07.04.2013 Views

Sum and Difference Formulas Exploration

Sum and Difference Formulas Exploration

Sum and Difference Formulas Exploration

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

333202_0504.qxd 12/5/05 9:04 AM Page 400<br />

400 Chapter 5 Analytic Trigonometry<br />

5.4<br />

What you should learn<br />

• Use sum <strong>and</strong> difference<br />

formulas to evaluate<br />

trigonometric functions,<br />

verify identities, <strong>and</strong> solve<br />

trigonometric equations.<br />

Why you should learn it<br />

<strong>Sum</strong> <strong>and</strong> <strong>Difference</strong> <strong>Formulas</strong><br />

You can use identities to rewrite<br />

trigonometric expressions. For<br />

instance, in Exercise 75 on page<br />

405, you can use an identity<br />

to rewrite a trigonometric<br />

expression in a form that helps<br />

you analyze a harmonic motion<br />

equation.<br />

Richard Megna/Fundamental Photographs<br />

Using <strong>Sum</strong> <strong>and</strong> <strong>Difference</strong> <strong>Formulas</strong><br />

In this <strong>and</strong> the following section, you will study the uses of several trigonometric<br />

identities <strong>and</strong> formulas.<br />

<strong>Sum</strong> <strong>and</strong> <strong>Difference</strong> <strong>Formulas</strong><br />

sinu v sin u cos v cos u sin v<br />

sinu v sin u cos v cos u sin v<br />

cosu v cos u cos v sin u sin v<br />

cosu v cos u cos v sin u sin v<br />

For a proof of the sum <strong>and</strong> difference formulas, see Proofs in Mathematics on<br />

page 424.<br />

<strong>Exploration</strong><br />

Examples 1 <strong>and</strong> 2 show how sum <strong>and</strong> difference formulas can be used to<br />

find exact values of trigonometric functions involving sums or differences of<br />

special angles.<br />

Evaluating a Trigonometric Function<br />

Find the exact value of cos 75.<br />

Solution<br />

To find the exact value of cos 75, use the fact that 75 30 45.<br />

Consequently, the formula for cosu v yields<br />

cos 75 cos30 45<br />

cos 30 cos 45 sin 30 sin 45<br />

3<br />

2 2 1<br />

2 2 2<br />

2 <br />

<br />

6 2<br />

.<br />

4<br />

tanu v <br />

tanu v <br />

tan u tan v<br />

1 tan u tan v<br />

tan u tan v<br />

1 tan u tan v<br />

Use a graphing utility to graph y1 cosx 2 <strong>and</strong> y2 cos x cos 2 in<br />

the same viewing window. What can you conclude about the graphs? Is it<br />

true that cosx 2 cos x cos 2?<br />

Use a graphing utility to graph y1 sinx 4 <strong>and</strong> y2 sin x sin 4<br />

in the same viewing window. What can you conclude about the graphs? Is it<br />

true that sinx 4 sin x sin 4?<br />

Example 1<br />

Try checking this result on your calculator. You will find that cos 75 0.259.<br />

Now try Exercise 1.


333202_0504.qxd 12/5/05 9:04 AM Page 401<br />

u<br />

v<br />

FIGURE 5.7<br />

The Granger Collection, New York<br />

Historical Note<br />

Hipparchus, considered<br />

the most eminent of Greek<br />

astronomers, was born about<br />

160 B.C. in Nicaea.He was<br />

credited with the invention of<br />

trigonometry. He also derived<br />

the sum <strong>and</strong> difference<br />

formulas for sinA ± B <strong>and</strong><br />

cosA ± B.<br />

2<br />

1<br />

1<br />

1<br />

1 − x2<br />

x<br />

Example 2<br />

Find the exact value of<br />

Solution<br />

Using the fact that<br />

<br />

12<br />

Evaluating a Trigonometric Expression<br />

together with the formula for sinu v, you obtain<br />

sin <br />

12<br />

Now try Exercise 3.<br />

Evaluating a Trigonometric Expression<br />

Find the exact value of sin 42 cos 12 cos 42 sin 12.<br />

Solution<br />

Recognizing that this expression fits the formula for sinu v, you can write<br />

