27.05.2013 Views

ICEPAK 13.0: buone notizie per i progettisti elettronici ... - EnginSoft

ICEPAK 13.0: buone notizie per i progettisti elettronici ... - EnginSoft

ICEPAK 13.0: buone notizie per i progettisti elettronici ... - EnginSoft

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Combined 1D & 3D CFD approach<br />

for GT Ventilation System analysis<br />

Analisi di un meccanismo<br />

link-drive <strong>per</strong> presse con tecnologia<br />

multibody in ANSYS<br />

CALL FOR PAPERS<br />

IS NOW OPEN<br />

Multi Variate Analysis in<br />

Systematic Impeller Design Applying<br />

modeFRONTIER at Sulzer Pumps<br />

Year 8 n°1 Spring 2011<br />

<strong>ICEPAK</strong> <strong>13.0</strong>:<br />

<strong>buone</strong> <strong>notizie</strong> <strong>per</strong> i<br />

<strong>progettisti</strong> <strong>elettronici</strong><br />

CAE-based<br />

tablet design<br />

Interview with<br />

Paolo Nesti,<br />

Piaggio Group<br />

Ottimizzazione<br />

Termofluidodinamica<br />

di un forno da<br />

cucina Indesit


<strong>EnginSoft</strong> Flash<br />

With this 1st edition of the Newsletter in<br />

2011, we extend a Special Invitation to<br />

our readers, to meet us at the <strong>EnginSoft</strong><br />

International Conference 2011 from 20th<br />

- 21st October in Verona. There could<br />

hardly be a better venue for the community<br />

of simulation and VP (Virtual Prototyping)<br />

users than Verona. A UNESCO world<br />

heritage site, famous for its o<strong>per</strong>as, the<br />

ancient amphitheatre built by the Romans,<br />

Romeo and Juliet, and a diverse cultural<br />

wealth. Today, Verona is a vibrant city<br />

dedicated to innovation. Verona’s airport<br />

offers daily nonstop flights to Europe’s<br />

hubs which will facilitate travel for our<br />

guests from around the world!<br />

The Conference, which is one of the major<br />

Get-togethers for CAE and VP users worldwide, will again<br />

present a parallel event: the ANSYS Italian Users’ Meeting.<br />

<strong>EnginSoft</strong> is delighted to collaborate with ANSYS, Inc. and<br />

ANSYS Italia, our key partners, to offer an interactive<br />

platform to the ANSYS develo<strong>per</strong>s and users to share<br />

knowledge, ex<strong>per</strong>iences and to enhance the use of ANSYS<br />

in the various industrial fields.<br />

In this edition, we report on the progress of the <strong>EnginSoft</strong><br />

Americas Project. <strong>EnginSoft</strong> has recently strengthened its<br />

North American o<strong>per</strong>ations by expanding its base in Palo<br />

Alto, Silicon Valley. Moreover, <strong>EnginSoft</strong> has joined the<br />

TFSA (Thermal and Fluid Sciences Affiliate) Program of<br />

Stanford University.<br />

Cascade Technologies, Inc, <strong>EnginSoft</strong>’s partner, is a spinoff<br />

of the Center for Turbulence Research at Stanford<br />

University. Cascade develops and supports state of the art<br />

CFD analysis tools for various engineering applications. To<br />

stimulate the discussion on optimization, <strong>EnginSoft</strong> and<br />

Cascade have sponsored a One-Day Seminar on<br />

Optimization, which was held on 1st February at Stanford<br />

Campus. The driving force behind Cascade Technologies is<br />

Prof. Gianluca Iaccarino, who was recently awarded the<br />

Presidential Early Career Award for Scientists and<br />

Engineers (PECASE) by President Barack Obama. Our<br />

readers will find more information on Prof. Iaccarino’s<br />

work and the prestigious award in this issue.<br />

<strong>EnginSoft</strong>’s growing international business is also<br />

reflected in the highlights of this issue: Sulzer Pumps, one<br />

of the world's leading centrifugal pump manufacturers<br />

based in Winterthur, Switzerland, speaks about Multi<br />

Variate Analysis in Systematic Impeller Design.<br />

Ing. Stefano Odorizzi<br />

<strong>EnginSoft</strong> CEO and President<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 3<br />

Researchers of Trinity College Dublin have<br />

significantly improved the fatigue resistance<br />

of components using modeFRONTIER. GE Oil<br />

& Gas Italy adopted a combined 1D and 3D<br />

numerical approach with Flowmaster and<br />

ANSYS Fluent to study ventilation systems.<br />

We interviewed Mr Paolo Nesti, engineer at<br />

Piaggio Group, one of the major players<br />

worldwide in the two-wheeler vehicles<br />

sector, and feature a case study on the use of<br />

ANSYS Workbench at Piaggio. Landi Renzo<br />

S.p.A., a global leader in components, LPG<br />

and CNG fuel systems for motor vehicles,<br />

spoke to us about the use of modeFRONTIER<br />

in their product development. Componeering<br />

Inc. Finland presents the Opencell Delta<br />

concept which provides a brand new way to<br />

construct metal sandwich panels.<br />

The Event Calendar features conferences, fairs and courses<br />

across Europe, in the USA and Japan...<br />

When we hear about Japan in these days, above all our<br />

heart and best wishes go out to the Japanese people who<br />

battle and will overcome the consequences of a terrible<br />

natural disaster that hit their country. Our Japan Column<br />

brings to our readers an article on the novel approach of<br />

CAE-based tablet design of Mr. Hideaki Sato of ASAHI<br />

BREWERIES, LTD. Elysium presents news on the use of<br />

ASFALIS at Nissan. We close the Column with an article on<br />

Tokyo, a unique metropolis…and some ideas on how each<br />

one of us can help.<br />

Finally, the Editorial Team would like to recommend the<br />

new book “Reactive Business Intelligence. From Data to<br />

Models to Insight” by Prof. Roberto Battiti and Prof.<br />

Mauro Brunato to our readers. While the book is easy-toread,<br />

it guides us from the very basics to such advanced<br />

topics as su<strong>per</strong>vised learning, data-mining, optimization,<br />

statistics and interactive visualizations.<br />

To continue our discovery of the immense opportunities of<br />

CAE and VP in our today’s world, <strong>EnginSoft</strong> and ANSYS<br />

invite our readers to the International Conference 2011.<br />

Please follow the Announcements, Call for Pa<strong>per</strong>s and<br />

Program on www.caeconference.com<br />

We look forward to welcoming you to Verona this October!<br />

Stefano Odorizzi<br />

Editor in chief


4 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

Sommario - Contents<br />

CASE STUDIES<br />

6 Multi Variate Analysis in Systematic Impeller Design Applying modeFRONTIER at Sulzer Pumps<br />

10 Analisi di un meccanismo link-drive <strong>per</strong> presse con tecnologia multibody in ANSYS<br />

13 Ottimizzazione termofluidodinamica di un forno da cucina Indesit<br />

15 Combined 1D & 3D CFD Approach for GT Ventilation System Analysis<br />

19 ANSYS WB and a Review of the Design Metrics in Piaggio: the Case of the Motor Shaft<br />

INTERVIEWS<br />

21 <strong>EnginSoft</strong> Interviews Ing. Paolo Nesti, Piaggio Group<br />

CASE STUDIES<br />

26 modeFRONTIER Used in the Design of Fatigue-Resistant Notches<br />

27 A Multi-Objective Optimization with Open Source Software<br />

SOFTWARE NEWS<br />

32 ANSYS 13: Il punto sui solutori <strong>per</strong> modelli di grandi dimensioni nelle simulazioni meccaniche<br />

33 La simulazione di sistema in ANSYS: Simplorer<br />

36 <strong>ICEPAK</strong> <strong>13.0</strong>: <strong>buone</strong> <strong>notizie</strong> <strong>per</strong> i <strong>progettisti</strong> <strong>elettronici</strong><br />

38 Development of the Novel Opencell<br />

IN DEPTH STUDIES<br />

41 Componenti forgiati di qualità necessitano di un approccio CAE integrato – es<strong>per</strong>ienze di simulazione di processo<br />

nel campo Energia e Nucleare<br />

TESTIMONIAL<br />

46 Landi Renzo: the global leader in the sector of components and LPG and CNG fuel systems<br />

JAPAN CAE COLUMN<br />

47 The CAD-CAM Coo<strong>per</strong>ation in Nissan Achieved by ASFALIS<br />

48 CAE-based tablet design<br />

52 Tokyo a Metropolis<br />

The <strong>EnginSoft</strong> Newsletter editions contain references to the following<br />

products which are trademarks or registered trademarks of their respective<br />

owners:<br />

ANSYS, ANSYS Workbench, AUTODYN, CFX, FLUENT and any and all<br />

ANSYS, Inc. brand, product, service and feature names, logos and slogans are<br />

registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries in the<br />

United States or other countries. [ICEM CFD is a trademark used by ANSYS,<br />

Inc. under license]. (www.ANSYS.com)<br />

modeFRONTIER is a trademark of ESTECO srl (www.esteco.com)<br />

Flowmaster is a registered trademark of The Flowmaster Group BV in the<br />

USA and Korea. (www.flowmaster.com)<br />

MAGMASOFT is a trademark of MAGMA GmbH. (www.magmasoft.com)<br />

ESAComp is a trademark of Componeering Inc.<br />

(www.componeering.com)<br />

Forge and Coldform are trademarks of Transvalor S.A.<br />

(www.transvalor.com)<br />

AdvantEdge is a trademark of Third Wave Systems .<br />

(www.thirdwavesys.com)<br />

LS-DYNA is a trademark of Livermore Software Technology Corporation.<br />

(www.lstc.com)<br />

SCULPTOR is a trademark of Optimal Solutions Software, LLC<br />

(www.optimalsolutions.us)<br />

Grapheur is a product of Reactive Search SrL, a partner of <strong>EnginSoft</strong><br />

For more information, please contact the Editorial Team


PRESS RELEASE<br />

54 President Obama Honors <strong>EnginSoft</strong>’s Partner with the<br />

Presidential Early Career Award for Scientists and<br />

Engineers<br />

56 Formazione a distanza sugli elementi finiti<br />

BOOK REVIEWS<br />

57 REACTIVE BUSINESS INTELLIGENCE: From Data to<br />

Models to Insight<br />

EVENTS<br />

58 <strong>EnginSoft</strong> at the Optimization Day: Research and<br />

Applications<br />

60 NAFEMS World Congress 2011 - Preliminary Agenda<br />

Announced<br />

61 <strong>EnginSoft</strong> alla Fiera Made in Steel di Brescia<br />

62 <strong>EnginSoft</strong> Event Calendar<br />

PAGE 6 MULTI VARIATE ANALYSIS IN<br />

SYSTEMATIC IMPELLER DESIGN APPLYING<br />

MODEFRONTIER AT SULZER PUMPS<br />

PAGE 15 COMBINED 1D & 3D CFD<br />

APPROACH FOR GT VENTILATION<br />

SYSTEM ANALYSIS<br />

PAGE 36 <strong>ICEPAK</strong> <strong>13.0</strong>: BUONE NOTIZIE<br />

PER I PROGETTISTI ELETTRONICI<br />

Newsletter <strong>EnginSoft</strong><br />

Year 8 n°1 - Spring 2011<br />

To receive a free copy of the next <strong>EnginSoft</strong><br />

Newsletters, please contact our Marketing office at:<br />

newsletter@enginsoft.it<br />

All pictures are protected by copyright. Any reproduction<br />

of these pictures in any media and by any means is<br />

forbidden unless written authorization by <strong>EnginSoft</strong> has<br />

been obtained beforehand.<br />

©Copyright <strong>EnginSoft</strong> Newsletter.<br />

Advertisement<br />

For advertising opportunities, please contact our<br />

Marketing office at: newsletter@enginsoft.it<br />

<strong>EnginSoft</strong> S.p.A.<br />

24124 BERGAMO Via Galimberti, 8/D<br />

Tel. +39 035 368711 • Fax +39 0461 979215<br />

50127 FIRENZE Via Panciatichi, 40<br />

Tel. +39 055 4376113 • Fax +39 0461 979216<br />

35129 PADOVA Via Giambellino, 7<br />

Tel. +39 49 7705311 • Fax 39 0461 979217<br />

72023 MESAGNE (BRINDISI) Via A. Murri, 2 - Z.I.<br />

Tel. +39 0831 730194 • Fax +39 0461 979224<br />

38123 TRENTO fraz. Mattarello - via della Stazione, 27<br />

Tel. +39 0461 915391 • Fax +39 0461 979201<br />

www.enginsoft.it - www.enginsoft.com<br />

e-mail: info@enginsoft.it<br />

COMPANY INTERESTS<br />

ESTECO srl<br />

34016 TRIESTE Area Science Park • Padriciano 99<br />

Tel. +39 040 3755548 • Fax +39 040 3755549<br />

www.esteco.com<br />

CONSORZIO TCN<br />

38123 TRENTO Via della Stazione, 27 - fraz. Mattarello<br />

Tel. +39 0461 915391 • Fax +39 0461 979201<br />

www.consorziotcn.it<br />

<strong>EnginSoft</strong> GmbH - Germany<br />

<strong>EnginSoft</strong> UK - United Kingdom<br />

<strong>EnginSoft</strong> France - France<br />

<strong>EnginSoft</strong> Nordic - Sweden<br />

A<strong>per</strong>io Tecnologia en Ingenieria - Spain<br />

www.enginsoft.com<br />

ASSOCIATION INTERESTS<br />

NAFEMS International<br />

www.nafems.it<br />

www.nafems.org<br />

TechNet Alliance<br />

www.technet-alliance.com<br />

RESPONSIBLE DIRECTOR<br />

Stefano Odorizzi - newsletter@enginsoft.it<br />

PRINTING<br />

Grafiche Dal Piaz - Trento<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 5<br />

The <strong>EnginSoft</strong> NEWSLETTER is a quarterly<br />

magazine published by <strong>EnginSoft</strong> SpA<br />

Autorizzazione del Tribunale di Trento n° 1353 RS di data 2/4/2008


6 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

Multi Variate Analysis in<br />

Systematic Impeller Design Applying<br />

modeFRONTIER at Sulzer Pumps<br />

The most important pump component - its heart - is the<br />

impeller which transforms kinetic energy into pressure and<br />

therefore generates the required head. The impeller<br />

geometry is defined by more than 50 parameters requiring<br />

ex<strong>per</strong>ienced hydraulic design engineers. Even if only 20 of<br />

these parameters have a major influence, it is obvious<br />

that a severe variation yields an excessive database which<br />

should be made use of.<br />

Fig. 1 - Two stage pump with detailed view of the first stage impeller.<br />

Fig. 2 - Dimensions of the impeller.<br />

A pro<strong>per</strong> classification of the available designs in the<br />

database gives the develo<strong>per</strong> a better understanding of<br />

the complex parameter correlation and enables the<br />

prediction of not yet available impellers by interpolating<br />

among the existing designs. This gives a first parameter<br />

estimate for the new impeller and pro<strong>per</strong>ly conditions the<br />

variable ranges for an optimization which is likely to<br />

follow. This article presents an approach based on<br />

classification of existing impeller designs with Multi<br />

Variate Analysis through Self Organizing Maps (SOM) by<br />

use of modeFRONTIER.<br />

Systematic impeller design<br />

The parameters defining an impeller include the main<br />

dimensions like outer diameter D2 and shaft diameter D0 as<br />

also the meridional contour and blade shape (Figure 2).<br />

The impeller design is done for a specified o<strong>per</strong>ating point<br />

with given flow rate Q and head H for a certain rotational<br />

speed n. Efficiency η is one criterion for an optimal<br />

impeller design not only at best efficiency point bep but<br />

also over a certain o<strong>per</strong>ating range (Figure 3, left).<br />

Suction capability, which is the pressure available at pump<br />

inlet NPSH, is another criterion (Figure 3, centre).<br />

Decreasing NPSH affects the pump head which needs to be<br />

considered.<br />

Good suction capability and high efficiency both over a<br />

broad o<strong>per</strong>ating range are conflictive design goals.<br />

Increasing suction capability at maximum o<strong>per</strong>ating point<br />

reduces efficiency at minimum o<strong>per</strong>ating point. This is an<br />

important fact when using optimization techniques in<br />

impeller design.<br />

Characteristic numbers<br />

Impellers can be classified by characteristic numbers<br />

enabling a comparison among the designs. The specific<br />

speed nq defines the form of the impeller (Figure 4) and is<br />

calculated from flow rate Q, head H and the rotational<br />

speed n. Figure 5 lists the main design parameters and<br />

shows their conversion into characteristic numbers. The<br />

outer diameter D2 of the impeller is selected according an<br />

Fig. 3 - left: Efficiency η; centre: suction capability NPSH within the o<strong>per</strong>ating range of the impeller dependent on the flow rate Q; right: NPSH3% criterion


optimal head coefficient Ψ for the specific speed nq. The<br />

inlet diameter D1 influences the suction capability and<br />

depends on the flow coefficient at inlet ϕ1. The suction<br />

capability can either be expressed by a characteristic<br />

number σ or the suction specific speed nss which both<br />

depend on the suction head at pump inlet NPSH. Similar<br />

relations exist for other dimensions.<br />

Using these characteristic numbers and dimensionless<br />

values, impellers with different outer diameters D2 can be<br />

Fig. 4 - Impeller form in meridional view dependent on specific speed nq<br />

compared and new designs can be calculated based on<br />

these values. This facilitates a classification of the<br />

impellers and the use of the SOM technique.<br />

Self-Organizing Map<br />

Any existing impeller design is described through a multidimensional<br />

vector, where each component represents a<br />

defining parameter (input) or a <strong>per</strong>formance index<br />

(output).<br />

The Self-Organizing Map (SOM) is an unsu<strong>per</strong>vised Neural<br />

Network algorithm capable to group and classify such<br />

already available impeller designs in a two-dimensional<br />

grid space. Each node of this grid is called “Unit” and it<br />

groups (includes) vectors (impeller designs)<br />

that are similar with respect to all their<br />

parameters (inputs and outputs)<br />

simultaneously.<br />

SOM preserves the topology of the data, so<br />

that similar data items will be mapped to<br />

nearby units on the map. To do so, units are<br />

hexagonal-shaped, and hence each unit has 6<br />

neighbors and is labeled by a “prototype<br />

vector” that in fact represents all the vectors<br />

included in the unit itself, as a kind of<br />

average.<br />

SOM lives in the multi-dimensional data<br />

space, but its visualization capabilities are<br />

built on the top of its representation in the<br />

grid space. Each of the hexagons becomes a<br />

Fig. 5 - Correlation between dimensional and non dimensional values<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 7<br />

“pixel” being colored to reflect different pro<strong>per</strong>ties of the<br />

input data, e.g. specific speed n q, impeller width B2 or<br />

efficiency η. This way SOM overcomes the problem of<br />

visualizing multivariate data: input data are projected<br />

onto a 2D grid (Figure 6).<br />

Another advantage of the SOM is related to its intrinsic<br />

interpolation capability. There might exist regions of<br />

unexplored zones, the <strong>per</strong>formance of the impeller is not<br />

yet predicted by CFD. This is reflected in SOMs by empty<br />

hexagons separating others that are filled up by different<br />

families of designs. When this happens, it is reasonable to<br />

look at the prototype vector of the empty unit as kind of<br />

forecast of a design family that have still to be realized,<br />

and that represent a reasonable interpolation of the ones<br />

that are available. The benefit of the SOM is that, apart<br />

from the input variables characterizing such design<br />

families, also a complete forecast of the <strong>per</strong>formances is<br />

immediately available. This predictive use of the SOM is<br />

really powerful when handling designs that are described<br />

by a high number of parameters (inputs and outputs) so<br />

that any other interpolations approach, like Response<br />

Surface Modeling, becomes heavy to implement.<br />

For the pump impellers described here, a unique SOM is<br />

trained on the existing database and used to forecast new<br />

design families able to provide certain <strong>per</strong>formances.<br />

Impeller design and multi variate analysis<br />

The dimensionless values for the main parameters and the<br />

design objectives efficiency and suction capability (η,<br />

nSS,bep, nSS,max) are selected as input for the training<br />

(classification) of the SOM. Within this test case, the<br />

results of six different impeller optimizations with three<br />

Fig. 6 - Left: SOM is the blue network that adapts to real data (red points) in a X-Y-Z space,<br />

note that some nodes are far from any real point, hence the related unit will be empty.<br />

Centre: the same SOM in its 2D conventional representation: each of the nodes is a hexagonal<br />

unit. Right: each unit is colored with respect to the X-value of its prototype vector, and the<br />

square on its center represents the number of real design enclosed in the unit (see the empty<br />

units).


8 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

Fig. 7 - Specific speed (nq) in the SOM with distribution of existing<br />

designs<br />

different specific speeds between nq13 and nq60 are used<br />

as data basis. Goal of this study is to develop new<br />

impellers in this range with high suction capability and<br />

high efficiency for four different specific speeds (n q16,<br />

n q24, n q30, n q47) under the assumption that for each n q<br />

both o<strong>per</strong>ating point and impeller diameter D 2 are given<br />

and the shaft diameter is pre-defined from mechanical<br />

calculations.<br />

Figure 7 illustrates the trained SOM of the specific speed<br />

ranging from n q13 (blue) to n q60 (red). The squares<br />

describe the density of input parameters available. The<br />

larger the square the more data exists, no square signifies<br />

that parameter values are based on pure interpolation.<br />

The selection of the new impellers is undertaken in<br />

regions with purely interpolated data (Figure 8). For each<br />

new impeller, existing designs with a similar n q in the SOM<br />

table are compared. This is necessary as three objectives<br />

need to be fulfilled, and the SOM designs might only<br />

achieve one.<br />

The advantage of this technique is the access to every<br />

single parameter defining the impeller geometry. With an<br />

amount of over 50 parameters, the entire meridional<br />

impeller contour and the blade shape are approximated by<br />

the SOM. This method allows a complete impeller design<br />

within a few minutes just by giving the o<strong>per</strong>ating point<br />

and selecting an appropriate outer diameter D 2. The<br />

impeller parameters are taken from the SOM and converted<br />

Table 1 - Comparison of coefficients of obtained and predicted objectives for the<br />

selected designs<br />

Fig. 8 - Selected designs in the SOM (Color: specific<br />

speed)<br />

back from dimensionless<br />

to dimensional<br />

parameters. A new<br />

impeller is then generated<br />

with the conventional<br />

design tools and its<br />

<strong>per</strong>formance is checked by<br />

CFD.<br />

Table 1 shows a<br />

comparison of the<br />

<strong>per</strong>formances obtained by<br />

CFD and predicted by SOM<br />

for the selected nq. A<br />

coefficient is defined<br />

with:<br />

objectiveCFD / objective SOM ,<br />

describing the ratio of the CFD result to the prediction of<br />

the objective by the SOM. A value equal to one signifies<br />

an error of zero; the CFD <strong>per</strong>formance matches the<br />

predicted one. For a coefficient smaller than one, the<br />

<strong>per</strong>formance is over predicted, if it is larger than one, the<br />

design is under predicted by the SOM.<br />

n q24<br />

The first impeller modeled with the SOM is n q24. Therefore<br />

the best possible solution in compliance with the specific<br />

speed and the design goals is selected. CFD calculations<br />

are <strong>per</strong>formed according the CFD in the optimization<br />

process. The results are excellent, both efficiency and<br />

suction <strong>per</strong>formance are better than predicted by the SOM.<br />

n q16<br />

For the second impeller (n q16) two different designs are<br />

selected from the SOM table, one with high efficiency<br />

predicted and a second with a lower efficiency but a<br />

better expected suction capability. The impeller with high<br />

efficiency reaches almost the suction capability at bep<br />

while the impeller with the lower efficiency exceeds the<br />

suction capability. Both impellers out<strong>per</strong>form the<br />

expected suction capability at the maximum o<strong>per</strong>ating<br />

point efficiency.<br />

n q30<br />

For the impeller n q30 two different interpolated designs<br />

are selected from the SOM table, differing in suction<br />

capability at maximum o<strong>per</strong>ating point. After<br />

calculating <strong>per</strong>formances of the interpolated designs,<br />

the aspired suction capability at overload is not<br />

achieved, the other targets are out<strong>per</strong>formed. For this<br />

reason two more designs from the SOM table are<br />

selected, now with lower efficiency than the previous<br />

designs. With the lower efficiency target, the suction<br />

capability is reached for both o<strong>per</strong>ating points. This<br />

proves the conflicting design targets efficiency and<br />

suction capability.


Fig. 9 - Efficiency (red = high, blue = low) Fig. 10 - suction capability at bep (based on σ,<br />

blue = good, red=bad)<br />

n q47<br />

Two designs from the SOM table are selected. The second<br />

design with the higher suction capability target at bep<br />

misses the required suction capability at maximum<br />

o<strong>per</strong>ating point. Even if the first design does not fulfill<br />

the requirements at bep, the deviation from the target<br />

value is only small.<br />

Summary for all designs<br />

For all designs, the calculated efficiency is higher than<br />

SOM predicted. The suction capability misses the<br />

requirements for some designs because of contradicting<br />

objectives. In these cases it is possible to select new<br />

designs from the SOM with compromises in efficiency but<br />

achieving the required suction capability.<br />

Figures 9-11 present the objectives efficiency, suction<br />

capability at bep and max OP. It can be clearly seen that<br />

efficiency and suction <strong>per</strong>formance pattern are completely<br />

different. This discrepancy makes it difficult to fulfill all<br />

three objectives and either a compromise is required or<br />

one objective has to be prioritized.<br />

Conclusions<br />

The article describes a novel methodology to design<br />

impellers starting from the well assessed knowledge at<br />

Sulzer Pumps<br />

Sulzer Pumps is one of the world's leading centrifugal<br />

pump manufacturers. Intensive research and development<br />

in fluid dynamics, process-oriented products and special<br />

materials as well as reliable service helps Sulzer Pumps<br />

maintain its leading positions in its key markets. Its<br />

customers come from the oil and gas, hydrocarbon<br />

processing, power generation and pulp and pa<strong>per</strong> sectors<br />

as well as from water distribution and treatment and<br />

other general industries. The products are internationally<br />

reputed for their technical excellence.<br />

www.sulzerpumps.com<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 9<br />

Fig. 11 - suction capability at max OP (based on σ,<br />

blue = good, red=bad)<br />

Sulzer Pumps. The concept has proven to provide the<br />

designer a new and effective tool to speed up the design<br />

process of the pumps core part - the impeller.<br />

Self-Organizing Maps (SOM) have been trained on the<br />

already available impeller designs and corresponding<br />

<strong>per</strong>formance indicates: such a SOM embeds the so far<br />

available pump designer knowledge, and provides a<br />

complete interpolation in regions in which designs are<br />

still missing. Each input or output variable of the impeller<br />

design can be represented through a conventional twodimensional<br />

SOM map. This allows the use of SOM as an<br />

extremely powerful tool to suggest new designs in regions<br />

in which the design space has not yet been explored to<br />

forecast their <strong>per</strong>formances. In fact, the methodology<br />

allows a new and complete impeller design in some<br />

minutes, just assigning a few parameters, as the o<strong>per</strong>ating<br />

point and the outer diameter. Any new design proposed by<br />

the SOM can be validated through high-fidelity fluid<br />

dynamic simulations (CFD) and then be used as starting<br />

point for further refinements by directly linking the CFD<br />

model to a modeFRONTIER optimizer, [2].<br />

References<br />

[1] Gülich J.: "Centrifugal Pumps", Springer, 2010<br />

[2]Krüger S., Maurer W.: "How to use modeFRONTIER<br />

within the daily hydraulic design process: Sulzer<br />

Pumps’ ex<strong>per</strong>iences with automated impeller design",<br />

modeFRONTIER 2008 Users’Meeting, Trieste, 14th-15th<br />

October 2008<br />

Wolfgang Maurer, Susanne Krueger<br />

Sulzer Pumps, Winterthur, Switzerland<br />

Luca Fuligno<br />

<strong>EnginSoft</strong> SpA, Trento, Italy<br />

Francesco Linares<br />

<strong>EnginSoft</strong> GmbH, Frankfurt am Main, Germany


10 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

Analisi di un meccanismo link-drive <strong>per</strong><br />

presse con tecnologia multibody in<br />

ANSYS<br />

Analysis of a link drive mechanism for presses using ANSYS<br />

MBD multibody technology<br />

This pa<strong>per</strong> presents a test case in which the tool “Rigid<br />

Dynamics” of ANSYS Workbench 13 is used to investigate the<br />

kinematics and the dynamics of a link drive mechanism<br />

equipping a deep drawing press.<br />

The device is first analyzed by developing the kinematic motion<br />

equations. This step highlights the difficulty which arises when<br />

we have to manually manipulate the equations of a complex<br />

multibody system.<br />

Then, a parameterized multibody model of the link drive is built<br />

in ANSYS. This approach is much more straightforward and<br />

allows the user to understand the mechanism’s behavior in a<br />

shorter time. In addition, the software makes it possible to<br />

watch the working mechanism animation at the end of the<br />

solution.<br />

The multibody model returns information about the dynamics,<br />

which is useful for structural design purposes. Moreover, thanks<br />

to the easy parameter management in ANSYS, we can<br />

automatically investigate and compare multiple alternatives of<br />

the same mechanism.<br />

Questo articolo presenta un test case significativo nel quale attraverso<br />

una “Rigid Dynamics” di ANSYS Workbench 13 vengono<br />

efficacemente analizzate la cinematica e la dinamica di una<br />

pressa meccanica <strong>per</strong> imbutitura profonda.<br />

L’imbutitura è un processo di formatura a freddo attraverso il<br />

quale una lamiera metallica viene trasformata in un oggetto cavo,<br />

con <strong>buone</strong> caratteristiche dimensionali e di finitura. Nello<br />

schema tradizionale, l’imbutitura si realizza attraverso un pun-<br />

Fig. 1 – confronto tra pressa “Slider–Crank”e “link drive”:<br />

velocità del punzone e zona di lavoro<br />

zone che spinge la lamiera, eventualmente fissata con un premilamiera,<br />

all'interno di una matrice. Il processo è intrinsecamente<br />

delicato <strong>per</strong>ché deve indurre nel materiale elevate deformazioni<br />

plastiche, senza raggiungere la condizione di rottura.<br />

La qualità del prodotto finale è fortemente influenzata dai parametri<br />

di processo, tra i quali spicca <strong>per</strong> importanza la velocità<br />

di discesa del punzone nel tratto di corsa in cui lavora la lamiera.<br />

Idealmente, la velocità del punzone dovrebbe essere bassa, <strong>per</strong><br />

realizzare una deformazione graduale del materiale, e costante,<br />

<strong>per</strong> evitare la formazione di pieghe e striature su<strong>per</strong>ficiali.<br />

In una pressa meccanica con tradizionale schema slider crank,<br />

la riduzione della velocità del punzone è ottenibile solo aumentando<br />

il tempo ciclo, con ovvie conseguenze negative sulla<br />

produttività dell’impianto. Pertanto, se si vogliono ottenere<br />

<strong>buone</strong> <strong>per</strong>formance di processo senza penalizzare la produzione,<br />

è opportuno predisporre un meccanismo più raffinato, che<br />

consenta maggiori libertà nella gestione della velocità del punzone.<br />

Una soluzione è il meccanismo link drive illustrato, già<br />

utilizzato da alcuni produttori di presse. La Figura 1 confronta<br />

le curve di velocità del punzone <strong>per</strong> una pressa tradizionale e<br />

una pressa link Drive di pari dimensioni (con la stessa corsa<br />

massima e lo stesso tempo ciclo).<br />

La velocità di discesa del punzone, <strong>per</strong> la pressa link drive, presenta<br />

un tratto con andamento regolare a velocità quasi costante.<br />

Inoltre, grazie al maggior numero di membri, questo<br />

meccanismo è molto versatile: variando le dimensioni del meccanismo<br />

si possono ottenere diverse curve di velocità. Risulta,<br />

<strong>per</strong>tanto, evidente che il link drive presenta caratteristiche e<br />

prestazioni molto più vantaggiose dello schema tradizionale.<br />

Studio analitico del meccanismo link drive<br />

Il paragrafo precedente ha messo in luce l’importanza della velocità<br />

di discesa del punzone nella messa a punto del processo<br />

di imbutitura. Pertanto, è opportuno focalizzare l’attenzione<br />

sull’analisi cinematica del meccanismo link drive, che <strong>per</strong>mette<br />

di comprendere come il meccanismo trasformi la rotazione del<br />

motore elettrico nella traslazione a velocità variabile del punzone.<br />

Gli approcci <strong>per</strong> condurre uno studio cinematico sono diversi.<br />

Per un meccanismo relativamente semplice come il link drive,<br />

è possibile, seppure con qualche difficoltà, derivare analiticamente<br />

le equazioni del moto. Lo schema cinematico cui si farà<br />

riferimento è riportato in Figura 2.


