20.05.2013 Views

draft document IEC 61400-25-6 - scc-online.de

draft document IEC 61400-25-6 - scc-online.de

draft document IEC 61400-25-6 - scc-online.de

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

<strong>25</strong><br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 1 –<br />

Updated proposal for <strong>IEC</strong><strong>61400</strong>-<strong>25</strong>-6 to be discussed in further <strong>de</strong>tails at the<br />

working group meeting in Madrid <strong>25</strong>.- 26.09.2007 – Carsten An<strong>de</strong>rsson & Knud<br />

Johansen.<br />

WIND TURBINES<br />

Part <strong>25</strong>-6:<br />

Communications for monitoring and control of wind power plants –<br />

Logical no<strong>de</strong> classes and data classes for condition monitoring<br />

Version: <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11, rev. 2<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

<strong>25</strong><br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 2 –<br />

CONTENTS<br />

FOREWORD.........................................................................................................................4<br />

INTRODUCTION...................................................................................................................5<br />

1 Scope ............................................................................................................................9<br />

1.1 Setup and control of condition monitoring systems ........................................................10<br />

1.2 Condition monitoring techniques ...................................................................................10<br />

2 Terms and <strong>de</strong>finitions ...................................................................................................12<br />

3 Abbreviated terms ........................................................................................................14<br />

4 General ........................................................................................................................17<br />

4.1 Condition Monitoring as related to the logical no<strong>de</strong> classes ...........................................17<br />

4.2 Logical No<strong>de</strong> Classes related to condition monitoring ....................................................17<br />

4.3 Condition monitoring data .............................................................................................17<br />

4.4 Condition Monitoring Data Types ..................................................................................18<br />

4.5 Condition Monitoring and active power bins...................................................................19<br />

4.6 Mo<strong>de</strong>lling the information from the wind turbine.............................................................19<br />

4.7 Mandatory Measurements.............................................................................................21<br />

5 Wind Turbine Condition Monitoring Information .............................................................22<br />

5.1 General Structure of WCON Class information ..............................................................22<br />

5.2 Example of a WCON Class ...........................................................................................22<br />

5.3 Examples of WCON Class logical no<strong>de</strong> addresses from the table: .................................<strong>25</strong><br />

5.4 Examples of WCON Classes not covered by the example..............................................<strong>25</strong><br />

6 Common Data Classes .................................................................................................<strong>25</strong><br />

6.1 Basic Concepts for Common Data Classes....................................................................<strong>25</strong><br />

6.2 Structure of Common Data Classes...............................................................................27<br />

6.3 Common Data Class Attribute types..............................................................................27<br />

6.3.1 Common Data Class attributes types inherited from <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-2 .........27<br />

6.4 Common data Class attributes types inherited from <strong>IEC</strong> 61850-7-3 ................................27<br />

6.5 Vector ..........................................................................................................................27<br />

6.6 Point ............................................................................................................................27<br />

6.7 RangeConfig ................................................................................................................27<br />

6.8 ScaledValueConfig .......................................................................................................28<br />

6.9 Wind turbine condition monitoring specific common data classes (CDC) ........................28<br />

6.9.1 Scalar Value (SV) ....................................................................................28<br />

6.9.2 Vector Value (VV) ....................................................................................28<br />

6.9.3 Scalar Value Array (SVA) .........................................................................29<br />

6.9.4 Setpoint Array (SPA)................................................................................29<br />

6.9.5 Data File (DAF)........................................................................................29<br />

Annex A (Informative) Application of Shaft and Bearing position numbering for<br />

annotating frequency spectra.......................................................................................30<br />

A.1 General ........................................................................................................................30<br />

A.2 Example with gearbox...................................................................................................30<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 3 –<br />

Annex B (Informative) Examples of trend histories of mandatory measurements to be<br />

used for due diligence etc.............................................................................................31<br />

B.1 Trend history of Generator measurements.....................................................................31<br />

Figure 1 – The two major information and information exchange mo<strong>de</strong>ls ................................6<br />

Figure 2 – Conceptual information and information exchange mo<strong>de</strong>l of <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-6 .........7<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

<strong>25</strong><br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 4 –<br />

INTERNATIONAL ELECTROTECHNICAL COMMISSION<br />

____________<br />

WIND TURBINES –<br />

Part <strong>25</strong>-6:<br />

Communications for monitoring and control of wind power plants –<br />

Logical no<strong>de</strong> classes and data classes for condition monitoring<br />

FOREWORD<br />

1) The <strong>IEC</strong> (International Electrotechnical Commission) is a worldwi<strong>de</strong> organisation for standardisation comprising<br />

all national electrotechnical committees (<strong>IEC</strong> National Committees). The object of the <strong>IEC</strong> is to promote<br />

international co-operation on all questions concerning standardisation in the electrical and electronic fields. To<br />

this end and in addition to other activities, the <strong>IEC</strong> publishes International Standards. Their preparation is<br />

entrusted to technical committees; any <strong>IEC</strong> National Committee interested in the subject <strong>de</strong>alt with may<br />

participate in this preparatory work. International, governmental and non-governmental organisations liaising<br />

with the <strong>IEC</strong> also participate in this preparation. The <strong>IEC</strong> collaborates closely with the International<br />

Organisation for Standardisation (ISO) in accordance with conditions <strong>de</strong>termined by agreement between the<br />

two organisations.<br />

2) The formal <strong>de</strong>cisions or agreements of the <strong>IEC</strong> on technical matters express, as nearly as possible, an<br />

international consensus of opinion on the relevant subjects since each technical committee has representation<br />

from all interested National Committees.<br />

3) The <strong>document</strong>s produced have the form of recommendations for international use and are published in the form<br />

of standards, technical specifications, technical reports or gui<strong>de</strong>s and they are accepted by the National<br />

Committees in that sense.<br />

4) In or<strong>de</strong>r to promote international unification, <strong>IEC</strong> National Committees un<strong>de</strong>rtake to apply <strong>IEC</strong> International<br />

Standards transparently to the maximum extent possible in their national and regional standards. Any<br />

divergence between the <strong>IEC</strong> Standard and the corresponding national or regional standard shall be clearly<br />

indicated in the latter.<br />

5) The <strong>IEC</strong> provi<strong>de</strong>s no marking procedure to indicate its approval and cannot be ren<strong>de</strong>red responsible for any<br />

equipment <strong>de</strong>clared to be in conformity with one of its standards.<br />

6) Attention is drawn to the possibility that some of the elements of this International Standard may be the subject<br />

of patent rights. The <strong>IEC</strong> shall not be held responsible for i<strong>de</strong>ntifying any or all such patent rights.<br />

Recipients of this <strong>document</strong> are invited to submit, with their comments, notification of<br />

any relevant patent rights of which they are aware and to provi<strong>de</strong> supporting <strong>document</strong>ation.<br />

This publication has been <strong>draft</strong>ed in accordance with the ISO/<strong>IEC</strong> Directives, Part 2.<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong> consists of the following parts, un<strong>de</strong>r the general title Communications for<br />

monitoring and control of wind power plants:<br />

Part <strong>25</strong>-1: Overall <strong>de</strong>scription on principles and mo<strong>de</strong>ls<br />

Part <strong>25</strong>-2: Information mo<strong>de</strong>ls<br />

Part <strong>25</strong>-3: Information Exchange Mo<strong>de</strong>ls<br />

Part <strong>25</strong>-4: Mapping to communication profile<br />

Part <strong>25</strong>-5: Conformance testing<br />

Part <strong>25</strong>-6: Logical no<strong>de</strong> classes and data classes for condition monitoring 1<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

<strong>25</strong><br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 5 –<br />

INTRODUCTION<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong> <strong>de</strong>fines information mo<strong>de</strong>ls and information exchange mo<strong>de</strong>ls for monitoring<br />

and control of wind power plants. The mo<strong>de</strong>lling approach (for information mo<strong>de</strong>ls and information<br />

exchange mo<strong>de</strong>ls) of <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-2 and <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-4 uses abstract <strong>de</strong>finitions of<br />

classes and services such that the specifications are in<strong>de</strong>pen<strong>de</strong>nt of specific communication<br />

protocol stacks, implementations, and operating systems. The mapping of these abstract <strong>de</strong>finitions<br />

to specific communication profiles is <strong>de</strong>fined in <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-4.<br />

The <strong>de</strong>finitions in parts <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-1 to <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-5 apply also for this part 6 of the<br />

standard series<br />

The purpose of this <strong>draft</strong> of Part 6 is to <strong>de</strong>fine an information mo<strong>de</strong>l for condition monitoring<br />

information and to <strong>de</strong>fine the necessary extensions to the already existing parts of <strong>IEC</strong> <strong>61400</strong>-<br />

<strong>25</strong> in or<strong>de</strong>r to handle information related to condition monitoring of wind turbines.<br />