sin 42 cos 12 cos 42 sin 12 sin42 12<br />

Now try Exercise 31.<br />

An Application of a <strong>Sum</strong> Formula<br />

Write cosarctan 1 arccos x as an algebraic expression.<br />

Solution<br />

<br />

<br />

3 4<br />

Example 3<br />

Example 4<br />

<br />

sin <br />

3<br />

sin <br />

3<br />

4<br />

cos <br />

4<br />

3<br />

2 2 1<br />

2 2 2<br />

6 2<br />

.<br />

4<br />

sin <br />

12 .<br />

<br />

cos sin<br />

3 4<br />

2 <br />

This expression fits the formula for cosu v.<br />

v arccos x are shown in Figure 5.7. So<br />

Angles u arctan 1 <strong>and</strong><br />

cosu v cosarctan 1 cosarccos x sinarctan 1 sinarccos x<br />

1 1<br />

x <br />

2 2 1 x 2<br />

x 1 2 x<br />

.<br />

2<br />

Section 5.4 <strong>Sum</strong> <strong>and</strong> <strong>Difference</strong> <strong>Formulas</strong> 401<br />

Now try Exercise 51.<br />

1<br />

sin 30<br />

2.


333202_0504.qxd 12/5/05 9:04 AM Page 402<br />

402 Chapter 5 Analytic Trigonometry<br />

Activities<br />

1. Use the sum <strong>and</strong> difference formulas<br />

to find the exact value of<br />

Answer:<br />

2. Rewrite the expression using the sum<br />

<strong>and</strong> difference formulas.<br />

Answer:<br />

3. Verify the identity<br />

Answer:<br />

sin<br />

1 cos 0 sin <br />

cos <br />

<br />

sin<br />

<br />

<br />

sin cos cos sin <br />

2 2 2 <br />

cos 15.<br />

6 2<br />

4<br />

tan 40 tan 10<br />

1 tan 40 tan 10<br />

tan40 10 tan 50<br />

cos .<br />

2<br />

Example 5 shows how to use a difference formula to prove the cofunction<br />

identity<br />

cos <br />

x sin x.<br />

2<br />

Example 5<br />

Proving a Cofunction Identity<br />

Prove the cofunction identity cos<br />

Solution<br />

Using the formula for cosu v, you have<br />

<br />

x sin x.<br />

2<br />

cos <br />

2<br />

Now try Exercise 55.<br />

<strong>Sum</strong> <strong>and</strong> difference formulas can be used to rewrite expressions such as<br />

<strong>and</strong> cos where n is an integer<br />

2 <br />

as expressions involving only sin or cos . The resulting formulas are called<br />

reduction formulas.<br />

,<br />

n<br />

sin <br />

2 <br />

Example 6<br />

Deriving Reduction <strong>Formulas</strong><br />

Simplify each expression.<br />

a. cos b.<br />

2 <br />

Solution<br />

a. Using the formula for cosu v, you have<br />

3<br />

cos<br />

x cos <br />

2<br />

3<br />

2 <br />

b. Using the formula for tanu v, you have<br />

tan 3 <br />

0cos x 1sin x sin x.<br />

<br />

3<br />

3<br />

cos cos sin sin<br />

2 2<br />

cos 0 sin 1<br />

sin .<br />

tan tan 3<br />

1 tan tan 3<br />

tan 0<br />

1 tan 0<br />

tan .<br />

<br />

cos x sin sin x<br />

2<br />

n<br />

tan 3<br />

Now try Exercise 65.


333202_0504.qxd 12/5/05 9:04 AM Page 403<br />

3<br />

2<br />

1<br />

−1<br />

−2<br />

−3<br />

y<br />

FIGURE 5.8<br />

π<br />

2<br />

π 2π<br />

π<br />

( (<br />

4<br />

(<br />

π<br />

4<br />

= sin x + + sin x − (y + 1<br />

x<br />

Example 7<br />

Solving a Trigonometric Equation<br />

<br />

<br />

Find all solutions of sinx sinx in the interval 0, 2.<br />

Solution<br />

Using sum <strong>and</strong> difference formulas, rewrite the equation as<br />

sin x cos <br />

4<br />

So, the only solutions in the interval 0, 2 are<br />

5<br />

x <br />

4<br />

<strong>and</strong><br />

You can confirm this graphically by sketching the graph of<br />

<br />

y sinx <br />

1 for 0 ≤ x < 2,<br />

as shown in Figure 5.8. From the graph you can see that the x-intercepts<br />

are 54<br />

<strong>and</strong> 74.<br />

Now try Exercise 69.<br />

The next example was taken from calculus. It is used to derive the derivative<br />

of the sine function.<br />

Example 8<br />

Verify that<br />

sinx h sin x<br />

h<br />

where h 0.<br />

Solution<br />

cos x sin <br />

4<br />

4<br />

4<br />

x 7<br />

4 .<br />

sin x <br />

An Application from Calculus<br />

cos x<br />

4<br />

sin h<br />

h <br />

Using the formula for sinu v, you have<br />

Section 5.4 <strong>Sum</strong> <strong>and</strong> <strong>Difference</strong> <strong>Formulas</strong> 403<br />

