01.05.2013 Views

MATH 520 — REVIEW FOR FINAL EXAM

MATH 520 — REVIEW FOR FINAL EXAM

MATH 520 — REVIEW FOR FINAL EXAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

B. Cole<br />

December 11, 2012<br />

<strong>MATH</strong> <strong>520</strong> <strong>—</strong> <strong>REVIEW</strong> <strong>FOR</strong> <strong>FINAL</strong> <strong>EXAM</strong><br />

1. Let F be the Fourier matrix for n = 3, i.e.,<br />

⎡<br />

⎤<br />

1 1 1<br />

F = ⎣ ⎦<br />

1 w w 2<br />

1 w 2 w 4<br />

where w = exp((2πi)/3) = − 1<br />

2 + i √ 3<br />

2 , and let U = 1 √ 3 F .<br />

(a) Calculate U 2 . Show that it is a permutation matrix.<br />

(b) Show that U 4 = I.<br />

(c) Calculate trace(U) and trace(U 2 ).<br />

(d) Determine the eigenvalues for U.<br />

⎡<br />

(e) Show that x = ⎣ 0<br />

⎤<br />

1 ⎦ is an eigenvector for U. What is the corresponding eigen-<br />

−1<br />

value?<br />

(f) Show that there exists a (real) orthogonal matrix Q and a diagonal matrix Λ with<br />

F = QΛQ T .<br />

2. (a) Let A =<br />

<br />

1 0 i 0<br />

. Find a basis for the row space of A. Find a basis for the<br />

0 1 0 i<br />

nullspace of A. Show that the row space = the nullspace.<br />

(b) Let A be a m×n matrix (possibly complex) with row space = nullspace and<br />

rank(A) = m. What are the possible values for n?<br />

(c) Does there exist a non-zero real matrix A with row space = nullspace? If so, give<br />

an example. If not, explain why.<br />

3. Let A =<br />

<br />

1 + i 2 + i<br />

.<br />

3 + i 4 + i


(a) Find L and U so that A = LU where L is lower triangular with 1’s on the diagonal<br />

and U is upper triangular.<br />

(b) Solve Ax = b where b =<br />

4. Let<br />

Find A −1 .<br />

5. Let<br />

<br />

1<br />

.<br />

i<br />

⎡<br />

1 0 0<br />

⎤<br />

0<br />

⎢ 2<br />

A = ⎣<br />

3<br />

1<br />

4<br />

0<br />

1<br />

0 ⎥<br />

⎦ .<br />

0<br />

1 1 1 1<br />

⎡<br />

0 0 1/4<br />

⎤<br />

1<br />

⎢ 1/4<br />

A = ⎣<br />

1/2<br />

0<br />

1<br />

3/4<br />

0<br />

0 ⎥<br />

⎦ .<br />

0<br />

1/4 0 0 0<br />

(a) Find k with A k > 0. Conclude that A is a regular Markov matrix.<br />

(b) Find A ∞ = limk→∞ A k .<br />

6. (a) Let A be a non-zero 3×3 real, anti-symmetric matrix with A 2 = D, which is<br />

diagonal. Show that 7 of the 9 entries in A are zero.<br />

(b) Let A be a non-zero 4×4 real, anti-symmetric matrix with A 2 = D, which is<br />

diagonal. Show that the result in (a) does not generalize. Find such an A with each<br />

non-diagonal entry = ±1 (and furthermore A 2 = −3I).<br />

7. Let<br />

⎡<br />

0<br />

A = ⎣ −1<br />

1<br />

0<br />

⎤<br />

1<br />

1 ⎦ .<br />

−1 −1 0<br />

(a) Find the eigenvalues and an orthonormal basis of eigenvector. Show that A =<br />

UΛU H where U is unitary and Λ is diagonal.<br />

2


(b) Note that A 2 is real symmetric. Show that A 2 = QΛ 2 Q T where Q is a (real)<br />

orthogonal matrix.<br />

zero.<br />

(c) Set C = Q T AQ. Show that C = −C T and C 2 = Λ 2 . Show that 7 entries in C are<br />

