20.04.2013 Views

Casimir effect in interacting Euclidean field theories - University of ...

Casimir effect in interacting Euclidean field theories - University of ...

Casimir effect in interacting Euclidean field theories - University of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Casimir</strong> <strong>effect</strong> <strong>in</strong> <strong>in</strong>teract<strong>in</strong>g<br />

<strong>Euclidean</strong> <strong>field</strong> <strong>theories</strong><br />

H. W. Diehl<br />

Fachbereich Physik, Universität Duisburg-Essen<br />

Collaborators: Daniel Grüneberg, U. Duisburg-Essen<br />

M. A. Shpot, ICMP Lviv (Ukra<strong>in</strong>e)<br />

Daniel Dantchev, BAS S<strong>of</strong>ia (Bulgaria)<br />

Fred Hucht, U. Duisburg-Essen<br />

Work supported <strong>in</strong> part by: DFG, grant # Die-378/5<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 1


<strong>Casimir</strong> <strong>effect</strong> <strong>in</strong> QED<br />

July 15, 1909 – May 4, 2000<br />

1948:<br />

vacuum<br />

fluctuations<br />

L<br />

vacuum<br />

• normal modes <strong>of</strong> electromagnetic <strong>field</strong> between plates:<br />

• ground-state energy:<br />

E(L) = 1 <br />

2<br />

q,µ<br />

bound. cond. 1<br />

conduct<strong>in</strong>g plates<br />

bound. cond. 2<br />

ωq = c |q|; q = (qx, qy, qz = m π/L), m ∈ N<br />

ωq = CΛV + C s Λ A<br />

<br />

“<strong>in</strong>f<strong>in</strong>ities”<br />

− ∆ (1,2)<br />

QED (d)<br />

<br />

universal<br />

• (fluctuation <strong>in</strong>duced) force: FC(L) = − ∂E<br />

∂L<br />

c A<br />

L<br />

, ∆(D,D)<br />

d QED<br />

c<br />

= −A d∆(1,2)<br />

Ld+1 QED (d)<br />

(3) = π2<br />

720 .<br />

reviews by: Bordag et al, Milton, Mostepanenko & Trunov, Elizalde & Romeo, . . .<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 2


<strong>Casimir</strong> <strong>effect</strong> <strong>in</strong> QED<br />

July 15, 1909 – May 4, 2000<br />

1948:<br />

vacuum<br />

fluctuations<br />

L<br />

vacuum<br />

• normal modes <strong>of</strong> electromagnetic <strong>field</strong> between plates:<br />

• ground-state energy:<br />

E(L) = 1 <br />

2<br />

q,µ<br />

bound. cond. 1<br />

conduct<strong>in</strong>g plates<br />

bound. cond. 2<br />

ωq = c |q|; q = (qx, qy, qz = m π/L), m ∈ N<br />

ωq = CΛV + C s Λ A<br />

<br />

“<strong>in</strong>f<strong>in</strong>ities”<br />

− ∆ (1,2)<br />

QED (d)<br />

<br />

universal<br />

• (fluctuation <strong>in</strong>duced) force: FC(L) = − ∂E<br />

∂L<br />

c A<br />

L<br />

, ∆(D,D)<br />

d QED<br />

= − 0.013<br />

(L/µm) 4<br />

(3) = π2<br />

720 .<br />

dyn<br />

A<br />

cm2 reviews by: Bordag et al, Milton, Mostepanenko & Trunov, Elizalde & Romeo, . . .<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 2


Experimental Verification<br />

S. Lamoreaux, PRL 87, 5 (1997);<br />

U. Mohideen and A. Roy, PRL 81, 4549 (1998); parallel plates: G. Bressi et al, PRL 99, 041804 (2002)<br />

polystyrene sphere (∅ 196 µm) and sapphire<br />

plate coated with Au<br />

plate-sphere separations from 0.1 to 0.9 µm<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 3


