24.04.2013 Views

Digby Symons - Blade

Digby Symons - Blade

Digby Symons - Blade

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ENGINEERING TRIPOS PART IB<br />

PAPER 8 – ELECTIVE (2)<br />

Engineering for Renewable Energy Systems<br />

Dr. <strong>Digby</strong> <strong>Symons</strong><br />

Wind Turbine <strong>Blade</strong> Design<br />

Student Handout – These notes contain gaps to be filled in<br />

April 2012


CONTENTS<br />

1 Introduction ............................................................................................................. 3<br />

2 Wind Turbine <strong>Blade</strong> Aerodynamics .................................................................. 4<br />

2.1 Aerofoil Aerodynamics .................................................................................... 4<br />

2.2 Wind Turbine <strong>Blade</strong> Kinematics..................................................................... 7<br />

3 <strong>Blade</strong> Element Momentum Theory .................................................................. 12<br />

3.1 Momentum changes ...................................................................................... 12<br />

3.2 <strong>Blade</strong> forces .................................................................................................... 13<br />

3.3 Induction factors ............................................................................................. 14<br />

3.4 Iterative procedure ......................................................................................... 15<br />

4 Optimum Performance of a Wind Turbine..................................................... 19<br />

4.1 Turbine Power................................................................................................. 19<br />

4.2 Optimal Induction Factors............................................................................. 19<br />

4.3 Dependency of Power on Tip Speed Ratio................................................ 20<br />

5 <strong>Blade</strong> Loading....................................................................................................... 21<br />

5.1 Aerodynamic Loading.................................................................................... 21<br />

5.2 Centrifugal Loading........................................................................................ 23<br />

5.3 Self Weight loading ........................................................................................ 24<br />

5.4 Combined Loading......................................................................................... 25<br />

5.5 Storm Loading ................................................................................................ 26<br />

More detailed coverage of the material in this handout can be found in various<br />

