24.04.2013 Views

Acute effects of night-time noise exposure on blood pressure in ...

Acute effects of night-time noise exposure on blood pressure in ...

Acute effects of night-time noise exposure on blood pressure in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CLINICAL RESEARCH<br />

Hypertensi<strong>on</strong><br />

<str<strong>on</strong>g>Acute</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong><br />

<strong>blood</strong> <strong>pressure</strong> <strong>in</strong> populati<strong>on</strong>s liv<strong>in</strong>g near airports<br />

Alexandros S. Haralabidis 1 , K<strong>on</strong>stant<strong>in</strong>a Dimakopoulou 1 , Federica Vigna-Taglianti 2 ,<br />

Matteo Giampaolo 3 , Alessandro Borg<strong>in</strong>i 4 , Marie-Louise Dudley 5 ,Göran Pershagen 6 ,<br />

Gösta Bluhm 6 , Danny Houthuijs 7 , Wolfgang Babisch 8 , Manolis Vel<strong>on</strong>akis 9 ,<br />

Klea Katsouyanni 1 *, and Lars Jarup 5 for the HYENA C<strong>on</strong>sortium<br />

1 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Hygiene and Epidemiology, Medical School, Nati<strong>on</strong>al and Kapodistrian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Athens, 75, Mikras Asias Street, Athens 11527, Greece; 2 Envir<strong>on</strong>mental<br />

Epidemiologic Unit, Regi<strong>on</strong>al Agency for Envir<strong>on</strong>mental Protecti<strong>on</strong>, Piedm<strong>on</strong>t Regi<strong>on</strong>, Grugliasco, Italy; 3 Regi<strong>on</strong>al Agency for Envir<strong>on</strong>mental Protecti<strong>on</strong>, Lombardy Regi<strong>on</strong>, Milan,<br />

Italy; 4 Cancer Register and Envir<strong>on</strong>mental Epidemiology Unit, Nati<strong>on</strong>al Cancer Institute, Milan, Italy; 5 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Epidemiology and Public Health, Imperial College L<strong>on</strong>d<strong>on</strong>,<br />

L<strong>on</strong>d<strong>on</strong>, UK; 6 Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Medic<strong>in</strong>e, Karol<strong>in</strong>ska Institutet, Stockholm, Sweden; 7 The Nati<strong>on</strong>al Institute for Public Health and the Envir<strong>on</strong>ment, Bilthoven,<br />

The Netherlands; 8 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Hygiene, Federal Envir<strong>on</strong>mental Agency, Berl<strong>in</strong>, Germany; 9 Laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> Preventi<strong>on</strong>, Nurses School, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Athens,<br />

Athens, Greece<br />

Received 17 September 2007; revised 11 December 2007; accepted 7 January 2008; <strong>on</strong>l<strong>in</strong>e publish-ahead-<str<strong>on</strong>g>of</str<strong>on</strong>g>-pr<strong>in</strong>t 12 February 2008<br />

Aims With<strong>in</strong> the framework <str<strong>on</strong>g>of</str<strong>on</strong>g> the HYENA (hypertensi<strong>on</strong> and <str<strong>on</strong>g>exposure</str<strong>on</strong>g> to <str<strong>on</strong>g>noise</str<strong>on</strong>g> near airports) project we <strong>in</strong>vestigated the<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> short-term changes <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> or <strong>in</strong>door <str<strong>on</strong>g>noise</str<strong>on</strong>g> levels <strong>on</strong> <strong>blood</strong> <strong>pressure</strong> (BP) and heart rate (HR)<br />

dur<strong>in</strong>g <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> sleep <strong>in</strong> 140 subjects liv<strong>in</strong>g near four major European airports.<br />

.....................................................................................................................................................................................<br />

Methods N<strong>on</strong>-<strong>in</strong>vasive ambulatory BP measurements at 15 m<strong>in</strong> <strong>in</strong>tervals were performed. Noise was measured dur<strong>in</strong>g the<br />

and results <str<strong>on</strong>g>night</str<strong>on</strong>g> sleep<strong>in</strong>g period and recorded digitally for the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the source <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>noise</str<strong>on</strong>g> event. Exposure variables<br />

<strong>in</strong>cluded equivalent <str<strong>on</strong>g>noise</str<strong>on</strong>g> level over 1 and 15 m<strong>in</strong> and presence/absence <str<strong>on</strong>g>of</str<strong>on</strong>g> event (with LAmax . 35 dB) before each<br />

BP measurement. Random <str<strong>on</strong>g>effects</str<strong>on</strong>g> models for repeated measurements were applied. An <strong>in</strong>crease <strong>in</strong> BP (6.2 mmHg<br />

(0.63–12) for systolic and 7.4 mmHg (3.1, 12) for diastolic) was observed over 15 m<strong>in</strong> <strong>in</strong>tervals <strong>in</strong> which an aircraft<br />

event occurred. A n<strong>on</strong>-significant <strong>in</strong>crease <strong>in</strong> HR was also observed (by 5.4 b.p.m.). Less c<strong>on</strong>sistent <str<strong>on</strong>g>effects</str<strong>on</strong>g> were<br />

observed <strong>on</strong> HR. When the actual maximum <str<strong>on</strong>g>noise</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> an event was assessed there were no systematic differences<br />

<strong>in</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> accord<strong>in</strong>g to the <str<strong>on</strong>g>noise</str<strong>on</strong>g> source.<br />

.....................................................................................................................................................................................<br />

C<strong>on</strong>clusi<strong>on</strong> Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong> elevated subsequent BP measurements were clearly shown. The effect size <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

level appears to be <strong>in</strong>dependent <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>noise</str<strong>on</strong>g> source.<br />

-----------------------------------------------------------------------------------------------------------------------------------------------------------<br />

Keywords Envir<strong>on</strong>mental <str<strong>on</strong>g>noise</str<strong>on</strong>g> † Blood <strong>pressure</strong> † Night-<str<strong>on</strong>g>time</str<strong>on</strong>g> sleep † <str<strong>on</strong>g>Acute</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> † Epidemiological study<br />

Introducti<strong>on</strong><br />

European Heart Journal (2008) 29, 658–664<br />

doi:10.1093/eurheartj/ehn013<br />

Noise, def<strong>in</strong>ed as undesirable sound, is known to be a stress stimulus<br />

that can produce acute <strong>blood</strong> <strong>pressure</strong> (BP) elevati<strong>on</strong> <strong>in</strong><br />

animals 1 and <strong>in</strong> humans <strong>in</strong> laboratory or occupati<strong>on</strong>al sett<strong>in</strong>gs. 2<br />

Pers<strong>on</strong>s exposed to high-level <str<strong>on</strong>g>noise</str<strong>on</strong>g> (<strong>in</strong>clud<strong>in</strong>g recorded <strong>in</strong>dustrial<br />

or transportati<strong>on</strong> <str<strong>on</strong>g>noise</str<strong>on</strong>g>) <strong>in</strong> the laboratory showed BP rises<br />

dur<strong>in</strong>g the stimulus and for sec<strong>on</strong>ds to m<strong>in</strong>utes after its<br />

cessati<strong>on</strong>. 3–6 In field studies, workers exposed to high-level <strong>in</strong>dustrial<br />

<str<strong>on</strong>g>noise</str<strong>on</strong>g> and hav<strong>in</strong>g their BP measured via ambulatory BP m<strong>on</strong>itor<strong>in</strong>g<br />

(ABPM) showed BP <strong>in</strong>crements dur<strong>in</strong>g <str<strong>on</strong>g>exposure</str<strong>on</strong>g> and for a<br />

few hours after. 7,8 Although sound levels <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong><br />

(ma<strong>in</strong>ly aircraft and road traffic) <str<strong>on</strong>g>noise</str<strong>on</strong>g> are usually lower, they<br />

may produce cardiovascular <str<strong>on</strong>g>effects</str<strong>on</strong>g> via the neuroendocr<strong>in</strong>e<br />

system by caus<strong>in</strong>g emoti<strong>on</strong>al reacti<strong>on</strong>s and annoyance through<br />

<strong>in</strong>terference with the <strong>in</strong>dividual’s mental tasks, relaxati<strong>on</strong> or<br />

* Corresp<strong>on</strong>d<strong>in</strong>g author. Tel: þ30 210 746 2087, Fax: þ30 210 746 2205, Email: kkatsouy@med.uoa.gr<br />

