07.04.2013 Views

磁気駆動型超新星爆発に伴う元素合成 - ニュートリノ吸収の ... - 東京大学

磁気駆動型超新星爆発に伴う元素合成 - ニュートリノ吸収の ... - 東京大学

磁気駆動型超新星爆発に伴う元素合成 - ニュートリノ吸収の ... - 東京大学

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1<br />

磁気駆動型超新星爆発に伴う<br />

元素合成 –<br />

<strong>ニュートリノ吸収の</strong>影響<br />

藤本信一郎<br />

(熊本電波高専),<br />

橋本正章, 西村信哉 (九州大学),<br />

固武慶 (NAOJ)、山田章一(早稲田大学)<br />

重力崩壊型超新星と高エネルギー天文学<br />

2009年2月2日(月)-4日(水) <strong>東京大学</strong><br />

1


2<br />

講演内容<br />

磁気駆動型超新星爆発<br />

磁気駆動型超新星爆発における重元素合成<br />

低金属星における中性子過剰核の観測<br />

磁気駆動型超新星爆発における中性子過剰<br />

核元素合成 (ニュートリノの影響を考慮)<br />

Ni56合成


3<br />

磁気駆動型超新星爆発<br />

重力崩壊の際に増幅された磁場の<br />

磁気圧(の勾配)による爆発<br />

– 磁場<br />

– 回転<br />

– 非球対称爆発:Leblanc&Wilson 79,<br />

Symbalisty 84 ….Kotake 03, Takiwaki 05<br />

磁場増幅<br />

– 圧縮<br />

– 巻き込み:親星のpoloidal 磁場、回転<br />

– 磁気回転不安定性(Akiyama+ 03, 05,<br />

Obergaulinger 08)<br />

降着円盤の粘性源<br />

磁場増幅、角運動量輸送<br />

指数関数的増幅、増幅率 1/Ω<br />

親星の自転: 低金属量星、連星<br />

重力崩壊の際の磁力線


4<br />

neutron-rich ejecta from SNe<br />

ニュートリノ駆動超新星爆発<br />

– 中性子のニュートリノ吸収による<br />

加熱<br />

– 低い中性子/陽子比(n/p比)<br />

磁気駆動超新星爆発<br />

– ニュートリノ吸収は爆発に本質的<br />

ではない<br />

– 高いn/p比が期待<br />

元素合成(Sato73,74)<br />

– パラメータ:n/p比、放出ガス速度<br />

– Dynamical r-process<br />

– 高いn/p比の場合:速い中性子捕<br />

獲反応R-processの可能性<br />

Ejecta from nu-driven SN、Pruet05<br />

9Msun<br />

15Msun<br />

Ejecta from nu-driven SN、Wanajo07<br />

Ye>0.45


5<br />

Nucleosynthesis in the n-rich ejecta<br />

原始<br />

中性子星<br />

中性子過剰ジェット中<br />

の元素合成の模式図<br />

ベータ平衡<br />

NSE<br />

NSE<br />

N-rich<br />

5X10^9 K<br />

光分解↓<br />

1-2X10^9K<br />

速い中性子捕獲<br />

核分裂<br />

ジェットの進行方向: 0.1c<br />

ベータ崩壊<br />

アルファ崩壊<br />

核分裂<br />

n/p比はDynamics<br />

に敏感


磁気駆動超新星爆発における元素合成<br />

6<br />

2DMHD計算に基づく元素合成<br />

13Msun球対称星<br />

磁場、回転はパラメータ<br />

高いn/p比<br />

R-process元素合成<br />

Nishimura06


7<br />

超新星が付随するガンマ線バースト<br />

回転大質量星(>30-40Msun)<br />

の重力崩壊<br />

Long GRB with SN<br />

– GRB980425/SN1998bw<br />

– GRB030229/SN2003dh<br />

– GRB060218/SN2006aj<br />

Hypernova<br />

– 爆発エネルギー1e52erg<br />

– 多量のNi56 > 0.3Msun<br />

ニュートリノ駆動 < 1e51erg?<br />

磁気駆動?<br />

Collapsar model of GRB


磁気駆動超新星爆発における元素合成<br />

8<br />

2DMHD計算に基づく元素合成<br />

40Msun大質量星<br />

ブラックホール<br />

高い中性子/陽子比<br />

R-process元素合成<br />

M(56Ni)ej↑<br />

for Eej↑<br />

Eej [10 51 ergs]<br />

Fujimoto07, 08<br />

M10<br />

Mej = 0.24Msun<br />

0 Ye 0.5


9<br />

<strong>ニュートリノ吸収の</strong>n/p比への影響<br />

r=10km, L=10^53 erg/s で全てのnはpに<br />

(electron neutrino だけ放出されるなら)


