29.05.2013 Views

Download - Statcon

Download - Statcon

Download - Statcon

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Is there a Sticky Sweet Spot?<br />

Mixture Design of a Pressure Sensitive Adhesive Emulsion Formulation<br />

1<br />

M. Michaelis, C. S. Leopold<br />

Department of Chemistry<br />

Division of Pharmaceutical Technology<br />

University of Hamburg, Germany


Aim of the study<br />

Formulation of an adhesive mixture for transdermal patches that<br />

comprises:<br />

1. Improved adhesion properties<br />

2. Improved solubility of an Active Pharmaceutical Ingredient (API)<br />

2


Introduction<br />

Transdermal Therapeutic Systems (TTS)<br />

Patches for transdermal application of<br />

APIs to achieve a systemic effect<br />

About 50 TTS products on the market<br />

14 Active Pharmaceutical Ingredients<br />

Mostly Drug In Adhesive Design (DIA)<br />

+ Controlled drug delivery<br />

+ Good compliance<br />

API level in blood<br />

http://www.nipro-patch.co.jp<br />

- Stability issues<br />

- Lack of adhesion<br />

3<br />

http://www.pharmainfo.net<br />

Crystalization of API<br />

http://www.acino-pharma.com<br />

Drug In Adhesive Design<br />

http://www.novartis.com.ph<br />

Backing<br />

Drug in Adhesive<br />

Release liner<br />

http://www.quit.org.au<br />

Lack of adhesion


Introduction<br />

Pressure Sensitive Adhesives (PSAs)<br />

Pressure Sensitive Adhesives:<br />

Tacky at room temperature<br />

Adhere to a variety of surfaces on light pressure<br />

Adhere permanently<br />

Ûsed in a lot of common products<br />

Adhesive Performance<br />

Tack: Ability to form a bond of measurable strength by<br />

simple contact with a surface (stickiness)<br />

Shear Adhesion: Ability to resist structural failure<br />

(cohesiveness)<br />

Peel Resistance: Force required to remove the tape without<br />

leaving residues<br />

4


Materials<br />

Component 1: Polyacrylate<br />

DuroTak® 387-2287<br />

2-Ethylhexyl acrylate<br />

Vinyl acetate<br />

Hydroxyethyl acrylate<br />

Component 2: Silicone Adhesive<br />

BIO-PSA® 7-4302<br />

Component 3: Oleyl Alcohol<br />

Surfactant<br />

Component 4: Ibuprofen<br />

API / model drug<br />

(high dose analgetic)<br />

5<br />

Oleyl Alcohol<br />

67 %<br />

28 %<br />

5 %<br />

Ibuprofen


Design<br />

Mixture Design<br />

3 (4) Components<br />

Components<br />

Design space with constraints IV Optimal Design<br />

Suggested design: 16 runs, 5 replicates, 5 to estimate lack of fit<br />

Evaluation: FDS Graph<br />

Low<br />

[%]<br />

High<br />

[%]<br />

Polyacrylate Adhesive 20 70<br />

Silicone Adhesive 10 60<br />

Oleyl Alcohol 0 10<br />

Ibuprofen 20<br />

Total 100<br />

6<br />

= Design Space<br />

= Replicate x 2<br />

= Replicate x 3


Preparation of adhesive matrix/specimen<br />

1. Components were dissolved in ethyl acetate (wet mix) and mixed in a shaker at<br />

90 rpm for 15 min.<br />

2. Wet mix was coated on a release liner<br />

3. Films were dried at 80 °C for 30 min in an oven Adhesive matrix (a) - 100 µm thick<br />

4. Films were laminated with a backing membrane Specimen (b)<br />

a) Coating Knife<br />

Release Liner<br />

Drug In Adhesive<br />

7<br />

b)<br />

Backing Membrane<br />

Release Liner<br />

Drug In Adhesive


Response 1 & 2:<br />

1. Tack<br />

Probe Tack Test at 21 °C<br />

Adhesive matrix (a)<br />

Stainless steel probe 3 mm<br />

Contact time 1 s, contact force 0.4 N<br />

Response: Stress maximum max [N/mm²]<br />

2. Shear Adhesion<br />