Fig. 2 – schema cinematico della pressa link drive<br />

I vettori L1, L3, L4, L5 e L6 rappresentano i membri mobili del<br />

meccanismo, il vettore L2 rappresenta il telaio e il vettore srappresenta<br />

la posizione del punzone (misurata da un riferimento<br />

arbitrario). Lo studio analitico della cinematica inizia con la<br />

scrittura delle equazioni di chiusura in forma vettoriale:<br />

Ciascun vettore può essere formalmente descritto nella forma<br />

L= L cos (φ), dove L è la lunghezza e φ è l’angolo di inclinazione.<br />

Sostituendo nelle precedenti e manipolando opportunamente<br />

è possibile esprimere la posizione s del punzone in funzione<br />

dell’angolo φ4 di rotazione dell’eccentrico (variabile indipendente<br />

del problema). Successivamente, si ricavano <strong>per</strong> derivazione<br />

rispetto al tempo la velocità v e l’accelerazione a. In<br />

sintesi, l’analisi cinematica mediante approccio analitico restituisce<br />

tre equazioni nella forma:<br />

Queste espressioni hanno una struttura molto articolata e <strong>per</strong>tanto<br />

ne omettiamo la scrittura estesa. Si noti che i risultati<br />

dipendono dalla legge di moto assegnata al movente e dai parametri<br />

dimensionali del meccanismo.<br />

Benché l’approccio analitico consenta di <strong>per</strong>venire ai risultati<br />

cinematici in tempi accettabili, va precisato che la manipolazione<br />

di equazioni con questo livello di complessità è una o<strong>per</strong>azione<br />

alquanto delicata: se non si dispone di strumenti <strong>per</strong> la<br />

manipolazione simbolica, il rischio di errore è decisamente elevato.<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 11<br />

Simulazione multibody del meccanismo link drive<br />

Una valida alternativa <strong>per</strong> studiare meccanismi in modo più veloce<br />

e con minor rischio di errore è la simulazione tramite codice<br />

multibody. ANSYS Workbench 13, attraverso il modulo<br />

“Rigid Dynamics”, consente di creare e gestire modelli<br />

multibody a corpi rigidi. L’utilizzo di questo strumento, <strong>per</strong>mette,<br />

inoltre, di integrare i risultati dell’analisi cinematica con<br />

tutte le grandezze dinamiche fondamentali <strong>per</strong> la progettazione<br />

strutturale del dispositivo.<br />

ANSYS Workbench 13 consente di gestire in modo parametrico<br />

qualsiasi modello di calcolo. Con riferimento all’analisi<br />

multibody del link drive, la parametrizzazione <strong>per</strong>mette di simulare<br />

varie alternative del meccanismo, consentendo la scelta<br />

di quella più adatta alle esigenze.<br />

Nella fase di pre-processing avviene l’assemblaggio del modello<br />

multibody. Le geometrie dei corpi possono provenire da CAD<br />

esterni oppure possono essere create direttamente all’interno<br />

di Design Modeler. Per questa applicazione abbiamo provveduto<br />

a creare integralmente la pressa ed il meccanismo, parametrizzando<br />

le grandezze di cui andremo ad analizzare gli effetti.<br />

Sono quindi state scelte e create le connessioni tra i corpi<br />

(Figura 3).<br />

I revolute joint consentono la rotazione relativa tra i membri<br />

connessi, mentre i general joint lasciano liberi i gradi di libertà<br />

scelti esplicitamente dall’utente.<br />

Per consentire la soluzione di un modello multibody a corpi rigidi,<br />

i vincoli, inseriti sottoforma di connessioni, non devono<br />

essere ridondanti. ANSYS mette a disposizione lo strumento<br />

“Redundancy Analysis” che <strong>per</strong>mette di individuare automaticamente<br />

la presenza di vincoli in eccesso e che fornisce indi-<br />

Fig. 2 – vista 3D dell’assieme e schema delle connessioni


12 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

Fig. 4 – modelli di pressa ottenuti tramite parametrizzazione<br />

cazione di quali modifiche si debbono apportare <strong>per</strong> rendere il<br />

modello consistente.<br />

Il meccanismo virtuale viene azionato applicando una legge di<br />

moto all’albero dell’eccentrico. ANSYS consente di assegnare a<br />

qualsiasi connessione sia leggi di moto, sia azioni dinamiche.<br />

In entrambi i casi, le funzioni sono gestibili in forma tabulata<br />

o tramite espressioni analitiche. Nel caso del meccanismo link<br />

drive, abbiamo imposto al movente una velocità di rotazione<br />

costante.<br />

L’analisi multibody comporta l’integrazione delle equazioni del<br />

moto che il software ha sviluppato automaticamente durante<br />

l’assemblaggio del modello. ANSYS dispone di due integratori,<br />

con diverse opzioni <strong>per</strong> la gestione del passo, della convergenza<br />

e della qualità della soluzione.<br />

Nella fase di post-processing ANSYS Workbench <strong>per</strong>mette di<br />

estrarre numerosi risultati dai corpi e dalle connessioni. Le<br />

grandezze disponibili <strong>per</strong> i corpi sono di natura cinematica (posizione,<br />

velocità, accelerazione), mentre <strong>per</strong> le connessioni<br />

possiamo diagrammare le grandezze cinematiche dei gradi di libertà<br />

consentiti e le reazioni vincolari dei gradi di libertà annullati<br />

dal joint.<br />

Ad esempio, su un “revolute joint” possiamo leggere angolo,<br />

velocità ed accelerazione angolare lungo l’asse di rivoluzione,<br />

e, in aggiunta, possiamo estrarre forze radiali, forze assiali e<br />

momenti trasversali che i corpi si scambiano mutuamente.<br />

Fig. 5 – confronto della velocità del punzone <strong>per</strong> i tre modelli di pressa<br />

Confronto di 3 configurazioni del meccanismo link drive<br />

A titolo di esempio, proponiamo lo studio comparativo della risposta<br />

cinematica restituita dal meccanismo link drive modificando<br />

la coordinata orizzontale della cerniera di collegamento<br />

della biella L1 al telaio (Figura 2 e Figura 4).<br />

Nello specifico, abbiamo ipotizzato di passare da un valore di<br />

1400 mm a 1100 mm, con un valore intermedio di 1250 mm.<br />

Le tre analisi sono condotte semplicemente modificando il parametro<br />

corrispondente nell’interfaccia utente. ANSYS MBD aggiorna<br />

automaticamente le geometrie e ripete la simulazione<br />

multibody.<br />

La Figura 5 illustra gli effetti del parametro scelto sulla velocità<br />

del punzone. Lo zoom mette in particolare evidenza la comparsa<br />

del tratto a velocità quasi costante, passando dalla pressa<br />

A alla pressa C. Pertanto, se l’obiettivo è quello di usare la<br />

pressa <strong>per</strong> un processo di imbutitura, la soluzione C è la migliore.<br />

Naturalmente, sfruttando la parametrizzazione del modello,<br />

è possibile individuare configurazioni con prestazioni ulteriormente<br />

migliorate.<br />

Per maggiori informazioni:<br />

Fabiano Maggio - <strong>EnginSoft</strong><br />

info@enginsoft.it<br />

L’esempio del meccanismo link drive solleva una serie di<br />

problematiche tipiche della modellazione multibody. Infatti,<br />

l’utente deve scegliere con cura numero e tipologia di vincoli<br />

se non vuole <strong>per</strong>venire a risultati incompleti o addirittura<br />

errati. L’utilizzo di strumenti come “ANSYS Transient<br />

Structurla MBD” presuppone che l’utente possieda adeguate<br />

nozioni di meccanica applicata e calcolo numerico che gli<br />

consentano di tradurre correttamente un sistema fisico in un<br />

modello virtuale. La schematizzazione può avvenire in modo<br />

più o meno raffinato, con conseguenze dirette sull’efficacia<br />

della simulazione. È compito del modellista scegliere<br />

dimensione, grado di complessità e dettagli del modello che<br />

vuole creare, considerando simultaneamente obiettivi da<br />

raggiungere, onere computazionale e tempo a disposizione.<br />

Il miglior modello non è quello più dettagliato, ma quello<br />

che risponde in modo più veloce ed esauriente alle esigenze.<br />

Questa regola, che vale in generale <strong>per</strong> tutte le dimensioni<br />

del CAE, assume un ruolo decisivo <strong>per</strong> la simulazione<br />

multibody.<br />

<strong>EnginSoft</strong> propone un corso di modellistica multibody della<br />

durata di 2 giorni a tutti i <strong>progettisti</strong> che affrontano<br />

quotidianamente problemi di cinematica e dinamica. Il corso<br />

è pensato e strutturato in modo da trasferire in breve tempo<br />

le conoscenze che servono a formulare consapevolmente le<br />

principali scelte di modellazione multibody. Il corso verrà<br />

tenuto dal prof. Roberto Lot dell’Università di Padova in<br />

collaborazione con l’ing. Fabiano Maggio di <strong>EnginSoft</strong>.<br />

Per informazioni sui contenuti consultare il sito del<br />

consorzio TCN www.consorziotcn.it<br />

Per iscrizioni e informazioni generali consultare la sig.ra<br />

Mirella Prestini della segreteria del consorzio. E-mail:<br />

info@enginsoft.it Tel: 035 368711


Indesit Company è tra i leader in<br />

Europa nella produzione e commercializzazione<br />

di grandi elettrodomestici:<br />

lavabiancheria, asciugabiancheria, lavastoviglie,<br />

frigoriferi, congelatori,<br />

cucine, cappe, piani di cottura e forni.<br />

Proprio su quest’ultimo prodotto, il<br />

forno da cucina, si è recentemente<br />

concentrata un fase di sviluppo volta a<br />

migliorarne efficienza in termini di<br />

consumi e di uniformità di cottura.<br />

Lavorando già da tempo con strumenti<br />

di modellazione numerica (nello<br />

specifico ANSYS ICEM CFD e ANSYS CFX) Fig. 1<br />

<strong>per</strong> coadiuvare le prove s<strong>per</strong>imentali,<br />

Indesit Company ha deciso di utilizzare tali strumenti <strong>per</strong> tutta<br />

la fase di ottimizzazione della termodinamica interna del forno,<br />

avvalendosi del software di ottimizzazione modeFRONTIER e della<br />

collaborazione dei tecnici della <strong>EnginSoft</strong> S.p.A.<br />

A valle di studi s<strong>per</strong>imentali e considerazioni basate su know<br />

how interno, si è pensato che, <strong>per</strong> migliorare le prestazioni del<br />

forno dal punto di vista energetico e funzionale, l’attenzione<br />

maggiore doveva essere posta sulla paratia forata che si trova tra<br />

la ventola e la zona di cottura. Il lavoro presentato, è quindi<br />

quello dell’ottimizzazione geometrica di tale paratia, alla ricerca<br />

della configurazione tale da avere minori consumi ed una maggiore<br />

uniformità di tem<strong>per</strong>atura nella muffola.<br />

Modellazione<br />

Si è partiti dalla modellazione di tutto il “volume bagnato” del<br />

forno nella configurazione baseline di partenza. Il forno, in questa<br />

configurazione, presenta anche una leccarda nella parte inferiore<br />

della zona di cottura. Sfruttando il fatto che la parte geometrica<br />

soggetta a modifica parametrica è la sola paratia, si è<br />

pensato di dividere il volume in due parti con un piano che separi<br />

il dominio di calcolo in prossimità della paratia. In questo<br />

modo, la parte di modello a valle della paratia, comprendente<br />

anche tutta la leccarda, rimane invariata, e viene <strong>per</strong>ciò preparata<br />

(geometria + griglia di calcolo) una sola volta. L’altra parte<br />

del modello, è a sua volta suddivisa in un volume che rimane invariato,<br />

il dominio rotante con la ventola, e tutto il resto, comprendente<br />

fra gli altri la paratia, la cui geometria e griglia di calcolo<br />

sono state parametrizzate <strong>per</strong> poter essere rigenerate automaticamente<br />

di volta in volta sulla base delle scelte o<strong>per</strong>ate<br />

dal’ottimizzatore.<br />

Il software utilizzato <strong>per</strong> le modifiche geometriche e la generazione<br />

della griglia di calcolo è stato ANSYS ICEM CFD.<br />

Mettendo a punto una sequenza di istruzioni opportune, ICEM<br />

modifica la geometria della paratia e genera la griglia del volume<br />

ottenuto. In questo insieme di istruzioni (script) sono<br />

presenti oltre a tutti i parametri geometrici, anche quelli re-<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 13<br />

Ottimizzazione termofluidodinamica di<br />

un forno da cucina Indesit<br />

Fig. 2<br />

lativi alla dimensione degli elementi<br />

della griglia di calcolo, sia a livello<br />

globale che locale. Per tutte le configurazioni<br />

analizzate, 3 strati di prismi<br />

sono stati estrusi su tutte le pareti del<br />

dominio di calcolo. Le griglie di calcolo<br />

che tipicamente si possono ottenere<br />

con questa impostazione constano<br />

di circa due milioni di elementi tetraedrici<br />

ed un milione di prismi. È chiaro<br />

tuttavia che il numero di elementi è<br />

leggermente diverso <strong>per</strong> ogni configurazione,<br />

essendo la geometria parametricamente<br />

variata <strong>per</strong> ogni design.<br />

L’attività sul modello baseline, oltre<br />

che rappresentare il riferimento <strong>per</strong> quantificare il margine e la<br />

direzione del miglioramento nella fase di ottimizzazione, è servita<br />

anche <strong>per</strong> la fase di taratura, indispensabile in attività di<br />

questa portata <strong>per</strong> determinare il miglior compromesso tra numero<br />

di elementi, qualità degli stessi e numerica più efficace all’ottenimento<br />

di risultati affidabili del calcolo CFD.<br />

Variabili di Input ed Output<br />

modeFRONTIER è un ottimizzatore multi disciplinare e multi<br />

obiettivo. L’es<strong>per</strong>ienza che vanta <strong>EnginSoft</strong> nell’utilizzo di questo<br />

strumento accoppiato a software di analisi numerica, ha consentito<br />

la messa a punto di un flusso logico di macro-o<strong>per</strong>azioni<br />

che hanno portato ad una vera e propria “customizzazione”<br />

<strong>per</strong> il problema qui illustrato (ottimizzazione forno).<br />

I parametri geometrici di ingresso sono stati in tutto sedici. Essi<br />

hanno <strong>per</strong>messo di controllare dimensione, distribuzione e numero<br />

di fori sui quattro bordi della paratia. Lo spazio delle possibili<br />

configurazioni è stato delimitato in tre modi: dai valori minimi<br />

e massimi che ciascuna variabile di input doveva rispettare,<br />

da vincoli di costruzione, e da vincoli geometrici che evitassero<br />

geometrie degeneri.<br />

Discorso un po’ più dettagliato meritano le variabili di output. A<br />

monte del lavoro di ottimizzazione è stata valutata molto attentamente<br />

la modellazione delle variabili in uscita. Esse infatti devono<br />

rappresentare un indice sia dell’efficienza del forno in termini<br />

di uniformità della tem<strong>per</strong>atura che del suo consumo di


14 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

energia. Si è deciso di scegliere<br />

come grandezza <strong>per</strong> l’uniformità<br />

di tem<strong>per</strong>atura, il suo scarto quadratico<br />

medio (RMS di T) misurato<br />

su una nuvola di punti situata<br />

“ad hoc” nella zona di cottura,<br />

mentre <strong>per</strong> la potenza elettrica<br />

necessaria si è optato <strong>per</strong> la portata<br />

d’aria ricircolante all’interno<br />

della muffola. Con queste assunzioni,<br />

gli obiettivi implementati<br />

in modeFRONTIER diventano <strong>per</strong>ciò<br />

la ricerca di un design che<br />

renda minimo il valore dello scarto<br />

quadratico medio delle tem<strong>per</strong>ature<br />

sulla nuvola di punti garantendo<br />

allo stesso tempo una<br />

portata d’aria su<strong>per</strong>iore ad un va- Fig. 3<br />

lore limite precedentemente stabilito come limite inferiore.<br />

Il processo logico che lega tutti i passaggi è il seguente:<br />

Partendo dal file replay.rpl che modeFRONTIER ha aggiornato<br />

con i valori delle variabili di ingresso, lo script, eseguito<br />

in batch da ICEM, si occupa di modificare la paratia con i<br />

fori, copiare il resto della geometria che resta immutata e<br />

generare la griglia di calcolo.<br />

Terminata questa prima fase, la griglia di calcolo generata<br />

viene caricata assieme a quella che resta inalterata nel preprocessor<br />

di CFX. Al modello così aggiornato viene quindi<br />

applicato il setup fisico e numerico dell’analisi cfd, scritto il<br />

file di lancio e lanciato il run, specificando eventualmente se<br />

il calcolo deve essere eseguito in modalità parallela. Anche<br />

questa fase è interamente eseguita in modalità batch da tutti<br />

i software coinvolti.<br />

Finita l’analisi, sempre in batch, un altro script del post-processore<br />

di CFX, calcola le grandezza di output dal file di<br />

risultati, concludendo così l’iterazione <strong>per</strong> il singolo design<br />

Doe e Ottimizzazione<br />

Il DOE (Design Of Ex<strong>per</strong>iment) di partenza è stato realizzato mediante<br />

l’algoritmo RANDOM tra i più adatti <strong>per</strong> un’ottimizzazione<br />

mono-obiettivo. In effetti anche se gli output sono due, solo<br />

la minimizzazione dello scarto quadratico medio della tem<strong>per</strong>atura<br />

è un vero e proprio obiettivo, dato che il controllo del valore<br />

di portata d’aria smaltita dalla ventola sia sempre su<strong>per</strong>iore<br />

ad un valore minimo è considerato come un vincolo del problema.<br />

Il numero di design iniziale, dipendente anche dal tipo di<br />

algoritmo scelto <strong>per</strong> l’ottimizzazione, è in questo caso calcolato<br />

come la somma dei parametri di ingresso più uno, come richiesto<br />

dall’algoritmo di ottimizzazione utilizzato.<br />

A seguito della campagna di analisi sui risultati del DOE di partenza,<br />

è iniziata la fase di ottimizzazione, mediante l’utilizzo<br />

dell’SIMPLEX. Il numero di design simulati in questa fase, utili<br />

all’ottenimento di una buona convergenza dell’algoritmo stesso,<br />

è stato di 107.<br />

Ottenuto il design “ottimo”, sfruttando le potenzialità di postprocessing<br />

e statistica presenti all’interno di modeFRONTIER è<br />

stato possibile estrarre dalla considerevole<br />

mole di dati resisi disponibili, delle informazioni<br />

importanti <strong>per</strong> capire il legame tra le<br />

varibili di input e tra ciascuna di esse e<br />

l’obiettivo. Più in generale, questa fase consente<br />

di raccogliere delle preziose informazioni<br />

<strong>per</strong> capire più approfonditamente il<br />

problema studiato, soprattutto laddove esso<br />

dipenda da diversi input e output anche fra<br />

loro in forte contrasto, tipicamente con<br />

comportamento non lineare.<br />

Strumenti quali matrici di correlazione, grafici<br />

a coordinate parallele, filtri, bubble multidimensionali,<br />

hanno consentito di stabilire<br />

quale sia il peso dei singoli ingressi sui risultati,<br />

e quale sia il migliore intervallo di<br />

utilizzo tra i valori ammissibili, <strong>per</strong> ogni variabile.<br />

Infine, conoscendo come ogni variabile influisce sul risultato finale,<br />

partendo dal miglior design sono state implementate modifiche<br />

aggiuntive, che, integrando quelle previste dallo spazio<br />

parametrico sopra illustrato, hanno portato ad un ulteriore miglioramento<br />

delle <strong>per</strong>formance del forno.<br />

Dall’attività nel suo complesso, ne è scaturita una profonda conoscenza<br />

del fenomeno fisico, delle relazioni fra le variabili, con<br />

soddisfacenti riscontri s<strong>per</strong>imentali.<br />

Risultati e Conclusioni<br />

Grazie alle simulazioni numeriche e all’es<strong>per</strong>ienza dei tecnici<br />

Indesit nell’indirizzare decisioni e assunzioni da prendere, le<br />

prestazioni del forno da cucina sono migliorate nell’ordine del<br />

20% sullo scarto quadratico medio rispetto alla configurazione<br />

iniziale.<br />

Le prove s<strong>per</strong>imentali sul miglior design hanno confermato i risultati<br />

numerici ed un risparmio energetico dovuto ad una portata<br />

smaltita dalla ventola su<strong>per</strong>iore a quella del design di partenza.<br />

Fig. 3<br />

Gianluca Mattogno, Indesit - gianluca.mattogno@indesit.com<br />

Fabio Damiani, <strong>EnginSoft</strong> - info@enginsoft.it


The Gas Turbine ventilation system is designed to supply<br />

the necessary amount of air for cooling and to prevent the<br />

accumulation of hazardous gases in the enclosure by<br />

maintaining a slight over-pressure. The classical GE<br />

approach to studying ventilation system o<strong>per</strong>ating<br />

conditions consists of modeling the whole system as a<br />

series of discrete losses, where the ASHRAE duct-fitting<br />

database provides the corresponding pressure loss<br />

coefficients. The system is solved by means of a onedimensional<br />

flow simulation tool (Flowmaster).<br />

The goal of this work was to improve the critical points<br />

that affect the above-mentioned procedure, such as<br />

modeling of complex fittings and bend interactions. For<br />

this purpose, dedicated CFD analyses were <strong>per</strong>formed to<br />

characterize the loss coefficient for splitting and bend<br />

interactions at different o<strong>per</strong>ating conditions (split<br />

<strong>per</strong>centage and inlet flow rate) for two different<br />

ventilation systems. The resulting loss coefficient curves<br />

have been implemented within the corresponding onedimensional<br />

Flowmaster models. Finally, to characterize<br />

off-design conditions, a variable Heat Rejection model<br />

(obtained from previous CFD analyses) and real fan curves<br />

were used.<br />

This new approach produces more accurate results, as<br />

confirmed by the close agreement with ex<strong>per</strong>imental<br />

measurements. Among the benefits of using this new<br />

approach is the ability to characterize the flow behavior<br />

of complex fittings. This would be useful in the event of<br />

a fitting redesign or for noise reduction analyses.<br />

Current GE approach to studying<br />

Gas Turbine Ventilation Systems<br />

A ventilation system must provide a continuous source of<br />

cooling air over the entire Gas Turbine o<strong>per</strong>ation range in<br />

order to:<br />

maintain a uniform and constant airflow through the<br />

flange-to-flange Gas Turbine at all ambient conditions;<br />

remove heat and maintain the air tem<strong>per</strong>ature in the<br />

compartment below the o<strong>per</strong>ating limit. (The<br />

o<strong>per</strong>ating limit is set according to the tem<strong>per</strong>ature<br />

rating of the components located in the<br />

compartment);<br />

eliminate stagnation zones and prevent the<br />

accumulation of hazardous gases;<br />

prevent the ingress of dust and sand in gas turbines<br />

located in regions prone to sandstorm conditions by<br />

means of pro<strong>per</strong> compartment pressurization.<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 15<br />

Combined 1D & 3D CFD Approach for<br />

GT Ventilation System analysis<br />

Specific Design Practices provide a general description,<br />

acceptance limits and design criteria that a ventilation<br />

system must meet for Oil & Gas applications (e.g.,<br />

enclosure design tem<strong>per</strong>ature ranges, design pressure<br />

ranges, purging ranges, etc.).<br />

As mentioned, the current GE approach to studying GT<br />

ventilation systems consists of modeling the whole system<br />

as a series of “blocks”. Each block represents a source of<br />

pressure loss (concentrated loss) due to changes in shape<br />

(e.g., elbow, transition, etc.), flow direction or the<br />

presence of physical obstacles within the system. The<br />

ASHRAE duct-fitting database provides the corresponding<br />

pressure loss coefficients.<br />

Following the net balancing by means of a onedimensional<br />

flow tool (Flowmaster), the system is<br />

characterized in terms of velocities, pressures, and flow<br />

rate split.<br />

Critical points for this approach are the modeling of<br />

complex fittings and bend interactions. In order to<br />

improve the current Ventilation System calculation<br />

procedure, dedicated CFD analyses were <strong>per</strong>formed for<br />

these critical points. A combined 1D & 3D CFD approach<br />

was adopted to study two different GE Ventilation<br />

Systems, called for simplicity System A and System B.<br />

Numerical calculations for System A<br />

The current System A Flowmaster network, modeled as a<br />

series of discrete losses, is shown in Figure 1. The<br />

Fig. 1 - System A Flowmaster model based on discrete losses.


16 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

enclosure is modeled as two heaters and the fan as two<br />

flow sources with a flow rate of 65000 m 3<br />

/h, estimated by<br />

using the enthalpy balance equation:<br />

were:<br />

= mass air flow [Kg/s],<br />

= enclosure heat rejection [W]<br />

= specifiwec heat at constant pressure [J/Kg °C]<br />

= maximum allowable outlet air tem<strong>per</strong>ature [°C]<br />

= max ambient tem<strong>per</strong>ature [°C]<br />

In order to develop a more suitable model (taking into<br />

account interactions, 3D characteristics of the fluid, etc.),<br />

dedicated ANSYS FLUENT CFD analyses were <strong>per</strong>formed. In<br />

particular, a critical point for the discrete losses modeling<br />

is the flow split into the Load Compartment and the Gas<br />

Turbine Compartment (see Figure 2).<br />

Fig. 2 - Analyzed split (left) and Load Compartment final section (right),<br />

System A<br />

It is useful to define the coefficients K12 and K13 as:<br />

;<br />

where:<br />

P01 = inlet total pressure<br />

P02 = GT Compartment total pressure<br />

P03 = Load Compartment total pressure<br />

V2 = GT Compartment mean velocity<br />

V3 = Load Compartment mean velocity<br />

For the characterization of the flow<br />

split at different o<strong>per</strong>ating points,<br />

two test campaigns were <strong>per</strong>formed.<br />

In both cases the inlet flow rate was<br />

fixed (65000 m 3<br />

/h and 130000 m 3<br />

/h,<br />

respectively) and, for each of these, a<br />

variable split <strong>per</strong>centage between the<br />

GT and Load compartments was used.<br />

These analyses provided K12 and K13,<br />

K12 (GT Compartment) K13 Load Compartment<br />

ASHRAE Database 0.4 0.71<br />

modified ASHRAE model<br />

(ex<strong>per</strong>ience based)<br />

1.15 1.5<br />

CFD 0.4-0.6 2.28<br />

Table 1: Loss coefficients used for standard calculations, System A.<br />

defined in (2), as a function of the flow rate split (see<br />

Figure 3).<br />

Subsequently, these coefficients were implemented within<br />

the corresponding one-dimensional Flowmaster model.<br />

A comparison between the loss coefficients obtained<br />

using CFD and those coefficients used for standard<br />

calculations is summarized in Table 1.<br />

Finally, to better simulate the ventilation system a bend<br />

interaction analysis was <strong>per</strong>formed on the Load<br />

Compartment final section, which is highlighted in Figure<br />

2 (for System B the geometry of this section is the same).<br />

The total loss coefficient as a function of the inlet<br />

velocity is shown in Figure 4. The loss coefficient<br />

decreases as the inlet flow velocity increases, and a good<br />

agreement with the ASHRAE database value was found for<br />

a velocity of about 5m/s. For higher velocity values the<br />

difference between the two curves (CFD and ASHRAE)<br />

starts to be significant. Again, the loss coefficient curve<br />

obtained was implemented within the new model.<br />

The fan, previously modeled as two flow sources, was<br />

replaced by the “FAN” element with the corresponding real<br />

o<strong>per</strong>ating curve.<br />

The final System A Flowmaster model including the main<br />

differences from the standard approach is shown in Figure<br />

5.<br />

The results obtained with the new model were compared<br />

with the results obtained by the ADV (Air Ducts and<br />

Ventilation) department using a model based on the<br />

ASHRAE loss coefficient with appropriate corrections<br />

based on ex<strong>per</strong>ience and with the results obtained with a<br />

pure ASHRAE model (see Table 2). The reliability of each<br />

approach was evaluated through comparison with<br />

ex<strong>per</strong>imental data.<br />

Fig. 3 - K12 and K13 as a function of flow rate split for two different inlet flow rates, System A.


