05.06.2013 Views

Clustering and density profile of dark matter halos

Clustering and density profile of dark matter halos

Clustering and density profile of dark matter halos

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Why <strong>dark</strong> <strong>matter</strong> <strong>halos</strong> ?<br />

Self-gravitating Self-gravitating<br />

Self gravitating virialized objects<br />

Sites Sites for galaxies <strong>and</strong> clusters<br />

radiative cooling <strong>of</strong> baryonic gas<br />

energy <strong>and</strong> angular momentum transfer<br />

star formation <strong>and</strong> supernova heating<br />

More More directly related to cosmological initial<br />

conditions than other small-scale objects<br />

Easier Easier to predict/model theoretically since<br />

gravity dominates<br />

2/31


Topics in in this talk include …<br />

<strong>Clustering</strong>:<br />

<strong>dark</strong> <strong>dark</strong> <strong>matter</strong> clustering on the light-cone<br />

(Yamamoto + YS 1998)<br />

Comparison with simulations on the light-cone<br />

(Hamana, Colombi + YS 2000)<br />

Morphology-dependent galaxy bias from SDSS data<br />

(Kayo, Nakamura, Fukugita + YS for for SDSS collaboration)<br />

halo halo<br />

clustering on the light-cone<br />

(Hamana, Yoshida, YS + Evrard 2001)<br />

Density <strong>pr<strong>of</strong>ile</strong>:<br />

High-resolution N-body simulation (Jing+YS 2000)<br />

Implications from the gravitational arc statistics<br />

(Oguri, Taruya + YS 2001)<br />

Possible constraints from time-delay time time-delay delay statistics<br />

(Oguri, Taruya, YS + Turner 2001)<br />

Halo <strong>density</strong> <strong>pr<strong>of</strong>ile</strong> to <strong>dark</strong> <strong>matter</strong> clustering:<br />

(Hamana, Yoshida + YS 2001)<br />

3/31


z=0.05<br />

(150h -1 Mpc)<br />

1986<br />

<strong>Clustering</strong> on the light-cone<br />

CfA redshift survey:<br />

de Lapparent et al.(1986)<br />

Evolution Evolution<br />

along the<br />

light-cone light light-cone cone<br />

is essential<br />

even in the<br />

current<br />

surveys !<br />

1996<br />

z=0.2<br />

(600h -1 Mpc)<br />

Las Campanas redshift survey:<br />

Schectman et al. (1996)<br />

2001<br />

z=3<br />

(~1h -1 Gpc)<br />

2dF QSO survey: Shanks et al. (2001)<br />

4/31


Cosmological light-cone effects<br />

linear <strong>and</strong> nonlinear gravitational evolution<br />

redshift-space<br />

redshift redshift-space space distortion due to peculiar velocity<br />

linear distortion (the Kaiser effect)<br />

nonlinear distortion (finger-<strong>of</strong>-god effect)<br />

evolution <strong>of</strong> objects on the light-cone light light-cone cone<br />

number <strong>density</strong> <strong>and</strong> luminosity evolution<br />

object-dependent spatial bias relative to to mass<br />

observational selection function<br />

magnitude-limit <strong>and</strong> luminosity function<br />

shape <strong>of</strong> <strong>of</strong> the survey boundary<br />

Matsubara, Suto & Szapudi (1997); Matarrese et al. (1997)<br />

Yamamoto & Suto (1998); Suto, Suto,<br />

Magira, Magira,<br />

Jing, Jing,<br />

Matsubara & Yamamoto (1999)<br />

5/31


Predicting the clustering on on the light-cone<br />

redshift-space redshift redshift-space space distortion<br />

1<br />

r;<br />

z)<br />

= 2<br />

2π<br />

0<br />

2 R<br />

k dkPnl<br />

( k,<br />

z)<br />

f ( k,<br />

β , σ 1D,<br />

sin kr<br />

)<br />

kr<br />

gravitational<br />

nonlinear evolution<br />

linear <strong>and</strong> nonlinear<br />

redshift-space distortion<br />

ξ ( ∫ vel<br />

∞<br />

average average over the light-cone light light-cone cone<br />

z<br />

∫<br />

max<br />

2 dVc<br />

dzξ<br />

( r;<br />

z)[<br />

φ(<br />

z)<br />

n(<br />

z)]<br />

LC zmin<br />

ξ ( r)<br />

=<br />

dz<br />

z<br />

∫<br />

max<br />

2 dVc<br />

dz[<br />

φ(<br />

z)<br />

n(<br />

z)]<br />

zmin<br />

dz<br />

comoving<br />

volume<br />

element<br />

selection function mean number <strong>density</strong><br />

Yamamoto & Suto (1998) ; Hamana, Hamana,<br />

Colombi & Suto (2001)<br />

6/31


Correlation functions <strong>of</strong> <strong>of</strong> <strong>dark</strong> <strong>matter</strong> on on the the light-cone<br />

