24.04.2013 Views

Acute effects of night-time noise exposure on blood pressure in ...

Acute effects of night-time noise exposure on blood pressure in ...

Acute effects of night-time noise exposure on blood pressure in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CLINICAL RESEARCH<br />

Hypertensi<strong>on</strong><br />

<str<strong>on</strong>g>Acute</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong><br />

<strong>blood</strong> <strong>pressure</strong> <strong>in</strong> populati<strong>on</strong>s liv<strong>in</strong>g near airports<br />

Alexandros S. Haralabidis 1 , K<strong>on</strong>stant<strong>in</strong>a Dimakopoulou 1 , Federica Vigna-Taglianti 2 ,<br />

Matteo Giampaolo 3 , Alessandro Borg<strong>in</strong>i 4 , Marie-Louise Dudley 5 ,Göran Pershagen 6 ,<br />

Gösta Bluhm 6 , Danny Houthuijs 7 , Wolfgang Babisch 8 , Manolis Vel<strong>on</strong>akis 9 ,<br />

Klea Katsouyanni 1 *, and Lars Jarup 5 for the HYENA C<strong>on</strong>sortium<br />

1 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Hygiene and Epidemiology, Medical School, Nati<strong>on</strong>al and Kapodistrian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Athens, 75, Mikras Asias Street, Athens 11527, Greece; 2 Envir<strong>on</strong>mental<br />

Epidemiologic Unit, Regi<strong>on</strong>al Agency for Envir<strong>on</strong>mental Protecti<strong>on</strong>, Piedm<strong>on</strong>t Regi<strong>on</strong>, Grugliasco, Italy; 3 Regi<strong>on</strong>al Agency for Envir<strong>on</strong>mental Protecti<strong>on</strong>, Lombardy Regi<strong>on</strong>, Milan,<br />

Italy; 4 Cancer Register and Envir<strong>on</strong>mental Epidemiology Unit, Nati<strong>on</strong>al Cancer Institute, Milan, Italy; 5 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Epidemiology and Public Health, Imperial College L<strong>on</strong>d<strong>on</strong>,<br />

L<strong>on</strong>d<strong>on</strong>, UK; 6 Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Medic<strong>in</strong>e, Karol<strong>in</strong>ska Institutet, Stockholm, Sweden; 7 The Nati<strong>on</strong>al Institute for Public Health and the Envir<strong>on</strong>ment, Bilthoven,<br />

The Netherlands; 8 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Hygiene, Federal Envir<strong>on</strong>mental Agency, Berl<strong>in</strong>, Germany; 9 Laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> Preventi<strong>on</strong>, Nurses School, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Athens,<br />

Athens, Greece<br />

Received 17 September 2007; revised 11 December 2007; accepted 7 January 2008; <strong>on</strong>l<strong>in</strong>e publish-ahead-<str<strong>on</strong>g>of</str<strong>on</strong>g>-pr<strong>in</strong>t 12 February 2008<br />

Aims With<strong>in</strong> the framework <str<strong>on</strong>g>of</str<strong>on</strong>g> the HYENA (hypertensi<strong>on</strong> and <str<strong>on</strong>g>exposure</str<strong>on</strong>g> to <str<strong>on</strong>g>noise</str<strong>on</strong>g> near airports) project we <strong>in</strong>vestigated the<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> short-term changes <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong> or <strong>in</strong>door <str<strong>on</strong>g>noise</str<strong>on</strong>g> levels <strong>on</strong> <strong>blood</strong> <strong>pressure</strong> (BP) and heart rate (HR)<br />

dur<strong>in</strong>g <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> sleep <strong>in</strong> 140 subjects liv<strong>in</strong>g near four major European airports.<br />

.....................................................................................................................................................................................<br />

Methods N<strong>on</strong>-<strong>in</strong>vasive ambulatory BP measurements at 15 m<strong>in</strong> <strong>in</strong>tervals were performed. Noise was measured dur<strong>in</strong>g the<br />

and results <str<strong>on</strong>g>night</str<strong>on</strong>g> sleep<strong>in</strong>g period and recorded digitally for the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the source <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>noise</str<strong>on</strong>g> event. Exposure variables<br />

<strong>in</strong>cluded equivalent <str<strong>on</strong>g>noise</str<strong>on</strong>g> level over 1 and 15 m<strong>in</strong> and presence/absence <str<strong>on</strong>g>of</str<strong>on</strong>g> event (with LAmax . 35 dB) before each<br />

BP measurement. Random <str<strong>on</strong>g>effects</str<strong>on</strong>g> models for repeated measurements were applied. An <strong>in</strong>crease <strong>in</strong> BP (6.2 mmHg<br />

(0.63–12) for systolic and 7.4 mmHg (3.1, 12) for diastolic) was observed over 15 m<strong>in</strong> <strong>in</strong>tervals <strong>in</strong> which an aircraft<br />

event occurred. A n<strong>on</strong>-significant <strong>in</strong>crease <strong>in</strong> HR was also observed (by 5.4 b.p.m.). Less c<strong>on</strong>sistent <str<strong>on</strong>g>effects</str<strong>on</strong>g> were<br />

observed <strong>on</strong> HR. When the actual maximum <str<strong>on</strong>g>noise</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> an event was assessed there were no systematic differences<br />

<strong>in</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> accord<strong>in</strong>g to the <str<strong>on</strong>g>noise</str<strong>on</strong>g> source.<br />

.....................................................................................................................................................................................<br />

C<strong>on</strong>clusi<strong>on</strong> Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong> elevated subsequent BP measurements were clearly shown. The effect size <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

level appears to be <strong>in</strong>dependent <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>noise</str<strong>on</strong>g> source.<br />

-----------------------------------------------------------------------------------------------------------------------------------------------------------<br />

Keywords Envir<strong>on</strong>mental <str<strong>on</strong>g>noise</str<strong>on</strong>g> † Blood <strong>pressure</strong> † Night-<str<strong>on</strong>g>time</str<strong>on</strong>g> sleep † <str<strong>on</strong>g>Acute</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> † Epidemiological study<br />

Introducti<strong>on</strong><br />

European Heart Journal (2008) 29, 658–664<br />

doi:10.1093/eurheartj/ehn013<br />

Noise, def<strong>in</strong>ed as undesirable sound, is known to be a stress stimulus<br />

that can produce acute <strong>blood</strong> <strong>pressure</strong> (BP) elevati<strong>on</strong> <strong>in</strong><br />

animals 1 and <strong>in</strong> humans <strong>in</strong> laboratory or occupati<strong>on</strong>al sett<strong>in</strong>gs. 2<br />

Pers<strong>on</strong>s exposed to high-level <str<strong>on</strong>g>noise</str<strong>on</strong>g> (<strong>in</strong>clud<strong>in</strong>g recorded <strong>in</strong>dustrial<br />

or transportati<strong>on</strong> <str<strong>on</strong>g>noise</str<strong>on</strong>g>) <strong>in</strong> the laboratory showed BP rises<br />

dur<strong>in</strong>g the stimulus and for sec<strong>on</strong>ds to m<strong>in</strong>utes after its<br />

cessati<strong>on</strong>. 3–6 In field studies, workers exposed to high-level <strong>in</strong>dustrial<br />

<str<strong>on</strong>g>noise</str<strong>on</strong>g> and hav<strong>in</strong>g their BP measured via ambulatory BP m<strong>on</strong>itor<strong>in</strong>g<br />

(ABPM) showed BP <strong>in</strong>crements dur<strong>in</strong>g <str<strong>on</strong>g>exposure</str<strong>on</strong>g> and for a<br />

few hours after. 7,8 Although sound levels <str<strong>on</strong>g>of</str<strong>on</strong>g> transportati<strong>on</strong><br />

(ma<strong>in</strong>ly aircraft and road traffic) <str<strong>on</strong>g>noise</str<strong>on</strong>g> are usually lower, they<br />

may produce cardiovascular <str<strong>on</strong>g>effects</str<strong>on</strong>g> via the neuroendocr<strong>in</strong>e<br />

system by caus<strong>in</strong>g emoti<strong>on</strong>al reacti<strong>on</strong>s and annoyance through<br />

<strong>in</strong>terference with the <strong>in</strong>dividual’s mental tasks, relaxati<strong>on</strong> or<br />

* Corresp<strong>on</strong>d<strong>in</strong>g author. Tel: þ30 210 746 2087, Fax: þ30 210 746 2205, Email: kkatsouy@med.uoa.gr<br />