Condition monitoring <strong>de</strong>finition<br />

In the context of this standard condition monitoring is taken to mean a process with the purpose<br />

of watching machinery for a period of time in or<strong>de</strong>r to evaluate the state of the machinery<br />

and any changes to it, in or<strong>de</strong>r to <strong>de</strong>tect early signs of impending failure.<br />

Condition monitoring is most frequently used as a Predictive or Condition-Based Maintenance<br />

technique (CBM). However, there are other predictive maintenance techniques that can also<br />

be used, including the use of the Human Senses (look, listen, feel, smell etc.) or Machine Performance<br />

Monitoring techniques. These would not be consi<strong>de</strong>red to be condition monitoring<br />

for the purposes of this standard.<br />

Condition monitoring techniques<br />

These inclu<strong>de</strong>, but are not limited to techniques such as:<br />

• Vibration measurements and analysis<br />

• Oil analysis<br />

• Temperature measurement<br />

• Strain gauge measurement<br />

• Etc.<br />

Equipment can be monitored by using advanced instrumentation as well as using a manual<br />

process.<br />

Condition monitoring <strong>de</strong>vices<br />

The information consumed and generated by condition monitoring functions may be located in<br />

different physical <strong>de</strong>vices. Some information may be located in the turbine controller <strong>de</strong>vice<br />

(TCD) while other information may be located in an additional condition monitoring <strong>de</strong>vice<br />

(CMD). Various actors may request to exchange data located in the TCD or CMD. A SCADA<br />

<strong>de</strong>vice may want to receive data from the TCD or CMD; a CMD may want to receive data from<br />

TCD and vice versa. The information exchange between any two <strong>de</strong>vices requires the use of<br />

information exchange services <strong>de</strong>fined in <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-3 or ad<strong>de</strong>d in this part 6. A summary<br />

of the above is <strong>de</strong>picted in Figure 1.<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 6 –<br />

Actors like<br />

SCADA, Operator, Network<br />

Control Center, …<br />

<strong>25</strong>-xx<br />

Information<br />

Exchange<br />

…<br />

Logical No<strong>de</strong>s and Data<br />

<strong>25</strong>-3/4<br />

Information<br />

Scope of<br />

standard<br />

<strong>25</strong>-3/4 & 6<br />

Information<br />

Exchange<br />

Exchange<br />

Turbine control <strong>de</strong>vice or function<br />

with Logical No<strong>de</strong>s and Data (<strong>25</strong>-2)<br />

Actors like SCADA, Operator, Network<br />

Control Center, Owner, Maintenance, …<br />

<strong>25</strong>-3/4 & 6<br />

Information<br />

Exchange<br />

Condition monitoring <strong>de</strong>vice or function<br />

with Logical No<strong>de</strong>s and Data (<strong>25</strong>-2/6)<br />

Gearbox<br />

Generator<br />

Brake<br />

Tower<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11<br />

TC/CM<br />

Figure 1 – The two major information and information exchange mo<strong>de</strong>ls<br />

The use case of having the CM functions located in the TCD is a special use case. That use<br />

case does not require information exchange services for the information exchange between<br />

the CM functions and TC functions. The case of having separate <strong>de</strong>vices is the more comprehensive<br />

use case. This is used as the basic topology in this part of the standard. The special<br />

case of both functions in one <strong>de</strong>vice could be <strong>de</strong>rived from the most general use case.<br />

It may also be required to build a hierarchical mo<strong>de</strong>l of TC and CM <strong>de</strong>vices/functions. The last<br />

but one box in the figure indicates that case. A simple CMD (providing measured values and<br />

status information and very basic monitoring capabilities) may be located close to the turbine.<br />

A second CMD may be located in the wind park control room. This CMD may retrieve information<br />

from the un<strong>de</strong>rlying CMD or TCD and may further process and analyse the measured values<br />

and status information.<br />

Note 1: The location of <strong>de</strong>vices and functions (more centralized or <strong>de</strong>centralized topology) is outsi<strong>de</strong> the scope of<br />

this standard.<br />

Figure 2 below <strong>de</strong>picts the basic concept of the information and information exchange mo<strong>de</strong>ls.<br />

…<br />


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 7 –<br />

Outsi<strong>de</strong><br />

scope<br />

Actor<br />

e. g.<br />

Analysis,<br />

SCADA,<br />

Maintenance<br />

part of central<br />

Condition Monitoring<br />

Client<br />

Information exchange<br />

Information exchange<br />

mo<strong>de</strong>l (get, set, report,<br />

mo<strong>de</strong>l (get, set, report,<br />

log, control, publish /<br />

log, control, publish /<br />

subscribe, …)<br />

subscribe, …)<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-3<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-3<br />

Wind power plant<br />

Wind power plant<br />

information mo<strong>de</strong>l<br />

information mo<strong>de</strong>l<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-2/-6<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-2/-6<br />

Server<br />

Information exchange<br />

Information exchange<br />

mo<strong>de</strong>l (get, set, report,<br />

mo<strong>de</strong>l (get, set, report,<br />

log, control, publish /<br />

log, control, publish /<br />

subscribe, …)<br />

subscribe, …)<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-3<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-3<br />

Wind power plant<br />

Wind power plant<br />

information mo<strong>de</strong>l<br />

information mo<strong>de</strong>l<br />

(aging, …)<br />

(aging, …)<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-6<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-6<br />

Communication mo<strong>de</strong>l of <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong><br />

Messaging through<br />

Messaging through<br />

mapping to<br />

mapping to<br />

communication<br />

communication<br />

profile (Records,<br />

profile (Records,<br />

Read, write, ...<br />

Read, write, ...<br />

message)<br />

message)<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-4<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-4<br />

part of turbine Controller<br />

Server<br />

Wind power plant<br />

Wind power plant<br />

information mo<strong>de</strong>l<br />

information mo<strong>de</strong>l<br />

(rotor speed, break<br />

(rotor speed, break<br />

status, total power<br />

status, total power<br />

production, …)<br />

production, …)<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-2<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-2<br />

Information exchange<br />

Information exchange<br />

mo<strong>de</strong>l (get, set, report,<br />

mo<strong>de</strong>l (get, set, report,<br />

log, control, publish /<br />

log, control, publish /<br />

subscribe, …)<br />

subscribe, …)<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-3<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-3<br />

part of local Condition<br />

Monitoring<br />

Server<br />

Information exchange<br />

Information exchange<br />

mo<strong>de</strong>l (get, set, report,<br />

mo<strong>de</strong>l (get, set, report,<br />

log, control, publish /<br />

log, control, publish /<br />

subscribe, …)<br />

subscribe, …)<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-3<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-3<br />

Wind power plant<br />

Wind power plant<br />

information mo<strong>de</strong>l<br />

information mo<strong>de</strong>l<br />

(Vibration samples,<br />

(Vibration samples,<br />

aging, …)<br />

aging, …)<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-6<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-6<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11<br />

Outsi<strong>de</strong><br />

scope<br />

Wind power<br />

plant<br />

component<br />

e. g. wind turbine<br />

Application<br />

Figure 2 – Conceptual information and information exchange mo<strong>de</strong>l of <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-6<br />

Condition Monitoring Value Chain<br />

In automatic condition monitoring, when any monitored and pre<strong>de</strong>fined condition limit is excee<strong>de</strong>d,<br />

a signal or output is turned on. This signal can be used by a Condition Monitoring<br />

Supervision function to generate actionable information which can be used by a service organisation<br />

to create work or<strong>de</strong>rs. Figure 3 below illustrates the value chain of a system using<br />

condition monitoring to perform condition based maintenance.<br />

The figure illustrates how data are refined and concentrated through the value chain, ending<br />

up wit the ultimate goal of condition based maintenance the work or<strong>de</strong>r to the service staff.


