22.04.2013 Views

1. Complex numbers A complex number z is defined as an ordered ...

1. Complex numbers A complex number z is defined as an ordered ...

1. Complex numbers A complex number z is defined as an ordered ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>1.</strong> <strong>Complex</strong> <strong><strong>number</strong>s</strong><br />

A <strong>complex</strong> <strong>number</strong> z <strong>is</strong> <strong>defined</strong> <strong>as</strong> <strong>an</strong> <strong>ordered</strong> pair<br />

z = (x, y) ,<br />

where x <strong>an</strong>d y are a pair of real <strong><strong>number</strong>s</strong>. In usual notation, we<br />

write<br />

z = x + iy ,<br />

where i <strong>is</strong> a symbol. The operations of addition <strong>an</strong>d multiplication<br />

of <strong>complex</strong> <strong><strong>number</strong>s</strong> are <strong>defined</strong> in a me<strong>an</strong>ingful m<strong>an</strong>ner, which force<br />

i 2 = −<strong>1.</strong> The set of all <strong>complex</strong> <strong><strong>number</strong>s</strong> <strong>is</strong> denoted by C. Write<br />

Re z = x , Im z = y .<br />

1


Since <strong>complex</strong> <strong><strong>number</strong>s</strong> are <strong>defined</strong> <strong>as</strong> <strong>ordered</strong> pairs, two <strong>complex</strong><br />

<strong><strong>number</strong>s</strong> (x1, y1) <strong>an</strong>d (x2, y2) are equal if <strong>an</strong>d only if both their real<br />

parts <strong>an</strong>d imaginary parts are equal. Symbolically,<br />

(x1, y1) = (x2, y2) if <strong>an</strong>d only if x1 = x2 <strong>an</strong>d y1 = y2 .<br />

A <strong>complex</strong> <strong>number</strong> z = (x, y), or <strong>as</strong> z = x + iy, <strong>is</strong> <strong>defined</strong> by a pair<br />

of real <strong><strong>number</strong>s</strong> x <strong>an</strong>d y; so does for a point (x, y) in the x-y pl<strong>an</strong>e.<br />

We <strong>as</strong>sociate a one-to-one correspondence between the <strong>complex</strong><br />

<strong>number</strong> z = x + iy <strong>an</strong>d the point (x, y) in the x-y pl<strong>an</strong>e. We refer<br />

the pl<strong>an</strong>e <strong>as</strong> the <strong>complex</strong> pl<strong>an</strong>e or z-pl<strong>an</strong>e.<br />

2


Polar coordinates<br />

Modulus of z : |z| = r =<br />

x = rcos θ <strong>an</strong>d y = rsin θ<br />

y<br />

|z|<br />

<br />

x 2 + y 2 .<br />

arg z<br />

z = ( x,<br />

y)<br />

Vectorical representation of a <strong>complex</strong> <strong>number</strong> in the <strong>complex</strong> pl<strong>an</strong>e<br />

x<br />

3


Obviously, Re z ≤ |z| <strong>an</strong>d Im z ≤ |z|; <strong>an</strong>d<br />

z = x + iy = r(cos θ + <strong>is</strong>in θ),<br />

where θ <strong>is</strong> called the argument of z, denoted by arg z.<br />

The principal value of arg z, denoted by Arg z, <strong>is</strong> the particular value<br />

of arg z chosen within the principal interval (−π, π]. We have<br />

arg z = Arg z + 2kπ k <strong>an</strong>y integer, Arg z ∈ (−π, π] .<br />

Note that arg z <strong>is</strong> a multi-valued function.<br />

4


<strong>Complex</strong> conjugate<br />

The <strong>complex</strong> conjugate z of z = x + iy <strong>is</strong> <strong>defined</strong> by<br />

z = x − iy .<br />

In the <strong>complex</strong> pl<strong>an</strong>e, the conjugate z = (x, −y) <strong>is</strong> the reflection of<br />

the point z = (x, y) with respect to the real ax<strong>is</strong>.<br />

St<strong>an</strong>dard results on conjugates <strong>an</strong>d moduli<br />

(i) z1 + z2 = z1 + z2, (ii) z1z2 = z1 z2, (iii) z1<br />

(iv) |z1z2| = |z1| |z2| (v)<br />

<br />

<br />

z1<br />

<br />

<br />

<br />

z2<br />

<br />

|z1|<br />

=<br />

|z2| .<br />

z2<br />

= z1<br />

,<br />

z2<br />

5


Example<br />

Find the square roots of a + ib, where a <strong>an</strong>d b are real const<strong>an</strong>ts.<br />

Solution<br />

Let u + iv be a square root of a + ib; <strong>an</strong>d so (u + iv) 2 = a + ib.<br />

Equating the corresponding real <strong>an</strong>d imaginary parts, we have<br />

u 2 − v 2 = a <strong>an</strong>d 2uv = b .<br />

By eliminating v, we obtain a fourth degree equation for u:<br />

4u 4 − 4au 2 − b 2 = 0 .<br />

The two real roots for u are found to be<br />

<br />

<br />

<br />

a +<br />

u = ±<br />

<br />

a 2 + b 2<br />

2<br />

.<br />

6


From the relation v 2 = u 2 − a, we obtain<br />

v = ±<br />

<br />

<br />

<br />

a2 + b2 − a<br />

Apparently, there are four possible values for u+iv. However, there<br />

c<strong>an</strong> be only two values of the square root of a+ib. By virtue of the<br />

relation 2uv = b, one must choose u <strong>an</strong>d v such that their product<br />