Fig. 4 - Loss coefficient curve for Bend Interaction.<br />

Fig. 5 - New System A Flowmaster model.<br />

Table 2 summarizes the results obtained for the enclosure<br />

pressure. Using the new approach we got a favorable level<br />

of approximation with respect to the measured value<br />

(error equal to 7%). The other two approaches yielded<br />

errors higher than 25%.<br />

Figure 6 shows for each model the load compartment<br />

velocity and the corresponding error from the measured<br />

value at clean filter house conditions. The measured mean<br />

velocity is 12.47 m/s.<br />

Both the new model and the modified ASHRAE model<br />

(ex<strong>per</strong>ience-based) led to a high level of agreement (error<br />

Discrete loss model<br />

(ASHRAE)<br />

Discrete loss model<br />

(Ex<strong>per</strong>ience based)<br />

New model<br />

(Flowmaster+CFD)<br />

Enclosure<br />

Pressure[mmH2O]<br />

Measured<br />

value[mmH2O]<br />

Error[%]<br />

54.40 43.0 26.5<br />

54.86 43.0 27.6<br />

40.00 43.0 -7.0<br />

Table 2: Enclosure pressure, clean filter house conditions, System A.<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 17<br />

lower than 5%). On the contrary, the pure ASHRAE model<br />

produced an error of 18%.<br />

Numerical calculations for System B<br />

Also for the System B split, several tests were <strong>per</strong>formed<br />

to determine the split loss coefficients for different<br />

o<strong>per</strong>ating conditions. Figure 7 shows K12 and K13 as a<br />

function of the split flow rate <strong>per</strong>centage between the GT<br />

and Load compartments for an inlet flow rate equal to<br />

70000 m 3<br />

/h (design flow rate). As one can see, both<br />

curves follow a linear trend.<br />

Similar to the System A model, the new<br />

System B Flowmaster model contains the<br />

loss coefficient curves obtained from CFD<br />

analyses (including the bend interaction<br />

curve) and the real fan o<strong>per</strong>ating curve.<br />

Finally, in order to better simulate the<br />

heat removal, the heat rejection was<br />

modeled as a function of the mass flow<br />

rate, in accordance with recent studies<br />

<strong>per</strong>formed by the SYS-OPT (System<br />

Optimization) department, that is:<br />

where:<br />

HR = heat rejection<br />

HR0 = reference heat rejection<br />

= mass flow rate<br />

0 = reference mass flow rate<br />

n = reference exponent<br />

The final System B Flowmaster model is shown in Figure 8.<br />

Figure 9 shows the GT and Load Compartment velocity<br />

obtained with the STD model (previous calculations) and<br />

the new model for dirty and clean filter house conditions.<br />

Fig. 6 - Load compartment velocity, clean filter house conditions, System A.


18 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

In both cases, the load<br />

compartment velocity obtained<br />

with the new approach is<br />

significantly higher than the old<br />

value (+49%). In particular, for<br />

the new approach, we got a split<br />

of 89-11% compared to a value of<br />

92.7-7.3% obtained from<br />

previous calculations.<br />

Considering that the target flow<br />

rate is 90-10%, the new approach<br />

again provides more accurate<br />

results.<br />

No significant variations between<br />

the two approaches in terms of<br />

enclosure pressure and<br />

tem<strong>per</strong>ature were found.<br />

Fig. 7 - K12 and K12 as a function of flow rate split, System B.<br />

Conclusions<br />

In this work, a combined 1D and<br />

3D numerical approach was<br />

adopted to study two GE<br />

ventilation systems. This<br />

approach, compared to the<br />

current one-dimensional<br />

approach, improves the<br />

simulation of the actual o<strong>per</strong>ating<br />

conditions in terms of inlet flow<br />

rate, duct velocity and enclosure<br />

pressure, as confirmed by the<br />

close agreement with ex<strong>per</strong>imental<br />

measurements.<br />

Among the benefits of using this new approach is the<br />

ability to characterize the flow behavior of complex<br />

fittings. This would be useful to support the redesign of<br />

fittings or for noise reduction analyses.<br />

Fig. 8 - New System B Flowmaster model.<br />

About GE Oil & Gas<br />

GE Oil & Gas (www.ge.com/oilandgas) is a world leader<br />

in advanced technology equipment and services for all<br />

segments of the oil and gas industry, from drilling and<br />

production, LNG, pipelines and storage, to industrial<br />

power generation, refining and petrochemicals. We<br />

also provide pipeline integrity solutions, including<br />

inspection and data management, and design and<br />

manufacture wire-line and drilling measurement<br />

solutions for the oilfield services segment. As part of<br />

our 'Innovation Now' customer focus and commitment,<br />

GE Oil & Gas exploits technological innovation from<br />

other GE businesses, such as Aviation and Healthcare,<br />

to continuously improve oil and gas industry<br />

<strong>per</strong>formance and productivity. GE Oil & Gas employs<br />

more than 12,000 people worldwide and o<strong>per</strong>ates in<br />

over 100 countries.<br />

References<br />

[1]Miller, D.S.: Internal Flow Systems; 2nd Edition, Miller<br />

Innovations, 2008<br />

[2]Idelchik I.E.: Handbook of hydraulic resistance, 3rd<br />

Edition, CRC Begell House, 1994<br />

[3]ASHRAE Duct Fitting Database, Version 2.5.0. ASHRAE<br />

L. Barbato, M. Blarasin, S. Rossin<br />

GE Oil & Gas,<br />

Via Felice Matteucci 2, Florence, Italy<br />

Figure 9 - GT and Load compartment velocity for STD and New approach,<br />

System B.


I still can remember the time when, looking at a 3D CAD<br />

model of an engine block, I would start thinking about the<br />

best way to translate it into a PREP7 procedure. I would<br />

come up with something to mesh, but the next time I<br />

would have to start from scratch again. In those times,<br />

beam representations in conjunction with SIFs were the<br />

best way to go with crankshafts. Other components<br />

required similar efforts.<br />

Things evolved in a continuous fashion, but a<br />

discontinuity came when ANSYS changed its face<br />

completely with Workbench. At first I thought that<br />

dealing with it would have been a dive into a bottomless<br />

ocean, just like the first time I met a CONTA174. But I’ve<br />

always been a fundamentalist when it comes to new CAE<br />

techniques, so I tried to move to WB as quickly as I could<br />

and to the maximum possible extent.<br />

And my way of working radically changed: geometry<br />

import and meshing issues sharply decreased, and past<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 19<br />

ANSYS WB and a review of the design<br />

metrics in Piaggio: the case of the<br />

motor shaft<br />

models could be used as templates for new, similar<br />

analyses. This last aspect evolved dramatically with the<br />

introduction of WB projects, where bunches of<br />

interconnected analyses form now real CAE procedures,<br />

laid down with nearly no effort.<br />

Such a case happened just a few weeks ago when I came<br />

up against a crankshaft simulation.<br />

I had to use WB both as stand-alone application and as<br />

part of a CAE chain, including MBS and durability<br />

analyses.<br />

The simulations I had to <strong>per</strong>form required both linear and<br />

nonlinear models, involving the simulation of neighboring<br />

components, in addition to the crankshaft pro<strong>per</strong>. WB<br />

allowed me to quickly setup a baseline model: DM fixed a<br />

few CAD issues and Mechanical Automatic Contact<br />

detection feature greatly speeded up the assembly setup.<br />

The CAD interface can sense CAD simplified<br />

representations, allowing to <strong>per</strong>form partial CAD imports,<br />

really useful when dealing with big CAD models.<br />

Generating all the other models I needed from the<br />

baseline one was really easy at a project level, duplicating<br />

when a different topology was needed and linking when<br />

only different load systems or different analysis types<br />

were required.<br />

That way, I could assess both the frictional load transfer<br />

capability and the fatigue <strong>per</strong>formance of the crankshaft<br />

assembly.<br />

For the former I used nonlinear models, exploiting the WB<br />

contact features, whose default settings are much more<br />

error-proof than navigating among all the keyoptions and


20 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

real constants of the good old CONTA family. I could check<br />

the functionality of friction couplings with both standard<br />

and custom postprocessing quantities. The latter are<br />

easily definable with the aid of another WB feature: the<br />

Worksheets.<br />

With them you have an overview of your modeling stages<br />

in a neat tabular form. You can check the pro<strong>per</strong>ties of the<br />

bodies included in an assembly, of the contact interfaces,<br />

or the available postprocessing quantities, to name a few.<br />

From a table you can jump to the relevant model element<br />

with a simple click. So Worksheets prove to be a nice tool<br />

to check what you’ve done.<br />

The fatigue analyses required the computation of<br />

load/stress transfer functions and of a Craig-Bampton<br />

modal representation [1]. The latter was calculated by<br />

means of a simple combination of rigid Remote<br />

Displacement features and of a Commands object: no more<br />

messing around with CERIGs, since WB did the job totally<br />

in the background.<br />

The results of the activity were not only fatigue safety<br />

factors and stress distributions; besides them, and above<br />

all, a neat trace of what I did has been left both at a<br />

Project and System level, in the WB jargon. The next time<br />

a similar component will have to be simulated, it will be<br />

an update process, not a generation one. Opening the WB<br />

project, the modeling procedure will be easily<br />

recognizable.<br />

In the past the CAE techniques had a hard time trying to<br />

be simultaneously fast and accurate; that slowed their<br />

integration into the development process of complex<br />

systems. I think that WB has been one of the major<br />

milestones in overcoming these problems, therefore<br />

allowing the simulations to be <strong>per</strong>ceived as standard and<br />

required activities.<br />

For more information:<br />

Roberto Gonella - <strong>EnginSoft</strong><br />

info@enginsoft.it<br />

[1]R.R. Craig, M.C.C. Bampton - Coupling of substructures<br />

for dynamic analyses - AIAA Journal,vol. 6, n.7, 1968


<strong>EnginSoft</strong><br />

interviews Ing.<br />

Paolo Nesti,<br />

Piaggio Group<br />

ABOUT THE PIAGGIO GROUP<br />

The Piaggio Group was founded in 1884 and nowadays<br />

is the European leader and one of the<br />

major players worldwide in the sector of twowheeler<br />

vehicles. The Group is also a global leader<br />

in the development and manufacture of<br />

commercial vehicles. The product range of the<br />

Piaggio Group includes scooters, motorbikes and<br />

motorcycles from 50 to 1,200 cc and the trademarks:<br />

Piaggio, Vespa, Gilera, Aprilia, Moto<br />

Guzzi, Derbi, Scarabeo. In the light commercial<br />

vehicle market, Piaggio is represented with its<br />

three- and four-wheeler vehicles and the trademarks: Ape,<br />

Porter and Quargo.<br />

The Group’s head office is based in Pontedera (in the province<br />

of Pisa, Italy). Since 2003, it is managed by the industrial<br />

holding Immsi S.p.A. Roberto Colaninno is the President and<br />

Managing Director of the Piaggio Group.<br />

The manufacturing plants are located in: Pontedera (Pisa),<br />

Noale and Scorzè (Venice), Mandello del Lario (Lecco),<br />

Martorelles (Barcelona, Spain), Baramati (India, in the<br />

Maharashtra nation), and Vinh Phuc (Vietnam).<br />

Furthermore, there is a joint venture in China (in Foshan, in<br />

the province of Guangdong). In 2009, the Piaggio Group sold<br />

607.700 vehicles worldwide: 410,300 two-wheeler vehicles<br />

and 197.400 commercial vehicles. Motorcycle racing is a very<br />

important business for the Piaggio Group. Some Piaggio<br />

models are well known for some world records: 95 world<br />

championships won in different fields and more than 500 victories<br />

in different competitions. Among the most successful<br />

brands is Aprilia. With its 45 global qualifications and 278<br />

wins in the GP, Aprilia is the most successful brand in the history<br />

of the GP Motorcycle Racing in Italy and Europe.<br />

The engineer Paolo Nesti graduated in Mechanical<br />

Engineering. Since 1988, the focus of his work has been on<br />

engines. Presently he is responsible for the design of engines<br />

and for computational systems at the Centro Tecnico<br />

Motori 2 Ruote of Pontedera. This Piaggio Group Center is<br />

dedicated to the development of two-wheeler vehicle power<br />

engines.<br />

1. What is or should be the role of innovation in the<br />

industrial and entrepreneurial world?<br />

Nowdays the market has enlarged itself and Global<br />

competition is our new work environment and we are not<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 21<br />

<strong>EnginSoft</strong><br />

intervista l’ing.<br />

Paolo Nesti del<br />

Gruppo Piaggio<br />

IL GRUPPO PIAGGIO: PROFILO<br />

Il Gruppo Piaggio, fondato nel 1884, è il più<br />

grande costruttore europeo e uno dei principali<br />

player mondiali nel settore dei veicoli motorizzati<br />

a due ruote. È inoltre protagonista internazionale<br />

nel settore dei veicoli commerciali.<br />

La gamma di prodotti del Gruppo comprende<br />

scooter, moto e ciclomotori da 50 a 1.200cc<br />

con i marchi Piaggio, Vespa, Gilera, Aprilia,<br />

Moto Guzzi, Derbi, Scarabeo, e veicoli commerciali<br />

leggeri a tre e quattro ruote con le gamme<br />

Ape, Porter e Quargo.<br />

Il Gruppo ha sede a Pontedera (Pisa, Italia) e dal 2003 è<br />

controllato da Immsi S.p.A., holding industriale facente capo<br />

a Roberto Colaninno, che ricopre la carica di Presidente<br />

e Amministratore Delegato del Gruppo Piaggio.<br />

Sul piano della produzione, il Gruppo Piaggio o<strong>per</strong>a nel<br />

mondo con una serie di stabilimenti situati a: Pontedera<br />

(Pisa), Noale e Scorzè (Venezia), Mandello del Lario<br />

(Lecco), Martorelles (Barcellona, Spagna); Baramati<br />

(India, nello stato del Maharashtra), Vinh Phuc (Vietnam).<br />

Il Gruppo Piaggio o<strong>per</strong>a inoltre con una società in joint venture<br />

in Cina (a Foshan, nella provincia del Guangdong). Il<br />

Gruppo Piaggio nel 2009 ha complessivamente venduto nel<br />

mondo 607.700 veicoli di cui 410.300 nel business due ruote<br />

e 197.400 nel business dei veicoli commerciali.<br />

Di grande rilievo, <strong>per</strong> la produzione motociclistica del<br />

Gruppo Piaggio, sono le attività racing. Il Gruppo vanta infatti,<br />

nel proprio portafoglio di brand, marchi facenti parte<br />

a pieno titolo della storia del motociclismo sportivo mondiale,<br />

con un palmarès complessivo di 95 campionati mondiali<br />

conquistati nelle varie specialità e oltre 500 vittorie<br />

nelle varie specialità. Tra i marchi del Gruppo, Aprilia con<br />

45 titoli mondiali e 278 vittorie nei G.P. è il marchio italiano<br />

e europeo più vincente nella storia del Motomondiale.<br />

L'ing Paolo Nesti è laureato in ing. Meccanica, in Piaggio<br />

dal 1988, si è sempre occupato di motori. Oggi è il responsabile<br />

della Progettazione Motori e Sistemi di Calcolo<br />

del Centro Tecnico Motori 2 Ruote di Pontedera, dove si<br />

sviluppano tutti i motopropulsori <strong>per</strong> i veicoli a 2 ruote<br />

del Gruppo.<br />

1. Che spazio ha (e dovrebbe avere) l’innovazione nel<br />

mondo industriale/impresariale?<br />

La competizione globale a cui siamo chiamati non può es-


22 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

able to win our challenge playing on the simple grounds of<br />

cost reduction. A large group like ours, which o<strong>per</strong>ates on<br />

all major world markets, must be in a position of<br />

competitive advantage based on providing products more<br />

attractive to the customer, most original, high quality: we<br />

can achieve this goal looking at the expressed and latent<br />

Customers requirements even if they are also extremely<br />

different from themselves because economic, lifestyle and<br />

consumption reasons: in a word, we absolutely must<br />

innovate. Only in this way we can create products that<br />

ensure profitable business of the Company. Our group was<br />

very clear this need.<br />

Finally in order to achieve this goal, anything but simple,<br />

we must put attention to the market, to extensive technical<br />

ex<strong>per</strong>tise often interdisciplinary, to ability to express and<br />

synthesize new solutions, to fast implementation of ideas<br />

into products, to process control and to organization.<br />

2. What are the strategies for innovation and quality<br />

assessments pushing innovation?<br />

In order to innovate the right prerequisites are the<br />

following ones:<br />

to be very knowledgeable about both the product and<br />

customer;<br />

to have the ex<strong>per</strong>tise on technology and product<br />

knowledge of the best competitors;<br />

to be ensure that the work environment is "creative",<br />

giving space to <strong>per</strong>sons who may contribute to the<br />

creation of ideas and having care to them encouraging<br />

their development aims by providing preferential<br />

channels for such projects.<br />

The MP3 version and Hybrid are strictly examples of this<br />

approach: the original idea was quickly passed to the<br />

development objective by providing our customers the best<br />

technology available on the market today (from a vehicle<br />

structure enhanced by a revolutionary hybrid engine based<br />

on a 4-stroke ie Euro3 with integrated management of the<br />

two engines, ride-by-wire, lithium batteries, plug-in<br />

without external power supply, electric reverse, etc.)…<br />

sere giocata sul semplice terreno della riduzione dei costi.<br />

Un grande Gruppo come il nostro, che o<strong>per</strong>a su tutti principali<br />

mercati mondiali, deve porsi in una posizione di<br />

vantaggio rispetto alla Concorrenza basandosi sull'offerta<br />

di prodotti più attraenti <strong>per</strong> il Cliente, più originali, di<br />

elevata qualità globale, intendendo con questo termine<br />

anche e soprattutto la rispondenza ai bisogni espressi o<br />

latenti di Clienti anche estremamente diversi tra di loro<br />

<strong>per</strong> esigenze, contesti economici, stili di vita e di consumo:<br />

in una parola, deve fare innovazione. Solo in questo<br />

modo potrà realizzare prodotti profittevoli che garantiscano<br />

l'attività dell'Azienda. Il nostro Gruppo ha ben chiara<br />

questa necessità.<br />

Per raggiungere questo obiettivo, tutt'altro che semplice,<br />

occorrono attenzione al mercato, vaste competenze tecniche<br />

spesso interdisciplinari, capacità di esprimere e sintetizzare<br />

nuove soluzioni, velocità nell'implementazione<br />

delle idee in prodotti, controllo dei processi ed organizzazione.<br />

2. Quali sono le strategie <strong>per</strong> essere innovativi e quali<br />

valutazioni spingono all’innovazione?<br />

Per poter fare innovazione bisogna prima di tutto essere<br />

profondi conoscitori sia del prodotto sia della clientela,<br />

avendo le competenze specifiche sulle tecnologie e la conoscenza<br />

dei prodotti dei migliori concorrenti; occorre poi<br />

far sì che l’ambiente di lavoro sia “creativo”, dando spazio<br />

alle <strong>per</strong>sone che possono contribuire alla nascita delle<br />

idee e favorendone lo sviluppo predisponendo canali<br />

preferenziali <strong>per</strong> tali progetti.<br />

L’MP3 prima e la versione Hybrid dopo sono un esempio di<br />

questo tipo di approccio: dall’idea originale si è passati in<br />

breve tempo allo sviluppo finalizzato, mettendo a disposizione<br />

dei clienti la miglior tecnologia disponibile ad oggi<br />

sul mercato (un veicolo dalla struttura rivoluzionaria<br />

impreziosito da un motore ibrido basato su un 4T i.e. Euro<br />

3, dotato di gestione integrata dei due propulsori, rideby-wire,<br />

batterie al litio, plug-in senza alimentatore esterno,<br />

retromarcia elettrica, etc.).<br />

3. Che ruolo ricoprono gli strumenti CAE e di prototipazione<br />

virtuale in tal senso?<br />

L'innovazione in campo industriale parte<br />

da un'idea che, attraverso stadi successivi<br />

di maturazione, si trasforma in<br />

uno o più prodotti che generano profitto<br />

<strong>per</strong> l'impresa. Questo processo non è<br />

spontaneo; passa bensì <strong>per</strong> una serie di<br />

verifiche ed eventuali correzioni, che<br />

determinano il tempo necessario <strong>per</strong><br />

passare da idea a profitto. È quindi cruciale<br />

che queste attività siano veloci<br />

senza <strong>per</strong>dere accuratezza; gli strumenti<br />

CAE contribuiscono ad accelerare il<br />

processo, consentendo di ridurre i cicli<br />

di s<strong>per</strong>imentazione fisica che richiedono<br />

notevole dispendio di tempo e quin-


3. What role do the CAE and virtual<br />

prototyping tools in this regard?<br />

Innovation in industry starts with an idea<br />

that, through successive stages of<br />

maturation, changes in one or more<br />

products that generate profits for the<br />

company. This process is not spontaneous,<br />

but it is composed by multiple checks and<br />

corrections, which determines the time it<br />

takes to go from idea to profit.<br />

Therefore it is crucial that these activities<br />

are fast without losing accuracy and the<br />

CAE tools help speed up the process,<br />

reducing, for example, the cycles of<br />

physical ex<strong>per</strong>imentation saving<br />

considerable time and therefore money.<br />

In the early stages of development of an innovative idea<br />

the checks mentioned above are possible only at a<br />

conceptual level, the details are not yet available for<br />

physical prototypes At this level the simulation is the only<br />

way to correct any abuses of the process of maturation.<br />

4. How user needs have changed in recent years?<br />

User requirements have been prompted by a significant<br />

level of integration of CAE techniques and actually these<br />

technologies are completely integrated in the process<br />

design of product development.<br />

It obviously implies that the complexity of the simulation<br />

increase and, at the same time, the numerical results should<br />

be produced in more little time; and it seems to be a<br />

paradoxical situation.<br />

CAE Users therefore need intensive tools interfaced with<br />

those used in other business areas such as CAD software and<br />

processing of ex<strong>per</strong>imental data, another requirement is the<br />

ability to simulate not only the separate components, but<br />

also systems to study the interactions between<br />

components. This work field requires software tools fast,<br />

robust and accurate, and hardware with the maximum<br />

possible power from various points of view (processors,<br />

RAM, CPU, etc.)… All these things are strictly necessary<br />

without ever losing sight of the overall objective and<br />

having clear theoretical principles that govern the software<br />

used.<br />

5. What are the advantages pointed out in his<br />

professional ex<strong>per</strong>ience and how has it changed its<br />

approach to the design/production?<br />

The advantages are actually well known to all actors<br />

(engineers, managers): first of all the savings in time and<br />

obviously money, having care to make virtual models (CAD,<br />

Multibody, FEM) analysis and CFD studies for engine<br />

<strong>per</strong>formance, analysis of cooling, etc…<br />

The primary purpose of this type of activity, but not the<br />

only one, is to minimize the construction of physical<br />

prototypes, thus avoiding the long series of validation<br />

tests, limiting this activity to a stage "ripe" for the project.<br />

The construction of prototypes takes place when the phase<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 23<br />

di di denaro. Nelle fasi precoci di elaborazione dell'idea<br />

innovativa le verifiche prima citate sono inoltre possibili<br />

solo a livello concettuale, non essendo ancora disponibili<br />

i dettagli <strong>per</strong> realizzare prototipi fisici: a questo livello la<br />

simulazione rappresenta l'unico strumento <strong>per</strong> correggere<br />

eventuali derive del processo di maturazione.<br />

4. Come sono cambiate le esigenze degli utilizzatori negli<br />

ultimi anni?<br />

Le esigenze degli utenti sono state indotte dal sensibile<br />

livello d'integrazione che le tecniche CAE hanno ottenuto<br />

nel processo di sviluppo dei prodotti. Questa circostanza<br />

ha richiesto e continua a richiedere simulazioni sempre<br />

più complesse e, sebbene questo possa sembrare paradossale,<br />

sempre più veloci. Gli utenti CAE hanno <strong>per</strong>ciò bisogno<br />

di strumenti fortemente interfacciati con quelli usati<br />

in altre aree aziendali, come i software CAD e di elaborazione<br />

dei dati s<strong>per</strong>imentali; un'altra esigenza è la possibilità<br />

di simulare non solo componenti isolati, ma anche sistemi,<br />

<strong>per</strong> studiare le interazioni fra componenti. Questo<br />

quadro richiede strumenti software veloci, robusti e accurati,<br />

e hardware con la massima potenza possibile sotto<br />

vari punti di vista (processori, memoria RAM, CPU, ecc.).<br />

Il tutto senza mai <strong>per</strong>dere di vista l’obiettivo globale ed<br />

avendo chiari i principi teorici che sovrintendono gli applicativi<br />

utilizzati.<br />

5. Quali vantaggi ha rilevato nella sua es<strong>per</strong>ienza professionale<br />

e come è cambiato il suo approccio alla progettazione/produzione?<br />

I vantaggi sono oramai noti a tutti: prima di tutto il risparmio<br />

di tempo e quindi di denaro facendo modelli virtuali<br />

(CAD, Multidody, FEM), analisi e studi CFD <strong>per</strong> le prestazioni<br />

dei motori, analisi di raffreddamento, etc.<br />

Lo scopo primario di questo tipo di attività, ma non il solo,<br />

è ridurre al minimo la costruzione di prototipi fisici<br />

evitando così la lunga serie di prove di validazione, limitando<br />

questa attività ad una fase “matura” del progetto.<br />

La costruzione dei prototipi avviene quando la fase di calcolo<br />

(e di ottimizzazione) è stata completata, riducendo<br />

così la probabilità di dover apportare costose correzioni


24 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

calculation (and optimization) has been completed, thus<br />

reducing the likelihood of having to make costly<br />

adjustments to physical parts.<br />

The second key issue concerns the quality of the project:<br />

using CAE tools intelligently, we can quickly arrive at a<br />

definition of optimal projects, thus laying the foundation<br />

for a quality product.<br />

The third aspect is rewarding management and sharing of<br />

information: in this development process, it is essential to<br />

share information in real time and records management, to<br />

speed up internal processes of decision, correction,<br />

approval, etc… and then once again reduce the risk of<br />

introducing errors.<br />

6. What was the contribution of <strong>EnginSoft</strong> and how it has<br />

helped to enhance quality, capability and capacity of its<br />

industry/company?<br />

<strong>EnginSoft</strong> was invaluable in training, both basic and<br />

learning new software, even with the help of TCN. Basic<br />

education is key to preventing senseless and unconscious<br />

use of CAE tools: a real risk because of the simplicity and<br />

widespread use of software that claims to be based on<br />

complex theoretical apparatus.<br />

<strong>EnginSoft</strong> has also played and still plays a vital role in the<br />

innovation process, enabling access to technical and<br />

software embedded in a significant way with other<br />

development activities, and promoting effective networking<br />

among users, for example conferences and meetings with<br />

the resonance increasing year after year.<br />

7. What prospects he sees for the calculation codes in<br />

relation to the challenges of the future?<br />

It 'is now widely believed that competitive, if not survival,<br />

of different firms in the Old Continent and in the western<br />

world, in general, must be based on knowledge and<br />

innovation content of the products: the old standards of<br />

competitiveness are indeed falling down because the real<br />

big power of the new countries and these new ‘world’ will<br />

become strong players in the world economy. The<br />

instruments that promote the enrichment of science and<br />

technology products are becoming so indispensable to be<br />

su pezzi fisici. Il secondo aspetto fondamentale riguarda<br />

la qualità del progetto: utilizzando con intelligenza gli<br />

strumenti CAE, si può arrivare rapidamente ad una definizione<br />

ottimale dei progetti, ponendo così le basi <strong>per</strong> un<br />

prodotto di qualità.<br />

Il terzo aspetto premiante è la gestione e la condivisione<br />

delle informazioni: in questo processo di sviluppo è fondamentale<br />

la condivisione delle informazioni in tempo<br />

reale e la gestione della documentazione <strong>per</strong> velocizzare i<br />

processi interni di decisione, correzione, approvazione,<br />

etc. e quindi ridurre ancora una volta i rischi di introdurre<br />

errori.<br />

6. Qual è stato il contributo di <strong>EnginSoft</strong> e in che modo<br />

ha saputo valorizzare qualità, potenzialità e capacità<br />

della sua industria/impresa?<br />

<strong>EnginSoft</strong> è stata preziosa nel campo della formazione, sia<br />

a livello base che di apprendimento di nuovi software, anche<br />

con il contributo di TCN. La formazione di base è fondamentale<br />

<strong>per</strong> evitare usi scriteriati e inconsapevoli degli<br />

strumenti CAE: rischio concreto e diffuso a causa della<br />

semplicità d'uso di software che pure si basano su apparati<br />

teorici complessi.<br />

Enginsoft ha inoltre rico<strong>per</strong>to e tuttora ricopre un ruolo<br />

basilare nell'ambito dell'innovazione di processo, rendendo<br />

possibile l'accesso a tecniche e software integrabili in<br />

modo significativo con le altre attività di sviluppo, e promuovendo<br />

con efficacia il networking fra utenti, <strong>per</strong><br />

esempio con conferenze e incontri di risonanza crescente<br />

anno dopo anno.<br />

7. Che prospettive intravede <strong>per</strong> i codici di calcolo in relazione<br />

alle sfide poste dal futuro?<br />

È ormai convinzione diffusa che la competitività, se non<br />

la sopravvivenza, delle imprese del Vecchio Continente e<br />

del mondo occidentale in genere dovrà poggiare sulla conoscenza<br />

e sul contenuto innovativo dei prodotti; i vecchi<br />

canoni di competitività si stanno infatti sfaldando di<br />

fronte ai paesi che sono divenuti protagonisti dell'economia<br />

mondiale. Gli strumenti che favoriscono l'arricchimento<br />

scientifico e tecnologico dei prodotti stanno divenendo<br />

<strong>per</strong>ciò indispensabili <strong>per</strong> riuscire a rimanere<br />

nel mercato; i codici di calcolo<br />

appartengono a tale categoria ed è <strong>per</strong>ciò<br />

prevedibile che la loro evoluzione da<br />

prodotti di nicchia a strumenti di uso<br />

corrente si completi nei prossimi anni,<br />

accompagnata dall'accelerazione della<br />

loro potenza ed efficienza, resa possibile<br />

dall'analoga tendenza in campo hardware.<br />

8. Quali progetti, obiettivi e nuovi traguardi<br />

intende <strong>per</strong>seguire grazie all’uso<br />

di questi strumenti?<br />

Ritengo che nel medio termine non si verificheranno<br />

cambiamenti sostanziali nel-


able to stay in the market, the<br />

computer codes belong to this category<br />

and it is therefore like absolutely sure<br />

that their evolution from niche<br />

products to use current tools will be<br />

completed in the nextg years, and it<br />

will be accompanied by the<br />

acceleration of their power and<br />

efficiency, and it will be made possible<br />

from the analogous trend in the field<br />

hardware.<br />

8. What plans, objectives and new<br />

goals will be pursued through the use<br />

of these tools?<br />

I believe that in the medium term there<br />

will be no substantial changes in the use of CAE tools in<br />

Piaggio; during trouble-shooting in phase its usage has<br />

become a minority compared to the prediction, and it is<br />

evident that the products are developed today with growing<br />

contribution of the simulations.<br />

To predict the spread of multi-disciplinary optimization<br />

techniques will be Piaggio road map in this area, and the<br />

integration between CAE tools available today from various<br />

related subjects could push this design-way just as it<br />

happens between fluid dynamics and mechanics cold<br />

thematic.<br />

The number of ex<strong>per</strong>imental procedures for the qualification<br />

and a relative fee CAE activity will increase in the next<br />

future, so that physical tests will be conducted on<br />

prototypes already developed and optimized in terms of<br />

simulation, thereby increasing the likelihood of success of<br />

the test.<br />

In general, the use of CAE techniques will "dominate" more<br />

and more products in the sense that you can know more<br />

deeply the physical behavior, with clear benefits in terms of<br />

quality and reliability.<br />

9. And what we hope for the world of scientific<br />

technology to the continuing search for a dimension of<br />

creativity and competitiveness?<br />

The synthesis between creativity and competitiveness gets<br />

through the tools that technology provides. The task of<br />

scientific technology is just to make simple evaluations and<br />

complex activities that hinder the creativity of the people,<br />

thus removing the obstacles that typically prevent you from<br />

looking up to new ideas. It will be increasingly necessary to<br />

have integrated multidisciplinary tools, in order to further<br />

improve the aspects that are now viewed individually.<br />

Optimizers, being able to interact with different<br />

disciplinary tools, they have a high development potential<br />

that any company can develop applications specifically for<br />

doing their business. Also in this area Piaggio has already<br />

made some ex<strong>per</strong>iences and others are being set<br />

(modeFRONTIER and application specific simulation engine)<br />

to maximize engine <strong>per</strong>formance and reduce development<br />

time for new products.<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 25<br />

l’uso degli strumenti CAE in Piaggio: l'uso in fase troubleshooting<br />

è divenuto minoritario rispetto a quello predittivo,<br />

indicando che i prodotti vengono sviluppati oggi con<br />

contributo crescente da parte delle simulazioni.<br />

Prevedo <strong>per</strong> Piaggio una diffusione delle tecniche di ottimizzazione<br />

multi-disciplinare, favorita dall'integrazione<br />

spinta oggi disponibile fra strumenti CAE afferenti da diverse<br />

materie, come ad esempio la fluidodinamica e la<br />

meccanica fredda.<br />

Aumenterà il numero di procedure di qualifica s<strong>per</strong>imentale<br />

con un corrispettivo CAE, in modo che i test fisici siano<br />

condotti su prototipi già studiati e ottimizzati a livello<br />

di simulazione, aumentando così la probabilità di successo<br />

della prova.<br />

In generale, l'uso delle tecniche CAE consentirà di "dominare"<br />

sempre più i prodotti, nel senso che sarà possibile<br />

conoscerne sempre più a fondo il comportamento fisico,<br />

con evidenti benefici in termini di qualità ed affidabilità.<br />

9. E cosa si auspica <strong>per</strong> il mondo della tecnologia scientifica<br />

alla continua ricerca di una dimensione tra creatività<br />

e competitività?<br />

La sintesi tra creatività e competitività passa proprio attraverso<br />

gli strumenti che la tecnologia mette a disposizione.<br />

Compito della tecnologia scientifica è appunto<br />

quello di rendere semplici le valutazioni e le attività complesse<br />

che ostacolano la creatività delle <strong>per</strong>sone, rimuovendo<br />

così gli ostacoli che tipicamente impediscono di alzare<br />

lo sguardo verso nuove idee. Sarà sempre più necessario<br />

avere strumenti multidisciplinari integrati, <strong>per</strong> poter<br />

migliorare ancora gli aspetti che ora sono visti singolarmente.<br />

Gli ottimizzatori, potendo interagire con diversi strumenti<br />

multidisciplinari, hanno un elevato potenziale di sviluppo<br />

che ogni azienda può sviluppare facendo applicazioni<br />

ad hoc <strong>per</strong> le proprie attività. Anche in questo settore<br />

Piaggio ha fatto già alcune es<strong>per</strong>ienze e altre sono in corso<br />

di impostazione (modeFRONTIER e applicativi specifici<br />

di simulazione motore) <strong>per</strong> massimizzare le prestazioni dei<br />

motori e <strong>per</strong> ridurre il tempo di sviluppo dei nuovi prodotti.