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 8 –<br />

Figure 3 – The value chain of condition based maintenance<br />

Figure 3 illustrates the scope of <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-6 which is the two first levels of the value<br />

chain. That is, the Local condition monitoring and data acquisition performed by the condition<br />

monitoring <strong>de</strong>vice located in the wind turbine and the central condition monitoring performed<br />

by the Central Condition Monitoring Server. The <strong>de</strong>creasing sizes of the boxes in the value<br />

chain illustrate the data reduction and the data refinement process.<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

<strong>25</strong><br />

26<br />

27<br />

28<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 9 –<br />

WIND TURBINES –<br />

Part <strong>25</strong>-6:<br />

Communications for monitoring and control of wind power plants –<br />

Logical no<strong>de</strong> classes and data classes for condition monitoring<br />

1 Scope<br />

This standard <strong>de</strong>fines the information mo<strong>de</strong>ls related to condition monitoring for wind power<br />

plants and the information exchange of data values related to these mo<strong>de</strong>ls.<br />

Condition monitoring relies mainly on the following kinds of information:<br />

1. Time waveform records (samples) of a specific time interval to be exchanged in real-time<br />

or by files for analysis (e.g. acceleration, position <strong>de</strong>tection, speed, stress <strong>de</strong>tection)<br />

2. Status information and measurements (synchronized with the waveform records) representing<br />

the Turbine Operation Conditions.<br />

3. Results of Time waveform record analysis of vibration data (scalar values, array values,<br />

statistical values, historical (statistical) values, counters and status information).<br />

4. Results of oil <strong>de</strong>bris analysis.<br />

It is the purpose of this standard to mo<strong>de</strong>l condition monitoring information by using the mo<strong>de</strong>lling<br />

approach as <strong>de</strong>scribed in clause 6.2.2 of <strong>61400</strong>-<strong>25</strong>-1 and by extending the already existing<br />

information mo<strong>de</strong>l as indicated in Clause 6 of <strong>61400</strong>-<strong>25</strong>-2.<br />

Fig 4 – Structure of wind power plant information mo<strong>de</strong>l<br />

By the use of already <strong>de</strong>fined logical no<strong>de</strong>s and the table of abbreviated terms as <strong>de</strong>fined in<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-2, and by <strong>de</strong>scribing a logical no<strong>de</strong> WCON for data related to condition monitoring<br />

data classes, data for condition monitoring classes shall be mapped by extending the<br />

table of abbreviated terms from <strong>61400</strong>-<strong>25</strong>-2 with abbreviations related to condition monitoring.<br />

Refer to section 3 of this <strong>document</strong>.<br />

Note 1: Proposals for additional abbreviations are marked with yellow in the table.<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

<strong>25</strong><br />

26<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 10 –<br />

This standard <strong>de</strong>scribes the data mo<strong>de</strong>l for the following categories of data to be retrieved<br />

from the wind turbine condition monitoring system:<br />

1. Scalar data<br />

2. Arrays of Scalar data<br />

3. Vector data<br />

4. Data files<br />

5. Trigger Options<br />

Note 2: Trigger options refer to <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-2 Table <strong>25</strong>. This is a notification that a state or value change has occurred.<br />

1.1 Setup and control of condition monitoring systems<br />

It is not within the scope of the standard to setup and control the condition monitoring system<br />

1.2 Condition monitoring techniques<br />

It is not within the scope of this standard to <strong>de</strong>fine how to implement the condition monitoring<br />

of wind turbines and to specify allowable limits for measured data. This work is done by other<br />

standardisation committees such as “Richtlinie VDI 3834 Messung und Beurteilung <strong>de</strong>r<br />

mechanischen Schwingungen von Win<strong>de</strong>nergieanlagen und <strong>de</strong>ren Komponenten.<br />

Impacts on other parts of <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong><br />

This proposal for <strong>61400</strong>-<strong>25</strong>-6 will have some implications on the following parts of <strong>61400</strong>-<strong>25</strong><br />

1. Extension of the Logical No<strong>de</strong> Classes as <strong>de</strong>fined in <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-2 to comprise the information<br />

related to condition monitoring systems. WTUR for status information of the<br />

condition monitoring <strong>de</strong>vice and WALM for inclusion of alarms generated by the condition<br />

monitoring system into the general alarm overview.<br />

2. Extensions of the Information Exchange Mo<strong>de</strong>l as <strong>de</strong>fined in <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-3 to handle the<br />

Data file entity and the Vector entity.<br />

3. Extension of the Mapping to communication profile as <strong>de</strong>fined in <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-4 to handle<br />

the Data File entity and the Vector entity.<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 11 –<br />

Normative references<br />

The following referenced <strong>document</strong>s are indispensable for the application of this <strong>document</strong>.<br />

For dated references, only the edition cited applies. For undated references, the latest edition<br />

of the referenced <strong>document</strong> (including any amendments) applies.<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-1:2006, Communications for monitoring and control of wind power plants –<br />

Overall <strong>de</strong>scription on principles and mo<strong>de</strong>ls<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-2:2006, Communications for monitoring and control of wind power plants -- Information<br />

Exchange Mo<strong>de</strong>l<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-3:2006, Communications for monitoring and control of wind power plants -- Information<br />

Mo<strong>de</strong>ls<br />

<strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-4, Communications for monitoring and control of wind power plants -- Mapping<br />

to communication profile1<br />

<strong>IEC</strong> 61850-7-4 Amendment 1, Communication networks and systems in substations – Part 7-<br />

4: Basic communication structure for substations and fee<strong>de</strong>r equipment – Compatible logical<br />

no<strong>de</strong> classes and data classes<br />

<strong>IEC</strong> 60<strong>25</strong>5-24:2001, Electrical relays – Part 24: Common format for transient data exchange<br />

(COMTRADE) for power systems<br />

ISO 10816/1-6 “Mechanical vibration – Evaluation of machine vibration by measurements on<br />

non-rotating parts”<br />

—————————<br />

1 To be published<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

<strong>25</strong><br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 12 –<br />

2 Terms and <strong>de</strong>finitions<br />

For the purpose of this <strong>document</strong>, the terms and <strong>de</strong>finitions <strong>de</strong>fined in part <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-1<br />

and the following apply.<br />

Editor’s note: The following list is not complete. This section shall be updated in case more terms and <strong>de</strong>finitions<br />

will be required for part <strong>25</strong>-6.<br />

2.1<br />

actor<br />

Any entity that receives (sends) data values from (to) another <strong>de</strong>vice. Examples of actors<br />

could be SCADA systems, maintenance systems, owner, etc.<br />

2.2<br />

mandatory<br />

Defined content must be provi<strong>de</strong>d in compliance to this standard.<br />

2.3<br />

Optional<br />

Defined content can be optionally provi<strong>de</strong>d in compliance to this standard.<br />

2.4<br />

Conditional<br />

Defined content can be provi<strong>de</strong>d in compliance to this standard if certain conditions are present.<br />

2.5<br />

Scalar value<br />

A Scalar value is a quantity which can be <strong>de</strong>scribed by a single number, such as a temperature.<br />

Scalar values are very suitable for historical trending and statistical purposes.<br />

2.6<br />

Data file<br />

In a computer system, a data file is an entity of data available to system users (including the<br />

system itself and its application programs) that is capable of being manipulated as an entity<br />

(for example, moved from one file directory to another). The file must have a unique name<br />

within its own directory. Some operating systems and applications <strong>de</strong>scribe files with given<br />

formats by giving them a particular file name suffix. (The file name suffix is also known as a<br />

file name extension.)<br />

2.7<br />

Peak Value<br />

The Peak Value is the maximum excursion of a time wave form from its mean value within a<br />

specific time interval.<br />

2.8<br />

Peak-to-Peak Value<br />

The difference between the positive and negative extreme values of a time wave form.<br />

2.9<br />

Crest Factor<br />

The crest factor of a waveform is the ratio of the peak value of a time waveform to the RMS<br />

value of the time wave form within a specific time interval. It is also sometimes called the<br />

"peak-to-RMS-ratio".<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

<strong>25</strong><br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 13 –<br />

2.10<br />

RMS Value<br />

RMS stands for Root Mean Square, and is a measure of the level of a signal. It is calculated<br />

by squaring the instantaneous value of the signal, averaging the squared values over time,<br />

and taking the square root of the average value. The RMS value is the value which is used to<br />

calculate the energy or power in a signal.<br />

2.11<br />

Band pass (BP)<br />

A filter that only passes energy between two frequencies which are called the lower and upper<br />

cut-off frequencies. Band pass filters can be fixed, where the cut-off frequencies are constant,<br />

and can be variable, where the cut-off frequencies are varied with time.<br />

2.12<br />

Or<strong>de</strong>r<br />

An or<strong>de</strong>r is a multiple of some reference frequency. An FFT spectrum plot displayed in or<strong>de</strong>rs<br />

will have multiples of running speed along the horizontal axis. Or<strong>de</strong>rs are commonly referred<br />

to as 1x for running speed, 2x for twice the running speed, and so on. When an Or<strong>de</strong>r is an integral<br />

number of the running speed it may be referred to as a harmonic of the running speed.<br />

E.g. 2x may be referred to as the 2nd harmonic of the running speed.<br />

2.13<br />

Or<strong>de</strong>r Analysis<br />

Ability to study the amplitu<strong>de</strong> changes of specific signals that are related to the rotation of the<br />

<strong>de</strong>vice un<strong>de</strong>r observation.<br />

2.14<br />

UFF 58<br />

De-facto standard file format for storing noise and vibration information in the area of the car<br />

industry. The format can be read by analyzers from several vendors on the market<br />

2.15<br />

ISO 10816 1-6<br />

A wi<strong>de</strong>ly used standard for evaluation of vibration measurements. It consists of 6 parts.<br />