h<strong>as</strong> the same sign <strong>as</strong> b. Th<strong>is</strong> leads to<br />

u + iv = ±<br />

⎛<br />

<br />

<br />

⎜<br />

⎝<br />

a +<br />

<br />

a 2 + b 2<br />

2<br />

2<br />

+ i b<br />

|b|<br />

.<br />

<br />

<br />

<br />

<br />

⎞<br />

a2 + b2 − a ⎟<br />

⎠<br />

2<br />

,<br />

provided that b = 0. The special c<strong>as</strong>e where b = 0 <strong>is</strong> trivial. As a<br />

numerical example, take a = 3, b = −4, then<br />

±<br />

⎛<br />

⎝<br />

3 + 5<br />

2<br />

− i<br />

<br />

⎞<br />

5 − 3<br />

⎠ = ±(2 − i).<br />

2<br />

7


De’ Moivre’s theorem<br />

Any <strong>complex</strong> <strong>number</strong> with unit modulus c<strong>an</strong> be expressed <strong>as</strong> cos θ+<br />

<strong>is</strong>in θ. By virtue of the <strong>complex</strong> exponential function ∗ , we have<br />

e iθ = cos θ + <strong>is</strong>in θ.<br />

The above formula <strong>is</strong> called the Euler formula. As motivated by the<br />

Euler formula, one may deduce that<br />

(cos θ + <strong>is</strong>in θ) n = (e iθ ) n = e inθ = cos nθ + <strong>is</strong>in nθ,<br />

where n c<strong>an</strong> be <strong>an</strong>y positive integer.<br />

∗ The <strong>complex</strong> exponential function <strong>is</strong> <strong>defined</strong> by<br />

e z = e x+iy = e x (cos y + <strong>is</strong>in y), z = x + iy.<br />

8


To prove the theorem, we consider the following c<strong>as</strong>es:<br />

(i) The theorem <strong>is</strong> trivial when n = 0.<br />

(ii) When n <strong>is</strong> a positive integer, the theorem c<strong>an</strong> be proven e<strong>as</strong>ily<br />

by mathematical induction.<br />

(iii) When n <strong>is</strong> a negative integer, let n = −m where m <strong>is</strong> a positive<br />

integer. We then have<br />

(cos θ + <strong>is</strong>in θ) n 1<br />

1<br />

=<br />

=<br />

(cos θ + <strong>is</strong>in θ) m cos mθ + <strong>is</strong>in mθ<br />

cos mθ − <strong>is</strong>in mθ<br />

=<br />

(cos mθ + <strong>is</strong>in mθ)(cos mθ − <strong>is</strong>in mθ)<br />

= cos mθ − <strong>is</strong>in mθ = cos nθ + <strong>is</strong>in nθ.<br />

9


How do we generalize the formula to (cos θ + <strong>is</strong>in θ) s , where s <strong>is</strong> a<br />

rational <strong>number</strong>?<br />

Let s = p/q, where p <strong>an</strong>d q are irreducible integers. Note that the<br />

modulus of cos θ+<strong>is</strong>in θ <strong>is</strong> one, so does (cos θ+<strong>is</strong>in θ) s . Hence, the<br />

polar representation of (cos θ+ <strong>is</strong>in θ) s takes the form cos φ+<strong>is</strong>in φ<br />

for some φ. Now, we write<br />

cos φ + <strong>is</strong>in φ = (cos θ + <strong>is</strong>in θ) s = (cos θ + <strong>is</strong>in θ) p/q .<br />

Taking the power of q of both sides<br />

cos qφ + <strong>is</strong>in qφ = cos pθ + <strong>is</strong>in pθ,<br />

10


which implies<br />

qφ = pθ + 2kπ or φ =<br />

pθ + 2kπ<br />

, k = 0,1, · · · , q − <strong>1.</strong><br />

q<br />

The value of φ corresponding to k that <strong>is</strong> beyond the above set<br />

of integers would be equal to one of those values <strong>defined</strong> in the<br />

equation plus some multiple of 2π.<br />

There are q d<strong>is</strong>tinct roots of (cos θ + <strong>is</strong>in θ) p/q , namely,<br />

<br />

pθ + 2kπ pθ + 2kπ<br />

cos + <strong>is</strong>in , k = 0,1, · · · , q − <strong>1.</strong><br />

q<br />

q<br />

11


n th root of unity<br />

By definition, <strong>an</strong>y n th roots of unity sat<strong>is</strong>fies the equation<br />

z n = 1 .<br />

By de’ Moivre’s theorem, the n d<strong>is</strong>tinct roots of unity are<br />

z = e i2kπ/n = cos 2kπ<br />

n<br />

2kπ<br />

+ <strong>is</strong>in , k = 0,1, ..., n − 1 .<br />

n<br />

If we write ωn = ei2π/n , then the n roots are 1, ωn, ω2 n , ..., ωn−1 n .<br />

Alternatively, if we pick <strong>an</strong>y one of the n th roots <strong>an</strong>d call it α, then<br />

the other n−1 roots are given by αωn, αω 2 n, ..., αω n−1<br />

n . Th<strong>is</strong> <strong>is</strong> obvious<br />

since each of these roots sat<strong>is</strong>fies<br />

(αω k n) n = α n (ω n n) k = 1, k = 0,1, · · · , n − <strong>1.</strong><br />

12


In the <strong>complex</strong> pl<strong>an</strong>e, the n roots of unity correspond to the n<br />

vertices of a regular n-sided polygon inscribed inside the unit circle,<br />

with one vertex at the point z = <strong>1.</strong> The vertices are equally spaced<br />

