23.04.2013 Views

HAL® 1820, HAL 28xy, HAL 3625 - Glyn

HAL® 1820, HAL 28xy, HAL 3625 - Glyn

HAL® 1820, HAL 28xy, HAL 3625 - Glyn

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Approval Document<br />

Application APN000055_001EN<br />

Note<br />

Software IC Kits/Boards<br />

Edition ??? April 16, 2010<br />

ANK000???_00?EN<br />

ANS000???_00?EN<br />

ANI000???_00?EN<br />

APN000055_001EN<br />

April 16, 2010<br />

<strong>HAL</strong> ®<br />

<strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>,<br />

<strong>HAL</strong> <strong>3625</strong><br />

Application Board <strong>HAL</strong>-APB V1.3


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Copyright, Warranty,<br />

and Limitation of<br />

Liability<br />

Micronas Trademarks – <strong>HAL</strong><br />

The information and data contained in this document are believed to be accurate and<br />

reliable. The software and proprietary information contained therein may be protected<br />

by copyright, patent, trademark and/or other intellectual property rights of Micronas. All<br />

rights not expressly granted remain reserved by Micronas.<br />

Micronas assumes no liability for errors and gives no warranty representation or guarantee<br />

regarding the suitability of its products for any particular purpose due to these<br />

specifications.<br />

By this publication, Micronas does not assume responsibility for patent infringements or<br />

other rights of third parties which may result from its use. Commercial conditions, product<br />

availability and delivery are exclusively subject to the respective order confirmation.<br />

Any information and data which may be provided in the document can and do vary in<br />

different applications, and actual performance may vary over time.<br />

All operating parameters must be validated for each customer application by customers’<br />

technical experts. Any new issue of this document invalidates previous issues.<br />

Micronas reserves the right to review this document and to make changes to the document’s<br />

content at any time without obligation to notify any person or entity of such revision<br />

or changes. For further advice please contact us directly.<br />

Do not use our products in life-supporting systems, aviation and aerospace applications!<br />

Unless explicitly agreed to otherwise in writing between the parties, Micronas’<br />

products are not designed, intended or authorized for use as components in systems<br />

intended for surgical implants into the body, or other applications intended to support or<br />

sustain life, or for any other application in which the failure of the product could create a<br />

situation where personal injury or death could occur.<br />

No part of this publication may be reproduced, photocopied, stored on a retrieval system<br />

or transmitted without the express written consent of Micronas.<br />

Third-Party Trademarks All other brand and product names or company names may be trademarks of their<br />

respective companies.<br />

2 April 16, 2010; APN000055_001EN Micronas


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

Contents<br />

Page Section Title<br />

5 1. Introduction<br />

5 1.1. General Information<br />

5 1.2. Introduction<br />

6 1.2.1. Supported <strong>HAL</strong> Sensors<br />

6 1.2.2. Sensor-specific PC Software<br />

6 1.3. Board Block Diagram<br />

8 2. Getting started<br />

8 2.1. First Steps<br />

8 2.1.1. Check <strong>HAL</strong>-APB V1.3<br />

8 2.1.2. Check Communication with PC and Hall Sensor Connection<br />

9 3. Board Configuration<br />

9 3.1. Jumper Settings<br />

11 3.2. <strong>HAL</strong> Interface Connector<br />

12 4. Specification<br />

12 4.1. Recommended Operating Conditions<br />

12 4.2. Characteristics<br />

13 5. USB Driver Installation<br />

13 5.1. Deinstalling USB D2xx Drivers<br />

14 5.2. Installing the USB VCP Drivers<br />

17 6. Board Functions<br />

17 6.1. Serial Command Interpreter<br />

17 6.1.1. Serial Interface Configuration<br />

17 6.1.2. Definition of the COMMAND Frame<br />

18 6.1.3. Definition of the RESPONSE Frame<br />

18 6.1.4. Analog Measurements<br />

19 6.1.5. Error Codes<br />

20 7. Board Mode Settings<br />

20 7.1. Board Operation Modes<br />

20 7.2. Board Configuration Commands<br />

22 8. Programming Interface<br />

22 8.1. Bit Definition<br />

23 8.2. Telegram Parameters<br />

24 8.3. Command Structures of Protocol<br />

25 8.4. Locking of the Sensor<br />

26 9. <strong>HAL</strong> <strong>1820</strong><br />

26 9.1. <strong>HAL</strong> <strong>1820</strong> - Board commands<br />

27 9.2. <strong>HAL</strong> <strong>1820</strong> - Programming Examples<br />

29 10. <strong>HAL</strong> 2810 – Board Commands<br />

29 10.1. LIN Interface<br />

29 10.1.1. LIN Interface Mode Configuration<br />

29 10.1.2. Schedule Tables<br />

30 10.1.3. Error Handling<br />

31 10.2. <strong>HAL</strong> 2810 (LIN2.0) – Board commands<br />

33 10.3. <strong>HAL</strong> 2810 (LIN2.0) – Programming Examples<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Micronas April 16, 2010; APN000055_001EN 3


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Contents, continued<br />

Page Section Title<br />

37 11. <strong>HAL</strong> 2830 / <strong>HAL</strong> 2850 – Board Commands<br />

37 11.1. Biphase-M Interface<br />

37 11.2. <strong>HAL</strong> 2830 / <strong>HAL</strong> 2850 – Board commands<br />

39 11.3. <strong>HAL</strong> 2830 / <strong>HAL</strong> 2850 – Programming Examples<br />

43 12. <strong>HAL</strong> <strong>3625</strong> – Board Commands<br />

43 12.1. <strong>HAL</strong> <strong>3625</strong> – Board commands<br />

45 12.2. <strong>HAL</strong> <strong>3625</strong> – Programming Examples<br />

47 13. Application Note History<br />

4 April 16, 2010; APN000055_001EN Micronas


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

1. Introduction<br />

1.1. General Information<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

The hardware and software description in this document is valid for the Application<br />

Board <strong>HAL</strong>-APB V1.3.<br />

Fig. 1–1: Application Board <strong>HAL</strong>-APB V1.3<br />

1.2. Introduction<br />

The Application Board <strong>HAL</strong>-APB V1.3 (<strong>HAL</strong>-APB) is an board for programming the<br />

Micronas Hall-effect sensor families with analog and digital output formats. The board<br />

is equipped with a Micronas Flash microcontroller CDC 3207G. It provides an application<br />

software supporting a command interface for the communication with a PC. This<br />

allows the implementation of specific PC software for engineering purposes or in-line<br />

calibration. The <strong>HAL</strong>-APB can be ordered with a housing or as a PCB version.<br />