ISO10816-1 is the basic <strong>document</strong> <strong>de</strong>scribing the general requirements for evaluating machinery<br />

vibration using casing and/or foundation measurements. Subsequent parts of each series<br />

of <strong>document</strong>s apply to different classes and types of machinery, and inclu<strong>de</strong> specific<br />

evaluation criteria used to assess vibration severity. The Vibration Magnitu<strong>de</strong> is <strong>de</strong>fined within<br />

this group of standards as the maximum value of the broadband RMS value (acceleration, velocity<br />

or displacement) in the specified frequency range (typically from 10 to 1,000 Hz).<br />

2.16<br />

HFBP – High Frequency Band Pass<br />

Overall measurement covering a high frequency range of 1 kHz – 10 kHz. Impacts from bearing<br />

faults often results in one or more resonance effects in the high frequency range. Measurements<br />

limited to this frequency range are therefore well suited for <strong>de</strong>tecting bearing faults.<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 14 –<br />

3 Abbreviated terms<br />

CDC Common Data Class<br />

CM Condition Monitoring (Function)<br />

CMD Condition Monitoring Device<br />

DC Data Class<br />

ING Common Data Class for Integer Setting value (see <strong>IEC</strong> 61850-7-3)<br />

LCB Log Control Block<br />

LD Logical Device<br />

LN logical no<strong>de</strong><br />

LPHD Logical no<strong>de</strong> Physical Device Information<br />

RCB Report Control Block<br />

RMS Root Mean Square<br />

SAV Common Data Class for Sampled Analogue Values (see <strong>IEC</strong> 61850-7-3)<br />

SHS Statistical and Historical Statistical data (as <strong>de</strong>fined in <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-2 Annex A)<br />

SMV Sampled Measured Values; some times short: SV = Sampled Values<br />

TC Turbine Controller (Function)<br />

TCD Turbine Controller Device<br />

TOC Turbine Operation Conditions<br />

WPP Wind Power Plant<br />

WT Wind Turbine<br />

Abbreviated terms used to build names of data classes found in LNs shall be as listed below.<br />

Editor’s note The following list has been copied from Draft <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-2 (CDV). The list needs to be updated<br />

in case we need new terms/abbreviations for part <strong>25</strong>-6.<br />

EXAMPLE RotPos is constructed by using two names “Rot” which stands for Rotor and “Pos” which stands for<br />

“Position”. Thus the concatenated name represents a “Rotor Position”.<br />

Note 3: The items of the table marked in yellow are examples of abbreviations to be used for creating data classes<br />

for the WCON logical no<strong>de</strong>.<br />

Term Description<br />

A Current<br />

AC AC<br />

Ack Acknowledge<br />

Acs Access<br />

Act Actual<br />

Alm Alarm<br />

An Analogue<br />

Ane Anemometer<br />

Ang Angle<br />

Alt Altitu<strong>de</strong><br />

At Active (real)<br />

Atv Activate<br />

Av Average<br />

Avl Availability<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11<br />

Term Description<br />

Az Azimuth<br />

Bec Beacon<br />

Bl Bla<strong>de</strong><br />

Blk Blocked<br />

Brg Bearing<br />

Brk Brake<br />

Cab Cable<br />

Ccw Counter clockwise<br />

Ch Characteristic<br />

Chg Change<br />

Chk Check<br />

Chrg Charge<br />

Cl Cooling<br />

Cm Command


WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 15 –<br />

Term Description<br />

Cnv Converter<br />

Ct Counting<br />

Ctl Control<br />

Cw Clockwise<br />

d Description<br />

Dat Data<br />

Db Deadband<br />

DC DC (Direct Current)<br />

Dcl Dc-link<br />

Dec Decrease<br />

Dehum De-humidifier<br />

Del Delta<br />

Det Detection<br />

Dir Direction<br />

Disp Displacement<br />

Dly Daily<br />

Dmd Demand<br />

Drv Drive<br />

Dn Down<br />

Egy Energy<br />

Elev Elevator<br />

Emg Emergency<br />

En Enable<br />

Ent Entrance<br />

Ety Empty<br />

Evt Event<br />

Ex External<br />

Ext Excitation<br />

Flsh Flash<br />

Flt Fault<br />

Ftr Filter<br />

Gbx Gearbox<br />

Gra Gradient<br />

Gri Grid<br />

Gn Generator<br />

Gs Grease<br />

Hi High<br />

Hly Hourly<br />

Hor Horizontal<br />

Ht Heating<br />

Htex Heat-exchanger<br />

Hum Humidity<br />

Hy Hydraulic<br />

Hz Frequency<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11<br />

Term Description<br />

Ice Ice<br />

Id I<strong>de</strong>ntifier<br />

Idl Idling<br />

Inc Increase<br />

Inj Injection<br />

Inl Inline<br />

Inlet Inlet<br />

Inst Instantaneous<br />

Intl Internal<br />

Lev Level<br />

Log Log<br />

Lift Lift<br />

Lim Limit<br />

Lo Low<br />

Lu Lubrication<br />

Lum Luminosity<br />

Man Manual<br />

Max Maximum<br />

Met Meteorological<br />

Min Minimum<br />

Mly Monthly<br />

Mod Mo<strong>de</strong><br />

Mx Measurement<br />

Mul Multiplier<br />

Nac Nacelle<br />

Num Number (size)<br />

Of Off line<br />

Oil Oil<br />

Op Operate, Operating<br />

Oper Operator<br />

Ov Over<br />

Per Period, Periodic<br />

PF Power factor<br />

Ph Phase<br />

Pmp Pump<br />

Pl Plant<br />

Plu Pollution<br />

Pos Position<br />

Pres Pressure<br />

Prod Production<br />

Pt Pitch<br />

Ptr Pointer<br />

Pwr Power<br />

q Quality


WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 16 –<br />

Term Description<br />

Rdy Ready<br />

Rep Report<br />

Rms Root-mean-square<br />

Rng Range<br />

Roof Roof<br />

Rot Rotor (windturbine)<br />

Rs Reset<br />

React Reactive<br />

Rtr Rotor (generator)<br />

Sdv Standard <strong>de</strong>viation<br />

Sev Severity<br />

Seq Sequence<br />

Shf Shaft<br />

Smk Smoke<br />

Smp Sampled<br />

Sp Setpoint<br />

Spd Speed<br />

St Status<br />

Sta Stator<br />

Stdby Standby<br />

Stop Stop<br />

Str Start<br />

Sw Switch<br />

Sys System<br />

T Timestamp<br />

Tm Timer<br />

Tmp Temperature<br />

Tot Total<br />

Tow Tower<br />

Tra Transient<br />

Trf Transformer<br />

Trg Trigger<br />

Torq Torque<br />

Tur Turbine<br />

Un Un<strong>de</strong>r<br />

Urg Urgent<br />

V Voltage<br />

VA Apparent power<br />

Val Value<br />

Vals Values<br />

Ver Vertical<br />

Vib Vibration<br />

Vis Visibility<br />

Wd Wind (power)<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11<br />

1<br />

Term Description<br />

Wly Weekly<br />

Wup Windup<br />

Xdir X-direction<br />

Ydir Y-direction<br />

Yly Yearly<br />

Yw Yaw<br />

Lt Lateral<br />

Pc Power Class<br />

Up Up (opposite to Down)<br />

St State<br />

Acc Accelerometer<br />

1Ps 1’st Planetary Stage<br />

2Ps 2’nd Planetary Stage<br />

Iss Intermediate Speed Stage<br />

Hss High Speed Stage<br />

Stg Stage (1, 2, 3 .. etc.)<br />

Fr Front<br />

Rr Rear<br />

Ax Axial<br />

Ra Radial<br />

Up Up<br />

Deb Debris<br />

Sld Structural Load


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

<strong>25</strong><br />

26<br />

27<br />

28<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 17 –<br />

4 General<br />

4.1 Condition Monitoring as related to the logical no<strong>de</strong> classes<br />

Values for condition monitoring can all be related to a particular part of the turbine, exactly as<br />

a SCADA value such as temperature can be related to a part of the turbine. Therefore the<br />

data mo<strong>de</strong>l as <strong>de</strong>scribed in <strong>61400</strong>-<strong>25</strong>-2 for the SCADA values can be applied to condition<br />

monitoring data.<br />

4.2 Logical No<strong>de</strong> Classes related to condition monitoring<br />

Table 1: Wind Turbine Condition Monitoring related no<strong>de</strong> classes:<br />

WTUR Wind turbine general information<br />

WALM Wind power plant alarm information<br />

WCON Wind condition monitoring information<br />

The WTUR no<strong>de</strong> class is related to wind turbine condition monitoring as the condition monitoring<br />

system may refer to information from this class.<br />

The WALM no<strong>de</strong> class is related to wind turbine condition monitoring as alarms from the condition<br />

monitoring system may be referred to by this class.<br />

4.3 Condition monitoring data<br />

As shown in the table below, each of the data categories as specified by the Common Data<br />

