19.05.2013 Views

Discrimination between six species of canine microfilariae by a ...

Discrimination between six species of canine microfilariae by a ...

Discrimination between six species of canine microfilariae by a ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Abstract<br />

Veterinary Parasitology 135 (2006) 303–314<br />

<strong>Discrimination</strong> <strong>between</strong> <strong>six</strong> <strong>species</strong> <strong>of</strong> <strong>canine</strong> micr<strong>of</strong>ilariae<br />

<strong>by</strong> a single polymerase chain reaction<br />

Mark Rishniw a, *, Stephen C. Barr b , Kenny W. Simpson b ,<br />

Marguerite F. Frongillo c , Marc Franz d , Jose Luis Dominguez Alpizar e<br />

a Department <strong>of</strong> Biomedical Sciences, Box 11, Veterinary Research Tower, College <strong>of</strong> Veterinary Medicine,<br />

Cornell University, Ithaca, NY 14853, USA<br />

b Department <strong>of</strong> Clinical Sciences, Cornell University, Ithaca, NY, USA<br />

c Department <strong>of</strong> Microbiology and Immunology, Cornell University, Ithaca, NY, USA<br />

d Woodbury Animal Hospital, Woodbury, NY, USA<br />

e Department <strong>of</strong> Parasitology, Universidad Autónoma de Yucatán, Mexico<br />

Received 16 August 2005; received in revised form 6 October 2005; accepted 6 October 2005<br />

www.elsevier.com/locate/vetpar<br />

Canine dir<strong>of</strong>ilariasis caused <strong>by</strong> Dir<strong>of</strong>ilaria immitis is usually diagnosed <strong>by</strong> specific antigen testing and/or identification <strong>of</strong><br />

micr<strong>of</strong>ilariae. However, D. immitis and at least <strong>six</strong> other filariae can produce <strong>canine</strong> micr<strong>of</strong>ilaremias with negative heartworm<br />

antigen tests. Discriminating these can be <strong>of</strong> clinical importance.<br />

To resolve discordant diagnoses <strong>by</strong> two diagnostic laboratories in an antigen-negative, micr<strong>of</strong>ilaremic dog recently imported<br />

into the US from Europe we developed a simple molecular method <strong>of</strong> identifying different micr<strong>of</strong>ilariae, and subsequently<br />

validated our method against <strong>six</strong> different filariae known to infect dogs <strong>by</strong> amplifying ribosomal DNA spacer sequences <strong>by</strong><br />

polymerase chain reaction using common and <strong>species</strong>-specific primers, and sequencing the products to confirm the genotype <strong>of</strong><br />

the filariae. We identified the filaria in this dog as D. repens. This is the first case <strong>of</strong> D. repens infection in the United States.<br />

Additionally, we examined micr<strong>of</strong>ilariae from five additional antigen-negative, micr<strong>of</strong>ilaremic dogs and successfully<br />

identified the infecting parasite in each case. Our diagnoses differed from the initial morphological diagnosis in three <strong>of</strong><br />

these cases, demonstrating the inaccuracy <strong>of</strong> morphological diagnosis. In each case, micr<strong>of</strong>ilariae identified morphologically as<br />

A. reconditum were identified as D. immitis <strong>by</strong> molecular methods. Finally, we demonstrated that our PCR method should<br />

amplify DNA from at least two additional filariae (Onchocerca and Mansonella), suggesting that this method may be suitable for<br />

genotyping all members <strong>of</strong> the family Onchocercidae.<br />

# 2005 Elsevier B.V. All rights reserved.<br />

Keywords: Dir<strong>of</strong>ilaria; Immitis; Dipetalonema; Acanthocheilonema; Reconditum; Repens; Canine; Knott’s test; Polymerase chain reaction;<br />

PCR<br />

* Corresponding author. Tel.: +1 607 253 3108.<br />

E-mail address: mr89@cornell.edu (M. Rishniw).<br />

0304-4017/$ – see front matter # 2005 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.vetpar.2005.10.013


304<br />

1. Introduction<br />

Canine heartworm disease is generally diagnosed<br />

<strong>by</strong> antigen testing for Dir<strong>of</strong>ilaria immitis, and/or<br />

identification <strong>of</strong> micr<strong>of</strong>ilariae in the blood <strong>of</strong> infected<br />

dogs. However, other filariae, including Acanthocheilonema<br />

(Dipetalonema) reconditum, Dir<strong>of</strong>ilaria<br />

(Nochtiella) repens, Acanthocheilonema (Dipetalonema)<br />

dracunculoides, Cercopithifilaria grassi, Brugia<br />

malayi, Brugia pahangi, Brugia ceylonensis and<br />

approximately 1% <strong>of</strong> Dir<strong>of</strong>ilaria immitis infestations,<br />

can produce persistent micr<strong>of</strong>ilaremias with negative<br />

heartworm antigen tests (Courtney et al., 1993;<br />

Fischer et al., 2002; Genchi, 2003). In such cases,<br />

diagnosis relies on examination <strong>of</strong> the micr<strong>of</strong>ilariae,<br />

generally using a modified Knott’s test, or alkaline<br />

phosphatase staining (Chalifoux and Hunt, 1971;<br />

Knott, 1935). These methods are imperfect, and rely<br />

on specialist training to accurately differentiate the<br />

filariae. However, in regions where one <strong>of</strong> these<br />

filariae is not enzootic, parasitologists may exclude<br />

that filaria from consideration, or fail to recognize it,<br />

especially if a history <strong>of</strong> potential exposure is not<br />

provided (Cordonnier et al., 2002).<br />

Accurate identification <strong>of</strong> filarial <strong>species</strong> in dogs<br />

can be clinically important, because <strong>of</strong> the zoonotic<br />

concerns and therapeutic implications. While A.<br />

reconditum and A. dracunculoides have few (if any)<br />

clinical consequences, D. repens infestations have<br />

been associated with subcutaneous granulomas and<br />

pruritus in dogs (Baneth et al., 2002; Bredal et al.,<br />

1998; Manuali et al., 2005; Tarello, 2003), and<br />

subcutaneous, conjunctival and pulmonary nodules,<br />

<strong>of</strong>ten confused with neoplastic tumors, in humans<br />

(Cordonnier et al., 2002; Pampiglione et al., 1996,<br />

2001; Romano et al., 1976; Vakalis and Himonas,<br />

1997). To reduce the risk <strong>of</strong> zoonotic transmission,<br />

treatment <strong>of</strong> D. repens infestations with filaricidal<br />

agents, or at least micr<strong>of</strong>ilaricidal agents, is recommended<br />

(adulticidal therapy can be postponed until<br />

clinical signs occur if risk <strong>of</strong> treatment is deemed to<br />

outweigh risk <strong>of</strong> disease). Adult D. repens have been<br />

successfully treated with melarsomine hydrochloride<br />

(Immiticide, Merial; two injections <strong>of</strong> 2.5 mg/kg IM<br />

24 h apart) (Baneth et al., 2002). Micr<strong>of</strong>ilariae are<br />

susceptible to micr<strong>of</strong>ilaricidal doses <strong>of</strong> avermectins<br />