on the circumference of the circle. The successive vertices are<br />

obtained by incre<strong>as</strong>ing the argument by <strong>an</strong> equal amount of 2π/n<br />

of the preceding vertex.<br />

Suppose the <strong>complex</strong> <strong>number</strong> in the polar form <strong>is</strong> represented by<br />

r(cos φ + <strong>is</strong>in φ), its nth roots are given by<br />

r 1/n<br />

<br />

<br />

φ + 2kπ φ + 2kπ<br />

cos + <strong>is</strong>in , k = 0,1,2, ..., n − 1,<br />

n n<br />

where r 1/n <strong>is</strong> the real positive n th root of the real positive <strong>number</strong><br />

r. The roots are equally spaced along the circumference with one<br />

vertex being at r 1/n [cos(φ/n) + <strong>is</strong>in(φ/n)].<br />

13


Tri<strong>an</strong>gle inequalities<br />

For <strong>an</strong>y two <strong>complex</strong> <strong><strong>number</strong>s</strong> z1 <strong>an</strong>d z2, we c<strong>an</strong> establ<strong>is</strong>h<br />

|z1 + z2| 2 = (z1 + z2)(z1 + z2)<br />

= z1z1 + z2z2 + z1z2 + z2z1<br />

= |z1| 2 + |z2| 2 + 2Re(z1z2) .<br />

By observing that Re(z1z2) ≤ |z1z2|, we have<br />

|z1 + z2| 2 ≤ |z1| 2 + |z2| 2 + 2|z1z2|<br />

= |z1| 2 + |z2| 2 + 2|z1||z2| = (|z1| + |z2|) 2 .<br />

Since moduli are non-negative, we take the positive square root on<br />

both sides <strong>an</strong>d obtain<br />

|z1 + z2| ≤ |z1| + |z2| .<br />

14


To prove the other half of the tri<strong>an</strong>gle inequalities, we write<br />

giving<br />

|z1| = |(z1 + z2) + (−z2)| ≤ |z1 + z2| + | − z2|<br />

|z1| − |z2| ≤ |z1 + z2| .<br />

By interch<strong>an</strong>ging z1 <strong>an</strong>d z2 in the above inequality, we have<br />

Combining all results together<br />

<br />

<br />

<br />

<br />

|z2| − |z1| ≤ |z1 + z2| .<br />

<br />

<br />

<br />

|z1| − |z2| <br />

≤ |z1 + z2| ≤ |z1| + |z2|.<br />

15


Example<br />

Find <strong>an</strong> upper bound for |z 5 − 4| if |z| ≤ <strong>1.</strong><br />

Solution<br />

Applying the tri<strong>an</strong>gle inequality, we get<br />

|z 5 − 4| ≤ |z 5 | + 4 = |z| 5 + 4 ≤ 1 + 4 = 5,<br />

since |z| ≤ <strong>1.</strong> Hence, if |z| ≤ 1, <strong>an</strong> upper bound for |z 5 − 4| <strong>is</strong> 5.<br />

In general, the tri<strong>an</strong>gle inequality <strong>is</strong> considered <strong>as</strong> a crude inequality,<br />

which me<strong>an</strong>s that it will not yield le<strong>as</strong>t upper bound estimate. C<strong>an</strong><br />

we find a <strong>number</strong> smaller th<strong>an</strong> 5 that <strong>is</strong> also <strong>an</strong> upper bound, or <strong>is</strong><br />

5 the le<strong>as</strong>t upper bound?<br />

Yes, we may use the Maximum Modulus Theorem (to be d<strong>is</strong>cussed<br />

later). The upper bound of the modulus will correspond to a <strong>complex</strong><br />

<strong>number</strong> that lies on the boundary, where |z| = <strong>1.</strong><br />

16


Example<br />

For a non-zero z <strong>an</strong>d −π < Arg z ≤ π, show that<br />

Solution<br />

|z − 1| ≤<br />

|z − 1| ≤<br />

since (cos θ−1) 2 +sin 2 θ =<br />

<strong>an</strong>d<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

θ <br />

sin <br />

2<br />

≤<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

|z| − 1<br />

<br />

<br />

<br />

<br />

<br />

+|z| |Arg z|.<br />

<br />

<br />

<br />

<br />

<br />

<br />

z<br />

− |z| + (|z| − 1) <br />

≤<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

= |z| |cos θ + <strong>is</strong>in θ − 1| + <br />

<br />

<br />

= |z| (cos θ − 1) 2 + sin 2 <br />

<br />

<br />

θ + <br />

<br />

<br />

<br />

θ<br />

<br />

= |z| 2sin<br />

<br />

+<br />

<br />

<br />

<br />

|z|<br />

− 1<br />

<br />

<br />

<br />

θ<br />

<br />

2<br />

.<br />

2<br />

<br />

1 − 2sin<br />

2 θ<br />

2<br />

z − |z| <br />

+<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

|z| − 1<br />

|z| − 1<br />

|z| − 1<br />

≤ |z||Arg z| +<br />

2<br />

− 1<br />

<br />

<br />

<br />

<br />

<br />

, θ = Arg z<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

|z| − 1<br />

,<br />

+ 4sin<br />

2 θ<br />

2<br />

cos2 θ<br />

2<br />

= 4sin2 θ<br />

2<br />

17


Take |z| > 1 <strong>as</strong> <strong>an</strong> illustration<br />

Geometric interpretation: Consider the tri<strong>an</strong>gle whose vertices are<br />