Classes <strong>de</strong>fined in the scope of this standard can be used by a number of different data types<br />

used in a condition monitoring system.<br />

In particular, when using vibration monitoring it is possible to <strong>de</strong>rive several measurement<br />

values of different data types from the transducer signal by using filtering and other post<br />

processing techniques. The table below shows some examples of relationships between data<br />

categories as specified by the Common Data Classes and the data types of the measurements.<br />

Table 2: Wind Turbine Condition Monitoring Specific information categories<br />

Data type examples Category<br />

ISO RMS according to ISO 10816 Scalar Value<br />

Crest Factor Scalar Value<br />

Band pass Value (E.g. picking up the tooth meshing frequency) Scalar Value<br />

Power Spectrum (Auto spectrum) result of an FFT analysis Array of Scalar Values<br />

Envelope Spectrum (result of an FFT analysis of a pre-processed time waveform) Array of Scalar Values<br />

Time Wave Form Array of Scalar Values<br />

Filtered Time Wave Form Array of Scalar Values<br />

Picture Data File<br />

Thermo graphic Data Data File<br />

Time Wave form on ASCII format Data File<br />

Hi, HiHi, Lo, LoLo Trigger Option<br />

Danger, Alert Trigger Option<br />

Alarm, Warning Trigger Option<br />

The data types used for condition monitoring are many and may be <strong>de</strong>veloped for specific application<br />

and their number may increase as new <strong>de</strong>velopment goes on. The data categories<br />

are more general, there are not so many and the number of different data categories is more<br />

static.<br />

The figure below illustrates the relationship between Category, Data Type and Measured Values.<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 18 –<br />

Figure 5 – Relationship between Data category, Data Type and measured values<br />

4.4 Condition Monitoring Data Types<br />

The data types to be used for monitoring wind turbines shall be divi<strong>de</strong>d between a group of<br />

data types <strong>de</strong>fined as mandatory by this standard and a group which are optional and vendor<br />

specific.<br />

The objective of the mandatory data types is to create a uniform background for evaluating<br />

the state of a turbine. Note! This standard does not specify any recommen<strong>de</strong>d levels of these<br />

data. This is subject for other standards or for internal recommendations <strong>de</strong>veloped by individual<br />

turbine operators.<br />

The objective of the vendor specific data types are to adapt to the fact that different vendors<br />

have <strong>de</strong>veloped different philosophies for monitoring wind turbines and for allowing the future<br />

use of monitoring techniques which may not have been invented yet<br />

The data types specified for the condition monitoring system for a particular part of the turbine<br />

shall be assigned a unique number as shown in the table below. This data type is then used<br />

in the data mo<strong>de</strong>l as reference when referring to measurements of a certain data type. For the<br />

same location on the machine there may exist several measurements of different data types.<br />

Table 3: Numbers used to <strong>de</strong>scribe measurement types: D11-D99 is Vibration Related Values – Vendor Specific<br />

Data Type Number Abbreviation. Explanation<br />

Reserved Data Types<br />

Vendor specific data types<br />

D01 RMS Overall RMS according to ISO 10816<br />

D02 HFBP High Frequency Band pass. Range 1kHz – 10kHz.<br />

D03 TMF Tooth Meshing Frequency<br />

D04 2TMF 2 Or<strong>de</strong>r Tooth Meshing Frequency<br />

D05 3TMF 3 Or<strong>de</strong>r Tooth Meshing Frequency<br />

D06 1MA 1 st Or<strong>de</strong>r Magnitu<strong>de</strong><br />

D07 2MA 2 nd Or<strong>de</strong>r Magnitu<strong>de</strong><br />

D08 3MA 3 rd Or<strong>de</strong>r Magnitu<strong>de</strong><br />

D09 TwRMS Used for Tower Measurements. Range 0.1Hz – 100Hz.<br />

D10 - Not Used<br />

D11 BP 4kHz-6kHz<br />

D12 BP 100Hz – 500Hz<br />

D13 .<br />

D14 .<br />

D15 .<br />

D16 BPFO Ball Passing Frequency Outer Ring<br />

D17 BPFI Ball Passing Frequency Inner Ring<br />

D18 FFT 0-10kHz<br />

D19 TWF Time Wave Form<br />

.<br />

.<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

<strong>25</strong><br />

26<br />

27<br />

28<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 19 –<br />

4.5 Condition Monitoring and active power bins<br />

A wind turbine in principle operates over a wi<strong>de</strong> range of wind speeds causing a large range<br />

of loads on the tower, bla<strong>de</strong>s and related mechanical structures. An adaptive monitoring technique<br />

is often applied to secure a higher <strong>de</strong>gree of reliability and repeatability of measurements<br />

used to <strong>de</strong>tect <strong>de</strong>veloping faults in the full operating range, thus reducing the risk of<br />

false alarms. In or<strong>de</strong>r to adapt to the varying operating conditions, data can be stored in several<br />

“active power bins”. The basic principle of condition monitoring is to compare new measurements<br />

with old. The effect of changing operating conditions can be limited by only comparing<br />

data belonging to the same “active power bin.<br />

Active power are used for the adaptive monitoring technique rather than the wind speed as<br />

the vibration level measured on the turbine components are closely related to the active<br />

power production of the turbine. Using the active power also ensures that vibration measurements<br />

only are recor<strong>de</strong>d when the turbine is producing.<br />

Fig. 6 – Active power bin concept. Example of vibration data which is individually compared<br />

to alarm limits for five different “active power bins” with individual alarm trigger<br />

levels.<br />

4.6 Mo<strong>de</strong>lling the information from the wind turbine<br />

When referring condition monitoring information to a wind turbine it is necessary in many<br />

cases to be able to relate a measurement to a specific location on the turbine.<br />

E.g. A tooth meshing frequency (TMF) must be related to a specific shaft of the gearbox and<br />

the vibration level of the outer ring frequency of a bearing (BPFO) must be related to a specific<br />

shaft and a bearing position on that shaft.<br />

The schematic illustration below shows the principle of the shaft and bearing numbering used<br />

to relate a particular measurement to a location on the turbine. The numbering of the shafts<br />

and bearings are done with increasing numbering downwind direction, following the transmission<br />

of the force from the wind turbine bla<strong>de</strong>s. Note! The numbering also applies to other machine<br />

structures than the one shown in this section.<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

<strong>25</strong><br />

26<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 20 –<br />

Fig. 7 - A schematic view of a wind turbine showing the shaft and bearing numbering<br />

principle.<br />

Shaft Number Bearing Position<br />

1 Main Shaft 1.1 Main bearing<br />

2 Carrier 2.1 Carrier Bearing<br />

3, 4, 5 Planet Shaft 1, 2 and 3 3.1, 4.1, 5.1 Plant Bearings<br />

6 Sun Shaft 6.1, 6.2 Sun Shaft Bearings<br />

7 Intermediate Shaft 7.1, 7.2 Intermediate Shaft Bearings<br />

8 High Speed Shaft 8.1, 8.2 High Speed Shaft bearings<br />

9 Generator Shaft 9.1, 9.2 Generator Shaft Bearings<br />

Note: An example from a wind turbine without a gearbox might be placed here for illustration<br />

of the large variety of mechanical <strong>de</strong>signs on the market.<br />

The following convention shall be used when referring to wind turbine vibration measurements:<br />

1) Overall vibration levels or Band pass measurements covering a wi<strong>de</strong> frequency range<br />

measured by transducers located on the different parts of the turbine cannot be related to<br />

specific shafts or bearings. Such measurements shall be i<strong>de</strong>ntified by the location of the<br />

sensor using the abbreviated terms <strong>de</strong>fined in section 3, and the name or number of the<br />

particular measurement. Refer to Example 1 below.<br />

2) Vibration levels which can be referred to a specific shaft, such as a tooth meshing frequency<br />

or or<strong>de</strong>r measurements shall be referred to by the shaft number. As an option the<br />

shaft number can be prece<strong>de</strong>d by the abbreviation as specified in section 3, if <strong>de</strong>sired. Refer<br />

to Example 2 below.<br />

3) Vibration levels which can be referred to a specific bearing, such as the Ball Passing Frequency<br />

of the Outer ring shall be referred to by the shaft number and bearing position. Refer<br />

to Example 3 below.<br />

Examples:<br />

1) The Overall RMS level measured by the transducer on the Intermediate Stage of the<br />

gearbox shall be referred to as: Iss.RMS.<br />

As the RMS is a standardized measurement type it can be referred to by its name.<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

<strong>25</strong><br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 21 –<br />

2) The vibration level of the Tooth Meshing Frequency of the Intermediate Shaft shall be referred<br />

to as: 7.TMF or Iss.7.TMF<br />

As the TMF is a standardized measurement type it can be referred by its name.<br />