(ivermectin 50 mg/kg PO or SQ; doramectin 400 mg/<br />

kg SQ; effects <strong>of</strong> milbemycin have not been<br />

M. Rishniw et al. / Veterinary Parasitology 135 (2006) 303–314<br />

investigated) (Baneth et al., 2002; Tarello, 2003).<br />

On the other hand, treatment <strong>of</strong> A. dracunculoides or<br />

A. reconditum infestations is not usually required, so<br />

they should be positively identified to avoid inappropriate<br />

adulticide therapy.<br />

Over the last decade, several investigators have<br />

examined the molecular differentiation <strong>of</strong> filariae,<br />

using Southern blotting to identify DNA repeats from<br />

D. repens (Chandrasekharan et al., 1994) or polymerase<br />

chain reaction (PCR) to differentiate either D.<br />

repens or A. reconditum from D. immitis (Bredal et al.,<br />

1998; Favia et al., 1996, 1997; Mar et al., 2002;<br />

Vakalis et al., 1999). However, no existing studies<br />

examined the ability <strong>of</strong> PCR to differentiate <strong>between</strong><br />

more than two filariae. While it would be possible to<br />

run multiple PCR reactions using published primer<br />

sequences to identify a specific filaria, a single<br />

differentiating reaction would provide an expeditious<br />

means <strong>of</strong> obtaining a diagnosis. Additionally,<br />

sequences are not available for all filariae <strong>of</strong> interest<br />

at this time, so <strong>species</strong>-specific reactions may fail in<br />

these cases.<br />

This study was prompted <strong>by</strong> several clinical cases<br />

requiring accurate identification <strong>of</strong> micr<strong>of</strong>ilariae in<br />

dogs. These dogs had negative heartworm antigen<br />

tests and, in several instances, discrepant morphological<br />

identifications <strong>of</strong> the micr<strong>of</strong>ilariae. Using<br />

molecular techniques, we sought to accurately identify<br />

the filarial <strong>species</strong> in each case, and subsequently<br />

developed a PCR-based method that distinguishes<br />

<strong>between</strong> the <strong>six</strong> <strong>species</strong> tested to date (D. immitis, A.<br />

reconditum, D. repens, A. dracunculoides, B. pahangi,<br />

B. malayi) with a single primer pair. Our technique<br />

simplifies filarial identification, compared with previous<br />

studies.<br />

2. Materials and methods<br />

2.1. Case reports<br />

2.1.1. Case 1<br />

A 2-year-old intact male Labrador Retriever, born<br />

in the Czech Republic, but exported as a puppy to The<br />

Netherlands, was presented to the referring veterinarian<br />

(MF) for routine evaluation after importation from<br />

The Netherlands in January 2004 to Canada and<br />

subsequently New York State (United States) in April


2004. The dog was clinically normal and had never<br />

been tested for heartworm or administered heartworm<br />

preventative. The veterinarian identified a micr<strong>of</strong>ilaremia<br />

on routine heartworm screening, and performed<br />

a heartworm antigen test using a Dirocheck ELISA<br />

(Synbiotics Corporation, San Diego, CA), which was<br />

negative. Repeated antigen testing at several diagnostic<br />

laboratories failed to diagnose D. immitis<br />

infestation. Consequently, the veterinarian submitted<br />

blood for morphological classification <strong>of</strong> micr<strong>of</strong>ilariae<br />

to two diagnostic laboratories. Examination <strong>of</strong> the<br />

micr<strong>of</strong>ilariae using modified Knott’s tests resulted in<br />

discrepant diagnoses: one laboratory identified the<br />

micr<strong>of</strong>ilariae as A. reconditum, while the other<br />

identified them as D. repens.<br />

2.1.2. Case 2<br />

An 11-year-old male neutered mixed breed dog<br />

was presented to a referring veterinarian in San Diego,<br />

California, for routine evaluation. As with the first<br />

case, a micr<strong>of</strong>ilaremia was detected, but antigen<br />

testing for D. immitis was negative on multiple<br />

occasions. The micr<strong>of</strong>ilariae were identified as A.<br />

reconditum <strong>by</strong> a commercial diagnostic laboratory.<br />

2.1.3. Case 3<br />

An 8-year-old dog (signalment unknown) was<br />

presented to the referring veterinarian in Utica, New<br />

York, for evaluation <strong>of</strong> hematuria secondary to<br />

prostatitis. Micr<strong>of</strong>ilariae were detected on urinalysis,<br />

and subsequently on examination <strong>of</strong> blood. Antigen<br />

tests for D. immitis were negative. The micr<strong>of</strong>ilariae<br />

were morphologically identified as D. immitis with a<br />

Knott’s test.<br />

2.1.4. Case 4<br />

An 8-year-old female speyed miniature schnauzer<br />

was presented to the referring veterinarian after<br />

adoption from an animal shelter in Clemmons, North<br />

Carolina. Again, a micr<strong>of</strong>ilaremia was detected and<br />

identified morphologically as A. reconditum, but<br />

antigen testing for D. immitis was negative on<br />

multiple occasions.<br />

2.1.5. Case 5<br />

A 1-year-old male intact Pug was presented for<br />

heartworm testing in Modesto, California. Micr<strong>of</strong>ilaremia<br />

was detected and identified morphologically as<br />

M. Rishniw et al. / Veterinary Parasitology 135 (2006) 303–314 305<br />

A. reconditum, but antigen testing for D. immitis was<br />

negative.<br />

2.1.6. Case 6<br />

An 8-year-old male neutered Malamute was<br />

presented for heartworm testing in Vallejo, California.<br />

Micr<strong>of</strong>ilaremia was detected, and identified morphologically<br />

as A. reconditum but antigen testing for D.<br />

immitis was negative.<br />

2.2. Sample preparation<br />

In all <strong>six</strong> clinical cases, 1 ml <strong>of</strong> blood (anticoagulated<br />

with heparin or EDTA) was submitted.<br />

We used blood from a micr<strong>of</strong>ilaremic dog with D.<br />

immitis infestation and from a dog with A. reconditum<br />

infestation as positive controls. In both controls<br />

antigen testing and Knott’s testing provided the<br />

filarial diagnosis. The sample <strong>of</strong> A. recondituminfested<br />

blood was obtained <strong>by</strong> one <strong>of</strong> the authors and<br />

morphologically identified as A. reconditum. Fresh<br />

adult B. malayi and B. pahangi worms were<br />

generously provided <strong>by</strong> T. Klei <strong>of</strong> Louisiana State<br />

University. Blood from a dog infested with A.<br />

dracunculoides was generously provided <strong>by</strong> Francisco<br />

Alonso de Vega <strong>of</strong> Murcia University in Spain after<br />

morphologic diagnosis with alkaline phosphatase<br />

staining.<br />

Finally, we used DNA from a non-infected dog as a<br />

negative control in all PCR reactions.<br />

2.3. DNA extraction<br />

In all clinical cases, the D. immitis positive control<br />

specimen and the Brugia specimens, 500 ml anticoagulated<br />

blood (or five adult Brugia filariae) were<br />

suspended in 500 ml lysis buffer (50 mM Tris, pH 8.0;<br />

100 mM EDTA, 100 mM NaCl, 1% SDS) and<br />

digested with 10 ml proteinase K (10 mg/ml) for<br />

16 h at 55 8C, followed <strong>by</strong> a standard phenol/chlor<strong>of</strong>orm<br />

extraction method, as described previously<br />

(Sambrook and Russell, 2001).<br />

The A. reconditum and A. dracunculoides positive<br />

control specimens were submitted on filter paper as<br />

dried blood spots. DNAwas extracted using a QIAmp<br />

DNA Blood Mini Kit DNA extraction kit (Qiagen<br />

Inc., Valencia, CA) according to manufacturer’s<br />

instructions.