Published <strong>on</strong> behalf <str<strong>on</strong>g>of</str<strong>on</strong>g> the European Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Cardiology. All rights reserved. & The Author 2008. For permissi<strong>on</strong>s please email: journals.permissi<strong>on</strong>s@oxfordjournals.org.<br />

The <strong>on</strong>l<strong>in</strong>e versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this article has been published under an open access model. Users are entitled to use, reproduce, dissem<strong>in</strong>ate, or display the open access versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this article<br />

for n<strong>on</strong>-commercial purposes provided that the orig<strong>in</strong>al authorship is properly and fully attributed; the Journal, Learned Society and Oxford University Press are attributed as the<br />

orig<strong>in</strong>al place <str<strong>on</strong>g>of</str<strong>on</strong>g> publicati<strong>on</strong> with correct citati<strong>on</strong> details given; if an article is subsequently reproduced or dissem<strong>in</strong>ated not <strong>in</strong> its entirety but <strong>on</strong>ly <strong>in</strong> part or as a derivative work this<br />

must be clearly <strong>in</strong>dicated. For commercial re-use, please c<strong>on</strong>tact journals.permissi<strong>on</strong>s@oxfordjournals.org.<br />

Downloaded from<br />

http://eurheartj.oxfordjournals.org/ by guest <strong>on</strong> April 24, 2013


Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong> BP 659<br />

Table 1 Descriptive characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the 140 study subjects<br />

Athens L<strong>on</strong>d<strong>on</strong> Milan Stockholm<br />

(n 5 43) (n 5 16) (n 5 50) (n 5 31)<br />

...............................................................................................................................................................................<br />

Gender [n; male (%)] 14 (32.6) 8 (50.0) 26 (52.0) 16 (48.5)<br />

Age [years; mean (SD)] 53 (7.8) 58 (7.9) 56 (7.9) 56 (6.4)<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> BP measurements per <str<strong>on</strong>g>night</str<strong>on</strong>g> [mean (SD)] 29 (6.2) 30 (4.4) 32 (3.8) 31 (5.2)<br />

Systolic BP [mmHg; mean (SD)] 111 (17.3) 104 (13.2) 110 (15.1) 106 (16.3)<br />

Diastolic BP [mmHg; mean (SD)] 66 (12.3) 62 (10.1) 66 (11.7) 63 (11.2)<br />

Heart rate [b.p.m.; mean (SD)] 65 (9.7) 63 (9.2) 64 (10.7) 61 (8.8)<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft events per <str<strong>on</strong>g>night</str<strong>on</strong>g> a median (25th—75th) percentile 19 (5–32) 0 (0–17) 2 (0–7) 0 (0–5)<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> road traffic events per <str<strong>on</strong>g>night</str<strong>on</strong>g> a median (25th—75th)<br />

percentile<br />

1 (0–9) 0 (0–38) 0 (0–1) 0 (0–6)<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>door source events per <str<strong>on</strong>g>night</str<strong>on</strong>g> a median (25th—75th)<br />

percentile<br />

14 (8–26) 5 (0–22) 14 (10–21) 9 (5–15)<br />

a Event identified as present if measured LAmax .35dB.<br />

sleep, at cortical (c<strong>on</strong>scious) or subcortical level. 9–11 Indeed, systolic<br />

BP resp<strong>on</strong>ses to moderate <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>in</strong> field c<strong>on</strong>diti<strong>on</strong>s were<br />

more c<strong>on</strong>sistent than those to <strong>in</strong>tense <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>in</strong> a laboratory <strong>on</strong><br />

the same <strong>in</strong>dividuals. 12 Moreover, cardiovascular resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the same <strong>in</strong>dividuals have been found greater dur<strong>in</strong>g sleep than<br />

dur<strong>in</strong>g wakefulness. 13 In a sleep laboratory, BP and heart rate<br />

(HR) <strong>in</strong>crements were traced after t<strong>on</strong>al acoustic stimuli or<br />

recorded transportati<strong>on</strong> <str<strong>on</strong>g>noise</str<strong>on</strong>g>; arousal was not needed for<br />

sound to produce cardiovascular <str<strong>on</strong>g>effects</str<strong>on</strong>g>. 14,15 Noise disturbance<br />

dur<strong>in</strong>g sleep is regarded as <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important aspects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

envir<strong>on</strong>mental <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> with possible <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

health. 11,13,16 However, field studies <strong>on</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>on</strong><br />

BP dur<strong>in</strong>g sleep <strong>in</strong> real life c<strong>on</strong>diti<strong>on</strong>s are lack<strong>in</strong>g.<br />

In the present study the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>on</strong> BP and<br />

HR dur<strong>in</strong>g <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> sleep <str<strong>on</strong>g>of</str<strong>on</strong>g> pers<strong>on</strong>s liv<strong>in</strong>g <strong>in</strong> the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> four<br />

major European airports was <strong>in</strong>vestigated with<strong>in</strong> the wider framework<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the HYENA (hypertensi<strong>on</strong> and <str<strong>on</strong>g>exposure</str<strong>on</strong>g> to <str<strong>on</strong>g>noise</str<strong>on</strong>g> near<br />

airports) project. 17<br />

Methods<br />

Sampl<strong>in</strong>g<br />

The sample for the present study was selected from the ma<strong>in</strong> sample<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the HYENA project 17 and c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> subjects liv<strong>in</strong>g around four<br />

European airports with <str<strong>on</strong>g>night</str<strong>on</strong>g> flights: Athens (Greece), Malpensa<br />

(Italy), Arlanda (Sweden) and L<strong>on</strong>d<strong>on</strong> Heathrow (UK). The <strong>in</strong>itial<br />

sample for the HYENA study 17 was 6000 pers<strong>on</strong>s liv<strong>in</strong>g <strong>in</strong> the vic<strong>in</strong>ity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the study airports. A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 4861 pers<strong>on</strong>s (2404 men and 2457<br />

women) between 45 and 70 years old at the <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terview participated<br />

<strong>in</strong> the study. The samples were representative from the populati<strong>on</strong>s<br />

exposed to various levels <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft and traffic <str<strong>on</strong>g>noise</str<strong>on</strong>g> around<br />

airports based <strong>on</strong> <str<strong>on</strong>g>noise</str<strong>on</strong>g> c<strong>on</strong>tours. Participati<strong>on</strong> rates differed<br />

between the countries, from circa 30% <strong>in</strong> Italy and the UK, to 56%<br />

<strong>in</strong> Greece and 78% <strong>in</strong> Sweden. More details may be found <strong>in</strong> Jarup<br />

et al. 18 We selected subjects from various aircraft <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> categories,<br />

as assessed by the A-weighted annual equivalent <str<strong>on</strong>g>noise</str<strong>on</strong>g> level<br />

LAeq24h based <strong>on</strong> their residence, <strong>in</strong> order to obta<strong>in</strong> a larger variability<br />

<strong>in</strong> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> situati<strong>on</strong>s.<br />

The follow<strong>in</strong>g exclusi<strong>on</strong> criteria were applied: (1) antihypertensive<br />

medicati<strong>on</strong>, (2) diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g> diabetes mellitus, (3) diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g> obstructive<br />

sleep apnoea syndrome, (4) diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary hypertensi<strong>on</strong>,<br />

(5) work<strong>in</strong>g <strong>in</strong> <str<strong>on</strong>g>night</str<strong>on</strong>g> shift, (6) us<strong>in</strong>g sleep<strong>in</strong>g pills and sedatives, (7) diagnosis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hear<strong>in</strong>g impairment, (8) regular use <str<strong>on</strong>g>of</str<strong>on</strong>g> earplugs, (9) diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

atrial fibrillati<strong>on</strong>. Criteria 1–6 were applied as they affect the<br />

<str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> BP; criteria 7 and 8 as they modify <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g>; and criteri<strong>on</strong><br />

9 as it h<strong>in</strong>ders ABPM. Twenty-<strong>on</strong>e subjects were excluded due<br />

to technical problems with the m<strong>on</strong>itor<strong>in</strong>g equipment. The f<strong>in</strong>al sample<br />

c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> 140 subjects (Table 1). Approval for the study was granted<br />

by each centre’s Ethical Committee.<br />

Measurements and data management<br />

C<strong>on</strong>t<strong>in</strong>uous <str<strong>on</strong>g>noise</str<strong>on</strong>g> measurement with the type I ‘CESVA SC310’ <str<strong>on</strong>g>noise</str<strong>on</strong>g>meter<br />

