01.05.2013 Views

Electron Mikroskop

Electron Mikroskop

Electron Mikroskop

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Electron</strong> <strong>Mikroskop</strong>


Scanning <strong>Electron</strong> Microscopy (SEM)<br />

•Apa itu SEM?<br />

•Prinsip Kerja SEM<br />

•Komponen utama dan fungsinya<br />

•<strong>Electron</strong> beam - spesimen interaksi<br />

•Inteaksi volume dan escape volume<br />

•Perbesaran, resolusi, depth of field dan<br />

kontras bayangan<br />

•Energy Dispersive X-ray Spectroscopy (EDS)<br />

•Wavelength Dispersive X-ray Spectroscopy<br />

(WDS)<br />

•Orientation Imaging Microscopy (OIM)<br />

•X-ray Fluorescence (XRF)


Comparison of OM,TEM and SEM<br />

Light source<br />

Condenser<br />

Specimen<br />

Objective<br />

Eyepiece Projector<br />

Source of<br />

electrons<br />

Magnetic<br />

lenses<br />

Specimen<br />

OM TEM SEM<br />

detector<br />

CRT<br />

Cathode<br />

Ray Tube<br />

Principal features of an optical microscope, a transmission<br />

electron microscope and a scanning electron microscope,<br />

drawn to emphasize the similarities of overall design.


Glass Magnetic<br />

coils<br />

Anode<br />

Under vacuum


PERBEDAAN MO DAN SEM<br />

MO : resolusi/daya pisah<br />

lebih rendah<br />

SEM: resolusi/daya<br />

pisah lebih tinggi<br />

Kombinasi perbesaran dan daya pisah yang lebih besar dan kemampuan deteksi unsur pada<br />

permukaan material SEM lebih teliti untuk riset dan industri


I. Basics of <strong>Electron</strong> Microscopy<br />

• Electro-magnetic lenses<br />

• Scanning Transmission EM (STEM)<br />

– Mass determination<br />

– Elemental mapping<br />

• Scanning EM (SEM)<br />

– Surface relief<br />

• Transmission EM (TEM)<br />

– Structures<br />

– Imaging or Diffraction<br />

– 0.03 Å theoretical resolution<br />

1.0 Å practical resolution


II. <strong>Electron</strong> Source<br />

• Tungsten filament (thermionic)<br />

• Tungsten crystal (field emission) 100x brighter<br />

• <strong>Electron</strong>s Accelerated to defined energy<br />

behave as a wave.<br />

• kV (100 – 1000 kV with 200kV-> 0.025 Å)


<strong>Electron</strong> beam Source<br />

W or LaB6 Filament<br />

Thermionic or Field Emission Gun


ELEKTRON YANG BERHAMBUR DAN<br />

DITANGKAP SEM SAAT SAMPEL<br />

DITEMBAK ELEKTRON


HAMBURAN ELEKTRON DIDETEKSI DAN<br />

ENERGINYA DITAMPILKAN DALAM BENTUK<br />

GAMBAR DAN GRAFIK<br />

Tiap Jenis hamburan elektron<br />

ditangkap detektor yang<br />

berbeda<br />

Tempat Sampel


TEMPAT SAMPEL DI SCANNING<br />

ELECTRON MICROSCOPE


PENGAMATAN DENGAN SCANNING<br />

ELECTRON MICROSCOPE<br />

Perbesaran<br />

OM 4x – 1000x<br />

SEM 10x – 3000000x<br />

Aplikasi :<br />

•Mengamati struktur maupun<br />

bentuk permukaan yang<br />

berskala lebih halus<br />

•Dilengkapi Dengan EDS<br />

(<strong>Electron</strong> Dispersive X ray<br />

Spectroscopy)<br />

•Dapat mendeteksi unsur2<br />

dalam material.<br />

•Permukaan yang diamati<br />

harus penghantar elektron


Keuntungan SEM terhadap OM<br />

Perbesaran Depth of Field Resolusi<br />

OM 4x – 1000x 15.5mm – 0.19mm ~ 0.2mm<br />

SEM 10x – 3000000x 4mm – 0.4mm 1-10nm<br />

SEM mempunyai depth of field yang besar, yang dapat<br />

memfokus jumlah sampel yang lebih banyak pada satu<br />

waktu dan menghasilkan bayangan yang baik dari<br />

sampel tiga dimensi. SEM juga menghasilkan bayangan<br />

dengan resolusi tinggi, yang berarti mendekati bayangan<br />

yang dapat diuji dengan perbesaran tinggi.<br />

Kombinasi perbesaran yang lebih tinggi, dark field,<br />

resolusi yang lebih besar, dan komposisi serta informasi<br />

kristallografi membuat SEM merupakan satu dari<br />

peralatan yang paling banyak digunakan dalam<br />

penelitian, R&D industri khususnya industri<br />

semikonductor.


• Topography<br />

Aplikasi Utama SEM<br />

The surface features of an object and its texture<br />

(hardness, reflectivity… etc.)<br />

• Morphology<br />

The shape and size of the particles making up the<br />

object (strength, defects in IC and chips...etc.)<br />

• Composition<br />

The elements and compounds that the object is<br />

composed of and the relative amounts of them<br />

(melting point, reactivity, hardness...etc.)<br />

• Crystallographic Information<br />

How the grains are arranged in the object<br />

(conductivity, electrical properties, strength...etc.)