306<br />

2.4. Polymerase chain reaction filarial genotyping<br />

We designed primer pairs that spanned the internal<br />

transcribed spacer region 2 (ITS2) <strong>of</strong> the ribosomal<br />

DNA <strong>of</strong> either D. immitis, orA. reconditum, and a<br />

primer pair spanning the 5S ribosomal intergenic region<br />

<strong>of</strong> D. repens based on previously published sequences<br />

(Table 1) (Favia et al., 2000; Mar et al., 2002). These<br />

primers were used to specifically genotype each filarial<br />

<strong>species</strong>. Additionally, we designed a primer pair that<br />

would amplify fragments <strong>of</strong> different fragment length<br />

from both D. immitis and A. reconditum (DIDR-F1,<br />

DIDR-R1) (referred to as the pan-filarial primers<br />

throughout the remainder <strong>of</strong> the manuscript).<br />

For additional independent genotyping validation,<br />

we designed primers from published sequences <strong>of</strong> the<br />

cytochrome oxidase subunit 1 (COI) gene for each <strong>of</strong><br />

these <strong>species</strong> (Table 1).<br />

Each PCR reaction consisted <strong>of</strong> 1.5 mM MgCl2,<br />

250 mM dNTPs, 20 mM Tris–HCl (pH 8.4), 50 mM<br />

M. Rishniw et al. / Veterinary Parasitology 135 (2006) 303–314<br />

Table 1<br />

Primer sequences used to amplify PCR products from filarial and <strong>canine</strong> DNA<br />

Primer pair Primer sequence Gene target Primer size<br />

(base-pairs)<br />

KCl, 2.5 U <strong>of</strong> Taq polymerase and 1 ml <strong>of</strong> DNA<br />

solution in a total volume <strong>of</strong> 20 ml. The PCR<br />

procedure consisted <strong>of</strong> a denaturing step at 94 8C<br />

for 2 min and 32 cycles <strong>of</strong> denaturing (30 s at 94 8C),<br />

annealing (30 s at 60 8C for ITS2-based primers and<br />

30 s at 58 8C for COI-based primers) and extension<br />

(30 s at 72 8C); a final extension (7 min at 72 8C) and a<br />

soak at 4 8C in an Eppendorf Mastercycler thermal<br />

cycler (Brinkmann Instruments Inc., Westbury, NY).<br />

The PCR product (10 ml) was examined on a 1.5%<br />

agarose gel, and fragments <strong>of</strong> predicted size were<br />

extracted from both reactions and purified using a<br />

QiaQuick PCR purification kit (Qiagen Inc., Valencia,<br />

CA). The PCR products were ligated into pGEM-T<br />

Easy Vector System 1 TA cloning vectors (Promega<br />

US, Madison, WI) and cloned (Sambrook and Russell,<br />

2001). Candidate clones were screened <strong>by</strong> restriction<br />

digests, and clones with expected digestion fragments<br />

were sequenced at the institutional sequencing facility<br />

on an Applied Biosystems Automated 3730 DNA<br />

Product<br />

origin<br />

Product size<br />

(base-pairs)<br />

Genbank<br />

accession #<br />

D.imm-F1 a CAT CAG GTG ATG ATG TGA TGA T ITS2 22 D. immitis 302 AF217800<br />

D.imm-R1 TTG ATT GGA TTT TAA CGT ATC ATT T 25<br />

A.rec-F1 a<br />

CAG GTG ATG GTT TGA TGT GC ITS2 20 A. reconditum 348 AF217801<br />

A.rec-R1 CAC TCG CAC TGC TTC ACT TC 20<br />

D.rep-F1 TGT TTC GGC CTA GTG TTT CGA CCA 5SrRNA 24 D. repens 247 and 153 AJ242966<br />

D.rep-R1 ACG AGA TGT CGT GCT TTC AAC GTG 24 AJ242967<br />

DIDR-F1 AGT GCG AAT TGC AGA CGC ATT GAG 5.8S-ITS2-28S 24 D. immitis 542 AF217800<br />

DIDR-R1 AGC GGG TAA TCA CGA CTG AGT TGA 24 A. reconditum 578 AF217801<br />

D. repens 484 AY693808<br />

A. dracunculoides 584 DQ018785<br />

B. pahangi 664 AY988600<br />

B. malayi 615 AY988599<br />

B. timori 625 b<br />

AF499130<br />

M. ozzardi 430 b<br />

AF228554<br />

O. volvulus 470 b<br />

AF228575<br />

DI COI -F1 AGT GTA GAG GGT CAG CCT GAG TTA COI 24 D. immitis 203 AB192887<br />

DI COI-R1 ACA GGC ACT GAC AAT ACC AAT 21<br />

AR COI-F1 AGT GTT GAG GGA CAG CCA GAA TTG COI 24 A. reconditum 208 AJ544876<br />

AR COI-R1 CCA AAA CTG GAA CAG ACA AAA CAA GC 26<br />

DR COI-F1 AGT GTT GAT GGT CAA CCT GAA TTA COI 24 D. repens 209 AJ271614<br />

DR COI-R1 GCC AAA ACA GGA ACA GAT AAA ACT 24<br />

Actin F2 ACC ACT GGT ATT GTC ATG GAC TCT G Canine b-actin 25 Canis familiaris 276 AF021873<br />

Actin R2 GCT CTT CTC CAG GGA GGA CGA 21<br />

a D.imm-F1, D.imm-R1, A.rec-F1 and A.rec-R1 are identical to ITS2F-Di, ITS2R-Di, ITS2F-Dr and ITSR-Dr primers published <strong>by</strong> Mar et al.<br />

(2002).<br />

b Predicted product size based on Genbank sequence.


Analyzer (Applied Biosystems, Foster City, CA) using<br />

universal M13 forward and reverse primers. Sequence<br />

results were compared with those <strong>of</strong> other <strong>species</strong><br />

within the Genbank data bank at the National Center<br />

for Biomedical Information.<br />

Additionally, we examined DNA quality <strong>by</strong><br />

performing PCR for <strong>canine</strong> actin on each sample,<br />

to ensure sufficient template for the micr<strong>of</strong>ilarial<br />

PCR.<br />

2.5. Micr<strong>of</strong>ilarial phenotyping<br />

In addition to the PCR genotyping, we performed a<br />

modified Knott’s test and wet smear on the blood<br />

submitted from Cases 1–3 and the positive control<br />

samples. The morphological diagnosis for the <strong>six</strong><br />

clinical cases is the preliminary morphological<br />

diagnosis provided with initial sample submission<br />

and not the diagnosis obtained <strong>by</strong> one <strong>of</strong> the authors<br />