Experimental Verification<br />

S. Lamoreaux, PRL 87, 5 (1997);<br />

U. Mohideen and A. Roy, PRL 81, 4549 (1998); parallel plates: G. Bressi et al, PRL 99, 041804 (2002)<br />

polystyrene sphere (∅ 196 µm) and sapphire<br />

plate coated with Au<br />

plate-sphere separations from 0.1 to 0.9 µm<br />

solid l<strong>in</strong>e: <strong>Casimir</strong> force for plate-sphere geometry<br />

<strong>in</strong>clud<strong>in</strong>g corrections due to<br />

• f<strong>in</strong>ite conductivity<br />

• surface roughness<br />

• f<strong>in</strong>ite temperatures<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 3


Important Properties <strong>of</strong> <strong>Casimir</strong> Force (QED)<br />

<strong>Casimir</strong> force (QED)<br />

is <strong>in</strong>dependent <strong>of</strong> microscopic details (“universal”)<br />

depends on gross features <strong>of</strong><br />

medium: space dimension d, dispersion relation, scalar / vector <strong>field</strong>,<br />

geometry, . . .<br />

boundaries: boundary conditions, geometry, curvature, . . .<br />

usually is described by non<strong>in</strong>teract<strong>in</strong>g (<strong>effect</strong>ive Gaussian) <strong>field</strong> theory<br />

– coupl<strong>in</strong>g to matter <strong>field</strong>: only through boundary conditions<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 4


Important Properties <strong>of</strong> <strong>Casimir</strong> Force (QED)<br />

<strong>Casimir</strong> force (QED)<br />

is <strong>in</strong>dependent <strong>of</strong> microscopic details (“universal”)<br />

depends on gross features <strong>of</strong><br />

medium: space dimension d, dispersion relation, scalar / vector <strong>field</strong>,<br />

geometry, . . .<br />

boundaries: boundary conditions, geometry, curvature, . . .<br />

usually is described by non<strong>in</strong>teract<strong>in</strong>g (<strong>effect</strong>ive Gaussian) <strong>field</strong> theory<br />

– coupl<strong>in</strong>g to matter <strong>field</strong>: only through boundary conditions<br />

Interact<strong>in</strong>g Field Theories?<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 4


Important Properties <strong>of</strong> <strong>Casimir</strong> Force (QED)<br />

<strong>Casimir</strong> force (QED)<br />

is <strong>in</strong>dependent <strong>of</strong> microscopic details (“universal”)<br />

depends on gross features <strong>of</strong><br />

medium: space dimension d, dispersion relation, scalar / vector <strong>field</strong>,<br />

geometry, . . .<br />

boundaries: boundary conditions, geometry, curvature, . . .<br />

usually is described by non<strong>in</strong>teract<strong>in</strong>g (<strong>effect</strong>ive Gaussian) <strong>field</strong> theory<br />

– coupl<strong>in</strong>g to matter <strong>field</strong>: only through boundary conditions<br />

Interact<strong>in</strong>g Field Theories?<br />

Yes, for condensed matter systems at critical po<strong>in</strong>ts!<br />

space dimension d < 4: G<strong>in</strong>zburg criterion fails as T → Tc !<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 4