1, z <strong>an</strong>d |z|, by the Tri<strong>an</strong>gle Inequality, we have<br />

|z − 1| ≤<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

|z| − 1<br />

+ z − |z| <br />

.<br />

The chord joining |z| <strong>an</strong>d z <strong>is</strong> always shorter th<strong>an</strong> the circular arc<br />

joining the same two points. Note that the arc length <strong>is</strong> given by<br />

|z| |Arg z|.<br />

18


Geometric applications<br />

How to find the equation of the perpendicular b<strong>is</strong>ector of the line<br />

segment joining the two points z1 <strong>an</strong>d z2? Since <strong>an</strong>y point z on<br />

the b<strong>is</strong>ector will be equid<strong>is</strong>t<strong>an</strong>t from z1 <strong>an</strong>d z2, the equation of the<br />

b<strong>is</strong>ector c<strong>an</strong> be represented by<br />

|z − z1| = |z − z2| .<br />

For a given equation f(x, y) = 0 of a geometric curve, if we set<br />

x = (z + z)/2 <strong>an</strong>d y = (z − z)/2i, the equation c<strong>an</strong> be expressed in<br />

terms of the pair of conjugate <strong>complex</strong> variables z <strong>an</strong>d z <strong>as</strong><br />

<br />

z + z z − z<br />

f(x, y) = f , = F(z, z) = 0 .<br />

2 2i<br />

For example, the unit circle centered at the origin <strong>as</strong> represented by<br />

the equation x2 + y2 = 1 c<strong>an</strong> be expressed <strong>as</strong> zz = <strong>1.</strong><br />

19


Further examples<br />

(i) The set {z : |z − a| < r}, a ∈ C, r ∈ R, represents the set of points<br />

inside the circle centered at a with radius r but excluding the<br />

boundary.<br />

(ii) The set {z : r1 ≤ |z − a| ≤ r2}, a ∈ C, r1 ∈ R, r2 ∈ R, represents<br />

the <strong>an</strong>nular region centered at a <strong>an</strong>d bounded by circles of radii<br />

r1 <strong>an</strong>d r2. Here, the boundary circles are included.<br />

(iii) The set of points z such that |z − α| + |z − β| ≤ 2d, α <strong>an</strong>d β ∈ C<br />

<strong>an</strong>d d ∈ R, <strong>is</strong> the set of all points on or inside the ellipse with<br />

foci α <strong>an</strong>d β <strong>an</strong>d with length of semi-major ax<strong>is</strong> equals d. What<br />

<strong>is</strong> the length of the semi-minor ax<strong>is</strong>?<br />

20


Example<br />

Find the region in the <strong>complex</strong> pl<strong>an</strong>e that <strong>is</strong> represented by<br />

Solution<br />

0 < Arg<br />

z − 1<br />

z + 1<br />

< π<br />

4 .<br />

z − 1<br />

Let z = x + iy, <strong>an</strong>d consider Arg<br />

z + 1 = Arg x2 + y2 − 1 + 2iy<br />

(x + 1) 2 ,<br />

+ y2 whose value lies between 0 <strong>an</strong>d π/4 if <strong>an</strong>d only if the following<br />

3 conditions are sat<strong>is</strong>fied<br />

(i) x 2 + y 2 − 1 > 0, (ii) y > 0 <strong>an</strong>d (iii)<br />

These 3 conditions correspond to<br />

Re<br />

z − 1<br />

z + 1<br />

> 0, Im z − 1<br />

z + 1<br />

2y<br />

x 2 + y 2 − 1<br />

< <strong>1.</strong><br />

> 0 <strong>an</strong>d Arg z − 1<br />

z + 1<br />

< π<br />

4 .<br />

21


The l<strong>as</strong>t inequality c<strong>an</strong> be expressed <strong>as</strong> x 2 + (y − 1) 2 > 2. For<br />

y > 0, the region outside the circle: x 2 + (y − 1) 2 = 2 <strong>is</strong> contained<br />

completely inside the region outside the circle: x 2 + y 2 = <strong>1.</strong> Hence,<br />

the region represented by the above 3 inequalities <strong>is</strong><br />

R = {x + iy : x 2 + (y − 1) 2 > 2 <strong>an</strong>d y > 0}.<br />

Th<strong>is</strong> <strong>is</strong> the region which <strong>is</strong> outside the circle x 2 + (y − 1) 2 = 2 <strong>an</strong>d<br />

lying in the upper half-pl<strong>an</strong>e.<br />

22


Example<br />

If z1, z2 <strong>an</strong>d z3 represent the vertices of <strong>an</strong> equilateral tri<strong>an</strong>gle, show<br />

that<br />

Solution<br />

From the figure, we observe that<br />

Taking the div<strong>is</strong>ion<br />

so that<br />

z 2 1 + z2 2 + z2 3 = z1z2 + z2z3 + z3z<strong>1.</strong><br />

z2 − z1 = e iπ/3 (z3 − z1)<br />

z1 − z3 = e iπ/3 (z2 − z3).<br />

z2 − z1<br />

z1 − z3<br />

= z3 − z1<br />

z2 − z3<br />

z 2 1 + z2 2 + z2 3 = z1z2 + z2z3 + z3z<strong>1.</strong><br />

23


Example<br />

Suppose z1 + z2 + z3 = 0 <strong>an</strong>d |z1| = |z2| = |z3| = 1, show that<br />

z2 = ωz1 <strong>an</strong>d z3 = ω 2 z1,<br />

where ω <strong>is</strong> a root of the quadratic equation: z 2 + z + 1 = 0. Note<br />

that ω <strong>is</strong> a cube root of unity. Also, the other root <strong>is</strong> given by ω 2 .<br />

