12.07.2015 Views

Determination of inorganic anions in red algae (Eucheuma cottonii ...

Determination of inorganic anions in red algae (Eucheuma cottonii ...

Determination of inorganic anions in red algae (Eucheuma cottonii ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

R. Suhaili et al. Proceed<strong>in</strong>g <strong>of</strong> The International Sem<strong>in</strong>ar on Chemistry 2008 (pp. 406-410)ISBN 978-979-18962-0-7Jat<strong>in</strong>angor, 30-31 October 2008<strong>Determ<strong>in</strong>ation</strong> <strong>of</strong> <strong><strong>in</strong>organic</strong> <strong>anions</strong> <strong>in</strong> <strong>red</strong> <strong>algae</strong> (<strong>Eucheuma</strong> <strong>cottonii</strong>) andcarrageenan by suppressor system <strong>of</strong> ion chromatographyRefilda Suhaili 1 *, Edison Munaf 1 , Rahmiana Ze<strong>in</strong> 1 , Abdi Dharma 1 ,Anang Sedyohutomo 2 , Lim Lee Wah 2 , Toyohide Takeuchi 21 Department <strong>of</strong> Chemistry, Faculty <strong>of</strong> Mathematics and Natural Sciences,Andalas University, Padang 25163, Indonesia2 Department <strong>of</strong> Chemistry, Faculty <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g, Gifu University,1-1 Yanagido, Gifu, 501-1193, Japan*e-mail: refilda_59@yahoo.com; Phone: +81-26-628-806Abstract<strong>Determ<strong>in</strong>ation</strong> <strong>of</strong> <strong><strong>in</strong>organic</strong> <strong>anions</strong> <strong>in</strong> <strong>red</strong> <strong>algae</strong> (<strong>Eucheuma</strong> <strong>cottonii</strong>) and carrageenan by us<strong>in</strong>g two 6-port switch<strong>in</strong>g valves and two packed column suppressors system <strong>of</strong> ion chromatography was<strong>in</strong>vestigated. Sodium carbonate-bicarbonate as a mobile phase to <strong>red</strong>uce the background conductivityand to <strong>in</strong>crease the analyte signal was ma<strong>in</strong>ta<strong>in</strong>ed at low detection limits. The relative standarddeviations (RSDs) for the retention time, peak area and peak height <strong>of</strong> eight common <strong><strong>in</strong>organic</strong><strong>anions</strong> (0.3 mM each <strong>of</strong> F - , Cl - , NO 2 - , Br - , NO 3 - , HPO 4 2- , SO 42-and I - ) were between 0.0-0.2, 0.1-0.4and 0.1-0.3%, respectively. Inorganic <strong>anions</strong> conta<strong>in</strong>ed <strong>in</strong> <strong>red</strong> <strong>algae</strong> (<strong>Eucheuma</strong> <strong>cottonii</strong>) andcarrageenan shown <strong>in</strong> table.Table Inorganic <strong>anions</strong> conta<strong>in</strong>ed <strong>in</strong> <strong>red</strong> <strong>algae</strong> (<strong>Eucheuma</strong> <strong>cottonii</strong>) and carrageenanSampleF - Cl - NO 2-Anion conta<strong>in</strong>ed mg/100gBr - NO 3-HPO 42-SO 42-PureCarrageenan 1.75 16.60 1.28 5.22 445.47 8.64 19.16 11.66ExtractedCarrageenan 1.80 17.79 0.89 5.10 442.45 8.02 25.14 10.13<strong>Eucheuma</strong><strong>cottonii</strong> 2.33 10.02 1.71 7.77 448.94 7.99 22.14 15.12I -Keywords: Common <strong><strong>in</strong>organic</strong> <strong>anions</strong>, ion chromatography, packed column suppressor, <strong>red</strong> <strong>algae</strong>(<strong>Eucheuma</strong> <strong>cottonii</strong>), carrageenan, six-port switch<strong>in</strong>g valveIntroductionThe oceans cover 71% <strong>of</strong> the earth’s surface and<strong>in</strong>clude an abundance <strong>of</strong> fauna and flora. Thechemical composition <strong>of</strong> sea water is quite constant.but the nutrient levels for the plants <strong>in</strong> sea water areextremely variable and concentrations for some traceelements and vitam<strong>in</strong>s are more