19 (<str<strong>on</strong>g>time</str<strong>on</strong>g> c<strong>on</strong>stant ‘fast’ 125 ms) as well as <str<strong>on</strong>g>noise</str<strong>on</strong>g> record<strong>in</strong>g with an<br />

MP3 recorder c<strong>on</strong>nected to the <str<strong>on</strong>g>noise</str<strong>on</strong>g>-meter’s high-quality microph<strong>on</strong>e<br />

were d<strong>on</strong>e dur<strong>in</strong>g the study <str<strong>on</strong>g>night</str<strong>on</strong>g> <strong>in</strong> each participant’s<br />

bedroom. Each participant was followed up for <strong>on</strong>e <str<strong>on</strong>g>night</str<strong>on</strong>g>. The <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

level equivalents for every sec<strong>on</strong>d, for every 1 m<strong>in</strong> before and for<br />

every 15 m<strong>in</strong> period between BP measurements were calculated as<br />

follows:<br />

LAeq ¼ 10 log<br />

Xt 10<br />

i¼1<br />

LAeq1sec=10<br />

!<br />

10 logðtÞ<br />

where t is the 1 m<strong>in</strong> or 15 m<strong>in</strong> period <strong>in</strong> sec<strong>on</strong>ds.<br />

Us<strong>in</strong>g playback and visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sound record<strong>in</strong>gs <strong>on</strong> a computer,<br />

the source <str<strong>on</strong>g>of</str<strong>on</strong>g> each event was identified and synchr<strong>on</strong>ized with the<br />

sound measurements with a program written for this purpose. An<br />

event was def<strong>in</strong>ed as present if its <strong>in</strong>door LAmax exceeded 35 dB.<br />

Noise events were classified <strong>in</strong>to four categories accord<strong>in</strong>g to<br />

source: <strong>in</strong>door, aircraft, road traffic, and other outdoor. Other<br />

outdoor events were very rare and thus excluded from the analysis.<br />

N<strong>on</strong>-<strong>in</strong>vasive 24 h ABPM, with HR measurements, was performed at<br />

15 m<strong>in</strong> <strong>in</strong>tervals with the validated ‘Mobilograph’ device, 20,21 <strong>in</strong>clud<strong>in</strong>g<br />

the study <str<strong>on</strong>g>night</str<strong>on</strong>g>. The 15 m<strong>in</strong> frequency has been implemented before 7<br />

and was chosen as optimal for frequent measurements without excessive<br />

sleep disturbance. The three <strong>in</strong>struments (<str<strong>on</strong>g>noise</str<strong>on</strong>g> meter, <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

Downloaded from<br />

http://eurheartj.oxfordjournals.org/ by guest <strong>on</strong> April 24, 2013


660<br />

recorder, and ABPM device) and the participants’ alarm clock were<br />

synchr<strong>on</strong>ized at 1 m<strong>in</strong> precisi<strong>on</strong>.<br />

Specially tra<strong>in</strong>ed nurses <strong>in</strong>stalled the <str<strong>on</strong>g>noise</str<strong>on</strong>g> equipment, placed the<br />

ABPM device <strong>on</strong> the participants and gave them written <strong>in</strong>structi<strong>on</strong>s,<br />

dur<strong>in</strong>g a home visit at least 3 h before normal sleep<strong>in</strong>g <str<strong>on</strong>g>time</str<strong>on</strong>g>. Each participant<br />

was <strong>in</strong>structed not to engage <strong>in</strong> unusually heavy activity dur<strong>in</strong>g<br />

the measurements’ period and filled <strong>in</strong> a sleep log <strong>in</strong>dicat<strong>in</strong>g actual<br />

sleep<strong>in</strong>g <str<strong>on</strong>g>time</str<strong>on</strong>g>s.<br />

Statistical analysis<br />

L<strong>in</strong>ear mixed models which <strong>in</strong>cluded random <strong>in</strong>tercept and random<br />

coefficients for the various <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>in</strong>dicators were applied for each<br />

centre separately <strong>in</strong> order to assess acute <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>on</strong> BP and<br />

HR dur<strong>in</strong>g <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> sleep. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> repeated measurements<br />

per subject corresp<strong>on</strong>ds to the number <str<strong>on</strong>g>of</str<strong>on</strong>g> systolic and diastolic BP<br />

measurements (mmHg), as well as HR measurements (beats per<br />

m<strong>in</strong>ute—b.p.m.) dur<strong>in</strong>g the self-reported sleep<strong>in</strong>g period. The<br />

A-weighted <strong>in</strong>door <str<strong>on</strong>g>noise</str<strong>on</strong>g> level equivalents <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 m<strong>in</strong> (LAeq1m<strong>in</strong>) and<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 15 m<strong>in</strong> (LAeq15m<strong>in</strong>) before BP measurements were used as shortterm<br />

<str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> variables. In this type <str<strong>on</strong>g>of</str<strong>on</strong>g> model, where an <strong>in</strong>dividual<br />

serves as his own ‘c<strong>on</strong>trol’, there is no need to adjust for <strong>in</strong>dividual<br />

c<strong>on</strong>found<strong>in</strong>g factors. In order to account for the possible c<strong>on</strong>found<strong>in</strong>g<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> misreport<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> sleep<strong>in</strong>g and wak<strong>in</strong>g <str<strong>on</strong>g>time</str<strong>on</strong>g>s (potentially associated<br />

with both BP and <str<strong>on</strong>g>noise</str<strong>on</strong>g> levels), the above <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> variables<br />

were also adjusted for the sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> BP measurements,<br />

us<strong>in</strong>g 2 l<strong>in</strong>ear terms. The first l<strong>in</strong>ear term denoted the sequence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the BP measurements (1,2, ...,k) from the start to the middle <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each pers<strong>on</strong>s sleep period and the sec<strong>on</strong>d denoted the sequence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the BP measurements (1,2, ...,k) from the middle to the end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each pers<strong>on</strong>s sleep period. Other <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> variables were the<br />

presence or absence <str<strong>on</strong>g>of</str<strong>on</strong>g> a source-specific <str<strong>on</strong>g>noise</str<strong>on</strong>g> event dur<strong>in</strong>g the<br />

15 m<strong>in</strong> periods and each source-specific event’s LAmax. If more than<br />

<strong>on</strong>e event were present <strong>in</strong> the 15 m<strong>in</strong> <strong>in</strong>terval, the higher LAmax<br />

was used. S<strong>in</strong>ce a <str<strong>on</strong>g>noise</str<strong>on</strong>g> stimulus may not have the same effect <strong>in</strong> the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> other <str<strong>on</strong>g>noise</str<strong>on</strong>g>, <strong>in</strong> all models assess<strong>in</strong>g the source-specific<br />

<str<strong>on</strong>g>noise</str<strong>on</strong>g>, we adjusted for the 10th percentile <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>noise</str<strong>on</strong>g> level equivalent<br />

(L90) <strong>in</strong> all the 15 m<strong>in</strong> <strong>in</strong>tervals. After obta<strong>in</strong><strong>in</strong>g the four centre-specific<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> us<strong>in</strong>g random effect models, we then comb<strong>in</strong>ed the centrespecific<br />

results us<strong>in</strong>g either fixed or random <str<strong>on</strong>g>effects</str<strong>on</strong>g> meta-analysis<br />

depend<strong>in</strong>g <strong>on</strong> the absence or presence <str<strong>on</strong>g>of</str<strong>on</strong>g> heterogeneity. All reported<br />

P-values are based <strong>on</strong> two-sided hypotheses and the significance level<br />

used was 5%.<br />

Results<br />

Table 1 shows the descriptive characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the samples. The<br />

mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> repeated BP measurements per <str<strong>on</strong>g>night</str<strong>on</strong>g> was<br />

similar <strong>in</strong> all centres (range 29–32). BP and HR displayed a<br />

normal distributi<strong>on</strong> (data not shown). The number <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft<br />

events dur<strong>in</strong>g the <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> sleep was higher <strong>in</strong> Athens compared<br />

with the other centres. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> subjects with no or few<br />

<str<strong>on</strong>g>night</str<strong>on</strong>g> aircraft events was expla<strong>in</strong>ed by the sampl<strong>in</strong>g procedure<br />

through which a number <str<strong>on</strong>g>of</str<strong>on</strong>g> subjects were selected from the<br />

ma<strong>in</strong> sub-sample <str<strong>on</strong>g>of</str<strong>on</strong>g> low <str<strong>on</strong>g>exposure</str<strong>on</strong>g> to aircraft <str<strong>on</strong>g>noise</str<strong>on</strong>g>. In Milan and<br />