26 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

modeFRONTIER Used in the Design of<br />

Fatigue-Resistant Notches<br />

Fig. 1 - Researchers at Trinity College Dublin used modeFRONTIER<br />

in the Design of Fatigue-Resistant Notches<br />

Researchers at Trinity College Dublin in Ireland have used<br />

modeFRONTIER (mF) software to reduce stress<br />

concentration effects of notches and thus significantly<br />

improve the fatigue resistance of components. Many<br />

engineering components contain features such as notches<br />

and fillets, which are usually designed with a constant<br />

radius of curvature.<br />

However it has long been known that this is not the best<br />

solution.<br />

Variable-radius notches, in which the radius of curvature<br />

changes with position along the notch, can achieve much<br />

lower stress concentration factors with negligible change<br />

in the weight or size of the component. Nature has<br />

Fig. 2 - Finite element analysis of a variable-radius fillet in a bracket<br />

component.<br />

evolved variable-radius notches in trees, bones, etc; the<br />

German engineer Claus Mattheck showed that similar<br />

concepts could be applied to engineering structures.<br />

Professor David Taylor at Trinity College Dublin in Ireland<br />

wondered whether the variable-radius notch could be<br />

treated as an optimisation problem, and decided to use<br />

mF to solve it. Working with Matteo Toso and Professor<br />

Luca Susmel of the University of Ferrara in Italy, they<br />

considered the problem of a 90° fillet and used mF to seek<br />

for solutions within a design space consisting of different<br />

variable-radius fillets. They were able to find solutions<br />

better than those previously obtained using other<br />

methods, achieving reductions in the maximum stress of<br />

more than a factor of two.<br />

Ex<strong>per</strong>imental work conducted on steel samples showed<br />

that these predicted reductions translated exactly into<br />

real improvements in the fatigue strength of the<br />

components. Reductions in stress concentration factors<br />

can be highly beneficial, allowing designers to save<br />

weight, with consequent reductions in energy and material<br />

costs, without sacrificing reliability. The approach<br />

developed at Trinity College could be automated for use in<br />

industrial design, using mF in conjunction with FEM, to<br />

achieve real improvements in components of the future.<br />

Prof. David Taylor M.R.I.A.,<br />

Mechanical Engineering, Trinity College Dublin<br />

For more information, please contact:<br />

Professor David Taylor, DTAYLOR@tcd.ie<br />

Department of Mechanical and<br />

Manufacturing Engineering<br />

The Department of Mechanical and Manufacturing<br />

Engineering undertakes research in a number of<br />

selected themes, including; Bioengineering, Fracture<br />

and Fatigue of Materials, Fluids, Acoustics and<br />

Vibration, Fluids and Heat Transfer, Manufacturing<br />

Technology and Systems, and Tribology and Surface<br />

Engineering.<br />

http://www.tcd.ie/mecheng/research/


A Multi-Objective Optimization with<br />

Open Source Software<br />

Sometimes it happens that a small-to-medium sized firm<br />

does not benefit from the advantages that could be<br />

achieved through the use of virtual simulation and<br />

optimization techniques. This represents in many cases a<br />

great limitation in the innovation of products and<br />

processes, and this can lead, in a very short time, to a<br />

complete exclusion from the market and to an inevitable<br />

end.<br />

Nowadays, it is mandatory to reduce as much as possible<br />

the time-to-market, while always improving the quality of<br />

products and satisfying the customer needs better that<br />

the competitors. In some fields it is a question of “life or<br />

death”.<br />

According to our opinion, the main reasons that limit or,<br />

in the worst case, make impossible the use of the virtual<br />

simulation and optimization techniques can be grouped<br />

into three categories:<br />

1. These techniques are not yet sufficiently known and<br />

the possible users do not have a great confidence in<br />

the results. Sometimes physical ex<strong>per</strong>imentation,<br />

guided by ex<strong>per</strong>ience maturated through many years of<br />

practice, is thought to be the only possible way to<br />

proceed. This is actually wrong in the great majority of<br />

cases, especially when new problems have to be<br />

solved. A change of vision is the most difficult but<br />

essential step to take in this context.<br />

License<br />

Development<br />

Rough Phase Fine Phase<br />

Many possibilities are<br />

available<br />

Continuous improvement<br />

and a clear guideline<br />

Available features State of the art<br />

Technical support<br />

Usability<br />

Usually the distributor<br />

offers a technical support<br />

Easy-to-use and smart<br />

GUIs<br />

Customization Only in some cases<br />

GNU license largely used or similar<br />

versions with some restrictions<br />

Left to the community<br />

It strongly depends on “who” leads<br />

the development. Sometimes, very<br />

advanced<br />

features can be available.<br />

Usually no support is available but<br />

in some cases forums can help<br />

Some effort could be required to<br />

the user<br />

If the source code is available the<br />

possibility of customization and<br />

development is complete<br />

Table 1: The table compares some key features that characterize commercial<br />

and open source software, according to our opinion.<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 27<br />

2. Adequate hardware facilities considered necessary to<br />

<strong>per</strong>form an optimization are not available and<br />

therefore the design time becomes too long. We are<br />

convinced that, in many cases, common <strong>per</strong>sonal<br />

computers are enough to efficiently solve a large<br />

variety of engineering problems. So, this second point,<br />

which is often seen as an enormous obstacle, has to be<br />

considerably downsized.<br />

3. The simulation software licenses are much too<br />

expensive given the firm’s financial resources. Even<br />

though the large majority of commercial software<br />

houses offer a low-cost first entry license, it is not<br />

always immediately evident that these technologies<br />

are not just an expense, but rather a good investment.<br />

As briefly stated above, the second point often does not<br />

represent a real problem; the most important obstacle is<br />

summarized in the first point. People actually find it hard<br />

to leave a well-established procedure, even if obsolete, for<br />

a new one which requires a change in the everyday way of<br />

working. The problem listed in the third point can be<br />

solved, when possible, by using open source (see [1]),<br />

free and also home-made software. It is possible to find,<br />

with an accurate search on internet, many simulation<br />

software systems which are freely distributed by the<br />

authors (under GNU license in many cases). Some of them<br />

also exhibit significant features that usually are thought<br />

to be exclusive to commercial software.<br />

As usual, when adopting a new technology, it is<br />

recommended to consider both the advantages and the<br />

disadvantages. We have compared in Table 1 some aspects<br />

that characterize the commercial and the open source<br />

codes which should be considered before adopting a new<br />

technology.<br />

Open source codes are usually developed and maintained<br />

by researchers; contributions are also provided by<br />

advanced users all over the world or by people who are<br />

supported by research projects or public institutions, such<br />

as universities or research centers. Unfortunately, this can<br />

lead to a discontinuous improvement, not driven by a<br />

clear guideline, but rather left to the free contributions<br />

given by the community. On the contrary, commercial<br />

software houses drive the development according to wellknown<br />

roadmaps which generally reflect specific industry<br />

trends and needs.<br />

Commercial software is usually “plug-and-play”: the user<br />

has just to install the package and start using it. On the<br />

contrary - but not always - open source software could


28 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

require some skill and effort in<br />

compiling the code or adapting a<br />

package to a specific system<br />

configuration.<br />

Software houses usually offer to the<br />

customer technical support, which<br />

can be, in some cases, really helpful<br />

to make the investment profitable. An<br />

internet forum, when it exists, is the<br />

only way to have support for a user of<br />

an open source code.<br />

Another important issue is the<br />

usability of the simulation software,<br />

which is mainly given by a userfriendly<br />

graphical interface (often<br />

referred to as GUI). The commercial<br />

software usually has sophisticated<br />

graphical tools that allow the user to<br />

easily manage and explore large<br />

models in an easy and smart way; the<br />

open source codes rarely offer a similar suite of tools, but<br />

they have simpler and less easy-to-use graphical<br />

interfaces.<br />

The different magnitude of the investment can explain all<br />

these differences between the commercial and open<br />

source codes.<br />

However, there are some issues that can make the use of<br />

a free software absolutely profitable, even in an industrial<br />

context. Firstly, no license is needed to run simulations:<br />

in other words, no money is needed to access the virtual<br />

simulation world. Secondly, the use of open source<br />

software allows to break all the undesired links with third<br />

party software houses and their destiny. Third, the number<br />

of simultaneous runs that can be launched is not limited,<br />

and this could be extremely important when <strong>per</strong>forming<br />

an optimization process. Last, but not least, if the source<br />

code is available all sorts of customizations are in<br />

principle possible.<br />

The results of a structural optimization, <strong>per</strong>formed using<br />

Plate thickness [mm] Plate max dimensions [m] Available steel codes<br />

20<br />

30<br />

Vertical


Fig. 3 - A possible version of the C-shaped plate meshed in Gmsh.<br />

Fig. 4 - The CalculiX GraphiX window, where the von Mises stress for the Cshaped<br />

plate is plotted.<br />

not of practical interest, if it requires a steel characterized<br />

by a yield limit greater that 600 [MPa].<br />

For this reason all the requirements collected in Tables 2<br />

and 3 have been included in order to drive the<br />

optimization algorithm to feasible and interesting<br />

solutions.<br />

Moreover, it is required that the hollow in the plate (H2max(R1,R2)<br />

x V2, see Figure 2) is at least 500 x 500 [mm]<br />

to allow the positioning of the transversal plates and the<br />

hydraulic cylinder.<br />

Another technical requisite is that the maximum vertical<br />

displacement is less than 5 [mm] to avoid excessive<br />

misalignments between the cylinder axis and the structure<br />

under the usual o<strong>per</strong>ating conditions. This limit has been<br />

chosen arbitrarily, in the attempt to exclude the designs<br />

that are not sufficiently stiff, taking into account,<br />

however, that the C-plate is a part of a more complex real<br />

structure which will be much more stiff than what is<br />

calculated with this simple model.<br />

A designer should recognize that the solution of such a<br />

problem is not exactly trivial. Firstly, it is not easy to find<br />

a configuration which is able to satisfy all the requisites<br />

listed above; secondly, it is rather challenging to obtain a<br />

design that minimizes both the volume of the plate (the<br />

weight) and the production cost.<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 29<br />

The open source software for the<br />

structural analysis<br />

Gmsh has been used as a preprocessor to manage<br />

the parametric geometry of the C-shaped plate and<br />

mesh it in batch mode. Gmsh has the ability to mesh<br />

a non-regular geometry using triangular elements;<br />

many controls are available to efficiently define the<br />

typical element dimension, the refinement depth<br />

and more. It is a very powerful software tool which<br />

is also able to manage complicated threedimensional<br />

geometries and efficiently mesh them<br />

using a rich element library.<br />

The mesh can be exported in a formatted text file<br />

where the nodes and the element connectivities are<br />

listed together with some useful information related<br />

to the so-called physical entities, previously defined<br />

by the user; this information can be used to correctly<br />

apply, for example, boundary conditions, domain<br />

pro<strong>per</strong>ties and loads to a future finite element model.<br />

The CalculiX finite element software has been used to<br />

solve the linear elastic problem. Also in this case a batch<br />

run is available; among the many interesting features that<br />

this software offers are the easy input text format, and the<br />

ability to <strong>per</strong>form both linear and non-linear static and<br />

dynamic analyses.<br />

CalculiX also offers a pre and post processing<br />

environment, called CalculiX GraphiX, which can be used<br />

to prepare quite complicated models and, above all,<br />

display results.<br />

These two software tools are both well documented and<br />

also some useful examples are provided for new users. The<br />

input and output formats are, in both cases, easy to<br />

understand and manage.<br />

In order to make the use of these tools completely<br />

automatic, it is necessary to write a procedure that<br />

translates the mesh output file produced by Gmsh into an<br />

input file readable by CalculiX. This translation is a<br />

relatively simple o<strong>per</strong>ation and it can be <strong>per</strong>formed<br />

without a great effort using a variety of programming<br />

languages; a text file has to be read, some information<br />

has to be captured and then rewritten into a text file<br />

using some simple rules. For this, a simple executable file<br />

(named translate.exe) has been compiled and it will be<br />

launched whenever necessary.<br />

A similar o<strong>per</strong>ation has also to be <strong>per</strong>formed in an<br />

optimization context to extract the interesting quantities<br />

from the CalculiX result file and rewrite them into a<br />

compact and accessible text file.<br />

As before, an executable file (named read.exe) has been<br />

produced to read the .dat results file and write the<br />

volume, the maximum vertical displacement and the nodal<br />

von Mises stress corresponding to a given design into a<br />

file named results.out.<br />

Many other open source software codes are available, both<br />

for the model setup and for its solution. Also for the<br />

results visualization, there are many free tools with<br />

powerful features. For this reason the interested reader


30 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

can imagine the use of other<br />

tools to solve this problem in an<br />

efficient way.<br />

The optimization process driven<br />

by Scilab<br />

The genetic algorithm toolbox, by<br />

Yan Collette, is available in the<br />

standard installation of Scilab<br />

and it can be used to solve the<br />

multi-objective optimization<br />

problem described above. This<br />

toolbox is composed of some<br />

Design<br />

name<br />

H1<br />

[mm]<br />

H2<br />

[mm]<br />

V1<br />

[mm]<br />

V2<br />

[mm]<br />

Variable<br />

Lower bound<br />

[mm]<br />

routines which implement both a MOGA and a NSGA2<br />

algorithm and also a version for the o<strong>per</strong>ations that have<br />

been <strong>per</strong>formed when running a genetic algorithm, that is<br />

the encoding, the crossover, the mutation and the<br />

selection.<br />

Up<strong>per</strong> bound<br />

[mm]<br />

Step<br />

[mm]<br />

H1 250 150. 5<br />

H2 500 1500 5<br />

V1 250 1500 5<br />

V2 500 1500 5<br />

V3 250 1500 5<br />

R1 50 225 5<br />

R2 50 225 5<br />

TH 20 50 10<br />

Table 4: The lower and up<strong>per</strong> bounds together with the<br />

step for the input variables.<br />

V3<br />

[mm]<br />

R1<br />

[mm]<br />

R2<br />

[mm]<br />

TH<br />

[mm]<br />

Cost<br />

[$]<br />

max vM<br />

stress<br />

[MPa]<br />

max vertical<br />

displacement<br />

[mm]<br />

These routines are extremely flexible<br />

and they can be modified by the user<br />

according to his or her own needs,<br />

since the source code is available. This<br />

is exactly what we have done,<br />

modifying the optim_moga.sci script to<br />

handle the constraints (with a penalty<br />

approach) and manage the infeasible<br />

designs efficiently (i.e.: all the<br />

configurations which cannot be<br />

computed); we have then redefined the<br />

coding_ga_binary.sci to allow the<br />

discretization of the input variables as<br />

Volume<br />

[mm 3<br />

]<br />

A 670 665 575 500 490 165 110 20 1304 577.7 4.93 3.53 10 7<br />

B 1155 695 725 545 840 185 165 30 1097 199.8 1.73 1.06 10 8<br />

Table 5: The optimal solutions.<br />

Fig. 5 - The Cost of the computed configurations can be plotted versus the Volume. Red points stand for the feasible<br />

configurations while the blue plus indicates the configurations that do not respect one constraint at least.<br />

The two green squares are the Pareto (optimal) solutions (A and B in Table 5).<br />

Fig. 6 - The vertical displacement for the design A. Fig.7 - The von Mises stress for the design A.<br />

listed in Table 4. Other<br />

small changes have been<br />

made to the routines to<br />

<strong>per</strong>form some marginal<br />

o<strong>per</strong>ations, such as writing<br />

partial results to a file.<br />

When the genetic algorithm<br />

requires the evaluation of a<br />

given configuration, we run a Scilab script which is<br />

charged to prepare all the text files needed to <strong>per</strong>form the<br />

run and then launch the software (Gmsh, CalculiX and the<br />

other executables) through a call to the system in the<br />

right order. The script finally loads the results needed by<br />

the optimization.<br />

It is important to highlight<br />

that this script can be easily<br />

changed to launch other<br />

software tools or <strong>per</strong>form other<br />

o<strong>per</strong>ations whenever necessary.<br />

In our case, eight input<br />

variables are sufficient to<br />

completely parameterize the<br />

geometry of the plate (see<br />

Figure 2): the lower and up<strong>per</strong><br />

bounds together with the steps<br />

are collected in Table 4. Note<br />

that the lower bound of<br />

variable V2 has been set to 500<br />

[mm], in order to satisfy the<br />

constraint on the minimal<br />

vertical dimension required for<br />

the hollow.<br />

We can use a rich initial<br />

population, (200 designs<br />

randomly generated),<br />

considering the fact that a high<br />

number of them will violate the<br />

imposed constraints, or worse,<br />

be unfeasible. The following<br />

generations will however<br />

consist of only 50 designs, to<br />

limit the optimization time.


After 50 generations we obtain<br />

the results plotted in Figure 5<br />

and Table 5, where the two<br />

Pareto (optimal) solutions are<br />

collected. We finally decided to<br />

choose, between the two<br />

optimal ones, the configuration<br />

with the lowest volume (named<br />

as “A” in Table 5).<br />

In Figures 6 and 7 the vertical<br />

displacement and the von Mises<br />

stress are plotted for the<br />

optimal configuration named<br />

“A” (see Table 5). Note that<br />

during the optimization, the maximum value of the von<br />

Mises stress computed in the finite element Gauss points<br />

has been used, while in Figure 7 the von Mises stress<br />

extrapolated by CalculiX to the mesh nodes is plotted; this<br />

is the reason why the maximum values are different.<br />

However, they are both less than the yield limit<br />

corresponding to the steel type C, as reported in Table 3.<br />

Horizontal and vertical<br />

length of cuts starting<br />

from corners [mm]<br />

Cost<br />

[$]<br />

Fig. 8 - The vertical displacement for the modified<br />

design.<br />

max vM<br />

stress<br />

[MPa]<br />

max Vertical<br />

displacement<br />

[mm]<br />

Volume<br />

[mm 3<br />

]<br />

H1/3 1304 581.3 4.80 3.33 10 7<br />

Table 6: The modified design. It can be seen that there is an interesting<br />

reduction in the volume with respect to the original design, the “A” configuration<br />

in Table 5. Other output quantities do not present significant variations.<br />

Another interesting consideration is that the Pareto front<br />

in our case consists of just two designs: this shows that<br />

the solution of this optimization problem is far from<br />

trivial.<br />

The design of the C-shaped plate can be further improved.<br />

If we run other generations with the optimization<br />

algorithm better solutions could probably be found, but<br />

we feel that the improvements that might be obtained in<br />

this way do not justify additional computations.<br />

Substantial improvements can be achieved in another way.<br />

Actually, if we look at the von Mises stress distribution<br />

drawn in Figure 7 we note that the corners of the plate do<br />

not have a very high stress level and that they should not<br />

influence the structural behavior very much.<br />

A new design can be tested, cutting the corners of the<br />

plate; for the sake of simplicity we decided to use four<br />

equal cuts of horizontal and vertical dimensions equal to<br />

H1/3, starting from the corners. The results are drawn in<br />

Figures 8 and 9, which can be compared with Figures 6<br />

and 7.<br />

As expected, there is a reduction in volume with respect<br />

to the original design, but no significant variations are<br />

registered in the other outputs. This corroborates the idea<br />

that the cut dimensions can be excluded from the set of<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 31<br />

Fig. 9 - The von Mises stress for the modified design.<br />

input variables, since the output does not strongly<br />

dependent on them, and this leads to a simpler<br />

optimization problem.<br />

The cost does not change; actually it represents the cost<br />

of the rectangular plate needed to produce the C-shaped<br />

profile.<br />

Other configurations with a lower volume can be probably<br />

found with some other runs; however, the reader has to<br />

consider that these improvements are not really<br />

significant in an industrial context, where, probably, it is<br />

much more important to find optimal solutions in a very<br />

short time.<br />

Conclusions<br />

In this work it has been shown how it is possible to use<br />

open source software to solve a non-trivial structural<br />

optimization problem.<br />

Some aspects which characterize the commercial and the<br />

open source software have been stressed in order to help<br />

the reader to make his or her own best choice. We are<br />

convinced that there is not a single right solution but<br />

rather that the best solution has to be found for each<br />

situation.<br />

Whichever the choice, the hope is that virtual simulation<br />

and optimization techniques are used to innovate.<br />

References<br />

[1]Visit http://www.opensource.org/ to have more<br />

information on open source software<br />

[2]Scilab can be freely downloaded from:<br />

http://www.scilab.org/<br />

[3]Gmsh can be freely downloaded from:<br />

http://www.geuz.org/gmsh/<br />

[4]Calculix can be freely downloaded from:<br />

http://www.calculix.de/<br />

Contacts<br />

For more information on this document please contact the<br />

author:<br />

Massimiliano Margonari - Enginsoft S.p.A.<br />

info@enginsoft.it


32 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

ANSYS 13: Il punto sui solutori <strong>per</strong><br />

modelli di grandi dimensioni nelle<br />

simulazioni meccaniche<br />

Una delle grandi sfide <strong>per</strong> i software di simulazione basati sul<br />

metodo degli elementi finiti è l’efficienza nel trattare modelli<br />

di grandi dimensioni, e quindi:<br />

di conservare i dettagli presenti nei modelli CAD;<br />

di avere risultati accurati;<br />

di disporre di algoritmi veloci e robusti <strong>per</strong> la meshatura;<br />

di disporre di CPU sia su desktop che su cluster.<br />

In particolare è sempre più vero che il costo della CPU è inferiore<br />

al costo uomo, e cioè che, in presenza di algoritmi affidabili<br />

<strong>per</strong> la meshatura di modelli di grandi dimensioni,<br />

conviene ricorrere a questi piuttosto che svolgere un pesante<br />

lavoro di “defeaturing” e di meshatura semiautomatica.<br />

All’aspetto dei costi si affianca - ed è più importante di questo<br />

- l’aspetto dell’affidabilità dei risultati. Esso dipende in<br />

larga parte dalla qualità del modello e quindi anche della<br />

mesh.<br />

La release 13 del codice ANSYS Mechanical offre una risposta<br />

molto convincente a questi problemi, trattati in ottica industriale.<br />

Infatti:<br />

orienta all’High Performance Computing consentendo<br />

l’uso di CPU diverse;<br />

produce modelli schematizzati automaticamente in<br />

maniera adeguata;<br />

contiene acceleratori specifici.<br />

La novità della release R13 di ANSYS, infatti sta nel sa<strong>per</strong><br />

adattare il nuovo paradigma di processamento del calcolo <strong>per</strong><br />

via numerica nel campo delle applicazioni meccaniche. Nel<br />

passato infatti l’elaborazione numerica è sempre stata assegnata<br />

alle potenzialità della CPU in una architettura in cui la<br />

CPU svolgeva un ruolo centralizzato. Oggi, invece, i principali<br />

produttori di schede grafiche hanno messo a punto nuove<br />

architetture che <strong>per</strong>mettono incrementi consistenti delle prestazioni<br />

grafiche: la novità sta nella capacità di sfruttare il<br />

gran numero di ALU (Arithmetic Logic Unit) <strong>per</strong> eseguire algoritmi<br />

in parallelo. Seguendo la comparsa nel tempo di queste<br />

soluzioni si può far riferimento alle schede progettate da<br />

nVIDIA con tecnologia CUDA e dalla ATI con tecnologia<br />

STREAM.<br />

ANSYS a sua volta ha sviluppato algoritmi paralleli che eseguono<br />

calcoli in doppia precisione sfruttando le risorse relative<br />

alla tecnologia “GPU based”.<br />

In generale e <strong>per</strong> comprendere l’attenzione dedicata da<br />

ANSYS al problema di accelerare l’analisi si può far riferimento<br />

anche alle tecnologie disponibili nelle precedenti versioni.<br />

Queste tecnologie, del resto, sono state rese ancora più<br />

efficaci nell’ambito degli aggiornamenti sviluppati da ANSYS.<br />

Si richiamano:<br />

SMP (Shared memory Processing), tecnologia consistente in<br />

un’architettura di più CPU che condividono la stessa memoria.<br />

DMP (Distributed Memory), tecnologia consistente in un’architettura<br />

di più CPU con una porzione di memoria dedicata<br />

a ciascuna CPU.<br />

Se si confrontano queste due architetture solamente sulla base<br />

del tempo di calcolo risulta più efficiente la tecnologia<br />

DMP, sua volta più costosa dal punto di vista dell’hardware.<br />

Il vantaggio della tecnologia DMP rispetto al SMP risulta <strong>per</strong>ò<br />

inferiore se il tempo di calcolo è misurato come intero<br />

“elapsed time”, intendendo con questo il tempo relativo all’intero<br />

processo incluse le fasi precedenti e successive all’analisi<br />

vera e propria.<br />

Se quindi si ragiona in base al “dpd” (design produced <strong>per</strong><br />

day) il rapporto di efficienza DMP/SMP è meno significativo.<br />

Più precisamente questo confronto è valido fino ad 8 CPU<br />

<strong>per</strong>ché al di sopra di questo numero la SMP satura ed la DMP<br />

diventa oltremodo vantaggiosa anche in termini di “dpd”.<br />

Altra tecnologia del software ANSYS <strong>per</strong> ridurre i tempi di<br />

esecuzioni delle analisi è la VT (Variational Technology) che<br />

implementa gli algoritmi di Taylor, Pade’ e Roms.