n-rich elements in metal poor stars<br />

r-rich<br />

r-poor<br />

10<br />

太陽系組成に近い<br />

Universality?<br />

Data taken from SAGA@北大<br />

rs-rich<br />

a-rich<br />

Binary、AGB


11<br />

n-rich elements in metal poor stars<br />

Data taken from SAGA@北大<br />

r-rich r-poor<br />

Eu↓Sr↑ 低金属量<br />

LEPP(Lighter Elements Primary<br />

Process)<br />

Weak r-process


12<br />

27 Sep. - 03 Aug. 2008<br />

研究目的<br />

MPSや太陽系における中性子過剰核の起源<br />

Ni56放出量、Hypernova的な爆発(>0.1Msun)<br />

LEPP?<br />

P-elements?<br />

1. MHD Simulation of core collapse of a collapsar before<br />

the BH formation, using MHD code taking into account<br />

neutrino cooling and change in electron fraction (Ye)<br />

due to neutrino interactions<br />

2. Nuclesynthesis, appropriately evaluating changes in Ye<br />

due to electron and positron captures as well as<br />

neutrino captures on nucleon


MHD Code<br />

ZEUS 2D Code: 2.5D Axisymmetric, Newtonian<br />

Realistic equation of state: Shen EOS (Kotake+03)<br />

Neutrino reactions : Leakage Scheme (Ruffert+96)<br />

four species<br />

Cooling: e- e+ capture, e- e+ pair annihilation, plasmon<br />

decay<br />

Ye evolution: neutrino interactions in an optically thick<br />

region, in addition to e- e+ capture<br />

Self gravity with approximate GR effects (Marek+05)<br />

Code test: reasonable agreement between our results and<br />

those of more elaborate simulations (Sumiyoshi+05,07) for<br />

spherical collapse of 15Msun and 40 Msun stars<br />

13


Initial setup<br />

Initial model = 35OC model (Woosley & Heger 06)<br />

14<br />

rotating, 35Msun star at presupernova<br />

low metallicity: Z = 0.1 Zsun<br />

low mass loss rate at WR phase: 0.1 x standard rate<br />

candidate for progenitor of a gamma-ray bursts<br />

Initial density, temperature, Ye(electron fraction), and<br />

angular velocity of MHD calc. = those of 35OC model<br />

Magnetic fields (Bz = 1e11 G, Bphi = 8e11 G)<br />

same as in Dessart+08 model:<br />

M0 (Bz = 2e10 G) & M1 (Bz 5*Bz = 1e11G)<br />

Computational region: r


15<br />

Log density<br />

Ye<br />

Jet-like explosion<br />

0.46s 0.50s 0.53s<br />

Dense<br />

jets<br />

0.46s 0.50s 0.53s<br />

Note that neutrino<br />

absorption is not<br />

taken into account<br />

in optically thin<br />

regions<br />

1000km<br />

x1000km


16<br />

Neutrino luminosity<br />

rotating Non-rotating<br />

t(bounce)=0.377sec<br />

35OC<br />

Luminosities<br />

Luminosities<br />

lower than those<br />

for spherical case<br />

t(final)=0.593sec<br />

M(r): 35OC<br />

Low<br />

Mdot<br />

Luminosities: u35<br />

high<br />

Mdot<br />

t(bounce)=0.369sec<br />

M(r): u35


17<br />

質量放出率、エネルギー放出率<br />

bounce<br />

Time(s)<br />

M1 M0<br />

35OC-M1<br />

@500km<br />

dM/dt_ej ~ 0.5Msun/s<br />

dEdt_ej ~ 5 x 10^52erg/s<br />

dM/dt_ac ~ 0.5Msun/s<br />

Dessart+08 with<br />

VULCAN2D


18<br />

Lagrangian evolution of the jets<br />

Tracer particle method<br />

To calculate Lagrangian evolution<br />

from Eulerian evolution.<br />

1. 3,000 tracer particles are initially<br />

placed from iron core to silicate<br />

layers.<br />

2. We follow time evolution of<br />

position of the tracer particles.<br />

3. We can select particles (jet<br />

particles) which are ejected<br />

through the jets. We have 213<br />

jet particles<br />

Ye(NSE) = Electron fraction<br />

(electron per baryon) at T9 = 9<br />

3000km<br />

x3000km<br />

Trajectories of<br />

3 jet particles<br />

200km<br />

x200km


19<br />

Maximum density, T, & Vr of<br />

the jet particles<br />

Ejecta<br />

from core<br />

surface<br />

Ejecta<br />

from outer<br />

layers<br />

Max. density vs. Max. T<br />

Tmax = Max. temperature<br />

Vr,max = Max. radial velocity<br />

Ejecta from<br />

dense core<br />

Ejecta from core and<br />

core surface are<br />

fast ( 0.2-0.3c)<br />

Max. density vs. Max. Vr<br />

Ejecta<br />

from outer<br />

layers<br />

Ejecta from<br />

dense core<br />

Ejecta<br />

from core<br />

surface


20<br />

Evolution of electron fraction (Ye) of<br />

a jet particle<br />

in high density (>= 1e11 g/cc) region<br />

Ye = Ye(MHD) on the position of the<br />

particle at the time<br />

in low density (< 1e11 g/cc) region<br />

DYe via e-,e+ captures and neutrino<br />

absorptions<br />

Note that neutrino absorption on nucleon is taken into<br />

account in MHD simulations, only in an optically thick region.