variable.Red <strong>algae</strong> (<strong>Eucheuma</strong>) is harvested throughout theworld as a food sources as well as an exportcommodity for the production <strong>of</strong> agar andcarrageenan products). F - , Cl - , NO 2 - , Br - , NO 3 - ,HPO 4 2- , SO 42-and I - are m<strong>in</strong>or essential nutrients <strong>in</strong>food that can lead to health dieses. The ions are an<strong>in</strong>dicator <strong>of</strong> the food quality [1]S<strong>in</strong>ce its <strong>in</strong>troduction <strong>in</strong> 1975, high performanceliquid chromatography (HPLC) is a ma<strong>in</strong> tool toseparate and determ<strong>in</strong>e <strong><strong>in</strong>organic</strong> cations and <strong>anions</strong><strong>in</strong> food. Many advances <strong>in</strong> ion chromatographic (IC)separation and detection have been reported. Thema<strong>in</strong> goal <strong>of</strong> ion chromatography (IC) as an analyticaltechnique is to provide complete <strong>in</strong>formation aboutthe ionic composition <strong>of</strong> the analyzed sample. Forobvious reasons, it is <strong>of</strong>ten necessary to use twodifferent sets <strong>of</strong> IC conditions for the separation anddeterm<strong>in</strong>ation <strong>of</strong> cationic and anionic species.Some <strong>of</strong> these are described <strong>in</strong> several books andpapers [2-6]. Some <strong>of</strong> the most important advancesrelate to suppressor development [4-8]. Recentdevelopments <strong>in</strong> conductivity suppressor technologyhave been reported for <strong><strong>in</strong>organic</strong> ion analysis by ionchromatography [5-10]. Packed-column suppressorssuffers from a number <strong>of</strong> disadvantages, <strong>in</strong>volv<strong>in</strong>g theneed for <strong>of</strong>f-l<strong>in</strong>e regeneration, band-broaden<strong>in</strong>goccurr<strong>in</strong>g <strong>in</strong> the suppressor result<strong>in</strong>g <strong>in</strong> loss <strong>of</strong>chromatographic efficiency, and variable retention <strong>in</strong>the suppressor column due to ion-exclusion effectsIn IC, a ‘‘suppressor system’’ is commonly usedfor a sensitive detection <strong>of</strong> ions on the basis <strong>of</strong> theirelectrical conductance. Its function is to <strong>red</strong>uce406


R. Suhaili et al. Proceed<strong>in</strong>g <strong>of</strong> The International Sem<strong>in</strong>ar on Chemistry 2008 (pp. 406-410)Jat<strong>in</strong>angor, 30-31 October 2008chemically the background conductivity <strong>of</strong> theelectrolyte <strong>of</strong> an eluent before it enters theconductivity cell [11-12]. Suppressors are used <strong>in</strong>conjunction with conductivity detectors to improvedetection sensitivity, especially for anion analysisTwo suppressor types are commonly used foranion analysis. They are cont<strong>in</strong>uously regeneratedmembrane suppressors and <strong>in</strong>termittently regeneratedpacked-bed suppressors. Electrochemical andchemical regeneration have been used with both.Packed-bed suppressors are more rugged and reliablethan membrane suppressors [5-13], but <strong>in</strong>termittentregeneration limits run time and requires mechanicalswitch<strong>in</strong>g mechanisms. While more fragile,membrane suppressors <strong>of</strong>fer cont<strong>in</strong>uous operation andregeneration. In addition to suppress<strong>in</strong>g the mobilephase and enhanc<strong>in</strong>g the analyte signal through acid–base neutralization reactions like traditional ICsuppressors, this new suppressor also removescarbonic acid as CO (g) from the analyte stream,<strong>red</strong>uc<strong>in</strong>g background conductivity