Published <strong>on</strong> behalf <str<strong>on</strong>g>of</str<strong>on</strong>g> the European Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Cardiology. All rights reserved. & The Author 2008. For permissi<strong>on</strong>s please email: journals.permissi<strong>on</strong>s@oxfordjournals.org.<br />

The <strong>on</strong>l<strong>in</strong>e versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this article has been published under an open access model. Users are entitled to use, reproduce, dissem<strong>in</strong>ate, or display the open access versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this article<br />

for n<strong>on</strong>-commercial purposes provided that the orig<strong>in</strong>al authorship is properly and fully attributed; the Journal, Learned Society and Oxford University Press are attributed as the<br />

orig<strong>in</strong>al place <str<strong>on</strong>g>of</str<strong>on</strong>g> publicati<strong>on</strong> with correct citati<strong>on</strong> details given; if an article is subsequently reproduced or dissem<strong>in</strong>ated not <strong>in</strong> its entirety but <strong>on</strong>ly <strong>in</strong> part or as a derivative work this<br />

must be clearly <strong>in</strong>dicated. For commercial re-use, please c<strong>on</strong>tact journals.permissi<strong>on</strong>s@oxfordjournals.org.<br />

Downloaded from<br />

http://eurheartj.oxfordjournals.org/ by guest <strong>on</strong> April 24, 2013


Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong> BP 659<br />

Table 1 Descriptive characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the 140 study subjects<br />

Athens L<strong>on</strong>d<strong>on</strong> Milan Stockholm<br />

(n 5 43) (n 5 16) (n 5 50) (n 5 31)<br />

...............................................................................................................................................................................<br />

Gender [n; male (%)] 14 (32.6) 8 (50.0) 26 (52.0) 16 (48.5)<br />

Age [years; mean (SD)] 53 (7.8) 58 (7.9) 56 (7.9) 56 (6.4)<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> BP measurements per <str<strong>on</strong>g>night</str<strong>on</strong>g> [mean (SD)] 29 (6.2) 30 (4.4) 32 (3.8) 31 (5.2)<br />

Systolic BP [mmHg; mean (SD)] 111 (17.3) 104 (13.2) 110 (15.1) 106 (16.3)<br />

Diastolic BP [mmHg; mean (SD)] 66 (12.3) 62 (10.1) 66 (11.7) 63 (11.2)<br />

Heart rate [b.p.m.; mean (SD)] 65 (9.7) 63 (9.2) 64 (10.7) 61 (8.8)<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft events per <str<strong>on</strong>g>night</str<strong>on</strong>g> a median (25th—75th) percentile 19 (5–32) 0 (0–17) 2 (0–7) 0 (0–5)<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> road traffic events per <str<strong>on</strong>g>night</str<strong>on</strong>g> a median (25th—75th)<br />

percentile<br />

1 (0–9) 0 (0–38) 0 (0–1) 0 (0–6)<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>door source events per <str<strong>on</strong>g>night</str<strong>on</strong>g> a median (25th—75th)<br />

percentile<br />

14 (8–26) 5 (0–22) 14 (10–21) 9 (5–15)<br />

a Event identified as present if measured LAmax .35dB.<br />

sleep, at cortical (c<strong>on</strong>scious) or subcortical level. 9–11 Indeed, systolic<br />

BP resp<strong>on</strong>ses to moderate <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>in</strong> field c<strong>on</strong>diti<strong>on</strong>s were<br />

more c<strong>on</strong>sistent than those to <strong>in</strong>tense <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>in</strong> a laboratory <strong>on</strong><br />

the same <strong>in</strong>dividuals. 12 Moreover, cardiovascular resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the same <strong>in</strong>dividuals have been found greater dur<strong>in</strong>g sleep than<br />

dur<strong>in</strong>g wakefulness. 13 In a sleep laboratory, BP and heart rate<br />

(HR) <strong>in</strong>crements were traced after t<strong>on</strong>al acoustic stimuli or<br />

recorded transportati<strong>on</strong> <str<strong>on</strong>g>noise</str<strong>on</strong>g>; arousal was not needed for<br />

sound to produce cardiovascular <str<strong>on</strong>g>effects</str<strong>on</strong>g>. 14,15 Noise disturbance<br />

dur<strong>in</strong>g sleep is regarded as <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important aspects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

envir<strong>on</strong>mental <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> with possible <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

health. 11,13,16 However, field studies <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>on</strong><br />

BP dur<strong>in</strong>g sleep <strong>in</strong> real life c<strong>on</strong>diti<strong>on</strong>s are lack<strong>in</strong>g.<br />

In the present study the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>on</strong> BP and<br />

HR dur<strong>in</strong>g <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> sleep <str<strong>on</strong>g>of</str<strong>on</strong>g> pers<strong>on</strong>s liv<strong>in</strong>g <strong>in</strong> the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> four<br />

major European airports was <strong>in</strong>vestigated with<strong>in</strong> the wider framework<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the HYENA (hypertensi<strong>on</strong> and <str<strong>on</strong>g>exposure</str<strong>on</strong>g> to <str<strong>on</strong>g>noise</str<strong>on</strong>g> near<br />

airports) project. 17<br />

Methods<br />

Sampl<strong>in</strong>g<br />

The sample for the present study was selected from the ma<strong>in</strong> sample<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the HYENA project 17 and c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> subjects liv<strong>in</strong>g around four<br />

European airports with <str<strong>on</strong>g>night</str<strong>on</strong>g> flights: Athens (Greece), Malpensa<br />

(Italy), Arlanda (Sweden) and L<strong>on</strong>d<strong>on</strong> Heathrow (UK). The <strong>in</strong>itial<br />

sample for the HYENA study 17 was 6000 pers<strong>on</strong>s liv<strong>in</strong>g <strong>in</strong> the vic<strong>in</strong>ity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the study airports. A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 4861 pers<strong>on</strong>s (2404 men and 2457<br />

women) between 45 and 70 years old at the <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terview participated<br />

<strong>in</strong> the study. The samples were representative from the populati<strong>on</strong>s<br />

exposed to various levels <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft and traffic <str<strong>on</strong>g>noise</str<strong>on</strong>g> around<br />

airports based <strong>on</strong> <str<strong>on</strong>g>noise</str<strong>on</strong>g> c<strong>on</strong>tours. Participati<strong>on</strong> rates differed<br />

between the countries, from circa 30% <strong>in</strong> Italy and the UK, to 56%<br />

<strong>in</strong> Greece and 78% <strong>in</strong> Sweden. More details may be found <strong>in</strong> Jarup<br />

et al. 18 We selected subjects from various aircraft <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> categories,<br />

as assessed by the A-weighted annual equivalent <str<strong>on</strong>g>noise</str<strong>on</strong>g> level<br />

LAeq24h based <strong>on</strong> their residence, <strong>in</strong> order to obta<strong>in</strong> a larger variability<br />

<strong>in</strong> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> situati<strong>on</strong>s.<br />

The follow<strong>in</strong>g exclusi<strong>on</strong> criteria were applied: (1) antihypertensive<br />

medicati<strong>on</strong>, (2) diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g> diabetes mellitus, (3) diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g> obstructive<br />

sleep apnoea syndrome, (4) diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary hypertensi<strong>on</strong>,<br />

(5) work<strong>in</strong>g <strong>in</strong> <str<strong>on</strong>g>night</str<strong>on</strong>g> shift, (6) us<strong>in</strong>g sleep<strong>in</strong>g pills and sedatives, (7) diagnosis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hear<strong>in</strong>g impairment, (8) regular use <str<strong>on</strong>g>of</str<strong>on</strong>g> earplugs, (9) diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

atrial fibrillati<strong>on</strong>. Criteria 1–6 were applied as they affect the<br />

<str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> BP; criteria 7 and 8 as they modify <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g>; and criteri<strong>on</strong><br />

9 as it h<strong>in</strong>ders ABPM. Twenty-<strong>on</strong>e subjects were excluded due<br />

to technical problems with the m<strong>on</strong>itor<strong>in</strong>g equipment. The f<strong>in</strong>al sample<br />

c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> 140 subjects (Table 1). Approval for the study was granted<br />

by each centre’s Ethical Committee.<br />

Measurements and data management<br />

C<strong>on</strong>t<strong>in</strong>uous <str<strong>on</strong>g>noise</str<strong>on</strong>g> measurement with the type I ‘CESVA SC310’ <str<strong>on</strong>g>noise</str<strong>on</strong>g>meter<br />

