28.04.2013 Views

Secondary metabolites kurzichalcolactone A and B from ...

Secondary metabolites kurzichalcolactone A and B from ...

Secondary metabolites kurzichalcolactone A and B from ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

J. Siallagan et al.<br />

ISBN 978-979-18962-0-7<br />

Introduction<br />

225<br />

Proceeding of The International Seminar on Chemistry 2008 (pp. 225-228)<br />

Jatinangor, 30-31 October 2008<br />

<strong>Secondary</strong> <strong>metabolites</strong> <strong>kurzichalcolactone</strong> A <strong>and</strong> B <strong>from</strong><br />

Cryptocarya lucida Blume (Lauraceae)<br />

Johnson Siallagan, Euis H. Hakim, Yana M. Syah, Lia D. Juliawaty,<br />

Sjamsul A. Achmad, Lukman Makmur, Didin Mujahidin<br />

Natural Products Research Group, Department of Chemistry, Institut Teknologi B<strong>and</strong>ung,<br />

Jalan Ganeca 10 B<strong>and</strong>ung 40132, Indonesia<br />

Abstract<br />

Plants of Cryptocarya (Lauraceae) are known to contain 6-substituted 5,6-dihydro-2-pyrones,<br />

flavanoids, alkaloids, <strong>and</strong> terpenoids. One of endemic plants of Kalimantan forest, C. lucida Blume,<br />

has been selected for phytochemical study on its phenolic constituents. Fractionation of the methanol<br />

extract of the stem bark of this plant, followed by purification of the phenolic fractions, afforded two<br />

chalcone derivatives, named <strong>kurzichalcolactone</strong>s A <strong>and</strong> B. The structures of both compounds were<br />

determined by spectroscopic methods, including UV, IR, 1 H-NMR, 13 C-NMR data, as well as by<br />

comparison with those reported data. Cytotoxic evaluation of both compounds against murine<br />

leukemia P388 cells showed that their IC 50 to be 6.3 <strong>and</strong> 17.9 µg/mL, respectively.<br />

Keywords: Kurzichalcolactone A <strong>and</strong> B, chalcone derivatives, Cryptocarya lucida Blume, cytotoxic<br />