“Thermodynamic” <strong>Casimir</strong> Effect<br />

pressure<br />

0 0 K<br />

solid<br />

liquid<br />

gas<br />

critical<br />

po<strong>in</strong>t<br />

temperature<br />

partition sum: Z = <br />

FL,A(T)<br />

kBT<br />

φ<br />

M.E. Fisher & P.-G. de Gennes (1978):<br />

• large-λ modes ≈ massless<br />

• consider conf<strong>in</strong>ed nearly critical systems<br />

B1 : area A<br />

nearly critical fluid<br />

B2 : area A<br />

e −H[φ] = Dφ e −H[φ] = exp[−FL,A(T)/kBT]<br />

= LA fbk(T) + A [fs,1(T, . . .) + fs,2(T, . . .)]<br />

<br />

bulk contribution<br />

surface contributions<br />

L<br />

+ A fx(T, L, . . .)<br />

<br />

residual<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 5


“Thermodynamic” <strong>Casimir</strong> Effect<br />

pressure<br />

0 0 K<br />

solid<br />

liquid<br />

gas<br />

critical<br />

po<strong>in</strong>t<br />

temperature<br />

FL,A(T)<br />

kBT<br />

= LA fbk(T)<br />

<br />

bulk contribution<br />

M.E. Fisher & P.-G. de Gennes (1978):<br />

• large-λ modes ≈ massless<br />

• consider conf<strong>in</strong>ed nearly critical systems<br />

B1 : area A<br />

nearly critical fluid<br />

B2 : area A<br />

L<br />

+ A [fs,1(T, . . .) + fs,2(T, . . .)]<br />

<br />

surface contributions<br />

<strong>Casimir</strong> force per area: FC(T, L, . ..)/A = −kBT ∂fx<br />

∂L<br />

f<strong>in</strong>ite size scal<strong>in</strong>g (only short-range <strong>in</strong>teractions):<br />

fx(T, L, . . .) ≈ L −(d−1)<br />

Y<br />

<br />

universal<br />

+ A fx(T, L, . . .)<br />

<br />

residual<br />

(L/ξ∞, ...) at Tc,∞ : fx ≈ ∆C<br />

<br />

<strong>Casimir</strong> amplitude<br />

L −(d−1)<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 5


What to expect?<br />

1. only short-range <strong>in</strong>teractions<br />

At T = Tc,∞:<br />

T > Tc,∞:<br />

f s<strong>in</strong>g<br />

x<br />

f s<strong>in</strong>g<br />

x<br />

<br />

−(d−1)<br />

≈ L ∆C(d)<br />

L→∞ <br />

dom<strong>in</strong>ates<br />

∆C, Y, . . . universal, dependent on<br />

+ ∆ω,C(d) gω<br />

Lω <br />

+ . . .<br />

<br />

Wegner corrections ω 0.8<br />

<br />

−(d−1)<br />

≈ L Y (L/ξ) +<br />

L→∞ gω<br />

Lω Yω(L/ξ)<br />

<br />

+ ...<br />

bulk universality class (d, n, short-range <strong>in</strong>teractions)<br />

gross features <strong>of</strong> both boundary planes<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 6


What to expect?<br />

add long-range pair <strong>in</strong>teraction ∝ b r −(d+σ)<br />

12 : irrelevant when σ > 2 − η<br />

2. with “irrelevant” long-range <strong>in</strong>teractions<br />

At T = Tc,∞:<br />

f s<strong>in</strong>g<br />

x<br />

<br />

−(d−1)<br />

≈ L ∆C(d)<br />

L→∞ <br />

dom<strong>in</strong>ates<br />

T > Tc,∞:<br />

f s<strong>in</strong>g<br />

x<br />

+ ∆ω,C(d) gω(b)<br />

Lω + ∆σ,C(d,σ)<br />

<br />

Wegner corrections ω 0.8<br />

<br />

−(d−1)<br />

≈ L Y (L/ξ) +<br />

L→∞ gω(b)<br />

Lω Yω(L/ξ) +<br />

∼<br />

⎧<br />

⎨e<br />

−L/ξ , b = 0<br />

⎩<br />

b L −(d+σ−1) , b = 0<br />

long-range contribution dom<strong>in</strong>ates asymptotically!<br />

b<br />

<br />

+ . ..<br />

Lσ+η−2 b<br />

Lσ+η−2 Yσ(L/ξ)<br />

<br />

+ ...<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 6


Scaled <strong>Casimir</strong> Force<br />

<br />

<br />

¨<br />

©<br />

<br />

<br />

<br />

<br />

<br />

1<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

d = σ = 3, L = 50<br />

(b) L = 50<br />

b = 0<br />

b = 2/3<br />

asymptote<br />

10<br />

1 10 100<br />

-6<br />

¡¢ £<br />

¤<br />

¥ ¦§£<br />

d + σ = 6<br />

log corrections<br />

D. Dantchev, H. W. Diehl, and D. Grüneberg: Phys. Rev. E 73, 016131 (2006)<br />

periodic boundary conditions, exact spherical-model (n → ∞) result<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 7