Hence, explain why z1, z2 <strong>an</strong>d z3 are the vertices of <strong>an</strong> equilateral<br />

tri<strong>an</strong>gle inscribed inside the unit circle: |z| = <strong>1.</strong><br />

Solution<br />

Since |z1| = |z2| = |z3| = 1, so z2 = e iα z1 <strong>an</strong>d z3 = e iβ z1, where α<br />

<strong>an</strong>d β are chosen within (−π, π]. Substituting into z1 + z2 + z3 = 0,<br />

we obtain<br />

e iα + e iβ + 1 = 0.<br />

24


Equating the respective real <strong>an</strong>d imaginary parts<br />

cos α + cos β + 1 = 0 <strong>an</strong>d sin α + sin β = 0,<br />

we obtain α = −β <strong>an</strong>d cos α = −1/2.<br />

Without loss of generality, we take α to be positive <strong>an</strong>d obtain<br />

α = 2π/3 <strong>an</strong>d β = −2π/3. Both e 2πi/3 <strong>an</strong>d e −2πi/3 are the roots of<br />

ω 2 + ω + 1 = 0. Indeed, one <strong>is</strong> the square of the other, <strong>an</strong>d vice<br />

versa.<br />

Suppose we write ω = e 2πi/3 , then ω 2 = e −2πi/3 . Hence, z2 = ωz1<br />

<strong>an</strong>d z3 = ω 2 z<strong>1.</strong> The 3 points z1, z2 <strong>an</strong>d z3 all lie on the unit circle<br />

|z| = 1 since |z1| = |z2| = |z3| = <strong>1.</strong><br />

25


Consider the tri<strong>an</strong>gle formed by these 3 points: z1, z3 <strong>an</strong>d z3. If z1 <strong>is</strong><br />

one vertex, then z2 <strong>is</strong> obtained by rotating the position vector of z1<br />

by 2π/3 in <strong>an</strong>ti-clockw<strong>is</strong>e sense. Likew<strong>is</strong>e, z3 <strong>is</strong> obtained by rotating<br />

the position vector of z2 by the same amount. Hence, z1, z2 <strong>an</strong>d<br />

z3 are the vertices of <strong>an</strong> equilateral tri<strong>an</strong>gle inscribed on the unit<br />

circle: |z| = <strong>1.</strong><br />

26


Symmetry with respect to a circle<br />

Given a point α in the <strong>complex</strong> pl<strong>an</strong>e, we would like to construct the<br />

symmetry point of α with respect to the circle C R : |z| = R. The<br />

symmetry point of α <strong>is</strong> <strong>defined</strong> to be β = R 2 /α. Conversely, since we<br />

may write α = R 2 /β, we c<strong>an</strong> <strong>as</strong> well consider α to be the symmetry<br />

point of β. The two points α <strong>an</strong>d β are said to be symmetric with<br />

respect to the circle C R.<br />

Construction of a pair of symmetric points with respect to the circle<br />

C R.<br />

27


Geometric properties of symmetric points<br />

(i) Assume that |α| < R <strong>an</strong>d so the inversion point β will be outside<br />

the circle C R. Observe that<br />

Arg β = Arg R2 1<br />

= Arg = -Arg α = Arg α,<br />

α α<br />

one concludes that α <strong>an</strong>d β both lie on the same ray em<strong>an</strong>ating<br />

from the origin.<br />

The inversion point β c<strong>an</strong> be constructed <strong>as</strong> follows: draw the<br />

circle C R <strong>an</strong>d a ray L from the origin through α. We then draw<br />

a perpendicular to L through α which intersects the circle C R<br />

at P. The point of intersection of the t<strong>an</strong>gent line to the circle<br />

C R at P <strong>an</strong>d the ray L then gives β. By the property of similar<br />

tri<strong>an</strong>gles, we have<br />

|β|<br />

R<br />

= R<br />

|α| .<br />

28


(ii) When |α| = R, the inversion point <strong>is</strong> just itself. Th<strong>is</strong> <strong>is</strong> because<br />

when |α| = R, we have |β| = R2<br />

|α|<br />

Arg α, we obtain β = α.<br />

= R. Together with Arg β =<br />

(iii) When |α| > R, the inversion point β will be inside the circle C R.<br />

In fact, α may be considered <strong>as</strong> the inversion point of β.<br />

To reverse the method of construction, we find a t<strong>an</strong>gent to the<br />

circle which p<strong>as</strong>ses through α <strong>an</strong>d call the point of t<strong>an</strong>gency P.<br />

A ray L <strong>is</strong> the drawn from the origin through α <strong>an</strong>d a perpendicular<br />

<strong>is</strong> dropped from P to L. The point of intersection of the<br />

perpendicular with the ray L then gives β.<br />

29


Limit points<br />

Neighborhood of z0, denoted by N(z0; ǫ), <strong>is</strong> <strong>defined</strong> <strong>as</strong><br />

N(z0; ǫ) = {z : |z − z0| < ǫ}.<br />

Sometimes, N(z0; ǫ) may be called <strong>an</strong> open d<strong>is</strong>c centered at z0 with<br />

radius ǫ. A deleted neighborhood of z0 <strong>is</strong> N(z0; ǫ)\{z0}. Write it <strong>as</strong><br />

N(z0; ǫ).<br />

A point z0 <strong>is</strong> a limit point or <strong>an</strong> accumulation point of a point set<br />

S if every neighborhood of z0 contains a point of S other th<strong>an</strong> z0.<br />