In the case of a housing, an additional extension board with two sockets for the connection<br />

of up to two Hall sensors (depending on the sensor type) is supplied.<br />

Micronas April 16, 2010; APN000055_001EN 5


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

1.2.1. Supported <strong>HAL</strong> Sensors<br />

The <strong>HAL</strong>-APB supports the sensors listed in Table 1–1.<br />

Table 1–1: Supported sensors<br />

Sensor Remark<br />

<strong>HAL</strong> <strong>1820</strong> 3-wire device<br />

<strong>HAL</strong> 2810 LIN 2.0 Interface<br />

<strong>HAL</strong> 2830 SENT Interface<br />

<strong>HAL</strong> 2850 Fast PWM, 3-wire device<br />

<strong>HAL</strong> <strong>3625</strong> Direct angle sensor<br />

Please refer to the corresponding Programming Environment Application Notes for<br />

detailed information on the sensors listed or contact the Application Support Sensors<br />

(support_sensor@micronas.com).<br />

1.2.2. Sensor-specific PC Software<br />

Micronas GmbH provides easy-to-use PC software (LabView) for each supported sensor.<br />

This Application Note describes how to use it with the different sensors.<br />

1.3. Board Block Diagram<br />

V_Board<br />

GND<br />

USB<br />

EEPROM<br />

RS232<br />

5V-MCU<br />

5V-PER<br />

MCU<br />

CDC3207<br />

JTAG<br />

Fig. 1–2: <strong>HAL</strong>-APB block diagram<br />

OLED<br />

Extension<br />

(optional)<br />

LIN<br />

5V-ANA Module<br />

(optional)<br />

Hall<br />

Interface<br />

6 April 16, 2010; APN000055_001EN Micronas


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

V_Board<br />

GND<br />

Voltage<br />

Reference<br />

Slew<br />

Control<br />

(Optional)<br />

MCU<br />

VDD_Hall Driver<br />

Voltage Level<br />

Control<br />

A/D<br />

Sens<br />

VOUT1<br />

Fig. 1–3: Detailed view of <strong>HAL</strong> Interface<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Micronas April 16, 2010; APN000055_001EN 7<br />

Digital<br />

Transceiver<br />

Switch<br />

Switch<br />

TP8 - IDD<br />

TP VDD<br />

A/D<br />

Sens<br />

VDD/3<br />

Hall device<br />

VDD<br />

VOUT_1<br />

VOUT_2<br />

GND


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

2. Getting started<br />

2.1. First Steps<br />

2.1.1. Check <strong>HAL</strong>-APB V1.3<br />

– Connect the <strong>HAL</strong>-APB to the supply voltage.<br />

– Check if the power-on self-test was passed successfully. (ERROR LED is switched<br />

off after power on. Exception: LIN mode)<br />

Board Supply<br />

The <strong>HAL</strong>-APB requires a stabilized power supply. For this purpose, either when using it<br />

without housing, the connector X2 (DC jack) or the terminal beneath it can be used.<br />

Power-On Self-Test<br />

The <strong>HAL</strong>-APB firmware provides a power-on self-test. The self-test is started after connecting<br />

the board supply. During the self-test, the status LEDs including the Error LED,<br />

will flash.<br />

In case of a detected error, the ERROR LED remains illuminated after the self-test. In<br />

LIN mode the ERROR LED is switched on as long as the Vsupply of the sensor is not<br />

set to 12 V.<br />

2.1.2. Check Communication with PC and Hall Sensor Connection<br />

Connect a Hall sensor with the <strong>HAL</strong>-APB.<br />

(a) directly into the socket <strong>HAL</strong> 1<br />

or<br />

(b) into the socket X1 of the <strong>HAL</strong>-APB extension board (housing version).<br />

Note: For the first communication check, we recommend using the <strong>HAL</strong> <strong>28xy</strong> Programming<br />

Environment LabView software provided by Micronas for the specific<br />

<strong>HAL</strong> sensor.<br />

you can also<br />

– set up a Hyperterminal connection (see Section 6 on page 17)<br />

– switch Vdd on using the “vho1” command (see Section 7.2 on page 20).<br />

– try to read out a register (see chapter of the used sensor type).<br />

8 April 16, 2010; APN000055_001EN Micronas


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

3. Board Configuration<br />

3.1. Jumper Settings<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

For changing between LIN-Bus and Biphase-M communication, jumpers need to be set<br />

differently. For non-housed (optional) application boards it may be necessary to switch<br />

jumper for USB/RS-232 connection. The following pictures show how to set the jumpers<br />

correctly.<br />

X4 - RS232<br />

(SUB-D-9)<br />

SW<br />

JP3<br />

X3<br />

USB<br />

(B)<br />

<strong>HAL</strong>-APB<br />

Version 1.3<br />

JP4<br />

JP7<br />

JP5<br />

JP6<br />

CDC3207G<br />

<strong>HAL</strong>1<br />

Status LEDs on housing<br />

JP1<br />

Reset<br />

TP8<br />

+18 VDC<br />

Fig. 3–4: Jumper settings <strong>HAL</strong>-APB V1.3<br />

The default jumper position Pos1 is indicated by black bars in Fig. 3–4.<br />

Micronas April 16, 2010; APN000055_001EN 9<br />

X2<br />

Status LEDs<br />

TP7<br />

RJ-45<br />

<strong>HAL</strong>1/2<br />

+ −


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Table 3–2: Jumper settings<br />

Jumper Setting Function<br />

JP1 pos1 (default)<br />

pos2<br />

JP2 pos1 (default)<br />

pos2<br />

JP3 close (default)<br />

open<br />

JP4 close (default)<br />

open<br />

JP5 close (default)<br />

open<br />

JP6 close (default)<br />

open<br />

JP7 open (default)<br />

close<br />

debug<br />

normal operation<br />

normal operation<br />

reserved<br />

USB<br />

RS-232<br />

Note: JP7 must not be set in combination with JP4 and JP5<br />

Table 3–3: Board LED description<br />

LED Name Function<br />

ERROR On, in case of communication error<br />

READY On, after power-on of board<br />

VDD_Hall equals GND when<br />

Vsup is switched off<br />

VDD_Hall is floating when<br />

Vsup is switched off<br />

normal operation<br />

only for LIN Bus applications<br />

normal operation<br />

only for LIN Bus applications<br />

normal operation<br />

only for LIN bus applications<br />

PCCOM On, in case of communication between PC and <strong>HAL</strong>-<br />

APB<br />

<strong>HAL</strong>_RD Telegram on VOUT<br />

<strong>HAL</strong>_PR reserved<br />

<strong>HAL</strong>_WR Telegram high level on Hall VDD<br />

<strong>HAL</strong>_ON Hall VDD on<br />

10 April 16, 2010; APN000055_001EN Micronas


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

3.2. <strong>HAL</strong> Interface Connector<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Depending on the sensor type, up to two sensors can be connected to the board. For<br />

this purpose, a 6-pin connector <strong>HAL</strong>1/2 is provided. Alternatively, one Hall Sensor can<br />

be inserted in the 3-pin socket <strong>HAL</strong> beneath the connector <strong>HAL</strong>1/2 (only available for<br />

boards without housing).<br />

The pins of this socket are connected parallel to pins VDD=1/4, GND=2/5,<br />

Sensor1_OUT=3, Sensor2_OUT=6 of the connector <strong>HAL</strong>1/2. The male plug (modular<br />