The genus Cryptocarya belongs to the pantropical<br />

family Lauraceae <strong>and</strong> most of the species grow in the<br />

Pacific-Asian tropical rainforests (Dumontet, 2001).<br />

Many of these species have been examined for their<br />

chemical constituents <strong>and</strong> revealed to contain<br />

flavonoids, 6-alkyl- or 6-aryl-α-pyrones (Davies-<br />

Coleman <strong>and</strong> Rivett, 1989; Collet et al., 1998),<br />

lignans, terpenoids, <strong>and</strong> alkaloids (Juliawaty,<br />

2000a,b). In continuation of our on going search for<br />

cytotoxic compounds <strong>from</strong> Indonesia plants, we<br />

investigated C. lucida Blume (Lauraceae), an endemic<br />

plant collected at Bukit Bengkirai forest, East<br />

Kalimantan Province, Indonesia. In this<br />

communication, we report the isolation <strong>and</strong> structural<br />

elucidation, as well as cytotoxicity against murine<br />

leukemia P388 cells, of two chalcone derivatives,<br />

<strong>kurzichalcolactone</strong>s A (1) <strong>and</strong> B (2).<br />

Materials <strong>and</strong> Methods<br />

The following instruments were used: melting<br />

points were determined by ‘micro melting point<br />

apparatus’. Optical rotations, Perkin-Elmer 341<br />

polarimeters in MeOH. UV spectra, Cary Varian 100<br />

Conc <strong>and</strong> IR spectra, Perkin-Elmer Spectrum One FT-<br />

IR spectrophotometers. 1 H <strong>and</strong> 13 C NMR spectra,<br />

JEOL ECP500 spectrophotometers, 500 MHz ( 1 H)<br />

<strong>and</strong> 125 MHz ( 13 C). The following adsorbents were<br />

used for purification : Vacuum liquid chromatogaphy<br />

(VLC), Si-gel 60 GF254 (Merck), Flash column<br />

chromatography (FCC), Si-gel G60 (230-400 mesh)<br />

(Merck), Radial chromatography (RC), Si-gel 60<br />

PF254 (Merck), <strong>and</strong> TLC plates, Kieselgel 60 F254 0.25<br />

mm (Merck) thick were used. All solvents distilled<br />

technical qualities.<br />

Plant material. Samples of the stem bark of C.<br />

lucida was collected in Oktober 2005 <strong>from</strong> the Bukit<br />

Bengkirai forest, Balikpapan, East Kalimantan,<br />

Borneo isl<strong>and</strong>, Indonesia. A herbarium specimen has<br />

been deposited at the Herbarium Bogorienses, Center<br />

of Biological Research <strong>and</strong> Development, National<br />

Institute of Science, Bogor, Indonesia.<br />

Extraction <strong>and</strong> isolation. The milled stem bark of<br />

C. lucida (3.1 kg) was extracted successively with<br />

with methanol (3 x 24h x 6L) at room temperature.<br />

The residue give the crude extract (120 g) which was<br />

then partitioned by use of n-hexane to produce extract<br />

(3.7 g) <strong>and</strong> than EtOAc extract (61.5 g). Next, the<br />

EtOAc extract was subject to chromatography on<br />

silica gel <strong>and</strong> eluted successively with n-hexane, nhexane/acetone,<br />

acetone, <strong>and</strong> MeOH in the order of<br />

increasing polarity. Extract EtOAc was subjected to<br />

VLC with column ∅ 10 cm (3 x 20g), adsorbent Sigel<br />

(200 g) <strong>and</strong> eluted with mixture hexane-acetone<br />

(9:1; 8:2; 7.5:2.5; 6:4; 1:1), acetone 100 %, <strong>and</strong><br />

MeOH (100 %), to give 7 fraction (A-G) were 1.6 g,<br />

4.1 g, 5.1 g, 5.4 g, 16.2 g, 11.4 g, <strong>and</strong> 5.8 g,<br />

respectively. The major component of fraction E.<br />

Compound 1 (40 mg) <strong>and</strong> 2 (35 mg) were obtained by<br />

purification of E (293 mg) using radial<br />

chromatography (Si-gel, hexane:acetone = 6.5:3.5 <strong>and</strong><br />

hexane:acetone = 6:4). These compounds were all<br />

determined by spectral methods <strong>and</strong> compare with<br />

corresponding data reported in the literature.<br />

Kurzichalcolactone A (1), yellow powder : [α] 20 D -<br />

47 0 (c= 0.1 Me-OH) UV absorption λmaks (nm)<br />

MeOH) (log ε) 206 (2.34), 239 (1.20), 355 (1.12) nm,<br />

showed bathochromic shift (MeOH + NaOH).


J. Siallagan et al.<br />

number Compound 1(lit.)<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

1’<br />

2’<br />

3’<br />

4’<br />

5’<br />

6’<br />

OH-5<br />

δC δH<br />

226<br />

Proceeding of The International Seminar on Chemistry 2008 (pp. 225-228)<br />

Jatinangor, 30-31 October 2008<br />

Table 1 NMR Data for Kurzichalcolactones A (1) <strong>and</strong> B (2) in (acetone-d6)<br />