Essa non può <strong>per</strong>ò essere utilizzata in tutti i casi. Si applica<br />

ad analisi termiche, ad analisi in frequenza e anche ad alcuni<br />

problemi di non linearità strutturali quali le tematiche di<br />

creep. Non possono, <strong>per</strong>ò, essere presenti nel modello elementi<br />

CONTACT e questo, <strong>per</strong> certi versi, è il limite di tale approccio.<br />

Infine è utile ricordare quanto certe metodologie di analisi di<br />

ben solida ed antica applicazione siano utili e rinnovabili<br />

nelle situazioni più complesse e quanto queste stesse tecniche<br />

possano beneficiare comunque delle generali accelerazioni<br />

legate all’aumento delle capacità di calcolo (esempio “GPU<br />

technique”).<br />

Ricordandole brevemente esse sono:<br />

Submodelling: valutazione locale del gradiente delle tensioni<br />

in situazioni alla De Saint Venant<br />

Substructuring: riduzione del modello a condensazioni di<br />

masse e rigidezze e ripetizione delle stesse <strong>per</strong> parti del<br />

modello ripetitive<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 33<br />

CMS: Component Mode Synthesis è una specie di sottostrutturazione<br />

con accoppiamento delle zone di interfaccia<br />

tramite equazioni di ‘coupling’<br />

I tre sistemi sono stati rivisti nell’ottica dei miglioramenti<br />

progettati <strong>per</strong> la nuova release.<br />

Per concludere uno sguardo al futuro: le tecnologie <strong>per</strong> l’accelerazione<br />

della velocità di calcolo richiedono parallelamente<br />

il potenziamento dell’hardware. Gli sviluppi previsti in<br />

ANSYS tengono in conto l’evoluzione nell’hardware <strong>per</strong> migliorare<br />

le prestazioni. La release 13 rappresenta quindi un<br />

primo passo nell’adattamento delle metriche della tecnologia<br />

GPU, finalizzato a migliorare la scalabilità del software in<br />

tutte le applicazioni seguendo così quanto già fatto con successo<br />

ad esempio nelle applicazioni relative alla CFD.<br />

Per maggiori informazioni:<br />

Emiliano D’Alessandro - <strong>EnginSoft</strong><br />

info@enginsoft.it<br />

La simulazione di sistema in ANSYS:<br />

Simplorer<br />

La release 13 di ANSYS lega nello stesso ambiente le tecnologie<br />

<strong>per</strong> la simulazione elettromagnetica in bassa ed<br />

alta frequenza prodotte da Ansoft. Di queste, abbiamo dato<br />

informazione in edizioni precedenti della newsletter.<br />

Ci occupiamo qui invece di Simplorer, la tecnologia <strong>per</strong> la<br />

simulazione di sistema in ANSYS.<br />

Simplorer è un software di simulazione Multi-Domain che<br />

consente di modellare, simulare, analizzare e ottimizzare<br />

sistemi complessi, come sistemi elettromagnetici, elettromeccanici,<br />

elettrotermici, e più in generale, meccatronici<br />

e cibernetici.<br />

Se quindi da un lato ANSYS fornisce strumenti <strong>per</strong> la modellazione<br />

e la simulazione di singoli componenti in diverse<br />

fisiche e discipline, dall’altro, attraverso una tecnologia<br />

come Simplorer, essa consente la simulazione a livello di<br />

sistema. In altre parole vengono messe a disposizione metodologie<br />

e tecniche affinché singoli componenti possano<br />

essere analizzati simultaneamente in un unico modello,<br />

tenendo in considerazione le mutue interazioni tra di essi.<br />

Fig. 1 - Simplorer in interfaccia ANSYS WB.<br />

L’utilizzo delle caratteristiche di modellazione di Simplorer<br />

consente quindi ai <strong>progettisti</strong> di realizzare prototipi virtuali<br />

considerando tutti gli aspetti ed i componenti di un<br />

sistema, quali ad esempio i componenti <strong>elettronici</strong>, i sensori,<br />

gli attuatori, i motori elettrici ed i generatori, i propulsori<br />

ibridi, i convertitori di potenza così come i con- Fig. 2 - Modelli e linguaggi <strong>per</strong> la simulazione di sistema in Simplorer.


34 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

Fig. 3 - Link dinamico tra HFSS-Simplorer (a) e SIwave-Simplorer (b).<br />

trolli ed i software embedded.<br />

Una tale metodologia si realizza attraverso l’implementazione<br />

di schemi circuitali, modelli analitici ed a parametri<br />

concentrati, circuiti equivalenti, tecniche di cosimulazione,<br />

reti multi-livello ecc…<br />

Di seguito vengono analizzate alcune delle principali caratteristiche<br />

di Simplorer:<br />

1) Tecniche di modellazione<br />

Simplorer offre diverse tecniche di modellazione inclusi<br />

circuiti, diagrammi a blocchi, macchine a stati, equazioni<br />

e linguaggi di modellazione come il linguaggio VHDL-AMS,<br />

il SML (Simplorer Modeling Language) ed il C/C++.<br />

L’impiego simultaneo di tali strumenti consente di modellare<br />

sistemi caratterizzati da segnali analogici, digitali o<br />

analogico-digitale. Questo approccio elimina la necessità<br />

di effettuare trasformazioni matematiche, tipicamente<br />

soggette ad errori.<br />

Una tale flessibilità nelle tecniche di modellazione fa di<br />

Simplorer uno strumento molto efficace all’interno di un<br />

gruppo di lavoro poiché professionisti di diversa estrazione<br />

tecnica possono far confluire modelli realizzati con linguaggi<br />

diversi all’interno dell’unica piattaforma di simulazione<br />

di Simplorer.<br />

In Figura 2 una sintesi delle tecniche<br />

di modellazione a disposizione di<br />

Simplorer.<br />

2) Physics-based modeling<br />

Per modelli <strong>per</strong> i quali è richiesto un<br />

elevato livello di accuratezza,<br />

Simplorer fornisce un link diretto ad<br />

altri software ANSYS, tra questi:<br />

Maxwell, Q3D Extractor, RMxprt,<br />

PExprt, HFSS, SIwave, ANSYS Icepak,<br />

ANSYS Rigid Dynamics e ANSYS<br />

Mechanical.<br />

In particolare dall’ultima versione<br />

(Simplorer 9.0.1) è possibile integrare<br />

all’interno della simulazione di<br />

Simplorer i modelli agli elementi fini-<br />

ti realizzati in SIwave e HFSS. Tale procedura si basa sulla<br />

valutazione e caratterizzazione a parametri S di un modello<br />

FEM.<br />

Tipicamente, una volta definite opportunamente le porte<br />

di input ed output nei modelli agli elementi finiti, SIwave<br />

e HFSS consentono infatti di esportare la matrice di scattering<br />

verso Simplorer.<br />

Come mostrato in Figura 3 il link SIwave-Simplorer consente<br />

di effettuare in Simplorer analisi di Signal integrity<br />

su schede PCB, mentre l’integrazione di HFSS <strong>per</strong>mette<br />

l’analisi elettromagnetica di sistema anche in alta frequenza.<br />

Le tecniche con le quali è possibile includere modelli realizzati<br />

con altri software di casa ANSYS sono in particolare<br />

due: La tecnica della cosimulazione e la tecnica della<br />

model order reduction (MOR).<br />

La cosimulazione o “Co-Simulation” (co-o<strong>per</strong>ative simulation)<br />

è una metodologia di simulazione che consente a<br />

componenti singoli di essere simulati in maniera simultanea<br />

da differenti software. Questa tecnologia <strong>per</strong>mette<br />

quindi ai due software di scambiarsi informazioni, quali ad<br />

esempio boundary conditions o time steps, in maniera collaborativa<br />

e sincronizzata.<br />

Fig. 4 - Control Design <strong>per</strong> il modello multy-body di un braccio di un escavatore in ANSYS WB.


Fig. 5 - Analisi di sistema e circuit coupling in ANSYS.<br />

Questo tipo di tecnica è implementabile con i modelli di<br />

Maxwell e con i modelli Multy Body di ANSYS, <strong>per</strong> i quali<br />

Simplorer fornisce gli eventuali controlli (Fig 4).<br />

La tecnica della Model Order Reduction (MOR) è una disciplina<br />

della teoria dei sistemi e dei controlli che studia le<br />

proprietà dei sistemi dinamici in modo tale da ridurne la<br />

complessità, preservandone il comportamento agli ingressi<br />

e alle uscite (input ed output).<br />

Attraverso la tecnica della Model Order Reduction è possibile<br />

trasferire nell’ambiente di simulazione di Simplorer<br />

modelli a parametri concentrati estratti da modelli agli elementi<br />

finiti realizzati tra gli altri in ANSYS Mechanical,<br />

ANSYS Fluent e ANSYS ICEPack.<br />

In Figura 5 viene sintetizzato lo stato dell’arte dell’integrazione<br />

di sistema in ANSYS.<br />

3) Cosimulazione con tool esterni ad ANSYS<br />

Programmi in C/C++, MATLAB® / Simulink®, ModelSim®,<br />

QuestaSim® e Mathcad® possono essere integrati direttamente<br />

in Simplorer attraverso la tecnica della cosimulazione.<br />

Questo <strong>per</strong>mette una semplice e rapida implementazione di<br />

modelli realizzati anche con software<br />

esterni al portafoglio dei<br />

prodotti ANSYS.<br />

La diretta integrazione dei modelli<br />

nel loro ambiente di simulazione<br />

evita la traduzione del modello,<br />

consente di risparmiare tempo<br />

<strong>per</strong> la progettazione, e <strong>per</strong>mette<br />

la comunicazione e lo scambio di<br />

informazioni tra diversi <strong>progettisti</strong>.<br />

4) Analisi Statistiche e di<br />

Ottimizzazione.<br />

Optimetrics, tool embedded in<br />

Simplorer, consente di effettuare<br />

analisi parametriche, di ottimizzazione, di sensitività,<br />

e di tuning al fine di ottenere un progetto<br />

ottimizzato, in relazione a criteri di <strong>per</strong>formance<br />

fissati, raggiungendo il miglior trade-off<br />

possibile.<br />

In questo senso Simplorer può usufruire di tutta<br />

la potenza di calcolo a disposizione <strong>per</strong>ché in<br />

grado di effettuare analisi distribuite.<br />

In particolare, dall’ultima release, Optimetrics<br />

viene incluso all’acquisto nel pacchetto software.<br />

5) Tools di caratterizzazione di power devices.<br />

Simplorer supporta strumenti e sistemi <strong>per</strong> la caratterizzazione<br />

di dispositivi di potenza quali<br />

IGBT e converter AC/DC.<br />

Per quanto riguarda l’analisi degli IGBT, Simplorer<br />

fornisce due diversi metodi di caratterizzazione: dinamica<br />

e mediata (dynamic and average). La caratterizzazione dinamica<br />

consente una maggiore precisione nel descrivere i<br />

fenomeni di switching che avvengono in questi dispositivi,<br />

mentre la caratterizzazione average <strong>per</strong>mette una modellazione<br />

del dispositivo tale da consentire tempi di simulazione<br />

più ridotti, fornendo comunque una stima delle<br />

<strong>per</strong>dite medie durante le fasi di switching.<br />

Entrambe le metodologie descritte leggono gli input necessari<br />

alla caratterizzazione del dispositivo direttamente<br />

dai datasheet messi a disposizione dai fornitori.<br />

Per quanto riguarda la definizione e la caratterizzazione di<br />

dispositivi <strong>elettronici</strong> inoltre è possibile accedere in rete<br />

(http://model.simplorer.com) ad una vasta libreria di modelli<br />

di componenti quali Diodi, MOFSFETs ed IGBTs.<br />

In Figura 6 viene illustrato un esempio di simulazione multi<br />

dominio in ANSYS Simplorer.<br />

Per maggiori informazioni<br />

Emiliano D’Alessandro - <strong>EnginSoft</strong><br />

info@enginsoft.it<br />

Fig. 6 - Simulazione elettro-termica di un commutatore IGBT in Simplorer.<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 35


36 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

<strong>ICEPAK</strong> <strong>13.0</strong>: <strong>buone</strong> <strong>notizie</strong> <strong>per</strong> i<br />

<strong>progettisti</strong> <strong>elettronici</strong><br />

I malfunzionamenti legati al surriscaldamento, le eccessive<br />

sollecitazioni termiche sulla struttura e la gestione non ottimale<br />

della distribuzione dei flussi di calore sono problemi comuni<br />

nell’ambito della progettazione dei dispositivi <strong>elettronici</strong>.<br />

Tutti questi problemi possono essere studiati e risolti<br />

utilizzando ANSYS Icepak.<br />

Icepak è un codice di fluidodinamica computazionale robusto<br />

e completo creato specificatamente <strong>per</strong> il controllo termico<br />

dei dispositivi <strong>elettronici</strong>. Caratterizzato da un’interfaccia<br />

estremamente intuitiva, <strong>per</strong>mette di eseguire analisi termo<br />

fluidodinamiche stazionarie e tempo transienti simulando<br />

tutte le modalità di trasferimento del calore (conduzione,<br />

convezione, radiazione e scambio termico coniugato).<br />

Presente sul mercato da ormai più di dieci anni, Icepak è<br />

giunto alla release <strong>13.0</strong> che ha aggiunto nuove funzionalità<br />

in grado di aumentarne la facilità di utilizzo e di renderlo ancora<br />

più attraente al progettista elettronico.<br />

Di seguito sono indicate le principali novità introdotte nella<br />

versione corrente suddivise <strong>per</strong> aree tematiche:<br />

Integrazione con ambiente Workbench<br />

Il graduale inserimento di Icepak all’interno dell’ambiente di<br />

lavoro Workbench, iniziato con la release 12.0, continua nella<br />

versione attuale.<br />

In relazione alla fase di pre-processamento geometrico, sono<br />

stati implementati in Design Modeler alcuni strumenti (riuniti<br />

nel gruppo dei tools denominato Electronics – vedi Figura<br />

1) che <strong>per</strong>mettono di semplificare entità geometriche anche<br />

complesse e di convertirle direttamente in oggetti nativi di<br />

Icepak con un notevole risparmio di tempo da parte dell’utente.<br />

Fig. 1 - Strumenti di semplificazione e conversione geometrie in Design<br />

Modeler: Electronics tools<br />

Fig. 2 - Strumenti di semplificazione e conversione geometrie in Design<br />

Modeler: Electronics tools<br />

Per quanto riguarda la fase di post-processing, tutte le funzionalià<br />

del visualizzatore interno ad Icepak sono ora disponibili<br />

nel software unico di postprocessing di Workbench<br />

(CFD-Post) che è uno strumento in generale più potente e in<br />

grado di gestire griglie di calcolo anche di notevoli dimensioni<br />

(vedi Figura 2).<br />

Sempre nell’ambito di una progressiva integrazione di Icepak<br />

nell’ambiente di lavoro Workbench è da registrare il miglioramento<br />

dell’algoritmo di trasferimento del campo termico verso<br />

il solutore strutturale con una conseguente velocizzazione<br />

dei tempi di calcolo <strong>per</strong> le analisi FSI 1way (vedi Figura 3).<br />

Mesh<br />

Il generatore di griglie di calcolo interno ad Icepak è stato<br />

ulteriormente sviluppato al fine di automatizzare il processo<br />

di meshing. Tra le nuove features ricordiamo:<br />

La nuova opzione di meshing multi level (2D zero Cut<br />

Cell) <strong>per</strong>mette un notevole risparmio di elementi di<br />

griglia nel caso di modelli 2.5D ed è molto utile <strong>per</strong> la<br />

modellazione delle tracce sulle printed circuit board (PCB)<br />

(vedi Figura 4);<br />

il metodo di estrusione di griglia (Extruded Mesh) è stato<br />

implementato al fine di controllare il numero di celle<br />

posizionate nello spessore delle PCBs e dei Packages;<br />

L’utilizzo degli O-Grid <strong>per</strong> la generazione della griglia di<br />

calcolo è stato ora esteso anche ad oggetti 2D<br />

(precedentemente era applicato solo a entità geometriche<br />

tridimensionali) con notevole beneficio sia della qualità<br />

della griglia che della risoluzione dei boundary layer<br />

termici;<br />

È ora possibile creare mesh non conformi <strong>per</strong> i singoli<br />

componenti di un Assembly mettandoli a diretto contatto<br />

tra di loro (Zero Slack Assembly). Questo miglioramento<br />

nella gestione delle interfacce tra mesh porta ad una<br />

notevole riduzione del numero degli elementi da usare <strong>per</strong><br />

discretizzare oggetti quali Heat sink, BGA etc. dove i


Fig. 3 - Trasferimento diretto dei dati da Icepak ad ANSYS Meshanical<br />

Fig. 4 - Multi Level 2D Cut Cell Meshing<br />

singoli componenti hanno dimensioni caratteristiche<br />

molto differenti.<br />

Modellazione<br />

Uno dei punti di forza di Icepak è la possibilità di generare<br />

modelli fisici rappresentativi dei singoli componenti <strong>elettronici</strong><br />

da includere nella simulazione numerica quando il focus<br />

dello studio non è a livello della componentistica (scala [m])<br />

ma a livello di sistema (scala [m]) – vedi Figura 5. Questo<br />

punto di forza è stato ulteriormente sviluppato con:<br />

Il miglioramento del sistema di caratterizzazione dei<br />

packages <strong>elettronici</strong> denominato Delphi Extractor che<br />

<strong>per</strong>mette di creare in modo automatico una<br />

rappresentazione RC (Resistiva Capacitiva) di packages<br />

quali BGA, Exposed Die BGA e QFP (Figura 6);<br />

L’introduzione di una nuova macro <strong>per</strong> assistere nella<br />

modellazione delle Heat Pipes (Figura<br />

7).<br />

La versione 13 è inoltre supportata <strong>per</strong> oggetti<br />

2D quali Fans, Grilles, Walls e<br />

Openings la geometria derivante da CAD.<br />

Ciò <strong>per</strong>mette di utilizzare forme geometriche<br />

realistiche anziché approssimazioni a<br />

geometria poligonale <strong>per</strong> tali oggetti.<br />

Solutore<br />

Le novità fondamentali del solutore possono<br />

essere riassunte in 2 punti:<br />

Fig. 7 - Caratterizzazione dei componenti: Heat<br />

Pipes<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 37<br />

Sono stati introdotti due nuovi modelli di radiazione: il<br />

“surface to surface” e il “ray tracing”. Il primo modello è<br />

semplice ed economico, adatto alla maggior parte delle<br />

applicazioni con mezzi trasparenti. Il secondo modello è<br />

molto più generale ed accurato ma dai costi<br />

computazionali elevati. Da sottolineare inoltre il supporto<br />

<strong>per</strong> il carico termico solare (compatibile con tutti i<br />

modelli di radiazione) che <strong>per</strong>mette di tenere in conto<br />

della radiazione proveniente dall’ambiante esterno e del<br />

suo orientamento nello spazio.<br />

Fig. 5 - Icepak <strong>per</strong>mette di eseguire analisi termiche a varie scale dimensionali<br />

Fig. 6 - Caratterizzazione dei componenti: Delphi Extractor<br />

È ora possibile importare ed esportare oggetti networks<br />

cioè modelli bidimensionali che rappresentare circuiti<br />

integrati tramite file CSV/Excel.<br />

Per concludere questa visione di insieme della principali novità<br />

introdotte con Icepak 13 è da segnalare la possibilità di<br />

interagire in modo bidirezionale con<br />

SIwave, software <strong>per</strong> il calcolo dell’integrità<br />

di segnale. Icepak può ora dialogare<br />

con SIwave fornendo mappe di tem<strong>per</strong>atura<br />

e ricevendo campi di potenza.<br />

Interazione che risulta fondamentale <strong>per</strong><br />

analisi dove le proprietà elettriche del dispositivo<br />

dipendono dalla tem<strong>per</strong>atura.<br />

Per esempi, materiale e richieste di informazioni:<br />

Ing. Matteo Nobili - <strong>EnginSoft</strong><br />

info@enginsoft.it


38 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

Development of the Novel Opencell<br />

A completely new metal sandwich panel concept,<br />

Opencell, has been developed. Instead of the<br />

conventional three constituent panel structure<br />

(sheet/core/sheet), an integral cut-and-formed face sheet<br />

and the core, and a solid face sheet are used. This concept<br />

provides a reduction in the number of joining components<br />

and thus manufacturing phases can be decreased for a<br />

more cost-efficient process. An increased number of<br />

design variables means potential for tailored pro<strong>per</strong>ties.<br />

Unlike many traditional metal sandwich panels, the<br />

structure can have equal mechanical pro<strong>per</strong>ties in the<br />

longitudinal and transversal directions, and in specific<br />

applications this concept provides stiffer solutions than<br />

the conventional sandwich panels.<br />

TECHNOLOGY REVIEW<br />

Metal sandwich panels offer a number of outstanding<br />

pro<strong>per</strong>ties allowing the designer to develop light and<br />

efficient structural configurations for a large variety of<br />

applications. The most established type of all-metal<br />

sandwich panels is the use of directional stiffeners<br />

Fig. 1 - The Opencell structure can take the form of flat, single side curved and doubly side curved shapes.<br />

between two solid face sheets, such as straight webs (Icore),<br />

(rectangular) hollow sections (O-core), hat or<br />

corrugated sheets (Vf/V-core), etc. [1].<br />

In contrast to the previous ones, called calottes, formed<br />

indents to separate the panel face sheets provide more<br />

isotropic pro<strong>per</strong>ties. However the closed nature of calottes<br />

limits their maximum depth (formability) [2, 3].<br />

Another developing direction of<br />

all-metal sandwich panel<br />

technology is towards lattice<br />

truss core structures. This has<br />

evolved into a completely new<br />

approach for a metal panel<br />

structure concept called<br />

Opencell. This invention,<br />

described in patent application<br />

WO/2009/034226, includes a<br />

panel structure wherein the core<br />

structure is formed from face<br />

sheets that are mechanically<br />

connected to each other using connection members<br />

formed from one of the face sheets, i.e. without any<br />

addition of the core material [4].<br />

CONCEPT DEVELOPMENT<br />

The motivation of the product development naturally is<br />

increased <strong>per</strong>formance. In principle, two approaches exist<br />

to develop more efficient structures: either the<br />

application of new materials or the use of novel structural<br />

design – or a combination of these. Opencell idea itself<br />

introduces a large number of design variables for tailored<br />

pro<strong>per</strong>ties. With Opencell one can build panels with<br />

balanced transversal and longitudinal stiffness pro<strong>per</strong>ties<br />

and challenging panel shapes are possible (see Figure 1).<br />

Within certain limits, panel height can be increased<br />

without mass penalty. This means increased bending<br />

stiffness offering potential for weight savings.<br />

The initial concepts were not very efficient in terms of<br />

structural <strong>per</strong>formance and the project team focused on<br />

the concept development. Different geometrical layouts<br />

(see Figure 2), providing a range of structural <strong>per</strong>formance<br />

and various types of packing patterns, were developed,<br />

simulated using FEA, and evaluated for the pro<strong>per</strong><br />

understanding of their mechanical behavior.<br />

The purpose of the work was to make general comparative<br />

analyses using a design study, for which a reference<br />

application was adapted from an earlier sandwich project<br />

Fig. 2 - Some of the studied Opencell concepts. Three right-most solutions represent Opencell Delta concepts.<br />

All unit cells are in mutual scale, i.e. height of the panel is constant.


Table 1. Panel dimensions in the design studies.<br />

[5]. This consisted of a beam-like supported 54 mm high<br />

panel with a support span L of 2 m and a uniform pressure<br />

load of 4800 Pa. A deflection constraint was set to L/300.<br />

The objective was to meet this constraint with 4 mm steel<br />

consumption divided between the two components.<br />

A great <strong>per</strong>formance improvement was achieved when the<br />

Opencell Delta concept was established in which four<br />

delta-shaped legs form the core. Also, it provided high<br />

unit cell packing density and consequently, rather<br />

homogenous structure.<br />

Fig. 3 - Bottom left: optimum layout for curved panel applications. Right: maximum displacement<br />

results as a function of the unit cell width for a flat panel (H 75 mm, span 3 m). Top left: optimum<br />

layout for the flat panel.<br />

OPTIMIZATION<br />

The next step in the project was to gather more<br />

information about the type of applications for which the<br />

Opencell Delta structure is appropriate and to determine<br />

the optimum cell configurations in the different<br />

applications. The design study was divided to flat and<br />

curved panel applications. Three corresponding panel<br />

heights were selected to represent different design groups<br />

(Table 1). Each design group was further on divided to<br />

three sub-groups determined by the span of the beam-like<br />

panel. In case of flat panels, two opposite edges were<br />

simply supported. For curved panels, also the longitudinal<br />

translations were constrained on both edges. In both<br />

applications, panels were loaded with a uniform pressure<br />

load of 4800 Pa.<br />

After the conceptual design studies it could be concluded<br />

that to achieve the best <strong>per</strong>formance, certain geometrical<br />

measures need to be driven towards the minimum or<br />

maximum allowed value. As a result, free design variables<br />

were limited to the choice of the unit cell width and the<br />

thickness combination of the two face sheets. Allowed<br />

face sheet thicknesses for the two applications are<br />

presented in Table 1.<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 39<br />

In the optimization problem the objective<br />

was to maximize specific stiffness of the<br />

panel (inverse of the panel maximum<br />

deflection divided by the total thickness of<br />

the two sheets).<br />

The optimization procedure was set up in modeFRONTIER,<br />

the design optimization and process integration software<br />

package of our choice. The design of ex<strong>per</strong>iments and<br />

optimization algorithms provided in modeFRONTIER were<br />

used to drive the Opencell towards our goals.<br />

Thus modeFRONTIER created new designs by determining<br />

input values for the variables which were fed to a fully<br />

parametric FE model in ANSYS. Results for a single design<br />

study are presented in the 4-D image of Figure 3.<br />

Displacement results are presented as a function of the<br />

three variables for the different designs.<br />

For illustration, displacement results were<br />

selected because they are not as abstract<br />

as the specific stiffness. The unit cell<br />

width is on the horizontal axis. The color<br />

of the bubble indicates the total thickness<br />

of the face sheets.<br />

For example, cyan bubble (SUM_30…)<br />

indicates that the total amount is 3.0<br />

mm. The stiffest structure in terms of real<br />

displacements naturally comes with the<br />

highest amount of material. Therefore, red<br />

bubbles (5.0 mm) are on top (least<br />

negative values). In the study, the total<br />

amount of material was restricted to 5.0<br />

mm. The diameter of the bubble indicates<br />

the thickness of the plain sheet. The smaller the bubble is,<br />

the thinner the sheet. Therefore, for this application, the<br />

stiffest structure is obtained by maximizing the thickness<br />

of the cut sheet. This is the trend particularly for flat<br />

panels with long support spans. Increased thickness on<br />

the cut sheet moves the neutral plane closer to the<br />

geometrical mid-plane and therefore, panels work better<br />

in bending. For long span applications, bigger unit cell<br />

size is preferable as it increases the amount of material at<br />

the surfaces. For short span applications, which are outof-plane<br />

shear dominated, smaller unit cells are<br />

preferable. It should be noted that the plain sheet should<br />

be rigid enough to avoid local deformation close to the<br />

supports or loading points.<br />

Curved panels behave quite differently. They act<br />

essentially the same way as pressure vessels, where loads<br />

are carried by membrane forces. Therefore, the in-plane<br />

stiffness dominates the applications and the fewer cuts<br />

<strong>per</strong> unit area, the bigger the membrane area. The best<br />

specific stiffness is obtained with the combination of the<br />

thickest plain sheet and the thinnest cut sheet, and with<br />

the highest value of the unit cell width. Still, the cut<br />

sheet should be thick enough so that local deformations<br />

and stability are not a problem.