21<br />

Neutrino absorption<br />

Neutrino absorption rates<br />

per baryon for Yn = 0.5<br />

0.53s<br />

Y<br />

10/sec<br />

100<br />

km<br />

500km x 500km<br />

1 neutrino/sec<br />

L = 5.2e52ergs/s<br />

200<br />

km<br />

neutrino<br />

sphere<br />

X<br />

Log[ e- capture rate/<br />

neutrino capture rate]<br />

Ye↓<br />

500km x 500km<br />

Ye↑<br />

e- capture<br />

dominant<br />

region in jets<br />

Electron captures are dominate over neutrino<br />

absorption in the dense jets near the polar axis<br />

2<br />

0<br />

-2


22<br />

Ye distribution of the jets<br />

ニュートリノ無視<br />

2 x e-neutrino flux<br />

35OC-M1<br />

0.042Msun<br />

n-rich ejecta via<br />

jets<br />

Ni56-rich ejecta<br />

from outer layers<br />

0.028Msun<br />

Ye(NSE)=Electron fraction (electron per baryon) at T9 = 9<br />

0.014Msun<br />

During 0.1sec


23<br />

Evolution of electron fraction of jet<br />

particles<br />

Low Ye particle (Ye(NSE)=0.2) Middle Ye particle (Ye(NSE)=0.4)<br />

Ye<br />

Log r<br />

R-process<br />

In jets with small theta,<br />

high rates of electron<br />

capture due to high<br />

densities<br />

logT<br />

Log rho<br />

Ye<br />

electron<br />

capture<br />

dominant<br />

Log r<br />

Log<br />

rho<br />

R-process<br />

In jets with small theta,<br />

low rates of electron<br />

capture due to low<br />

densities<br />

Log r<br />

logT<br />

neutrino<br />

capture<br />

dominant<br />

Ye(NSE)=Electron fraction (electron per baryon) at T9 = 9<br />

Ye<br />

logT<br />

Ye


24<br />

Abundances of the most neutronrich<br />

jet particle: 35OC-M1<br />

Abundances on the nuclear chart during neutron-capture<br />

Ye(NSE) = 0.2<br />

Z=42<br />

(Mo)<br />

Stability line<br />

N=82<br />

Z=100<br />

alpha-decays<br />

U,Th<br />

N=126<br />

Betadecays<br />

neutron captures<br />

+ beta decays<br />

N=184


Abundances of jet particles after decay<br />

25<br />

Fe<br />

poor<br />

2 nd peak<br />

r-process<br />

in low<br />

Ye(NSE)<br />

particles<br />

3 rd peak<br />

small<br />

amounts<br />

of U & Th


Composition:Collapsar & Solar system<br />

26<br />

Abundances vs A<br />

small amounts of<br />

nuclei with A > 180<br />

different from the<br />

abundance profile of<br />

solar r-elements<br />

small amounts of<br />

nuclei with Z > 80<br />

Log Abundances vs Z


27<br />

different from the<br />

abundance profile of<br />

MPS<br />

Collapsar and MPSs<br />

R-rich<br />

Log eps vs Z<br />

for collapsar & MPS<br />

R-poor


28<br />

中性子過剰核のYe依存性<br />

Eu,Ba-rich<br />

Ru,Pd,Ag-rich<br />

2つのモデル(M12+35OC)


29<br />

Mass of Ni56<br />

•Ejecta from Core: Ni56 poor (Ye 0.1Msun<br />

球対称?、~1秒間継続?<br />

E=3x10^52erg<br />

Maeda astro-ph0901.0410


30<br />

Mass of Ni56:Ni56 winds<br />

40Msun star<br />

0.1 Msun nucleon<br />

via winds<br />

The winds are<br />

driven via viscous<br />

heating through<br />

alpha-viscosity.<br />

No winds in MHD<br />

simulations<br />

MacFadyen & Woosley 1999


31<br />

まとめ<br />

磁気駆動型超新星における中性子過剰核元素合成<br />

– ニュートリノ駆動型超新星より中性子/陽子比が大きな<br />

ガスを放出しやすい<br />

– ガスの組成は中性子/陽子比に敏感<br />

– 特にニュートリノのガスの組成への影響はダイナミクス<br />

に敏感<br />

Ni56質量<br />

– コアから放出される量は非常に少ない<br />

– 外層からの寄与 > 0.04Msun/sec<br />

– 計算領域外のガスからの寄与はより大きい可能性あり<br />

– Hypernova的な爆発?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!