(MFF).<br />

3. Results<br />

All blood-derived DNA samples were positive for<br />

<strong>canine</strong> actin (not shown), indicating adequate DNA<br />

extraction.<br />

Primers specific for D. immitis (D.imm-F1 and<br />

D.imm-R1), A. reconditum (A.rec-F1 and A.rec-R1)<br />

and D. repens (D.rep-F1 and D.rep-R1) amplified the<br />

expected products only from D. immitis (302 bp), A.<br />

reconditum (348 bp) and D. repens (247 bp, 153 bp)<br />

DNA, respectively (Fig. 1). The doublet amplicon<br />

obtained with primers specific for D. repens has been<br />

previously reported (Favia et al., 2000). There was<br />

marginal amplification <strong>of</strong> a product from A. reconditum<br />

DNA (247 bp) with D. repens-specific primers.<br />

No filariae-specific primer pairs amplified any<br />

products from DNA <strong>of</strong> the normal dog (negative<br />

control), or from DNA extracted from B. pahangi,<br />

B. malayi or A. dracunculoides (data not shown).<br />

These results confirmed the genotyping <strong>of</strong> D. immitis,<br />

A. reconditum and D. repens for subsequent analysis<br />

and the specificity <strong>of</strong> the primer sets.<br />

The pan-filarial primer pair (DIDR-F1 and DIDR-<br />

R1) amplified the expected product from D. immitis<br />

DNA (542 bp), and A. reconditum DNA (578 bp)<br />

(Fig. 2). Unexpectedly, this primer pair also amplified<br />

M. Rishniw et al. / Veterinary Parasitology 135 (2006) 303–314 307<br />

Fig. 1. Gel electrophoresis <strong>of</strong> filarial PCR products in a 1.5%<br />

agarose gel using filarial-specific ITS2-region primers. Lanes 1,<br />

6, 11, 16: MW marker (KB Plus); lanes 2, 7, 12: D. immitis DNA;<br />

lanes 3, 8, 13: A. reconditum DNA; lanes 4, 9, 14: D. repens (Case 1)<br />

DNA; lanes 5, 10, 15: C. familiaris DNA (negative control). Lanes<br />

2–5: D.immF1/D.immR1 primer pair; lanes 7–10: A.recF1/A.recR1<br />

primer pair; lanes 12–15: D.repF1/D.repR1 primer pair.<br />

a 484 base-pair product from the DNA extracted from<br />

Case 1 (D. repens-infested dog). The different sizes <strong>of</strong><br />

the amplicons for all three filarial <strong>species</strong> allowed us to<br />

use this pan-filarial primer set to genotype the filarial<br />

<strong>species</strong> in Cases 2–6.<br />

Filaria-specific primers for COI demonstrated<br />

specificity for each <strong>of</strong> the filarial <strong>species</strong> (Fig. 3),<br />

further confirming the genotyping <strong>of</strong> micr<strong>of</strong>ilariae<br />

from Case 1 as D. repens and validating the panfilarial<br />

primer set results.<br />

Results <strong>of</strong> PCR with pan-filarial primers from<br />

Cases 2–4 and 6 identified the micr<strong>of</strong>ilariae as D.<br />

immitis (Fig. 4) (confirmed with <strong>species</strong>-specific COI<br />

PCR); PCR from Case 5 identified the micr<strong>of</strong>ilariae as<br />

A. reconditum (also confirmed with <strong>species</strong>-specific<br />

COI PCR).<br />

Fig. 2. Gel electrophoresis <strong>of</strong> filarial PCR products in a 1.5%<br />

agarose gel using pan-filarial ITS2-region primers. Lanes 1, 4:<br />

MW marker (KB Plus); lane 2: A. reconditum DNA; lane 3: D.<br />

immitis DNA; lane 3: D. repens (Case 1) DNA.


308<br />

Fig. 3. Gel electrophoresis <strong>of</strong> filarial PCR products in a 1.5%<br />

agarose gel using filarial-specific COI primers. Lanes 1, 5, 9, 13:<br />

MW marker (KB Plus); lanes 2, 6, 10: D. immitis DNA; lanes 3, 7,<br />

11: A. reconditum DNA; lanes 4, 8, 12: D. repens (Case 1) DNA.<br />

Sequencing <strong>of</strong> the two amplicons obtained with the<br />

D. repens-specific ITS2-region primers (D.rep-F1,<br />

D.rep-R1) unequivocally confirmed the presumptive<br />

diagnosis <strong>of</strong> D. repens micr<strong>of</strong>ilaremia in Case 1.<br />

Sequencing <strong>of</strong> the 484 bp amplicon obtained with the<br />

pan-filarial primers identified a novel sequence that<br />

Fig. 4. Gel electrophoresis <strong>of</strong> filarial PCR products in a 1.5%<br />

agarose gel using pan-filarial ITS2-region primers. Lanes 1, 6:<br />

MW marker (KB Plus); lane 2: Case 4 DNA; lane 3: D. immitis<br />

DNA; lane 4: A. reconditum DNA; lane 5: D. repens (Case 1) DNA.<br />

M. Rishniw et al. / Veterinary Parasitology 135 (2006) 303–314<br />

had high homology with the 5.8S and 28S ribosomal<br />

RNA sequences from D. immitis (present at the 5 0 and<br />

3 0 termini <strong>of</strong> the amplicon), but only moderate<br />

homology with the central D. immitis ITS2 region<br />

(Fig. 5), and no appreciable homology with A.<br />

reconditum ITS2 region. This sequence was consequently<br />

labeled as the ITS2 region <strong>of</strong> D. repens,<br />

submitted to the Genbank data bank at the National<br />

Center for Biomedical Information and assigned the<br />

accession number AY693808.<br />

Morphologic examination <strong>of</strong> the micr<strong>of</strong>ilariae from<br />

Case 1 using a modified Knott’s technique, showed a<br />

lack <strong>of</strong> a cephalic hook, a slightly tapering anterior<br />

end, and no consistent tail bend (Fig. 6). The<br />

concentration <strong>of</strong> micr<strong>of</strong>ilariae (abundant) and the<br />

motility <strong>of</strong> live micr<strong>of</strong>ilariae (not propulsive) on a wet<br />

smear, were most consistent with a diagnosis <strong>of</strong> D.<br />

repens. Examination <strong>of</strong> the micr<strong>of</strong>ilariae from Cases 2<br />

and 3 <strong>by</strong> one <strong>of</strong> the authors (MFF) supported our<br />

molecular diagnosis <strong>of</strong> D. immitis.<br />

Results <strong>of</strong> PCR from B. malayi, B. pahangi and A.<br />

dracunculoides DNA, using the pan-filarial primers,<br />

produced bands at 615 bp (B. malayi), 664 bp (B.<br />

pahangi) and 584 bp (A. dracunculoides) (data not<br />

shown). Sequencing <strong>of</strong> these amplicons revealed<br />

unique sequences, which were subsequently submitted<br />

to Genbank and assigned accession numbers<br />

AY988599 (B. malayi), AY988600 (B. pahangi) and<br />

DQ018785 (A. dracunculoides).<br />

While PCR with pan-filarial primers failed to<br />

discriminate <strong>between</strong> A. reconditum and A. dracunculoides,<br />

restriction fragment length polymorphism<br />

PCR (RFLP-PCR) using MseII resulted in two<br />

fragments (251 bp and 333 bp) only in A. dracunculoides<br />

(data not shown) allowing discrimination<br />

<strong>between</strong> these two Acanthocheilonema <strong>species</strong>.<br />

Sequence comparison <strong>of</strong> the ITS2 region amplified<br />

<strong>by</strong> our pan-filarial primers (DIDR-F1 and DIDR-R1)<br />

and previously published filarial sequences <strong>of</strong> this<br />

region demonstrated 77–86% similarity <strong>between</strong><br />

<strong>species</strong> <strong>of</strong> the same genus (e.g. D. immitis and D.<br />

repens showed 77% similarity, all three Brugia <strong>species</strong><br />

showed 86% similarity), but only 30–60% similarity<br />

<strong>between</strong> <strong>species</strong> <strong>of</strong> different genera (e.g. B. pahangi<br />

and A. reconditum showed only 30% similarity).<br />

Phylogenetic tree analysis also grouped sequences<br />

most closely <strong>by</strong> genus, i.e., <strong>species</strong> <strong>of</strong> the same genus<br />

grouped together.


