V −V<br />

VEQ + VEE10V 2REE = = = 10kΩ<br />

I 1mA<br />

CQ<br />

The R EE condition must be veryfied :<br />

For the BC107 h = h ⋅0.95 ≅ 211<br />

FE 1mA FE 2mA<br />

ICQ 1mA<br />

IR2 = 10I BQ = 10 ≅10 ≅47μ<br />

A<br />

h 211<br />

VB V BE 065 . V<br />

R2 = = ≅ ≅14kΩ<br />

I I 47μ<br />

A<br />

R2 R2<br />

FE 1mA<br />

VCC −VBE9.35V<br />

IR1 ≅ IR2→ R1= = ≅ 200kΩ<br />

I 47μA R1<br />

( )<br />

R > 100 ⋅ h / 1+ h<br />

EE ie fe<br />

R1<br />

R2<br />

V B<br />

I R1<br />

I R2<br />

I BQ<br />

I CQ<br />

BJT<br />

V CC<br />

Rc<br />

V CQ<br />

V EQ<br />

2R EE<br />

-V EE


Differential Amplifier<br />

This circuit allows to obtain an output signal<br />

proportional to the difference of the input signals.<br />

Where A d is the differential gain.<br />

v out = A d (v in1-v in2)<br />

On the other hand, there is an output signal also in<br />

thecaseofV IN1 =V IN2, this signal depends from (not<br />

desired) common mode amplification A C.Therefore<br />

for a real differential amplifier, in general, we can write:<br />

v out = A d (v in1-v in2) + A c (v in1+v in2)/2<br />

vin1<br />

RC<br />

BJT1<br />

REE<br />

VCC<br />

IC+ic1 IC+ic2<br />

ic1d=-ic2d<br />

-VEE<br />

BJT2<br />

RC<br />

2IC+2ic1c<br />

-V EE and R EE (R EE with high value) work as a current generator that:<br />

determines the bias current I C of the two BJT and<br />

contrasts the current variations of R EE.<br />

The collector currents (i c1, i c2) related to v in1, v in2 consist of two components:<br />

i = i + i ; i = i + i<br />

C3<br />

vin2<br />

c1 c1d c1c c2 c2d c2c One relative to the difference of the signals the other relative to the common mode signal.<br />