143.3 7.72 d (16)<br />

128.9 8.22 d (16)<br />

193.4<br />

162.6<br />

97.0 6.11 s<br />

167.4<br />

105.5<br />

159.6<br />

106.2<br />

175.1<br />

34.6 2.22 tl (7)<br />

22.1 1.50-1.80 m<br />

36.1 1.50-1.80 m<br />

71.4 3.78 m<br />

36.5 1.50-1.80 m<br />

24.5 3.58 dd (3; 2.5)<br />

34.4 2.12 dd (13; 2.5)<br />

2.20 dd (13; 3)<br />

100<br />

132.4 7.12 d (16)<br />

131.0 6.68 d (16)<br />

137.5<br />

128.3 7.53 m<br />

129.5 7.36 m<br />

129.5 7.36 m<br />

129.5 7.36 m<br />

128.3 7.53 m<br />

136.7<br />

130.0 7.62 m<br />

130.0 7.46 m<br />

130.0 7.46 m<br />

130.0 7.46 m<br />

130.0 7.62 m<br />

14.10 s<br />

Compound 2(lit.)<br />

δC δH<br />

143.1 7.72 d (15.6)<br />

128.6 8.31 d (15.6)<br />

193.8<br />

163.5<br />

94.9 6.09 s<br />

164.5<br />

106.2<br />

161.0<br />

106.1<br />

174.7<br />

34.7 2.30 tl (7.0)<br />

23.9 1.50-1.80 m<br />

35.9 1.50-1.80 m<br />

71.0 3.70 m<br />

36.1 1.50-1.80 m<br />

21.9 3.55 m<br />

34.2 2.17 dd (12.9; 2.7)<br />

1.91 dd (12.9; 3.1)<br />

99.4<br />

131.4 6.94 d (16.1)<br />

131.2 6.42 d (16.1)<br />

137.3<br />

127.8 7.54 dl<br />

129.3 7.37 tl (7.5)<br />

129.0 7.29 tl (7.5)<br />

129.3 7.37 tl (7.5)<br />

127.8 7.54 m<br />

136.6<br />

129.6 7.71 m<br />

130.0 7.46 m<br />

130.9 7.46 m<br />

130.0 7.46 m<br />

129.6 7.71 m<br />

14.50 s<br />

Compound 1 (isolated)<br />

δC δH<br />

142.6 7.71 d (15.9)<br />

128.6 8.19 d (15.9)<br />

193.0<br />

159.5<br />

96.5 6.09 s<br />

166.7<br />

105.0<br />

162.0<br />

105.7<br />

173.1<br />

34.1 2.04 m<br />

21.7 1.50-1.60 m<br />

35.6 1.60-1.70 m<br />

70.9 3.78 m<br />

36.1 1.70-1.80 m<br />

24.1 3.57 m<br />

33.9 2.17 dd (13; 2.5)<br />

2.29 dd (13; 2.5)<br />

99.6<br />

131.9 7.09 d (16)<br />

130.6 6.66 d (16)<br />

137.0<br />

127.8 7.51 m<br />

129.0 7.34 m<br />

129.0 7.34 m<br />

129.0 7.34 m<br />

127.8 7.51 m<br />

136.2<br />

130.5 7.54 m<br />

129.6 7.38 m<br />

129.6 7.38 m<br />

129.6 7.38 m<br />

130.0 7.54 m<br />

14.13 s<br />

Compound 2<br />

(isolated) δH<br />

7.81 d (15.9)<br />

8.29 d (15.9)<br />

6.07 s<br />

2.22 tl (7)<br />

1.52-1.62 m<br />

1.69-1.76 m<br />

3.70 m<br />

1.89-1.91 m<br />

3.54 dd (3; 2.5)<br />

2.16 dd (12.8; 2.29)<br />

2.29 dd (12.8; 2.29)<br />

6.92 d (15.9)<br />

6.41 d (15.9)<br />

7.52 m<br />

7.35 m<br />

7.35 m<br />

7.35 m<br />

7.52 m<br />

7.70 m<br />

7.43 m<br />

7.43 m<br />

7.43 m<br />

7.70 m<br />

14.50 s<br />

Table 2 IC 50 values of some chalcolactone against murine leukemia P-388 cells<br />