with carbonate–hydrogencarbonate mobile phases to near zero. Thisimproves the signal-to-noise ratio, <strong>red</strong>uces the waterdip that <strong>of</strong>ten <strong>in</strong>terferes with early elut<strong>in</strong>g peaks, andenables gradient separations with carbonate–hydrogencarbonate mobile phases with m<strong>in</strong>imalbasel<strong>in</strong>e shift.The propose <strong>of</strong> this research is to determ<strong>in</strong>ation<strong>of</strong> eight <strong><strong>in</strong>organic</strong> <strong>anions</strong> (F - , Cl -, NO 2 - , Br - , NO 3 - ,HPO 4 2- , SO 4 2- , I - ) by us<strong>in</strong>g two 6-port switch<strong>in</strong>gvalves and two packed column suppressors toma<strong>in</strong>ta<strong>in</strong> low conductivity <strong>of</strong> mobile phase <strong>in</strong> <strong>red</strong><strong>algae</strong> (<strong>Eucheuma</strong> <strong>cottonii</strong>) and carrageenan withsuppressed ion chromatography for achiev<strong>in</strong>g higherselectivity, shorter analysis time, lower quantitationand detection limits via optimization <strong>of</strong>chromatographic parameters for the rout<strong>in</strong>e analysis.Materials and MethodsChemicalsAnalytical reagent grade chemicals were purchasedfrom Nacalai Tesque (Kyoto, Japan). Standardsolutions (0.3mM for each anion) were prepa<strong>red</strong> bydissolv<strong>in</strong>g NaF, NaHPO 4 , NaNO 2 , NaCl, NaBr, NaI,NaNO 3 , and Na 2 SO 4 by us<strong>in</strong>g deionized water. Allstandard solutions were sto<strong>red</strong> <strong>in</strong> polyethyleneconta<strong>in</strong>ers and kept under refrigeration at 4 ◦ C. wereprepa<strong>red</strong>. The deionized water used throughout thisstudy was prepa<strong>red</strong> <strong>in</strong> the laboratory us<strong>in</strong>g a GS-590water distillation system (Advantec, Tokyo, Japan).The stock standard solutions for <strong>anions</strong> conta<strong>in</strong>ed ions<strong>of</strong> <strong>in</strong>terest. The standard solution <strong>of</strong> <strong>anions</strong> Na 2 CO 3and NaHCO 3 were obta<strong>in</strong>ed from Wako (Osaka,Japan), and used for the eluent. The eluent wasprepa<strong>red</strong> daily before use.he pH <strong>of</strong> the carbonat eluentwas measu<strong>red</strong> with an IM-20E ion meter (ToaElectronics, Tokyo, Japan). A 0.45 µm membranefilter for IC obta<strong>in</strong>ed from GL Sciences (Tokyo,Japan) and sto<strong>red</strong> <strong>in</strong> polyethylene conta<strong>in</strong>ers then keptunder refrigeration at 4 ◦ C. The samples were <strong>in</strong>jectedto the chromatographic system without dilution.SamplesRed <strong>algae</strong> <strong>Eucheuma</strong> <strong>cottonii</strong> which was 40 daysages, harvested from, big Aceh sub-prov<strong>in</strong>ce <strong>of</strong>Nangro Aceh Darussalam, Indonesian. The <strong>algae</strong>were extensively washed with distilled water toremove the particulate material from their surface andwere dried under the sunlight Dried biomass <strong>of</strong> <strong>red</strong><strong>algae</strong> was cut, ground and then screened to particlesizes <strong>of</strong> 150-425 µm. Carrageenan was extracted from<strong>red</strong> <strong>algae</strong> by alkal<strong>in</strong>e solution. Dried <strong>red</strong> <strong>algae</strong> andcarrageenan were digested with nitric acid andhydrogen peroxide, the solution was filte<strong>red</strong> with a0.45 µm membrane filter for IC, sto<strong>red</strong> <strong>in</strong>polyethylene conta<strong>in</strong>ers and kept under refrigerationat 4 ◦ C.IC systemThe ion chromatograph consisted <strong>of</strong> a PU-2080i plusHPLC pump (Jasco, Tokyo, Japan), a