RJ-12, OST (MMJ) coding) corresponding to the fawn connector <strong>HAL</strong>1/2 can be<br />

ordered from every electronics store. The pinning of the interface is described in<br />

Table 3–4.<br />

Table 3–4: Pinning of the <strong>HAL</strong> interface<br />

Pin No. Description<br />

1 Sensor input<br />

VDD Sensor 1<br />

2 Common Sensor GND<br />

3 Sensor output V OUT/DIO Sensor 1<br />

4 Sensor input<br />

VDD Sensor 2<br />

5 Common Sensor GND<br />

6 Sensor output V OUT/DIO Sensor 2<br />

Fig. 3–5: Modular connector <strong>HAL</strong>1/2, front view<br />

Micronas April 16, 2010; APN000055_001EN 11


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Table 4–5: Board conditions<br />

4. Specification<br />

4.1. Recommended Operating Conditions<br />

All voltages are referenced to GND (-VB pin at X1 = GND at X2)<br />

Symbol Parameter Connector Limit Values Unit Test Conditions<br />

4.2. Characteristics<br />

Min. Typ. Max.<br />

ISUP Supply Current X2 - 180 - mA<br />

V SUP Supply Voltage X2 16 18 20 V<br />

C L Load Capacitance <strong>HAL</strong>1/2 - - 100 nF<br />

Table 4–6: Board characteristics<br />

All voltages are referenced to GND (-VB pin at X1 = GND at X2)<br />

Symbol Parameter Connector Limit Values Unit Test Conditions<br />

Min. Typ. Max.<br />

I SUP_<strong>HAL</strong> Output Load Current <strong>HAL</strong>1/2 - - 40 mA Supply current per<br />

device<br />

V OUT_<strong>HAL</strong><br />

I DD_<strong>HAL</strong>_th<br />

Output Voltage of Hall<br />

Device<br />

Current Level Threshold<br />

(Biphase in Two-Wire)<br />

V DD_<strong>HAL</strong>_NORM NORM Level of <strong>HAL</strong> Supply<br />

Voltage<br />

V DD_<strong>HAL</strong>_LOW<br />

V DD_<strong>HAL</strong>_HIGH<br />

LOW Level of <strong>HAL</strong> Supply<br />

Voltage<br />

HIGH Level of <strong>HAL</strong> Supply<br />

Voltage<br />

<strong>HAL</strong>1/2 0<br />

0<br />

- 5<br />

Note: The voltage levels and the current threshold on the two-wire interface are<br />

trimmed by the manufacturer. If any of the levels listed are found to be outside<br />

the specification limits, please contact the manufacturer or the Application Support<br />

Sensors Team.<br />

12 April 16, 2010; APN000055_001EN Micronas<br />

18<br />

V<br />

V<br />

Standard configuration<br />

(default)<br />

LIN configuration<br />

only!<br />

<strong>HAL</strong> 1/2 11.3 11.8 tbd mA One device with twowire<br />

interface connected<br />

with <strong>HAL</strong>1<br />

<strong>HAL</strong> 1/2 4.9 5 5.1 V<br />

<strong>HAL</strong> 1/2 5.4 5.5 5.6 V<br />

<strong>HAL</strong> 1/2 7.9 8.0 8.1 V


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

5. USB Driver Installation<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Note: When using the serial cable you do not need to install this drivers. They are only<br />

necessary for connecting the Application Board <strong>HAL</strong>-APB V1.3 via USB cable to<br />

the PC.<br />

5.1. Deinstalling USB D2xx Drivers<br />

For using the FTDI VCP drivers you first need to remove the FTDI D2xx drivers. Therefore<br />

start the Control Panel on your PC and double-click the “Add or Remove Programs“<br />

Icon.<br />

Fig. 5–6: Control Panel<br />

Scroll to the entry FTDI FTD2xx USB Drivers and press the Change/Remove Button.<br />

Unplug the Application Board <strong>HAL</strong>-APB V1.3 and click Continue. The D2xx Drivers will<br />

be removed automatically.<br />

Micronas April 16, 2010; APN000055_001EN 13


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Fig. 5–7: FTDI uninstaller dialog<br />

5.2. Installing the USB VCP Drivers<br />

Plug in the Application Board <strong>HAL</strong>-APB V1.3 (Power supply also connected). The<br />

Found new Hardware Wizard starts.<br />

Fig. 5–8: Hardware wizard<br />

Select Install from a specific location (Advanced).<br />

14 April 16, 2010; APN000055_001EN Micronas


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

Fig. 5–9: Driver location dialog<br />

Select Don’t search I will choose the driver to install.<br />

Fig. 5–10: Selection of hardware type<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Select some kind of device (e.g. Disk drives) to get the next window.<br />

Micronas April 16, 2010; APN000055_001EN 15


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Fig. 5–11: Have Disk... dialog<br />

Please, press the Have Disk... button.<br />

Fig. 5–12: Browsing to driver location<br />

Browse to the location, where the VCP drivers are stored (e.g. CD:\USB-Drivers\...)<br />

and click Open.<br />

Proceed with Ok and next until the wizard finishes.<br />

Note: Sometimes the installer repeats the whole procedure. If this happens please do<br />

the same as explained above again.<br />

16 April 16, 2010; APN000055_001EN Micronas


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

6. Board Functions<br />

6.1. Serial Command Interpreter<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

This board provides a serial command interpreter for the interaction with a PC, connected<br />

via USB or RS232.<br />

The serial communication protocol applies a software handshake:<br />

– The PC acts as a master, the <strong>HAL</strong>-APB V1.3 as slave,<br />

– The <strong>HAL</strong>-APB V1.3 responds to each master COMMAND frame with a RESPONSE<br />

frame.<br />

6.1.1. Serial Interface Configuration<br />

When using a hyperterminal communication please set the following parameters.<br />

Table 6–7: parameter settings of serial interface<br />

Parameter Value<br />

Bits per second 9600<br />

Data bits 8<br />

Parity Even<br />

Stop bits 1<br />

Flow control none<br />

6.1.2. Definition of the COMMAND Frame<br />

The command frame is of variable length. There are basically two types of commands:<br />