4 1<br />

<br />

<br />

sin x cos cos x sin<br />

4 4 1<br />

2 sin x cos <br />

4 1<br />

2sin x 2<br />

2 1<br />

sin x 2<br />

2 .<br />

sin x 1<br />

2<br />

1 cos h<br />

sin x h <br />

sin h<br />

1 cos h<br />

cos x h sin x h <br />

Now try Exercise 91.<br />

.<br />

sinx h sin x sin x cos h cos x sin h sin x<br />

<br />

h<br />

h<br />

cos x sin h sin x1 cos h<br />

<br />

h


333202_0504.qxd 12/5/05 9:04 AM Page 404<br />

404 Chapter 5 Analytic Trigonometry<br />

In Exercises 1– 6, find the exact value of each expression.<br />

1. (a) (b)<br />

2. (a) (b)<br />

3. (a) (b)<br />

4. (a) (b)<br />

5. (a) (b) sin<br />

6. (a) sin315 60 (b) sin 315 sin 60<br />

7<br />

sin<br />

<br />

sin<br />

6 3<br />

7<br />

sin<br />

<br />

<br />

6 3<br />

3<br />

sin<br />

5<br />

sin<br />

4 6<br />

3<br />

cos<br />

5<br />

<br />

4 6 <br />

<br />

cos<br />

<br />

cos<br />

4 3<br />

<br />

cos120 45<br />

cos 120 cos 45<br />

sin135 30<br />

sin 135 cos 30<br />

<br />

<br />

4 3<br />

In Exercises 7–22, find the exact values of the sine, cosine,<br />

<strong>and</strong> tangent of the angle by using a sum or difference<br />

formula.<br />

7. 8.<br />

9. 10.<br />

11. 12.<br />

13. 14.<br />

15. 16.<br />

17. 18.<br />

19. 20.<br />

21. 22.<br />

12<br />

13<br />

<br />

12<br />

7<br />

<br />

285<br />

105<br />

165<br />

15<br />

12<br />

12<br />

<br />

105 60 45<br />

165 135 30<br />

195 225 30<br />

255 300 45<br />

3 <br />

<br />

12 4 6<br />

<br />

<br />

12 3 4<br />

9 5<br />

<br />

12 4 6<br />

<br />

<br />

12 6 4<br />

In Exercises 23–30, write the expression as the sine, cosine,<br />

or tangent of an angle.<br />

23. cos 25 cos 15 sin 25 sin 15<br />

24. sin 140 cos 50 cos 140 sin 50<br />

25.<br />

26.<br />

5.4<br />

11<br />

17<br />

13<br />

tan 325 tan 86<br />

1 tan 325 tan 86<br />

tan 140 tan 60<br />

1 tan 140 tan 60<br />

Exercises<br />

VOCABULARY CHECK: Fill in the blank to complete the trigonometric identity.<br />

1. sinu v ________<br />

2. cosu v ________<br />

3. tanu v ________<br />

4. sinu v ________<br />

5. cosu v ________<br />

6. tanu v ________<br />

PREREQUISITE SKILLS REVIEW: Practice <strong>and</strong> review algebra skills needed for this section at www.Eduspace.com.<br />

7<br />

5<br />

27.<br />

28. cos<br />

29.<br />

tan 2x tan x<br />

1 tan 2x tan x<br />

30. cos 3x cos 2y sin 3x sin 2y<br />

<br />

cos sin sin<br />

7 5 7 5<br />

In Exercises 31–36, find the exact value of the expression.<br />

31. sin 330 cos 30 cos 330 sin 30<br />

32. cos 15 cos 60 sin 15 sin 60<br />

33.<br />

34.<br />

35.<br />

36.<br />

sin 3 cos 1.2 cos 3 sin 1.2<br />

sin <br />

12<br />

cos <br />

16<br />

cos <br />

4<br />

cos 3<br />

16<br />

<br />

cos sin<br />

12 4<br />

tan 25 tan 110<br />

1 tan 25 tan 110<br />

3<br />

sin sin<br />

16 16<br />

tan54 tan12<br />

1 tan54 tan12<br />

In Exercises 37–44, find the exact value of the trigonometric<br />

function given that <strong>and</strong> cos v (Both u <strong>and</strong><br />