That <strong>is</strong>, N(z0; ǫ) ∩ S = φ, for <strong>an</strong>y ǫ.<br />

• Since th<strong>is</strong> <strong>is</strong> true for <strong>an</strong>y neighborhood of z0, S must contain<br />

infinitely m<strong>an</strong>y points. In other words, if S cons<strong>is</strong>ts of d<strong>is</strong>crete<br />

<strong>number</strong> of points, then there <strong>is</strong> no limit point of S.<br />

• A limit point z0 may or may not belong to the set S.<br />

30


Example<br />

Show that z = 1 <strong>is</strong> a limit point of the following point set:<br />

<br />

<br />

n n<br />

A = z : z = (−1) , n <strong>is</strong> <strong>an</strong> integer .<br />

n + 1<br />

Solution<br />

Given <strong>an</strong>y ǫ > 0, we w<strong>an</strong>t to show that there ex<strong>is</strong>ts one point in A<br />

other th<strong>an</strong> z = <strong>1.</strong> In fact, there ex<strong>is</strong>t <strong>an</strong> infinite <strong>number</strong> of points<br />

such that<br />

<br />

<br />

n <br />

<br />

(−1)n − 1<br />

< ǫ .<br />

n + 1<br />

If we choose n to be even <strong>an</strong>d positive <strong>an</strong>d n + 1 > 1<br />

, then<br />

<br />

ǫ<br />

<br />

n <br />

<br />

− 1<br />

< ǫ. Therefore, for <strong>an</strong>y ǫ, N(1; ǫ) contains at le<strong>as</strong>t one<br />

n<br />

+ 1 <br />

point in A other th<strong>an</strong> z = <strong>1.</strong><br />

31


Some topological definitions<br />

• A point z0 <strong>is</strong> called <strong>an</strong> interior point of a set S if there ex<strong>is</strong>ts a<br />

neighborhood of z0 with all of these points belong to S.<br />

• If every neighborhood of z0 contains points of S <strong>an</strong>d also points<br />

not belonging to S then z0 <strong>is</strong> called a boundary point.<br />

• The set of all boundary points of a set S <strong>is</strong> called the boundary<br />

of S. If a point <strong>is</strong> neither <strong>an</strong> interior nor a boundary point, then<br />

it <strong>is</strong> called <strong>an</strong> exterior point of S.<br />

Remark<br />

If z0 <strong>is</strong> not a boundary point, then there ex<strong>is</strong>ts a neighborhood of<br />

z0 such that it <strong>is</strong> completely inside S or completely outside S. In<br />

the former c<strong>as</strong>e, it <strong>is</strong> <strong>an</strong> interior point. In the latter c<strong>as</strong>e, it <strong>is</strong> <strong>an</strong><br />

exterior point.<br />

32


Example<br />

Show that the boundary of<br />

<strong>is</strong> the circle: |z − z0| = r.<br />

Solution<br />

Br(z0) = {z : |z − z0| < r}<br />

Pick a point z1 on the circle |z −z0| = r. Every d<strong>is</strong>k that <strong>is</strong> centered<br />

at z1 will contain (infinitely m<strong>an</strong>y) points in Br(z0) <strong>an</strong>d (infinitely<br />

m<strong>an</strong>y) points not in Br(z0). Hence, every point on the circle |z −<br />

z0| = r <strong>is</strong> a boundary point of Br(z0).<br />

33


No other points are boundary points<br />

• Since points inside the circle are interior points, they c<strong>an</strong>not be<br />

boundary points.<br />

• Given a point outside the circle, we c<strong>an</strong> enclose it in a d<strong>is</strong>k that<br />

does not intersect the d<strong>is</strong>k Br(z0). Hence, such a point <strong>is</strong> not<br />

boundary point.<br />

In th<strong>is</strong> example, none of the boundary points of Br(z0) belong to<br />

Br(z0).<br />

34


Open <strong>an</strong>d closed sets<br />

• A set which cons<strong>is</strong>ts only of interior points <strong>is</strong> called <strong>an</strong> open set.<br />

• Every point of <strong>an</strong> open set h<strong>as</strong> a neighborhood contained completely<br />

in the set.<br />

• A set <strong>is</strong> closed if it contains all its boundary points.<br />

• The closure S of a set S <strong>is</strong> the closed set cons<strong>is</strong>ting of all points<br />

in S together with the boundary of S.<br />

We may think of <strong>an</strong>y two-dimensional set without a boundary <strong>as</strong> <strong>an</strong><br />

open set. For example, the set S = {z : |z| < 1} <strong>is</strong> <strong>an</strong> open set. The<br />

closure S <strong>is</strong> the set {z : |z| ≤ 1}.<br />

35


Example<br />

The set R = {z : Re z > 0} <strong>is</strong> <strong>an</strong> open set. To see th<strong>is</strong>, for <strong>an</strong>y<br />

point w0 ∈ R; then σ0 = Re w0 > 0. Let ε = σ0/2 <strong>an</strong>d suppose that<br />

|z − w0| < ε. Then −ε < Re (z − w0) < ε <strong>an</strong>d so<br />

Re z = Re (z − w0) + Re w0 > −ε + σ0 = σ0/2 > 0.<br />

Consequently, z also lies in R. Hence, each point w0 of R <strong>is</strong> <strong>an</strong><br />

interior point <strong>an</strong>d so R <strong>is</strong> open.<br />

36


Theorem<br />

A set D <strong>is</strong> open if <strong>an</strong>d only if it contains no point of its boundary.<br />