19 (<str<strong>on</strong>g>time</str<strong>on</strong>g> c<strong>on</strong>stant ‘fast’ 125 ms) as well as <str<strong>on</strong>g>noise</str<strong>on</strong>g> record<strong>in</strong>g with an<br />

MP3 recorder c<strong>on</strong>nected to the <str<strong>on</strong>g>noise</str<strong>on</strong>g>-meter’s high-quality microph<strong>on</strong>e<br />

were d<strong>on</strong>e dur<strong>in</strong>g the study <str<strong>on</strong>g>night</str<strong>on</strong>g> <strong>in</strong> each participant’s<br />

bedroom. Each participant was followed up for <strong>on</strong>e <str<strong>on</strong>g>night</str<strong>on</strong>g>. The <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

level equivalents for every sec<strong>on</strong>d, for every 1 m<strong>in</strong> before and for<br />

every 15 m<strong>in</strong> period between BP measurements were calculated as<br />

follows:<br />

LAeq ¼ 10 log<br />

Xt 10<br />

i¼1<br />

LAeq1sec=10<br />

!<br />

10 logðtÞ<br />

where t is the 1 m<strong>in</strong> or 15 m<strong>in</strong> period <strong>in</strong> sec<strong>on</strong>ds.<br />

Us<strong>in</strong>g playback and visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sound record<strong>in</strong>gs <strong>on</strong> a computer,<br />

the source <str<strong>on</strong>g>of</str<strong>on</strong>g> each event was identified and synchr<strong>on</strong>ized with the<br />

sound measurements with a program written for this purpose. An<br />

event was def<strong>in</strong>ed as present if its <strong>in</strong>door LAmax exceeded 35 dB.<br />

Noise events were classified <strong>in</strong>to four categories accord<strong>in</strong>g to<br />

source: <strong>in</strong>door, aircraft, road traffic, and other outdoor. Other<br />

outdoor events were very rare and thus excluded from the analysis.<br />

N<strong>on</strong>-<strong>in</strong>vasive 24 h ABPM, with HR measurements, was performed at<br />

15 m<strong>in</strong> <strong>in</strong>tervals with the validated ‘Mobilograph’ device, 20,21 <strong>in</strong>clud<strong>in</strong>g<br />

the study <str<strong>on</strong>g>night</str<strong>on</strong>g>. The 15 m<strong>in</strong> frequency has been implemented before 7<br />

and was chosen as optimal for frequent measurements without excessive<br />

sleep disturbance. The three <strong>in</strong>struments (<str<strong>on</strong>g>noise</str<strong>on</strong>g> meter, <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

Downloaded from<br />

http://eurheartj.oxfordjournals.org/ by guest <strong>on</strong> April 24, 2013


660<br />

recorder, and ABPM device) and the participants’ alarm clock were<br />

synchr<strong>on</strong>ized at 1 m<strong>in</strong> precisi<strong>on</strong>.<br />

Specially tra<strong>in</strong>ed nurses <strong>in</strong>stalled the <str<strong>on</strong>g>noise</str<strong>on</strong>g> equipment, placed the<br />

ABPM device <strong>on</strong> the participants and gave them written <strong>in</strong>structi<strong>on</strong>s,<br />

dur<strong>in</strong>g a home visit at least 3 h before normal sleep<strong>in</strong>g <str<strong>on</strong>g>time</str<strong>on</strong>g>. Each participant<br />

was <strong>in</strong>structed not to engage <strong>in</strong> unusually heavy activity dur<strong>in</strong>g<br />

the measurements’ period and filled <strong>in</strong> a sleep log <strong>in</strong>dicat<strong>in</strong>g actual<br />

sleep<strong>in</strong>g <str<strong>on</strong>g>time</str<strong>on</strong>g>s.<br />

Statistical analysis<br />

L<strong>in</strong>ear mixed models which <strong>in</strong>cluded random <strong>in</strong>tercept and random<br />

coefficients for the various <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>in</strong>dicators were applied for each<br />

centre separately <strong>in</strong> order to assess acute <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>on</strong> BP and<br />

HR dur<strong>in</strong>g <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> sleep. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> repeated measurements<br />

per subject corresp<strong>on</strong>ds to the number <str<strong>on</strong>g>of</str<strong>on</strong>g> systolic and diastolic BP<br />

measurements (mmHg), as well as HR measurements (beats per<br />

m<strong>in</strong>ute—b.p.m.) dur<strong>in</strong>g the self-reported sleep<strong>in</strong>g period. The<br />

A-weighted <strong>in</strong>door <str<strong>on</strong>g>noise</str<strong>on</strong>g> level equivalents <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 m<strong>in</strong> (LAeq1m<strong>in</strong>) and<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 15 m<strong>in</strong> (LAeq15m<strong>in</strong>) before BP measurements were used as shortterm<br />

<str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> variables. In this type <str<strong>on</strong>g>of</str<strong>on</strong>g> model, where an <strong>in</strong>dividual<br />

serves as his own ‘c<strong>on</strong>trol’, there is no need to adjust for <strong>in</strong>dividual<br />

c<strong>on</strong>found<strong>in</strong>g factors. In order to account for the possible c<strong>on</strong>found<strong>in</strong>g<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> misreport<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> sleep<strong>in</strong>g and wak<strong>in</strong>g <str<strong>on</strong>g>time</str<strong>on</strong>g>s (potentially associated<br />

with both BP and <str<strong>on</strong>g>noise</str<strong>on</strong>g> levels), the above <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> variables<br />

were also adjusted for the sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> BP measurements,<br />

us<strong>in</strong>g 2 l<strong>in</strong>ear terms. The first l<strong>in</strong>ear term denoted the sequence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the BP measurements (1,2, ...,k) from the start to the middle <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each pers<strong>on</strong>s sleep period and the sec<strong>on</strong>d denoted the sequence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the BP measurements (1,2, ...,k) from the middle to the end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each pers<strong>on</strong>s sleep period. Other <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> variables were the<br />

presence or absence <str<strong>on</strong>g>of</str<strong>on</strong>g> a source-specific <str<strong>on</strong>g>noise</str<strong>on</strong>g> event dur<strong>in</strong>g the<br />

15 m<strong>in</strong> periods and each source-specific event’s LAmax. If more than<br />

<strong>on</strong>e event were present <strong>in</strong> the 15 m<strong>in</strong> <strong>in</strong>terval, the higher LAmax<br />

was used. S<strong>in</strong>ce a <str<strong>on</strong>g>noise</str<strong>on</strong>g> stimulus may not have the same effect <strong>in</strong> the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> other <str<strong>on</strong>g>noise</str<strong>on</strong>g>, <strong>in</strong> all models assess<strong>in</strong>g the source-specific<br />

<str<strong>on</strong>g>noise</str<strong>on</strong>g>, we adjusted for the 10th percentile <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>noise</str<strong>on</strong>g> level equivalent<br />

(L90) <strong>in</strong> all the 15 m<strong>in</strong> <strong>in</strong>tervals. After obta<strong>in</strong><strong>in</strong>g the four centre-specific<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> us<strong>in</strong>g random effect models, we then comb<strong>in</strong>ed the centrespecific<br />

results us<strong>in</strong>g either fixed or random <str<strong>on</strong>g>effects</str<strong>on</strong>g> meta-analysis<br />

depend<strong>in</strong>g <strong>on</strong> the absence or presence <str<strong>on</strong>g>of</str<strong>on</strong>g> heterogeneity. All reported<br />

P-values are based <strong>on</strong> two-sided hypotheses and the significance level<br />

used was 5%.<br />

Results<br />

Table 1 shows the descriptive characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples. The<br />

mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> repeated BP measurements per <str<strong>on</strong>g>night</str<strong>on</strong>g> was<br />

similar <strong>in</strong> all centres (range 29–32). BP and HR displayed a<br />

normal distributi<strong>on</strong> (data not shown). The number <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft<br />

events dur<strong>in</strong>g the <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> sleep was higher <strong>in</strong> Athens compared<br />

with the other centres. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> subjects with no or few<br />

<str<strong>on</strong>g>night</str<strong>on</strong>g> aircraft events was expla<strong>in</strong>ed by the sampl<strong>in</strong>g procedure<br />

through which a number <str<strong>on</strong>g>of</str<strong>on</strong>g> subjects were selected from the<br />

ma<strong>in</strong> sub-sample <str<strong>on</strong>g>of</str<strong>on</strong>g> low <str<strong>on</strong>g>exposure</str<strong>on</strong>g> to aircraft <str<strong>on</strong>g>noise</str<strong>on</strong>g>. In Milan and<br />

