28.04.2013 Views

Synthesis of ternary varieties of ε-Fe N: Experiment and theory. Joint ...

Synthesis of ternary varieties of ε-Fe N: Experiment and theory. Joint ...

Synthesis of ternary varieties of ε-Fe N: Experiment and theory. Joint ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

www.iac.uni-stuttgart.de<br />

03-10<br />

<strong>Synthesis</strong> <strong>of</strong> <strong>ternary</strong> <strong>varieties</strong> <strong>of</strong> -<strong>Fe</strong> 3N:<br />

<strong>Experiment</strong> <strong>and</strong> <strong>theory</strong>.<br />

<strong>Joint</strong> Project:<br />

Rainer Niewa, Dieter Rau, Univ. Stuttgart<br />

Ulrich Schwarz, Carola Müller, MPI CPfS<br />

Richard Dronskowski, Michael Wessel, RWTH Aachen<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe<br />

Rh<strong>Fe</strong> 3N<br />

A. Houben, P. Mueller, J. von Appen, H. Lueken,<br />

R. Niewa, R. Dronskowski, Angew. Chem. Int. ed.<br />

(2005), 44, 7212-7215.


www.iac.uni-stuttgart.de<br />

03-10<br />

Theoretical Method & Strategy<br />

Used Programs:<br />

• DFT calculations using the program VASP<br />

- generalized gradient approximation (GGA) <strong>of</strong> PBE-type<br />

- projector-augmented wave (PAW) potentials<br />

- Energy cut-<strong>of</strong>f: 500 eV<br />

• Thermochemical properties using the program FROPHO<br />

Procedure:<br />

- Investigating the influence <strong>of</strong> pressure<br />

- Investigating the influence <strong>of</strong> temperature<br />

→ Finding the synthesis conditions<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

→ no high-pressure synthesis<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

→ no high-temperature synthesis<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

→ no high-pressure synthesis<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

→ high-temperature synthesis possible<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

Phase Diagram <strong>Fe</strong>–N<br />

K. H. Jack, Proc. Roy. Soc. A 208 (1951) 200.<br />

H. A. Wriedt, N. A. Gokcen, R. H. Nafziger, Bull. Alloy Phase Diagrams 8 (1987) 355.<br />

P<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe<br />

-<strong>Fe</strong> 3N 1+x<br />

(P6 322)


www.iac.uni-stuttgart.de<br />

03-10<br />

<strong>Experiment</strong>al Techniques<br />

Multi Anvil Module with Uniaxial Press<br />

• Walker-type module<br />

• MgO/Cr 2O 3 octahedra, h-BN crucibles<br />

• Resistance heating by graphite tubes surrounding the<br />

sample crucible<br />

• Pressure <strong>and</strong> temperature calibration via electrical<br />

resistivity <strong>of</strong> Bi <strong>and</strong> thermocouples<br />

• Max. P = 15(2) GPa <strong>and</strong> T = 1600(200) K<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

Treatment: Result:<br />

<strong>Fe</strong>/Co in N 2, NH 3<br />

T 1100 °C, P = 0.1 MPa -<strong>Fe</strong> 3N + <strong>Fe</strong> 1–xCo x<br />

High pressure<br />

High Temperature<br />

Formation <strong>of</strong><br />

-phases<br />

Intensity<br />

CoK<br />

30 40 50 60 70 80 90 100<br />

Diffraction Angle 2/ Degree<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe<br />

Co + <strong>Fe</strong> 4 N, 15 GPa, 1200°C<br />

Co + <strong>Fe</strong> 3 N, 15 GPa, 1200°C<br />

-<strong>Fe</strong> 3 N Educt<br />

<strong>Fe</strong> 4 N Educt


www.iac.uni-stuttgart.de<br />

03-10<br />

<strong>Synthesis</strong> <strong>Experiment</strong>s<br />

Treatment: Result:<br />

<strong>Fe</strong>/Co in N 2, NH 3<br />

T 1100 °C, P = 0.1 MPa -<strong>Fe</strong> 3N + <strong>Fe</strong> 1–xCo x<br />

Hp ht synthesis<br />

<strong>of</strong> -phases<br />

Intensity<br />

CoK<br />

20 30 40 50 60 70 80 90 100<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe<br />