Experimentall Verification: 4 He wett<strong>in</strong>g films<br />

mgh<br />

<br />

gravitation<br />

= γvdW<br />

L 3<br />

<br />

van der Waals<br />

1<br />

1 + L/L 1/2<br />

<br />

retardation<br />

copper plate<br />

He vapor<br />

liquid He<br />

+ v kBT Ξ(L/ξ)<br />

L 3<br />

<br />

<strong>Casimir</strong><br />

L<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 8


Th<strong>in</strong>n<strong>in</strong>g <strong>of</strong> 4 He films near Tλ<br />

Theory: <strong>in</strong> rather modest state<br />

Krech & Dietrich 1991/92: T ≥ Tλ<br />

Li & Kardar 1991: T ≪ Tλ (Goldstone modes)<br />

Zandi, Rudnick & Kardar 2004: <strong>in</strong>terface fluctuations<br />

Experiment:<br />

Garcia & Chan, PRL 83,<br />

1187 (1999)<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 9


Th<strong>in</strong>n<strong>in</strong>g <strong>of</strong> 4 He films near Tλ<br />

Theory: <strong>in</strong> rather modest state<br />

Krech & Dietrich 1991/92: T ≥ Tλ<br />

Li & Kardar 1991: T ≪ Tλ (Goldstone modes)<br />

Zandi, Rudnick & Kardar 2004: <strong>in</strong>terface fluctuations<br />

Experiment:<br />

Garcia & Chan, PRL 83,<br />

1187 (1999)<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 9


Th<strong>in</strong>n<strong>in</strong>g <strong>of</strong> 4 He films near Tλ<br />

Theory: <strong>in</strong> rather modest state<br />

Krech & Dietrich 1991/92: T ≥ Tλ<br />

Li & Kardar 1991: T ≪ Tλ (Goldstone modes)<br />

Zandi, Rudnick & Kardar 2004: <strong>in</strong>terface fluctuations<br />

Experiment:<br />

Garcia & Chan, PRL 83,<br />

1187 (1999)<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 9


Monte Carlo Results<br />

F. Hucht (U. Duisburg-Essen): cond-mat/0706.3458<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 10


Monte Carlo Results<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 10


Relevant Issues<br />

bulk critical behavior at Tc,∞ as L → ∞<br />

conf<strong>in</strong>ed critical fluctuations, boundary <strong>field</strong> theory<br />

f<strong>in</strong>ite size and boundary <strong>effect</strong>s<br />

pseudo-critical or critical behavior <strong>in</strong> slab at Tc(L) < Tc,∞ when L < ∞<br />

dimensional crossover<br />

low-T <strong>Casimir</strong> force from conf<strong>in</strong>ed Goldstone modes<br />

<strong>in</strong>terface fluctuations<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 11


Relevant Issues<br />

bulk critical behavior at Tc,∞ as L → ∞<br />

conf<strong>in</strong>ed critical fluctuations, boundary <strong>field</strong> theory<br />

f<strong>in</strong>ite size and boundary <strong>effect</strong>s<br />

pseudo-critical or critical behavior <strong>in</strong> slab at Tc(L) < Tc,∞ when L < ∞<br />

dimensional crossover<br />

low-T <strong>Casimir</strong> force from conf<strong>in</strong>ed Goldstone modes<br />