Stockholm, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>door events was much larger than aircraft<br />

or traffic events. The median equivalent <str<strong>on</strong>g>noise</str<strong>on</strong>g> levels<br />

(LAeq15m<strong>in</strong>, LAeq1m<strong>in</strong>) for all centres were comparable. Also<br />

the source-specific LAmax (aircraft, road or <strong>in</strong>door) was similar<br />

<strong>in</strong> the four samples (Figure 1).<br />

A.S. Haralabidis et al<br />

Figure 1 Box plots <str<strong>on</strong>g>of</str<strong>on</strong>g> the various <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>in</strong>dicators measured<br />

dur<strong>in</strong>g the study <str<strong>on</strong>g>night</str<strong>on</strong>g><br />

Table 2 shows the pooled effect estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g><br />

<strong>in</strong>dicators <strong>on</strong> BP and HR. The measured <str<strong>on</strong>g>noise</str<strong>on</strong>g> 1 and 15 m<strong>in</strong> before<br />

each BP measurement was associated with higher systolic and diastolic<br />

BP and with higher HR. For example, a 5 dB <strong>in</strong>crement <strong>in</strong><br />

LAeq15m<strong>in</strong> was associated with a 0.63 mmHg <strong>in</strong>crease <strong>in</strong> diastolic<br />

BP. The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the effect <strong>on</strong> BP was somewhat lower when<br />

the LAeq1m<strong>in</strong> was c<strong>on</strong>sidered but rema<strong>in</strong>s statistically significant.<br />

The effect rema<strong>in</strong>s similar when adjustment was applied for the<br />

sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> measurements dur<strong>in</strong>g sleep <str<strong>on</strong>g>time</str<strong>on</strong>g>. An <strong>in</strong>crease <strong>in</strong> BP<br />

(6.2 mmHg for systolic, 7.4 mmHg for diastolic) and HR (by<br />

5.4 b.p.m.) was observed over 15 m<strong>in</strong> <strong>in</strong>tervals <strong>in</strong> which an aircraft<br />

event occurs but for HR this was not statistically significant.<br />

A similar magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>crease <strong>in</strong> BP was observed dur<strong>in</strong>g <str<strong>on</strong>g>time</str<strong>on</strong>g><br />

periods with traffic or <strong>in</strong>door source event. In c<strong>on</strong>trast, the<br />

effect <strong>on</strong> HR was smaller dur<strong>in</strong>g periods with <strong>in</strong>door events and<br />

was not observed over periods with traffic events. When the<br />

actual <str<strong>on</strong>g>noise</str<strong>on</strong>g> level assessed by LAmax was taken <strong>in</strong>to account<br />

(adjust<strong>in</strong>g for the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an event from a specific source<br />

and for L90), a positive associati<strong>on</strong> was found between <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

from all the three sources and BP, which was statistically significant<br />

and similar to the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> measured <str<strong>on</strong>g>noise</str<strong>on</strong>g> from all sources. The<br />

corresp<strong>on</strong>d<strong>in</strong>g <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> HR were lower than those from all<br />

sources and reached statistical significance <strong>on</strong>ly for <strong>in</strong>door<br />

source <str<strong>on</strong>g>noise</str<strong>on</strong>g>.<br />

The estimated <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong> BP were c<strong>on</strong>sistent<br />

<strong>in</strong> each sample. The estimated <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> diastolic BP <str<strong>on</strong>g>of</str<strong>on</strong>g> measured<br />

<str<strong>on</strong>g>noise</str<strong>on</strong>g> by sample are shown <strong>in</strong> Figure 2. The estimates were practically<br />

identical for the three samples, whilst for L<strong>on</strong>d<strong>on</strong> they were<br />

higher but associated with wider c<strong>on</strong>fidence <strong>in</strong>tervals. In Figure 3 a<br />

c<strong>on</strong>sistent pattern may be seen for the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> source-specific<br />

<str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>in</strong> the four samples. The corresp<strong>on</strong>d<strong>in</strong>g results for systolic<br />

BP were similar, with the excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> significant heterogeneity<br />

<strong>in</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>door source <str<strong>on</strong>g>noise</str<strong>on</strong>g> events where the effect<br />

was highest <strong>in</strong> L<strong>on</strong>d<strong>on</strong> and lowest <strong>in</strong> Stockholm, the <strong>on</strong>ly n<strong>on</strong>statistically<br />

significant effect. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> for HR were less c<strong>on</strong>sistent<br />

between centres. However, the <strong>on</strong>ly model which displayed<br />

statistically significant heterogeneity was the <strong>on</strong>e assess<strong>in</strong>g the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft events.<br />

Downloaded from<br />

http://eurheartj.oxfordjournals.org/ by guest <strong>on</strong> April 24, 2013


Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong> BP 661<br />

Table 2 Pooled effect estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> various <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>in</strong>dicators <strong>on</strong> <strong>blood</strong> <strong>pressure</strong> (BP) and heart rate (HR) measurements.<br />

Results from fixed <str<strong>on</strong>g>effects</str<strong>on</strong>g> models (except where noted)<br />

Model Increase <strong>in</strong> systolic BP Increase <strong>in</strong> diastolic Increase <strong>in</strong> heart rate<br />

(mmHg) (95% CI)<br />

BP (mmHg) (95% CI) (b.p.m.) (95% CI)<br />

...............................................................................................................................................................................<br />

1 LAeq(15 m<strong>in</strong>) a (5 dB) 0.74 (0.40, 1.08) 0.63 (0.34, 0.91) 0.26 (0.07, 0.44)<br />

2 LAeq(1 m<strong>in</strong>) b (5 dB) 0.69 (0.36, 1.02) 0.55 (0.26, 0.84) 0.30 (0.12, 0.49)<br />

3 LAeq(15 m<strong>in</strong>) c (5 dB) 0.82 (0.48, 1.16) 0.62 (0.36, 0.88) 0.23 (0.07, 0.40)<br />

4 LAeq(1 m<strong>in</strong>) d (5 dB) 0.88 (0.54, 1.22) 0.50 (0.23, 0.78) 0.35 (0.17, 0.53)<br />

5 Aircraft events e (yes ¼ 1) 6.20 (0.63, 11.77) 7.39 (3.09, 11.69) 5.42 g (22.01, 12.85)<br />

6 LAmax aircraft events f (5 dB) 0.66 (0.33, 0.98) 0.64 (0.37, 0.90) 0.18 (20.04, 0.40)<br />

7 Road traffic events e (yes ¼ 1) 4.81 (22.45, 12.06) 3.34 (27.37, 14.04) 22.76 (27.30, 1.77)<br />

8 LAmax road traffic events f (5 dB) 0.81 (0.46, 1.16) 0.55 (0.26, 0.83) 0.01 (20.41, 0.42)<br />

9 Indoor source events e (yes ¼ 1) 7.39 (3.76, 11.02) 4.19 (0.65, 7.72) 3.00 (0.87, 5.13)<br />

10 LAmax <strong>in</strong>door source events f (5 dB) 0.87 g (0.17, 1.57) 0.68 (0.43, 0.92) 0.21 (0.01, 0.41)<br />

a<br />

Equivalent <str<strong>on</strong>g>noise</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> the 15 m<strong>in</strong> before BP measurement.<br />

b<br />

Equivalent <str<strong>on</strong>g>noise</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> the 1 m<strong>in</strong> before BP measurement.<br />

c<br />

Equivalent <str<strong>on</strong>g>noise</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> the 15 m<strong>in</strong> before BP measurement, adjusted for the sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> BP measurements from the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the sleep<strong>in</strong>g period to the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g><br />

sleep, and from the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> sleep to the wake-up period.<br />

d<br />

Equivalent <str<strong>on</strong>g>noise</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> the 1 m<strong>in</strong> before BP measurement, adjusted for the sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> BP measurements from the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the sleep<strong>in</strong>g period to the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g><br />

sleep, and from the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> sleep to the wake-up period.<br />

e<br />

Yes: event with <strong>in</strong>door LAmax .35 dB present.<br />

f<br />

Indoor LAmax <str<strong>on</strong>g>of</str<strong>on</strong>g> source-specific event adjusted for presence <str<strong>on</strong>g>of</str<strong>on</strong>g> event (yes: event with LAmax <strong>in</strong>door .35 dB present) and for L90 <strong>in</strong> all 15 m<strong>in</strong> <str<strong>on</strong>g>time</str<strong>on</strong>g> periods without the<br />

source-specific event.<br />

g<br />

Results from random <str<strong>on</strong>g>effects</str<strong>on</strong>g> models <strong>in</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> significant heterogeneity.<br />