Rheodyne 5095<strong>in</strong>jector equipped with a 20- µl sample loop (Cotati,CA, USA), a CM-8020 conductivity detector (Tosoh,Tokyo, Japan), two Model 7610-600-6 port switch<strong>in</strong>gvalve (Rheodyne), and a Computer AidedChromatography data processor (Nippon Filcon,Tokyo, Japan). The column employed was a TSKgelIC-Anion-PW XL column (50 mm×4.6 mm i.d.) andtwo suppressor columns obta<strong>in</strong>ed from Tosoh (Tokyo,Japan). One suppressor was be<strong>in</strong>g used forchromatographic run, and the other suppressor wasregenerated with 0.5 M sulfuric acid (Wako PureChemical Industries, Osaka, Japan) at a flow rate <strong>of</strong>2.0µl/m<strong>in</strong> by us<strong>in</strong>g pump. The suppressor column wasthen r<strong>in</strong>sed with deionized water for futurechromatographic run.Operat<strong>in</strong>g conditionsThe mixture <strong>of</strong> (Na 2 CO 3 : NaHCO 3 ) was used as theeluent for the determ<strong>in</strong>ation <strong>of</strong> <strong>anions</strong>. The systemwas operated under isocratic mode. S<strong>in</strong>ce the pressurelimit <strong>of</strong> the columns is 8MPa. To f<strong>in</strong>d the optimumcondition <strong>of</strong> anion separation, the effect <strong>of</strong> eluentflow-rate, eluent concentration and anionconcentration were studied. The optimum conditionwas applied to determ<strong>in</strong>e anion <strong>in</strong> <strong>red</strong> <strong>algae</strong>(<strong>Eucheuma</strong> <strong>cottonii</strong>) and carrageenanResults and discussionEffect <strong>of</strong> sodium carbonate and sodium bicarbonateconcentration on <strong>anions</strong> separationSodium bicarbonate and sodium carbonate solutionconcentration ratio were evaluated for the efficient407


R. Suhaili et al. Proceed<strong>in</strong>g <strong>of</strong> The International Sem<strong>in</strong>ar on Chemistry 2008 (pp. 406-410)Jat<strong>in</strong>angor, 30-31 October 2008separation <strong>of</strong> <strong>anions</strong> on the TSKgel Super IC-Anioncolumn. Fig. 1 presents ionic chromatograms show<strong>in</strong>gthe anion separation <strong>of</strong> a standard mixture sample.The retention order at the optimum concentration wasF - , Cl - , NO 2 - , Br - , NO 3 - , HPO 4 2- , SO 42-and I - .The retention times and resolutions <strong>of</strong> analyte ionswere strongly dependent on the concentration <strong>of</strong> theeluent. Carbonate eluents were <strong>in</strong>vestigated forevaluat<strong>in</strong>g the efficient separation <strong>of</strong> <strong>anions</strong> on theIC-Anion-PW XL column. For <strong>in</strong>vestigation <strong>of</strong> theoptimum concentration <strong>of</strong> the eluent, the sodiumcarbonate and sodium bicarbonate concentration ratiowere varied from 1.0:1.0mM; 1.2:1.4 mM and1.5:1.75 mM. Consider<strong>in</strong>g the retention times, peakshapes and peak resolutions <strong>of</strong> the analyte <strong>anions</strong>, theoptimum ratio concentration <strong>of</strong> the eluent was found[bicarbonate : carbonate] = [1.2 : 1.4] witch gave thegood resolution.. When the concentration ratio <strong>of</strong>bicarbonate and carbonate less than 1.2:1.4 mM, theresolution was not good. When the eluentconcentration was higher than 1.2:1.4 mM, theresolution <strong>of</strong> <strong>anions</strong> were good but the <strong>in</strong>let pumppressure higher than 8MPa. It was not satisfactory andcan cause the <strong>in</strong>strument damage.×10 5 ] 3Conductivity (µS/cm)21Figure 1 Effect <strong>of</strong> Na 2 CO 3 :NaHCO 3 concentrationRepeatability11222331 60a0 5 10 15on anion separation. 