Stockholm, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>door events was much larger than aircraft<br />

or traffic events. The median equivalent <str<strong>on</strong>g>noise</str<strong>on</strong>g> levels<br />

(LAeq15m<strong>in</strong>, LAeq1m<strong>in</strong>) for all centres were comparable. Also<br />

the source-specific LAmax (aircraft, road or <strong>in</strong>door) was similar<br />

<strong>in</strong> the four samples (Figure 1).<br />

A.S. Haralabidis et al<br />

Figure 1 Box plots <str<strong>on</strong>g>of</str<strong>on</strong>g> the various <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>in</strong>dicators measured<br />

dur<strong>in</strong>g the study <str<strong>on</strong>g>night</str<strong>on</strong>g><br />

Table 2 shows the pooled effect estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g><br />

<strong>in</strong>dicators <strong>on</strong> BP and HR. The measured <str<strong>on</strong>g>noise</str<strong>on</strong>g> 1 and 15 m<strong>in</strong> before<br />

each BP measurement was associated with higher systolic and diastolic<br />

BP and with higher HR. For example, a 5 dB <strong>in</strong>crement <strong>in</strong><br />

LAeq15m<strong>in</strong> was associated with a 0.63 mmHg <strong>in</strong>crease <strong>in</strong> diastolic<br />

BP. The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> the effect <strong>on</strong> BP was somewhat lower when<br />

the LAeq1m<strong>in</strong> was c<strong>on</strong>sidered but rema<strong>in</strong>s statistically significant.<br />

The effect rema<strong>in</strong>s similar when adjustment was applied for the<br />

sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> measurements dur<strong>in</strong>g sleep <str<strong>on</strong>g>time</str<strong>on</strong>g>. An <strong>in</strong>crease <strong>in</strong> BP<br />

(6.2 mmHg for systolic, 7.4 mmHg for diastolic) and HR (by<br />

5.4 b.p.m.) was observed over 15 m<strong>in</strong> <strong>in</strong>tervals <strong>in</strong> which an aircraft<br />

event occurs but for HR this was not statistically significant.<br />

A similar magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>crease <strong>in</strong> BP was observed dur<strong>in</strong>g <str<strong>on</strong>g>time</str<strong>on</strong>g><br />

periods with traffic or <strong>in</strong>door source event. In c<strong>on</strong>trast, the<br />

effect <strong>on</strong> HR was smaller dur<strong>in</strong>g periods with <strong>in</strong>door events and<br />

was not observed over periods with traffic events. When the<br />

actual <str<strong>on</strong>g>noise</str<strong>on</strong>g> level assessed by LAmax was taken <strong>in</strong>to account<br />

(adjust<strong>in</strong>g for the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an event from a specific source<br />

and for L90), a positive associati<strong>on</strong> was found between <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

from all the three sources and BP, which was statistically significant<br />

and similar to the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> measured <str<strong>on</strong>g>noise</str<strong>on</strong>g> from all sources. The<br />

corresp<strong>on</strong>d<strong>in</strong>g <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> HR were lower than those from all<br />

sources and reached statistical significance <strong>on</strong>ly for <strong>in</strong>door<br />

source <str<strong>on</strong>g>noise</str<strong>on</strong>g>.<br />

The estimated <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong> BP were c<strong>on</strong>sistent<br />

<strong>in</strong> each sample. The estimated <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> diastolic BP <str<strong>on</strong>g>of</str<strong>on</strong>g> measured<br />

<str<strong>on</strong>g>noise</str<strong>on</strong>g> by sample are shown <strong>in</strong> Figure 2. The estimates were practically<br />

identical for the three samples, whilst for L<strong>on</strong>d<strong>on</strong> they were<br />

higher but associated with wider c<strong>on</strong>fidence <strong>in</strong>tervals. In Figure 3 a<br />

c<strong>on</strong>sistent pattern may be seen for the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> source-specific<br />

<str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>in</strong> the four samples. The corresp<strong>on</strong>d<strong>in</strong>g results for systolic<br />

BP were similar, with the excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> significant heterogeneity<br />

<strong>in</strong> the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>door source <str<strong>on</strong>g>noise</str<strong>on</strong>g> events where the effect<br />

was highest <strong>in</strong> L<strong>on</strong>d<strong>on</strong> and lowest <strong>in</strong> Stockholm, the <strong>on</strong>ly n<strong>on</strong>statistically<br />

significant effect. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> for HR were less c<strong>on</strong>sistent<br />

between centres. However, the <strong>on</strong>ly model which displayed<br />

statistically significant heterogeneity was the <strong>on</strong>e assess<strong>in</strong>g the<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft events.<br />

Downloaded from<br />

http://eurheartj.oxfordjournals.org/ by guest <strong>on</strong> April 24, 2013


Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong> BP 661<br />

Table 2 Pooled effect estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> various <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>in</strong>dicators <strong>on</strong> <strong>blood</strong> <strong>pressure</strong> (BP) and heart rate (HR) measurements.<br />

Results from fixed <str<strong>on</strong>g>effects</str<strong>on</strong>g> models (except where noted)<br />

Model Increase <strong>in</strong> systolic BP Increase <strong>in</strong> diastolic Increase <strong>in</strong> heart rate<br />

(mmHg) (95% CI)<br />

BP (mmHg) (95% CI) (b.p.m.) (95% CI)<br />

...............................................................................................................................................................................<br />

1 LAeq(15 m<strong>in</strong>) a (5 dB) 0.74 (0.40, 1.08) 0.63 (0.34, 0.91) 0.26 (0.07, 0.44)<br />

2 LAeq(1 m<strong>in</strong>) b (5 dB) 0.69 (0.36, 1.02) 0.55 (0.26, 0.84) 0.30 (0.12, 0.49)<br />

3 LAeq(15 m<strong>in</strong>) c (5 dB) 0.82 (0.48, 1.16) 0.62 (0.36, 0.88) 0.23 (0.07, 0.40)<br />

4 LAeq(1 m<strong>in</strong>) d (5 dB) 0.88 (0.54, 1.22) 0.50 (0.23, 0.78) 0.35 (0.17, 0.53)<br />

5 Aircraft events e (yes ¼ 1) 6.20 (0.63, 11.77) 7.39 (3.09, 11.69) 5.42 g (22.01, 12.85)<br />

6 LAmax aircraft events f (5 dB) 0.66 (0.33, 0.98) 0.64 (0.37, 0.90) 0.18 (20.04, 0.40)<br />

7 Road traffic events e (yes ¼ 1) 4.81 (22.45, 12.06) 3.34 (27.37, 14.04) 22.76 (27.30, 1.77)<br />

8 LAmax road traffic events f (5 dB) 0.81 (0.46, 1.16) 0.55 (0.26, 0.83) 0.01 (20.41, 0.42)<br />

9 Indoor source events e (yes ¼ 1) 7.39 (3.76, 11.02) 4.19 (0.65, 7.72) 3.00 (0.87, 5.13)<br />

10 LAmax <strong>in</strong>door source events f (5 dB) 0.87 g (0.17, 1.57) 0.68 (0.43, 0.92) 0.21 (0.01, 0.41)<br />

a<br />

Equivalent <str<strong>on</strong>g>noise</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> the 15 m<strong>in</strong> before BP measurement.<br />

b<br />

Equivalent <str<strong>on</strong>g>noise</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> the 1 m<strong>in</strong> before BP measurement.<br />

c<br />

Equivalent <str<strong>on</strong>g>noise</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> the 15 m<strong>in</strong> before BP measurement, adjusted for the sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> BP measurements from the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the sleep<strong>in</strong>g period to the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g><br />

sleep, and from the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> sleep to the wake-up period.<br />

d<br />

Equivalent <str<strong>on</strong>g>noise</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> the 1 m<strong>in</strong> before BP measurement, adjusted for the sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> BP measurements from the start <str<strong>on</strong>g>of</str<strong>on</strong>g> the sleep<strong>in</strong>g period to the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g><br />

sleep, and from the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> sleep to the wake-up period.<br />

e<br />

Yes: event with <strong>in</strong>door LAmax .35 dB present.<br />

f<br />

Indoor LAmax <str<strong>on</strong>g>of</str<strong>on</strong>g> source-specific event adjusted for presence <str<strong>on</strong>g>of</str<strong>on</strong>g> event (yes: event with LAmax <strong>in</strong>door .35 dB present) and for L90 <strong>in</strong> all 15 m<strong>in</strong> <str<strong>on</strong>g>time</str<strong>on</strong>g> periods without the<br />

source-specific event.<br />

g<br />

Results from random <str<strong>on</strong>g>effects</str<strong>on</strong>g> models <strong>in</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> significant heterogeneity.<br />