<strong>in</strong>terface fluctuations<br />

From now on: T ≥ Tc,∞<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 11


RG and Bulk Critical Behavior<br />

microscopic model, e.g. Is<strong>in</strong>g model<br />

H = − <br />

Kij sisj − H <br />

i=j<br />

mesoscopic model: φ = order parameter <strong>field</strong> (|q| ≤ Λ)<br />

<br />

H = d d <br />

1<br />

x<br />

2 (∇φ)2 + ˚τ<br />

2 φ2 + ˚u<br />

4! φ4 −˚ <br />

h φ ,<br />

behavior for q ≪ Λ: via renormalized <strong>field</strong> theory: Λ → ∞, requires renormalizations<br />

dimensionless (renormalized) coupl<strong>in</strong>g constants {gj = τ, u,h, ...}<br />

˚u = µ ɛ Zu(u,Λ) u , ˚τ −˚τc = Zτ µ 2 τ , ˚ h = µ (d+2)/2 Z −1/2<br />

φ h , φ = Z 1/2<br />

φ φR .<br />

µ → µℓ ⇒ gj → ¯gj(ℓ) runn<strong>in</strong>g <strong>in</strong>teraction constants<br />

ℓ d<br />

dℓ ¯gj(ℓ)<br />

<br />

= βj[¯g(ℓ)] , βj(¯g) = µ∂µ<br />

j<br />

sj<br />

0 gj<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 12


2-Scale-Factor Universality<br />

βu<br />

d = 4 − ɛ < 4 ū(ℓ) ≈<br />

ℓ→0 u ∗ + const (u − u ∗ ) ℓ ω<br />

u<br />

u ∗ = O(ɛ)<br />

¯τ(ℓ) ≈<br />

ℓ→0 Eτ(u)ℓ −<br />

¯h(ℓ) ≈<br />

ℓ→0<br />

G(x, . . .;τ, h, u) ≈ ξ −dG−ηG EG(u)<br />

<br />

powers <strong>of</strong> Eh, Eτ<br />

universal<br />

<br />

ν<br />

τ<br />

Eh(u) ℓ<br />

<br />

nonuniversal<br />

−∆/ν h<br />

G(x/ξ, . . .;1, h ξ ∆/ν , u ∗ )<br />

<br />

scal<strong>in</strong>g function<br />

universality (crit. exponents, scal<strong>in</strong>g functions, amplitude ratios)<br />

2-scale-factor universality<br />

corrections to scal<strong>in</strong>g from terms ∼ (u − u ∗ ) ξ −ω<br />

, ξ ∼ τ −ν<br />

τ =<br />

T −Tc,∞<br />

Tc,∞<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 13


L × ∞ d−1 Slabs<br />

n-component φ 4 -model, V ≡ R d−1 × [0, L]<br />

H[φ] =<br />

<br />

V<br />

d d x<br />

↑<br />

V<br />

↓ ← periodic bc →<br />

<br />

1<br />

2 (∇φ)2 + ˚τ<br />

2 φ2 + ˚u<br />

4! φ4<br />

<br />

antiperiodic bc: φ(x) = ±φ(x + L ˆz)<br />

no new counter terms<br />

L not renormalized ⇒ dependence on L/ξ !<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 14