0.7Flow ratemL/m<strong>in</strong>. a. 1.0:1.0 mM; b. 1.2:1.4 mM; c.1.5:1.75 mM. Columns TSKgel IC-AnionPW XL (50x4.6 mm i.d). Columntemperature: room temperature. Injectionvolume: 20 µL. Peak: 1. F - ; 2. Cl - -; 3. NO 2; 4. Br - ; 5. NO 3 -; 6. HPO4 = ; 7. SO = 4 ; 8. I -Table 1 shows the repeatability <strong>of</strong> the signal for fivesuccessive measurements under the conditions. Allthe relative standard deviation (RSD) values forretention time, peak area and peak height weresmaller than 1% except for F-. For this system F- wasearly elut<strong>in</strong>g analyte and <strong>in</strong>terfe<strong>red</strong> with water dip.Calibration curves and detection limits43 4 54 5576Time (m<strong>in</strong>)The l<strong>in</strong>earity and detection limits data are summarized<strong>in</strong> Table 3. All the calibration curves <strong>of</strong> the <strong>anions</strong> and677888cbthe cations showed good l<strong>in</strong>ear correlations. Thel<strong>in</strong>ear relationships between the peak height and thesample concentration <strong>of</strong> <strong>anions</strong> with concentrationranged from 0.1 to 0.5 mM showed good l<strong>in</strong>earrelationships with the correlation coefficients <strong>of</strong><strong>anions</strong> varied between 0.9958 and 1.0000, as shown<strong>in</strong> Table 3. From the table, the correlation coefficientsr2 > 0.999 proved good l<strong>in</strong>earity <strong>of</strong> the method..These values were sufficiently low as the suppressedconductivity IC. Separation time <strong>in</strong> this method wasless than 15 m<strong>in</strong>, while conventional nonsuppressorpacked-bed column, <strong><strong>in</strong>organic</strong> <strong>anions</strong> separation timewas 24 m<strong>in</strong>.Table 1 Relative standard deviations (RSDs) <strong>of</strong> theretention time and the peak signals <strong>of</strong> the<strong><strong>in</strong>organic</strong> <strong>anions</strong> under the optimumchromatographic conditions with Na 2 CO 3 :NaHCO 3 1.2 : 1.4 mM , flow rate <strong>of</strong> 0.7mL/m<strong>in</strong>, Columns TSKgel IC- AnionPW XL (50x4.6 mm i.d).AnionRSD (%), n=5Ret. Time Peak Height Peak AreaF- 0.00 0.12 0.38Cl- 0.21 0.17 0.32NO2- 0.16 0.28 0.34Br- 0.13 0.22 0.39NO3- 0.17 0.25 0.24HPO4= 0.13 0.15 0.44SO4= 0.20 0.28 0.14I- 0.10 0.27 0.31Table 2 Summarized data for the standard calibrationgraphs, coefficient correlation (r 2 ) <strong>of</strong> <strong>anions</strong>,and retention time were obta<strong>in</strong>ed under theoptimum operat<strong>in</strong>g conditionIon [anion] mM r 2 t r m<strong>in</strong>F- 0.1-0.5 0.9958 1.84Cl- 0.1-0.5 0.9999 2.80NO2- 0.1-0.5 0.9987 3.80Br- 0.1-0.5 0.9995 4.60NO3- 0.1-0.5 0.9995 5.61HPO42- 0.1-0.5 0.9997 6.70SO42- 0.1-0.5 0.9997 8.00I- 0.1-0.5 1.0000 13.70<strong>Determ<strong>in</strong>ation</strong> <strong><strong>in</strong>organic</strong> <strong>anions</strong> <strong>in</strong> <strong>red</strong> <strong>algae</strong>(<strong>Eucheuma</strong> <strong>cottonii</strong>) and carrageenanThe present suppressed ion chromatography systemwas applied to the determ<strong>in</strong>ae <strong><strong>in</strong>organic</strong> <strong>anions</strong> <strong>in</strong> <strong>red</strong><strong>algae</strong> (<strong>Eucheuma</strong> <strong>cottonii</strong>) and carrageenan. Eachsample was <strong>in</strong>jected after filtration through a 0.45-µmmembrane filter.408