Co + <strong>Fe</strong> 4 N, 7 GPa, 1100 °C<br />

Co + <strong>Fe</strong> 3 N, 9 GPa, 700 °C<br />

-<strong>Fe</strong> 3 N 0.75<br />

hp-<strong>Fe</strong> 4 N<br />

-<strong>Fe</strong> 3 N<br />

Diffraction Angle 2 / Degree


www.iac.uni-stuttgart.de<br />

03-10<br />

Intensity<br />

CoK<br />

<br />

<br />

<br />

<br />

7 GPa, 1100°C<br />

30 40 50 60 70 80 90 100<br />

Diffraction Angle 2/ Degree<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe<br />

Co + <strong>Fe</strong> 4 N<br />

15 GPa, 1200°C


www.iac.uni-stuttgart.de<br />

03-10<br />

Intensity<br />

CoK<br />

<br />

<br />

<br />

30 40 50 60 70 80 90 100<br />

Diffraction Angle 2 / Degree<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe<br />

Co + <strong>Fe</strong> 3 N<br />

15 GPa, 1200°C<br />

<br />

7 GPa, 1100°C


www.iac.uni-stuttgart.de<br />

03-10<br />

EDX<br />

Co + <strong>Fe</strong> 3N<br />

9 GPa, 1100 °C<br />

Main Phase 1-3<br />

<strong>Fe</strong> : Co<br />

66(4):34(4)<br />

Contamination<br />

<strong>Fe</strong> : Co<br />

50 : 50 4,5<br />

90 : 10 6, 7, 10<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

Treatment: Result:<br />

<strong>Fe</strong>/Co in N 2, NH 3<br />

T 1100 °C, P = 0.1 MPa -<strong>Fe</strong> 3N + <strong>Fe</strong> 1–xCo x<br />

-<strong>Fe</strong> 3N/Co -(<strong>Fe</strong>,Co) 3N + <strong>Fe</strong> 1–xCo x<br />

<strong>Fe</strong> 4N/Co<br />

P = 7 GPa<br />

T 1100 °C<br />

-<strong>Fe</strong> 3N/Co -(<strong>Fe</strong>,Co) 3N + -<strong>Fe</strong>(Co)<br />

<strong>Fe</strong> 4N/Co<br />

P = 15 GPa<br />

T = 1200 °C<br />

a = 4.6828 – 4.8016 Å<br />

c = 4.3705 – 4.4269 Å<br />

<strong>Fe</strong>3N0.75 – <strong>Fe</strong>3N1.5 a = 4.5771 Å<br />

c = 4.3136 Å<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

Composition Determination<br />

-(<strong>Fe</strong>,Co) 3N<br />

930 °C, p > 7 GPa<br />

Literature:<br />

a = 4.5771 Å<br />

c = 4.3136 Å<br />

n(<strong>Fe</strong>) : n(Co) = 0.66 : 0.34<br />

<strong>Fe</strong> 2Co 1N x<br />

-<strong>Fe</strong> a = 4.283/3 Å (2.473 Å)<br />

c = 3.962 Å<br />

-<strong>Fe</strong> 3–xCo xN 0 x 0.8 nanoparticles<br />

(multi-phase products)<br />

unit cell parameters do not change with x<br />

Mössbauer spectroscopy<br />

-<strong>Fe</strong> 2.4Co 0.6N a = 4.774/3 Å (2.756 Å)<br />

c = 4.403 Å<br />

Mao Hokwang et al., J Appl. Phys. 1967.<br />

N. S. Gajbhiye et al., Hyper. Interact. 2004, 2005; Mater. Res. Bull. in press.<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

<strong>Synthesis</strong> <strong>Experiment</strong>s<br />

Treatment: Result:<br />

<strong>Fe</strong>/Ir in N 2, NH 3<br />

T 1100 °C, P = 0.1 MPa -<strong>Fe</strong> 3N + Ir<br />

High pressure<br />

High temp.<br />

Intensity<br />

Co-K1<br />

10 20 30 40 50 60 70 80 90 100<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe<br />