Figure 2 Centre-specific and pooled effect estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

5 dB(A) <strong>in</strong>crement <strong>in</strong> the equivalent <str<strong>on</strong>g>noise</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 m<strong>in</strong> (red)<br />

and 1 m<strong>in</strong> (blue) before <strong>blood</strong> <strong>pressure</strong> (BP) measurement <strong>on</strong><br />

diastolic BP<br />

Discussi<strong>on</strong><br />

We studied the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>on</strong> BP dur<strong>in</strong>g sleep, a state<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> reduced sympathetic and <strong>in</strong>creased parasympathetic aut<strong>on</strong>omous<br />

nervous system (ANS) t<strong>on</strong>e, lead<strong>in</strong>g to a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

BP and HR. 22<br />

We found that both systolic and diastolic BP levels as well as HR<br />

<strong>in</strong>creased with higher <str<strong>on</strong>g>noise</str<strong>on</strong>g> levels dur<strong>in</strong>g the preced<strong>in</strong>g m<strong>in</strong>utes,<br />

Figure 3 Centre-specific and pooled effect estimates <strong>on</strong> diastolic<br />

<strong>blood</strong> <strong>pressure</strong> (BP) and its 95% c<strong>on</strong>fidence Interval (CI)<br />

associated with an <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 dB <strong>in</strong> LAmax <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft event<br />

(red), <str<strong>on</strong>g>of</str<strong>on</strong>g> road traffic event (blue) and <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>door event (black)<br />

dur<strong>in</strong>g <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> sleep (source-specific event identified as<br />

present if <strong>in</strong>door measured LAmax .35 dB)<br />

<strong>in</strong>dependently <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>noise</str<strong>on</strong>g> source and <str<strong>on</strong>g>of</str<strong>on</strong>g> the sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

measurement dur<strong>in</strong>g sleep <str<strong>on</strong>g>time</str<strong>on</strong>g>, which <strong>in</strong>dicates absence <str<strong>on</strong>g>of</str<strong>on</strong>g> habituati<strong>on</strong><br />

dur<strong>in</strong>g the study <str<strong>on</strong>g>night</str<strong>on</strong>g>, a matter <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>troversy <strong>in</strong> studies <strong>on</strong><br />

humans or <strong>on</strong> experimental animals. 13,23 These results are c<strong>on</strong>sistent<br />

with those reported by Carter et al. 15 <strong>in</strong> a laboratory where<br />

both BP and HR <strong>in</strong>creased after <str<strong>on</strong>g>noise</str<strong>on</strong>g> stimuli. There are major<br />

differences between laboratory and real life c<strong>on</strong>diti<strong>on</strong>s. In a laboratory,<br />

background <str<strong>on</strong>g>noise</str<strong>on</strong>g> is steady whilst <strong>in</strong> real life c<strong>on</strong>diti<strong>on</strong>s the<br />

Downloaded from<br />

http://eurheartj.oxfordjournals.org/ by guest <strong>on</strong> April 24, 2013


662<br />

analysis has to adjust for variable <str<strong>on</strong>g>noise</str<strong>on</strong>g> sources. Davies et al. 14<br />

studied five subjects and found an <strong>in</strong>crease <strong>in</strong> diastolic BP from 4<br />

to 6 mmHg associated with arousal accord<strong>in</strong>g to sleep stage. We<br />

found an <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> 6–7 mmHg <strong>in</strong> diastolic BP accord<strong>in</strong>g to the<br />

source <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>noise</str<strong>on</strong>g> event, not necessarily associated with<br />

awaken<strong>in</strong>g.<br />

We also found significant <strong>in</strong>creases <strong>in</strong> BP and, less c<strong>on</strong>sistently, HR<br />

when the source <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>noise</str<strong>on</strong>g> was taken <strong>in</strong>to account. The <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the source-specific <str<strong>on</strong>g>noise</str<strong>on</strong>g> were comparable for aircraft, traffic, and<br />

<strong>in</strong>door events and were similar to those <str<strong>on</strong>g>of</str<strong>on</strong>g> the total measured <str<strong>on</strong>g>noise</str<strong>on</strong>g>.<br />

In our study, <strong>on</strong>e comm<strong>on</strong> source <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>door <str<strong>on</strong>g>noise</str<strong>on</strong>g> was snor<strong>in</strong>g.<br />

S<strong>in</strong>ce <strong>in</strong> some cases the study subject is expected to be the snorer<br />

too (we could not assess this <strong>in</strong>formati<strong>on</strong>) and his BP elevati<strong>on</strong><br />

could be due to disordered breath<strong>in</strong>g, 24,25 the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>door<br />

<str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>on</strong> BP that we report could be overestimated.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the measured <str<strong>on</strong>g>noise</str<strong>on</strong>g> level as well as the sourcespecific<br />

<str<strong>on</strong>g>noise</str<strong>on</strong>g> was weaker and less c<strong>on</strong>sistent <strong>on</strong> HR than <strong>on</strong> BP.<br />

This f<strong>in</strong>d<strong>in</strong>g is <strong>in</strong> accordance with results from a sleep laboratory<br />

study 15 where a <str<strong>on</strong>g>noise</str<strong>on</strong>g> threshold was detected for the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong><br />

HR but not <strong>on</strong> BP and with previously reported mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

BP rise follow<strong>in</strong>g <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g>, which refer ma<strong>in</strong>ly to vasoc<strong>on</strong>stricti<strong>on</strong>.<br />

2,26 Moreover, HR has a str<strong>on</strong>ger circadian comp<strong>on</strong>ent<br />

which may mask other <str<strong>on</strong>g>effects</str<strong>on</strong>g>. 27<br />

The remarkable c<strong>on</strong>sistency <str<strong>on</strong>g>of</str<strong>on</strong>g> the estimated <str<strong>on</strong>g>effects</str<strong>on</strong>g> between<br />

the four centres strengthens the evidence for causality. The<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong> BP per specific <strong>in</strong>crease <strong>in</strong> <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

levels were found similar <strong>in</strong> the four samples <strong>in</strong> spite <str<strong>on</strong>g>of</str<strong>on</strong>g> the fact<br />

that there were differences <strong>in</strong> the pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> accord<strong>in</strong>g to<br />

the source dur<strong>in</strong>g the <str<strong>on</strong>g>night</str<strong>on</strong>g>. However, the <strong>in</strong>door LAmax levels<br />

<strong>in</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an event were comparable <strong>in</strong> all the four<br />

centres.<br />

In sleep laboratories, <str<strong>on</strong>g>noise</str<strong>on</strong>g> stimuli <str<strong>on</strong>g>of</str<strong>on</strong>g> levels comparable with<br />

those <str<strong>on</strong>g>of</str<strong>on</strong>g> real life produced cardiovascular resp<strong>on</strong>ses for<br />

sec<strong>on</strong>ds. 13,14 However, <strong>in</strong> occupati<strong>on</strong>al or laboratory sett<strong>in</strong>gs, BP<br />

elevati<strong>on</strong>s have been found to last for m<strong>in</strong>utes or even hours 6–8<br />

dur<strong>in</strong>g wakefulness. Emoti<strong>on</strong>al resp<strong>on</strong>ses such as anger or fear<br />

may magnify and prol<strong>on</strong>g the <str<strong>on</strong>g>effects</str<strong>on</strong>g>, dur<strong>in</strong>g <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g><br />

to aircraft <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>in</strong> real life c<strong>on</strong>diti<strong>on</strong>s. 9 One drawback <str<strong>on</strong>g>of</str<strong>on</strong>g> our<br />

study is that BP was assessed every 15 m<strong>in</strong> although the <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

event could have happened any<str<strong>on</strong>g>time</str<strong>on</strong>g> with<strong>in</strong> this <strong>in</strong>terval. As<br />

expected, the distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> events over the 15 m<strong>in</strong> <strong>in</strong>tervals<br />

between BP measurements is uniform. Only 5–11.5% <str<strong>on</strong>g>of</str<strong>on</strong>g> events<br />

(the range reflects different sources and samples) occurred<br />

dur<strong>in</strong>g the m<strong>in</strong>ute <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement (6.7% expected). The design<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> our study might have led to the ‘loss’ <str<strong>on</strong>g>of</str<strong>on</strong>g> the effect <strong>on</strong> BP or<br />