Dark <strong>matter</strong> particle distribution on the<br />

light light-cone cone from NN-body<br />

body simulations<br />

Bias is ignored here.<br />

Hamana, Hamana Hamana, , Colombi & Suto (2001)<br />

7/31


Slices from SDSS spectroscopic galaxy samples<br />

<strong>Clustering</strong> <strong>of</strong> galaxies on the light-cone light cone !<br />

(although the light-cone light cone effect is not important)<br />

9971 galaxies (r’


Sample-variance <strong>of</strong> <strong>of</strong> ξ(s)<br />

Morphology dependent correlation<br />

functions <strong>of</strong> SDSS galaxies<br />

SDSS<br />

early-type early type<br />

SDSS<br />

late-type late type<br />

average<br />

N-body body Mock samples <strong>and</strong><br />

the model predictions<br />

redshift space<br />

Redshift-space<br />

distortion<br />

real space<br />

Kayo, Nakamura, Fukugita, Fukugita,<br />

YS et al. in preparation<br />

9/31


Phenomenological model<br />

for scale- <strong>and</strong> mass-dependent halo biasing<br />

mass-dependence mass mass-dependence dependence (Jing (Jing1998;Sheth Jing1998; 1998;Sheth Sheth & Tormen 1999)<br />

+ scale-dependence<br />

scale scale-dependence dependence (Taruya<br />

Taruya & Suto 2000) in halo<br />

biasing (cf., Yoshikawa et al. 2001; poster #63)<br />

biasing (cf., Yoshikawa et al. 2001; poster #63)<br />

b halo<br />

( M , R,<br />

z)<br />

= b ( M , z)[<br />

1+<br />

b ( M , z)<br />

σ ( R,<br />

z)]<br />

average average over the light-cone light light-cone cone<br />

ξ<br />

LC<br />

halo<br />

( ><br />

ST<br />

ST<br />

mass<br />

2<br />

ξ halo(<br />

M, R,<br />

z)<br />

= bhalo(<br />

M,<br />

R,<br />

z)<br />

ξ mass(<br />

R,<br />

z)<br />

M,<br />

r)<br />

=<br />

z<br />

max<br />

∫ ∫<br />

z<br />

min<br />

dz<br />

z<br />

∞<br />

max<br />

∫ ∫<br />

z<br />

M<br />

min<br />

dMξ<br />

dz<br />

halo<br />

∞<br />

M<br />

0.<br />

15<br />

2 dV<br />

( M,<br />

R,<br />

z)<br />

nST(<br />

M,<br />

z)<br />

dz<br />

2 dVc<br />

dM nST(<br />

M,<br />

z)<br />

dz<br />

Hamana et al. (2001)<br />

c<br />

12/31


Calibrating the halo biasing model<br />

with the Hubble volume simulation at at z=0<br />

Cumulative<br />

halo bias<br />

b(>M, R,z=0)<br />

massive <strong>halos</strong><br />

less massive <strong>halos</strong><br />

Hamana et al. (2001)<br />

Our halo bias model works<br />

quite well at R>20h-1Mpc. The suppression <strong>of</strong><br />

biasing in simulation at<br />

R


Correlation functions <strong>of</strong> <strong>of</strong> <strong>halos</strong> on on the the light-cone<br />

Hamana et al. (2001)<br />

14/31


Topics in in this talk include …<br />

<strong>Clustering</strong>:<br />

<strong>dark</strong> <strong>dark</strong> <strong>matter</strong> clustering on the light-cone<br />

(Yamamoto + YS 1998)<br />

Comparison with simulations on the light-cone<br />

(Hamana, Colombi + YS 2000)<br />

Morphology-dependent galaxy bias from SDSS data<br />

(Kayo, Nakamura, Fukugita + YS for for SDSS collaboration)<br />

halo halo<br />

clustering on the light-cone<br />

(Hamana, Yoshida, YS + Evrard 2001)<br />

Density <strong>pr<strong>of</strong>ile</strong>:<br />

High-resolution N-body simulation (Jing+YS 2000)<br />

Implications from the gravitational arc statistics<br />

(Oguri, Taruya + YS 2001)<br />

Possible constraints from time-delay time time-delay delay statistics<br />

(Oguri, Taruya, YS + Turner 2001)<br />

Halo <strong>density</strong> <strong>pr<strong>of</strong>ile</strong> to <strong>dark</strong> <strong>matter</strong> clustering:<br />