Fig. 5. Nucleotide sequence alignment <strong>of</strong> 5.8S-ITS2-28S ribosomal DNA region <strong>of</strong> seven filariae. The 5.8S and 28S ribosomal DNA are identified above the 5 0 and 3 0 ends <strong>of</strong> the<br />

sequences; shaded sequences within the majority sequence are primer binding sequences for the pan-filarial primers.<br />

M. Rishniw et al. / Veterinary Parasitology 135 (2006) 303–314 309


310<br />

M. Rishniw et al. / Veterinary Parasitology 135 (2006) 303–314<br />

Fig. 5. (Continued).


4. Discussion<br />

We initiated this study to resolve a discordant<br />

diagnosis <strong>of</strong> filariasis in a dog, and successfully<br />

identified a D. repens infestation in a dog in the United<br />

States <strong>by</strong> PCR genotyping <strong>of</strong> micr<strong>of</strong>ilarial DNA<br />

extracted from the patient’s blood. We also resolved<br />

discordant diagnoses provided <strong>by</strong> standard morphological<br />

examination <strong>of</strong> the micr<strong>of</strong>ilariae (Knott’s test).<br />

Unexpectedly, the pan-filarial primers we designed<br />

(DIDR-F1 and DIDR-R1), based on sequence homology<br />

<strong>of</strong> D. immitis and A. reconditum, amplified not only<br />

the expected 542 and 578 bp products from these<br />

filariae, but also a 484 bp product from D. repens, that<br />

was present in the Case 1 <strong>of</strong> this study, a 584 bp product<br />

from A. dracunculoides, a 615 bp product from B.<br />

malayi, and a 664 bp product from B. pahangi. This<br />

permitted a single PCR reaction to differentiate<br />

<strong>between</strong> D. immitis and five other filariae found in<br />

dogs, removing the need to perform multiple <strong>species</strong>specific<br />

genotyping reactions. We subsequently identified<br />

micr<strong>of</strong>ilariae from an additional four dogs as D.<br />

immitis and as A. reconditum in one dog with this panfilarial<br />

primer set. Our molecular identification was<br />

concordant with independent morphological phenotyping<br />

<strong>of</strong> the micr<strong>of</strong>ilariae <strong>by</strong> an experienced parasitologist<br />

(MFF), but discordant with the initial morphological<br />

diagnosis in 3/5 cases, illustrating the inaccuracy <strong>of</strong><br />

morphological diagnosis <strong>by</strong> minimally trained technicians.<br />

Finally, we were able to provide additional<br />

genotyping information for several filariae that usually<br />

require specialized diagnostic interpretation.<br />

M. Rishniw et al. / Veterinary Parasitology 135 (2006) 303–314 311<br />

Fig. 6. Modified Knott’s stain <strong>of</strong> micr<strong>of</strong>ilaria from Case 1 (D. repens). The head is slightly tapered, there is no cephalic hook, and the tail is<br />

straight, consistent with Dir<strong>of</strong>ilaria repens. Magnification 100 .<br />

Previous investigators have utilized PCR technology<br />

to diagnose filarial infestations in dogs and<br />

humans (Baneth et al., 2002; Favia et al., 1996, 1997;<br />

Mar et al., 2002); however, in each <strong>of</strong> these studies,<br />

only two filarial <strong>species</strong> were compared. We designed<br />

our pan-filarial primers from previously submitted<br />

sequences, and optimized them for efficient amplification.<br />

The need to correctly identify the filarial <strong>species</strong> is<br />

becoming relevant throughout the world, because <strong>of</strong><br />

the increased frequency <strong>of</strong> transportation <strong>of</strong> dogs<br />

<strong>between</strong> continents and countries (Genchi, 2003;<br />

Zahler et al., 1997). While D. repens has been<br />

considered an exotic parasite in some parts <strong>of</strong> the<br />

world, such as the United States and Australia, and<br />

consequently not considered in the differential<br />

diagnosis <strong>of</strong> <strong>canine</strong> filariasis in these continents, this<br />

case illustrates the potential diagnostic complications<br />

that can arise, and provides a simple molecular<br />

strategy for correctly identifying the filaroid. The<br />

potential mosquito vectors <strong>of</strong> D. repens—Aedes<br />

aegypti (Cancrini et al., 2003), Ae. albopictus (Anyanwu<br />

et al., 2000) and Ae. vexans—are enzootic in the<br />

United States and Ae. vexans is enzootic in the region<br />

<strong>of</strong> New York State where this dog currently lives<br />

(Nassau County Department <strong>of</strong> Health, 2003).<br />

Similarly, Ae. aegypti is enzootic in Australia; Ae.<br />

albopictus is not found in Australia. Thus, the<br />

potential exists for spread <strong>of</strong> D. repens in these<br />

regions. Whether the strains in the United States or<br />

Australia can incubate larvae and transmit the<br />

infestations is unknown. Interestingly, Ae. aegypti is


312<br />

relatively resistant to infestation with D. immitis, and<br />

is considered an inefficient intermediate host for<br />

transmission <strong>of</strong> heartworm disease (Apperson et al.,<br />

1989).<br />

The geographic region in which Case 1 acquired<br />

the infection is unknown. Dir<strong>of</strong>ilaria repens has not<br />

been reported in The Netherlands, but has been<br />

identified in the Czech Republic (where this dog was<br />

born), Hungary, Italy, Greece and France (Cordonnier<br />

et al., 2002; Elek et al., 2000; Pampiglione et al., 2001;<br />

Vakalis and Himonas, 1997; Vasilkova et al., 1992).<br />

The micr<strong>of</strong>ilariae from Case 2 were initially<br />

incorrectly identified as A. reconditum, partly based<br />

on a negative antigen test, while the micr<strong>of</strong>ilariae in<br />

Case 3 had been identified correctly as D. immitis. In<br />

Cases 2 and 3, examination <strong>by</strong> an experienced<br />

parasitologist (MFF) correctly identified the micr<strong>of</strong>ilariae<br />

as D. immitis. Causes for antigen-negative<br />

D. immitis micr<strong>of</strong>ilaremias include prior adulticide<br />

therapy without subsequent micr<strong>of</strong>ilaricidal therapy or<br />

natural death <strong>of</strong> adult heartworm with persistence <strong>of</strong><br />

micr<strong>of</strong>ilariae (which have a lifespan <strong>of</strong> approximately<br />