R. Suhaili et al. Proceed<strong>in</strong>g <strong>of</strong> The International Sem<strong>in</strong>ar on Chemistry 2008 (pp. 406-410)Jat<strong>in</strong>angor, 30-31 October 2008Conductivity (µS/cm)600004000020000123 4 5651 2 3 4 6 7 800 5 10Figure 2 Chromatogram <strong>of</strong> anion separation a. <strong>Eucheuma</strong> <strong>cottonii</strong>, b. Anion Standard solution 0.3 mM. Flowrate <strong>of</strong> Na 2 CO 3 : NaHCO 3 [1.2:1.4 mM] 0.7 mL/m<strong>in</strong>, Columns TSKgel IC-Anion PW XL (50x4.6 mmi.d). Column temperature: room temperature, Injection volume: 20 µL. Peak: 1. F - , 2. Cl - , 3. NO 2 - , 4.Br - , 5. NO 3 - , 6. HPO 4 - , 7. SO 4 = , 8. I -7Retention Time (m<strong>in</strong>)8baTable 3 Anion conta<strong>in</strong>ed <strong>in</strong> <strong>red</strong> <strong>algae</strong> (<strong>Eucheuma</strong> <strong>cottonii</strong>) and carragenanSamplePureCarrageenanExtractedCarrageenan<strong>Eucheuma</strong><strong>cottonii</strong>Anion conta<strong>in</strong>ed mg/100gF - Cl - -NO 2 Br - -NO 32-HPO 42-SO 4 I -1.75 16.60 1.28 5.22 445.47 8.64 19.16 11.661.80 17.79 0.89 5.10 442.45 8.02 25.14 10.132.33 10.02 1.71 7.77 448.94 7.99 22.14 15.12Good separations for common <strong><strong>in</strong>organic</strong> <strong>anions</strong> wereachieved. Ion conta<strong>in</strong> <strong>in</strong> sample is shown <strong>in</strong> Table 3.-Table 3 shown that the sample conta<strong>in</strong>s NO 3 as ama<strong>in</strong> component <strong>in</strong> both <strong>red</strong> <strong>algae</strong> (<strong>Eucheuma</strong><strong>cottonii</strong>) and carragenan. The heigh concentration <strong>of</strong>nitrate <strong>in</strong> samples is caused by <strong>red</strong> <strong>algae</strong> consumednitrate very rapidly due to light conditions [1].ConclusionsIn conclusion, an ion chromatographic system us<strong>in</strong>gtwo 6-port switch<strong>in</strong>g valves and two packed columnsuppressors to ma<strong>in</strong>ta<strong>in</strong> the suppressed conductivity,were used for cont<strong>in</strong>uous suppression to obta<strong>in</strong> bettersensitivity. Eight common <strong><strong>in</strong>organic</strong> <strong>anions</strong> (F - , Cl -,NO 2 - , Br - , NO 3 - , HPO 4 2- , SO 4 2- , I - ) could bedeterm<strong>in</strong>ed by contactless conductivity detector. Themixture <strong>of</strong> 1.4 mM sodium bicarbonate and 1.2 mMsodium carbonate with flow rate 0.7 mL/m<strong>in</strong> wassuitable for the determ<strong>in</strong>ation <strong>of</strong> the above <strong><strong>in</strong>organic</strong><strong>anions</strong>. The system was satisfactorily applied to thedeterm<strong>in</strong>ation <strong>of</strong> common <strong>anions</strong> <strong>in</strong> <strong>red</strong> <strong>algae</strong>(<strong>Eucheuma</strong> <strong>cottonii</strong>) and carrageenan could be carriedout with<strong>in</strong> 15 m<strong>in</strong>. The relative standard deviations(RSDs) for the retention time, peak area and peakheight <strong>of</strong> eight common <strong><strong>in</strong>organic</strong> <strong>anions</strong> (0.3 mMeach <strong>of</strong> F - , Cl - , NO 2 - , Br - , NO 3 - , HPO 4 2- , SO 42-and I - )were between 0.0-0.2, 0.1-0.4 and 0.1-0.3%.References1. Anna. C.U, M. B´athorib, G. Blundenc, 2000,<strong>Determ<strong>in</strong>ation</strong> <strong>of</strong> elements <strong>in</strong> <strong>algae</strong> by differentatomic spectroscopic methods, MicrochemicalJournal 67,.39-422. Saari-Nordhaus R., J.M. Anderson Jr. 1997,Recent advances <strong>in</strong> ion chromatographysuppressor improve anion separation anddetectionJ. Chromatogr. A 782, 75.3. Sh<strong>in</strong>ji S ,, Y. Ogura, A. Miyanaga, T. Sugimoto,2002 Ion chromatographic system with a novelswitch<strong>in</strong>g suppression device, Journal <strong>of</strong>Chromatography A, 956 53–584. Chen. Y, L. J<strong>in</strong>g, X. Li, Y. Zhu, 2006 Suppressedanion chromatography us<strong>in</strong>g mixed zwitter-ionicand carbonate eluents, Journal <strong>of</strong>Chromatography A, 1118, 3–115. Toshimitsu. O, A. Isozakib, H. Nagashima, 1998,Studies on elution conditions for thedeterm<strong>in</strong>ation <strong>of</strong> <strong>anions</strong> by supressed ion<strong>in</strong>teractionchromatography us<strong>in</strong>g a graphitizedcarbon column, Journal <strong>of</strong> Chromatography A,800, 239–245409