L × ∞ d−1 Slabs<br />

Tc,∞<br />

n-component φ 4 -model, V ≡ R d−1 × [0, L]<br />

B1<br />

n<br />

↑<br />

V<br />

↓<br />

n<br />

H[φ] =<br />

<br />

V<br />

d d x<br />

<br />

1<br />

2 (∇φ)2 + ˚τ<br />

2 φ2 + ˚u<br />

4! φ4<br />

<br />

free surfaces: boundary condition: ∂nφ = ˚cj φ<br />

T<br />

surface & bulk<br />

disordered SD/BD<br />

SO/BD<br />

ord<strong>in</strong>ary special extraord<strong>in</strong>ary<br />

surface enhancement −c<br />

SO/BO SO/BO<br />

surface<br />

Tc,s(c)<br />

+<br />

2<br />

j=1<br />

˚cj<br />

2<br />

B2<br />

<br />

Bj<br />

d d−1 r φ 2<br />

ord<strong>in</strong>ary: c = ∞, Dirichlet bc<br />

φ(x) ≈ C(z)<br />

z→0 <br />

∼z0.8 ∂nφ|B<br />

stable fixed po<strong>in</strong>t!<br />

special: c = 0 ⇔ ˚c = ˚csp = 0<br />

φ ≈<br />

z→0 D(z)<br />

<br />

∼z −0.2<br />

φ|B<br />

Neumann bc not a fp!!<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 14


Previous Field Theory RG Results<br />

RG analysis <strong>in</strong> d = 4 − ɛ dimensions:<br />

boundary critical behavior: HWD & Dietrich, 80–; HWD 86, HWD 97<br />

<strong>Casimir</strong> <strong>effect</strong>:<br />

Symanzik 1981: ∆ (bc)<br />

C (ɛ, n)/n = a0 + a1(n) ɛ<br />

for Dirichlet-Dirichlet (D-D) boundary conditions<br />

Krech & Dietrich 1991, 1992: ∆ (bc)<br />

free bc<br />

<br />

for bc = periodic, antiperiodic, D-D, D-sp, sp-sp<br />

“sp” = “special” = “critically enhanced”<br />

Claim: (HWD, Grüneberg & Shpot, 2006)<br />

problems<br />

theory ill-def<strong>in</strong>ed at Tc,∞ for some bc!<br />

C (ɛ, n) and Y (bc) to O(ɛ)<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 15


Free Propagator<br />

G (L)<br />

bc (x; x′ ) =<br />

periodic boundary conditions:<br />

<br />

d d−1 p<br />

(2π) d−1<br />

<br />

m<br />

〈z|m〉〈m|z ′ 〉<br />

p 2 + k 2 m +˚τ eip·(r−r′ )<br />

〈z|m〉 = L −1/2 e ikmz , km = 2πm/L , m = 0, ±1, ±2, . . .<br />

antiperiodic boundary conditions:<br />

Dirichlet-Dirichlet bc:<br />

<br />

2<br />

〈z|m〉 =<br />

L s<strong>in</strong>(kmz) , km = πm/L , m = 1, 2, . . .<br />

Dirichlet-Neumann bc:<br />

Neumann-Neumann bc:<br />

<br />

2 − δm,0<br />

〈z|m〉 =<br />

L<br />

cos(kmz) , km = πm/L , m = 0, 1, 2, . . .<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 16


Free Propagator<br />

G (L)<br />

bc (x; x′ ) =<br />

<br />

d d−1 p<br />

(2π) d−1<br />

<br />

m<br />

〈z|m〉〈m|z ′ 〉<br />

p 2 + k 2 m +˚τ eip·(r−r′ )<br />

periodic boundary conditions: ∃ zero mode at ˚τ = 0 (T = Tc,∞)<br />

〈z|m〉 = L −1/2 e ikmz , km = 2πm/L , m = 0, ±1, ±2, . . .<br />

antiperiodic boundary conditions: no zero mode<br />

Dirichlet-Dirichlet bc: no zero mode<br />

<br />

2<br />

〈z|m〉 =<br />

L s<strong>in</strong>(kmz) , km = πm/L , m = 1, 2, . . .<br />

Dirichlet-Neumann bc: no zero mode<br />

Neumann-Neumann bc: ∃ zero mode at ˚τ = 0 (T = Tc,∞)<br />

<br />

2 − δm,0<br />

〈z|m〉 = cos(kmz) ,<br />

L<br />

km = πm/L , m = 0, 1, 2, . . .<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 16