2 years) (Otto, 1977). Additionally, at least one<br />

product insert (Dirocheck Canine Heartworm Antigen<br />

Test Kit Product Insert, Synbiotics, San Diego, CA)<br />

also lists subthreshold antigenemia, immune clearance<br />

<strong>of</strong> antigen–antibody complexes, false positive micr<strong>of</strong>ilarial<br />

results (due to contamination <strong>of</strong> reagents used<br />

for sample preparation), transfusions from micr<strong>of</strong>ilaremic<br />

dogs, or destruction <strong>of</strong> antigen due to<br />

improper storage as potential causes <strong>of</strong> discordant<br />

results. While a Dir<strong>of</strong>ilaria micr<strong>of</strong>ilaremia does not<br />

necessarily endanger the health <strong>of</strong> the infested patient,<br />

the patient can act as a reservoir for further infestation<br />

<strong>of</strong> other dogs if the intermediate mosquito host is<br />

present. Micr<strong>of</strong>ilaricidal therapy can resolve this<br />

situation.<br />

The micr<strong>of</strong>ilaremia in Case 3 was initially<br />

identified during a routine urinalysis for hematuria<br />

(micr<strong>of</strong>ilaruria). We believe this is the first reported<br />

case <strong>of</strong> micr<strong>of</strong>ilaruria in a dog. A prior report exists <strong>of</strong><br />

micr<strong>of</strong>ilaruria in a cat (Beaufils et al., 1991).<br />

We did not test the discriminatory ability <strong>of</strong> our<br />

pan-filarial primer set against all filariae that are<br />

known to infest dogs or cats (Genchi, 2003). At least<br />

one additional ‘‘Dipetalonema-like’’ filaria exists in<br />

Europe and Africa—Cercopithifilaria (Acanthocheilonema)<br />

grassi—but has not been reported in the<br />

M. Rishniw et al. / Veterinary Parasitology 135 (2006) 303–314<br />

United States. It is possible that our pan-filarial primer<br />

set will fail to discriminate this filaria from D. immitis,<br />

however, D. immitis-specific primer sets should<br />

correctly genotype the filarial <strong>species</strong> in question if<br />

this becomes necessary. Further studies are required to<br />

validate the pan-filarial primers against C. grassi.<br />

Additionally, reports exist <strong>of</strong> novel filariae in dogs in<br />

Ireland and the United States (Jackson, 1975; Pacheco<br />

and Tulloch, 1970). Techniques such as those<br />

described in this report might be useful in genotyping<br />

such filariae.<br />

The B. malayi sequence we obtained from adult<br />

filariae showed only 86% similarity with a published<br />

B. malayi sequence (Genbank # AF499130), comparable<br />

to the degree <strong>of</strong> similarity <strong>between</strong> our B. pahangi<br />

sequence and the published B. malayi sequence<br />

(AF499130), or <strong>between</strong> our B pahangi and B. malayi<br />

sequences. This differed substantially from the<br />

similarity <strong>between</strong> the published sequences for B.<br />

malayi (AF499130) and B. timori (AF499132), which<br />

the authors claimed were 99.5% similar, with only 4<br />

base-pair substitutions along the 600 base-pair region<br />

(Fischer et al., 2002). Several reasons exist for these<br />

discrepant results. Fischer et al claimed that this<br />

degree <strong>of</strong> similarity was unique to these two <strong>species</strong>,<br />

however, they did not examine DNA from adult<br />

Brugia <strong>species</strong>, but only from micr<strong>of</strong>ilaria, and <strong>by</strong><br />

supposition based on epidemiological data. Thus, their<br />

initial phenotypic classification, which they used as a<br />

gold standard for that study, could be erroneous. We<br />

could find no study <strong>by</strong> these authors that confirmed<br />

their results using adult B. malayi and B. timori. Given<br />

the much lower degree <strong>of</strong> similarity <strong>between</strong> <strong>species</strong><br />

<strong>of</strong> a single genus detailed in this report (e.g. D. immitis<br />

and D. repens, B. malayi and B. pahangi, or A.<br />

reconditum and A. dracunculoides all showed intragenus,<br />

inter<strong>species</strong> variation <strong>of</strong> approximately 20%,<br />

similar to the difference we observed <strong>between</strong> B.<br />

malayi and the previously published B. timori), we<br />

suspect that the sequence for B. malayi (AF499130)<br />

published <strong>by</strong> Fischer et al. (2002) is incorrect and is in<br />

fact the sequence for B timori. Examination <strong>of</strong> the<br />

data presented <strong>by</strong> these authors indicates a broad<br />

genetic variation <strong>of</strong> the Hha1 tandem repeat in these<br />

<strong>species</strong>, which also suggests a misclassification <strong>of</strong><br />

micr<strong>of</strong>ilariae.<br />

A less plausible alternative is that inter-<strong>species</strong><br />

variation <strong>of</strong> the ITS2 region <strong>between</strong> B. malayi and B.


timori (20%). Several<br />

studies <strong>of</strong> ITS2 regions in various helminths suggest<br />

that while intra-<strong>species</strong> variation can occur, it is less<br />

than inter-<strong>species</strong> variation, and that in most cases<br />

intra-<strong>species</strong> variation is limited to single nucleotide<br />

polymorphisms (Conole et al., 1999; Gasser et al.,<br />

1999a,b; Hu<strong>by</strong>-Chilton et al., 2001; Newton et al.,<br />

1998; Woods et al., 2000) and previous studies <strong>of</strong> other<br />

filariae show similar results (Gasser et al., 1996).<br />

These findings agree with our observations <strong>of</strong> ITS2<br />

variability in filariae and support our genotypic<br />

identification <strong>of</strong> B. malayi. Finally, it is possible that<br />

the sample <strong>of</strong> adult B. malayi provided for our study<br />

was incorrectly identified; however, phenotypic<br />

classification <strong>of</strong> filariae is generally more robust<br />

using adult filariae than micr<strong>of</strong>ilariae. The reason for<br />

the discrepancy <strong>between</strong> our data and that <strong>of</strong> Fischer<br />

et al. (2002) remains to be elucidated.<br />

Finally, we examined the ability <strong>of</strong> our pan-filarial<br />

primer sequences to amplify the 5.8S-ITS2-28S<br />

region from two additional filariae in silico. Analysis<br />

<strong>of</strong> published sequences for Onchocerca volvulus<br />

(Genbank # AF228575), and Mansonella ozzardi<br />

(Genbank # AF228554) demonstrated that our panfilarial<br />

primers should amplify 470 and 430 bp<br />

amplicons, respectively. This suggests that our primer<br />

set might be uniquely capable <strong>of</strong> amplifying DNA that<br />

can be used to genotype all filariae <strong>of</strong> the family<br />

Onchocercidae.<br />

We recommend using the pan-filarial ITS2-region<br />

DIDR-F1 and DIDR-R1 primers with DNA from<br />

D. immitis (as a positive control and amplicon size<br />

standard) against which to compare amplicons from<br />

clinical cases <strong>of</strong> micr<strong>of</strong>ilaremia that test negative for<br />