Compounds Classes of compound IC50 (µg/mL)<br />

Kurzichalcolactone A (1)<br />

Kurzichalcolactone B (2)<br />

Artonin E<br />

Chalcolactone<br />

Chalcolactone<br />

3-prenylflavone<br />

a For significant activity, an IC50 < 4.0 µg/mL is required.<br />

b Positive control<br />

IR b<strong>and</strong>s spectrum (KBr) V maks (cm -1 ), 3171 cm -1 (br,<br />

OH), 2938 cm -1 (CH-aliphatic), 1707, 1626, cm -1<br />

(lactone, C=O conjugated systems), 1344, 1227, 1158,<br />

1082, 1032, 975, 940, 749, <strong>and</strong> 692 cm -1 . 1 H NMR<br />

(500 MHz, acetone-d6): 8.19 (1H, d, J= 15.9), 7.71<br />

(1H, d, J= 15.9), 7.54 (2H, m), 7.51 (2H, m), 7.38<br />

(3H, m), 7.34 (3H, m), 7.09 (1H, d, J= 16), 6.66 (1H,<br />

d, J= 16), 6.09 (1H, s), 3.78 (1H, m), 3.70 (1H, m),<br />

2.29 (1H, dd, J= 13; J= 3), 2.17 (1H, dd, J= 13; J=<br />

6.3<br />

17.9<br />

0.6<br />

2.5), 2.04 (1H, m), 1.70-1.80 (1H, m), 1.60-1.70 (1H,<br />

m), 1.50-1.60 (1H, m), 14.13 (1 OH). 13 C NMR see<br />

Table 1.<br />

Kurzichalcolactone B (2) yellow powder : [α] 20 D -<br />

88 0 (c= 0.1 Me-OH) UV absorption λmaks (nm)<br />

MeOH) (log ε) 205 (1.28), 236 (0.61), 254 (0.55),<br />

344 (0.74) nm, showed bathochromic shift (MeOH +<br />

NaOH). IR b<strong>and</strong>s spectrum (KBr) V maks (cm -1 ) 3224<br />

cm -1 (br, OH), 2937 cm -1 (CH-aliphatic), 1706, 1626,


J. Siallagan et al.<br />

cm -1 (lactone, C=O conjugated systems), 1338, 1227,<br />

1139, 1084, 970, 933, 749, <strong>and</strong> 691 cm -1 . 1 H NMR<br />

(500 MHz, acetone-d6): 8.29 (1H, d, J= 15.9), 7.81<br />

(1H, d, J= 15.9), 7.70 (2H, m), 7.52 (2H, m), 7.43<br />

(3H, m), 7.35 (3H, m), 6.92 (1H, d, J= 15.9), 6.41<br />

(1H, d, J= 15.9), 6.07 (1H, s), 3.70 (1H, m), 3.54 (1H,<br />

dd, J= 3; 2.5), 2.29 (1H, dd J= 12.8; 2.29), 2.22 tl (7),<br />

2.16 (1H, dd, J= 12.8; J= 2.9), 2.04 (1H, m), 1.89-<br />

1.91 (1H, m), 1.69-1.76 (1H, m), 1.60-1.70 (1H, m),<br />

1.52-1.62 (1H, m), 14.50 (1 OH).<br />

Results <strong>and</strong> Discussion<br />

The dried milled stem bark of C. lucida was<br />

macerated with methanol, <strong>and</strong> the methanol extract<br />

was partitioned into n-hexane <strong>and</strong> EtOAc,<br />

respectively. The EtOAc fraction was refractionated<br />

by VLC on silica gel, <strong>and</strong> the fraction contain of<br />

phenolic compounds was purified by radial<br />

chromatography on silica gel to give<br />

<strong>kurzichalcolactone</strong>s A (1) <strong>and</strong> B (2).<br />

Compound 1 showed IR absorption maxima at<br />

3171, 1707, <strong>and</strong> 1626 cm -1 , indicated the presence of<br />

hydroxyl, lactone, <strong>and</strong> conjugated ketone<br />

functionalities. A comparison of the NMR spectra of 1<br />

with those of <strong>kurzichalcolactone</strong> B (2), isolated <strong>from</strong><br />

this plant <strong>and</strong> previously <strong>from</strong> C. kurzii <strong>and</strong> C.<br />

obovata revealed the strong structural similarity of<br />

these two compounds (Table 1) <strong>and</strong> indicated that<br />

compound 1 was a stereoisomer of 2. Analysis of the<br />

1 H- 1 H COSY, HMQC, <strong>and</strong> HMBC spectra permitted<br />

the assignment of all proton <strong>and</strong> carbon signals for 1.<br />

There are three asymmetric carbons in compounds 1<br />

<strong>and</strong> 2, at the 15, 17, <strong>and</strong> 19 positions. The signals for<br />

H-15 <strong>and</strong> H-17 in the 1 H NMR spectrum of both 1 <strong>and</strong><br />