3) The vibration level of the Ball Passing Frequency Outer Ring of the downwind bearing of<br />

the Intermediate Shaft shall be referred to as: 7.2.D16. or Iss.7.2.D16.<br />

The number “16” refers to table 3 of the previous section. As the BPFO is a vendor specified<br />

measurement it is referred to by its number.<br />

4.7 Mandatory Measurements<br />

The objective of the mandatory measurements is to provi<strong>de</strong> a way of evaluating the overall<br />

state of a wind turbine without going into diagnostic <strong>de</strong>tails. The selected data types are well<br />

suited for long term trending to study the <strong>de</strong>velopment in the vibration levels. It is beyond the<br />

scope of this standard to specify for example max. allowable limit values for these measurements.<br />

Defining specific levels for vibrations can be applicable for turbine operators and vendors e.g.<br />

in the following situations:<br />

• When a warranty period start<br />

• When a warranty period expires<br />

• When main components of the WTG is retrofitted or exchanged.<br />

• When a turbine operator is making a due diligence before acquiring a wind power plant<br />

• When benchmarking wind power plants and wind turbines<br />

The table below lists the proposed mandatory measurements for each turbine stage:<br />

Planetary Stages<br />

Data Type Number Abbreviation Explanation<br />

D01 RMS Overall RMS after the ISO-10816 standard (10Hz -1000Hz)<br />

D02 HFBP High Frequency Bandpass (1kHz – 10kHz)<br />

D03 TMF Tooth Meshing Frequency<br />

D04 2TMF 2 Or<strong>de</strong>r Tooth Meshing Frequency<br />

D05 3TMF 3 Or<strong>de</strong>r Tooth Meshing Frequency<br />

Other Gearbox Stages<br />

Data Type Number Abbreviation Explanation<br />

D01 RMS Overall RMS after the ISO standard<br />

D02 HFBP High Frequency Bandpass (1kHz – 10kHz)<br />

D03 TMF Tooth Meshing Frequency<br />

D04 2TMF 2 Or<strong>de</strong>r Tooth Meshing Frequency<br />

D05 3TMF 3 Or<strong>de</strong>r Tooth Meshing Frequency<br />

D06 1MA 1 st Magnitu<strong>de</strong><br />

D07 2MA 2 nd Magnitu<strong>de</strong><br />

Generator Drive End and Non Drive End<br />

Data Type Number Abbreviation Explanation<br />

D01 RMS Overall RMS after the ISO-10816 standard (10Hz -1000Hz)<br />

D02 HFBP High Frequency Band pass (1kHz – 10kHz)<br />

D06 1MA 1 st Magnitu<strong>de</strong><br />

D07 2MA 2 nd Magnitu<strong>de</strong><br />

Tower Down Wind and Tower Lateral<br />

Data Type Number Abbreviation Explanation<br />

D01 RMS Overall RMS after the ISO-10816 standard (10Hz -1000Hz)<br />

D06 1MA 1 st Or<strong>de</strong>r Magnitu<strong>de</strong><br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

<strong>25</strong><br />

26<br />

27<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 22 –<br />

D08 3MA 3 rd Or<strong>de</strong>r Magnitu<strong>de</strong><br />

5 Wind Turbine Condition Monitoring Information<br />

As shown in the table below the data class name for the condition monitoring parameters<br />

based upon vibration starts with the abbreviation “Vib”.<br />

5.1 General Structure of WCON Class information<br />

The general structure of the WCON class information is specified in the table below.<br />

WCON class<br />

Attribute Name Attr. Type Explanation M/O/C<br />

Specified by combining the optional and mandatory<br />

fields.<br />

Data<br />

Type of Information M<br />

Part of the turbine – Related Vibration Sensor O<br />

Data related to a turbine stage M/O<br />

Data related to a shaft M/O<br />

Data related to a shaft and bearing position O<br />

Explanation of WCON class content<br />

• This <strong>de</strong>notes the data class as specified by the abbreviations in section 3.<br />

E.g. Vib – Vibration.<br />

• This <strong>de</strong>notes the part of the turbine as specified by the abbreviations in section<br />

3. E.g. Hss – High Speed Stage<br />

• This <strong>de</strong>notes the vibration data type as specified in section 4.4. E.g. ISO<br />

RMS.<br />

• This <strong>de</strong>notes the shaft number as <strong>de</strong>fined in section 4.6.<br />

• This <strong>de</strong>notes the position of the bearing on the shaft as <strong>de</strong>fined in section 4.6.<br />

• This <strong>de</strong>fines the Bin where the measurement is stored as <strong>de</strong>fined in section 4.5.<br />

Bain may be active power bins for vibration measurements or bins for grouping particle<br />

sizes in oil <strong>de</strong>bris analysis. Bin number is left out for data types not related to a bin concept.<br />

• The Common Data Class type of the measured data.<br />

• M/O/C This <strong>de</strong>notes whether the information is Mandatory, Optional or Conditional.<br />

5.2 Example of a WCON Class<br />

The table below illustrates how a WCON Class may look for a simple wind turbine consisting<br />

of a main bearing, a three stage gearbox and a generator stage. In this example data has<br />

been grouped into 5 bins. Only fractions of the table are shown.<br />

Note 1: The table shall not be taken as a recommendation. It purely shows the principle of how a WCON class<br />

might be structured in practice.<br />

WCON class<br />

Attribute Name Attr. Type Explanation M/O<br />

Specified by combining the optional and mandatory<br />

fields.<br />

Data<br />

Vib Vibration M<br />

1Ps First planetary stage accelerometer M/O<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 23 –<br />