Figure 2 Centre-specific and pooled effect estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

5 dB(A) <strong>in</strong>crement <strong>in</strong> the equivalent <str<strong>on</strong>g>noise</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 m<strong>in</strong> (red)<br />

and 1 m<strong>in</strong> (blue) before <strong>blood</strong> <strong>pressure</strong> (BP) measurement <strong>on</strong><br />

diastolic BP<br />

Discussi<strong>on</strong><br />

We studied the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>on</strong> BP dur<strong>in</strong>g sleep, a state<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> reduced sympathetic and <strong>in</strong>creased parasympathetic aut<strong>on</strong>omous<br />

nervous system (ANS) t<strong>on</strong>e, lead<strong>in</strong>g to a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

BP and HR. 22<br />

We found that both systolic and diastolic BP levels as well as HR<br />

<strong>in</strong>creased with higher <str<strong>on</strong>g>noise</str<strong>on</strong>g> levels dur<strong>in</strong>g the preced<strong>in</strong>g m<strong>in</strong>utes,<br />

Figure 3 Centre-specific and pooled effect estimates <strong>on</strong> diastolic<br />

<strong>blood</strong> <strong>pressure</strong> (BP) and its 95% c<strong>on</strong>fidence Interval (CI)<br />

associated with an <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 dB <strong>in</strong> LAmax <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft event<br />

(red), <str<strong>on</strong>g>of</str<strong>on</strong>g> road traffic event (blue) and <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>door event (black)<br />

dur<strong>in</strong>g <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> sleep (source-specific event identified as<br />

present if <strong>in</strong>door measured LAmax .35 dB)<br />

<strong>in</strong>dependently <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>noise</str<strong>on</strong>g> source and <str<strong>on</strong>g>of</str<strong>on</strong>g> the sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

measurement dur<strong>in</strong>g sleep <str<strong>on</strong>g>time</str<strong>on</strong>g>, which <strong>in</strong>dicates absence <str<strong>on</strong>g>of</str<strong>on</strong>g> habituati<strong>on</strong><br />

dur<strong>in</strong>g the study <str<strong>on</strong>g>night</str<strong>on</strong>g>, a matter <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>troversy <strong>in</strong> studies <strong>on</strong><br />

humans or <strong>on</strong> experimental animals. 13,23 These results are c<strong>on</strong>sistent<br />

with those reported by Carter et al. 15 <strong>in</strong> a laboratory where<br />

both BP and HR <strong>in</strong>creased after <str<strong>on</strong>g>noise</str<strong>on</strong>g> stimuli. There are major<br />

differences between laboratory and real life c<strong>on</strong>diti<strong>on</strong>s. In a laboratory,<br />

background <str<strong>on</strong>g>noise</str<strong>on</strong>g> is steady whilst <strong>in</strong> real life c<strong>on</strong>diti<strong>on</strong>s the<br />

Downloaded from<br />

http://eurheartj.oxfordjournals.org/ by guest <strong>on</strong> April 24, 2013


662<br />

analysis has to adjust for variable <str<strong>on</strong>g>noise</str<strong>on</strong>g> sources. Davies et al. 14<br />

studied five subjects and found an <strong>in</strong>crease <strong>in</strong> diastolic BP from 4<br />

to 6 mmHg associated with arousal accord<strong>in</strong>g to sleep stage. We<br />

found an <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> 6–7 mmHg <strong>in</strong> diastolic BP accord<strong>in</strong>g to the<br />

source <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>noise</str<strong>on</strong>g> event, not necessarily associated with<br />

awaken<strong>in</strong>g.<br />

We also found significant <strong>in</strong>creases <strong>in</strong> BP and, less c<strong>on</strong>sistently, HR<br />

when the source <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>noise</str<strong>on</strong>g> was taken <strong>in</strong>to account. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the source-specific <str<strong>on</strong>g>noise</str<strong>on</strong>g> were comparable for aircraft, traffic, and<br />

<strong>in</strong>door events and were similar to those <str<strong>on</strong>g>of</str<strong>on</strong>g> the total measured <str<strong>on</strong>g>noise</str<strong>on</strong>g>.<br />

In our study, <strong>on</strong>e comm<strong>on</strong> source <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>door <str<strong>on</strong>g>noise</str<strong>on</strong>g> was snor<strong>in</strong>g.<br />

S<strong>in</strong>ce <strong>in</strong> some cases the study subject is expected to be the snorer<br />

too (we could not assess this <strong>in</strong>formati<strong>on</strong>) and his BP elevati<strong>on</strong><br />

could be due to disordered breath<strong>in</strong>g, 24,25 the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>door<br />

<str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>on</strong> BP that we report could be overestimated.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the measured <str<strong>on</strong>g>noise</str<strong>on</strong>g> level as well as the sourcespecific<br />

<str<strong>on</strong>g>noise</str<strong>on</strong>g> was weaker and less c<strong>on</strong>sistent <strong>on</strong> HR than <strong>on</strong> BP.<br />

This f<strong>in</strong>d<strong>in</strong>g is <strong>in</strong> accordance with results from a sleep laboratory<br />

study 15 where a <str<strong>on</strong>g>noise</str<strong>on</strong>g> threshold was detected for the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

HR but not <strong>on</strong> BP and with previously reported mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

BP rise follow<strong>in</strong>g <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g>, which refer ma<strong>in</strong>ly to vasoc<strong>on</strong>stricti<strong>on</strong>.<br />

2,26 Moreover, HR has a str<strong>on</strong>ger circadian comp<strong>on</strong>ent<br />

which may mask other <str<strong>on</strong>g>effects</str<strong>on</strong>g>. 27<br />

The remarkable c<strong>on</strong>sistency <str<strong>on</strong>g>of</str<strong>on</strong>g> the estimated <str<strong>on</strong>g>effects</str<strong>on</strong>g> between<br />

the four centres strengthens the evidence for causality. The<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong> BP per specific <strong>in</strong>crease <strong>in</strong> <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

levels were found similar <strong>in</strong> the four samples <strong>in</strong> spite <str<strong>on</strong>g>of</str<strong>on</strong>g> the fact<br />

that there were differences <strong>in</strong> the pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> accord<strong>in</strong>g to<br />

the source dur<strong>in</strong>g the <str<strong>on</strong>g>night</str<strong>on</strong>g>. However, the <strong>in</strong>door LAmax levels<br />

<strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an event were comparable <strong>in</strong> all the four<br />

centres.<br />

In sleep laboratories, <str<strong>on</strong>g>noise</str<strong>on</strong>g> stimuli <str<strong>on</strong>g>of</str<strong>on</strong>g> levels comparable with<br />

those <str<strong>on</strong>g>of</str<strong>on</strong>g> real life produced cardiovascular resp<strong>on</strong>ses for<br />

sec<strong>on</strong>ds. 13,14 However, <strong>in</strong> occupati<strong>on</strong>al or laboratory sett<strong>in</strong>gs, BP<br />

elevati<strong>on</strong>s have been found to last for m<strong>in</strong>utes or even hours 6–8<br />

dur<strong>in</strong>g wakefulness. Emoti<strong>on</strong>al resp<strong>on</strong>ses such as anger or fear<br />

may magnify and prol<strong>on</strong>g the <str<strong>on</strong>g>effects</str<strong>on</strong>g>, dur<strong>in</strong>g <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g><br />

to aircraft <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>in</strong> real life c<strong>on</strong>diti<strong>on</strong>s. 9 One drawback <str<strong>on</strong>g>of</str<strong>on</strong>g> our<br />

study is that BP was assessed every 15 m<strong>in</strong> although the <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

event could have happened any<str<strong>on</strong>g>time</str<strong>on</strong>g> with<strong>in</strong> this <strong>in</strong>terval. As<br />

expected, the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> events over the 15 m<strong>in</strong> <strong>in</strong>tervals<br />

between BP measurements is uniform. Only 5–11.5% <str<strong>on</strong>g>of</str<strong>on</strong>g> events<br />