<strong>Electron</strong> Gun<br />

A More<br />

Detaile<br />

d Look<br />

Inside<br />

Source: L. Reimer,<br />

“Scanning <strong>Electron</strong><br />

Microscope”, 2 nd Ed.,<br />

Springer-Verlag, 1998, p.2<br />

e - beam


Preparasi Sampel<br />

• Hindari semua air, larutan atau<br />

material-material lain yang mudah<br />

menguap dalam vakum.<br />

• Permukaan harus rata untuk BSE dan<br />

OIM<br />

• Tentukan jumlah sample.<br />

• Samples Non-logam, seperti building<br />

materials, insulating ceramics, harus di<br />

caoting agar konduktivitas listriknya<br />

baik. Logam dan samples konduktivitas<br />

dapat diletakan langsung kedalam SEM.


Image Magnification<br />

Example of a series of increasing magnification (spherical lead<br />

particles imaged in SE mode)


Bagaimana Elektron Beam<br />

dihasilkan ?<br />

• Elektron guns digunakan untuk<br />

menghasilkan kontrol beam yang halus<br />

dari elektron yang kemudian difokuskan<br />

pada permukaan spesimen.<br />

• Eelektron guns bisa dalam bentuk<br />

thermionik gun atau field-emission gun


Thermionic Emission Gun<br />

• A tungsten filament<br />

heated by DC to<br />

approximately 2700K or<br />

LaB 6 rod heated to around<br />

2000K<br />

• A vacuum of 10 -3 Pa (10 -4<br />

Pa for LaB 6) is needed to<br />

prevent oxidation of the<br />

filament<br />

• <strong>Electron</strong>s “boil off” from<br />

the tip of the filament<br />

• <strong>Electron</strong>s are accelerated<br />

by an acceleration voltage<br />

of 1-50kV


Field Emission Gun<br />

• The tip of a tungsten needle is<br />

made very sharp (radius < 0.1<br />

mm)<br />

• The electric field at the tip is<br />

very strong (> 10 7 V/cm) due<br />

to the sharp point effect<br />

• <strong>Electron</strong>s are pulled out from<br />

the tip by the strong electric<br />

field<br />

• Ultra-high vacuum (better than<br />

10 -6 Pa) is needed to avoid ion<br />

bombardment to the tip from<br />

the residual gas.<br />

• <strong>Electron</strong> probe diameter < 1<br />

nm is possible


Filament<br />

Source of <strong>Electron</strong>s<br />

T: ~1500o Thermionic Gun<br />

C<br />

W and LaB 6<br />

(5-50mm)<br />

E: >10MV/cm<br />

(5nm)<br />

Cold- and thermal FEG<br />

<strong>Electron</strong> Gun Properties<br />

Source Brightness Stability(%) Size Energy spread Vacuum<br />

W 3X10 5 ~1 50mm 3.0(eV) 10 -5 (t )<br />

LaB 6 3x10 6 ~2 5mm 1.5 10 -6<br />

C-FEG 10 9 ~5 5nm 0.3 10 -10<br />

T-FEG 10 9


Lensa Magnetik<br />

• Lensa Condenser – focusing<br />

determines the beam current<br />

which impinges on the sample.<br />

• Lensa Objective – final probe<br />

forming<br />

determines the final spot size of<br />

the electron beam, i.e., the<br />

resolution of a SEM.


Kenapa perlu Vakum?<br />

Bila SEM digunakan, kolum elektron-optik<br />

dan sampel chamber harus selalu pada<br />

kondisi vakum.<br />

1. Bila kolum ada gas didalamnya maka elektron akan<br />

diskaterd oleh molekul gas yang menyebabkan<br />

intensitas dan stability beam akan berkurang<br />

2. Molekul-molekul gas lain, yang datang dari sampel<br />

atau dari microskop itu sendiri, dapat membentuk<br />

persenyawaan dan kondens pada sampel. Ini akan<br />

membuatan kontras menjadi lebih rendah dan<br />

bayangan menjadi kabur.


<strong>Electron</strong> Detectors and Sample Stage<br />

Objective<br />

lens<br />

Sample stage


Coating Techniques<br />

Sputter coater is used to coat insulating samples<br />

Au and Al – good for SE yield<br />

AuPd alloy – good for high resolution<br />

C – used if X-ray microanalysis is required<br />

Coating should have low granularity in order not to<br />

mask the underlying structure (


OIM-Grain Boundary Maps<br />

Grain Boundary Map Orientation Map<br />

A Grain boundary Map can be generated by comparing the orientation<br />

between each pair of neighboring points in an OIM scan. A line is<br />

drawn separating a pair of points if the difference in orientation<br />

between the points exceeds a given tolerance angle. An Orientation<br />

Map is generated by shading each point in the OIM scan according to<br />

some parameter reflecting the orientation at each point. Both of these<br />

maps are shown overlaid on the digital micrograph from the SEM.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!