Problems: for periodic and sp-sp bc<br />

n dependence <strong>of</strong> scal<strong>in</strong>g function<br />

(periodic bc)<br />

Θ(L/ξ∞)/n<br />

0<br />

-0.04<br />

-0.08<br />

-0.12<br />

d = 3<br />

n = 1<br />

n = 2<br />

n = 3<br />

n→∞<br />

n→∞ (exact)<br />

-0.16<br />

0 2 4 6 8<br />

L/ξ∞<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 17


Problems: for periodic and sp-sp bc<br />

n dependence <strong>of</strong> scal<strong>in</strong>g function<br />

(periodic bc)<br />

Θ(L/ξ∞)/n<br />

0<br />

-0.04<br />

-0.08<br />

-0.12<br />

d = 3<br />

n = 1<br />

n = 2<br />

n = 3<br />

n→∞<br />

n→∞ (exact)<br />

-0.16<br />

0 2 4 6 8<br />

L/ξ∞<br />

⇒ theory ill-def<strong>in</strong>ed beyond 2 loops<br />

periodic and sp-sp boundary conditions <strong>in</strong>volve zero modes at Tc,∞!<br />

♥ ♥♥ = <strong>in</strong>frared s<strong>in</strong>gular at Tc,∞<br />

violation <strong>of</strong> analyticity requirements at Tc,∞ when L < ∞<br />

can be remedied: HWD, D. Grüneberg & M.A. Shpot: EPL 75, 241 (2006)<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 17


Revised Field Theory<br />

φ(r,z) = ϕ(r)<br />

<br />

0-mode contribution<br />

+ ψ(r, z) ,<br />

L<br />

0<br />

dz ψ(r,z) = 0 .<br />

<strong>effect</strong>ive (d − 1)-dimensional FT: e −H eff[ϕ] ≡ Trψ e −H[ϕ+ψ]<br />

ϕ ϕ gives shift ˚τ → ˚τ (L)<br />

bc<br />

Heff[ϕ] = Fψ + H[ϕ] − ln e −H <strong>in</strong>t[ϕ,ψ] <br />

= ˚τ + δ˚τ(L)<br />

bc<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 18


Revised Field Theory<br />

φ(r,z) = ϕ(r)<br />

<br />

0-mode contribution<br />

+ ψ(r, z) ,<br />

L<br />

0<br />

dz ψ(r,z) = 0 .<br />

<strong>effect</strong>ive (d − 1)-dimensional FT: e −H eff[ϕ] ≡ Trψ e −H[ϕ+ψ]<br />

ϕ ϕ gives shift ˚τ → ˚τ (L)<br />

bc<br />

F = Fψ + ∼(u ∗ ) (3−ɛ)/2<br />

Heff[ϕ] = Fψ + H[ϕ] − ln e −H <strong>in</strong>t[ϕ,ψ] <br />

= ˚τ + δ˚τ(L)<br />

bc<br />

+ + . . .<br />

RG improved perturbation theory <strong>in</strong>frared well-behaved at T = Tc,∞ !<br />

. . . not at Tc,L ⇒ must require T ≥ Tc,∞ (as for nonzero-mode bc)<br />

⇒ ɛ 3/2 , ɛ 5/2 , ɛ 5/2 ln ɛ, ... contributions to <strong>Casimir</strong> amplitudes<br />

(<strong>in</strong> conformity with exact n → ∞ solution)<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 18


extrapolated ɛ-expansion results:<br />

periodic boundary conditions<br />

¦<br />

<br />

§<br />

<br />

¥<br />

<br />

¤<br />

<br />

<br />

¨<br />

©<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0<br />

-0.05<br />

-0.10<br />

-0.15<br />

n = 1 (Is<strong>in</strong>g), d = 3<br />

-0.20<br />

0 2 4 6 8<br />

0<br />

-0.05<br />

-0.10<br />

-0.15<br />

-0.20<br />

n = 3 (Heisenberg), d = 3<br />

-0.25<br />

0 2 4 6 8<br />

¡¢ £<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

0<br />

-0.05<br />

-0.10<br />

-0.15<br />

-0.20<br />

0<br />

-0.10<br />

-0.20<br />

-0.30<br />

-0.40<br />

n = 2 (XY), d = 3<br />

0 2 4 6 8<br />

<br />

n = ∞ (Spherical), d = 3<br />

-0.50<br />

0 2 4 6 8<br />

<br />

Krech &<br />

Dietrich 91<br />

Grüneberg<br />

& HWD:<br />

to be published<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 19


Summary / Conclusions<br />

Condensed matter systems:<br />

rich lab to study fluctuation <strong>in</strong>duced (“<strong>Casimir</strong>”) forces<br />