8. Let<br />

⎡<br />

−1<br />

A = ⎣ 2<br />

−2<br />

4<br />

⎤ ⎡<br />

−i<br />

2i ⎦ = ⎣<br />

1 2 i<br />

−1<br />

⎤<br />

2 ⎦ [ 1 2 i ] = ab<br />

1<br />

H .<br />

Find unitary U and V and a diagonal matrix Σ with Σ ≥ 0 and A = UΣV H . (This<br />

generalizes svd for complex matrices.)<br />

9. Let<br />

A =<br />

<br />

1 1 1<br />

.<br />

1 1 −1<br />

Find orthogonal matrices U, V and a diagonal matrix Σ with Σ ≥ 0 so that A = UΣV T .<br />

10. Consider data points (t1, b1), . . . , (t5, b5) in R 2 . Find the polynomial f(t) = c0 +c1t+<br />

c2t 2 that best fits these data points in the sense of least squares, i.e. for ei = bi − f(ti),<br />

we minimize e 2 1 + · · · + e 2 5. Assume that<br />

t k 1 + · · · + t k 5 = sk<br />

where s0 = 5, s1 = 0, s2 = 4, s3 = 0, s4 = 6 and<br />

where r0 = 1, r1 = 2, r2 = 3.<br />

11. Let a, b, c be real numbers. Let<br />

A =<br />

b1t k 1 + · · · + b5t k 5 = rk<br />

⎡ ⎤ ⎡<br />

⎤<br />

<br />

a 0 0 b<br />

a 0 b<br />

a b<br />

, B = ⎣ 0 b 0 ⎦ ⎢ 0 b 0 0 ⎥<br />

, C = ⎣<br />

⎦ .<br />

b c<br />

0 0 b 0<br />

b 0 c<br />

b 0 0 c<br />

(a) For which a, b, c is A positive definite?<br />

3


(b) For which a, b, c is B positive definite?<br />

(c) For which a, b, c is C positive definite?<br />

(d) Is A positive definite exactly when B is positive definite? If not, give some choice<br />

of a, b, c where this difference occurs.<br />

(e) Is B positive definite exactly when C is positive definite? If not, give some choice<br />

of a, b, c where this difference occurs.<br />

12. Let<br />

⎡<br />

7 14 10 1<br />

⎤<br />

2<br />

⎡<br />

7 10 6<br />

⎤<br />

1<br />

⎢ 5<br />

A = ⎣<br />

2<br />

10<br />

4<br />

9<br />

4<br />

−3<br />

−2<br />

7 ⎥<br />

⎦ ,<br />

4<br />

⎢ 5<br />

S = ⎣<br />

2<br />

9<br />

4<br />

6<br />

4<br />

1 ⎥<br />

⎦ ,<br />

1<br />

1 2 2 −1 2<br />

1 2 3 1<br />

S −1 ⎡<br />

1 −2 3<br />

⎤<br />

−2<br />

⎡<br />

1 2 0 3<br />

⎤<br />

−4<br />

⎢ −1<br />

= ⎣<br />

1<br />

3<br />

−4<br />

−6<br />

10<br />

4 ⎥<br />

⎦ ,<br />

−7<br />

⎢ 0<br />

B = ⎣<br />

0<br />

0<br />

0<br />

1<br />

0<br />

−2<br />

0<br />

3 ⎥<br />

⎦<br />

0<br />

−2 8 −21 16<br />

0 0 0 0 0<br />

where A = SB. Find a basis for each of the four fundamental subspaces for A. No<br />

arithmetic is required here; it has already been done for you.<br />

13. Let A be a rank 1 n×n matrix with n > 1. We know that A = uv T for certain vectors<br />

u, v in R n .<br />

(a) Show that u is an eigenvector for A. Express the corresponding eigenvalue in terms<br />

of u and v.<br />

(b) Show that A 2 = cA for some constant c.<br />

(c) Show that A is diagonalizable if and only if c = 0.<br />

(d) Assume c = 0. Find simple formulas for A 3 , A 4 , . . . , A k for any k ≥ 1.<br />

(e) Assume c = 0. Find a simple formula for e tA . Show that e tA = α(t)I + β(t)A<br />

where α(t) and β(t) are specific functions of t.<br />

4


14. Let<br />

B =<br />

<br />

−1 3<br />

.<br />

1 −3<br />

(a) Calculate e tB . Show that e tB is a regular Markov matrix for all positive t.<br />