40 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

Fig. 4 - The software solution provides panel key pro<strong>per</strong>ties such as EI and GA. User can solve the panel deflection U under different boundary and loading<br />

conditions. Stress recovery is made for a single unit cell with a separate model.<br />

SOFTWARE SOLUTION<br />

Opencell Delta simulation capabilities have been<br />

integrated as a separate module in ESAComp, a software<br />

tool for the analysis and design of layered composite<br />

structures. The software module consists of three<br />

components: geometry modeler, homogenization tool and<br />

simulation tool.<br />

The geometry modeler creates an FE mesh for a single unit<br />

cell according to the user-defined parameters (e.g. panel<br />

height, unit cell width, angle of the legs, etc.) and<br />

provides basic functions for visualization of the geometry.<br />

The homogenization tool calculates the basic pro<strong>per</strong>ties of<br />

the Opencell Delta panel. In the conceptual design<br />

phase, designers would like to compare different<br />

alternatives with some key pro<strong>per</strong>ties, like panel axial<br />

stiffness, bending stiffness, and shear stiffness, which are<br />

derived internally. The panel pro<strong>per</strong>ties can be used in<br />

commercial FE codes to calculate deflections of flat and<br />

curved panels with arbitrary shapes, boundary and loading<br />

conditions. The homogenization approach is described in<br />

detailed in [6].<br />

The simulation tool integrated in ESAComp software<br />

supports the analysis of flat panels (see Figure 4). The<br />

ESAComp solution relies on Elmer solver [7]. Two types of<br />

analyses are supported: static load response and analysis<br />

of details that covers, for example, failure analysis.<br />

CONCLUSIONS<br />

The introduced Opencell Delta concept provides a brand<br />

new way to construct metal sandwich panels. The concept<br />

gives potential for cost savings in manufacturing due to<br />

the reduced number of components and simplified<br />

continuous manufacturing process. In specific<br />

applications, increased mechanical <strong>per</strong>formance can be<br />

achieved even with less material when compared to<br />

traditional metal sandwich panels, as could be shown<br />

optimizing Opencell Delta panels with modeFRONTIER.<br />

Both aspects are highly valued especially in<br />

transportation applications. Opencell panels can be<br />

formed in challenging shapes and they provide internal<br />

space for wirings, piping and other equipment, which may<br />

be required in the product. The presented software<br />

solution provides an efficient way to <strong>per</strong>form panel<br />

dimensioning. With a very limited effort one can reliably<br />

estimate if the Opencell Delta concept brings benefits in<br />

the specific application.<br />

REFERENCES<br />

[1]Säynäjäkangas, J. and Taulavuori, T. 2004. A review in<br />

design and manufacturing of stainless steel sandwich<br />

panels. Stainless Steel World, October, 2004. pp. 55 –<br />

59<br />

[2]Lohtander, M. & Varis J. P. A novel manufacturing<br />

process for producing cell structures using a modern<br />

turrett punch press. 17th ICPR (International<br />

Conference of Production Research), 3 to 7 August,<br />

2003. Blacksburg (VA), USA. 9 p.<br />

[3]Larkiola, J., Martikainen, H., Pellikka, E. Simulations of<br />

the forming and loading conditions of calotte panel<br />

structures. Espoo, 2003. VTT Technical Research Centre<br />

of Finland, report BTUO35-031181. 13 p. + 2 p. app.<br />

[4]Patent application WO/2009/034226. 2009. Panel<br />

structure. Outokumpu Oyj. Priority 11.09.2007, publ.<br />

19.3.2009. 23 p.<br />

[5]Gales, A., Sirén, M., Säynäjäkangas, J., Akdut, N., van<br />

Hoecke, D. and Sánchez, R. 2007. Development of<br />

lightweight trains and metro cars by using ultra-highstrength<br />

stainless steels. European Commission. Final<br />

report EUR 22837. 266 p.<br />

[6]Katajisto, H., Valente, A. and Mönicke, A. Designoptimisation<br />

of the innovative, high-<strong>per</strong>formance<br />

metal sandwich solution. 9th International Conference<br />

on Sandwich Structures ICSS 9. California Institute of<br />

Technology, Pasadena (CA), USA, 14 to 16 June, 2010.<br />

[7]Elmer Models Manual, CSC - Scientific Computing Ltd.,<br />

2007, Elmer web site www.csc.fi/elmer<br />

HARRI KATAJISTO, ANDRÉ MÖNICKE<br />

Componeering Inc., Itämerenkatu 8, FI-00180 Helsinki,<br />

Finland<br />

ANTONIO VALENTE<br />

PLY Engenharia, Lda, Largo dos Fornos 1, PT-2770-067<br />

Paço de Arcos, Portugal


I processi di forgiatura a stampi a<strong>per</strong>ti (open-die) e di laminazione<br />

circolare (ring-rolling) sono in grado di produrre pezzi<br />

di grosse dimensioni in acciaio, il più possibile privi di porosità<br />

e con la massima omogeneità nelle caratteristiche<br />

meccaniche. Tali specifiche sono richieste nei settori meccanico-siderurgico<br />

(alberi pignone, pignoni, ruote pignone, alberi<br />

eccentrici, terminali e manicotti, …), petrol-chimico<br />

(corpi valvola, tubi, B.O.P., …), navale (alberi intermedi, alberi<br />

pinna ed alberi timone, …) e dell’energia (alberi turbina,<br />

alberi ventilatore, alberi <strong>per</strong> eolico, generatori quadripolari,<br />

…). In particolare in questo ultimo ambito, i componenti<br />

necessari <strong>per</strong> la costruzione di centrali nucleari devono<br />

soddisfare delle normative molto restrittive in grado di garantire<br />

le prestazioni del manufatto dopo molti anni di utilizzo<br />

in condizioni severe di contatto con agenti aggressivi e<br />

sottoposti ad irraggiamento. Si cerca quindi di produrre particolari<br />

con meno discontinuità (porosità, inclusioni, segregazioni,<br />

…) possibile e che possano essere assemblati limitando<br />

al minimo le saldature. Lo sviluppo integrato (la design<br />

chain) parte della colata dell’acciaio in acciaieria in una<br />

forma opportuna (lingotti, barre, blumi, altre forme), <strong>per</strong> proseguire<br />

con il trasferimento in forgia, dove il lingotto viene<br />

controllato, trattato termicamente e quindi lavorato alla<br />

pressa e/o al laminatoio. Il trattamento termico e le lavorazioni<br />

meccaniche di sgrossatura e di finitura sono le fasi conclusive<br />

<strong>per</strong> l’ottenimento del pezzo finito. Per ognuna di queste<br />

fasi esistono degli strumenti di simulazione dedicati e<br />

verticalizzati che consentono di simulare accuratamente le<br />

condizioni al contorno della fase in esame allo scopo di prevedere<br />

e ottimizzare la qualità del componente, grazie ad una<br />

migliore comprensione dell’influenza dei parametri di processo.<br />

L’approccio viene applicato e descritto successivamente<br />

nel caso di un lingotto in acciaio.<br />

Acciaieria - processo di colata<br />

Il processo di colata di lingotti è caratterizzato da una serie<br />

di parametri molto complessi, che determinano la qualità del<br />

prodotto finale. La composizione della lega è uno degli<br />

aspetti più importanti, ma lo sono anche le modalità di colata<br />

(velocità di colata, utilizzo di polveri isolanti, …) ed i<br />

materiali utilizzati <strong>per</strong> la lingottiera. Tutti questi aspetti sono<br />

tenuti in conto dai software di simulazione, che possono<br />

dare delle utili informazioni su quello che succede nella fase<br />

di riempimento dello stampo e di solidificazione del metallo.<br />

Software specifici in questo ambito (MAGMAsoft di Magma<br />

GmbH ad esempio) riescono a valutare, oltre ai ritiri in soli-<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 41<br />

Componenti forgiati di qualità<br />

necessitano di un approccio CAE<br />

integrato – es<strong>per</strong>ienze di simulazione di<br />

processo nel campo Energia e Nucleare<br />

Fig. 1 – MAGMASOFT – simulazione del riempimento di un lingotto.<br />

NUCLEARE<br />

Fig. 2 – MAGMASOFT – simulazione della solidificazione di un lingotto.<br />

E ENERGIA CAMPO<br />

Fig. 3 – MAGMASOFT – distribuzione di tem<strong>per</strong>ature in una lingottiera.<br />

NEL PROCESSO DI<br />

Fig. 4 – MAGMASOFT – Difetti: macro ritiri, micro ritiri, moti convettivi,<br />

segregazioni. SIMULAZIONE


42 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

Fig. 5 – Forge - riscaldo in forno lingotto da 40t – tem<strong>per</strong>ature a cuore ed a su<strong>per</strong>ficie.<br />

dificazione, anche la formazione di porosità, la segregazione<br />

dei vari elementi, la presenza di cricche a caldo, … (Figure<br />

1, 2, 3, 4).<br />

Al termine della prima fase del processo produttivo, ci si pone<br />

come obiettivo quello di trasferire le proprietà microstrutturali<br />

e gli eventuali difetti alla fase successiva come avviene<br />

nella sequenza reale. L’ormai pluriennale es<strong>per</strong>ienza maturata<br />

in <strong>EnginSoft</strong> sia nel CAE che nel processo manifatturiero<br />

ha <strong>per</strong>messo lo sviluppo di algoritmi specifici che agevolano<br />

il dialogo fra strumenti software commerciali di diversa natura<br />

e storia.<br />

Forgiatura – processo di riscaldo del lingotto<br />

Il lingotto prodotto in acciaieria viene trasportato alla forgia,<br />

dove viene inizialmente riscaldato in forno. Questo processo<br />

non è così semplice come sembra, in quanto bisogna adottare<br />

degli accorgimenti in modo da garantire un riscaldo uniforme<br />

cuore-su<strong>per</strong>ficie, guidando nel contempo le trasforma-<br />

Fig. 6 – Forge – possibili movimenti impostabili <strong>per</strong> ogni colpo/passata ed esempio blumatura.<br />

zioni che avvengono nell’acciaio aumentando la tem<strong>per</strong>atura.<br />

Le dimensioni dei lingotti sono considerevoli, quindi bisogna<br />

modulare il forno in modo tale che l’acciaio venga portato<br />

gradualmente ad una tem<strong>per</strong>atura attorno ai 700-800°C, che<br />

deve essere mantenuta <strong>per</strong> qualche tempo in modo da rendere<br />

omogeneo il cambio di fase e non creare eccessivi gradienti<br />

termici cuore - su<strong>per</strong>ficie, dopodiché si può procedere fino<br />

alla tem<strong>per</strong>atura di forgia di 1150-1200°C, fino ad ottenere<br />

Fig. 7 – Forge – ricalcatura, blumatura, stondatura spigoli, ricalcatura di testa e martellatura.<br />

una uniformità di tem<strong>per</strong>atura tra cuore e su<strong>per</strong>ficie.<br />

La simulazione del riscaldo in forno (fig. 5) può essere<br />

effettuata con software come Forge, dove può<br />

essere specificata una curva dell’atmosfera del forno<br />

e le tem<strong>per</strong>ature del lingotto possono essere monitorate<br />

attraverso dei sensori. L’utilizzo dell’ottimizzatore<br />

integrato in Forge può essere utile <strong>per</strong> calibrare<br />

i tempi di <strong>per</strong>manenza in forno: grazie a questo<br />

strumento, nel caso specifico di un lingotto da<br />

40t, si è compreso come il tempo di <strong>per</strong>manenza alla<br />

rima tem<strong>per</strong>atura deva essere aumentato da 16 a<br />

24h, mentre alla massima tem<strong>per</strong>atura si possono risparmiare<br />

ben 12h.<br />

Forgiatura – processi di deformazione open-die<br />

Il processo di forgiatura è caratterizzato dalla presenza di<br />

due elementi fondamentali: il manipolatore, che tiene il pezzo<br />

in posizione e ne guida gli spostamenti e le rotazioni, la<br />

pressa, che deforma il pezzo con diversi colpi e passate. La<br />

forma finale viene ottenuta infatti attraverso una serie di deformazioni<br />

localizzate sotto le mazze, con tempi di diversi<br />

minuti che comportano un raffreddamento dell’acciaio e la<br />

necessità di prevedere, soprattutto <strong>per</strong> pezzi di grosse dimensioni,<br />

delle ricalde in forno anche di diverse ore, <strong>per</strong> riportare<br />

il pezzo alla tem<strong>per</strong>atura di lavorazione. Le difficoltà<br />

principali nella simulazione di questo processo sono la necessità<br />

di automatizzare la sequenza degli afferraggi da parte<br />

dei manipolatori, la sequenza dei colpi e delle passate, con<br />

le corrette rotazioni e traslazioni del pezzo e/o delle mazze.<br />

Fondamentale è la corretta definizione del<br />

materiale in termini di curve di deformazione<br />

a caldo e dalla corretta definizione delle<br />

caratteristiche della pressa idraulica utilizzata.<br />

Il software Forge è stato sviluppato<br />

in questi termini grazie all’apporto dei molti<br />

utilizzatori francesi che producono nel<br />

campo dell’energia: la sequenza di colpi e<br />

passate può essere definita con precisione<br />

(fig. 6), indicando quando entrano in funzione i manipolatori.<br />

Per ciascuno di essi si può specificare la zona di presa o e<br />

l’eventuale rigidezza degli afferraggi, che possono arretrare<br />

alla spinta del materiale. La geometria delle mazze e del lingotto<br />

di partenza vengono infine importate da CAD (formati<br />

.stl o .step).<br />

Durante la simulazione si può valutare come viene indotta la<br />

deformazione del materiale: quando la pressa esaurisce


Fig. 8 – Forge - chiusura delle porosità di colata con il processo di forgiatura.<br />

l’energia, la mazza si arresta e si passa al colpo successivo.<br />

Se il materiale è troppo freddo non si raggiungono le altezze<br />

di ricalcatura/blumatura desiderate, <strong>per</strong>ciò dall’analisi delle<br />

curve di discesa si può capire quando sia necessario sospendere<br />

la lavorazione <strong>per</strong> riportare in tem<strong>per</strong>atura il pezzo.<br />

Possono essere simulate pressoché tutte le lavorazioni che<br />

vengono effettuate in forgia: ricalcatura con mazza piana o<br />

con bocca, blumatura a stampi piani, curvi o sagomati, stondatura<br />

degli spigoli, ricalcature di testa (Fig. 7). Partendo da<br />

barre o blumi è possibile utilizzare solo due mazze verticali o<br />

macchine più complesse con 4 mazze, <strong>per</strong> il processo di martellatura<br />

rotante, o valutare in virtuale macchinari definiti<br />

solo sulla carta.<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 43<br />

la posizione nel lingotto di partenza, come è mostrato in fig.<br />

9. L’utilità di questo metodo consiste nella identificazione<br />

degli istanti in cui i difetti si generano e le relative cause <strong>per</strong><br />

agevolare il tecnico nella ricerca della soluzione appropriata<br />

e efficace.<br />

Risulta quindi ovvia la possibilità di calibrazione virtuale delle<br />

fasi di forgiatura necessarie <strong>per</strong> l’ottenimento di anelli a<br />

sezione rettangolare o sagomati, che poi possono essere laminati<br />

(fig. 10).<br />

In questo caso si effettuano delle analisi 2D molto rapide, simulando<br />

le fasi di ricalcatura, sagomatura, punzonatura e foratura,<br />

come mostrato nella fig. 11 <strong>per</strong> un anello sagomato.<br />

La funzione di “chaining” consente impostare, calcolare ed<br />

analizzare in sequenza tutte le o<strong>per</strong>azioni, trasferendo i risultati<br />

da una o<strong>per</strong>azione alla successiva, fino all’ultima azione<br />

di tranciatura, nella quale si abilita la funzione di danneggiamento<br />

<strong>per</strong> seguire la separazione del fondo <strong>per</strong> effetto del<br />

punzone di tranciatura.<br />

Volendo rimanere nel campo della produzione di componenti<br />

<strong>per</strong> il settore nucleare, un altro processo comunemente utilizzato<br />

<strong>per</strong> l’allargamento degli anelli è la bigornatura: l’anello<br />

ottenuto come sopra illustrato, di sezione rettangolare,<br />

viene caricato su un mandrino ed una<br />

mazza che ne provoca la deformazione<br />

localizzata. La rotazione del mandrino<br />

tra un colpo ed il successivo consente<br />

di ottenere un allargamento graduale<br />

dell’anello, preservandone la lunghezza<br />

(Figura 12).<br />

NUCLEARE<br />

E<br />

Forgiatura – processi di laminazione<br />

circolare<br />

Fig. 9 – Forge – valutazione a ritroso posizione difetti attraverso l’uso di sensori.<br />

L’anello prodotto con le fasi sopra descritte<br />

può quindi essere laminato, <strong>per</strong> ottenere le dimensio-<br />

La simulazione viene utilizzata anche <strong>per</strong> valutare se la deni (allargamento) e/o la forma desiderata (sagomatura del ENERGIA<br />

formazione è in grado di compattare a sufficienza il materia- profilo). I laminatoi, che possono essere di diverso tipo, sole,<br />

partendo eventualmente da una distribuzione di porosità no costituiti generalmente da un rullo principale che induce<br />

proveniente dalla simulazione di colata del lingotto, come è la rotazione, da un mandrino, che spinge il materiale verso il<br />

mostrato in Fig. 8.<br />

rullo e da eventuali coni, che guidano l’altezza del profilo. CAMPO<br />

Tutti questi oggetti possono essere piani o sagomati. La si-<br />

Gli eventuali difetti nel forgiato sono ovviamente oggetti di mulazione di questo specifico processo risulta molto com- NEL<br />

indagine e lo studio può essere effettuato anche a ritroso, plessa <strong>per</strong> la limitata area di contatto tra mandrino, anello e<br />

ovvero definendo la posizione del difetto rilevato nel pezzo rullo, nella quale si concentra la massima deformazione e <strong>per</strong><br />

finito e seguendone il movimento “a marcia indietro” fino al- la cinematica guidata dall’allargamento dell’anello. L’elevato<br />

PROCESSO DI<br />

Fig. 10 – processo di ottenimento di anelli a sezione rettangolare da laminare SIMULAZIONE


44 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

Fig. 11 – Forge – 2D ricalcatura, punzonatura e tranciatura fondo <strong>per</strong> un anello sagomato.<br />

Fig. 12 – Forge – bigornatura anello.<br />

Fig. 13 – Forge – simulazione processo di laminazione circolare anello rettangolare e sagomato.<br />

Fig. 14 – Forge – simulazione trattamento termico: tem<strong>per</strong>atura, % martensite e durezza HV.<br />

Fig. 15 – Forge – simulazione fase di immersione dell’anello in bagno di tempra.<br />

numero di giri infine rende il numero di calcoli da effettuare<br />

molto elevato con una mesh adattiva che si aggiorna in particolare<br />

nelle zone di contatto. In tal caso le architetture<br />

hardware con calcolo parallelo multi-core o multi-processore<br />

(cluster) <strong>per</strong>mettono di ottenere dei risultati sufficientemente<br />

accurati tempi ragionevoli. Nello specifico della definizione<br />

delle cinematiche del mandrino e dei coni è possibile guidare<br />

gli stampi mediante le stesse curve di laminazione che<br />

l’o<strong>per</strong>atore imposta sul software del laminatoio, riproducendo<br />

quindi in virtuale il comportamento della macchina reale.<br />

L’analisi del comportamento del materiale tra mandrino e rullo<br />

consente di modificare la curva di laminazione e risolvere<br />

i tipici difetti di forma di questo processo,<br />

presenti soprattutto <strong>per</strong> pezzi sagomati:<br />

fish-tailing, mancanze di profilo,<br />

rigetti di materiale.<br />

Forgiatura – trattamento termico<br />

Per tutte le tipologie di pezzi sopra trattate,<br />

dopo la fase di deformazione è<br />

sempre presente il trattamento termico<br />

<strong>per</strong> migliorare le caratteristiche meccaniche<br />

dell’acciaio. Il processo, che può<br />

essere anche molto articolato, si compone<br />

di un riscaldamento in forno alla tem<strong>per</strong>atura<br />

di austenitizzazione ed una<br />

successiva immersione in un bagno di<br />

tempra, che induce delle trasformazioni<br />

microstrutturali nell’acciaio, modificando<br />

le fasi presenti. A seconda della drasticità<br />

dello scambio termico, si vanno a<br />

formare ferrite, <strong>per</strong>lite, bainite e, nella<br />

zone dove massimo è il gradiente, martensite.<br />

Nello specifico, la trasformazione<br />

martensitica è una trasformazione<br />

esotermica ed induce una espansione<br />

della struttura cristallina, che può provocare<br />

una distorsione del pezzo. Anche<br />

<strong>per</strong> questa o<strong>per</strong>azione è possibile utilizzare la simulazione,<br />

con il software Forge, <strong>per</strong> valutare, al variare del <strong>per</strong>corso di<br />

tempra e della forma del pezzo la formazione delle varie fasi,<br />

in funzione del raffreddamento imposto alle varie zone, <strong>per</strong><br />

confronto con le curve TTT del materiale. Viene infatti effettuato<br />

un calcolo termico-meccanico-metallurgico accoppiato,<br />

grazie al quale si ottengono le fasi e la conseguente durezza<br />

finale del pezzo (fig. 14).<br />

Recentemente il modello di calcolo è stato migliorato <strong>per</strong> tener<br />

conto di parametri di processo quali ad esempio la durata<br />

della fase di immersione nel bagno di tempra e l’effetto<br />

sulla tempra del pezzo, come è mostrato in fig. 15.


Fig. 15 – Forge – simulazione fase di immersione dell’anello in bagno di tempra.<br />

Una volta valutate tutte le singole fasi di produzione di un<br />

componente, dalla colata dell’acciaio, alla deformazione, alla<br />

tempra ed alle lavorazioni meccaniche, è possibile infine utilizzare<br />

i risultati ottenuti (distorsioni di forma, stress residui,<br />

proprietà meccaniche, difetti, …) <strong>per</strong> effettuare delle analisi<br />

strutturali o fluidodinamiche, nelle quali valutare le prestazioni<br />

in esercizio del componente. Nell’immagine seguente è<br />

mostrato come l’introduzione degli stress residui e delle proprietà<br />

meccaniche come condizioni iniziali <strong>per</strong> l’analisi strutturale<br />

modifichi in modo rilevante le caratteristiche meccaniche<br />

di un corpo valvola sollecitato in esercizio.<br />

Conclusioni<br />

La presente panoramica ha evidenziato come oggi sia possibile<br />

simulare tutte le o<strong>per</strong>azioni necessarie alla produzione di<br />

un particolare in acciaio di grosse dimensioni, partendo dalla<br />

colata del metallo nel lingotto, alla successiva lavorazione<br />

di forgiatura o di laminazione, al trattamento termico.<br />

Aspetto saliente è la possibilità con questi diversi strumenti<br />

di valutare tutta la design-chain, in modo da essere in grado<br />

di comprendere le cause di un problema andando a ritroso<br />

lungo tutti i vari passaggi di produzione.<br />

FORGIATURA MAMÈ<br />

Abbiamo fondato il CRS (Centro di Ricerca e Sviluppo) con<br />

l'obiettivo di sviluppare il nostro know-how e migliorare le<br />

conoscenze sui nostri prodotti e sul processo produttivo.<br />

L'acquisto di FORGE il software di simulazione del processo di<br />

forgiatura e trattamento termico ha lo scopo di aiutare il CRS<br />

nella creazione di know-how. Grazie a questo software è<br />

possibile quindi analizzare il processo nel dettaglio,<br />

ottimizzando le fasi di fabbricazione, la qualità dei prodotti e<br />

quindi la riduzione dei costi e dei tempi - ciclo. L'ambizione<br />

dell'azienda è quella di riuscire ad offrire ai propri clienti un<br />

concreto strumento di coo<strong>per</strong>azione nella fase di<br />

progettazione dei prodotti, analizzando e simulando le<br />

caratteristiche che più soddisfano i requisiti che il forgiato<br />

deve possedere in funzione della sua destinazione d'uso.<br />

L'utilizzo di Forge rappresenta il punto più importante<br />

dell'attività del CRS: <strong>per</strong>metterà di acquisire una conoscenza<br />

oggettiva, di tipo scientifico-ingegneristico. Non più soltanto<br />

empirica e legata quindi solo all'es<strong>per</strong>ienza <strong>per</strong>sonale di chi fa<br />

parte dell'azienda.<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 45<br />

Gli strumenti adatti e le competenze adeguate determinano<br />

un binomio vincente <strong>per</strong> lo studio e la progettazione di componenti<br />

High Tech forgiati <strong>per</strong> il settore energetico e in particolare<br />

quella nucleare.<br />

<strong>EnginSoft</strong> ha estese competenze nella simulazione di processo,<br />

derivanti da oltre 15 anni di es<strong>per</strong>ienza a diretto contatto<br />

con questo tipo di problematiche del mondo industriale.<br />

Per informazioni, rivolgersi a:<br />

ing. Marcello Gabrielli – <strong>EnginSoft</strong><br />

info@enginsoft.it<br />

SOCIETÀ DELLE FUCINE – THISSEN KRUPP<br />

Società delle Fucine ha deciso di intraprendere la<br />

collaborazione con <strong>EnginSoft</strong> e dotarsi di strumenti di<br />

simulazione numerica del processo di fucinatura, scegliendo in<br />

particolare il software Forge nella versione parallela<br />

multiprocessore. La competenza e disponibilità dei tecnici di<br />

<strong>EnginSoft</strong> è risultata fondamentale <strong>per</strong> la rapida introduzione<br />

dei nostri parametri di processo e la taratura dei modelli<br />

numerici di fucinatura a stampi a<strong>per</strong>ti che ha consentito di<br />

raggiungere simulazioni aderenti alla realtà in tempi molto<br />

rapidi. L'ing. Roberto Caldarelli, responsabile della<br />

preventivazione e della progettazione delle sequenze di<br />

produzione dichiara: “La scelta è caduta su questo programma<br />

grazie alla estrema flessibilità nella definizione delle<br />

cinematiche: tramite semplici istruzioni è possibile impostare<br />

le passate ed i singoli colpi, indicando il tempo di pausa tra<br />

un colpo ed il successivo e tutte le movimentazioni effettuate<br />

dal manipolatore <strong>per</strong> posizionare correttamente il pezzo sotto<br />

la pressa. Questi aspetti sono essenziali, assieme a risultati<br />

che abbiamo verificato essere molto precisi, <strong>per</strong> poter<br />

utilizzare Forge <strong>per</strong> prevenire possibili problemi di<br />

deformazione del pezzo sotto la pressa, adottando opportune<br />

modifiche dei cicli di stampaggio.“ “Prevediamo di utilizzare<br />

le simulazioni in modo via via sempre più sistematico <strong>per</strong> i<br />

nuovi pezzi prodotti e di estendere il suo utilizzo alle fasi di<br />

riscaldamento in forno, <strong>per</strong> prevedere tempi di riscaldo e<br />

dilatazioni e <strong>per</strong> il successivo processo di tempra, <strong>per</strong> valutare<br />

le deformazioni relative alla trasformazione martensitica,<br />

grazie alla possibilità di simulare le trasformazioni<br />

microstrutturali”. Per ultimo si cercherà un collegamento con i<br />

risultati ottenuti dalla simulazione della colata dei lingotti, in<br />

modo da tener conto delle caratteristiche proprie del lingotto<br />

di partenza e simulare tutto il processo produttivo.<br />

SIMULAZIONE DI PROCESSO NEL CAMPO ENERGIA E NUCLEARE


46 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

Landi Renzo: the global leader in the<br />

sector of components<br />

and LPG and CNG fuel systems<br />

Based in Cavriago (Reggio Emilia<br />

- Italy), with more than 50 years<br />

ex<strong>per</strong>ience in the sector, Landi<br />

Renzo is distinguished by a<br />

sustained revenue growth, a<br />

listing in the STAR segment of<br />

the Italian stock exchange, and the extent of its<br />

international o<strong>per</strong>ations, with a presence in over 50<br />

countries.<br />

The Landi Renzo Company was established in 1954 when<br />

Renzo Landi and his wife Giovannina Domenichini founded<br />

Officine Meccaniche Renzo Landi, at the time the only<br />

manufacturer of mixers specifically designed for all kinds of<br />

vehicles.<br />

Landi Renzo S.p.A. is<br />

now a global leader in<br />

the sector of<br />

components and LPG<br />

and CNG fuel systems<br />

for motor vehicles,<br />

serving more than<br />

30% of the market of alternative automotive fuel systems<br />

and components. It is a preferred supplier by a growing<br />

number of worldwide brands like Daimler Chrysler, Fiat, Opel,<br />

PSA, Renault, Volkswagen, and more recently Toyota.<br />

Landi Renzo S.p.A. Research and Development Centre is<br />

currently the only one in its field to use advanced<br />

technologies that allow creating and developing modern<br />

systems to convert vehicle fuel systems to LPG and CNG.<br />

Visit the website on: www.landi.it<br />

modeFRONTIER in LandiRenzo<br />

“The first project with modeFRONTIER®, a product of ESTECO<br />

srl, dates back to 2008, when we <strong>per</strong>formed an optimization<br />

of the new Electronic Pressure Regulator (EPR) - says<br />

Ferdinando Ciardiello, Research & Development Modelling<br />

Manager at Landi. “Ercole Sangregorio, current EPR Project<br />

Manager, - continues Ciardello - built-up a two steps<br />

development: at first, leveraging on ex<strong>per</strong>imental test data<br />

available in our in-house facilities, modeFRONTIER calibrated<br />

a numerical model of the EPR. We obtained a very precise 1D<br />

model, able to predict well and quickly the system’s behavior,<br />

the steady-state and the transient in different possible<br />

configurations. Afterwards, modeFRONTIER was used as a<br />

process integrator and a multi-objective optimizer,<br />

connecting different software tools to build a truly and<br />

multi-disciplinary virtual bench, with mechanical, pneumatic<br />

and control system models, and finding overall optimal<br />

configurations. In this way, we<br />

were able to minimize pressure<br />

oscillations in the control<br />

volume and to get an optimal<br />

and robust EPR configuration in<br />

just few weeks”. “Moreover, we<br />

expanded the concept to 3D<br />

fluid-dynamics design,<br />

particularly with the ANSYS<br />

Workbench direct node in<br />

modeFRONTIER, resulting in<br />

scheduled 3D simulation<br />

campaigns during night time<br />

and weekends. It proved to be a very efficient approach,<br />

based on the state-of-the-art Design Of Ex<strong>per</strong>iment available<br />

in modeFRONTIER.”<br />

Why modeFRONTIER and <strong>EnginSoft</strong><br />

“Computer-Aided Engineering has always been a key success<br />

factor for our growth”, says Viliam Alberini, Leader of the<br />

Components Division, “and <strong>EnginSoft</strong> has been supporting<br />

our demands well for years. Adding modeFRONTIER to our<br />

software chain in 2008 has been a winning move for more<br />

than one reason: with modeFRONTIER our approach to<br />

product concept has become more systematic and now allows<br />

us to evaluate more alternatives and take into account the<br />

effects of more design variables. This translates into value to<br />

our customers: critical factors are understood and handled<br />

much earlier in the process and the design results more<br />

robust in a shorter time. modeFRONTIER has also improved<br />

the predictive power of our numerical models by feeding<br />

them with lab testing results. This philosophy has reduced<br />

development times and costs, and our team can cater to<br />

customer demands and discuss specifications with them more<br />

efficiently”.