books, e.g.<br />

Aerodynamics of Wind Turbines, Hansen M.O.L. 2000<br />

Wind Energy Explained, Manwell J.F., McGowan J.G & Rogers A.L. 2002<br />

2


1 INTRODUCTION<br />

1.1.1 Aim<br />

Preliminary design of a wind turbine:<br />

1.1.2 Wind turbine type<br />

•<br />

•<br />

•<br />

Horizontal axis wind turbine (HAWT) with 3 blade upwind rotor – the<br />

“Danish concept”:<br />

1.1.3 Load cases<br />

We will consider two load cases:<br />

Fig. 1<br />

1) Normal operation – continuous loading<br />

• Aerodynamic, centrifugal and self-weight loading<br />

•<br />

•<br />

2) Extreme wind loading – storm loading with rotor stopped<br />

•<br />

3


2 WIND TURBINE BLADE AERODYNAMICS<br />

2.1 Aerofoil Aerodynamics<br />

2.1.1 Lift, drag and angle of attack<br />

α<br />

2.1.2 Lift and drag coefficients<br />

V<br />

c<br />

Fig. 2<br />

Define non-dimensional lift and drag coefficients<br />

(1)<br />

4


2.1.3 Variation of lift and drag coefficients with angle of attack<br />

How does lift and drag vary with angle of attack α ?<br />

L C C ,<br />

D<br />

Fig. 3<br />

Below stall a good approximation is:<br />

Stall:<br />

Fig. 4<br />

2.1.4 Application of 2D theory to wind turbines<br />

C L<br />

C D<br />

• Tip leakage means flow is not purely two dimensional<br />

• Wind turbine blades are spinning with an angular velocity ω<br />

• The angle of attack depends on the relative wind velocity<br />

direction.<br />

α<br />

(2)<br />

5


2.1.5 Example aerofoil shape used in wind turbines<br />

Lift and drag coefficients for the NACA 0012 symmetric aerofoil<br />

(Miley, 1982)<br />

CD<br />

CL<br />

Fig. 5<br />

Fig. 6<br />

6


2.2 Wind Turbine <strong>Blade</strong> Kinematics<br />

2.2.1 <strong>Blade</strong> rotation<br />

V<br />

θ<br />

ϖ r<br />

Fig. 7<br />

Relative<br />

wind<br />

Fig. 8a Fig. 8b<br />

α<br />

θ<br />

7


2.2.2 Wake rotation<br />

Axial velocity<br />

V 0<br />

0<br />

Tangential velocity<br />

0<br />

R<br />

V ( 1−<br />

a)<br />

0<br />

Rotor<br />

plane<br />

Fig. 9<br />

V ( 1−<br />

2a)<br />

0<br />

8


2.2.3 Annular control volume<br />

Wake rotates in the opposite sense to the blade rotation ω<br />

V V ( 1−<br />

a)<br />

0<br />

2.2.4 Wind and blade velocities<br />

0<br />

r<br />

Fig. 10<br />

Induced wind velocities seen by blade + blade motion<br />

V ( 1−<br />

a)<br />

0<br />

ϖ r a′<br />

Local twist angle of blade = θ<br />

Fig. 11<br />

R<br />

ϖ<br />

V ( 1−<br />

2a)<br />

0<br />

9


2.2.5 <strong>Blade</strong> relative motion and lift and drag forces<br />

Local angle of attack = α<br />

V ( 1−<br />

a)<br />

0<br />

θ<br />

Fig. 12<br />

Relative wind speed Vrel has direction φ = α + θ<br />

where sinφ = V0(<br />

1−<br />

a)<br />

V rel<br />

and cosφ = ωr(<br />

1+<br />

a′<br />

)<br />

V rel<br />

F L and F D are aligned to the direction of<br />

Obtain C L and C D for α = φ −θ<br />

from table or graph for aerofoil used<br />

Vrel<br />

(3)<br />

10


2.2.6 Resolve forces into normal and tangential directions<br />

V rel<br />

Fig. 13<br />

We can resolve lift and drag forces into forces normal and tangential<br />

to the rotor plane:<br />

We can normalize these forces to obtain force coefficients:<br />

Hence:<br />

C N = CL<br />

cosφ + CD<br />

sinφ<br />

CT = CL<br />

sinφ − CD<br />

cosφ<br />

F D<br />

F L<br />

(4)<br />

(5)<br />

(6)<br />

11


3 BLADE ELEMENT MOMENTUM THEORY<br />

Split the blade up along its length into elements.<br />

Use momentum theory to equate the momentum changes in the air<br />

flowing through the turbine with the forces acting upon the blades.<br />

Pressure distribution along curved streamlines enclosing the wake<br />

does not give an axial force component.<br />

(For proof see one-dimensional momentum theory, e.g. Hansen)<br />

3.1 Momentum changes<br />

V V ( 1−<br />

a)<br />

ϖ r a′<br />

0<br />

0<br />

r<br />

Fig. 14<br />

R<br />