2 are essentially identical, suggesting that the two<br />

isomers possess the same configuration at these<br />

positions <strong>and</strong> only differ by the α or β position at the<br />

C-19 position. Moreover, the small coupling constants<br />

observed for H-17 in compounds 1 <strong>and</strong> 2 indicated an<br />

equatorial position for H-17 in both compounds,<br />

whereas the H-15 peak appearance.<br />

Kurzichalcolactones A (1) <strong>and</strong> B (2) had been<br />

previously isolated <strong>from</strong> leaves C. kurzii (Fu, 1993)<br />

<strong>and</strong> C. obovata (Dumontet, 2004), respectively.<br />

Biogenetically, 1 could be formed by a coupling of<br />

5,7,9-trihydroxychalcone with a tetraketide derivative<br />

of cinnamoyl to form kurzilactone, which is also<br />

isolated <strong>from</strong> C. Kurzii. Phenol coupling of this<br />

lactone would lead to a linear intermediate, which<br />

would cyclize twice to form the C8-C17 bond as well<br />

as the pyran ring.<br />

227<br />

Proceeding of The International Seminar on Chemistry 2008 (pp. 225-228)<br />

Jatinangor, 30-31 October 2008<br />

O<br />

O<br />

O OH 20<br />

OH<br />

19<br />

18<br />

OH<br />

O<br />

<strong>kurzichalcolactone</strong> A (1) : 19α- or 19β-OH<br />

<strong>kurzichalcolactone</strong> B (2): 19β- or 19α-OH<br />

Interesting biological activities have been<br />

described for many individual chalcone <strong>metabolites</strong><br />

isolated <strong>from</strong> Cryptocarya. In a preliminary bioassays,<br />

the fruit <strong>and</strong> trunk bark extracts of C. obovata showed<br />

56% <strong>and</strong> 23% inhibition at 10 µg/mL the ethanolic<br />

extracts against human nasopharyngeal KB cells<br />

(Dumontet, 2004).<br />

In further study, <strong>kurzichalcolactone</strong> A (1)<br />

exhibited weak cytotoxicity against the same cells<br />

with IC50 value of 15 µg/ml (Fu, 1993). In our study,<br />

we evaluated cytotoxic properties of compounds 1 <strong>and</strong><br />

2 against murine leukemia P-388 cells (Table. 2)<br />

using MTT-assay method, with artonin E was used as<br />

positive control. As shown in Table 2, compound 1<br />

was more cytotoxic than compound 2. Thus, different<br />

stereochemical arrangement could have a different<br />

cytotoxic properties.<br />

Conclusions<br />

Two chalcolactones, i.e. <strong>kurzichalcolactone</strong>s A (1)<br />

<strong>and</strong> B (2) have been isolated <strong>from</strong> the methanol<br />

extract of the stem bark of C. lucida. The structures of<br />

these compounds were determined based on spectral<br />

analysis <strong>and</strong> by comparison with those reported data.<br />

The cytotoxic activities of both compounds were<br />

evaluated against murine leukaemia P388 cells <strong>and</strong><br />

showed their IC 50 values were 6.3 <strong>and</strong> 17.9 µg/ml,<br />

respectively.<br />

Acknowledgements<br />

We would like to thank the Dinas P dan P<br />

PEMDA Papua <strong>and</strong> Rector of Cenderawasih<br />

University Jayapura for the financial support, <strong>and</strong> Dr.<br />

Jalifah Latip <strong>from</strong> UKM for measurements for<br />

spectral data. We also very thankful for the Herbarium<br />

Bogoriense staffs, Bogor, for the identification of the<br />

sample.


J. Siallagan et al.<br />

References<br />

Fu, X., sevenet, T., Remy, F., Pais, M., Hadi, A. H.A.,<br />

Zeng, L. M., (1993),”Flavanone <strong>and</strong> Chalcone<br />

Derivatives <strong>from</strong> Cryptocarya kuzii,” J. Nat.<br />

Prod., 56, 1153-63<br />

Dumontet, V., Hung, N. V., Adeline, M.T., Riche, C.,<br />

Chiaroni, A., Sevenet, T., <strong>and</strong> Gueritte, F.<br />

(2004),”Cytotoxic Flavonoids <strong>and</strong> a-Pyrones <strong>from</strong><br />

Cryptocarya obovata,” J. Nat. Prod, 67, 858-862<br />

Dumontet, V., Gaspard, C., Hung, N. V., Fahy, J.,<br />

Tchertanov, L., Sevenet, T., <strong>and</strong> Gueritte, F<br />

(2001),”New Cytotoxic Flavonoids <strong>from</strong><br />

Cryptocarya infectoria,” Tetrahedron 2001, 57,<br />

6189-6196.<br />

Davies-Coleman, M. T., <strong>and</strong> Rivett, D. E. A.,<br />

(1989),”Naturally Occuring 6-substituted 5,6dihyrdo-α-pyrones”,<br />

Progress in the Chemistry of<br />

Organic Natural Products, 55, 1-35<br />

Juliawaty, L. D., Achmad, S. A., Makmur, L., <strong>and</strong><br />

Hakim, E. H., (1993),”Taxonomy of Tropical<br />

Trees for Genetic Diversity Studies: Investigation<br />

of the Chemical Constituents of Cryptocarya<br />

laevigata Bl <strong>and</strong> C. nutans <strong>and</strong> its Relation to the<br />