(the range reflects different sources and samples) occurred<br />

dur<strong>in</strong>g the m<strong>in</strong>ute <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement (6.7% expected). The design<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> our study might have led to the ‘loss’ <str<strong>on</strong>g>of</str<strong>on</strong>g> the effect <strong>on</strong> BP or<br />

HR if the <str<strong>on</strong>g>noise</str<strong>on</strong>g> event happened to occur dur<strong>in</strong>g the first<br />

m<strong>in</strong>utes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tervals between measurements and the effect was<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> short durati<strong>on</strong>. However, the fact that the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

dur<strong>in</strong>g the preced<strong>in</strong>g 1 and 15 m<strong>in</strong> were <str<strong>on</strong>g>of</str<strong>on</strong>g> similar magnitude <strong>in</strong>dicates<br />

more prol<strong>on</strong>ged <str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

In this study, the <strong>in</strong>door LAmax threshold for characteriz<strong>in</strong>g an<br />

event as ‘present’ was set at 35 dB. Awaken<strong>in</strong>g reacti<strong>on</strong>s are usually<br />

observed at LAmax values over 40–45 dB <strong>in</strong> the bedroom but<br />

recently lower thresholds have been also suggested. 11,28<br />

However, accord<strong>in</strong>g to sleep laboratory studies, haemodynamic<br />

changes can also occur at lower <str<strong>on</strong>g>noise</str<strong>on</strong>g> levels than the <strong>on</strong>es that<br />

cause EEG changes, although the <str<strong>on</strong>g>effects</str<strong>on</strong>g> are str<strong>on</strong>ger when<br />

arousal coexists. 13,14<br />

Indeed, aut<strong>on</strong>omic resp<strong>on</strong>ses like BP<br />

elevati<strong>on</strong> have been used as a sensitive marker <str<strong>on</strong>g>of</str<strong>on</strong>g> sleep disturbance.<br />

29,30 The f<strong>in</strong>d<strong>in</strong>g that c<strong>on</strong>sciousness is not needed for sound<br />

to produce its cardiovascular <str<strong>on</strong>g>effects</str<strong>on</strong>g> is also supported by experiments<br />

<strong>in</strong> which anaesthetized animals dem<strong>on</strong>strated BP <strong>in</strong>crement<br />

when exposed to <strong>in</strong>tense <str<strong>on</strong>g>noise</str<strong>on</strong>g> 31 or BP reducti<strong>on</strong> when exposed<br />

to music. 32,33 These outcomes are attributed to the subcortical<br />

c<strong>on</strong>necti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the auditory pathway with the ANS (amygdala,<br />

hippocampus, hypothalamus) 10 and justify the use <str<strong>on</strong>g>of</str<strong>on</strong>g> relatively<br />

low <str<strong>on</strong>g>noise</str<strong>on</strong>g> thresholds <strong>in</strong> the research <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> BP<br />

dur<strong>in</strong>g sleep.<br />

To assess nocturnal BP, we used ABPM, which has been validated<br />

and used extensively for this purpose. 19,20 ABPM has been<br />

reported to affect sleep and <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> BP 34 dur<strong>in</strong>g the cuff’s<br />

<strong>in</strong>flati<strong>on</strong> similarly to <str<strong>on</strong>g>noise</str<strong>on</strong>g> arousal stimuli, 14 although it is also supported,<br />

by means <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tra-arterial record<strong>in</strong>gs, that ABPM does not<br />

attenuate <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> BP reducti<strong>on</strong>. 35 In any case, it can be argued<br />

that there is synergy and that the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> would not be<br />

the same <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> ABPM dur<strong>in</strong>g the study <str<strong>on</strong>g>night</str<strong>on</strong>g>.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> this possibility, the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> BP measurements<br />

was kept at four per hour, although up to six measurements per<br />

hour have been used before. 36 Moreover, the body positi<strong>on</strong><br />

dur<strong>in</strong>g sleep can affect the ABPM measurements. 37 All measurements<br />

however <strong>in</strong> our study, irrespective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g><br />

level, were d<strong>on</strong>e with ABPM and there is no reas<strong>on</strong> to assume<br />

that body positi<strong>on</strong> dur<strong>in</strong>g sleep is related to <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g>. The<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> portable, n<strong>on</strong>-<strong>in</strong>vasive BP recorders that register BP c<strong>on</strong>t<strong>in</strong>uously<br />

and correct automatically hydrostatic <str<strong>on</strong>g>effects</str<strong>on</strong>g>, 38 can be<br />

c<strong>on</strong>sidered <strong>in</strong> future studies <strong>in</strong>vestigat<strong>in</strong>g the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>on</strong><br />

<str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> BP <strong>in</strong> real life c<strong>on</strong>diti<strong>on</strong>s.<br />

With<strong>in</strong> the HYENA project we found <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-term <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

<str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong> the prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> hypertensi<strong>on</strong> 18 and the acute<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> reported here. Absence <str<strong>on</strong>g>of</str<strong>on</strong>g> short-term habituati<strong>on</strong> to the<br />

cardiovascular <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g>, especially those dur<strong>in</strong>g sleep,<br />

found here and also reported before, 13,16,39 as well as evidence<br />

from studies <strong>on</strong> sleep-disorder which <strong>in</strong>dicate that repeated arousals<br />

are associated with a susta<strong>in</strong>ed <strong>in</strong>crease <strong>in</strong> day<str<strong>on</strong>g>time</str<strong>on</strong>g> BP, 40<br />

support a l<strong>in</strong>k between acute and l<strong>on</strong>g-term <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

<str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong> hypertensi<strong>on</strong> 41,42 and cardiovascular disease, 43 <strong>in</strong><br />

l<strong>in</strong>e with the general stress theory. 44<br />

Acknowledgements<br />

We thank all the participants for their will<strong>in</strong>gness to c<strong>on</strong>tribute.<br />

The HYENA study was funded by the European Commissi<strong>on</strong><br />

DG Research (QLK4-CT-2002-02501) <strong>in</strong> the Fifth framework programme,<br />

Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> life and management <str<strong>on</strong>g>of</str<strong>on</strong>g> liv<strong>in</strong>g resources. We<br />

thank the members <str<strong>on</strong>g>of</str<strong>on</strong>g> the HYENA study team Joy Read, Yv<strong>on</strong>ne<br />

Tan, Yousouf Soogun, Gabriele Wölke, Jessica Kwekkeboom, Birgitta<br />

Ohlander, Eva Thunberg, Elli Davou, Yannis Zahos, Venetia<br />

Vel<strong>on</strong>aki, Ageliki Athanasopoulou, Alessandro Borg<strong>in</strong>i, Maria<br />

Chiara Ant<strong>on</strong>iotti, Salvatore Pisani, Giorgio Barbaglia, Matteo<br />

Giampaolo, Anders Lund<strong>in</strong>, and Jenny Selander for assistance<br />

dur<strong>in</strong>g various parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

C<strong>on</strong>flict <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terest: n<strong>on</strong>e declared.<br />

A.S. Haralabidis et al<br />

Downloaded from<br />

http://eurheartj.oxfordjournals.org/ by guest <strong>on</strong> April 24, 2013


Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong> BP 663<br />

Fund<strong>in</strong>g<br />

European Commissi<strong>on</strong> DG Research c<strong>on</strong>tract number (QLK4<br />

CT-2002-02501). Fund<strong>in</strong>g to pay the Open Access publicati<strong>on</strong><br />

charges for this article was provided by the University <str<strong>on</strong>g>of</str<strong>on</strong>g> Athens<br />

Special Account for Research.<br />

References<br />

1. Baudrie V, Laude D, Chaoul<str<strong>on</strong>g>of</str<strong>on</strong>g>f F, Elghozi JL. Genetic <strong>in</strong>fluences <strong>on</strong><br />

cardiovascular resp<strong>on</strong>ses to an acoustic startle stimulus <strong>in</strong> rats. Cl<strong>in</strong><br />

Exp Pharmacol Physiol 2001;28:1096–1099.<br />

2. Andren L, Hanss<strong>on</strong> L, Eggertsen R, Hedner T, Karlberg BE.<br />

Circulatory <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g>. Acta Med Scand 1983;213:31–35.<br />