Manufacturing companies are increasingly tending to<br />

centralize the management of their 3D product data. This<br />

requires moving from segmented 3D CAD data conversion<br />

and communication paths to a single integrated system.<br />

Such a system must be able to correctly translate product<br />

data from one CAD system to another and also be able to<br />

prepare the data for other uses, such as FEA and CAM.<br />

However, these tasks are not always done correctly or<br />

adequately due to the significant difficulties in handling<br />

mismatches between various software systems. Though<br />

this is a difficult undertaking, Nissan Motor Company –<br />

the well-known Japanese automobile manufacturer – has<br />

successfully built a reliable system for conversion and<br />

distribution of their 3D product data to be used companywide<br />

for all CAD-CAM o<strong>per</strong>ations.<br />

At Nissan, the control and delivery systems had used many<br />

3D tools in production technology, and the level of data<br />

quality had differed from tool<br />

to tool. This difference in<br />

quality frequently disrupted<br />

the accuracy of data<br />

translation. To solve this<br />

problem, Nissan launched a<br />

new project to shift to a<br />

totally new translation<br />

workflow, while changing its<br />

standard CAD system from Ideas<br />

to NX.<br />

On this project, Nissan chose<br />

‘ASFALIS’, one of the products<br />

of Elysium - a Japanese<br />

provider of 3D<br />

intero<strong>per</strong>ability solutions - to<br />

consolidate the company-wide data conversion system in<br />

order to achieve high accuracy and great stability of<br />

<strong>per</strong>formance. ASFALIS helps users establish a large-scale<br />

and flexible system to automatically o<strong>per</strong>ate CAD-to-CAD<br />

conversion or other optimization. It has been introduced<br />

among many Japanese major automobile manufacturers<br />

for their CAD conversion.<br />

“We are replacing all the 3D translators in production<br />

engineering with Elysium’s ASFALIS, which controls all the<br />

3D data translation and distribution processes in Nissan,”<br />

said Katsuro Fujitani, senior manager of the<br />

manufacturing and SCM system department in global IS<br />

division (as of 2010). He continued, “With its preeminent<br />

translation <strong>per</strong>formance, more than 99.9 <strong>per</strong>cent of the<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 47<br />

The CAD-CAM Coo<strong>per</strong>ation in Nissan<br />

Achieved by ASFALIS<br />

data can be converted without error.” ASFALIS adapters<br />

are ready for all the possible translation patterns, which<br />

allow the Nissan staff to utilize any type of CAD data. In<br />

fact, they translate 3D data between INCAM* and several<br />

CAD systems such as I-deas, NX and DELMIA. Even large<br />

amounts of data are automatically converted and delivered<br />

to predetermined destinations. It is also able to control<br />

concurrently running file translation processes. Because<br />

the ASFALIS-based system is integrated to the intranet<br />

and connected with ‘Teamcenter’, the master PDM, Nissan<br />

staff in domestic branches are able to access ASFALIS to<br />

execute translations. The results of translations are<br />

automatically delivered in a specified format to another<br />

branch.<br />

Even though different paths are needed between approved<br />

data and data under consideration, users merely have to<br />

change settings. Once configured, ASFALIS automatically<br />

translates data and distributes results, whose quality is<br />

admirable and stable. Elysium’s reliable 3D data<br />

translation and distribution system has improved the<br />

efficiency at every step of processes throughout the<br />

product lifecycle management (PLM) in Nissan.<br />

* INCAM is the in-house CAM system in Nissan.<br />

For more information, please visit the ELYSIUM website:<br />

http://www.elysium-global.com<br />

For information on Elysium products in Italy, please contact:<br />

Giorgio Buccilli at <strong>EnginSoft</strong>, info@enginsoft.it


48 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

CAE-based tablet design<br />

Supported by<br />

Economic growth has provided us with many rewards including a<br />

wealthy and comfortable society. At the same time though, we<br />

are facing problems that occur with an aging population and an<br />

increase in lifestyle diseases. Even in Japan, the country with<br />

the highest life expectancy, health problems linked to lifestyle<br />

and age are evident. While in Europe, Japanese cuisine has<br />

become quite popular in the last decade, also for supporting a<br />

healthy diet and for curing disorders linked to an excessive<br />

lifestyle, in Japan a trend of eating more “fast” and less<br />

Japanese food can be witnessed. The consequences are increases<br />

in bad dietary habits and lifestyle diseases. Both have led to<br />

more frequent and longer sicknesses and to shortened life<br />

expectancy. In a modern society like this, pharmaceuticals are<br />

more and more in demand to offer supplements that can<br />

effectively treat our increasing health disorders and thus<br />

improve the quality of our lives.<br />

ASAHI BREWERIES GROUP is one of the largest food<br />

manufacturers in Japan. The Group mainly produces alcoholic<br />

beverages, but also focuses on the research and development of<br />

various supplements for the food production part of their<br />

business. Some of these supplements are designed for<br />

compensating the lack of a healthy nutrition, such as vitamins<br />

and minerals that tend to be insufficient in our modern diet.<br />

Some of these supplements include beer yeast for which the<br />

ASAHI BREWERIES GROUP has become world-famous. The Group’s<br />

supplements are of the highest quality and hence are products<br />

that we can trust.<br />

Pharmaceuticals and supplements are available in many forms,<br />

such as tablets, granulates, hard and soft capsules, jellies or<br />

syrups. Tablets are the most common today, and they come in<br />

many different shapes, colors and flavors. People sometimes find<br />

it difficult to swallow tablets because they must be taken<br />

without chewing and are usually washed down with hot or cold<br />

water (except for chewable tablets).<br />

It actually is an extremely important requirement today to<br />

develop tablets that are easy to swallow, both from a<br />

compliance and a usability point of view. Until recently, no<br />

quantitative research on the correlation between shape of tablet<br />

and ease of swallowing has been made. It was Mr. Hideaki Sato<br />

of ASAHI BREWERIES, LTD. who began to investigate the shape<br />

of tablets for ease of swallowing, using sensitivity engineering<br />

and optimization methods to develop the most suitable shape.<br />

Mr. Hideaki Sato evaluated the “tablet shape/hardness” and the<br />

“pressure resistance” of the tablet machine pestle using the FEM<br />

simulation software ANSYS.<br />

Study of the tablet’s shape for ease of swallowing<br />

To review the correlation between tablet diameter, radius of<br />

curvature, thickness and ease of swallowing of the most typical<br />

circular tablets, the following steps were carried out by using a<br />

sensory evaluation technology based on the ex<strong>per</strong>ience of food<br />

development and response surface methods.<br />

Step 1: Preparing tablets<br />

36 different shapes of tablets made from microcrystalline<br />

cellulose and calcium stearate were prepared with all the<br />

possible combinations of tablet diameter (6mm, 7mm, 8mm and<br />

9mm), radius of curvature (6mm, 9mm and 12mm) and thickness<br />

(3 values from 2.5mm to 6.5mm).<br />

Fig. 1 - The shape of the circular tablet<br />

Step 2: Sensory evaluation<br />

The participants were 10 healthy men and women who took<br />

tablets from Step 1 with a glass of water every 30 minutes in<br />

random order. With the sensory evaluation, the ease of<br />

swallowing was rated on a 5 level score.<br />

Fig. 2 - The response surface of tablet diameter, radius of curvature and ease<br />

of swallowing


Step 3: Analysis of sensory evaluation result<br />

Based on the results of Step 2, the response surface of the tablet<br />

diameter, radius of curvature and ease of swallowing was<br />

established by spline interpolation connecting each data point.<br />

This was done for actual ease of swallowing and for apparent<br />

ease of swallowing.<br />

The result shows that it is easier to swallow when both the<br />

diameter and the radius of curvature are smaller with the<br />

smallest diameter and radius of curvature being the easiest when<br />

the thickness is 3.5mm. However, the best score for swallowing<br />

in cases where thickness exceeds 3.5mm is when the diameter is<br />

7mm, not the lowest value 6mm. This way, it became clear that<br />

the smaller diameter is not always better for swallowing.<br />

Moreover, it is important to consider the most appropriate<br />

diameter based on the radius of curvature and the thickness.<br />

Regarding the apparent ease of swallowing, the result was<br />

different from the result of the actual ease of swallowing. The<br />

participants felt that smaller diameters and smaller radiuses of<br />

curvature are generally better. Additionally, the best shape for<br />

swallowing based on each volume was specialized. This research<br />

revealed the relation between tablet shape and ease of<br />

swallowing.<br />

Considering the fact that it is indeed difficult to change<br />

pharmaceutical diameters in Japan, the conclusion was that the<br />

most appropriate solution would be to reduce the radius of<br />

curvature (i.e. to make the shape round).<br />

However reducing the radius of curvature size entails the<br />

problem of decreased durability of the tablet and the die (a part<br />

of the tablet machine pestle). To overcome this, ANSYS was used<br />

for the stress simulation of the arbitrarily-shaped tablet and<br />

tablet machine pestle.<br />

Stress simulation for the arbitrarily-shaped tablet<br />

Typically, in the pharmaceutical and food industries, the tablet<br />

strength is evaluated by a stress test to examine the fracture<br />

load under the unidirectional load of the tablet. This is called<br />

“Tablet Hardness”. To predict this as accurately as possible, CAE<br />

simulations were <strong>per</strong>formed. We should mention here that this<br />

was the first time that a CAE approach has been applied in these<br />

industries. In fact, tablet strength evaluations are very<br />

challenging, as tablets are made of compressed formations of<br />

powdered substances and unlike mechanical structures, the<br />

shape and Young’s modulus are different and dependent on the<br />

pressure loads.<br />

Step1: Simulation under the assumption of a constant Young<br />

moduleus<br />

As a first step, the reaction force of the tablet, a 1/8<br />

symmetrical segment model, was calculated under enforced<br />

displacement. In this simulation, it was assumed that the<br />

tablet’s Young Modules was constant, and an adequate material<br />

pro<strong>per</strong>ty was defined for the model. It was done this way<br />

because 3 different shapes of tablets made by the same pressure<br />

load had almost the same volume (density), and the prediction<br />

was that the Young Modules would be constant. However, there<br />

was a divergence between the simulation results and the test<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 49<br />

results under the same conditions. So, it became obvious that<br />

applicable accuracy cannot be expected under the assumption<br />

that the Young Modules is constant.<br />

Fig. 3 - 1/8 model of the tablet and analysis condition<br />

Step2: Simulation with the Young Module defined by the reaction<br />

force on the pestle<br />

This new approach was applied to gain realistic values for the<br />

tablet’s Young’s Modulus. The stress simulation of the tablet<br />

machine pestle was <strong>per</strong>formed to obtain the reaction force on<br />

the pestle head when tableting, and then to verify the<br />

distribution of the reaction force as the distribution of the<br />

tablet’s Young Modulus by transcribing it to the tablet model.<br />

Fig. 4 - The tablet machine pestle and the area of the simulation<br />

Fig. 5 - 2D symmetrical model for the simulation<br />

In order to determine the reaction force on the contact area, a<br />

stress simulation using the 2D symmetrical model shown in<br />

Fig.5, was <strong>per</strong>formed. The model was made from chrome-nickel<br />

and a load of 20kN was applied to the up<strong>per</strong> region. The<br />

distribution of the reaction force was obtained by the simulation<br />

illustrated in Fig.6.<br />

The reaction force was then transcribed to the tablet model for<br />

its own stress simulation. At the same time, the average reaction<br />

force for each divided region (2 parts or 4 parts) was transcribed


50 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

Fig. 6 - The reaction force distribution on the pestle head<br />

Fig. 7 - Young Module transcription to the tablet model<br />

Fig. 8 - Relation between tablet hardness and reaction force<br />

to the similarly divided region of the tablet model (the<br />

transcription model of SATO-MIURA).<br />

The result of the ANSYS simulation was consistent with the<br />

ex<strong>per</strong>imental result, and it led to suitable results with practical<br />

accuracy.<br />

Fig. 9 shows the 3 different contour plots of the stress<br />

simulation for the tablet with a diameter of 8mm and a radius<br />

of curvature of 15mm. These are the results when the Young<br />

Modulus is assumed to be constant, divided into 2 parts and<br />

divided into 4 parts, respectively from left to right.<br />

The new approach to transcribe the reaction force on another<br />

model of the analysis model was applicable in this case. However<br />

further considerations regarding the applicable range (e.g.<br />

powder pro<strong>per</strong>ty, tablet machine type and tablet machining<br />

conditions) will become necessary in the future.<br />

Stress simulation for the arbitrarily-shaped tablet machine<br />

pestle<br />

The tablet machine is in o<strong>per</strong>ation all day to compress powder<br />

instantaneously with hundreds or thousands of kgf of pressure.<br />

A lot of stress occurs on the machine and sometimes this causes<br />

breakage. When reducing the tablet curvature size, the pestle<br />

head will be sharpened and the load capacity of the pestle will<br />

drop to a lower level. In the past, the load capacity of the pestle<br />

used to be based on the tablet machine manufacturer’s<br />

ex<strong>per</strong>imental rules. To predict the load capacity more accurately,<br />

an ANSYS simulation of the tablet machine was <strong>per</strong>formed. A 2D<br />

axisymmetric model was prepared and the contact element<br />

between the pestle and the tablet was defined to represent the<br />

pestle sliding slightly on the tablet during the powder<br />

Fig. 10 - Analysis condition<br />

Fig. 9 - the maximum principle stress of the tablet with 8mm tablet diameter and 15mm radius of<br />

curvature<br />

compression phase. The surface of<br />

the tablet was defined as rigid. The<br />

analysis condition is shown in Fig.<br />

10. In this simulation, the<br />

calculation was repeated until the<br />

Young Module of the pestle:<br />

166,100Mpa<br />

Poisson ratio of the pestle: 0.3<br />

Acceptable stress value of<br />

metallic material of the pestle:<br />

2,172Mpa<br />

Tablet diameter: 6.0mm and<br />

8.0mm<br />

Land: 0.1mm<br />

Contact stiffness coefficient of<br />

the pestle and the tablet: 5.0<br />

stress value inside the pestle reached the allowable stress value<br />

of 2,172Mpa in order to know the load capacity.<br />

Fig. 11 shows the area which might break. This<br />

corresponds exactly with the tablet machine<br />

manufacturer’s ex<strong>per</strong>imental rule. Hence we can<br />

conclude that the CAE simulation for the tablet<br />

machine is valid.<br />

The new approach of using CAE received a<br />

great response from industry<br />

Today, CAE is the standard tool of machine<br />

design manufacturers and many examples,


Fig. 11 - Contour plot of the equivalent stress<br />

Comments from Mr. Sato of ASAHI BREWERIES, LTD.<br />

(Share the Kando.*)<br />

In today’s food industries, we only find a few examples<br />

for CAE- (and even fewer for FEM-) based product<br />

development. For the work described in this article, we<br />

applied ANSYS to evaluate our tablet design, and this<br />

attempt provided us with a lot of new and useful<br />

information. The response surface for the ease of<br />

swallowing has high prediction accuracy, this is why it is<br />

now used for product development in the ASAHI<br />

BREWERIES GROUP. Regarding the transcription model,<br />

the idea to consider the reaction force on the pestle as<br />

the tablet’s Young Module was a complete breakthrough.<br />

For the use of the approach in the future, we would like<br />

to make a decision on the applicable range of the<br />

theoretical model based on the powdered material and<br />

the working conditions of the tablet machine.<br />

We are no CAE specialists, so to us simulation is just a<br />

tool and not our main objective. It is necessary to<br />

coo<strong>per</strong>ate with the CAE vendors for those simulation<br />

cases which cannot be solved by ourselves. In such<br />

situations, it is very important to deliver our analysis<br />

results and requirements to the CAE vendors as sufficient<br />

engineering knowledge and analytical thinking are<br />

indispensable. We expect from the CAE vendors that they<br />

don’t stick to their own technologies and simulation<br />

results, and that they provide flexible services. There are<br />

cases where – after sufficient communications and<br />

exchange of information - we find out that no use of CAE<br />

simulation is necessary.<br />

I am very pleased that Mr. Miura of Cybernet Systems has<br />

always responded quickly to my requests, and that he is a<br />

reliable partner. I do believe that the best solutions come<br />

from human communication, not from automatic<br />

computational calculation. This is the spirit of “Share the<br />

KANDO.”<br />

*This is the corporate message of ASAHI BREWERIES, LTD.<br />

It means: Always creating new value moves people’s hearts<br />

and forms a strong bond. Always imagining a fresh<br />

tomorrow moves people’s hearts and helps them shine.<br />

Sharing these emotional ex<strong>per</strong>iences with as many people<br />

as possible—this is the mission of the Asahi Breweries<br />

Group.<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 51<br />

reports and testimonials come from these industries. The<br />

specialists in the design and development divisions are<br />

becoming more and more familiar with CAE. The various<br />

technologies are not too difficult to apply, even for beginners,<br />

as they usually have previous ex<strong>per</strong>ience, and the manuals and<br />

guidelines are pretty clear. Still, CAE with stress simulation has<br />

not been used in the pharmaceutical and food industries<br />

worldwide until recently. Mr. Sato indeed has made a big step<br />

forward with his idea of using CAE for tablet design. The key<br />

success factor was the new approach of using the substituted<br />

condition for the target simulation in cases where the real<br />

physical condition cannot be determined. In 2010, these series<br />

of simulations were presented at different academic meetings<br />

and in various publications. Mr. Sato’s work and approach<br />

received a great response from the pharmaceutical and food<br />

industries and the CAE sector.<br />

This article is based on the original case study by Mr. Hideaki<br />

Sato, Research Laboratories For Food Technology, ASAHI<br />

BREWERIES, LTD. and Mr. Takahiro Miura, Mechanical CAE Division,<br />

CYBERNET SYSTEMS CO.,LTD.<br />

Akiko Kondoh<br />

Consultant for <strong>EnginSoft</strong> in Japan<br />

Comments from Mr. Miura of CYBERNET SYSTEMS<br />

Co.,Ltd.<br />

CYBERNET SYSTEMS is a Japanese company offering<br />

computational engineering solutions, such as CAE<br />

software tools and all product-supporting services<br />

including seminars, support and consulting. ANSYS is one<br />

of our major business areas. We have a strong customer<br />

base in different industries, for example in automotive,<br />

electrical machinery, electrical devices, energy, aerospace<br />

and medical engineering. For the past 25 years since its<br />

establishment, CYBERNET SYSTEMS has been passionate<br />

about supporting MONOZUKURI in Japan as a CAE solution<br />

provider. Now, it also has some affiliated companies in<br />

Asia, North America and Europe, and has become a global<br />

player.<br />

ASAHI BREWERIES GROUP is a pioneering Japanese food<br />

and beverage manufacturer. We are truly honored to be<br />

able to collaborate with Mr. Sato who is promoting<br />

cutting-edge research and development. Currently, CAE is<br />

not used extensively in the food and beverage industries<br />

in comparison with other industries. We believe that CAEbased<br />

engineering simulation will provide effective<br />

solutions for achieving “time savings”, “cost reduction”,<br />

“security assurance” and “environmental protection”,<br />

important topics also for companies in these industries.<br />

We will endeavor to develop other examples for the<br />

engineers in the food and beverage industries, to<br />

encourage them to connect with and use CAE. We will also<br />

deepen the relations with our partners, like with Mr. Sato,<br />

and grow their passion for MONOZUKURI with our own<br />

passion.


52 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

Tokyo a Metropolis<br />

Tokyo, the capital of Japan, is the world’s biggest mega city<br />

according to the United Nations’ 2010 report, with a population<br />

of 13 million and 36.6 million if we include its surrounding<br />

urban areas. Another report by PricewaterhouseCoo<strong>per</strong>s (PwC)<br />

states that Tokyo has the highest GDP of any cities in the world.<br />

Tokyo is also the heart of Japan with regards to politics, culture<br />

and education. When we think of Tokyo, images of typical<br />

cityscapes with high-rise buildings standing above busy crowds,<br />

elaborate train and subway systems, different varieties of<br />

academic and cultural facilities along with a rich entertainment<br />

heritage are conjured up. On the other hand, the city has many<br />

different aspects, such as numerous parks and green areas,<br />

waterways and finally the sea! There are many places where one<br />

can relax and unwind watching the changes of the seasons. From<br />

the many faces of Tokyo, I would like to introduce my favorite<br />

spots in this article.<br />

The skyscra<strong>per</strong>s<br />

When visiting Tokyo, many of my European friends are surprised<br />

by the cluster of high-rise buildings in different areas and the<br />

endless expansion of crowded residential areas spread across the<br />

suburbs. In fact, many new buildings are constructed with<br />

incredible rapidity every year, and the landscape changes<br />

The nightscape of Shinjyuku<br />

constantly. The high-rise buildings of Tokyo not only overwhelm<br />

people at daytime, they also present amazing views after sunset.<br />

Tokyo is known all over the world for its diversity of restaurants<br />

and gourmet places, in particular: Japanese, Italian and French<br />

cuisine are the people’s favorite. On the top floors of some tall<br />

buildings such as “Tokyo Midtown” in Roppongi and the<br />

“Marunouchi Building” near Tokyo station, we can enjoy the<br />

great bird’s eye view with a variety of gourmet food. This is truly<br />

a unique ex<strong>per</strong>ience. After a busy day, a lot of people in Tokyo<br />

feel at home watching the illuminations and the slowly blinking<br />

lights floating into the night sky.<br />

The green oases<br />

Surprisingly, there are many large parks with a lot of trees in<br />

Tokyo. In Shinjyuku, located nearby the Tokyo Metropolitan<br />

March 2011 Earthquake<br />

and Tsunami in Japan<br />

This article was written before a terrible earthquake hit<br />

parts of Japan and its people.<br />

If you want to help, please donate to:<br />

Italian Red Cross:<br />

http://www.cri.it<br />

The Japanese Red Cross Society:<br />

http://www.jrc.or.jp/english/<br />

British Red Cross:<br />

http://www.redcross.org.uk/<br />

German Red Cross:<br />

http://www.drk.de<br />

or to any other organization that helps Japan in the<br />

present crisis.<br />

Thank you<br />

The Newsletter Editorial Team<br />

Shinjyuku-Gyoen Park<br />

Government offices, there is a park called Shinjyuku-Gyoen that<br />

I often visit with my family when the weather is fine. Shinjyuku-<br />

Gyoen is run by the Ministry of the Environment and covers an<br />

area of 580,000 m². This beautiful park invites visitors to enjoy<br />

gardens of three distinct styles: the French Formal Garden, the<br />

English Landscape Garden and the Traditional Japanese Garden.<br />

In spring, the park’s 1300 cherry trees attract many visitors as<br />

one of the best cherry blossom-viewing spots in Japan. A short<br />

distance from Shinjyuku, there is another large green oasis<br />

called Meiji-Jingu, it is the home of a famous Shinto shrine and<br />

covers 700,000 m². Meiji-Jingu is surrounded by a very old manmade<br />

forest. As soon as you enter the area, you will feel a<br />

sublime atmosphere, far from the hustle and bustle of the city.<br />

Once you have passed the wooden approach, you will reach the<br />

main hall enshrining a God, a treasure museum called<br />

Homotsuden and Shiseikan of martial arts. At week-ends, you<br />

might even be able to see a traditional Japanese wedding<br />

ceremony.<br />

Asakusa – the old town of Tokyo<br />

Dwarfed by the modern buildings, Tokyo’s old towns welcome<br />

visitors with warmth and old world charm. The most famous<br />

town is Asakusa which is very popular among foreign travelers.


Senso-ji Temple<br />

The Senso-ji temple can be found here, it is world-renowned for<br />

its Kaminari-mon. The existing main hall and five-story pagoda<br />

were reconstructed after having been burned down during the<br />

Second World War. The original buildings date back to more than<br />

a thousand years ago, and they are historical and symbolic<br />

temples of Tokyo. Along the approach from the Kaminari-mon to<br />

the Hozo-mon, there are many souvenir and snack shops lining<br />

up a street called Nakamise. Here we can enjoy shopping in a<br />

very Japanese atmosphere. The neighborhood is dotted with lots<br />

of classic restaurants, which will satisfy your appetite with very<br />

authentic Tokyoite dishes, such as Tenpura, Sukiyaki and Unagi.<br />

On the west side, there is Kappabashi, a street devoted to<br />

kitchenware, which supplies most of the restaurants in Tokyo.<br />

Recently, so-called ultra-realistic food models are sold here<br />

which have become very popular as souvenirs.<br />

Returning to the east side of the Senso-ji temple, there is the<br />

Sumida river, where you can enjoy a nice walk and maybe a short<br />

trip on a cruise boat. Behind the red painted Azuma-bashi<br />

bridge, the headquarters of ASAHI BREWERIES, LTD. are located,<br />

the Japanese Group that we introduce in this Newsletter with<br />

the CAE tablet design case study. It is a major landmark because<br />

of the golden flame on top of the black building. On the left of<br />

the ASAHI BREWERIES buildings, the world’s tallest TV tower<br />

“Tokyo Sky Tree” appears. It is still under construction. In<br />

February 2011, its height has reached 574m. The construction<br />

will be completed at the end of 2011, the final height will be<br />

634m. The number 634 was selected because of its<br />

pronunciation in Japanese which is MUSASHI, the old name of<br />

the Tokyo metropolitan area.<br />

The headquarters of ASAHI BREWERIES, LTD., and Tokyo Sky Tree<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 53<br />

ODAIBA the bay area<br />

Odaiba is the bay area which did not exist in the old maps<br />

because it was constructed by massive landfills towards the end<br />

of the last century, and the current landscape only appeared<br />

after the 1990’s. Towards the end of the Edo Period (1603-<br />

1868), a number of forts were built here on the different islands<br />

in the bay, to protect Tokyo against possible attacks from the<br />

sea. More than a century later, Tokyo began a spectacular<br />

development project aimed to relieve the congestion in the city<br />

center, and it became a large business and residential district<br />

starting with the opening of the Rainbow Bridge. The beautiful<br />

scenery of neo-futuristic streets and the bay area, attracts many<br />

visitors from all parts of the country to Odaiba.<br />

Odaiba is, at the same time, a favorite place for engineers. Many<br />

trade shows dedicated to the manufacturing and CAD/CAE<br />

industries are held at this “Tokyo Big Sight” which was opened<br />

in 1996. The hotels in this area are often chosen as venues for<br />

different Users’ Meetings of CAD/CAE software products.<br />

Rainbow Bridge in Odaiba<br />

Savor the Cuisine of Tokyo<br />

One of the major attractions of Tokyo is its cuisine and unique<br />

gastronomic variety. Here, locals and visitors from all parts of<br />

Japan and around the world, savor different kinds of Japanese<br />

food and the cuisines from many other cultures. In Tokyo, we<br />

can enjoy food of the highest qualities and standards at<br />

reasonable prices.<br />

If you visit Tokyo and wish to look for a suitable restaurant,<br />

there are several handy search guides you can use, for example<br />

GourNavi. You can select from a wealth of information based on<br />

location, food type and price range.<br />

If you search e.g., for a restaurant near Roppongi, about 2,000<br />

restaurants will come up very quickly (100 on the English<br />

website). In case you are tired at some stage, from all the going<br />

out to restaurants, why not discover DepaChika, the department<br />

store's basement food floor in the station. Here you can buy your<br />

favorite dishes from a variety of choices and take them to a<br />

nearby park or wherever you are staying – this is very easy and<br />

convenient and what the locals do also!<br />

Tokyo is one of the biggest and most modern metropolis in the<br />

world. At the same time, it is also a very interesting city that<br />

has always maintained its originality, a melting-pot of nature,<br />

people’s love for nature and traditional cultures…<br />

There is so much more about Tokyo that we will bring to you in<br />

the next Japan Columns of the Newsletter!<br />

Akiko Kondoh, Consultant for <strong>EnginSoft</strong> in Japan


54 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

President Obama Honors <strong>EnginSoft</strong>’s<br />

Partner with the Presidential Early<br />

Career Award for Scientists and<br />

Engineers<br />

Prof. Gianluca Iaccarino has been<br />

recognized last December with the<br />

Presidential Early Career Award for<br />

Scientists and Engineers (PECASE), the<br />

highest honor the U.S. government<br />

bestows on scientists and engineers in<br />

the early stages of their research careers,<br />

during an official ceremony at the White<br />

House in Washington D.C. Prof.<br />

Iaccarino, one of 13 U.S. Department of<br />

Energy researchers named as recipients,<br />

was recognized for “his extensive and<br />

deep scientific contributions in the areas<br />

of turbulent flow and uncertainty<br />

quantifications for the National Nuclear<br />

Security Administration community,”<br />

according to a Department of Energy<br />

official. The award winners were honored<br />

for their research efforts in a variety of<br />

fields, from helping the nation achieve<br />

energy independence to exploring the realms of space to<br />

identify dark matter. These awardees are funded by the U.S.<br />

Department of Energy's Office of Science and the National<br />

Nuclear Security Administration. The winning DOE scientists<br />

are among 85 researchers supported by 10 federal<br />

departments and agencies who have received the award. In<br />

addition to a citation and a plaque, each PECASE winner will<br />

continue to receive DOE funding for up to five years to<br />

advance his or her research.<br />

“Science and technology have long been at the core of<br />

America's economic strength and global leadership I am<br />

confident that these individuals, who have shown such<br />

tremendous promise so early in their careers, will go on to<br />

make breakthroughs and discoveries that will continue to move<br />

our nation forward in the years ahead” said President Obama.<br />

“These gifted young scientists and engineers represent the best<br />

in our country. The awards recognize ingenuity, dedication,<br />

diligence and talent. I congratulate the PECASE awardees and<br />

wish them continued success towards new discoveries and<br />

advances in science, energy research, and national security”<br />

said Secretary Steven Chu.<br />

The Award Motivation<br />

“For his extensive and deep scientific contributions in the<br />

areas of turbulent flow and uncertainty quantifications and<br />

quantified margins of uncertainty, which are<br />

amplified for the National Nuclear Security<br />

Administration (NNSA) community through<br />

his position of intellectual leadership at the<br />

NNSA Predictive Science Academic Alliance<br />

Program Center at Stanford”<br />

Nominated by Lawrence Livermore National<br />

Laboratory<br />

Prof. Gianluca Iaccarino<br />

Dr. Gianluca Iaccarino is an Assistant<br />

Professor at Stanford University with joint<br />

appointments in the Mechanical Engineering<br />

Department and the Institute for<br />

Computational Mathematical Engineering. He<br />

completed his graduate studies in Italy<br />

working on computational methods for fluid<br />

dynamics and worked as a Research<br />

Associate at the NASA Center for Turbulence<br />

Research before joining the Faculty at<br />

Stanford in 2007. He is the Deputy Director of the NNSA<br />

Predictive Science Academic Alliance Program (PSAAP) Center<br />

at Stanford and leads the effort on Quantification of Margins<br />

and Uncertainties, a decision-making computational<br />

framework aimed at managing risks associated to highconsequence<br />

systems. His research activities are focused on<br />

Computational Fluid Dynamics, in areas ranging from analysis<br />

of wind turbines, to hy<strong>per</strong>sonic propulsion, to turbulence and<br />

transition modeling, to thermal management in batteries. In<br />

2007 Dr. Iaccarino funded the Uncertainty Quantification Lab<br />

(http://uq.stanford.edu): a joint initiative between the<br />

School of Engineering and the Mathematics and Statistics<br />

Departments. The UQLab is supported by various grants from<br />

NNSA, DOE Office of Science, NSF, and industries and focuses<br />

on probabilistic algorithms<br />

for uncertainty analysis,<br />

stochastic inference and<br />

robust optimization. The<br />

research work ranges from<br />

the theoretical aspects of<br />

uncertainty representation,<br />

to algorithms for nondeterministic<br />

analysis, to<br />

large-scale applications<br />

leveraging massively parallel<br />

computers. Many of the<br />

current projects involve


active collaborations with Sandia,<br />

Lawrence Livermore and Los Alamos<br />

National Laboratories. Dr. Iaccarino is<br />

involved in various educational<br />

activities at Stanford and in the<br />

computational engineering community.<br />

He organized Uncertainty<br />

Quantification tutorials, workshops and<br />

special sessions at major engineering<br />

conferences. He has published more<br />

than 50 pa<strong>per</strong>s in both engineering<br />

and mathematics journals and about 70<br />

conference pa<strong>per</strong>s. He is also a<br />

Humboldt fellow at the University of<br />

Munich, Germany.<br />

Dr. Iaccarino is also the Director of the<br />

Thermal and Fluid Sciences Affiliates<br />

and Sponsors Program (TFSA -<br />

http://www.stanford.edu/group/tfsa/) which <strong>EnginSoft</strong> has<br />

recently joined and he is also one of the co-founders of<br />

Cascade Technologies Inc.<br />

(http://www.cascadetechnologies.com), <strong>EnginSoft</strong>’s Partner<br />

Company in Palo Alto (California) that develops, markets, and<br />

supports state of the art Computational Fluid Dynamics (CFD)<br />

analysis tools for engineering applications across industries.<br />

About the Award<br />

The Presidential Early Career Award for Scientists and<br />

Engineers (PECASE) is the highest honor bestowed by the<br />

United States government on outstanding scientists and<br />

engineers in the early stages of their independent research<br />

careers. The White House, following recommendations from<br />

participating agencies, confers the awards annually. To be<br />

eligible for a Presidential Award, an individual must be a U.S.<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 55<br />

citizen, national or <strong>per</strong>manent resident.<br />

Winning scientists and engineers receive up<br />

to a five-year research grant.<br />

History<br />

In February 1996, the National Science and<br />

Technology Council (NSTC), was<br />

commissioned by President Bill Clinton to<br />

create an award program that would honor<br />

and support the achievements of young<br />

professionals at the outset of their<br />

independent research careers in the fields of<br />

science and technology. The stated aim of<br />

the award is to help maintain the leadership<br />

position of the United States in science.<br />

Originally, 60 recipients received the PECASE<br />

award <strong>per</strong> year. Due to increased<br />

participation by the Department of Defense,<br />

this has increase to 100 <strong>per</strong> year. The 2002 PECASE awards<br />

were not announced until May 2004 due to bureaucratic<br />

delays within the Bush administration.<br />

Agencies<br />

The agencies participating in the PECASE Awards program<br />

are: Department of Agriculture, Department of Commerce,<br />

Department of Defense, Department of Energy, Department of<br />

Education, Department of Health and Human Services:<br />

National Institutes of Health, Department of Veterans Affairs,<br />

National Aeronautics and Space Administration, and the<br />

National Science Foundation.<br />

From Wikipedia, the free encyclopedia:<br />

http://en.wikipedia.org/wiki/PECASE


56 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

Formazione a distanza sugli<br />

elementi finiti<br />

<strong>EnginSoft</strong> ha messo a punto e sostiene, <strong>per</strong> conto di Consorzio<br />