Taxonomy of Lauraceae”, Biotrop Spec. publ, No<br />

51, 143-8<br />

Juliawaty, L. D., Kitajima, M., Takayama, H.,<br />

Achmad, S. A., <strong>and</strong> Aimi, N., (2000a),”A New<br />

Type of Stilbene – Related <strong>Secondary</strong> Metabolite<br />

Idenburgene <strong>from</strong> Cryptocarya idenburgensis”,<br />

Chem. Pharm. Bull, 48, 1726-8<br />

Juliawaty, L. D., Kitajima, M., Takayama, H.,<br />

Achmad, S. A., <strong>and</strong> Aimi, N., (2000b),”A 6substituted<br />

-5,6-dihydro-2-pyrone <strong>from</strong><br />

Cryptocarya strictifolia”, Phytochemistry, 54,<br />

989-93<br />

Juliawaty, L. D., Aimi, N., Ghisalberti, E. L.,<br />

Kitajima, M., Makmur, L., Syah, Y. M., Siallagan,<br />

J., Takayama, H., Achmad, S. A <strong>and</strong> Hakim., E.<br />

H., (2006).,”Chemistry of Indonesian Cryptocarya<br />

Plants”, Chemistry of Natural Products: Recent<br />

Trends & Developments, 399-423, ISBN: 81-<br />

228<br />

Proceeding of The International Seminar on Chemistry 2008 (pp. 225-228)<br />

Jatinangor, 30-31 October 2008<br />

0140X Editor: Goutam Brahmacari, Research<br />

Signpost, Triv<strong>and</strong>rum, Kerala-India.<br />

Lemmens, R. H. M. J., Soerianegara, I, <strong>and</strong> Wong, W.<br />

C., 1995,”Plant Resource of South-East Asia”, No<br />

5 (2) PROSEA, Bogor<br />

Rohmer, J. G., 1993 dalam: Kubitzki, K., Rohmer, J.<br />

G., <strong>and</strong> Bittrich, V.,”The Families <strong>and</strong> Genera of<br />

Vascular”, Vol 2. Flowering Plants, Dicotiledons:<br />

Magnoliid, Hamamelid, <strong>and</strong> Caryophyllid<br />

Families. Berlin: Springer Verlag, 366-91<br />

Saad, J. M., Soepadamo, E., Fang, S. P., McLaughlin,<br />

J. L., <strong>and</strong> Fanwick, P. E., (1991),”(-)-Gr<strong>and</strong>isin<br />

<strong>from</strong> Cryptocarya crassinervia,”, J. Nat. Prod”,<br />

54, 1681-3<br />

Collins, D. J., Culvenor, C. C. J., Lamberton, J. A.,<br />

Loder, J. W., <strong>and</strong> Price, J. R., (1990),”Plants for<br />

Medicine: A Chemical <strong>and</strong> Pharmacological<br />

survey of Plants in the Australian Region”,<br />

CSIRO, Melbourne, 20-109<br />

Gottlieb, O. R., (1972),”Chemosystematics of the<br />

Lauraceae”, Phytochemistry, 11, 1537-70<br />

Govindachari, T. R., <strong>and</strong> Parthasarathy, P. C.,<br />

(1972),”Cryptocaryone, A Novel 5’,6’dihydrochalcone,<br />

<strong>from</strong> Cryptocarya bourdilloni<br />

GAMB., Tetrahedron Lett., 33, 3419-20<br />

Govindachari, T. R., Parthasarathy, P. C., Desai,<br />

H.K., <strong>and</strong> Shannbhag, M. N., (1973),”Structure of<br />

Cryptocaryone, a constituent of Cryptocarya<br />

bourdillonii GAMB, Tetrahedron, 29, 3091-4<br />

Kosterman, A.J.G.H., (1957), Comm. Forestm Res.<br />

Inst. Indonesia, No.37<br />

Kosterman, A.J.G.H., (1964),Bibiliographia<br />

Lauracearum, Ministery of National Research,<br />

Bogor<br />

Kosterman, A. J. G. H., (1968), “Material for A<br />

Revision of Lauraceae I”, Reinwardt, Herbarium<br />

Bogoriense, Bogor, Indonesia<br />

Zschocke, S., dan Van Staden, J.,<br />

(2000),”Cryptocarya Spesies-Substitute Plants for<br />

Ocotea bullata? A Pharmacological Investigation<br />

Interm of Cyclooxygenase -1 <strong>and</strong> -2 inhibition”, J<br />

of Etnopharmacology, 71, 473-8

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!