D. immitis antigen. Amplicons approximately 40 basepairs<br />

larger than the D. immitis amplicon (542 basepairs)<br />

are diagnosed as A. reconditum (578 base-pairs)<br />

or A. dracunculoides (584 base-pairs), while those<br />

approximately 60 base-pairs smaller than D. immitis<br />

are diagnosed as D. repens (484 base-pairs). <strong>Discrimination</strong><br />

<strong>of</strong> Brugia <strong>species</strong> <strong>by</strong> comparing amplicons<br />

is limited because B. malayi (615 base-pairs) is<br />

similar to B. timori (625 base-pairs), but these <strong>species</strong><br />

should be easily differentiated from B. pahangi (664<br />

base-pairs). However, PCR-RFLP will discriminate B.<br />

malayi and B. timori. If further confirmation is required,<br />

either <strong>species</strong>-specific PCR can be performed,<br />

M. Rishniw et al. / Veterinary Parasitology 135 (2006) 303–314 313<br />

using the published primer pairs from this and other<br />

studies, or the amplicons can be sequenced, however,<br />

we feel that simple gel electrophoresis should be<br />

sufficient for diagnosis in most cases. Additionally, we<br />

feel that clinicians and parasitologists should be<br />

alerted to the possibility that D. repens infestation<br />

might be an emerging condition with zoonotic<br />

potential in the United States.<br />

Acknowledgements<br />

The authors would like to thank Dwight Bowman,<br />

Susan Wade and Stephanie Schaaf for their technical<br />

insights and providing D. immitis positive control<br />

samples; Andrew Fei and Fabiano Montiani Ferreira<br />

for assistance in obtaining A. reconditum samples;<br />

Thom Klei for generously providing Brugia filaria;<br />

Francisco Alonso de Vega for generously providing<br />

A. dracunculoides samples and Veterinary Information<br />

Network for providing access to the case that<br />

initiated this study.<br />

References<br />

Anyanwu, I.N., Agbede, R.I., Ajanusi, O.J., Umoh, J.U., Ibrahim,<br />

N.D., 2000. The incrimination <strong>of</strong> Aedes (stegomyia) aegypti as<br />

the vector <strong>of</strong> Dir<strong>of</strong>ilaria repens in Nigeria. Vet. Parasitol. 92,<br />

319–327.<br />

Apperson, C.S., Engber, B., Levine, J.F., 1989. Relative suitability<br />

<strong>of</strong> Aedes albopictus and Aedes aegypti in North Carolina to<br />

support development <strong>of</strong> Dir<strong>of</strong>ilaria immitis. J. Am. Mosq.<br />

Control Assoc. 5, 377–382.<br />

Baneth, G., Volansky, Z., Anug, Y., Favia, G., Bain, O., Goldstein,<br />

R.E., Harrus, S., 2002. Dir<strong>of</strong>ilaria repens infection in a dog:<br />

diagnosis and treatment with melarsomine and doramectin. Vet.<br />

Parasitol. 105, 173–178.<br />

Beaufils, J.P., Martin-Granel, J., Bertrand, F., 1991. Présance de<br />

micr<strong>of</strong>ilaires de Dir<strong>of</strong>ilaria immitis dans les urines d’un chat<br />

occlus. Prat. Med. Chir. An. Com. 26, 467–472 in French.<br />

Bredal, W.P., Gjerde, B., Eberhard, M.L., Aleksandersen, M.,<br />

Wilhelmsen, D.K., Mansfield, L.S., 1998. Adult Dir<strong>of</strong>ilaria<br />

repens in a subcutaneous granuloma on the chest <strong>of</strong> a dog. J.<br />

Small Anim. Pract. 39, 595–597.<br />

Cancrini, G., Romi, R., Gabrielli, S., Toma, L., Di Paolo, M.,<br />

Scaramozzino, P., 2003. First finding <strong>of</strong> Dir<strong>of</strong>ilaria repens in<br />

a natural population <strong>of</strong> Aedes albopictus. Med. Vet. Entomol. 17,<br />

448–451.<br />

Chalifoux, L., Hunt, R.D., 1971. Histochemical differentiation <strong>of</strong><br />

Dir<strong>of</strong>ilaria immitis and Dipetalonema reconditum. J. Am. Vet.<br />

Med. Assoc. 158, 601–605.


314<br />

Chandrasekharan, N.V., Karunanayake, E.H., Franzen, L., Abeyewickreme,<br />

W., Pettersson, U., 1994. Dir<strong>of</strong>ilaria repens: cloning<br />

and characterization <strong>of</strong> a repeated DNA sequence for the diagnosis<br />

<strong>of</strong> dir<strong>of</strong>ilariasis in dogs, Canis familiaris. Exp. Parasitol.<br />

78, 279–286.<br />

Conole, J.C., Chilton, N.B., Jarvis, T., Gasser, R.B., 1999. Intraspecific<br />

and interspecific variation in the second internal transcribed<br />

spacer (ITS-2) sequence for Metastrongylus (Nematoda:<br />

Metastrongyloidea) detected <strong>by</strong> high resolution PCR-RFLP. Int.<br />

J. Parasitol. 29, 1935–1940.<br />

Cordonnier, C., Chatelain, D., Nevez, G., Sevestre, H., Gontier,<br />

M.F., Raccurt, C.P., 2002. Difficulties in diagnosis <strong>of</strong> human<br />

dir<strong>of</strong>ilariasis outside known enzootic areas. Rev. Med. Interne<br />

23, 71–76.<br />

Courtney, C.H., Zeng, Q.Y., MacKinnon, B.R., 1993. Comparison <strong>of</strong><br />

two antigen tests and the modified Knott’s test for detection <strong>of</strong><br />

<strong>canine</strong> heartworm at different worm burdens. Canine Pract. 18,<br />

5–7.<br />

Elek, G., Minik, K., Pajor, L., Parlagi, G., Varga, I., Vetesi, F.,<br />

Zombori, J., 2000. New human Dir<strong>of</strong>ilarioses in Hungary.<br />

Pathol. Oncol. Res. 6, 141–145.<br />

Favia, G., Lanfrancotti, A., Della Torre, A., Cancrini, G., Coluzzi,<br />

M., 1996. Polymerase chain reaction-identification <strong>of</strong> Dir<strong>of</strong>ilaria<br />

repens and Dir<strong>of</strong>ilaria immitis. Parasitology 113 (Pt. 6),<br />

567–571.<br />

Favia, G., Lanfrancotti, A., della Torre, A., Cancrini, G., Coluzzi,<br />

M., 1997. Advances in the identification <strong>of</strong> Dir<strong>of</strong>ilaria repens<br />

and Dir<strong>of</strong>ilaria immitis <strong>by</strong> a PCR-based approach. Parassitologia<br />

39, 401–402.<br />

Favia, G., Bazzocchi, C., Cancrini, G., Genchi, C., Bandi, C., 2000.<br />

Unusual organization <strong>of</strong> the 5S ribosomal spacer in Dir<strong>of</strong>ilaria<br />

repens: absence <strong>of</strong> a canonical spliced leader 1 sequence.<br />

Parasitol. Res. 86, 497–499.<br />

Fischer, P., Wibowo, H., Pischke, S., Ruckert, P., Liebau, E., Ismid,<br />

I.S., Supali, T., 2002. PCR-based detection and identification <strong>of</strong><br />

the filarial parasite Brugia timori from Alor Island, Indonesia.<br />

Ann. Trop. Med. Parasitol. 96, 809–821.<br />

Gasser, R.B., LeG<strong>of</strong>f, L., Petit, G., Bain, O., 1996. Rapid delineation<br />