RMS 1 SV Overall RMS of the 1 Pl. Stage M<br />

RMS 2 SV Overall RMS of the 1 Pl. Stage M<br />

RMS 3 SV Overall RMS of the 1 Pl. Stage M<br />

RMS 4 SV Overall RMS of the 1 Pl. Stage M<br />

RMS 5 SV Overall RMS of the 1 Pl. Stage M<br />

HFBP 1 SV High Frequency Band pass of the 1 Pl. Stage M<br />

HFBP 2 SV High Frequency Band pass of the 1 Pl. Stage M<br />

HFBP 3 SV High Frequency Band pass of the 1 Pl. Stage M<br />

HFBP 4 SV High Frequency Band pass of the 1 Pl. Stage M<br />

HFBP 5 SV High Frequency Band pass of the 1 Pl. Stage M<br />

3/ 4/ 5 TMF 1 SV Tooth Meshing Frequency for Pl. Shafts M<br />

3/ 4/ 5 TMF 2 SV Tooth Meshing Frequency for Pl. Shafts M<br />

3/ 4/ 5 TMF 3 SV Tooth Meshing Frequency for Pl. Shafts M<br />

3/ 4/ 5 TMF 4 SV Tooth Meshing Frequency for Pl. Shafts M<br />

3/ 4/ 5 TMF 5 SV Tooth Meshing Frequency for Pl. Shafts M<br />

3/ 4/ 5 2TMF 1 SV 2. Tooth Meshing Frequency for Pl. Shafts M<br />

3/ 4/ 5 2TMF 2 SV 2. Tooth Meshing Frequency for Pl. Shafts M<br />

3/ 4/ 5 2TMF 3 SV 2. Tooth Meshing Frequency for Pl. Shafts M<br />

3/ 4/ 5 2TMF 4 SV 2. Tooth Meshing Frequency for Pl. Shafts M<br />

3/ 4/ 5 2TMF 5 SV 2. Tooth Meshing Frequency for Pl. Shafts M<br />

3/ 4/ 5 3TMF 1 SV 3. Tooth Meshing Frequency for Pl. Shafts M<br />

3/ 4/ 5 3TMF 2 SV 3. Tooth Meshing Frequency for Pl. Shafts M<br />

3/ 4/ 5 3TMF 3 SV 3. Tooth Meshing Frequency for Pl. Shafts M<br />

3/ 4/ 5 3TMF 4 SV 3. Tooth Meshing Frequency for Pl. Shafts M<br />

3/ 4/ 5 3TMF 5 SV 3. Tooth Meshing Frequency for Pl. Shafts M<br />

3/ 4/ 5 1 D16 1 SV Vendor Specific – BPFO O<br />

3/ 4/ 5 1 D16 2 SV Vendor Specific – BPFO O<br />

3/ 4/ 5 1 D16 3 SV Vendor Specific – BPFO O<br />

3/ 4/ 5 1 D16 4 SV Vendor Specific – BPFO O<br />

3/ 4/ 5 1 D16 5 SV Vendor Specific – BPFO O<br />

3/ 4/ 5 1 D17 1 SV Vendor Specific – BPFI O<br />

3/ 4/ 5 1 D17 2 SV Vendor Specific – BPFI O<br />

3/ 4/ 5 1 D17 3 SV Vendor Specific – BPFI O<br />

3/ 4/ 5 1 D17 4 SV Vendor Specific – BPFI O<br />

3/ 4/ 5 1 D17 5 SV Vendor Specific – BPFI O<br />

D19 1 DAF Time Wave Form O<br />

D19 2 DAF Time Wave Form O<br />

D19 3 DAF Time Wave Form O<br />

D19 4 DAF Time Wave Form O<br />

D19 5 DAF Time Wave Form O<br />

Iss Intermediate Speed Stage Accelerometer<br />

RMS 1 SV Overall RMS of the Iss Stage M<br />

RMS 2 SV Overall RMS of the Iss Stage M<br />

RMS 3 SV Overall RMS of the Iss Stage M<br />

RMS 4 SV Overall RMS of the Iss Stage M<br />

RMS 5 SV Overall RMS of the Iss Stage M<br />

7 TMF 1 SV Tooth Meshing Frequency for Iss Shaft M<br />

7 TMF 2 SV Tooth Meshing Frequency for Iss Shaft M<br />

7 TMF 3 SV Tooth Meshing Frequency for Iss Shaft M<br />

7 TMF 4 SV Tooth Meshing Frequency for Iss Shaft M<br />

7 TMF 5 SV Tooth Meshing Frequency for Iss Shaft M<br />

7 2TMF 1 SV 2 nd Tooth Meshing Frequency for Iss Shaft<br />

7 2TMF 2 SV 2 nd Tooth Meshing Frequency for Iss Shaft<br />

7 2 D17 3 SV Vendor Specific – BPFI O<br />

7 2 D17 4 SV Vendor Specific – BPFI O<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 24 –<br />

7 2 D17 5 SV Vendor Specific – BPFI O<br />

D18 1 SVA Vendor Specific FFT 0-10kHz O<br />

D18 2 SVA Vendor Specific FFT 0-10kHz O<br />

D18 3 SVA Vendor Specific FFT 0-10kHz O<br />

D18 4 SVA Vendor Specific FFT 0-10kHz O<br />

D18 5 SVA Vendor Specific FFT 0-10kHz O<br />

TowDnWd Tower Down Wind Accelerometer<br />

TwRMS 1 SV Overall RMS M<br />

TwRMS 2 SV Overall RMS M<br />

TwRMS 3 SV Overall RMS M<br />

TwRMS 4 SV Overall RMS M<br />

TwRMS 5 SV Overall RMS M<br />

1MA 1 SV Vibration at rotational speed M<br />

1MA 2 SV Vibration at rotational speed M<br />

1MA 3 SV Vibration at rotational speed M<br />

1MA 4 SV Vibration at rotational speed M<br />

1MA 5 SV Vibration at rotational speed M<br />

3MA 1 SV Vibration at the bla<strong>de</strong> passing frequency M<br />

3MA 2 SV Vibration at the bla<strong>de</strong> passing frequency M<br />

3MA 3 SV Vibration at the bla<strong>de</strong> passing frequency M<br />

3MA 4 SV Vibration at the bla<strong>de</strong> passing frequency M<br />

3MA 5 SV Vibration at the bla<strong>de</strong> passing frequency M<br />

TowLt Tower Lateral Accelerometer M<br />

TwRMS 1 SV Overall RMS M<br />

TwRMS 2 SV Overall RMS M<br />

TwRMS 3 SV Overall RMS M<br />

TwRMS 4 SV Overall RMS M<br />

TwRMS 5 SV Overall RMS M<br />

1MA 1 SV Vibration at rotational speed M<br />

1MA 2 SV Vibration at rotational speed M<br />

1MA 3 SV Vibration at rotational speed M<br />

1MA 4 SV Vibration at rotational speed M<br />

1MA 5 SV Vibration at rotational speed M<br />

3MA 1 SV Vibration at the bla<strong>de</strong> passing frequency M<br />

3MA 2 SV Vibration at the bla<strong>de</strong> passing frequency M<br />

3MA 3 SV Vibration at the bla<strong>de</strong> passing frequency M<br />

3MA 4 SV Vibration at the bla<strong>de</strong> passing frequency M<br />

3MA 5 SV Vibration at the bla<strong>de</strong> passing frequency M<br />

OilDeb Oil <strong>de</strong>bris Analysis. Particle Count M<br />

1Ps First planetary stage outlet O<br />

Fe 1 SV Ferrous Particles 50-200µm O<br />

Fe 2 SV Ferrous Particles 200-400µm O<br />

Fe 3 SV Ferrous Particles > 400µm O<br />

NonFe 1 SV Non Ferrous Particles 50-200µm O<br />

NonFe 2 SV Non Ferrous Particles 200-400µm O<br />

NonFe 3 SV Non Ferrous Particles > 400µm O<br />

IssHss Intermed. stage & Highspeed Stage outlet O<br />

Fe 1 SV Ferrous Particles 50-200µm O<br />

Fe 2 SV Ferrous Particles 200-400µm O<br />

Fe 3 SV Ferrous Particles > 400µm O<br />

NonFe 1 SV Non Ferrous Particles 50-200µm O<br />

NonFe 2 SV Non Ferrous Particles 200-400µm O<br />

NonFe 3 SV Non Ferrous Particles > 400µm O<br />

VibSp Vibration Setpoint Levels O<br />

1PsHi First planetary stage accelerometer O<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – <strong>25</strong> –<br />

RMS 1 SPV Setpoint Overall RMS of the 1 Pl. Stage O<br />

RMS 2 SPV Setpoint Overall RMS of the 1 Pl. Stage O<br />

RMS 3 SPV Setpoint Overall RMS of the 1 Pl. Stage O<br />

RMS 4 SPV Setpoint Overall RMS of the 1 Pl. Stage O<br />

RMS 5 SPV Setpoint Overall RMS of the 1 Pl. Stage O<br />

HFBP 1 SPV Setpoint HFBP of the 1 Pl. Stage O<br />

1PsHiHi First planetary stage accelerometer M<br />

RMS 1 SPV Setpoint Overall RMS of the 1 Pl. Stage M<br />

RMS 2 SPV Setpoint Overall RMS of the 1 Pl. Stage M<br />

RMS 3 SPV Setpoint Overall RMS of the 1 Pl. Stage M<br />

RMS 4 SPV Setpoint Overall RMS of the 1 Pl. Stage M<br />

RMS 5 SPV Setpoint Overall RMS of the 1 Pl. Stage M<br />

HFBP 1 SPV Setpoint HFBP of the 1 Pl. Stage M<br />

5.3 Examples of WCON Class logical no<strong>de</strong> addresses from the table:<br />

Logical No<strong>de</strong> Address Meaning<br />

WCON.Vib.1Ps.RMS.2 Overall RMS of 1st Planetary Stage Bin 2<br />

WCON.Vib.Iss.7.TMF.4 Tooth Meshing Frequency of Intermediate Shaft Bin 4<br />

WCON.Vib.Iss.7.2.D17.5 BPFI of the downwind bearing (Pos. 2) on the Intermediate Shaft Bin 5<br />

WCON.OilDeb.IssHss.NonFe.2 Particle Count of non ferrous particles, 200-400µm, Intermediate & High<br />

Speed Stage.<br />

WCON.VibSp.IssHi.RMS.3 Hi Setpoint of the RMS measurement on the Intermediate Stage<br />

5.4 Examples of WCON Classes not covered by the example<br />

As not all cases are covered by the example in table examples of a few other logical no<strong>de</strong> addresses<br />

is listed in this section.<br />

Logical No<strong>de</strong> Address Meaning<br />

WCON.Vib.GnRa.RMS.2 Overall RMS of generator radial accelerometer. Bin 2<br />

WCON.Vib.GnAxDnWd.RMS.3 Overall RMS of generator axial accelerometer mounted on the downwind<br />

part of the generator. Bin 3.<br />

WCON.Vib.Bl1.D20 Vendor specified measurement on Bla<strong>de</strong> 1<br />

Editor’s note It is the intention to cover any type of condition monitoring data by the mo<strong>de</strong>l by applying other<br />

types of abbreviations or add new to the table of terms in section 3. E.g Transformer Vibrations Vib.Trf….<br />

6 Common Data Classes<br />

6.1 Basic Concepts for Common Data Classes.<br />

The Common Data Classes <strong>de</strong>fines any data which is contained in the logical no<strong>de</strong>s. It is a<br />

generic template used to <strong>de</strong>fine the specific data classes which contains the information.<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 26 –<br />

Fig. 8 – Wind Power Plant Information Mo<strong>de</strong>l<br />

Shared properties of a group of data classes of data <strong>de</strong>fined in logical no<strong>de</strong>s are <strong>de</strong>fined in a<br />

common data class (CDC). A data class inherits all information (data and meta data) as specified<br />

in its accompanying.<br />

Examples of relationships between the Wind Power Plant Information Mo<strong>de</strong>l and the examples<br />

in this standard.<br />

Information Mo<strong>de</strong>l Example Explanation<br />

LN WCON Logical No<strong>de</strong> for condition monitoring data<br />

Attribute Name of data Class Vib.Iss.7.TMF Name for Intermediate Shaft TMF Vibration level.<br />