Test specimen (b) was attached to<br />

a stainless steel plate<br />

Area: 12 x 12 mm, weight: 250 g<br />

Response: Time to failure t [min]<br />

8<br />

Probe Tack Test<br />

Shear adhesion


Response 3 & 4:<br />

3. Crystal growth<br />

Area of 100 cm 2 of the adhesive matrix<br />

after 24 h<br />

Response: Area covered by crystals in %<br />

of the whole area<br />

4. Creaming behavior (phase separation)<br />

Bottle with wet mix after 24 h<br />

Separated phase of wet mix in % of the<br />

wet mix<br />

9<br />

1:1 1:100<br />

no creaming<br />

20 % creaming


Response 5 & 6<br />

5. Droplet size<br />

Matrix was transferred to a glass slide<br />

Microscope with 100-fold magnification<br />

Response: Mean of droplet diameter of 30 droplets [µm]<br />

6. Droplet distribution range<br />

Response: Maximum range of 30 droplets [µm]<br />

small & narrow large & narrow small & broad large & broad<br />

10


Analysis<br />

Model<br />

Normal Plot<br />

Transformation<br />

Fit Summary and<br />

Model<br />

Lack of<br />

Fit<br />

Residuals<br />

vs.<br />

Predicted<br />

ANOVA<br />

Diagnostics<br />

11<br />

adj.<br />

R-square<br />

Externally<br />

Studentized<br />

Residuals<br />

Model Graphs<br />

pred.<br />

R-square<br />

Box-Cox<br />

Plot


Response Analysis 1: Tack<br />

Fit Summary and Model<br />

ANOVA<br />

Highest order polynomial: Reduced Special Quartic Model<br />

Model: 0.0001 significant<br />

Lack of fit: 0.3626 not significant<br />

Adj. R-square: 0.9226<br />

Pred. R-square: 0.8641<br />

Diagnostics<br />

Normal Plot<br />

Residuals vs. Predicted<br />

Externally Studentized Residuals<br />

Box-Cox plot<br />

Model Graphs<br />

12


Normal % Probability<br />

Normal % Probability<br />

Response 1: Tack - Diagnostics<br />

99<br />

95<br />

90<br />

80<br />

70<br />

50<br />

30<br />

20<br />

10<br />

5<br />

1<br />

Normal<br />

Normal<br />

Plot<br />

Plot<br />

of<br />

of Residuals<br />

Residuals<br />

-2.00 -1.00 0.00 1.00 2.00<br />

-2.00 -1.00 0.00 1.00 2.00<br />

Internally Studentized Residuals<br />

Internally Studentized Residuals<br />

13<br />

Internally Studentized Residuals<br />

3.00<br />

2.00<br />

1.00<br />

0.00<br />

-1.00<br />

-2.00<br />

-3.00<br />

Residuals<br />

Residuals<br />

vs.<br />

vs. Predicted<br />

Predicted<br />

-2.00 1.00 -1.00 1.50 0.00 2.00 1.00 2.50 2.00 3.00<br />

Predicted<br />

Predicted


Externally Studentized Residuals<br />

Externally Studentized Residuals<br />

Response 1: Tack - Diagnostics<br />

6.00<br />

4.00<br />

2.00<br />

0.00<br />

-2.00<br />

-4.00<br />

-6.00<br />

Externally Externally Studentized Residuals Residuals<br />

1 4 7 10 13 16<br />

1 4 7 10 13 16<br />

Run Number<br />

Run Number<br />

14<br />

Ln(ResidualSS)<br />

Ln (ResidualSS)<br />

-1.00<br />

-1.20<br />

-1.40<br />

-1.60<br />

-1.80<br />

Box-Cox-Plot Box-Cox Plot for for Power Power Transforms Transforms<br />

-3 -2 -1 0 1 2 3<br />

Lambda<br />

Lambda


2<br />

Response 1: Tack - Model Graphs<br />

100 % Polyacrylate = 0.50 N/mm²<br />

100 % Silicone = 0.55 N/mm²<br />

0.4<br />

2<br />

60.000<br />

B: Silicone<br />

A: Acrylat<br />

70.000<br />

0.000 10.000<br />

0.3<br />

3<br />

0.2<br />

2<br />

0.2<br />

20.000<br />

Tack<br />

Design points below predicted value<br />

50.000<br />

C: Oleyl Alcohol<br />

15<br />

Tack<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

C (0.000)<br />

A (70.000)<br />

B (10.000)<br />

B (60.000) A (20.000)<br />

C (50.000)