HR if the <str<strong>on</strong>g>noise</str<strong>on</strong>g> event happened to occur dur<strong>in</strong>g the first<br />

m<strong>in</strong>utes <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tervals between measurements and the effect was<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> short durati<strong>on</strong>. However, the fact that the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

dur<strong>in</strong>g the preced<strong>in</strong>g 1 and 15 m<strong>in</strong> were <str<strong>on</strong>g>of</str<strong>on</strong>g> similar magnitude <strong>in</strong>dicates<br />

more prol<strong>on</strong>ged <str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

In this study, the <strong>in</strong>door LAmax threshold for characteriz<strong>in</strong>g an<br />

event as ‘present’ was set at 35 dB. Awaken<strong>in</strong>g reacti<strong>on</strong>s are usually<br />

observed at LAmax values over 40–45 dB <strong>in</strong> the bedroom but<br />

recently lower thresholds have been also suggested. 11,28<br />

However, accord<strong>in</strong>g to sleep laboratory studies, haemodynamic<br />

changes can also occur at lower <str<strong>on</strong>g>noise</str<strong>on</strong>g> levels than the <strong>on</strong>es that<br />

cause EEG changes, although the <str<strong>on</strong>g>effects</str<strong>on</strong>g> are str<strong>on</strong>ger when<br />

arousal coexists. 13,14<br />

Indeed, aut<strong>on</strong>omic resp<strong>on</strong>ses like BP<br />

elevati<strong>on</strong> have been used as a sensitive marker <str<strong>on</strong>g>of</str<strong>on</strong>g> sleep disturbance.<br />

29,30 The f<strong>in</strong>d<strong>in</strong>g that c<strong>on</strong>sciousness is not needed for sound<br />

to produce its cardiovascular <str<strong>on</strong>g>effects</str<strong>on</strong>g> is also supported by experiments<br />

<strong>in</strong> which anaesthetized animals dem<strong>on</strong>strated BP <strong>in</strong>crement<br />

when exposed to <strong>in</strong>tense <str<strong>on</strong>g>noise</str<strong>on</strong>g> 31 or BP reducti<strong>on</strong> when exposed<br />

to music. 32,33 These outcomes are attributed to the subcortical<br />

c<strong>on</strong>necti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the auditory pathway with the ANS (amygdala,<br />

hippocampus, hypothalamus) 10 and justify the use <str<strong>on</strong>g>of</str<strong>on</strong>g> relatively<br />

low <str<strong>on</strong>g>noise</str<strong>on</strong>g> thresholds <strong>in</strong> the research <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>effects</str<strong>on</strong>g> <strong>on</strong> BP<br />

dur<strong>in</strong>g sleep.<br />

To assess nocturnal BP, we used ABPM, which has been validated<br />

and used extensively for this purpose. 19,20 ABPM has been<br />

reported to affect sleep and <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> BP 34 dur<strong>in</strong>g the cuff’s<br />

<strong>in</strong>flati<strong>on</strong> similarly to <str<strong>on</strong>g>noise</str<strong>on</strong>g> arousal stimuli, 14 although it is also supported,<br />

by means <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>tra-arterial record<strong>in</strong>gs, that ABPM does not<br />

attenuate <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> BP reducti<strong>on</strong>. 35 In any case, it can be argued<br />

that there is synergy and that the <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> would not be<br />

the same <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> ABPM dur<strong>in</strong>g the study <str<strong>on</strong>g>night</str<strong>on</strong>g>.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> this possibility, the frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> BP measurements<br />

was kept at four per hour, although up to six measurements per<br />

hour have been used before. 36 Moreover, the body positi<strong>on</strong><br />

dur<strong>in</strong>g sleep can affect the ABPM measurements. 37 All measurements<br />

however <strong>in</strong> our study, irrespective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g><br />

level, were d<strong>on</strong>e with ABPM and there is no reas<strong>on</strong> to assume<br />

that body positi<strong>on</strong> dur<strong>in</strong>g sleep is related to <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g>. The<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> portable, n<strong>on</strong>-<strong>in</strong>vasive BP recorders that register BP c<strong>on</strong>t<strong>in</strong>uously<br />

and correct automatically hydrostatic <str<strong>on</strong>g>effects</str<strong>on</strong>g>, 38 can be<br />

c<strong>on</strong>sidered <strong>in</strong> future studies <strong>in</strong>vestigat<strong>in</strong>g the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>on</strong><br />

<str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> BP <strong>in</strong> real life c<strong>on</strong>diti<strong>on</strong>s.<br />

With<strong>in</strong> the HYENA project we found <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-term <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

<str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong> the prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> hypertensi<strong>on</strong> 18 and the acute<br />

<str<strong>on</strong>g>effects</str<strong>on</strong>g> reported here. Absence <str<strong>on</strong>g>of</str<strong>on</strong>g> short-term habituati<strong>on</strong> to the<br />

cardiovascular <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g>, especially those dur<strong>in</strong>g sleep,<br />

found here and also reported before, 13,16,39 as well as evidence<br />

from studies <strong>on</strong> sleep-disorder which <strong>in</strong>dicate that repeated arousals<br />

are associated with a susta<strong>in</strong>ed <strong>in</strong>crease <strong>in</strong> day<str<strong>on</strong>g>time</str<strong>on</strong>g> BP, 40<br />

support a l<strong>in</strong>k between acute and l<strong>on</strong>g-term <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

<str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong> hypertensi<strong>on</strong> 41,42 and cardiovascular disease, 43 <strong>in</strong><br />

l<strong>in</strong>e with the general stress theory. 44<br />

Acknowledgements<br />

We thank all the participants for their will<strong>in</strong>gness to c<strong>on</strong>tribute.<br />

The HYENA study was funded by the European Commissi<strong>on</strong><br />

DG Research (QLK4-CT-2002-02501) <strong>in</strong> the Fifth framework programme,<br />

Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> life and management <str<strong>on</strong>g>of</str<strong>on</strong>g> liv<strong>in</strong>g resources. We<br />

thank the members <str<strong>on</strong>g>of</str<strong>on</strong>g> the HYENA study team Joy Read, Yv<strong>on</strong>ne<br />

Tan, Yousouf Soogun, Gabriele Wölke, Jessica Kwekkeboom, Birgitta<br />

Ohlander, Eva Thunberg, Elli Davou, Yannis Zahos, Venetia<br />

Vel<strong>on</strong>aki, Ageliki Athanasopoulou, Alessandro Borg<strong>in</strong>i, Maria<br />

Chiara Ant<strong>on</strong>iotti, Salvatore Pisani, Giorgio Barbaglia, Matteo<br />

Giampaolo, Anders Lund<strong>in</strong>, and Jenny Selander for assistance<br />

dur<strong>in</strong>g various parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the study.<br />

C<strong>on</strong>flict <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terest: n<strong>on</strong>e declared.<br />

A.S. Haralabidis et al<br />

Downloaded from<br />

http://eurheartj.oxfordjournals.org/ by guest <strong>on</strong> April 24, 2013


Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>night</str<strong>on</strong>g>-<str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong> BP 663<br />

Fund<strong>in</strong>g<br />

European Commissi<strong>on</strong> DG Research c<strong>on</strong>tract number (QLK4<br />

CT-2002-02501). Fund<strong>in</strong>g to pay the Open Access publicati<strong>on</strong><br />

charges for this article was provided by the University <str<strong>on</strong>g>of</str<strong>on</strong>g> Athens<br />

Special Account for Research.<br />

References<br />

1. Baudrie V, Laude D, Chaoul<str<strong>on</strong>g>of</str<strong>on</strong>g>f F, Elghozi JL. Genetic <strong>in</strong>fluences <strong>on</strong><br />

cardiovascular resp<strong>on</strong>ses to an acoustic startle stimulus <strong>in</strong> rats. Cl<strong>in</strong><br />

Exp Pharmacol Physiol 2001;28:1096–1099.<br />

2. Andren L, Hanss<strong>on</strong> L, Eggertsen R, Hedner T, Karlberg BE.<br />

Circulatory <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g>. Acta Med Scand 1983;213:31–35.<br />

3. Andren L, Hanss<strong>on</strong> L, Bjorkman M, J<strong>on</strong>ss<strong>on</strong> A. Noise as a c<strong>on</strong>tributory<br />

factor <strong>in</strong> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> elevated arterial <strong>pressure</strong>. A<br />

study <str<strong>on</strong>g>of</str<strong>on</strong>g> the mechanisms by which <str<strong>on</strong>g>noise</str<strong>on</strong>g> may raise <strong>blood</strong> <strong>pressure</strong><br />