CDC SV Scalar Value Common Data Class<br />

Based on the requirements to information mo<strong>de</strong>lling for Wind Turbine Condition Monitoring, a<br />

set of specific common data classes for wind power plants have been specified.<br />

The mo<strong>de</strong>lling of the information related to condition monitoring for a wind turbine requires<br />

some data classes to be specified in addition to the common data classes inherited from <strong>IEC</strong><br />

<strong>61400</strong>-<strong>25</strong>-2<br />

The following common data classes shall be ad<strong>de</strong>d in the <strong>de</strong>finitions given in section 7 of <strong>IEC</strong><br />

<strong>61400</strong>-<strong>25</strong>-2.<br />

a) Wind Turbine Condition Monitoring specific common data classes (CDC)<br />

Scalar Value (SV)<br />

Vector (VV)<br />

Scalar Array (SVA)<br />

Set Point Array (SPA)<br />

Data File (DAF) (*note the class shall contain a file <strong>de</strong>scriptor telling the format)<br />

b) Common Data Classes inherited from <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-2<br />

Set Point Value (SPV)<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

<strong>25</strong><br />

26<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 27 –<br />

Status Value (STV)<br />

Alarm (ALM)<br />

6.2 Structure of Common Data Classes<br />

Refer to section 7.1.2 <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-2.<br />

6.3 Common Data Class Attribute types<br />

These are used to characterize the Attributes used to <strong>de</strong>scribe each of the Common Data<br />

Classes.<br />

6.3.1 Common Data Class attributes types inherited from <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-2<br />

Only a subset of the Common data Class Attributes already <strong>de</strong>fined in section 7.2 of <strong>IEC</strong><br />

<strong>61400</strong>-<strong>25</strong>-2 are used. A summary is given below:<br />

7.2.1 Analogue Value and<br />

7.2.1 Analogue Value (n) – <strong>de</strong>noting an array of analogue values<br />

7.2.2 Time Stamp<br />

7.2.3 Quality<br />

7.2.4 Units<br />

6.4 Common data Class attributes types inherited from <strong>IEC</strong> 61850-7-3<br />

For ease of reference these attributes are repeated in this section.<br />

6.5 Vector<br />

Note4! Normally in condition monitoring we used the term phase instead of angle. To comply with common terminology<br />

we may need another attribute.<br />

Vector Type <strong>de</strong>finition<br />

Attr. Name Attr. Type Value/value Range M/O/C<br />

Mag Analogue Value M<br />

Ang Analogue Value M<br />

6.6 Point<br />

PointType <strong>de</strong>finition<br />

Attr. Name Attr. Type Value/value Range M/O/C<br />

xVal Analogue Value M<br />

yVal Analogue Value M<br />

6.7 RangeConfig<br />

RangeConfig Type <strong>de</strong>finition<br />

Attr. Name Attr. Type Value/value Range M/O/C<br />

hhLim Analogue Value M<br />

hLim Analogue Value M<br />

lLim Analogue Value M<br />

llLim Analogue Value M<br />

Min Analogue Value O<br />

Max Analogue Value O<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 28 –<br />

6.8 ScaledValueConfig<br />

ScaledValueConfig Type <strong>de</strong>finition<br />

Attr. Name Attr. Type Value/value Range M/O/C<br />

scaleFactor Analogue Value M<br />

Offset Analogue Value M<br />

6.9 Wind turbine condition monitoring specific common data classes (CDC)<br />

Because the <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-6 uses a similar mo<strong>de</strong>lling approach as specified in <strong>IEC</strong> <strong>61400</strong>-<strong>25</strong>-<br />

2, some existing data classes shall be reused when mo<strong>de</strong>lling the condition monitoring information.<br />

This section therefore only <strong>de</strong>als with the additional data classes for condition monitoring.<br />

6.9.1 Scalar Value (SV)<br />

Common Data Class Scalar Value (SV) comprises attributes which characterizes the size of a<br />

physical quantity the size of which is specified completely by its magnitu<strong>de</strong>. Examples of scalar<br />

values from other areas is a quantity such as a mass or a temperature.<br />

Note 5: The Measured Value (MV) Common Data Class might be applicable here. The reason for creating the SV<br />

Class is to comply more to the terminology used within condition monitoring.<br />

SV Class<br />

Attribute Name Attribute Type FC TrgOp Explanation and value/range M/O<br />

Data<br />

6.9.2 Vector Value (VV)<br />

Common Data Class Vector Value (VV) comprise attributes which characterizes the size of a<br />

physical quantity that has both magnitu<strong>de</strong> and direction. Magnitu<strong>de</strong>, or "size" of a vector,<br />

can be thought of as the scalar portion of the vector and is represented by the length of the<br />

vector. By <strong>de</strong>finition, a vector has both magnitu<strong>de</strong> and direction. Commonly know vector<br />

quantities are velocity and force. In the area of condition monitoring vector measurements are<br />

mainly used for monitoring shaft behaviour.<br />

VV Class<br />

Attribute Name Attribute Type FC TrgOp Explanation and value/range M/O<br />

Data<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 29 –<br />

6.9.3 Scalar Value Array (SVA)<br />

The Scalar Value Array (SVA) is a collection of scalar values all having the same time stamp.<br />

The Scalar value Array is used for FFT Spectra and Time Functions.<br />

SVA Class<br />

Attribute Name Attribute Type FC TrgOp Explanation and value/range M/O<br />

Data<br />

6.9.4 Set Point Array (SPA)<br />

The set points array is used in connection with <strong>de</strong>fining set point values such as Hi and HiHi<br />

for Scalar Value Array Measurements.<br />

SPA Class<br />

Attribute Name Attribute Type FC TrgOp Explanation and value/range M/O<br />

Data<br />

6.9.5 Data File (DAF)<br />

The Data File (DAF) is used for transferring data using a <strong>de</strong>fined file format. Often time waveforms<br />

are transferred in such a format to be compatible with various application software<br />

packages used for analysis. File format often used are the UFF file format and the COM-<br />

TRADE format.<br />

DAF Class<br />

Attribute Name Attribute Type FC TrgOp Explanation and value/range M/O<br />

Data<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 30 –<br />

Annex A<br />

(Informative)<br />

Application of Shaft and Bearing position numbering for annotating<br />

frequency spectra<br />

A.1 General<br />

When applying frequency spectra for analysis of vibration signal from wind turbines the different<br />

peaks in the frequency spectrum are related to the different kinematical frequencies of for<br />

example a gearbox. This annex shows how the shaft and bearing numbering system introduced<br />

in section 4.6 of this standard, can be applied to annotate the peaks in the frequency<br />

spectrum, thus illustrating the relationship to the different components of the wind turbine.<br />

A.2 Example with gearbox<br />

Fig. 9 - Frequency Spectrum from the intermediate speed sensor<br />

In the frequency spectrum shown above the tooth meshing frequencies from three different<br />

parts of a gearbox are annotated. The shaft numbers shown along with the annotation indicates<br />

the origin of the frequency component.<br />

3 – Planet shaft<br />

7 – Intermediate Shaft<br />

8 – High speed Shaft<br />

Refer also to figure 7 in section 4.6.<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 31 –<br />

Annex B<br />

(Informative)<br />

Examples of trend histories of mandatory measurements to be used for<br />

example for a due diligence and other purpose<br />

B.1 Trend history of generator measurements<br />

The example below shows how a report of mandatory measurements might look. Here is only<br />

shown data for the generator in power bin 3. Each plot spans a period of 2 years with approximately<br />

800-1000 measurements in each plot. The plots show that bearing fault has been<br />

present on the generator drive end bearing in 2005. After repair the levels has dropped to a<br />

constant low level.<br />

It is seen from the plots that the HFBP which is sensitive to bearing failures provi<strong>de</strong>s a longer<br />

lead time than the ISO RMS measurement. At a later stage when the bearing has <strong>de</strong>teriorated,<br />

vibrations also start to rise in the frequency range covered by the ISO RMS value. The<br />

1MA and 2MA rises at a very late stage when looseness and misalignment starts to affect the<br />

rotor vibrations.<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11


1<br />

WD for <strong>61400</strong>-<strong>25</strong>-6 © <strong>IEC</strong>: 2007 – 32 –<br />

Other annexes required as informative or normative to be agreed at<br />

the working group meeting in Madrid – Carsten An<strong>de</strong>rsson & Knud<br />

Johansen.<br />

Version <strong>61400</strong>-<strong>25</strong>-6_R0-4-WD_2007-09-11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!