1. for board configuration<br />

2. for communication with connected Hall device<br />

The command string has to end with (ASCII character 0x0D), optionally with<br />

(ASCII characters 0x0D, 0x0A).<br />

Micronas April 16, 2010; APN000055_001EN 17


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Table 6–8: Available commands<br />

Command Code Explanation<br />

READ<br />

<strong>HAL</strong> <strong>28xy</strong><br />

<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>3625</strong><br />

WRITE<br />

<strong>HAL</strong> <strong>28xy</strong><br />

<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>3625</strong><br />

6.1.3. Definition of the RESPONSE Frame<br />

The response frame consists of 7...10 characters plus 1 finishing <br />

:.... <br />

ST is non-zero in case of errors (see Table 6–9)<br />

The Rx-characters contain the received data depending on the command (see devicedependent<br />

command lists in section 9, 10, ...).<br />

6.1.4. Analog Measurements<br />

Its also possible to measure analog voltages, as the <strong>HAL</strong>_VDD or the <strong>HAL</strong>_VOUT with<br />

the ADC of the <strong>HAL</strong>-APB. The <strong>HAL</strong>_OUT is only correctly measurable when <strong>HAL</strong>_VDD<br />

equals 5 V.<br />

Example<br />

ftvdl0 (set VDD to 5 V)<br />

ftana1 (measure <strong>HAL</strong>_VDD)<br />

ftana2 (measure <strong>HAL</strong>_VOUT)<br />

V DD = DATA / 1024 x 3 x 5V<br />

V OUT = DATA / 1024 x 5V<br />

DATA is measured by ftana command as explained in Table 7–11.<br />

18 April 16, 2010; APN000055_001EN Micronas<br />

2<br />

1<br />

3<br />

6<br />

read a register<br />

write a register


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

6.1.5. Error Codes<br />

Table 6–9: Error codes<br />

STATUS Error<br />

0 no error<br />

1 Biphase-M: ACK error<br />

2 Biphase-M: data read error<br />

3 Biphase-M: CAPCOM<br />

4 Biphase-M TPROG select error<br />

5 ADC error:<br />

supply voltage level out of spec<br />

6 clock off error<br />

7 Biphase-M: PROG ACK error<br />

8 reserved<br />

9 reserved<br />

10 (0xA) division by zero error<br />

11 (0xB) reserved<br />

12 (0xC) CRC check error<br />

13 (0xD) data format error<br />

14 (0xE) unspecified system error<br />

15 (0xF) invalid command<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Micronas April 16, 2010; APN000055_001EN 19


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Table 7–11: Board configuration<br />

7. Board Mode Settings<br />

7.1. Board Operation Modes<br />

In order to meet the different requirements of the various Hall devices, the board can<br />

be run in different operation modes. When a particular device is used, the corresponding<br />

board mode has to be selected first. The mode list can be displayed by sending the<br />

board command “?m”.<br />

Table 7–10: Board modes<br />

Mode Description<br />

8 <strong>HAL</strong> 2810 – LIN Mode<br />

9 <strong>HAL</strong> 2830/50 – Biphase Mode<br />

A <strong>HAL</strong> <strong>1820</strong> – 3-wire Mode<br />

<strong>HAL</strong> <strong>3625</strong> – 3-wire Mode<br />

C <strong>HAL</strong> <strong>3625</strong> – Biphase DIO<br />

7.2. Board Configuration Commands<br />

The board configuration commands shall be used to<br />

– select the board mode<br />

– set/read configuration data like the bit time or firmware version<br />

– control the power supply VDD_<strong>HAL</strong> of the connected sensor<br />

Action Command Parameter Remarks<br />

get firmware version ?v return :[Version] firmware release version<br />

Example<br />

=> ?v<br />

smA<br />

vho1<br />


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

Table 7–11: Board configuration<br />

Action Command Parameter Remarks<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Switch VDD_<strong>HAL</strong> off vho0 returnvalue: :00000 switch off <strong>HAL</strong> Supply voltage<br />

(default 5 V; see voltage levels for details)<br />

Example<br />

=> vho0<br />

ftana1<br />

ftana2<br />


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

8. Programming Interface<br />

8.1. Bit Definition<br />

Note: The following description is only valid fo Biphase-M communication but not for<br />

LIN mode!<br />

In Biphase-M Programming Mode the sensor is addressed by modulating a serial<br />

telegram on the sensors supply or output voltage. The sensor answers with a modulation<br />

of the output voltage.<br />

A logical “0“ is coded as no level change within the bit time. A logical “1“ is coded as a<br />

level change of typically 50% of the bit time. After each bit, a level change occurs (see<br />

Fig. 8–13).<br />

The serial telegram is used to transmit the EEPROM content, error codes and digital<br />

values of the magnetic field from and to the sensor.<br />

Fig. 8–13: Definition of logical 0 and 1 bit<br />

22 April 16, 2010; APN000055_001EN Micronas


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

8.2. Telegram Parameters<br />

Table 8–12: Telegram parameters (all voltages are referenced to GND)<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Symbol Parameter Pin No. Limit Values Unit<br />