TCN, l'iniziativa di formazione a distanza in ingegneria “improve.it”,<br />

con l’obiettivo di creare una risorsa di alta formazione<br />

continua, coerente con gli obiettivi di formazione del Consorzio.<br />

Tramite il portale all’indirizzo http://www.improve.it è possibile<br />

accedere a corsi multimediali di auto-formazione sui temi della<br />

simulazione numerica e prototipazione virtuale e temi a questi<br />

complementari e affini.<br />

Nel 2010 il portale improve.it è stato completamente rinnovato<br />

sia nella grafica che nei contenuti. Tra le nuove funzionalità offerte<br />

da improve.it sono disponibili il nuovo sistema di ricerca<br />

dei contenuti e la nuova procedura online <strong>per</strong> l’acquisto dei corsi.<br />

Il contenuto di tutti i corsi disponibili è inoltre stato migliorato<br />

e <strong>per</strong> la loro erogazione viene ora utilizzato un nuovo sistema<br />

multimediale di elevata qualità.<br />

Il catalogo dei corsi è costantemente aggiornato e riportato sul<br />

sito. Per ogni corso è disponibile il programma dettagliato. È<br />

inoltre consentito l'accesso gratuito ad alcuni corsi. Sono oggi<br />

disponibili on-line corsi a vari livelli relativi a metodo degli elementi<br />

finiti, analisi statica e dinamica, fluidodinamica computazionale,<br />

acustica computazionale, elettromagnetismo, progettazione,<br />

ottimizzazione multi-obiettivo, scienza dei materiali, processi<br />

produttivi, metallurgia…<br />

Nuovo corso online 2011 di introduzione al FEM<br />

Il metodo degli elementi finiti: teoria e applicazioni meccanico-strutturali<br />

in campo elastico lineare<br />

Docente del corso: Prof. Leonardo Bertini, Dipartimento di<br />

Ingegneria Meccanica, Nucleare e della Produzione, Università di<br />

Pisa. Il corso, suddiviso in tre unità didattiche <strong>per</strong> un totale di<br />

19 moduli multimediali, si propone di fornire gli strumenti teorici<br />

e applicativi <strong>per</strong> l'impiego corretto e ragionato del metodo<br />

degli elementi finiti <strong>per</strong> lo studio di strutture meccaniche in<br />

campo elastico lineare.<br />

Prima unità didattica:<br />

le basi teoriche del metodo degli elementi finiti<br />

Vengono sviluppati otto moduli <strong>per</strong> introdurre la teoria del metodo<br />

degli elementi finiti, in modo semplificato e attraverso<br />

l'utilizzo di numerosi grafici ed esempi. Gli argomenti trattati includono:<br />

discretizzazione, campo di spostamenti, calcolo delle<br />

deformazioni, analisi agli elementi finiti, vincoli e carichi, fun-<br />

Istantanea di una delle lezioni multimediali che compongono il corso<br />

zioni di forma, convergenza della soluzione, utilizzo di elementi<br />

di ordine su<strong>per</strong>iore al primo.<br />

Seconda unità didattica: applicazioni del metodo FEM alle principali<br />

classi di problemi strutturali in campo elastico lineare<br />

Nei successivi dieci moduli del corso vengono passate in rassegna<br />

le principali famiglie di elementi finiti e <strong>per</strong> ciascuna di esse<br />

vengono forniti esempi di applicazione e limiti di utilizzo. In<br />

particolare vengono affrontati i seguenti tipi di elemento: asta,<br />

trave, pipe, piani, di Fourier, gap, guscio assialsimmetrico, elementi<br />

guscio/piastra 3D, brick.<br />

Terza unità didattica: analisi critica dei risultati di un modello<br />

FEM e criteri generali di modellazione con il metodo degli elementi<br />

finiti<br />

I due moduli conclusivi del corso affrontano i criteri generali di<br />

modellazione FEM e introducono l'analisi critica dei risultati attraverso<br />

esempi sui seguenti argomenti: singolarità dello stato<br />

di tensione, definizione e schematizzazione dei vincoli, utilizzo<br />

delle simmetrie.<br />

Materiali aggiuntivi e questionario di autovalutazione<br />

Oltre al materiale multimediale della durata complessiva di 4<br />

ore, il corso offre tracce di esercizi da svolgere tramite analisi<br />

agli elementi finiti, e un questionario di autovalutazione della<br />

comprensione degli argomenti trattati, composto da 20 domande<br />

a risposta multipla. Agli iscritti che affronteranno positivamente<br />

il questionario di vautazione verrà inviato l'attestato di<br />

partecipazione al corso. All'interno del corso è disponibile il forum<br />

privato <strong>per</strong> porre domande al docente. Agli iscritti al corso,<br />

oltre all'accesso ai materiali didattici, verranno inviate le dispense<br />

a colori con la riproduzione delle oltre 280 diapositive<br />

utilizzate dal Docente nelle lezioni.<br />

Per informazioni e iscrizioni:<br />

http://www.improve.it


The new book by Roberto Battiti and Mauro Brunato is<br />

now available:<br />

ROBERTO BATTITI AND MAURO BRUNATO.<br />

Reactive Business Intelligence.<br />

From Data to Models to Insight.<br />

Reactive Search Srl, Italy, February 2011.<br />

ISBN: 978-88-905795-0-9<br />

Take the plunge into<br />

Reactive Business Intelligence!<br />

Reactive Business Intelligence is much more than “pretty<br />

pictures”. It is about integrating data mining, modeling<br />

and interactive visualization, into an end-to-end<br />

discovery and continuous innovation process powered by<br />

human and automated learning.<br />

The concept is illustrated in the figure RBI: reactive<br />

business intelligence. This holistic and unifying goal<br />

requires collecting and integrating topics which are<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 57<br />

REACTIVE BUSINESS INTELLIGENCE<br />

From Data to Models to Insight<br />

usually dissected in books<br />

dedicated to different areas.<br />

Brevity and attention to the<br />

essential ideas and methods<br />

were our design principles.<br />

Readers of the <strong>EnginSoft</strong><br />

Newsletter deal with<br />

engineering simulations,<br />

models and designs and do<br />

not need many words to<br />

understand the powerful<br />

combination of models, simulators, and interactive<br />

visualizations.<br />

We hope that this book will be useful to researchers and<br />

practitioners in widely different areas and business<br />

sectors.<br />

The School of Athens, by the Renaissance artist Raphael, 1510.<br />

Last but not least, using pro<strong>per</strong> visualizations can provide<br />

us with aesthetic satisfaction and even artistic emotions,<br />

although maybe not to the same extent as Raffaello’s “The<br />

School of Athens”…<br />

To buy this book, please visit the book’s web page:<br />

http://reactivebusinessintelligence.com/<br />

By inserting the coupon code ENGINSOFT-RBI, a special<br />

20% discount will be applied (this offer ends on 31st May<br />

2011).


58 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

<strong>EnginSoft</strong> at the Optimization Day:<br />

Research and Applications<br />

<strong>EnginSoft</strong> joins the Thermal and Fluid Sciences Affiliate<br />

Program of Stanford University and Sponsors a One Day<br />

Seminar on Optimization.<br />

<strong>EnginSoft</strong> has recently strengthened its North American<br />

o<strong>per</strong>ations by means of expanding both the<br />

office’s space and the employed <strong>per</strong>sonnel at its<br />

Silicon Valley office, located at the Palo Alto<br />

Technology Center (San Francisco Bay Area -<br />

California).<br />

With the aim of stimulating the networking in<br />

the area as well as of providing continuous<br />

support and commitment to scientific research,<br />

<strong>EnginSoft</strong> has also joined the TFSA (Thermal and<br />

Fluid Sciences Affiliate) of Stanford University<br />

and has been welcomed as a new member<br />

during the 2011 TFSA conference which took<br />

place at the Munger Conference Center, inside<br />

the Stanford University Campus, in Palo Alto on<br />

February 2-4, 2011.<br />

The conference is organized every year within<br />

the TFSA program and is aimed at presenting<br />

the latest research work of the Stanford Thermal<br />

and Fluid Sciences program. This year’s<br />

conference has been enriched and anticipated<br />

by a One-Day Seminar on Optimization (the<br />

“Optimization Day”) which has been held on<br />

February 1st, at Stanford Campus. The event, as<br />

part of TFSA program, has been organized by<br />

Prof. Gianluca Iaccarino and <strong>EnginSoft</strong> ’s staff<br />

in Palo Alto. <strong>EnginSoft</strong> has indeed sponsored<br />

and fully supported the event with the intent of<br />

stimulating the discussion on optimization as<br />

an effective and practical means for<br />

engineering practice, while bringing its<br />

contribution in terms of leading technology<br />

(modeFRONTIER) and ex<strong>per</strong>tise in the field of Multi-<br />

Objective Design Optimization, in particular with respect<br />

to Computational Fluid Dynamics (CFD) applications. The<br />

many applications of optimization that were presented


anged from Rapid Product Development to Web searching,<br />

from Sophisticated Multidisciplinary Analysis to Robust<br />

Design Under Uncertainty. In each specific presentation<br />

the following questions were addressed: What are the<br />

Remaining Barriers for Optimization Algorithms? How are<br />

Present Computational Resources Changing the Paradigm<br />

of Engineering Design? Are Current Optimization Methods<br />

Sufficient to Drive Decision-Making? The objective of<br />

bringing together Stanford faculty and industrial<br />

representatives to discuss the<br />

current applications and<br />

remaining bottlenecks to the<br />

adoption of Optimization<br />

Algorithm was achieved<br />

through this event with a<br />

great success of attendance.<br />

Companies like Rolls Royce<br />

and GE illustrated their<br />

activities on aeroengines,<br />

while Ferrari brought its<br />

ex<strong>per</strong>ience from its Formula 1<br />

racing activities. Stanford<br />

faculty members illustrated<br />

their wide ex<strong>per</strong>ience in<br />

aerodynamic design via<br />

control theory (Prof. A.<br />

Jameson) and gave talks on<br />

frontier topics such as optimal<br />

design under uncertainties<br />

(Prof. G. Iaccarino).<br />

The following 3 days (2-4<br />

February) the TFSA convened<br />

for its annual conference,<br />

covering advanced topics in<br />

CFD introduced by Professor<br />

Parviz Moin. The conference is<br />

the main event organized<br />

within the program every year<br />

in February. It was an exciting<br />

conference presenting the<br />

latest work of the Stanford<br />

Thermal and Fluid Sciences<br />

program. The 2011 conference<br />

had over 100 participants,<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 59<br />

including affiliates representatives, sponsors of<br />

research, and special guests, and the technical program<br />

was made up of more than 50 oral presentations and a<br />

poster session. Several topics were covered with<br />

contributions in various areas of our research activities,<br />

including predictive science, aeroacustics and noise,<br />

fluid mechanics, LES, combustion (modeling and<br />

diagnostic) heat transfer, energy science, processing<br />

and engineering of materials, micro-scale flow and heat<br />

transfer and fuel cells, as well as issues regarding design<br />

Optimization under design uncertainties. Several new<br />

initiatives that are providing substantial growth in the<br />

research activities and new opportunities for industrial<br />

collaboration were described. During the last day of the<br />

conference, a lab tour was organized so as to illustrate the<br />

capabilities and state of the art of the Stanford labs and<br />

computing facilities. Finally, a dinner banquet at the<br />

Stanford Faculty Club was held; it was there that the best<br />

presentations and scientific pa<strong>per</strong>s were awarded<br />

(http://www.stanford.edu/group/tfsa/).<br />

Examples from Some Pa<strong>per</strong>s Presented at the<br />

TFSA Conference 2011<br />

“Large-Eddy Simulation of Active Flow Control”, by<br />

Parviz Moin (Stanford Univ.) and Arvin Shmilovich<br />

(Boeing)<br />

LES of Su<strong>per</strong>sonic Jets from Complex Nozzles“ by<br />

Joseph W. Nichols, Frank E. Ham, Yaser Khalighi,<br />

Sanjiva K. Lele, and Parviz Moin


60 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

NAFEMS World Congress 2011 -<br />

Preliminary Agenda Announced<br />

International Association for the<br />

Engineering Analysis Community<br />

Releases Line-up for Global Simulation<br />

& Analysis Conference<br />

GLASGOW, UK, FEBRUARY 18TH 2011 –<br />

NAFEMS, the International Association for<br />

the Engineering Analysis Community, has<br />

announced the preliminary agenda for its<br />

2011 World Congress, being held in<br />

Boston, MA, USA between May 23rd and<br />

26th. Including over 150 presentations in more than 40<br />

sessions over three days, this represents the most<br />

comprehensive and wide-ranging collection of analysis and<br />

simulation specific pa<strong>per</strong>s available from one independent,<br />

international event.<br />

Keynote speakers at the Congress will include;<br />

Marc Hal<strong>per</strong>n: Gartner, Inc., USA<br />

Mike Hinton: QinetiQ, United Kingdom<br />

Alexander Karl: Rolls-Royce Corporation, USA<br />

Ronald Krüger: National Institute of Aerospace, USA<br />

Wiley Larson: Stevens Institute of Technology, USA<br />

Laura Michalske: Procter & Gamble, USA<br />

The full agenda is available to view, and to download, from<br />

the Congress website at www.nafems.org/congress.<br />

Registration is also available here, as well as full details of<br />

the location, venue and exhibition opportunities.<br />

About NAFEMS<br />

NAFEMS is a not for profit organization aimed at<br />

promoting best practices and fostering education and<br />

awareness in the engineering analysis community. In line<br />

with its objectives to promote the effective use of<br />

simulation technologies, NAFEMS is continually seeking<br />

to create awareness of new analysis methodologies,<br />

deliver education & training, and stimulate the adoption<br />

of best practices and standards by offering a platform for<br />

continuous professional development. For more<br />

information, visit www.nafems.org.<br />

Further information and high-resolution images are<br />

available on request.<br />

Tim Morris from NAFEMS is available for further comment<br />

by arrangement.<br />

A number of short training courses and special workshops will<br />

also be available for delegates to attend, ensuring that their<br />

time in Boston is used to maximum effect.<br />

As many as 6 parallel tracks will run over the three days of<br />

the Congress, covering topics including;<br />

Optimization<br />

Integration<br />

Composites<br />

Materials<br />

CFD<br />

Fatigue & Fracture<br />

Geotechnics<br />

MBS<br />

Industrial Applications<br />

Business Benefits<br />

Dynamics & Testing<br />

Education<br />

Analysis Management<br />

Simulation Data Management<br />

Seismic Analysis<br />

High Performance Computing<br />

Business Benefits of Simulation<br />

…and many more<br />

The NAFEMS World Congress is the only event dedicated to<br />

showcasing the state-of-the-art and state-of-practice in the<br />

simulation world in an impartial forum, open to everyone<br />

with an interest in how to get the most from their use of<br />

simulation. Visit the Congress website at<br />

http://www.nafems.org/congress to find out more, and to<br />

register for the only independent, international conference<br />

dedicated to analysis and simulation technology.<br />

Press Contact<br />

David Quinn (NAFEMS),<br />

+44 (0) 13 55 22 56 88 david.quinn@nafems.org


<strong>EnginSoft</strong> alla Fiera<br />

Made in Steel di Brescia<br />

Dal 23 al 25 marzo 2011 si è svolta presso il centro fiera<br />

Brixia Expo Fiera di Brescia la quarta edizione di Made in<br />

Steel, un evento biennale dedicato alla filiera dell’acciaio.<br />

Made in Steel 2011 ha registrato un record di visite rispetto<br />

alle sue precedenti edizioni: 13.500 visitatori, provenienti da<br />

46 nazioni, confrontati con i 12.000 della scorsa edizione nel<br />

2009. Un aumento rilevante anche nel numero degli espositori,<br />

salito da 187 a 248, e di conseguenza nell’area espositiva<br />

(da 7.400 a 10.200 mq). Va ricordata inoltre la presenza<br />

delle delegazioni estere di Austria, Bielorussia e Cina.<br />

<strong>EnginSoft</strong> ha partecipato a Made in Steel con uno stand, focalizzando<br />

l’attenzione sui software e le applicazioni specifiche<br />

<strong>per</strong> il settore metallurgico, in particolare quelle sostenute da:<br />

MAGMA (MAGMAsteel e MAGMAfrontier), Transvalor (FORGE) e<br />

Third Wave Systems (AdvantEdge FEM e Production).<br />

La fiera è stata visitata prevalentemente da manager e il nostro<br />

stand ha registrato un buon afflusso di <strong>per</strong>sone appartenenti<br />

ad importanti aziende con le quali sono stati organizzati<br />

degli incontri riservati dove sono stati discussi problemi<br />

specifici e ipotesi <strong>per</strong> future collaborazioni.<br />

Il terzo giorno, venerdì 25 marzo, la nostra società ha organizzato<br />

presso la Sala Steel il seminario dal titolo: “Energia<br />

Nucleare di nuova generazione: engineering e design di processo<br />

e di prodotto”. I relatori sono stati Piero Parona, che<br />

ha illustrato la mission di <strong>EnginSoft</strong> e le proprie referenze,<br />

Marcello Gabrielli le applicazioni di FORGE dedicate ai forgiatori<br />

d’acciaio, Enrico Borsetto quelle di ADVANTEDGE <strong>per</strong> le<br />

lavorazioni meccaniche, Gianluca Quaglia quelle di MAGMA<br />

dedicate ai processi di fonderia e di Trattamento Termico e<br />

Massimo Galbiati quelle FEM di tipo fluidodinamico, termico<br />

e strutturale. Erano presenti una cinquantina di partecipanti<br />

provenienti da importanti aziende fra le quali ThyssenKrupp,<br />

il Gruppo Cividale, il Gruppo FOMAS e Hydromec, importante<br />

costruttore di presse bresciano col quale <strong>EnginSoft</strong> ha siglato<br />

un accordo di collaborazione tecnologica che porterà<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 61<br />

Hydromec ad utilizzare FORGE <strong>per</strong> studiare nuove soluzioni di<br />

stampaggio e alla proposta congiunta di seminari tecnici <strong>per</strong><br />

specifici settori dello stampaggio.<br />

Nel complesso Made in Steel è stata un’es<strong>per</strong>ienza positiva<br />

che ha dato modo ad <strong>EnginSoft</strong> di farsi conoscere maggiormente<br />

nel settore metallurgico, dove è presente da circa dieci<br />

anni con clienti molto importanti, ma che può essere ulteriormente<br />

sviluppato.<br />

Hydromec srl ed Enginsoft hanno siglato<br />

un accordo di collaborazione tecnologica.<br />

Brescia 1 Marzo 2011 – Hydromec srl, azienda di riferimento<br />

nella progettazione e costruzione di presse <strong>per</strong> lo<br />

stampaggio dei metalli ed Enginsoft, società italiana di<br />

maggior consistenza e tradizione nel settore della<br />

s<strong>per</strong>imentazione virtuale e del CAE, hanno siglato un accordo<br />

di collaborazione tecnica finalizzato all'integrazione e<br />

sviluppo delle proprie tecnologie.<br />

Il processo di stampaggio dei metalli rappresenta oggi un<br />

settore manifatturiero di grande importanza e ad alto<br />

contenuto di sviluppo potenziale e, <strong>per</strong> questo motivo, le<br />

due Società hanno deciso di condividere know-how ed<br />

es<strong>per</strong>ienze.<br />

Da una parte la tecnologia meccanica, la qualità dei<br />

materiali e l'accuratezza di progettazione con sistemi<br />

innovativi di controllo e gestione di Hydromec srl, dall'altra<br />

software di simulazione, come Forge e Ansys, e di<br />

ottimizzazione dei parametri di processo come<br />

modeFRONTIER, rappresenteranno una base innovativa <strong>per</strong><br />

risolvere le problematiche e le applicazioni tecnologicamente<br />

sempre più complesse che i processi di stampaggio oggi<br />

richiedono.<br />

Hydromec srl<br />

Fondata nel 1980, Hydromec srl nasce<br />

come azienda <strong>per</strong> la revisione di<br />

macchine.<br />

Ben presto Hydromec srl dirige i propri sforzi produttivi verso<br />

il settore dello stampaggio a caldo dell'ottone. Nascono così<br />

le presse della serie HF che si avvalgono di ben dieci brevetti<br />

tecnici. Successivamente Hydromec srl amplia la propria<br />

gamma di prodotti realizzando le presse oleodinamiche a<br />

quattro colonne della serie HSF utilizzate nel settore della<br />

forgiatura dell'acciaio a caldo, cui si aggiungono i laminatoi<br />

della serie LAR <strong>per</strong> la produzione di anelli, flange e sagomati<br />

in acciaio. Il Sistema Gestione Qualità di Hydromec è<br />

conforme alle norme UNI-EN ISO 9001:2008.<br />

Per informazioni e contatti: www.hydromec.it


62 - Newsletter <strong>EnginSoft</strong> Year 8 n°1<br />

<strong>EnginSoft</strong> Event Calendar<br />

ITALY<br />

<strong>EnginSoft</strong> is pleased to announce the next Seminars and<br />

Webinars. For more information, please contact:<br />

eventi@enginsoft.it<br />

Please visit www.enginsoft.com<br />

<strong>EnginSoft</strong> International Conference 2010<br />

CAE Technologies for Industry.<br />

To receive a copy of the The Conference Proceedings, please<br />

contact: eventi@enginsoft.it<br />

<strong>EnginSoft</strong> International Conference 2011<br />

CAE Technologies for Industry<br />

Fiera di Verona - ITALY 20-21 October 2011<br />

Please stay tuned to www.caeconference.com for one of the<br />

major events for CAE Users in Europe!<br />

FRANCE<br />

<strong>EnginSoft</strong> France 2011 Journées porte ouverte<br />

dans nos locaux à Paris et dans d’autres villes de France, en<br />

collaboration avec nos partenaires.<br />

Pour plus d'information visitez: www.enginsoft-fr.com,<br />

contactez: info.fr@enginsoft.com<br />

Webinars Flowmaster: Introduction au logiciel Flowmaster<br />

31 March<br />

14 April<br />

18 May - Etats Généraux Micado. France<br />

http://www.enginsoft-fr.com/events/index.html<br />

15-16 June - Séminaire modeFRONTIER au CETIM<br />

Cetim Senlis.<br />

http://www.enginsoft-fr.com/events/index.html<br />

20-26 June - Salon du Le Bourget - Paris Air Show<br />

Le Bourget, Paris.<br />

Talk to our ex<strong>per</strong>ts at the <strong>EnginSoft</strong>/ Flowmaster booth!<br />

http://www.paris-air-show.com/en<br />

18-29 June – Teratec Conference. Ecole Polytechnique<br />

Palaiseau. Meet us at the <strong>EnginSoft</strong> / Flowmaster booth!<br />

http://www.enginsoft-fr.com/events/index.html<br />

12 October - User Group Meeting modeFRONTIER France. Paris<br />

http://www.enginsoft-fr.com/events/index.html<br />

13 October - User Group Meeting Flowmaster France. Paris<br />

http://www.enginsoft-fr.com/events/index.html<br />

GERMANY<br />

Please stay tuned to: www.enginsoft-de.com<br />

Contact: info.de@enginsoft.com for more information.<br />

modeFRONTIER Seminars 2011. <strong>EnginSoft</strong> GmbH, Frankfurt<br />

am Main. Attend our regular Webinars and Seminars<br />

to learn more on how design optimization with<br />

modeFRONTIER.<br />

can enhance your product development processes<br />

14-15 April - Efficient Design of Composite Structures –<br />

ESAComp Users' Meeting 2011. Technical University of<br />

Munich, Institute for Carbon Composites<br />

<strong>EnginSoft</strong> will be presenting: Optimization and robustness of<br />

composite structures: The whole design chain driven by<br />

modeFRONTIER<br />

In addition to presentations on simulation and design of<br />

composite structures, the latest advances in the ESAComp<br />

software will be presented. Three workshops will be held: -<br />

the aerospace industry, - wind, marine energy and industrial<br />

applications, - optimizing composite structures.<br />

<strong>EnginSoft</strong> is a sponsor of the Users’ Meeting<br />

http://www.enginsoft.com/events/esacomp_um.pdf<br />

www.esacomp.com<br />

Seminars Process Product Integration<br />

<strong>EnginSoft</strong> GmbH, Frankfurt am Main<br />

How to innovate and improve your production processes!<br />

Seminars hosted by <strong>EnginSoft</strong> Germany and <strong>EnginSoft</strong> Italy<br />

SPAIN<br />

Programa de cursos de modeFRONTIER and other local events<br />

Please contact our partner, APERIO Tecnología:<br />

info@a<strong>per</strong>iotec.es<br />

Stay tuned to: www.a<strong>per</strong>iotec.es<br />

10 March - National Instruments Day - Barcelona. Discover<br />

the latest trends in technology and new products from<br />

National Instruments during the Technology Forum on<br />

Graphic Design Systems.<br />

A<strong>per</strong>ioTec and ESTECO will be present to show the latest dedicated<br />

connection between modeFRONTIER and NI LabView.<br />

Participation is free. http://www.ni.com/nidays/es/<br />

5-8 June - IDDRG 2011 International Conference. Bilbao (País<br />

Vasco). This year, in addition to stamping, material characterization,<br />

numerical simulation and tooling normally covered,<br />

the organizers would like to focus the conference on su-


stainability: of global concern, not only for industry but also<br />

for consumers, politicians and business leaders.<br />

For more information, please visit:<br />

http://www.iddrg2011.eu/<br />

SWEDEN<br />

2011 Training Courses on modeFRONTIER - Drive your designs<br />

from good to GREAT <strong>EnginSoft</strong> Nordic offices in Lund, Sweden<br />

The Training Courses are focused on optimization, both multi-<br />

and single-objective, process automation and interpretation<br />

of results. Participants will learn different optimization<br />

strategies in order to complete a project within a specified<br />

time and simulation budget.<br />

Other topics, such as design of ex<strong>per</strong>iments, metamodeling<br />

and robust design are introduced as well. The two day training<br />

consists of a mix of theoretical sessions and workshops.<br />

7-8 April<br />

2-3 May<br />

7-8 June<br />

11-12 August<br />

5-6 September<br />

4-5 October<br />

2-3 November<br />

1-2 December<br />

To discuss your needs, for more information and to register,<br />

please contact <strong>EnginSoft</strong> Nordic, info@enginsoft.se<br />

UK<br />

The workshops are designed to give delegates a good appreciation<br />

of the functionality, application and benefits of<br />

modeFRONTIER. The workshops include an informal blend of<br />

presentation plus ‘hands-on’ examples with the objective of<br />

enabling delegates to be confident to evaluate<br />

modeFRONTIER for their applications using a trial license at<br />

no cost.<br />

modeFRONTIER Workshops<br />

Warwick Digital Laboratory, Warwick University<br />

12 April<br />

12 May<br />

21 June<br />

20 July<br />

17 August<br />

14 September<br />

13 October<br />

22 November<br />

14 December<br />

modeFRONTIER Workshops with InfoWorks CS Warwick Digital<br />

Laboratory<br />

26 May<br />

9 November<br />

Please register for free on www.enginsoft-uk.com<br />

Multi-Disciplinary Optimization Training Course.<br />

International Digital Lab, Warwick University<br />

16-17 May<br />

6-7 September<br />

Newsletter <strong>EnginSoft</strong> Year 8 n°1 - 63<br />

For more information and to register, please visit www.enginsoft-uk.com.<br />

Contact: Bipin Patel, info@enginsoft.com<br />

24-25 May - National Manufacturing Debate 2011. Vincent<br />

Building (Building 52), Cranfield campus, Cranfield<br />

University <strong>EnginSoft</strong> will be attending.<br />

www.cranfield.ac.uk/sas/manufacturingdebate<br />

27-29 April - ESAFORM 2011. 14th International ESAFORM<br />

Conference on Material Forming. Belfast, Northern<br />

Ireland/UK. The purpose of this conference is to facilitate<br />

the communication between specialists in various fields of<br />

material forming sciences. Presentations concerning all the<br />

steps of material forming processes are welcome: from fundamental<br />

studies to applied aspects, from ex<strong>per</strong>imental to numerical<br />

research. Gino Duffett of A<strong>per</strong>ioTec has been invited<br />

to give a plenary on advances and the future of simulation in<br />

the manufacturing industry<br />

www.qub.ac.uk/sites/ESAFORM2011/<br />

GREECE<br />

9 May - 5th PhilonNet CAE Conference. Athens. If you would<br />

like to present your work with ANSYS (including CFX, Fluent<br />

and Ansoft products), ANYBODY, DIFFPACK, ESACOMP, eta/DY-<br />

NAFORM, eta/VPG, Flowmaster, FTI, LS-DYNA,<br />

modeFRONTIER, MOLDFLOW, SIMPLEWARE or ADVANTEDGE<br />

please send your abstract to: info@philonnet.gr<br />

For more information, please visit: www.philonnet.gr<br />

USA<br />

Courses on Design Optimization with modeFRONTIER<br />

Sunnyvale, CA<br />

For more information, please contact: training@ozeninc.com<br />

www.ozeninc.com<br />

JAPAN<br />

17 June - CDAJ CAE Solution Conference 2011<br />

modeFRONTIER Conference Day<br />

PAN PACIFIC Yokohama Bay Hotel Tokyu<br />

http://www.cdaj.co.jp/<br />

Europe, various locations<br />

modeFRONTIER Academic Training<br />

Please note: These Courses are for Academic users only. The<br />

Courses provide Academic Specialists with the fastest route<br />

to being fully proficient and productive in the use of<br />

modeFRONTIER for their research activities. The courses combine<br />

modeFRONTIER Fundamentals and Advanced<br />

Optimization Techniques.<br />

For more information, please contact Rita Podzuna,<br />

info@enginsoft.it<br />

To meet with <strong>EnginSoft</strong> at any of the above events, please<br />

contact us: info@enginsoft.com


ENGINSOFT INTERNATIONAL<br />

ANSYS ITALIAN<br />

CONFERENCE 2011 CONFERENCE 2011<br />

CAE TECHNOLOGIES FOR INDUSTRY<br />

®<br />

20-21 OCTOBER<br />

CALL FOR PAPERS<br />

IS NOW OPEN<br />

VERONA -IT<br />

www.caeconference.com<br />

Two major events coming together for the most significant occasion in the Italian CAE Calendar

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!