ϖ<br />

V ( 1−<br />

2a)<br />

Thrust from the rotor plane on the annular control volume is δ N<br />

δ N = m&<br />

V − u ) = 2πrρu(<br />

V − u ) δr<br />

( 0 1<br />

0 1<br />

Torque from rotor plane on this control volume is δ T<br />

δT = m&<br />

ru = 2m & ϖr<br />

a′<br />

θ<br />

2<br />

0<br />

2 ϖr<br />

a′<br />

(7)<br />

(8)<br />

12


3.2 <strong>Blade</strong> forces<br />

Now equate the momentum changes in the flow to the forces on the<br />

blades:<br />

3.2.1 Normal forces<br />

2<br />

4π<br />

rρV a(<br />

1 a)<br />

δr<br />

0 − =<br />

2<br />

1 V a<br />

= Bρ 0 ( 1−<br />

)<br />

cCNδr<br />

2 2<br />

sin φ<br />

1 ( 1−<br />

a)<br />

Therefore: 4 πra<br />

= B cC<br />

2 N<br />

2 sin φ<br />

Define the rotor solidity: (10)<br />

Hence: (11)<br />

3.2.2 Tangential forces<br />

3 =<br />

4π r ρV0<br />

( 1−<br />

a)<br />

ωa′<br />

δr<br />

2<br />

V ( 1−<br />

a)<br />

rω(<br />

1+<br />

a )<br />

= rBρ cCTδr<br />

2 sinφ<br />

cosφ<br />

1 0 ′<br />

1 ( 1+<br />

a′<br />

)<br />

Therefore: 4 πr<br />

a′<br />

= B cCT<br />

2 sinφ<br />

cosφ<br />

(9)<br />

(12)<br />

Use the rotor solidity σ : (13)<br />

13


3.3 Induction factors<br />

These equations can be rearranged to give the axial and angular<br />

induction factors as a function of the flow angle.<br />

Axial induction factor:<br />

Angular induction factor: (14)<br />

However, recall that the flow angleφ is given by (3):<br />

( 1−<br />

a)<br />

V<br />

tanφ<br />

=<br />

0<br />

( 1+<br />

a′<br />

) ωr<br />

Because the flow angle φ depends on the induction factors a and a'<br />

these equations must be solved iteratively.<br />

14


3.4 Iterative procedure<br />

• Choose blade aerofoil section.<br />

• Define blade twist angle θ and chord length c as a function of<br />

radius r.<br />

• Define operating wind speed V0 and rotor angular velocity ω .<br />

For a particular annular control volume of radius r :<br />

1. Make initial choice for a and a’ , typically a = a’ = 0.<br />

2. Calculate the flow angle φ (3).<br />

3. Calculate the local angle of attack α = φ −θ<br />

.<br />

4. Find C L and C D for α from table or graph for the aerofoil used.<br />

5. Calculate and<br />

N<br />

C T<br />

C (6).<br />

6. Calculate a and a’ (14).<br />

7. If a and a’ have changed by more than a certain tolerance<br />

return to step 2.<br />

8. Calculate the local forces on the blades (7) & (8).<br />

3.4.1 Example wind turbine<br />

<strong>Blade</strong> element theory has been applied to an example 42 m diameter<br />

wind turbine with the parameters below. Each element has a radial<br />

thickness δ r = 1m.<br />

Incident wind speed V 0<br />

8 m/s<br />

Angular velocity ϖ 30 rpm<br />

<strong>Blade</strong> tip radius R 21 m<br />

Tip speed ratio λ = ωR<br />

/V0<br />

Number of blades B 3<br />

Air density ρ 1.225 kg/m 3<br />

15


<strong>Blade</strong> shape (chord c and twist θ ) are based on the Nordtank NTK<br />

500/41 wind turbine (see Hansen, page 62) and are plotted below<br />

(Figs. 15 & 16).<br />

Chord c (m)<br />

<strong>Blade</strong> twist angle (deg)<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20 22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Radius r (m)<br />

Fig. 15: Chord c<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20 22<br />

r (m)<br />

Fig. 16: <strong>Blade</strong> twist angle θ<br />

16


3.4.2 Results of BEM analysis<br />

Axial and angular induction factors a , a’<br />

Induction factors a , a'<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

a<br />

a'<br />

0.00<br />

0 2 4 6 8 10 12 14 16 18 20 22<br />

r (m)<br />

Fig. 17<br />

Flow angle φ and local angle of attack α = φ −θ<br />

Angle (deg)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20 22<br />

r (m)<br />

Fig. 18<br />

17


Normal and tangential<br />

N<br />

Forces per unit length (N/m)<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