V DDL<br />

V DDH<br />

V DDProgram<br />

t p0<br />

Supply Voltage for Low Level<br />

during Programming through<br />

Sensor V DD Pin<br />

Supply Voltage for High Level<br />

during Programming through<br />

Sensor V DD Pin<br />

VDD Voltage for EEPROM programming<br />

(after PROG and<br />

ERASE)<br />

Bit time if command send to the<br />

sensor<br />

Min. Typ. Max.<br />

1 5.8 6.3 6.6 V<br />

1 6.8 7.3 7.8 V<br />

1 5 5.5 6.5 V<br />

1 - 1024 - µs<br />

t pOUT Bit time for sensor answer 3 - 1024 - µs<br />

t PROG Programming time for EEPROM - - 2 - ms<br />

Micronas April 16, 2010; APN000055_001EN 23


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

command structure<br />

8.3. Command Structures of Protocol<br />

COM: command bit<br />

ADR: address bit<br />

check: command and address check bit<br />

dummy: dummy bit (always 0)<br />

Two-Wire Mode<br />

WRITE, ERASE,<br />

PROG<br />

commands<br />

sensor input<br />

(VDD mod.)<br />

sensor output<br />

(IDD mod.)<br />

READV, READN<br />

commands<br />

sensor input<br />

(VDD mod.)<br />

sensor output<br />

(IDD mod.)<br />

Three-Wire Mode / Bidirectional on VOUT<br />

WRITE, ERASE,<br />

PROG<br />

commands<br />

sensor I/O<br />

(VOUT) READV, READN<br />

commands<br />

sensor I/O<br />

(VOUT) SYNC<br />

COM2<br />

COM1<br />

COM0<br />

ADR4<br />

SYNC<br />

COM2<br />

COM1<br />

COM0<br />

ADR4<br />

DAT15<br />

DAT15<br />

SYNC: start bit (always 0)<br />

DAT: data bit<br />

CRC: CRC bit<br />

ADR3<br />

ADR2<br />

ADR1<br />

ADR0<br />

parity<br />

dummy 0<br />

ADR3<br />

ADR2<br />

ADR1<br />

ADR0<br />

parity<br />

DAT13<br />

DAT13<br />

dummy 0<br />

ACK: acknowledge<br />

DAT15<br />

DAT14<br />

DAT13<br />

DAT12<br />

DAT11<br />

DAT10<br />

DAT9<br />

DAT8<br />

DAT7<br />

DAT6<br />

DAT5<br />

DAT4<br />

DAT3<br />

DAT2<br />

DAT1<br />

: master’s output<br />

to sensor’s OUTpin<br />

is hiZ<br />

DAT0<br />

CRC3<br />

CRC2<br />

24 April 16, 2010; APN000055_001EN Micronas<br />

ACK<br />

CRC1<br />

CRC0<br />

SYNC<br />

dummy 0<br />

COM2<br />

COM1<br />

DAT14<br />

COM0<br />

ADR4<br />

DAT12<br />

ADR3<br />

DAT11<br />

ADR2<br />

DAT10<br />

ADR1<br />

DAT9<br />

SYNC<br />

ADR0<br />

DAT8<br />

COM2<br />

parity<br />

DAT7<br />

COM1<br />

DAT6<br />

COM0<br />

DAT15<br />

DAT5<br />

ADR4<br />

DAT14<br />

DAT4<br />

ADR3<br />

DAT13<br />

DAT3<br />

ADR2<br />

DAT12<br />

DAT2<br />

ADR1<br />

DAT11<br />

DAT1<br />

ADR0<br />

DAT10<br />

DAT0<br />

parity<br />

DAT9<br />

CRC3<br />

DAT8<br />

CRC2<br />

DAT7<br />

CRC1<br />

dummy 0<br />

DAT6<br />

CRC0<br />

DAT5<br />

DAT14<br />

DAT4<br />

DAT3<br />

DAT12<br />

DAT2<br />

DAT1<br />

DAT11<br />

DAT10<br />

DAT0<br />

DAT9<br />

CRC3<br />

DAT8<br />

CRC2<br />

DAT7<br />

CRC1<br />

DAT6<br />

CRC0<br />

DAT5<br />

DAT4<br />

DAT3<br />

DAT2<br />

ACK<br />

DAT1<br />

DAT0<br />

CRC3<br />

CRC2<br />

CRC1<br />

CRC0


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

command structure -2-<br />

COM: command bit<br />

ADR: address bit<br />

check: command and address check bit<br />

dummy: dummy bit (always 0)<br />

sensor input<br />

(VDD mod.)<br />

sensor output<br />

(VDD mod.)<br />

SYNC<br />

COM2<br />

COM1<br />

COM0<br />

ADR4<br />

SYNC<br />

COM2<br />

COM1<br />

COM0<br />

dummy 0<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Note: In case of <strong>HAL</strong><strong>1820</strong> communication the last edge of CRC0 will finish on analog<br />

voltage level!<br />

8.4. Locking of the Sensor<br />

SYNC: start bit (always 0)<br />

DAT: data bit<br />

CRC: CRC bit<br />

Three-Wire Mode (Biphase-In = VDD / Biphase-Out = VOUT)<br />

WRITE, ERASE,<br />

PROG<br />

commands<br />

READV, READN<br />

commands<br />

sensor input<br />

(VDD mod.)<br />

sensor output<br />

(VDD mod.)<br />

ADR4<br />

ADR3<br />

ADR2<br />

ADR1<br />

ADR0<br />

parity<br />

ADR3<br />

ADR2<br />

ADR1<br />

DAT15<br />

DAT14<br />

ADR0<br />

DAT13<br />

dummy 0<br />

parity<br />

ACK: acknowledge<br />

DAT15<br />

DAT14<br />

DAT13<br />

DAT12<br />

DAT11<br />

DAT10<br />

DAT9<br />

DAT8<br />

DAT7<br />

DAT6<br />

DAT5<br />

DAT4<br />

DAT3<br />

DAT2<br />

DAT1<br />

DAT12<br />

DAT11<br />

DAT10<br />

DAT9<br />

DAT8<br />

DAT7<br />

DAT6<br />

DAT5<br />

DAT4<br />

DAT3<br />

DAT2<br />

DAT1<br />

DAT0<br />

CRC3<br />

CRC2<br />

CRC1<br />

CRC0<br />

: master’s output<br />

to sensor’s OUTpin<br />

is hiZ<br />

DAT0<br />

CRC3<br />

CRC2<br />

For production and qualification tests, it is mandatory to set the LOCK bit after final<br />

adjustment and programming. The LOCK function is active after the next power-up of<br />

the sensor.<br />

The success of the LOCK process should be checked by reading the status of the<br />

LOCK bit after locking and/or by an analog check of the sensors output signal.<br />

Electro-static discharges (ESD) may disturb the programming pulses. Please take precautions<br />

against ESD. For the programming during product development and also for<br />

production purposes, a programming tool including hardware and software is available<br />

on request. It is recommended to use the Micronas tool kit for an easy product development.<br />

Micronas April 16, 2010; APN000055_001EN 25<br />

ACK<br />

CRC1<br />

CRC0


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

9. <strong>HAL</strong> <strong>1820</strong><br />

The <strong>HAL</strong> <strong>1820</strong> is a universal magnetic field sensor with a linear output, based on the<br />

Hall effect. It features two different customer modes. In Application Mode the sensor<br />

provides a ratiometric analog output voltage. In Programming Mode it is possible to<br />

change the register settings of the sensor. After a power-up the sensor is always operating<br />

in the Programming Mode (default after delivery from Micronas and as long as the<br />

sensor is not locked). It is switched to Application Mode by setting a certain volatile bit<br />

in the memory of the sensor or by locking the sensor.<br />

9.1. <strong>HAL</strong> <strong>1820</strong> - Board commands<br />

Table 9–13: <strong>HAL</strong> <strong>1820</strong> - Board commands<br />

Note: For general board commands see Table 7–11 on page 20<br />

Action Command Parameter Remarks<br />

write data to address xxwSTR STR = ADR1 ADR0 DAT3 DAT2<br />

DAT1 DAT0 CRC<br />

address as 2-digit hex No.<br />

data as 4-digit hex No.<br />

CRC checksum as 1-digit hex No.<br />

Example<br />

=> xxw1022223<br />

address as 2-digit hex No.<br />

Example<br />

=> xxr10<br />

xxres<br />


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

9.2. <strong>HAL</strong> <strong>1820</strong> - Programming Examples<br />

BEGIN<br />

Tx:“smA”<br />

Rx:“0:00000”<br />

Tx:“vho1”<br />

Rx:“0:00001”<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Fig. 9–14: Flowchart: initialize <strong>HAL</strong>-APB V1.3 in <strong>HAL</strong> <strong>1820</strong> 3-wire mode<br />