-<strong>Fe</strong> 3 N 0.75<br />

hp-<strong>Fe</strong> 4 N<br />

Diffraction Angle 2 Degree<br />

Ir + <strong>Fe</strong> 3 N<br />

9 GPa, 1600 °C<br />

9 GPa, 1450 °C


www.iac.uni-stuttgart.de<br />

03-10<br />

Treatment: Result:<br />

<strong>Fe</strong>/Ir in N 2, NH 3<br />

T 1100 °C, P = 0.1 MPa -<strong>Fe</strong> 3N + Ir<br />

-<strong>Fe</strong>3N/Ir -(<strong>Fe</strong>,Ir) 3N + ?<br />

T > 1200 °C, P > 9 GPa<br />

a = 4.794 Å<br />

c = 4.419 Å<br />

<strong>Fe</strong> 3N 0.75 – <strong>Fe</strong> 3N 1.5<br />

a = 4.6828 – 4.8016 Å<br />

c = 4.3705 – 4.4269 Å<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

DH (kJ/mol) DV (cm 3 /mol)<br />

-<strong>Fe</strong> 3N + Co – <strong>Fe</strong> 0.0 0.00<br />

2 <strong>Fe</strong> + N + Co 28.7 7.03<br />

-<strong>Fe</strong> 2CoN 14.8 0.03<br />

→ reaction not driven by pressure<br />

- 8 structures (ordered <strong>and</strong> statist. distributed)<br />

- a = 4.625 Å, c = 4.341 Å<br />

- c/a ratio in all structures approx. 1.07<br />

- Difference in energy less than 3 kJ/mol<br />

→ statistical distribution <strong>of</strong> <strong>Fe</strong> <strong>and</strong> Co atoms<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

DH (kJ/mol) DV (cm 3 /mol)<br />

-<strong>Fe</strong> 3N + Ir – <strong>Fe</strong> 0.0 0.00<br />

2 <strong>Fe</strong> + N + Ir 28.7 7.03<br />

-<strong>Fe</strong> 2IrN 95.3 0.69<br />

→ reaction not driven by pressure<br />

- 8 structures (ordered <strong>and</strong> statist.distributed)<br />

- a = 4.820 Å, c = 4.476 Å<br />

- c/a ratio in all structures approx. 1.08<br />

- statistical distribution <strong>of</strong> <strong>Fe</strong> <strong>and</strong> Co atoms is lower<br />

in energy by approx. 10 kJ/mol<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

-<strong>Fe</strong> 3N (COHP)<br />

No antibonding states → stable<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

-Co<strong>Fe</strong> 2N (COHP)<br />

antibonding states → reduced stability compared to - <strong>Fe</strong> 3N<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

-Ir<strong>Fe</strong> 2N (COHP)<br />

antibonding states → reduced stability compared to - <strong>Fe</strong> 3N<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe


www.iac.uni-stuttgart.de<br />

03-10<br />

Conclusion<br />

Predicted VON was not (yet) obtained at elevated temperatures<br />

<strong>and</strong> pressures:<br />

V 2O 5 decomposes into V 2O 3, VN does not react<br />

From iron nitrides <strong>and</strong> Co at elevated temperatures <strong>and</strong><br />

pressures above 7 GPa a hexagonal phase (-type) with unit<br />

cell parameters between -<strong>Fe</strong> <strong>and</strong> -<strong>Fe</strong> 3N 1–x is obtained.<br />

According to EDX analysis the phase contains <strong>Fe</strong> <strong>and</strong> Co <strong>and</strong><br />

represents probably a new phase -<strong>Fe</strong> 2CoN 1–x<br />

Similarly, from iron nitrides <strong>and</strong> Ir at elevated pressures <strong>and</strong><br />

temperatures -(<strong>Fe</strong>,Ir) 3N 1–x was obtained<br />

The formation <strong>of</strong> -<strong>Fe</strong> 2CoN <strong>and</strong> -<strong>Fe</strong> 2IrN seems to be driven by<br />

temperature; pressure needed to keep nitrogen in the reaction<br />

(Co, Ir)-N <strong>and</strong> (Co, Ir)-<strong>Fe</strong> antibonding states result in the<br />

reduced stability <strong>of</strong> -<strong>Fe</strong> 2(Co, Ir)N compared to -<strong>Fe</strong> 3N<br />

Max-Planck-Institut<br />

für Chemische Physik fester St<strong>of</strong>fe

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!