<strong>in</strong> man. Acta Med Scand 1980;207:493–498.<br />

4. Michalak R, Is<strong>in</strong>g H, Rebentisch E. <str<strong>on</strong>g>Acute</str<strong>on</strong>g> circulatory <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> military<br />

low-altitude flight <str<strong>on</strong>g>noise</str<strong>on</strong>g>. Int Arch Occup Envir<strong>on</strong> Health 1990;62:<br />

365–372.<br />

5. Holand S, Girard A, Meyer-Bisch C, Elghozi JL. [Cardiovascular<br />

resp<strong>on</strong>ses to a acoustic startle stimulus <strong>in</strong> man][Article <strong>in</strong><br />

French]. Arch Mal Coeur Vaiss 1999;92:1127–1131.<br />

6. Mahmood R, Khan GJ, Alam S, Safi AJ, Salahudd<strong>in</strong>, Am<strong>in</strong>-ul-Haq.<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> 90 decibel <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 4000 hertz <strong>on</strong> <strong>blood</strong> <strong>pressure</strong> <strong>in</strong><br />

young adults. J Ayub Med Coll Abbottabad 2004;16:30–33.<br />

7. Fogari R, Zoppi A, Corradi L, Marasi G, Vanasia A, Zanchetti A.<br />

Transient but not susta<strong>in</strong>ed <strong>blood</strong> <strong>pressure</strong> <strong>in</strong>crements by occupati<strong>on</strong>al<br />

<str<strong>on</strong>g>noise</str<strong>on</strong>g>. An ambulatory <strong>blood</strong> <strong>pressure</strong> measurement<br />

study. J Hypertens 2001;19:1021–1027.<br />

8. Chang TY, Ja<strong>in</strong> RM, Wang CS, Chan CC. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> occupati<strong>on</strong>al<br />

<str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>on</strong> <strong>blood</strong> <strong>pressure</strong>. J Occup Envir<strong>on</strong> Med 2003;45:<br />

1289–1296.<br />

9. Is<strong>in</strong>g H, Kruppa B. Health <str<strong>on</strong>g>effects</str<strong>on</strong>g> caused by <str<strong>on</strong>g>noise</str<strong>on</strong>g>: evidence <strong>in</strong> the<br />

literature from the past 25 years. Noise Health 2004;6:5–13.<br />

10. Spreng M. Central nervous system activati<strong>on</strong> by <str<strong>on</strong>g>noise</str<strong>on</strong>g>. Noise Health<br />

2000;2:49–58.<br />

11. Babisch W. Noise and health. Envir<strong>on</strong> Health Perspect 2005;113:<br />

A14–A15.<br />

12. Is<strong>in</strong>g H, Michalak R. Stress <str<strong>on</strong>g>effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>noise</str<strong>on</strong>g> <strong>in</strong> a field experiment<br />

<strong>in</strong> comparis<strong>on</strong> to reacti<strong>on</strong>s to short term <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g> <strong>in</strong> the<br />

laboratory. Noise Health 2004;6:1–7.<br />

13. Di Nisi J, Muzet A, Ehrhart J, Libert JP. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiovascular<br />

resp<strong>on</strong>ses to <str<strong>on</strong>g>noise</str<strong>on</strong>g> dur<strong>in</strong>g wak<strong>in</strong>g and sleep<strong>in</strong>g <strong>in</strong> humans.<br />

Sleep 1990;13:108–120.<br />

14. Davies RJ, Belt PJ, Roberts SJ, Ali NJ, Stradl<strong>in</strong>g JR. Arterial <strong>blood</strong><br />

<strong>pressure</strong> resp<strong>on</strong>ses to graded transient arousal from sleep <strong>in</strong><br />

normal humans. J Appl Physiol 1993;74:1123–1130.<br />

15. Carter N, Henders<strong>on</strong> R, Lal S, Hart M, Booth S, Hunyor S. Cardiovascular<br />

and aut<strong>on</strong>omic resp<strong>on</strong>se to envir<strong>on</strong>mental <str<strong>on</strong>g>noise</str<strong>on</strong>g> dur<strong>in</strong>g<br />

sleep <strong>in</strong> <str<strong>on</strong>g>night</str<strong>on</strong>g> shift workers. Sleep 2002;25:457–464.<br />

16. Carter NL. Transportati<strong>on</strong> <str<strong>on</strong>g>noise</str<strong>on</strong>g>, sleep, and possible after-<str<strong>on</strong>g>effects</str<strong>on</strong>g>.<br />

Envir<strong>on</strong>. Int. 1996;22:105–116.<br />

17. Jarup L, Dudley ML, Babisch W, Houthuijs D, Swart W,<br />

Pershagen G, Bluhm G, Katsouyanni K, Vel<strong>on</strong>akis M, Cadum E,<br />

Vigna-Taglianti F HYENA C<strong>on</strong>sortium Hypertensi<strong>on</strong> and <str<strong>on</strong>g>exposure</str<strong>on</strong>g><br />

to <str<strong>on</strong>g>noise</str<strong>on</strong>g> near airports (HYENA): study design and <str<strong>on</strong>g>noise</str<strong>on</strong>g> <str<strong>on</strong>g>exposure</str<strong>on</strong>g><br />

assessment Envir<strong>on</strong> Health Prespect 2005; 113: 1473–1478.<br />

18. Jarup L, Babisch W, Houthuijs D, Pershagen G, Katsouyanni K,<br />

Cadum E, Dudley ML, Savigny P, Seiffert I, Swart W,<br />

Breugelmans O, Bluhm G, Selander J, Haralabidis A,<br />

Dimakopoulou K, Sourtzi P, Vel<strong>on</strong>akis M, Vigna-Taglianti F for<br />

the HYENA C<strong>on</strong>sortium. Hypertensi<strong>on</strong> and <str<strong>on</strong>g>exposure</str<strong>on</strong>g> to <str<strong>on</strong>g>noise</str<strong>on</strong>g><br />

near airports—the HYENA study. Envir<strong>on</strong> Health Perspect 2008<br />

(<strong>in</strong> press).<br />

19. http://datasheets.cesva.com/sc310_eng.pdf.<br />

20. Staessen JA, O’Brien ET, Thijs L, Fagard RH. Modern approaches<br />

to <strong>blood</strong> <strong>pressure</strong> measurement. Occup Envir<strong>on</strong> Med 2000;57:<br />

510–520.<br />

21. J<strong>on</strong>es CR, Taylor K, Chowienczyk P, Post<strong>on</strong> L, Shennan AH. A<br />

validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Mobil O Graph (versi<strong>on</strong> 12) ambulatory <strong>blood</strong><br />

<strong>pressure</strong> m<strong>on</strong>itor. Blood Press M<strong>on</strong>it 2000;5:233–238.<br />

22. Van de Borne P, Nguyen H, Bist<strong>on</strong> P, L<strong>in</strong>kowski P, Degaute JP.<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> wake and sleep stages <strong>on</strong> the 24-h aut<strong>on</strong>omic c<strong>on</strong>trol<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>blood</strong> <strong>pressure</strong> and heart rate <strong>in</strong> recumbent men. Am J Physiol<br />

Heart Circ Physiol 1994;266:H548–H554.<br />

23. Blanc J, Baudrie V, Tulen J, P<strong>on</strong>ch<strong>on</strong> P, Gaudet E, Elghozi JL. Social<br />

isolati<strong>on</strong> affects the pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiovascular resp<strong>on</strong>ses to repetitive<br />

acoustic startle stimuli. Cl<strong>in</strong> Exp Pharmacol Physiol 1997;24:<br />

40–45.<br />

24. Guillem<strong>in</strong>ault C, Stoohs R, Clerk A, Simm<strong>on</strong>s J, Labanowski M.<br />

From obstructive sleep apnea syndrome to upper airway resistance<br />

syndrome: c<strong>on</strong>sistency <str<strong>on</strong>g>of</str<strong>on</strong>g> day<str<strong>on</strong>g>time</str<strong>on</strong>g> sleep<strong>in</strong>ess. Sleep 1992;<br />

15(Suppl. 6):S13–S16.<br />

25. Portaluppi F, Cortelli P, Prov<strong>in</strong>i F, Plazzi G, Manfred<strong>in</strong>i R,<br />

Lugaresi E. Alterati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sleep and circadian <strong>blood</strong> <strong>pressure</strong><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. Blood Press M<strong>on</strong>it 1997;2:301–313.<br />