Normal % Probability<br />

Normal % Probability<br />

99<br />

95<br />

90<br />

80<br />

70<br />

50<br />

30<br />

20<br />

10<br />

5<br />

1<br />

Response 2: Shear Adhesion - Diagnostics<br />

Fit Summary and Model<br />

ANOVA<br />

Highest order polynomial: Quadratic Model<br />

Model: 0.0001 significant<br />

Lack of fit: 0.6446 not significant<br />

Adj. R-square: 0.99875<br />

Pred. R-square: 0.9734<br />

Diagnostics<br />

Normal Plot of Residuals<br />

-2.00 -1.00 0.00 1.00 2.00<br />

Internally Studentized Residuals<br />

Internally Studentized Residuals<br />

Internally Studentized Residuals<br />

Internally Studentized Residuals<br />

3.00<br />

2.00<br />

1.00<br />

0.00<br />

-1.00<br />

-2.00<br />

-3.00<br />

Residuals vs. Predicted<br />

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60<br />

Predicted<br />

16<br />

Externally Studentized Residuals<br />

Externally Studentized Residuals<br />

4.00<br />

2.00<br />

0.00<br />

-2.00<br />

-4.00<br />

Externally Studentized Residuals<br />

1 4 7 10 13 16<br />

Run Number<br />

Ln(ResidualSS)<br />

Ln (ResidualSS)<br />

10.00<br />

8.00<br />

6.00<br />

4.00<br />

2.00<br />

0.00<br />

Recommended<br />

transformation:<br />

Log<br />

Normal Plot of Residuals Residuals vs. Predicted Externally Studentized Residuals Box-Cox Plot for Power Transforms<br />

Box-Cox Plot for Power Transforms<br />

-3 -2 -1 0 1 2 3<br />

Predicted Run Number Lambda<br />

Lambda


2<br />

Response 2: Shear Adhesion - Model Graphs<br />

100 % Polyacrylate = 17.2min<br />

100 % Silicone = 56.9 min<br />

20<br />

2<br />

15<br />

60.000<br />

B: Silicone<br />

5<br />

3<br />

A: Acrylat<br />

70.000<br />

2<br />

Design-Expert® Software<br />

Component Coding: Actual<br />

Original Scale<br />

(median estimates)<br />

Shear<br />

Design points above predicted value<br />

Design points below predicted value<br />

30.2<br />

1.4<br />

0.000 10<br />

10.000<br />

20.000<br />

Shear Shear Adhesion<br />

X1 = A: Acrylat<br />

X2 = B: Silicone<br />

X3 = C: Oleyl Alcohol<br />

50.000<br />

C: Oleyl Alcohol<br />

17<br />

Shear Shear Adhesion<br />

30.2<br />

23<br />

15.8<br />

8.6<br />

1.4<br />

C (0.000)<br />

A (70.000)<br />

B (10.000)<br />

B (60.000) A (20.000)<br />

C (50.000)


Normal % Probability<br />

Normal % Probability<br />

99<br />

95<br />

90<br />

80<br />

70<br />

50<br />

30<br />

20<br />

10<br />

5<br />

1<br />

Response 3: Crystal Growth - Diagnostics<br />

Fit Summary and Model<br />

ANOVA<br />

Highest order polynomial: Reduced Cubic Model<br />

Model: 0.0001 significant<br />

Lack of fit: 0.7984 not significant<br />

Adj. R-square: 0.9819<br />

Pred. R-square: 0.9702<br />

Diagnostics<br />

Normal Plot of Residuals Residuals vs. Predicted Externally Studentized Residuals Box-Cox Plot for Power Transforms<br />