Fig. 9–15: Flowchart: write data 0x0000 to <strong>HAL</strong> <strong>1820</strong> register 0x08<br />

Set Mode <strong>HAL</strong><strong>1820</strong> - 3wire<br />

switch V DD_<strong>HAL</strong> ON<br />

Note: For calculating CRC value refer to the Application Note “<strong>HAL</strong> <strong>1820</strong> programming”<br />

or contact the Application Support Sensors Team.<br />

Micronas April 16, 2010; APN000055_001EN 27<br />

END<br />

BEGIN<br />

Tx:“xxw0800004”<br />

Rx:“0:000000”<br />

END<br />

write to address 0x08<br />

data = 0x0000, crc =4


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

BEGIN<br />

Tx:“xxr10”<br />

Rx:“0:XXXXX”<br />

Fig. 9–16: Flowchart: read data from <strong>HAL</strong> <strong>1820</strong> register 0x10<br />

read register 0x10<br />

28 April 16, 2010; APN000055_001EN Micronas<br />

END


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

10. <strong>HAL</strong> 2810 – Board Commands<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

The <strong>HAL</strong> <strong>28xy</strong> family consists of members with different digital interfaces like LIN,<br />

PWM and SENT. All members within this family can be programmed without any additional<br />

programming pin. Programming is done via LIN frames or Biphase-M telegrams<br />

depending on the family member.<br />

10.1. LIN Interface<br />

Note: For the LIN2.0 Mode, the hardware configuration of the <strong>HAL</strong>-APB V1.3 must be<br />

changed. For details (see Section 3 on page 9).<br />

The LIN Interface on the <strong>HAL</strong>-APB V1.3 is intended to be used with one <strong>HAL</strong> 2810 sensor<br />

as a point to point communication. The firmware comprises a master driver for LIN<br />

protocol 2.0. A slave mode is not implemented.<br />

10.1.1. LIN Interface Mode Configuration<br />

Note: In case of LIN configuration the bus voltage level is equal to V Board (normally<br />

18 V).<br />

For using this mode correct the V DD_<strong>HAL</strong> has to be set to 12V too. This is done by sending<br />

the two commands<br />

=> ftvdp1(setting programming voltage = 12V)<br />

=> vho1(switching on V DD_<strong>HAL</strong> )<br />

10.1.2. Schedule Tables<br />

Different schedule tables allow the use of unconditional frames and diagnostic/configuration<br />

frames. It is possible to switch between 4 schedule tables, where tables 1 to 3<br />

handle unconditional frames and table 4 handles configuration frames. The PIDs given<br />

in the table are the default settings in the <strong>HAL</strong>-APB V1.3 firmware schedule table settings.<br />

The PIDs of the unconditional frames in the schedule tables 1 to 3 can be<br />

changed in the test terminal.<br />

This can be only done while the corresponding table is not scheduled! The number of<br />

response bytes is set to a fixed value for each frame insida a schedule table. If a PID is<br />

changed accordingly, this length is applied to the new PID. Changed PIDs are lost after<br />

powering off the <strong>HAL</strong>-APB V1.3. Each schedule table includes only two LIN frames!<br />

The scheduling time between frames is set to 20 ms (fixed).<br />

Note: To apply more user friendly behaviour, especially for the saving of special PID<br />

settings, the calling application software should implement the preservation of<br />

the PID settings.<br />

Micronas April 16, 2010; APN000055_001EN 29


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Table 10–14:Schedule Tables unconditional frames of the <strong>HAL</strong>-APB V1.3<br />

Table Number Description<br />

ID_Table_1 Default scheduling table after startup. It comprises a “set address“ to<br />

prepare a data access (W/nR=0) and a “Read 2 bytes“ frame. The<br />

address is arbitrary. the default scheduling prevents the sensor from<br />

going into sleep.<br />

Frame1: PID = 0x03 (set address), 3 bytes<br />

Frame2: PID = 0xc4 (Read 2 bytes), 2 bytes<br />

ID_Table_2 This ttable prepares an address to read from (W/nR=0) and performs a<br />

4 byte read from there.<br />

Frame1: PID = 0x03 (set address), 3 bytes<br />

Frame 2: PID = 0x85, (Read 4 bytes), 4 bytes<br />

ID_Table_3 This table comprises a frame to write a byte to an address (W/nR=1). A<br />

second frame includes only a dummy 4 byte read from this address.<br />

Frame1: PID = 0x03 (set address), 3 bytes<br />

Frame2: PID = 0x85 (Read 4 bytes), 4 bytes<br />

Table 10–15:Schedule table configuration frames of the <strong>HAL</strong>-APB V1.3<br />

Table Number Description<br />

ID_Table_4 This table contains configuration frames to schedule.<br />

The two frames are a request (PID60) and a response (PID61 ) frame.<br />

the data bytes to be used with the request frame can be set by the user.<br />

Frame1: PID60 = 0x3C, 8bytes<br />

Frame2: PID61 =0x7D, 8bytes<br />

10.1.3. Error Handling<br />

A global error flag is set if a LIN communication error, e.g. a shorted bus or a disconnected<br />

slave has been detected. There is no certain fault confinement implemented but<br />

only this global error information. The last error information can be kept alive or reset.<br />