F T<br />

F forces on blade<br />

0<br />

0 2 4 6 8 10 12 14 16 18 20 22<br />

Total power (3 blades)<br />

r (m)<br />

Fig. 19<br />

and therefore the coefficient of performance<br />

FN (N/m)<br />

FT (N/m)<br />

18


4 OPTIMUM PERFORMANCE OF A WIND TURBINE<br />

4.1 Turbine Power<br />

The power provided by an annular control volume can be obtained<br />

from the torque (8) as<br />

3<br />

2<br />

δ P = ϖδT<br />

= 4π<br />

r ρV<br />

( 1−<br />

a)<br />

ω a′<br />

δr<br />

(15)<br />

0<br />

The total turbine power can therefore be found by integrating over the<br />

length R of the blades:<br />

R<br />

∫<br />

2<br />

3<br />

P = 4πρω V ( 1−<br />

a)<br />

a′<br />

r δr<br />

(16)<br />

0<br />

0<br />

We can write this expression in a non-dimensional form as:<br />

λ<br />

8<br />

3<br />

C = ( 1−<br />

) ′<br />

p a a x δx<br />

(17)<br />

∫<br />

2<br />

λ 0<br />

Where λ = ωR<br />

/V0<br />

is the tip speed ratio and x = ωr<br />

/V0<br />

is the local<br />

rotational speed ratio.<br />

4.2 Optimal Induction Factors<br />

For an optimally performing blade the local angle of attack will be<br />

below stall. In this case a and a’ are not independent because,<br />

according to potential flow theory, the total induced velocity must be<br />

perpendicular to the local velocity (see e.g. Hansen 2000) thus<br />

( 1−<br />

a)<br />

V<br />

tanφ<br />

=<br />

0<br />

( 1+<br />

a′<br />

) ωr<br />

which provides the following relationship:<br />

a′ ϖr<br />

= (18)<br />

aV<br />

0<br />

2<br />

x a′<br />

( 1+<br />

a′<br />

) = a(<br />

1−<br />

a)<br />

(19)<br />

To optimize the power we need to maximize ( 1−<br />

a ) a′<br />

(17) and this<br />

requires that<br />

1−<br />

3a<br />

′ =<br />

4a<br />

−1<br />

a (20)<br />

This optimal relationship between the induction factors is plotted<br />

below in Fig. 20. As expected from the Betz limit analysis the<br />

optimum value of a approaches 1/3.<br />

19


1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

a, a' 0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 2 4 6 8 10<br />

Local speed ratio x = ωr<br />

/V0<br />

Fig. 20: Optimal induction factors<br />

4.3 Dependency of Power on Tip Speed Ratio<br />

Substitution of (19) and (20) into (17) provides the dependency of the<br />

power coefficient C p on the tip speed ratio λ (Fig. 21).<br />

27<br />

C<br />

16<br />

p<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 2 4 6 8<br />

Tip speed ratio<br />

λ =<br />

ωR<br />

V<br />

Fig. 21: Turbine efficiency<br />

0<br />

a<br />

a'<br />

10<br />

20


5 BLADE LOADING<br />

5.1 Aerodynamic Loading<br />

Once values of a and a’ have converged the blade loads can be<br />

calculated (9) & (12):<br />

2 2<br />

1 V a<br />

FN<br />

ρ 0 ( 1−<br />

)<br />

=<br />

cC<br />

2 N<br />

2 sin φ<br />

F<br />

T<br />

1 V a ωr<br />

a<br />

ρ 0 ( 1−<br />

) ( 1+<br />

′ )<br />

=<br />

cC<br />

2 sinφ<br />

cosφ<br />

5.1.1 Stresses at blade root<br />

T<br />

Fig. 22<br />

The normal force FN<br />

causes a “flapwise” bending moment at the root<br />

of the blade.<br />

M<br />

N<br />

=<br />

R<br />

∫<br />

F<br />

N<br />

rmin<br />

( r − rmin<br />

) dr<br />

The tangential force F T causes a tangential bending moment at the<br />

root of the blade.<br />

M<br />

T<br />

=<br />

R<br />

∫<br />

F<br />

T<br />

rmin<br />

( r − rmin<br />

) dr<br />

For convenience we will neglect the relatively small twist of the blade<br />

cross section and assume that these bending moments are aligned<br />