3. Andren L, Hanss<strong>on</strong> L, Bjorkman M, J<strong>on</strong>ss<strong>on</strong> A. Noise as a c<strong>on</strong>tributory<br />

factor <strong>in</strong> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> elevated arterial <strong>pressure</strong>. A<br />

study <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanisms by which <str<strong>on</strong>g>noise</str<strong>on</strong>g> may raise <strong>blood</strong> <strong>pressure</strong><br />

<strong>in</strong> man. Acta Med Scand 1980;207:493–498.<br />

4. Michalak R, Is<strong>in</strong>g H, Rebentisch E. <str<strong>on</strong>g>Acute</str<strong>on</strong>g> circulatory <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> military<br />

low-altitude flight <str<strong>on</strong>g>noise</str<strong>on</strong>g>. Int Arch Occup Envir<strong>on</strong> Health 1990;62:<br />

365–372.<br />

5. Holand S, Girard A, Meyer-Bisch C, Elghozi JL. [Cardiovascular<br />

resp<strong>on</strong>ses to a acoustic startle stimulus <strong>in</strong> man][Article <strong>in</strong><br />

French]. Arch Mal Coeur Vaiss 1999;92:1127–1131.<br />

6. Mahmood R, Khan GJ, Alam S, Safi AJ, Salahudd<strong>in</strong>, Am<strong>in</strong>-ul-Haq.<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> 90 decibel <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 4000 hertz <strong>on</strong> <strong>blood</strong> <strong>pressure</strong> <strong>in</strong><br />

young adults. J Ayub Med Coll Abbottabad 2004;16:30–33.<br />

7. Fogari R, Zoppi A, Corradi L, Marasi G, Vanasia A, Zanchetti A.<br />

Transient but not susta<strong>in</strong>ed <strong>blood</strong> <strong>pressure</strong> <strong>in</strong>crements by occupati<strong>on</strong>al<br />

<str<strong>on</strong>g>noise</str<strong>on</strong>g>. An ambulatory <strong>blood</strong> <strong>pressure</strong> measurement<br />

study. J Hypertens 2001;19:1021–1027.<br />

8. Chang TY, Ja<strong>in</strong> RM, Wang CS, Chan CC. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> occupati<strong>on</strong>al<br />

<str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong> <strong>blood</strong> <strong>pressure</strong>. J Occup Envir<strong>on</strong> Med 2003;45:<br />

1289–1296.<br />

9. Is<strong>in</strong>g H, Kruppa B. Health <str<strong>on</strong>g>effects</str<strong>on</strong>g> caused by <str<strong>on</strong>g>noise</str<strong>on</strong>g>: evidence <strong>in</strong> the<br />

literature from the past 25 years. Noise Health 2004;6:5–13.<br />

10. Spreng M. Central nervous system activati<strong>on</strong> by <str<strong>on</strong>g>noise</str<strong>on</strong>g>. Noise Health<br />

2000;2:49–58.<br />

11. Babisch W. Noise and health. Envir<strong>on</strong> Health Perspect 2005;113:<br />

A14–A15.<br />

12. Is<strong>in</strong>g H, Michalak R. Stress <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>in</strong> a field experiment<br />

<strong>in</strong> comparis<strong>on</strong> to reacti<strong>on</strong>s to short term <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>in</strong> the<br />

laboratory. Noise Health 2004;6:1–7.<br />

13. Di Nisi J, Muzet A, Ehrhart J, Libert JP. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiovascular<br />

resp<strong>on</strong>ses to <str<strong>on</strong>g>noise</str<strong>on</strong>g> dur<strong>in</strong>g wak<strong>in</strong>g and sleep<strong>in</strong>g <strong>in</strong> humans.<br />

Sleep 1990;13:108–120.<br />

14. Davies RJ, Belt PJ, Roberts SJ, Ali NJ, Stradl<strong>in</strong>g JR. Arterial <strong>blood</strong><br />

<strong>pressure</strong> resp<strong>on</strong>ses to graded transient arousal from sleep <strong>in</strong><br />

normal humans. J Appl Physiol 1993;74:1123–1130.<br />

15. Carter N, Henders<strong>on</strong> R, Lal S, Hart M, Booth S, Hunyor S. Cardiovascular<br />

and aut<strong>on</strong>omic resp<strong>on</strong>se to envir<strong>on</strong>mental <str<strong>on</strong>g>noise</str<strong>on</strong>g> dur<strong>in</strong>g<br />

sleep <strong>in</strong> <str<strong>on</strong>g>night</str<strong>on</strong>g> shift workers. Sleep 2002;25:457–464.<br />

16. Carter NL. Transportati<strong>on</strong> <str<strong>on</strong>g>noise</str<strong>on</strong>g>, sleep, and possible after-<str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

Envir<strong>on</strong>. Int. 1996;22:105–116.<br />

17. Jarup L, Dudley ML, Babisch W, Houthuijs D, Swart W,<br />

Pershagen G, Bluhm G, Katsouyanni K, Vel<strong>on</strong>akis M, Cadum E,<br />

Vigna-Taglianti F HYENA C<strong>on</strong>sortium Hypertensi<strong>on</strong> and <str<strong>on</strong>g>exposure</str<strong>on</strong>g><br />

to <str<strong>on</strong>g>noise</str<strong>on</strong>g> near airports (HYENA): study design and <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g><br />

assessment Envir<strong>on</strong> Health Prespect 2005; 113: 1473–1478.<br />

18. Jarup L, Babisch W, Houthuijs D, Pershagen G, Katsouyanni K,<br />

Cadum E, Dudley ML, Savigny P, Seiffert I, Swart W,<br />

Breugelmans O, Bluhm G, Selander J, Haralabidis A,<br />

Dimakopoulou K, Sourtzi P, Vel<strong>on</strong>akis M, Vigna-Taglianti F for<br />

the HYENA C<strong>on</strong>sortium. Hypertensi<strong>on</strong> and <str<strong>on</strong>g>exposure</str<strong>on</strong>g> to <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

near airports—the HYENA study. Envir<strong>on</strong> Health Perspect 2008<br />

(<strong>in</strong> press).<br />

19. http://datasheets.cesva.com/sc310_eng.pdf.<br />

20. Staessen JA, O’Brien ET, Thijs L, Fagard RH. Modern approaches<br />

to <strong>blood</strong> <strong>pressure</strong> measurement. Occup Envir<strong>on</strong> Med 2000;57:<br />

510–520.<br />

21. J<strong>on</strong>es CR, Taylor K, Chowienczyk P, Post<strong>on</strong> L, Shennan AH. A<br />

validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Mobil O Graph (versi<strong>on</strong> 12) ambulatory <strong>blood</strong><br />

<strong>pressure</strong> m<strong>on</strong>itor. Blood Press M<strong>on</strong>it 2000;5:233–238.<br />

22. Van de Borne P, Nguyen H, Bist<strong>on</strong> P, L<strong>in</strong>kowski P, Degaute JP.<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> wake and sleep stages <strong>on</strong> the 24-h aut<strong>on</strong>omic c<strong>on</strong>trol<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>blood</strong> <strong>pressure</strong> and heart rate <strong>in</strong> recumbent men. Am J Physiol<br />

Heart Circ Physiol 1994;266:H548–H554.<br />

23. Blanc J, Baudrie V, Tulen J, P<strong>on</strong>ch<strong>on</strong> P, Gaudet E, Elghozi JL. Social<br />

isolati<strong>on</strong> affects the pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiovascular resp<strong>on</strong>ses to repetitive<br />

acoustic startle stimuli. Cl<strong>in</strong> Exp Pharmacol Physiol 1997;24:<br />

40–45.<br />

24. Guillem<strong>in</strong>ault C, Stoohs R, Clerk A, Simm<strong>on</strong>s J, Labanowski M.<br />

From obstructive sleep apnea syndrome to upper airway resistance<br />

syndrome: c<strong>on</strong>sistency <str<strong>on</strong>g>of</str<strong>on</strong>g> day<str<strong>on</strong>g>time</str<strong>on</strong>g> sleep<strong>in</strong>ess. Sleep 1992;<br />

15(Suppl. 6):S13–S16.<br />

25. Portaluppi F, Cortelli P, Prov<strong>in</strong>i F, Plazzi G, Manfred<strong>in</strong>i R,<br />

Lugaresi E. Alterati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sleep and circadian <strong>blood</strong> <strong>pressure</strong><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. Blood Press M<strong>on</strong>it 1997;2:301–313.<br />