v are in Quadrant II.)<br />

37. sinu v<br />

38. cosu v<br />

39. cosu v<br />

40. sinv u<br />

41. tanu v<br />

42. cscu v<br />

43. secv u<br />

44. cotu v<br />

3<br />

sin u 5.<br />

5<br />

13<br />

In Exercises 45–50, find the exact value of the trigonometric<br />

function given that <strong>and</strong> cos v (Both u<br />

<strong>and</strong> v are in Quadrant III.)<br />

45. cosu v<br />

46. sinu v<br />

47. tanu v<br />

48. cotv u<br />

49. secu v<br />

50. cosu v<br />

4<br />

5 .<br />

7<br />

sin u 25


333202_0504.qxd 12/5/05 9:04 AM Page 405<br />

58.<br />

59.<br />

60.<br />

61.<br />

62. sinx y sinx y) sin<br />

63. sinx y sinx y 2 sin x cos y<br />

64. cosx y cosx y 2 cos x cos y<br />

2 x sin2 cosx y cosx y cos<br />

y<br />

2 x sin2 tan<br />

y<br />

<br />

0<br />

2<br />

1 tan <br />

<br />

4 1 tan <br />

In Exercises 65 –68, simplify the expression algebraically<br />

<strong>and</strong> use a graphing utility to confirm your answer<br />

graphically.<br />

65. 66.<br />

67. sin 68.<br />

3<br />

cos<br />

2 3<br />

x 2<br />

In Exercises 69 –72, find all solutions of the equation in the<br />

interval [0, 2.<br />

69.<br />

<br />

<br />

sinx 3 sinx 1 3<br />

70.<br />

<br />

1<br />

sinx 6 sinx 6 2<br />

71.<br />

<br />

<br />

cosx 4 cosx 1 4<br />

72. tanx 2 sinx 0<br />

In Exercises 73 <strong>and</strong> 74, use a graphing utility to approximate<br />

the solutions in the interval [0, 2.<br />

73.<br />

74.<br />

cos 5<br />

4<br />

x 2cos<br />

x sin x<br />

2<br />

cos sin <br />

<br />

<br />

cosx 4 cosx 1 4<br />

<br />

tanx cosx 0 2<br />

cos x<br />

tan <br />

Section 5.4 <strong>Sum</strong> <strong>and</strong> <strong>Difference</strong> <strong>Formulas</strong> 405<br />

In Exercises 51–54, write the trigonometric expression as<br />

an algebraic expression.<br />

51. 52.<br />

53.<br />

54.<br />

In Exercises 55– 64, verify the identity.<br />

55. 56.<br />

57. sin <br />

sin<br />

1<br />

x cos x 3 sin x<br />

6 2 <br />

sinarcsin x arccos x sinarctan 2x arccos x 75. Harmonic Motion A weight is attached to a spring<br />