(Hamana, Yoshida + YS 2001)<br />

15/31


Why <strong>density</strong> <strong>pr<strong>of</strong>ile</strong>s <strong>of</strong> <strong>of</strong> <strong>dark</strong> <strong>halos</strong> ?<br />

Theoretical Theoretical interest: what is the final<br />

state <strong>of</strong> the cosmological selfgravitating<br />

system ?<br />

forget forget cosmological initial conditions?<br />

keep keep initial memory somehow?<br />

Practical Practical importance: testable<br />

predictions for galaxies <strong>and</strong> clusters<br />

can distinguish the underlying cosmological<br />

model through comparison with observations<br />

(i.e., galactic rotation curve, gravitational<br />

lensing, X-ray/SZ observation)<br />

16/31


log(<strong>density</strong>)<br />

NFW universal <strong>density</strong> <strong>pr<strong>of</strong>ile</strong><br />

halo halo <strong>density</strong><br />

<strong>pr<strong>of</strong>ile</strong> is<br />

independent <strong>of</strong><br />

cosmological<br />

initial<br />

conditions<br />

log(radius)<br />

Navarro, Frenk<br />

& White (1997)<br />

δ cρ<br />

crit<br />

ρ(<br />

r)<br />

=<br />

2<br />

( r / rs<br />

)( 1 + r / rs<br />

)<br />

rvir(<br />

M )<br />

cvir(<br />

M ) ≡<br />

rs<br />

( M )<br />

3<br />

∆virΩ<br />

0 c<br />

δ c(<br />

M ) ≡<br />

3[ln(<br />

1 + c)<br />

− c /( 1 + c)]<br />

17/31


galaxies<br />

~ 5x1012 galaxies<br />

~ 5x10 Msun 12Msun groups<br />

~ 5x1013 groups<br />

~ 5x10 Msun 13Msun clusters<br />

~ 3x1014 clusters<br />

~ 3x10 Msun 14Msun Jing & Suto<br />

(2000)<br />

Halo <strong>pr<strong>of</strong>ile</strong>s in in higher-resolution<br />

N-body simulations<br />

inner slope in higherresolution<br />

simulations<br />

is steeper (~ –1.5) than<br />

the NFW value (–1.0)<br />

next two talks by<br />

Y.P.Jing<br />

<strong>and</strong><br />

T.Fukushige<br />

18/31


Gravitational lensing <strong>of</strong> <strong>of</strong> CL0024+1654<br />

HST image<br />

Z=0.39, LX=5 =5×10<br />

10 43 h-2 2 erg/s<br />

reconstructed mass distribution<br />

(with 512 parameters)<br />

Tyson, Kochanski & Dell’Antonio<br />

Dell Antonio (1998)<br />

20/31


Reconstructed mass <strong>pr<strong>of</strong>ile</strong> <strong>of</strong> <strong>of</strong> CL0024+1654<br />

flat core !<br />

no cusp !<br />

Tyson, Kochanski & Dell’Antonio (1998)<br />

21/31


Problems with cold <strong>dark</strong> <strong>matter</strong> ?<br />

Observations Observations favor the presence <strong>of</strong><br />

core rather than cusp.<br />

Rotation Rotation curves <strong>of</strong> low-surface brightness<br />

galaxies<br />

Cluster Cluster mass <strong>pr<strong>of</strong>ile</strong> from gravitational lensing<br />

still still controversial, but ...<br />

Cold Cold <strong>dark</strong> <strong>matter</strong> is really collisionless ?<br />

Self-interacting Self Self-interacting interacting <strong>dark</strong> <strong>matter</strong><br />