with the principal axes of the blade structural cross section. The<br />

maximum tensile stress due to aerodynamic loading is therefore<br />

given by:<br />

21


5.1.2 Deflection of blade tip<br />

dS<br />

FN =<br />

dr<br />

dM<br />

S =<br />

dr<br />

2<br />

d v M<br />

− ≈ κ =<br />

2<br />

dr [ EI ]( r)<br />

Simplified approach:<br />

• Split blade into elements.<br />

Fig. 23<br />

• Assume that for each element the loading FN<br />

and flexural<br />

rigidity EI are constant.<br />

• Find the shear force and bending moment transferred between<br />

each element.<br />

• Use data book deflection coefficients for each element.<br />

• Find the cumulative rotations along the blade.<br />

• Find the cumulative deflections along the blade.<br />

22


5.2 Centrifugal Loading<br />

The large mass of a wind turbine blade and the relatively high angular<br />

velocity can give rise to significant centrifugal stresses in the blade.<br />

Fig. 24<br />

Consider equilibrium of element of blade:<br />

Simplified method:<br />

dFc 2<br />

= −m(<br />

r)<br />

ω r<br />

dr<br />

• Split blade up into elements.<br />

σ c =<br />

Fc ( r)<br />

A(<br />

r)<br />

• Assume each element has a constant cross-section<br />

Fig. 25<br />

23


5.3 Self Weight loading<br />

The bending moment at the blade root due to self weight loading can<br />

dominate the stresses at the blade root. Because the turbine is<br />

rotating the bending moment is a cyclic load with a frequency of<br />

f = ω / 2π<br />

. The maximum self-weight bending moment occurs when a<br />

blade is horizontal.<br />

Fig. 26<br />

Bending moment at root of blade due to self weight<br />

M<br />

sw<br />

=<br />

R<br />

∫<br />

rmin<br />

m(<br />

r)<br />

g(<br />

r − rmin<br />

) dr<br />

where m(r) is the mass of the blade per unit length. This is a<br />

tangential (edge-wise) bending moment and therefore the maximum<br />

bending stress due to self-weight is given by:<br />

σ<br />

M sw b<br />

max, sw =<br />

I NN 2<br />

Simplified method: split blade into elements, assume each element<br />

has uniform self weight.<br />

24


5.4 Combined Loading<br />

σ<br />

M N do<br />

MT<br />

b<br />

max, aero = +<br />

ITT<br />

2 I NN 2<br />

σ c =<br />

σ<br />

Fc ( r)<br />

A(<br />

r)<br />

M sw b<br />

max, sw<br />

I NN 2<br />

=<br />

Fig. 27<br />

Operational maximum stress: σ max = σ max, aero + σ c + σ max, sw<br />

Minimum stress at same location: σ min = σ max, aero + σ c − σ max, sw<br />

25


5.5 Storm Loading<br />

5.5.1 Drag force on blade<br />

<strong>Blade</strong>s parked. Extreme wind speed<br />

1 2<br />

FD ( r)<br />

ρVmaxCD<br />

c(<br />

r)<br />

2<br />

= load per unit length<br />

V max<br />

V max = 50 m/s, c = 1.3m<br />

ρV c<br />

Re = max =<br />

μ<br />

Hence C D =<br />

c<br />

F D<br />

Fig 28<br />

26


5.5.2 Bending moment<br />

Find bending moment at root of blade<br />

= ∫<br />

R<br />

r<br />

M<br />

σ<br />

=<br />

y<br />

M<br />

I<br />

M<br />

σ =<br />

I<br />

min<br />

Ddr rF<br />

= Eκ<br />

do<br />

2<br />

3<br />

3<br />

i<br />

b(<br />

do<br />

− d<br />

I ≈<br />

12<br />

5.5.3 Shear stress<br />

= ∫<br />

R<br />

r<br />

S<br />

min<br />

SA y<br />

q =<br />

c<br />

I<br />

q = τtw<br />

Note:<br />

Ddr F<br />

)<br />

Fig. 29<br />

Fig. 30<br />

High solidity rotor (multi bladed) gives excessive forces on tower<br />

during extreme wind speeds. Therefore use fewer blades.<br />

27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!