26. Girard A, Holand S, Laude D, Elghozi J. Antihypertensive m<strong>on</strong>otherapy<br />

and cardiovascular resp<strong>on</strong>ses to an acoustic startle stimulus.<br />

J Cardiovasc Pharmacol 2001;37:101–107.<br />

27. Van D<strong>on</strong>gen HP, Maisl<strong>in</strong> G, Kerkh<str<strong>on</strong>g>of</str<strong>on</strong>g> GA. Repeated assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the endogenous 24-hour pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>blood</strong> <strong>pressure</strong> under c<strong>on</strong>stant<br />

rout<strong>in</strong>e. Chr<strong>on</strong>obiol Int 2001;18:85–98.<br />

28. Basner M, Buess H, Mueller U, Plath G, Samel A. Aircraft Noise<br />

Effects <strong>on</strong> Sleep: F<strong>in</strong>al Results <str<strong>on</strong>g>of</str<strong>on</strong>g> DLR Laboratory and Field<br />

Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> 2240 Polysomnographically Recorded Subject Nights,<br />

33rd Internati<strong>on</strong>al C<strong>on</strong>gress and Expositi<strong>on</strong> <strong>on</strong> Noise C<strong>on</strong>trol<br />

Eng<strong>in</strong>eer<strong>in</strong>g (Inter<str<strong>on</strong>g>noise</str<strong>on</strong>g> 2004), Prague/Czech Republic, 22–25.<br />

08. 2004.<br />

29. Ali NJ, Davies RJ, Fleetham JA, Stradl<strong>in</strong>g JR. Periodic movements <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the legs dur<strong>in</strong>g sleep associated with rises <strong>in</strong> systemic <strong>blood</strong><br />

<strong>pressure</strong>. Sleep 1999;14:163–165.<br />

30. Pillar G, Bar A, Shlitner A, Schnall R, Shefy J, Lavie P. Aut<strong>on</strong>omic<br />

arousal <strong>in</strong>dex: an automated detecti<strong>on</strong> based <strong>on</strong> peripheral arterial<br />

t<strong>on</strong>ometry. Sleep 2002;25:541–547.<br />

31. Flynn AJ, Denger<strong>in</strong>k HA, Wright JW. Blood <strong>pressure</strong> <strong>in</strong> rest<strong>in</strong>g,<br />

anesthetized and <str<strong>on</strong>g>noise</str<strong>on</strong>g>-exposed gu<strong>in</strong>ea pigs. Hear Res 1988;34:<br />

201–205.<br />

32. Nakamura T, Tanida M, Niijima A, Hib<strong>in</strong>o H, Shen J, Nagai K. Auditory<br />

stimulati<strong>on</strong> affects renal sympathetic nerve activity and <strong>blood</strong><br />

<strong>pressure</strong> <strong>in</strong> rats. Neurosci Lett 2007;416:107–112.<br />

33. Sutoo D, Akiyama K. Music improves dopam<strong>in</strong>ergic neurotransmissi<strong>on</strong>:<br />

dem<strong>on</strong>strati<strong>on</strong> based <strong>on</strong> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> music <strong>on</strong> <strong>blood</strong><br />

<strong>pressure</strong> regulati<strong>on</strong>. Bra<strong>in</strong> Res 2004;1016:255–262.<br />

34. Heude E, Bourg<strong>in</strong> P, Feigel P, Escourrou P. Ambulatory m<strong>on</strong>itor<strong>in</strong>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>blood</strong> <strong>pressure</strong> disturbs sleep and raises systolic <strong>pressure</strong> at<br />

<str<strong>on</strong>g>night</str<strong>on</strong>g> <strong>in</strong> patients suspected <str<strong>on</strong>g>of</str<strong>on</strong>g> suffer<strong>in</strong>g from sleep-disordered<br />

breath<strong>in</strong>g. Cl<strong>in</strong> Sci (L<strong>on</strong>d) 1996;91:45–50.<br />

35. Villani A, Parati G, Groppelli A, Omb<strong>on</strong>i S, Di Rienzo M, Mancia G.<br />

N<strong>on</strong><strong>in</strong>vasive automatic <strong>blood</strong> <strong>pressure</strong> m<strong>on</strong>itor<strong>in</strong>g does not<br />

Downloaded from<br />

http://eurheartj.oxfordjournals.org/ by guest <strong>on</strong> April 24, 2013


664<br />

attenuate <str<strong>on</strong>g>night</str<strong>on</strong>g><str<strong>on</strong>g>time</str<strong>on</strong>g> hypotensi<strong>on</strong>. Evidence from 24 h <strong>in</strong>traarterial<br />

<strong>blood</strong> <strong>pressure</strong> m<strong>on</strong>itor<strong>in</strong>g. Am J Hypertens 1992;5:744–747.<br />

36. Schwartz GL, Turner ST, Moore JH, S<strong>in</strong>g CF. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> day<br />

<strong>on</strong> <strong>in</strong>tra<strong>in</strong>dividual variability <strong>in</strong> ambulatory <strong>blood</strong> <strong>pressure</strong>. Am J<br />

Hypertens 2000;13:1203–1209.<br />

37. Van der Steen MS, Pleijers AM, Lenders JW, Thien T. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different sup<strong>in</strong>e body positi<strong>on</strong>s <strong>on</strong> <strong>blood</strong> <strong>pressure</strong>: c<strong>on</strong>sequences<br />

for <str<strong>on</strong>g>night</str<strong>on</strong>g> <strong>blood</strong> <strong>pressure</strong>/dipper-status. Blood Press M<strong>on</strong>it 2000;18:<br />

1731–1736.<br />

38. Schmidt TF, Wittenhaus J, Ste<strong>in</strong>metz TF, Piccolo P, Lupsen H.<br />

Twenty-four-hour ambulatory n<strong>on</strong><strong>in</strong>vasive c<strong>on</strong>t<strong>in</strong>uous f<strong>in</strong>ger<br />

<strong>blood</strong> <strong>pressure</strong> measurement with PORTAPRES: a new tool <strong>in</strong><br />

cardiovascular research. J Cardiovasc Pharmacol 1992;19 (Suppl. 6):<br />

S117–S145.<br />

39. Muzet A, Ehrhart J, Eschenlauer R, Lienhard JP. Habituati<strong>on</strong> and<br />

age differences <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiovascular resp<strong>on</strong>se to <str<strong>on</strong>g>noise</str<strong>on</strong>g> dur<strong>in</strong>g<br />

A.S. Haralabidis et al<br />

sleep. 5th C<strong>on</strong>gress <strong>on</strong> Sleep Research, Amsterdam. Sleep. Basel,<br />

Karger, 1980, 212–215.<br />

40. Morrell MJ, F<strong>in</strong>n L, Kim H, Peppard PE, Badr MS, Young T. Sleep<br />

fragmentati<strong>on</strong>, awake <strong>blood</strong> <strong>pressure</strong>, and sleep-disordered<br />

breath<strong>in</strong>g <strong>in</strong> a populati<strong>on</strong>-based study. Am J Respir Crit Care med<br />

2000;162:2091–2096.<br />

41. Rosenlund M, Bergl<strong>in</strong>d N, Pershagen G, Jarup L, Bluhm G.<br />

Increased prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> hypertensi<strong>on</strong> <strong>in</strong> a populati<strong>on</strong> exposed to<br />

aircraft <str<strong>on</strong>g>noise</str<strong>on</strong>g>. Occup Envir<strong>on</strong> Med 2001;58:769–773.<br />

42. Erikss<strong>on</strong> C, Rosenlund M, Pershagen G, Hild<strong>in</strong>g A, Ostens<strong>on</strong> CG,<br />

Bluhm G. Aircraft <str<strong>on</strong>g>noise</str<strong>on</strong>g> and <strong>in</strong>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> hypertensi<strong>on</strong>. Epidemiology<br />

2007;18:716–721.<br />

43. Babisch W, Beule B, Schust M, Kersten N, Is<strong>in</strong>g H. Traffic <str<strong>on</strong>g>noise</str<strong>on</strong>g> and<br />

risk <str<strong>on</strong>g>of</str<strong>on</strong>g> myocardial <strong>in</strong>farcti<strong>on</strong>. Epidemiology 2005;16:33–40.<br />

44. Henry JP. Biological basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the stress resp<strong>on</strong>se. News Physiol Sci<br />

1993;8:69–73.<br />

Downloaded from<br />

http://eurheartj.oxfordjournals.org/ by guest <strong>on</strong> April 24, 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!