30 April 16, 2010; APN000055_001EN Micronas


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

Table 10–16:<strong>HAL</strong> 2810 commands<br />

10.2. <strong>HAL</strong> 2810 (LIN2.0) – Board commands<br />

Note: For general board commands see Table 7–11 on page 20<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

function command parameter remarks<br />

switch schedule table lsstabN N = 1...4<br />

return value: :00000000<br />

set address<br />

= Prepare Data Access<br />

set address<br />

= Write Byte<br />

send single shot of<br />

schedule table 3<br />

lwpaSTR STR = <br />

return value:<br />

:<br />

lwaSTR STR = <br />

return value:<br />

:<br />

lsos - Example<br />

N schedule table No.<br />

board status<br />

Example<br />

=> lsstab1<br />

lwpa3081<br />

=> :00000000<br />

address as 4-digit hex<br />

No.<br />

board status<br />

data as 8-digit hex No.<br />

Example<br />

=> lwa308100<br />

=> :00000000<br />

=> lsos<br />


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Table 10–16:<strong>HAL</strong> 2810 commands<br />

function command parameter remarks<br />

get configuration data<br />

(byte 4...7)<br />

assign PID to schedule<br />

table<br />

lrch return value:<br />

: board status<br />

data as 8-digit hex No.<br />

lspidSTR STR = <br />

return value: :... board status<br />

data as 8-digit hex No.<br />

read error state lrer return value:<br />

: board status<br />

data as 8-digit hex No.<br />

reset error state lrercN N = 0 / 1<br />

return value: :00000000<br />

tbd.<br />

board status<br />

32 April 16, 2010; APN000055_001EN Micronas


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

Application Board <strong>HAL</strong>-APB V1.3<br />

10.3. <strong>HAL</strong> 2810 (LIN2.0) – Programming Examples<br />

BEGIN<br />

Tx:“sm8”<br />

Rx:“0:00008”<br />

Tx:“ftvdp1”<br />

Rx:“0:00001”<br />

Tx:“vho1”<br />

Rx:“0:00001”<br />

Fig. 10–17:Initialize Board for <strong>HAL</strong> 2810 (LIN2.0) Mode<br />

Set Mode <strong>HAL</strong>2810 - 3wire<br />

(ERROR LED is red due<br />

to low VDD_<strong>HAL</strong> )<br />

switch VDD_<strong>HAL</strong> ON<br />

(ERROR LED is off)<br />

Micronas April 16, 2010; APN000055_001EN 33<br />

END<br />

set VDD_<strong>HAL</strong> to 12V<br />

(ERROR LED is red due<br />

to low VDD_<strong>HAL</strong> )


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

BEGIN<br />

Tx:“lsstab0001”<br />

Rx:“0:00000000” Rx:“D:00000000”<br />

if not yet selected if already selected<br />

Tx:“lwpa0002”<br />

Rx:“0:00000000”<br />

Delay 40 ms<br />

Tx:“lrd”<br />

Rx:“0:00000FFA”<br />

END<br />

Fig. 10–18:<strong>HAL</strong> 2810 (LIN2.0) – read 2 bytes<br />

Switch to schedule table #1<br />

Define Address 0x0002<br />

Allow the scheduler to<br />

send the schedule table<br />

Get the data<br />

34 April 16, 2010; APN000055_001EN Micronas


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

BEGIN<br />

Tx:“lsstab0002”<br />

Rx:“0:00000000” Rx:“D:00000000”<br />

if not yet selected if already selected<br />

Tx:“lwpa0002”<br />

Rx:“0:00000000”<br />

Delay 80 ms<br />

Tx:“lrd”<br />

Rx:“0:F04FFFA”<br />

END<br />

Fig. 10–19:<strong>HAL</strong> 2810 (LIN2.0) – read 4 bytes<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Switch to schedule table #2<br />

Define Address 0x0002<br />

Allow the scheduler to<br />

send the schedule table<br />

Get the data<br />

Micronas April 16, 2010; APN000055_001EN 35


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

BEGIN<br />

Tx:“lwa000600”<br />

Rx:“0:00000000”<br />

Tx:“lsos”<br />

Rx:“0:00000000”<br />

Delay 200 ms<br />

Tx:“lrd”<br />

Rx:“0:00008000”<br />

END<br />

Fig. 10–20:<strong>HAL</strong> 2810 (LIN2.0) – write byte<br />

Write Byte 0x00 to Address 0x0006<br />

Execute a single shot of<br />

schedule table #3<br />

Allow the scheduler to<br />

send the schedule table<br />

Get the data<br />

36 April 16, 2010; APN000055_001EN Micronas


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

Application Board <strong>HAL</strong>-APB V1.3<br />

11. <strong>HAL</strong> 2830 / <strong>HAL</strong> 2850 – Board Commands<br />

The <strong>HAL</strong> <strong>28xy</strong> family consists of members with different digital interfaces like LIN,<br />

PWM and SENT. All members within this family can be programmed without any additional<br />

programming pin. Programming of <strong>HAL</strong> 2830 and <strong>HAL</strong> 2850 is done via<br />

Biphase-M telegrams.<br />

11.1. Biphase-M Interface<br />

Note: For the PWM/SENT Mode, the hardware configuration of the <strong>HAL</strong>-APB V1.3<br />

needs to be changed to Biphase-M. For details (see Section 3.1 on page 9).<br />

11.2. <strong>HAL</strong> 2830 / <strong>HAL</strong> 2850 – Board commands<br />

Table 11–17:<strong>HAL</strong> 2830 / <strong>HAL</strong> 2850 commands<br />

Note: For general board commands see Table 7.2 on page 20<br />

function command parameter remarks<br />

read PWM-Period and<br />

Pulsewidth<br />

(only <strong>HAL</strong> 2850)<br />

prN N = 0 / 1<br />

return value:<br />

:<br />

N trigger on falling/rising PWM edge<br />

board status<br />

4digit Period<br />

4digit Pulsewidth<br />

Example<br />

=> pr1 (OP-bit=0)<br />

:0FFB2<br />

Micronas April 16, 2010; APN000055_001EN 37


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Table 11–17:<strong>HAL</strong> 2830 / <strong>HAL</strong> 2850 commands<br />

function command parameter remarks<br />

set base address pxsbSTR STR = <br />

read byte with base<br />

address<br />

returns data from<br />

address to address+1<br />

write byte with base<br />

address<br />

write word with base<br />

address<br />

return value: :000000<br />

pxrbSTR STR = <br />

return value: :<br />

pxwbSTR STR = <br />

return value: :000000<br />

pxwwSTR STR = <br />

return value: :00000000<br />

baseaddress as 4-digit hex No.<br />

checksum<br />

board status<br />

Example<br />

=> pxsb30006<br />

=> :000000<br />

address as 2-digit hex No.<br />

board status<br />

Data as 4-digit hex No.<br />

checksum<br />

Example<br />

=> pxrb00<br />

pxwb00000<br />


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

Application Board <strong>HAL</strong>-APB V1.3<br />

11.3. <strong>HAL</strong> 2830 / <strong>HAL</strong> 2850 – Programming Examples<br />

BEGIN<br />

Tx:“sm9”<br />

Rx:“0:00009”<br />

Tx:“vho1”<br />

Rx:“0:00001”<br />

Fig. 11–21:Initialize Board for <strong>HAL</strong> 2830 / <strong>HAL</strong> 2850 (SENT / fastPWM) Mode<br />