<strong>of</strong> closely-related filarial parasites using genetic markers in<br />

spacer rDNA. Acta Trop. 62, 143–150.<br />

Gasser, R.B., Rossi, L., Zhu, X., 1999a. Identification <strong>of</strong> Nematodirus<br />

<strong>species</strong> (Nematoda: Molineidae) from wild ruminants in Italy<br />

using ribosomal DNA markers. Int. J. Parasitol. 29, 1809–1817.<br />

Gasser, R.B., Woods, W.G., Huffman, M.A., Blotkamp, J., Polderman,<br />

A.M., 1999b. Molecular separation <strong>of</strong> Oesophagostomum<br />

stephanostomum and Oesophagostomum bifurcum (Nematoda:<br />

Strongyloidea) from non-human primates. Int. J. Parasitol. 29,<br />

1087–1091.<br />

Genchi, C., 2003. Epidemiology and distribution <strong>of</strong> Dir<strong>of</strong>ilaria<br />

and dir<strong>of</strong>ilariosis in Europe: state <strong>of</strong> the art. In: Proceedings<br />

<strong>of</strong> the 2003 Helminthological Colloquium, Vienna, Austria, pp.<br />

6–11., http://www.vu-wien.ac.at/i116/oegtp/downloads_oegtp/<br />

Abstractband.pdf.<br />

Hu<strong>by</strong>-Chilton, F., Beveridge, I., Gasser, R.B., Chilton, N.B., 2001.<br />

Single-strand conformation polymorphism analysis <strong>of</strong> genetic<br />

variation in Labiostrongylus longispicularis from kangaroos.<br />

Electrophoresis 22, 1925–1929.<br />

M. Rishniw et al. / Veterinary Parasitology 135 (2006) 303–314<br />

Jackson, R.F., 1975. A filarial parasite in greyhounds in Southern<br />

Ireland. Vet. Rec. 97, 476–477.<br />

Knott, J., 1935. The periodicity <strong>of</strong> the mf <strong>of</strong> Wuchereia bancr<strong>of</strong>ti,<br />

preliminary report <strong>of</strong> some injection experiments. Trans. Roy.<br />

Soc. Trop. Med. Hyg. 29, 59–64.<br />

Manuali, E., Eleni, C., Giovannini, P., Costarelli, S., Ciorba, A.,<br />

2005. Unusual finding in a nipple discharge <strong>of</strong> a female dog:<br />

dir<strong>of</strong>ilariasis <strong>of</strong> the breast. Diagn. Cytopathol. 32, 108–<br />

109.<br />

Mar, P.H., Yang, I.C., Chang, G.N., Fei, A.C., 2002. Specific<br />

polymerase chain reaction for differential diagnosis <strong>of</strong> Dir<strong>of</strong>ilaria<br />

immitis and Dipetalonema reconditum using primers<br />

derived from internal transcribed spacer region 2 (ITS2). Vet.<br />

Parasitol. 106, 243–252.<br />

Nassau County Department <strong>of</strong> Health, 2003. Nassau County Mosquito<br />

Surveillance and Control Report.<br />

Newton, L.A., Chilton, N.B., Beveridge, I., Gasser, R.B., 1998.<br />

Systematic relationships <strong>of</strong> some members <strong>of</strong> the genera Oesophagostomum<br />

and Chabertia (Nematoda: Chabertiidae) based<br />

on ribosomal DNA sequence data. Int. J. Parasitol. 28, 1781–<br />

1789.<br />

Otto, G.F., 1977. The significance <strong>of</strong> micr<strong>of</strong>ilaremia in the diagnosis<br />

<strong>of</strong> heartworm infection. In: Proceedings <strong>of</strong> the American<br />

Heartworm Society Heartworm Symposium. pp. 22–30.<br />

Pacheco, G., Tulloch, G.S., 1970. Micr<strong>of</strong>ilariae <strong>of</strong> Dir<strong>of</strong>ilaria striata<br />

in a dog. J. Parasitol. 56, 248.<br />

Pampiglione, S., Rivasi, F., Angeli, G., Boldorini, R., Incensati,<br />

R.M., Pastormerlo, M., Pavesi, M., Ramponi, A., 2001. Dir<strong>of</strong>ilariasis<br />

due to Dir<strong>of</strong>ilaria repens in Italy, an emergent zoonosis:<br />

report <strong>of</strong> 60 new cases. Histopathology 38, 344–354.<br />

Pampiglione, S., Rivasi, F., Paolino, S., 1996. Human pulmonary<br />

dir<strong>of</strong>ilariasis. Histopathology 29, 69–72.<br />

Romano, A., Sachs, R., Lengy, J., 1976. Human ocular dir<strong>of</strong>ilariasis<br />

in Israel. Isr. J. Med. Sci. 12, 208–214.<br />

Sambrook, J., Russell, D.W. (Eds.), 2001. Molecular Cloning: A<br />

Laboratory Manual, 3rd ed., vol. 1. Cold Spring Harbor Laboratory<br />

Press, Cold Spring Harbor.<br />

Tarello, W., 2003. Dermatitis associated with Dir<strong>of</strong>ilaria repens<br />

micr<strong>of</strong>ilariae in three dogs in Saudi Arabia. J. Small Anim. Pract.<br />

44, 132–134.<br />

Vakalis, N., Spanakos, G., Patsoula, E., Vamvakopoulos, N.C., 1999.<br />

Improved detection <strong>of</strong> Dir<strong>of</strong>ilaria repens DNA <strong>by</strong> direct polymerase<br />

chain reaction. Parasitol. Int. 48, 145–150.<br />

Vakalis, N.C., Himonas, C.A., 1997. Human and <strong>canine</strong> dir<strong>of</strong>ilariasis<br />

in Greece. Parassitologia 39, 389–391.<br />

Vasilkova, D., Klisenbauer, D., Juhas, T., Moravec, F., Uhlikova, M.,<br />

Hubner, J., Konakova, G., 1992. Isolation <strong>of</strong> Dir<strong>of</strong>ilaria repens<br />

in vitreoretinal findings. Cesk. Oftalmol. 48, 274–277.<br />

Woods, W.G., Whithear, K.G., Richards, D.G., Anderson, G.R.,<br />

Jorgensen, W.K., Gasser, R.B., 2000. Single-strand restriction<br />

fragment length polymorphism analysis <strong>of</strong> the second internal<br />

transcribed spacer (ribosomal DNA) for <strong>six</strong> <strong>species</strong> <strong>of</strong> Eimeria<br />

from chickens in Australia. Int. J. Parasitol. 30, 1019–<br />

1023.<br />

Zahler, M., Glaser, B., Gothe, R., 1997. Imported parasites in dogs:<br />

Dir<strong>of</strong>ilaria repens and Dipetalonema reconditum. Tierarztl.<br />

Prax. 25, 388–392.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!