Proof<br />

• Suppose that D <strong>is</strong> <strong>an</strong> open set, <strong>an</strong>d let P be a boundary point<br />

of D. If P <strong>is</strong> in D, then there <strong>is</strong> <strong>an</strong> open d<strong>is</strong>c centered at P that<br />

lies within D (since D <strong>is</strong> open). Hence, P <strong>is</strong> not in the boundary<br />

of D.<br />

• Suppose D <strong>is</strong> a set that contains none of its boundary points,<br />

for <strong>an</strong>y z0 ∈ D, z0 c<strong>an</strong>not be a boundary point of D. Hence,<br />

there <strong>is</strong> some d<strong>is</strong>c centered at z0 that <strong>is</strong> either a subset of D or<br />

a subset of the complement of D. The latter <strong>is</strong> impossible since<br />

z0 itself <strong>is</strong> in D. Hence, each point of D <strong>is</strong> <strong>an</strong> interior point so<br />

that D <strong>is</strong> open.<br />

37


Corollary<br />

A set C <strong>is</strong> closed if <strong>an</strong>d only if its complement D = {z : z ∈ C} <strong>is</strong><br />

open. To see the claim, we observe that the boundary of a set coincides<br />

exactly with the boundary of the complement of that set (<strong>as</strong> a<br />

direct consequence of the definition of boundary point). Recall that<br />

a closed set contains all its boundary points. Its complement shares<br />

the same boundary, but these boundary points are not contained in<br />

the complement, so the complement <strong>is</strong> open.<br />

Remark<br />

There are sets that are neither open nor closed since they contain<br />

part, but not all, of their boundary. For example,<br />

<strong>is</strong> neither open nor closed.<br />

S = {z : 1 < |z| ≤ 2}<br />

38


Theorem<br />

A set S <strong>is</strong> closed if <strong>an</strong>d only if S contains all its limit points.<br />

Proof<br />

Write N(z; ǫ) <strong>as</strong> the deleted ǫ-neighborhood of z, <strong>an</strong>d S ′ <strong>as</strong> the<br />

complement of S. Note that for z ∈ S, N(z; ǫ) ∩ S = N(z; ǫ) ∩ S.<br />

S <strong>is</strong> closed ⇔ S ′ <strong>is</strong> open<br />

⇔ given z ∈ S, there ex<strong>is</strong>ts ǫ > 0 such that N(z; ǫ) ⊂ S ′<br />

⇔ given z ∈ S, there ex<strong>is</strong>ts ǫ > 0 such that N(z; ǫ) ∩ S = φ<br />

⇔ no point of S ′ <strong>is</strong> a limit point of S<br />

39


Compact set<br />

• A bounded set S <strong>is</strong> one that c<strong>an</strong> be contained in a large enough<br />

circle centered at the origin, that <strong>is</strong>, |z| < M for some large<br />

enough const<strong>an</strong>t M for all points z in S where M <strong>is</strong> some sufficiently<br />

large const<strong>an</strong>t.<br />

• An unbounded set <strong>is</strong> one which <strong>is</strong> not bounded.<br />

• A set which <strong>is</strong> both closed <strong>an</strong>d bounded <strong>is</strong> called a compact set.<br />

40


Motivation for defining connectedness<br />

From b<strong>as</strong>ic calculus, if f ′ (x) = 0 for all x in (a, b), then f <strong>is</strong> a<br />

const<strong>an</strong>t.<br />

The above result <strong>is</strong> not true if the domain of definition of the<br />

function <strong>is</strong> not connected. For example<br />

f(x) =<br />

<br />

1 if 0 < x < 1<br />

−1 if 2 < x < 3 ,<br />

whose domain of definition <strong>is</strong> (0,1) ∪ (2,3). We have f ′ (x) = 0 for<br />

all x in (0,1) ∪ (2,3), but f <strong>is</strong> not const<strong>an</strong>t.<br />

Th<strong>is</strong> example illustrates the import<strong>an</strong>ce of connectedness in calculus.<br />

41


Domain <strong>an</strong>d region<br />

• An open set S <strong>is</strong> said to be connected if <strong>an</strong>y two points of S<br />

c<strong>an</strong> be joined by a continuous curve lying entirely inside S. For<br />

example, a neighborhood N(z0; ǫ) <strong>is</strong> connected.<br />

• An open connected set <strong>is</strong> called <strong>an</strong> open region or domain.<br />

• To the point set S, we add all of its limit points, then the new<br />

set S <strong>is</strong> the closure of S.<br />

• The closure of <strong>an</strong> open region <strong>is</strong> called a closed region.<br />

• To <strong>an</strong> open region we may add none, some or all its limit points,<br />

<strong>an</strong>d call the new set a region.<br />

42


Simply <strong>an</strong>d multiply connected domains<br />

Loosely speaking, a simply connected domain contains no holes, but<br />

a multiply connected domain h<strong>as</strong> one or more holes.<br />

43


• When <strong>an</strong>y closed curve <strong>is</strong> constructed in a simply connected<br />

domain, every point inside the curve lies in the domain.<br />

• It <strong>is</strong> always possible to construct some closed curve inside a<br />

multiply connected domain in such a way that one or more points<br />

inside the curve do not belong to the domain.<br />

44


<strong>Complex</strong> infinity<br />

• Unlike the real <strong>number</strong> system, which h<strong>as</strong> +∞ <strong>an</strong>d −∞, there <strong>is</strong><br />

only one infinity in the <strong>complex</strong> <strong>number</strong> system. Th<strong>is</strong> <strong>is</strong> because<br />

the <strong>complex</strong> <strong>number</strong> field C <strong>is</strong> not <strong>an</strong> <strong>ordered</strong> field ∗ . Recall that<br />

in the real <strong>number</strong> system, +∞ (−∞) <strong>is</strong> <strong>an</strong> upper (lower) bound<br />

of every subset of the extended real <strong>number</strong> system (set of all<br />

real <strong><strong>number</strong>s</strong> augmented with +∞ <strong>an</strong>d −∞).<br />