R. Suhaili et al. Proceed<strong>in</strong>g <strong>of</strong> The International Sem<strong>in</strong>ar on Chemistry 2008 (pp. 406-410)Jat<strong>in</strong>angor, 30-31 October 20086. Haddad P.R., P.E. Jackson, M.J. Shaw. 2003.Developments <strong>in</strong> suppressor technology for<strong><strong>in</strong>organic</strong> ion analysis by ion chromatographyus<strong>in</strong>g conductivity detection. J. Chromatogr. A1000, 725.7. Rakesh. B, R.S. Nordhaus , A. Sonaike, S. S.Dhanwant, 2004, New suppressor technologyimproves the ion chromatographic determ<strong>in</strong>ation<strong>of</strong> <strong><strong>in</strong>organic</strong> <strong>anions</strong> and dis<strong>in</strong>fection by-products<strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g water, Journal <strong>of</strong> Chromatography A,1039, 45–498. Panu .R , S. Mustonen , T. Vartia<strong>in</strong>en , 2003Suppressor current switch<strong>in</strong>g: a simple andeffective means to <strong>red</strong>uce background noise <strong>in</strong>ion chromatography, Journal <strong>of</strong> ChromatographyA, 1020, 265–2729. Paul R. H, M. J. Shaw, G. W. Dic<strong>in</strong>oski, 2002, Newconductivity detection response equation for<strong>anions</strong> eluted with fully and partially ionisedeluents <strong>in</strong> non-suppressed ion chromatography,Journal <strong>of</strong> Chromatography A, 956, 59–6410. Raj. E. S, N. M. Abbas , Sally A. Smesko, 1996Suppressed ion chromatographic analysis <strong>of</strong><strong>anions</strong> <strong>in</strong> environmental waters conta<strong>in</strong><strong>in</strong>g highsalt concentrations 1, Journal <strong>of</strong>Chromatography A, 733, 73-91.11. Wenzhi. H, P. R. Haddadb, K. Tanaka , S Sh<strong>in</strong>ji.,M. Mori 2004, <strong>Determ<strong>in</strong>ation</strong> <strong>of</strong> monovalent<strong><strong>in</strong>organic</strong> <strong>anions</strong> <strong>in</strong> high-ionic-strengthsamplesby electrostatic ion chromatography withsuppressed conductometric detection, Journal<strong>of</strong> Chromatography A, 1039, 59–6212. Giacomo. D, T.M. Pellicano, L. L. Pera, V. L.Turco , A. Tamborr<strong>in</strong>o , M. L. Clodoveo ,2007, <strong>Determ<strong>in</strong>ation</strong> <strong>of</strong> <strong><strong>in</strong>organic</strong> <strong>anions</strong> <strong>in</strong>commercial seed oils and<strong>in</strong> virg<strong>in</strong> olive oilsproduced from de-stoned olives andtraditionalextraction methods, us<strong>in</strong>g suppressed ionexchange chromatography (IEC), FoodChemistry 102, 599–60513. Peter. J and M. Burggraaf, 1983, An ionchromatographic method for the simultaneousdeterm<strong>in</strong>ation <strong>of</strong> <strong><strong>in</strong>organic</strong> phosphate, bromide,nitrate and sulphate <strong>in</strong> human serum, Cl<strong>in</strong>icaChimica Acta, 132, 63-7 114. Elfakir. C, P. Chaimbault, M. Dreux, 1998<strong>Determ<strong>in</strong>ation</strong> <strong>of</strong> <strong><strong>in</strong>organic</strong> <strong>anions</strong> on porousgraphitic carbon us<strong>in</strong>g evaporative lightscatter<strong>in</strong>g detection. Use <strong>of</strong> carboxylic acids aselectronic competitors, Journal <strong>of</strong>Chromatography A, 829, 193–199.410

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!