(Spergel & Steinhardt 1999)<br />

Bar-driven Bar-driven Bar driven core formation ?<br />

(Weinberg & Katz 2001)<br />

22/31


Constraining halo central <strong>density</strong><br />

<strong>pr<strong>of</strong>ile</strong>s with gravitational lensing<br />

Number Number statistics <strong>of</strong> QSO multiple<br />

images<br />

(Wyithe, Turner & Spergel 2001; Keeton & Madau 2001;<br />

Li Li & Ostriker 2001; Takahashi & Chiba 2001)<br />

Arc Arc statistics<br />

(Bartelmann et al. 1998; Molikawa & Hattori 2001;<br />

Oguri, Taruya + YS 2001)<br />

Time-delay Time-delay Time delay statistics <strong>of</strong> QSO multiple<br />

images<br />

(Oguri, Taruya, YS + E.L.Turner 2001)<br />

23/31


MS2137-2353<br />

MS2137 2353<br />

(z=0.313)<br />

Radial arc<br />

Tangential<br />

arc<br />

Tangential <strong>and</strong> radial arcs<br />

Hammer et al. (1997)<br />

24/31


Model for halo <strong>density</strong> <strong>pr<strong>of</strong>ile</strong><br />

Halo <strong>density</strong> <strong>pr<strong>of</strong>ile</strong><br />

Concentration parameter<br />

Log-normal Log Log-normal normal distribution for scatter in c norm<br />

∆(log cvir )=0.18 (Bullock et al. 2001; Jing 2000)<br />

Free parameters: c norm <strong>and</strong> norm <strong>and</strong> αα α<br />

25/31


Expected number <strong>of</strong> <strong>of</strong> arcs<br />

Number <strong>of</strong> arcs per unit solid angle<br />

Number <strong>of</strong> arcs per given halo<br />

Cross section <strong>of</strong> arc<br />

formation in a given halo<br />

halo mass function<br />

(lens objects)<br />

Galaxy<br />

luminosity<br />

function<br />

(sources)<br />

Oguri, Oguri Oguri, , Taruya & Suto (2001)<br />

26/31


Constraints from the existing arc samples<br />

tentative application to 13 galaxy clusters<br />

with SX >10-12 erg/s/cm2 tentative application to 13 galaxy clusters<br />

with SX >10 <strong>and</strong> 0.1


Dark halo approach to to clustering<br />

Beyond this redshift,<br />

<strong>dark</strong> <strong>matter</strong> clustering<br />

below the mean<br />

separation <strong>of</strong> particles<br />

in N-body method is<br />

seriously affected by<br />

discreteness.<br />

Dark <strong>matter</strong> clustering<br />

= halo <strong>density</strong> <strong>pr<strong>of</strong>ile</strong><br />

+ halo-halo correlation<br />

(e.g., Peebles 1980; Seljak 2000;<br />

Ma & Fry 2000)<br />

Quantitative check <strong>of</strong> <strong>of</strong> the<br />

accuracy <strong>of</strong> <strong>of</strong> N-body<br />

simulations below the<br />

mean particle separation<br />

(Hamana, Yoshida + YS 2001)<br />

30/31


Conclusions<br />

Halo Halo clustering: a phenomenologically<br />

successful model on the light-cone light light-cone cone<br />

gravitational gravitational nonlinear evolution<br />

redshift-space redshift-spacedistortion distortion<br />

mass-, mass-, time-, <strong>and</strong> scale-dependent bias<br />

selection selection function<br />

evolution evolution in the survey volume itself<br />

Halo Halo <strong>density</strong> <strong>pr<strong>of</strong>ile</strong>s: still controversial<br />

LSB/dwarf galaxies, CL0024-1654: a flat core<br />

N-body simulations, gravitational lensing : a cusp<br />

Needs further work from different aspects<br />

31/31


Pr<strong>of</strong>iles in in higher-resolution simulations<br />

Fukushige<br />

& Makino (1997)<br />

r[kpc]<br />

1 10 100<br />

Moore et al. (1998)<br />

mass<br />

resolution<br />

inner slope in<br />

higher-resolution<br />

higher higher-resolution resolution<br />

simulations is<br />

steeper (~ –1.5) 1.5) than<br />

the NFW value (–1.0) ( (–1.0) 1.0)<br />

force<br />

resolution<br />

Moore et al. (1998)<br />

33/31


Mass function <strong>of</strong> <strong>of</strong> <strong>dark</strong> <strong>halos</strong><br />

The Press-Schechter<br />

mass function<br />

underpredicts, while<br />

an empirical<br />

correction by Sheth &<br />

Tormen (1999)<br />

overpredicts, the<br />

Hubble volume<br />

simulation data at<br />

high mass (Jenkins<br />

et al. 2001).<br />

Hamana, Hamana Hamana, , Yoshida, Suto & Evrard (2001)<br />

34/31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!