Fig. 11–22:measure PWM duty cycle (only <strong>HAL</strong> 2850!)<br />

Fig. 11–23:<strong>HAL</strong> 2830 / <strong>HAL</strong> 2850 customer mode switch<br />

Set Mode <strong>HAL</strong>2830/<strong>HAL</strong>2850<br />

Biphase-M - 3wire<br />

switch V DD_<strong>HAL</strong> ON<br />

Micronas April 16, 2010; APN000055_001EN 39<br />

END<br />

BEGIN<br />

Tx:“pr1”<br />

Rx:“0:13AE0A00”<br />

END<br />

measure Duty Cycle<br />

pr1 (OP-bit=0)<br />


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

BEGIN<br />

Tx:“pcms”<br />

Rx:“0:000000”<br />

switch <strong>HAL</strong>2830 / <strong>HAL</strong>2850<br />

from Application Mode into<br />

Programming Mode<br />

Fig. 11–24:<strong>HAL</strong> 2830 / <strong>HAL</strong> 2850 read from an address with base address 0<br />

40 April 16, 2010; APN000055_001EN Micronas<br />

END<br />

BEGIN<br />

Tx:“pxsb30006”<br />

Rx:“0:000000”<br />

Tx:“pxrb00”<br />

Rx:“0:D4537”<br />

END<br />

set base address to 0x3000<br />

(calculated crc = 6)<br />

read from address 0x00<br />

with base address 0x3000<br />

(data=D453, crc=7)


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

BEGIN<br />

Tx:“pxsb30006”<br />

Rx:“0:000000”<br />

Tx:“pxrb00”<br />

Rx:“0:D4537”<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

set base address to 0x3000<br />

(calculated crc = 6)<br />

Fig. 11–25:<strong>HAL</strong> 2830 / <strong>HAL</strong> 2850 read from any address with specified base address<br />

Fig. 11–26:<strong>HAL</strong> 2830 / <strong>HAL</strong> 2850 write byte to any address with specified base<br />

address<br />

Micronas April 16, 2010; APN000055_001EN 41<br />

END<br />

BEGIN<br />

Tx:“pxsb30006”<br />

Rx:“0:000000”<br />

Tx:“pxwb00000”<br />

Rx:“0:000000”<br />

END<br />

read from address 0x00<br />

with base address 0x3000<br />

(data=D453, crc=7)<br />

set base address to 0x3000<br />

(calculated crc = 6)<br />

write 0x00 to address 0x00<br />

with base address 0x3000<br />

(crc=0)


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

BEGIN<br />

Tx:“pxsb30006”<br />

Rx:“0:000000”<br />

Tx:“pxww0000000”<br />

Rx:“0:000000”<br />

set base address to 0x3000<br />

(calculated crc = 6)<br />

Fig. 11–27:<strong>HAL</strong> 2830 / <strong>HAL</strong> 2850 write word to any address with specified base<br />

address<br />

42 April 16, 2010; APN000055_001EN Micronas<br />

END<br />

write 0x0000 to address 0x00<br />

with base address 0x3000<br />

(crc=0)


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

Table 12–18:<strong>HAL</strong> <strong>3625</strong> commands<br />

12. <strong>HAL</strong> <strong>3625</strong> – Board Commands<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

The <strong>HAL</strong> <strong>3625</strong> is a member of a new generation of Hall-effect sensors with vertical hall<br />

plate technology. With the new vertical Hall technology it is possible to directly measure<br />

rotation angles in a range of 0° to 360° with simple magnetic circuits. The magnetic<br />

field of a small magnet (diametrical magnetization) rotating above the sensor can be<br />

measured contactlessly.<br />

12.1. <strong>HAL</strong> <strong>3625</strong> – Board commands<br />

Note: For general board commands see Table 7–11 on page 20<br />

Action Command Parameter Remarks<br />

write data to address xxwSTR STR = ADR1 ADR0 DAT3 DAT2 DAT1<br />

DAT0 CRC<br />

address as 2-digit hex No.<br />

data as 4-digit hex No.<br />

CRC checksum as 1-digit hex No.<br />

Example<br />

=> xxw1022223<br />


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Table 12–18:<strong>HAL</strong> <strong>3625</strong> commands<br />

Action Command Parameter Remarks<br />

read data from<br />

address<br />

xxrSTR STR = address as 2-digit hex No.<br />

Example<br />

=> xxr10<br />

xxsb111234A<br />


APPLICATION NOTE <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong><br />

12.2. <strong>HAL</strong> <strong>3625</strong> – Programming Examples<br />

Tx:“smA”<br />

Rx:“0:00000”<br />

Fig. 12–28:<strong>HAL</strong> <strong>3625</strong> Board startup<br />

BEGIN<br />

Tx:“vho1”<br />

Rx:“0:00001”<br />

Fig. 12–29:<strong>HAL</strong> <strong>3625</strong> write word to address<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Set Mode <strong>HAL</strong><strong>3625</strong> - 3wire<br />

switch V DD_<strong>HAL</strong> ON<br />

Micronas April 16, 2010; APN000055_001EN 45<br />

END<br />

BEGIN<br />

Tx:“xxw0800004”<br />

Rx:“0:000000”<br />

END<br />

write to address 0x08<br />

data = 0x0000, crc =4


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

Fig. 12–30:<strong>HAL</strong> <strong>3625</strong> – read register<br />

Fig. 12–31:<strong>HAL</strong> <strong>3625</strong> – set base address<br />

Tx:“xxr18”<br />

Rx:“0:XXXXX”<br />

BEGIN<br />

BEGIN<br />

read register 0x18<br />

46 April 16, 2010; APN000055_001EN Micronas<br />

END<br />

Tx:“xxsb001234A”<br />

Rx:“0:00000”<br />

END<br />

set base address 0x1234


<strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> APPLICATION NOTE<br />

Application Board <strong>HAL</strong>-APB V1.3<br />

13. Application Note History<br />

1. <strong>HAL</strong> <strong>1820</strong>, <strong>HAL</strong> <strong>28xy</strong>, <strong>HAL</strong> <strong>3625</strong> Application Board <strong>HAL</strong>-APB V1.3, April 16, 2010;<br />

APN000055_001EN. First release of the application note.<br />

Micronas GmbH<br />

Hans-Bunte-Strasse 19 ⋅ D-79108 Freiburg ⋅ P.O. Box 840 ⋅ D-79008 Freiburg, Germany<br />

Tel. +49-761-517-0 ⋅ Fax +49-761-517-2174 ⋅ E-mail: docservice@micronas.com ⋅ Internet: www.micronas.com<br />

47 April 16, 2010; APN000055_001EN Micronas

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!