19.05.2013 Views

A QUICK PROOF OF A THEOREM OF MERTENS' We first prove a ...

A QUICK PROOF OF A THEOREM OF MERTENS' We first prove a ...

A QUICK PROOF OF A THEOREM OF MERTENS' We first prove a ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A <strong>QUICK</strong> <strong>PRO<strong>OF</strong></strong> <strong>OF</strong> A <strong>THEOREM</strong> <strong>OF</strong> MERTENS’<br />

LEO GOLDMAKHER<br />

<strong>We</strong> <strong>first</strong> <strong>prove</strong> a weak form of Stirling’s formula:<br />

<br />

log n<br />

nx<br />

=<br />

x<br />

x<br />

[t]<br />

log t d[t] = [x] log x −<br />

1<br />

1 t dt<br />

=<br />

x<br />

{x}<br />

x log x − {x} log x − x + 1 +<br />

t dt<br />

<strong>We</strong> also know that<br />

<br />

Λ(d) = <br />

Λ(p j ) = <br />

whence<br />

d|n<br />

p j |n<br />

= x log x − x + O(log x)<br />

p|n<br />

<br />

jordp(n)<br />

nx<br />

1<br />

log p = <br />

(ordp n) log p = log n<br />

x log x − x + O(log x) = <br />

log n = <br />

Λ(d) = <br />

x<br />

<br />

Λ(d)<br />

d<br />

Since ψ(x) ≪ x, we deduce that<br />

<br />

dx<br />

= x <br />

Λ(d)<br />

d<br />

dx<br />

nx<br />

p|n<br />

d|n<br />

Λ(d)<br />

d + O ψ(x) .<br />

= log x + O(1).<br />

But this sum is essentially the sum over the primes:<br />

Λ(d)<br />

d<br />

dx<br />

= log p <br />

+<br />

p<br />

px<br />

px1/2 log p <br />

+<br />

p2 px1/3 =<br />

log p<br />

+ · · ·<br />

p3 <br />

⎛<br />

log p<br />

+ O ⎝<br />

p<br />

px<br />

<br />

px1/2 log p<br />

p2 <br />

1<br />

1 − 1<br />

<br />

p<br />

⎞<br />

⎠<br />

= log p<br />

+ O(1).<br />

p<br />

Thus, setting<br />

px<br />

R(x) = <br />

px<br />

log p<br />

p<br />

− log x<br />

we have shown that R(x) ≪ 1. <strong>We</strong> are now in the position to <strong>prove</strong> Mertens’ estimate:<br />

1<br />

dx


Proposition. There exists a constant C > 0 such that<br />

<br />

<br />

1<br />

1<br />

= log log x + C + O<br />

p log x<br />

Proof.<br />

<br />

px<br />

1<br />

p =<br />

x<br />

2 −<br />

1<br />

log t<br />

px<br />

d (log t + R(t))<br />

x<br />

dt R(x)<br />

=<br />

+<br />

2 t log t log x +<br />

x<br />

R(t)<br />

2 t log 2 t dt<br />

∞<br />

1<br />

R(t)<br />

= log log x − log log 2 + O +<br />

log x 2 t log 2 ∞<br />

R(t)<br />

dt −<br />

t x t log 2 t dt<br />

∞<br />

R(t)<br />

= log log x +<br />

t log 2 <br />

1<br />

dt − log log 2 + O<br />

t log x<br />

Department of Mathematics, University of Toronto<br />

40 St. George Street, Room 6290<br />

Toronto, M5S 2E4, Canada<br />

E-mail address: leo.goldmakher@utoronto.ca<br />

2<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!