cosarccos x arcsin x<br />

suspended vertically from a ceiling. When a driving<br />

cosarccos x arctan x<br />

force is applied to the system, the weight moves<br />

vertically from its equilibrium position, <strong>and</strong> this motion<br />

is modeled by<br />

x cos x<br />

2<br />

y <br />

where y is the distance from equilibrium (in feet) <strong>and</strong> t<br />

is the time (in seconds).<br />

(a) Use the identity<br />

1<br />

Model It<br />

1<br />

sin 2t cos 2t<br />

3 4<br />

sin3 x sin x<br />

76. St<strong>and</strong>ing Waves The equation of a st<strong>and</strong>ing wave is<br />

obtained by adding the displacements of two waves traveling<br />

in opposite directions (see figure). Assume that each of<br />

the waves has amplitude A, period T, <strong>and</strong> wavelength . If<br />

the models for these waves are<br />

y1 A cos 2 t x<br />

<br />

T <br />

show that<br />

t = 0<br />

1<br />

t = T<br />

8<br />

2<br />

t = T<br />

8<br />

a sin B b cos B a 2 b 2 sinB C<br />

where C arctanba, a > 0, to write the model<br />

in the form<br />

y a 2 b 2 sinBt C.<br />

(b) Find the amplitude of the oscillations of the weight.<br />

(c) Find the frequency of the oscillations of the weight.<br />

y 1<br />

y 1<br />

y 1<br />

<strong>and</strong><br />

y1 y2 2A cos 2t 2x cos<br />

T<br />

.<br />

y 1 1+ y 2<br />

y 1 1+ y 2<br />

y 1 1+ y 2<br />

y2 A cos 2 t x<br />

<br />

T <br />

y 2<br />

y 2<br />

y 2


333202_0504.qxd 12/5/05 9:04 AM Page 406<br />

406 Chapter 5 Analytic Trigonometry<br />

Synthesis<br />

True or False? In Exercises 77–80, determine whether the<br />

statement is true or false. Justify your answer.<br />

77. sinu ± v sin u ± sin v<br />

78. cosu ± v cos u ± cos v<br />

79.<br />

<br />

cosx sin x 80.<br />

2<br />

In Exercises 81–84, verify the identity.<br />

81. is an integer<br />

82. is an integer<br />

83.<br />

where <strong>and</strong><br />

84. a sin B b cos B a<br />

where C arctanab <strong>and</strong> b > 0<br />

2 b2 a sin B b cos B a<br />

C arctanba a > 0<br />

cosB C,<br />

2 b2 n<br />

n<br />

sinB C,<br />

cosn 1 n cos ,<br />

sinn 1 n sin ,<br />

In Exercises 85–88, use the formulas given in Exercises 83<br />

<strong>and</strong> 84 to write the trigonometric expression in the<br />

following forms.<br />

(a) (b) a2 b2 a cosB C<br />

2 b2 sinB C<br />

85. sin cos <br />

86. 3 sin 2 4 cos 2<br />

87. 12 sin 3 5 cos 3 88. sin 2 cos 2<br />

In Exercises 89 <strong>and</strong> 90, use the formulas given in Exercises<br />

83 <strong>and</strong> 84 to write the trigonometric expression in the form<br />

a sin B b cos B.<br />

89. 2 sin 90. 5 cos<br />

4 <br />

<br />

91. Verify the following identity used in calculus.<br />

cosx h cos x<br />

h<br />

cos xcos h 1<br />

<br />

h<br />

92. <strong>Exploration</strong> Let x 6 in the identity in Exercise 91<br />

<strong>and</strong> define the functions f <strong>and</strong> g as follows.<br />

gh cos <br />

cos6 h cos6<br />

f h <br />

h<br />

cos h 1 sin h<br />

h sin<br />

h <br />

6<br />

6<br />

(a) What are the domains of the functions f <strong>and</strong> g?<br />

(b) Use a graphing utility to complete the table.<br />

h<br />

2<br />

f h<br />

gh<br />

<br />

sin x sin h<br />

h<br />

<br />

sinx cos x<br />

2<br />

3<br />

0.01 0.02 0.05 0.1 0.2 0.5<br />

(c) Use a graphing utility to graph the functions f <strong>and</strong> g.<br />

(d) Use the table <strong>and</strong> the graphs to make a conjecture<br />

about the values of the functions f <strong>and</strong> g as h → 0.<br />

In Exercises 93 <strong>and</strong> 94, use the figure, which shows two<br />

lines whose equations are<br />

y1 m1x b1 <strong>and</strong> y2 m2 x b2 .<br />

Assume that both lines have positive slopes. Derive a<br />

formula for the angle between the two lines.Then use your<br />

formula to find the angle between the given pair of lines.<br />

93. y x <strong>and</strong> y 3x<br />

94. y x <strong>and</strong><br />

95. Conjecture Consider the function given by<br />

f sin 2 <br />

Use a graphing utility to graph the function <strong>and</strong> use the<br />

graph to create an identity. Prove your conjecture.<br />

96. Proof<br />

(a) Write a proof of the formula for sinu v.<br />

(b) Write a proof of the formula for sinu v.<br />

Skills Review<br />

In Exercises 97–100, find the inverse function of Verify<br />

that <strong>and</strong> f 1 f f f x x.<br />

1 f.<br />

x x<br />

97. f x 5x 3<br />

98. f x <br />

f x x 2 8<br />

y 1 = m 1 x + b 1<br />

y 1<br />

3 x<br />

<br />

−2 2 4<br />

4 sin2 <br />

<br />

99. 100.<br />

4 .<br />

7 x<br />

8<br />

f x x 16<br />

In Exercises 101–104, apply the inverse properties of<br />

<strong>and</strong> e to simplify the expression.<br />

x<br />

ln x<br />

101. 102.<br />

103. e ln 104. 12x e xx2<br />

ln6x3<br />

log8 83x2 log3 34x3 6<br />

4<br />

y<br />

θ<br />

y 2 = m 2 x + b 2<br />

x

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!