<strong>in</strong>volve <strong>in</strong>teract<strong>in</strong>g or non<strong>in</strong>teract<strong>in</strong>g <strong>field</strong> <strong>theories</strong><br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 20


Summary / Conclusions<br />

Condensed matter systems:<br />

rich lab to study fluctuation <strong>in</strong>duced (“<strong>Casimir</strong>”) forces<br />

<strong>in</strong>volve <strong>in</strong>teract<strong>in</strong>g or non<strong>in</strong>teract<strong>in</strong>g <strong>field</strong> <strong>theories</strong><br />

good <strong>in</strong>teraction between theory and experiment<br />

now also with Monte Carlo simulations<br />

encourag<strong>in</strong>g progress<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 20


Summary / Conclusions<br />

Condensed matter systems:<br />

rich lab to study fluctuation <strong>in</strong>duced (“<strong>Casimir</strong>”) forces<br />

<strong>in</strong>volve <strong>in</strong>teract<strong>in</strong>g or non<strong>in</strong>teract<strong>in</strong>g <strong>field</strong> <strong>theories</strong><br />

good <strong>in</strong>teraction between theory and experiment<br />

now also with Monte Carlo simulations<br />

encourag<strong>in</strong>g progress<br />

but challeng<strong>in</strong>g problems rema<strong>in</strong>,<br />

e.g., dimensional crossover<br />

<strong>in</strong>clusion <strong>of</strong> proper low-T behavior<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 20


Summary / Conclusions<br />

Condensed matter systems:<br />

rich lab to study fluctuation <strong>in</strong>duced (“<strong>Casimir</strong>”) forces<br />

<strong>in</strong>volve <strong>in</strong>teract<strong>in</strong>g or non<strong>in</strong>teract<strong>in</strong>g <strong>field</strong> <strong>theories</strong><br />

good <strong>in</strong>teraction between theory and experiment<br />

now also with Monte Carlo simulations<br />

encourag<strong>in</strong>g progress<br />

but challeng<strong>in</strong>g problems rema<strong>in</strong>,<br />

e.g., dimensional crossover<br />

<strong>in</strong>clusion <strong>of</strong> proper low-T behavior<br />

Thank You!<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 20


Further Read<strong>in</strong>g<br />

References<br />

1. D. Dantchev, H. W. Diehl & D. Grüneberg: Phys. Rev. B 73, 016131 (2006)<br />

2. H. W. Diehl and D. Grüneberg and M. A. Shpot: EPL 75, 241 (2006)<br />

3. D. Grüneberg and H. W. Diehl: to be published<br />

4. F. Hucht: cond-mat 0706.3458<br />

Background<br />

Boundary critical phenomena<br />

a) H. W. Diehl: “Field–theoretical Approach to Critical Behaviour at<br />

Surfaces”, <strong>in</strong>: Phase Transitions and Critical Phenomena, edited by C.<br />

Domb and J. L. Lebowitz (Academic, London, 1986), Vol. 10, pp. 75–267.<br />

b) H. W. Diehl, Int. J. Mod. Phys. B 11, 3503 (1997), cond-mat/9610143.<br />

Thermodynamic <strong>Casimir</strong> <strong>effect</strong><br />

c) M. Krech, <strong>Casimir</strong> Effect <strong>in</strong> Critical Systems (World Scientific, 1994)<br />

HW Diehl, QTS5, Valladolid, July 22–28, 2007 – p. 21

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!