∗ C <strong>is</strong> not <strong>an</strong> <strong>ordered</strong> field c<strong>an</strong> be argued <strong>as</strong> follows. Suppose C <strong>is</strong> <strong>an</strong><br />

<strong>ordered</strong> field, then for <strong>an</strong>y non-zero x ∈ C, we must have either x or<br />

−x being positive, <strong>an</strong>d x 2 = (−x) 2 being positive. Consider i <strong>an</strong>d<br />

−i, we have i 2 = (−i) 2 = −1, which <strong>is</strong> negative. A contradiction<br />

<strong>is</strong> encountered.<br />

45


Extended <strong>complex</strong> pl<strong>an</strong>e<br />

It <strong>is</strong> convenient to augment the <strong>complex</strong> pl<strong>an</strong>e with the point at<br />

infinity, denoted by ∞. The set {C ∪ ∞} <strong>is</strong> called the extended<br />

<strong>complex</strong> pl<strong>an</strong>e. The algebra involving ∞ are <strong>defined</strong> <strong>as</strong> follows:<br />

z + ∞ = ∞ , for all z ∈ C<br />

z · ∞ = ∞ , for all z ∈ C/{0}<br />

z/∞ = 0 , for all z ∈ C<br />

z/0 = ∞ , for all z ∈ C/{0}.<br />

In particular, we have −1·∞ = ∞ <strong>an</strong>d expressions like 0·∞, ∞/∞, ∞±<br />

∞ <strong>an</strong>d 0/0 are not <strong>defined</strong>. Topologically, <strong>an</strong>y set of the form<br />

{z: |z| > R} where R ≥ 0 <strong>is</strong> called a neighborhood of ∞.<br />

• A set D contains the point at infinity if there <strong>is</strong> a large <strong>number</strong><br />

M such that D contains all the points z with |z| > M.<br />

46


Examples<br />

• The open half-pl<strong>an</strong>e Re z > 0 does not contain the point at<br />

infinity since it does not contain <strong>an</strong>y neighborhood of ∞.<br />

• The open set D = {z : |z + 1| + |z − 1| > 1} does.<br />

One “reaches” the point at infinity by letting |z| incre<strong>as</strong>e without<br />

bound, with no restriction at all on arg z. One way to v<strong>is</strong>ualize all<br />

th<strong>is</strong> <strong>is</strong> to let w = 1/z <strong>an</strong>d think about |w| being very small: <strong>an</strong><br />

open set containing the point at infinity will become <strong>an</strong> open set<br />

containing w = 0.<br />

The statement “z approaches infinity” <strong>is</strong> identical with “w converges<br />

to zero”.<br />

47


Riem<strong>an</strong>n sphere <strong>is</strong> sitting on the <strong>complex</strong> pl<strong>an</strong>e.<br />

48


Riem<strong>an</strong>n sphere <strong>an</strong>d stereographic projection<br />

• In order to v<strong>is</strong>ualize the point at infinity, we consider the Riem<strong>an</strong>n<br />

sphere that h<strong>as</strong> radius 1/2 <strong>an</strong>d <strong>is</strong> t<strong>an</strong>gent to the <strong>complex</strong><br />

pl<strong>an</strong>e at the origin (see Figure). We call the point of contact the<br />

south pole (denoted by S) <strong>an</strong>d the point diametrically opposite<br />

S the north pole (denoted by N).<br />

• Let z be <strong>an</strong> arbitrary <strong>complex</strong> <strong>number</strong> in the <strong>complex</strong> pl<strong>an</strong>e,<br />

represented by the point P. We draw the straight line PN which<br />

intersects the Riem<strong>an</strong>n sphere at a unique point P ′ d<strong>is</strong>tinct from<br />

N.<br />

• There ex<strong>is</strong>ts a one-to-one correspondence between points on the<br />

Riem<strong>an</strong>n sphere, except N, <strong>an</strong>d all the finite points in the <strong>complex</strong><br />

pl<strong>an</strong>e. We <strong>as</strong>sign the north pole N <strong>as</strong> the point at infinity.<br />

Th<strong>is</strong> correspondence <strong>is</strong> known <strong>as</strong> the stereographic projection.<br />

49


The coordinates are related by<br />

x = ξ<br />

1 − ζ<br />

The equation of the Riem<strong>an</strong>n sphere <strong>is</strong> given by<br />

<strong>an</strong>d y = η<br />

. (A)<br />

1 − ζ<br />

ξ 2 + η 2 <br />

+ ζ − 1<br />

2 <br />

1 2<br />

=<br />

2 2<br />

or ξ 2 + η 2 + ζ 2 = ζ. (B)<br />

We substitute ξ = x(1 − ζ) <strong>an</strong>d η = y(1 − ζ) into eq. (B) to obtain<br />

ζ = x2 + y 2<br />

x 2 + y 2 + 1<br />

= |z|2<br />

|z| 2 + 1 .<br />

Once ζ <strong>is</strong> available, we use eq. (A) to obtain<br />

ξ =<br />

η =<br />

x<br />

x2 + y2 + 1<br />

y<br />

x 2 + y 2 + 1<br />

1 z + z<br />

=<br />

2|z|<br />

2 + 1 ,<br />

1 z − z<br />

=<br />

2i|z|<br />

2 + 1 .<br />

50

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!