26. Girard A, Holand S, Laude D, Elghozi J. Antihypertensive m<strong>on</strong>otherapy<br />

and cardiovascular resp<strong>on</strong>ses to an acoustic startle stimulus.<br />

J Cardiovasc Pharmacol 2001;37:101–107.<br />

27. Van D<strong>on</strong>gen HP, Maisl<strong>in</strong> G, Kerkh<str<strong>on</strong>g>of</str<strong>on</strong>g> GA. Repeated assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the endogenous 24-hour pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>blood</strong> <strong>pressure</strong> under c<strong>on</strong>stant<br />

rout<strong>in</strong>e. Chr<strong>on</strong>obiol Int 2001;18:85–98.<br />

28. Basner M, Buess H, Mueller U, Plath G, Samel A. Aircraft Noise<br />

Effects <strong>on</strong> Sleep: F<strong>in</strong>al Results <str<strong>on</strong>g>of</str<strong>on</strong>g> DLR Laboratory and Field<br />

Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> 2240 Polysomnographically Recorded Subject Nights,<br />

33rd Internati<strong>on</strong>al C<strong>on</strong>gress and Expositi<strong>on</strong> <strong>on</strong> Noise C<strong>on</strong>trol<br />

Eng<strong>in</strong>eer<strong>in</strong>g (Inter<str<strong>on</strong>g>noise</str<strong>on</strong>g> 2004), Prague/Czech Republic, 22–25.<br />

08. 2004.<br />

29. Ali NJ, Davies RJ, Fleetham JA, Stradl<strong>in</strong>g JR. Periodic movements <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the legs dur<strong>in</strong>g sleep associated with rises <strong>in</strong> systemic <strong>blood</strong><br />

<strong>pressure</strong>. Sleep 1999;14:163–165.<br />

30. Pillar G, Bar A, Shlitner A, Schnall R, Shefy J, Lavie P. Aut<strong>on</strong>omic<br />

arousal <strong>in</strong>dex: an automated detecti<strong>on</strong> based <strong>on</strong> peripheral arterial<br />

t<strong>on</strong>ometry. Sleep 2002;25:541–547.<br />

31. Flynn AJ, Denger<strong>in</strong>k HA, Wright JW. Blood <strong>pressure</strong> <strong>in</strong> rest<strong>in</strong>g,<br />

anesthetized and <str<strong>on</strong>g>noise</str<strong>on</strong>g>-exposed gu<strong>in</strong>ea pigs. Hear Res 1988;34:<br />

201–205.<br />

32. Nakamura T, Tanida M, Niijima A, Hib<strong>in</strong>o H, Shen J, Nagai K. Auditory<br />

stimulati<strong>on</strong> affects renal sympathetic nerve activity and <strong>blood</strong><br />

<strong>pressure</strong> <strong>in</strong> rats. Neurosci Lett 2007;416:107–112.<br />

33. Sutoo D, Akiyama K. Music improves dopam<strong>in</strong>ergic neurotransmissi<strong>on</strong>:<br />

dem<strong>on</strong>strati<strong>on</strong> based <strong>on</strong> the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> music <strong>on</strong> <strong>blood</strong><br />

<strong>pressure</strong> regulati<strong>on</strong>. Bra<strong>in</strong> Res 2004;1016:255–262.<br />

34. Heude E, Bourg<strong>in</strong> P, Feigel P, Escourrou P. Ambulatory m<strong>on</strong>itor<strong>in</strong>g<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>blood</strong> <strong>pressure</strong> disturbs sleep and raises systolic <strong>pressure</strong> at<br />

<str<strong>on</strong>g>night</str<strong>on</strong>g> <strong>in</strong> patients suspected <str<strong>on</strong>g>of</str<strong>on</strong>g> suffer<strong>in</strong>g from sleep-disordered<br />

breath<strong>in</strong>g. Cl<strong>in</strong> Sci (L<strong>on</strong>d) 1996;91:45–50.<br />

35. Villani A, Parati G, Groppelli A, Omb<strong>on</strong>i S, Di Rienzo M, Mancia G.<br />

N<strong>on</strong><strong>in</strong>vasive automatic <strong>blood</strong> <strong>pressure</strong> m<strong>on</strong>itor<strong>in</strong>g does not<br />

Downloaded from<br />

http://eurheartj.oxfordjournals.org/ by guest <strong>on</strong> April 24, 2013


664<br />

attenuate <str<strong>on</strong>g>night</str<strong>on</strong>g><str<strong>on</strong>g>time</str<strong>on</strong>g> hypotensi<strong>on</strong>. Evidence from 24 h <strong>in</strong>traarterial<br />

<strong>blood</strong> <strong>pressure</strong> m<strong>on</strong>itor<strong>in</strong>g. Am J Hypertens 1992;5:744–747.<br />

36. Schwartz GL, Turner ST, Moore JH, S<strong>in</strong>g CF. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> day<br />

<strong>on</strong> <strong>in</strong>tra<strong>in</strong>dividual variability <strong>in</strong> ambulatory <strong>blood</strong> <strong>pressure</strong>. Am J<br />

Hypertens 2000;13:1203–1209.<br />

37. Van der Steen MS, Pleijers AM, Lenders JW, Thien T. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different sup<strong>in</strong>e body positi<strong>on</strong>s <strong>on</strong> <strong>blood</strong> <strong>pressure</strong>: c<strong>on</strong>sequences<br />

for <str<strong>on</strong>g>night</str<strong>on</strong>g> <strong>blood</strong> <strong>pressure</strong>/dipper-status. Blood Press M<strong>on</strong>it 2000;18:<br />

1731–1736.<br />

38. Schmidt TF, Wittenhaus J, Ste<strong>in</strong>metz TF, Piccolo P, Lupsen H.<br />

Twenty-four-hour ambulatory n<strong>on</strong><strong>in</strong>vasive c<strong>on</strong>t<strong>in</strong>uous f<strong>in</strong>ger<br />

<strong>blood</strong> <strong>pressure</strong> measurement with PORTAPRES: a new tool <strong>in</strong><br />

cardiovascular research. J Cardiovasc Pharmacol 1992;19 (Suppl. 6):<br />

S117–S145.<br />

39. Muzet A, Ehrhart J, Eschenlauer R, Lienhard JP. Habituati<strong>on</strong> and<br />

age differences <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiovascular resp<strong>on</strong>se to <str<strong>on</strong>g>noise</str<strong>on</strong>g> dur<strong>in</strong>g<br />

A.S. Haralabidis et al<br />

sleep. 5th C<strong>on</strong>gress <strong>on</strong> Sleep Research, Amsterdam. Sleep. Basel,<br />

Karger, 1980, 212–215.<br />

40. Morrell MJ, F<strong>in</strong>n L, Kim H, Peppard PE, Badr MS, Young T. Sleep<br />

fragmentati<strong>on</strong>, awake <strong>blood</strong> <strong>pressure</strong>, and sleep-disordered<br />

breath<strong>in</strong>g <strong>in</strong> a populati<strong>on</strong>-based study. Am J Respir Crit Care med<br />

2000;162:2091–2096.<br />

41. Rosenlund M, Bergl<strong>in</strong>d N, Pershagen G, Jarup L, Bluhm G.<br />

Increased prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> hypertensi<strong>on</strong> <strong>in</strong> a populati<strong>on</strong> exposed to<br />

aircraft <str<strong>on</strong>g>noise</str<strong>on</strong>g>. Occup Envir<strong>on</strong> Med 2001;58:769–773.<br />

42. Erikss<strong>on</strong> C, Rosenlund M, Pershagen G, Hild<strong>in</strong>g A, Ostens<strong>on</strong> CG,<br />

Bluhm G. Aircraft <str<strong>on</strong>g>noise</str<strong>on</strong>g> and <strong>in</strong>cidence <str<strong>on</strong>g>of</str<strong>on</strong>g> hypertensi<strong>on</strong>. Epidemiology<br />

2007;18:716–721.<br />

43. Babisch W, Beule B, Schust M, Kersten N, Is<strong>in</strong>g H. Traffic <str<strong>on</strong>g>noise</str<strong>on</strong>g> and<br />

risk <str<strong>on</strong>g>of</str<strong>on</strong>g> myocardial <strong>in</strong>farcti<strong>on</strong>. Epidemiology 2005;16:33–40.<br />

44. Henry JP. Biological basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the stress resp<strong>on</strong>se. News Physiol Sci<br />

1993;8:69–73.<br />

Downloaded from<br />

http://eurheartj.oxfordjournals.org/ by guest <strong>on</strong> April 24, 2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!