i = i ; i = - i<br />

The current generator requires that |i c1d|>>|i c1c| and |i c2d|>>|i c2c|.<br />

c2c c1c c1d c2d vout


v out = A d (v in1-v in2) + A c (v in1+v in2)/2<br />

RC<br />

BJT1<br />

VCC<br />

IC+icd1 IC+icd2<br />

ic1d= -ic2d<br />

REE<br />

2IC<br />

-VEE<br />

+ vd -<br />

BJT2<br />

C3<br />

vout<br />

v in1 = v d/2 and v in2 = -v d/2<br />

RC<br />

+<br />

Vc<br />

-<br />

vin1<br />

RC<br />

BJT1<br />

REE<br />

VCC<br />

IC+icc1 IC+icc2<br />

-VEE<br />

BJT2<br />

2IC+2icc1<br />

v in1 = v in2 = v c<br />

RC<br />

vin2<br />

C3<br />

vout<br />

+<br />

Vc<br />

-


The two amplifications can be estimated by considering two situations:<br />

1) V in1 = V in2 = V s<br />

+<br />

vS<br />

-<br />

vin1<br />

RC<br />

BJT1<br />

VCC<br />

IC+ics1 IC+ics2<br />

REE<br />

BJT2<br />

2IC+2ics1<br />

-VEE<br />

RC<br />

vin2<br />

C3<br />

vout<br />

+<br />

vS<br />

-<br />

A<br />

c<br />

vin1=vs<br />

RC<br />

2REE<br />

BJT1<br />

IC+ic1s IC+ic2s<br />

BJT2<br />

RC<br />

V Rh<br />

o<br />

C fe<br />

= =−<br />

V 2 h + 1+ h 2R<br />

( )<br />

2REE<br />

vout<br />

vin2=vs<br />

in ie fe EE<br />

ic2s<br />

BJT2<br />

RC<br />

2REE<br />

vout<br />

vin2=vs


2) V in1 = V d/2 and V in2 = -V d/2<br />

+<br />

vd/2<br />

-<br />

vin1<br />

RC<br />

BJT1<br />

VCC<br />

IC+icd1 IC+icd2<br />

REE<br />

ic1d<br />

2IC<br />

-VEE<br />

BJT2<br />

RC<br />

vin2<br />

C3<br />

vout<br />

-<br />

vd/2<br />

+<br />

vin1=vd/2<br />

BJT1<br />

Vo V Rh o V Rh<br />

o<br />

= =− ; Ad<br />

= =<br />

V 2 −V<br />

/ 2 h V 2h<br />

C fe C fe<br />

in d ie d ie<br />

Electronics: a systems approach by N. Storey<br />

RC<br />

IC+ic1d IC+ic2d<br />

E<br />

REE<br />

c<br />

BJT2<br />

RC<br />

C3<br />

vout<br />

v in2= - v d/2<br />

ic2d<br />

BJT2<br />

RC<br />

vout<br />

vin2=- vd/2<br />

The parameter, which specifies how the real amplifier is close to that ideal, is the<br />

common mode rejection ratio:<br />

Ad<br />

CMRR =<br />

A<br />

The behavior of the differential amplifier is close to that ideal if CMRR is great, in<br />

other words if A d is much larger than A c.


The differential stage which will be realized in experiments is shown in the figure.<br />

V in1<br />

R 1<br />

R C<br />

R 2<br />

BJT1<br />

i C1<br />

R EE<br />

For the biasing network, the synthesis procedure is the same of the long-tailed<br />

pair phase <strong>splitter</strong>.<br />

So dividing the circuit, knowing the V EE and V CC values and selecting the<br />

biasing voltages and currents of the components the biasing network can be<br />

defined.<br />

V CC<br />

i C2<br />

-V EE<br />

R C<br />

BJT2<br />

R 2<br />

R 1<br />

C 3<br />

V out<br />

V in2<br />

100kΩ C1 C<br />

A<br />

2 100kΩ<br />

R L


To measure the two amplification you can proceed in several ways, but two<br />

measures must be made, here are some methods.<br />

A) 1 st measure V in1=-V in2=V test, in this case A d =V out1/(2V test)<br />

2 nd measure V in1=V in2=V test, in this case A c =V out2/V test<br />

B) 1 st measure V in1= V test ,V in2=0, in this case V out1=A dV test+A cV test/2<br />

2 nd measure V in1= 0,V in2= V test, in this case V out2= -A dV test+A cV test/2<br />

V out2 is in phase opposition respect to V out1 so -V out2 is assumed, adding the two<br />

obtained output signals :<br />

V out1 +V out2 =A cV est A c= (V out1 +(-V out2))/V test<br />

V out1 -V out2 =2A dV test A d =(V out1 - (-V out2))/2V test<br />

C) 1 st measure V in1=V in2=V test, in this case A c =V out1/V test<br />

2 nd measure V in1= V test ,V in2=0, in this case V out2=A dV test+A cV test/2<br />

From which is obtained:<br />

A d =V out1 /V test -A c /2


v out = A d (v in1-v in2)<br />

v in1 non-inverting input<br />

v in2 inverting input<br />

vin 1<br />

R C<br />

BJT 1<br />

in1<br />

Volt.<br />

in2<br />

Volt.<br />

IC+i c1<br />

ic1d=-ic2d<br />

R EE<br />

V CC<br />

BJT1<br />

Cur.<br />

BJT2<br />

Cur.<br />

I C+i c2<br />

BJT2<br />

2I C+2i c1s<br />

-VEE<br />

R C<br />

BJT2<br />

Cur.<br />

Out<br />

Volt.<br />

C 3<br />

v in 2<br />

v ou t<br />

Out<br />

Volt.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!