(b) Calculate limt→∞ e tB . (Note that this limit must be the same as limk→∞ A k where<br />

A is the regular Markov matrix A = e B .)<br />

(c) Let x(t) be a solution to x ′ (t) = Bx(t). Find a fixed vector w and a constant c so<br />

that w · x(t) = c for all t.<br />

15. Let<br />

⎡<br />

1 1 1<br />

⎤<br />

1<br />

⎢ 1<br />

A = ⎣<br />

1<br />

1<br />

1<br />

1<br />

1<br />

2 ⎥<br />

⎦ .<br />

2<br />

1 1 1 2<br />

(a) Find an orthonormal basis for the nullspace of A.<br />

(b) Find a (real) orthogonal matrix Q so that B = AQ where B = [0|C] and C is a<br />

4×2 matrix of rank 2. (You are not asked to compute B or C.)<br />

16. Let<br />

⎡<br />

1 1 1<br />

⎤<br />

1<br />

⎢ 1<br />

A = ⎣<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1 ⎥<br />

⎦ .<br />

1<br />

1 1 1 1<br />

Find a (real) orthogonal matrix Q and a diagonal matrix Λ so that A = QΛQ T .<br />

⎡<br />

17. Find a 3×3 (real) orthogonal matrix Q where the first column is a multiple of ⎣ 1<br />

⎤<br />

2 ⎦.<br />

2<br />

18. Let<br />

⎡<br />

7<br />

A = ⎣ −4<br />

−4<br />

1<br />

⎤<br />

−4<br />

−8 ⎦ .<br />

−4 −8 1<br />

Find a (real) orthogonal matrix Q and a diagonal matrix Λ so that A = QΛQ T .<br />

5


19. Which of the matrices described below are diagonalizable? Assume that each matrix<br />

is n×n .<br />

(a) projection<br />

(b) permutation<br />

(c) real symmetric<br />

(d) real orthogonal<br />

(e) real anti-symmetric<br />

(f) unitary<br />

(g) Hermitian<br />

(h) skew-Hermitian<br />

(i) A + I where A is diagonalizable.<br />

(j) A −1 where A is diagonalizable and invertible.<br />

(k) A 2 where A is diagonalizable.<br />

(l) I + A + A 2 where A is diagonalizable.<br />

(m) A + B where A and B are diagonalizable.<br />

(n) AB where A and B are diagonalizable.<br />

(o) AB where A and B are real orthogonal.<br />

(p) A + B where A and B are Hermitian.<br />

(q) upper triangular.<br />

(r) A where A 2 = A.<br />

(s) F AF −1 where A is diagonalizable and F is invertible.<br />

6


20. (a) Let<br />

For which a, b, c is A diagonalizable?<br />

(b) Let<br />

For which a, b, c is A diagonalizable?<br />

(c) Let<br />

For which a, b, c is A diagonalizable?<br />

(d) Let<br />

⎡<br />

1<br />

A = ⎣ 0<br />

a<br />

1<br />

⎤<br />

b<br />

c ⎦ .<br />

0 0 1<br />

⎡<br />

1<br />

A = ⎣ 0<br />

a<br />

1<br />

⎤<br />

b<br />

c ⎦ .<br />

0 0 2<br />

⎡<br />

1<br />

A = ⎣ 0<br />

a<br />

2<br />

⎤<br />

b<br />

c ⎦ .<br />

0 0 1<br />

⎡<br />

1 a b<br />

⎤<br />

c<br />

⎢ 0<br />

A = ⎣<br />

0<br />

1<br />

0<br />

d<br />

2<br />

e ⎥<br />

⎦ .<br />

f<br />

0 0 0 2<br />

For which a, b, c, d, e, f is A diagonalizable?<br />

(e) Let<br />

⎡<br />

1 a b<br />

⎤<br />

c<br />

⎢ 0<br />

A = ⎣<br />

0<br />

2<br />

0<br />

d<br />

1<br />

e ⎥<br />

⎦ .<br />

f<br />

0 0 0 2<br />

For which a, b, c, d, e, f is A diagonalizable?<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!