Normal Plot of Residuals<br />

-3.00 -2.00 -1.00 0.00 1.00 2.00<br />

Internally studentized residuals<br />

Internally Studentized Residuals<br />

Internally Studentized Residuals<br />

Internally Studentized Residuals<br />

3.00<br />

2.00<br />

1.00<br />

0.00<br />

-1.00<br />

-2.00<br />

-3.00<br />

Residuals vs. Predicted<br />

2 2<br />

0.00 20.00 40.00 60.00 80.00 100.00<br />

Predicted<br />

18<br />

Externally Studentized Residuals<br />

Externally Studentized Residuals<br />

6.00<br />

4.00<br />

2.00<br />

0.00<br />

-2.00<br />

-4.00<br />

-6.00<br />

Externally Studentized Residuals<br />

1 4 7 10 13 16<br />

Run Number<br />

Ln(ResidualSS)<br />

Ln (ResidualSS)<br />

30.00<br />

25.00<br />

20.00<br />

15.00<br />

10.00<br />

5.00<br />

0.00<br />

Box-Cox Plot for Power Transforms<br />

-3 -2 -1 0 1 2 3<br />

Predicted Run Number Lambda<br />

Lambda


Response 3: Crystal Growth - Model Graphs<br />

Crystal Growth<br />

100 % Polyacrylate= 70 %<br />

100 % Silicone= 100 %<br />

2<br />

2<br />

60.000<br />

B: Silicone<br />

A: Acrylat<br />

70.000<br />

0.000 20<br />

10.000<br />

100<br />

60<br />

80<br />

40<br />

3<br />

0<br />

2<br />

0<br />

0<br />

20.000<br />

20<br />

Crystal Growth<br />

Design points below predicted value<br />

50.000<br />

C: Oleyl Alcohol<br />

19<br />

Crystal Growth<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

-20<br />

C (0.000)<br />

A (70.000)<br />

B (10.000)<br />

B (60.000) A (20.000)<br />

C (50.000)


Normal % Probability<br />

Normal % Probability<br />

99<br />

95<br />

90<br />

80<br />

70<br />

50<br />

30<br />

20<br />

10<br />

5<br />

1<br />

Response 4: Creaming behavior - Diagnostics<br />

Fit Summary and Model<br />

ANOVA<br />

Highest order polynomial: Reduced Cubic Model<br />

Model: 0.0001 significant<br />

Lack of fit: 0.6410 not significant<br />

Adj. R-square: 0.9460<br />

Pred. R-square: 0.7104<br />

Diagnostics<br />

Normal Plot of Residuals Residuals vs. Predicted Externally Studentized Residuals Box-Cox Plot for Power Transforms<br />

Normal Plot of Residuals<br />

-2.00 -1.00 0.00 1.00 2.00<br />

Internally Studentized Residuals<br />

Internally Studentized Residuals<br />

Internally Studentized Residuals<br />

Internally Studentized Residuals<br />

3.00<br />

2.00<br />

1.00<br />

0.00<br />

-1.00<br />

-2.00<br />

-3.00<br />

Residuals vs. Predicted<br />

5.00 10.00 15.00 20.00 25.00 30.00<br />

Predicted<br />

20<br />

Externally Studentized Residuals<br />

Externally Studentized Residuals<br />

6.00<br />

4.00<br />

2.00<br />

0.00<br />

-2.00<br />

-4.00<br />

-6.00<br />

Externally Studentized Residuals<br />

1 4 7 10 13 16<br />

Run Number<br />

Ln(ResidualSS)<br />

Ln (ResidualSS)<br />

9.00<br />

8.00<br />

7.00<br />

6.00<br />

5.00<br />

4.00<br />

3.00<br />

Box-Cox Plot for Power Transforms<br />

-3 -2 -1 0 1 2 3<br />

Predicted Run Number Lambda<br />

Lambda


2<br />

Response 4: Creaming Behavior -<br />

Model Graphs<br />

10<br />

2<br />

15<br />

60.000<br />

B: Silicone<br />

A: Acrylat<br />

70.000<br />

0.000 10.000<br />

20<br />

25<br />

3<br />

25<br />

20<br />

15<br />

2<br />

10<br />

20.000<br />

Creaming Creaming<br />

Design-Expert® Software<br />

Component Coding: Actual<br />

Creaming<br />

Design points above predicted value<br />

Design points below predicted value<br />

27.3743<br />

4.44444<br />

X1 = A: Acrylat<br />

X2 = B: Silicone<br />

X3 = C: Oleyl Alcohol<br />

50.000<br />

C: Oleyl Alcohol<br />

21<br />

Creaming<br />

30<br />

25<br />

20<br />

15<br />

B (60.000)<br />

10<br />

5<br />

0<br />

C (0.000)<br />

A (20.000)<br />

A (70.000)<br />

B (10.000)<br />

C (50.000)


Normal Normal % % Probability<br />

Response 5: Droplet Size - Diagnostics<br />

99<br />

95<br />

90<br />

80<br />

70<br />

50<br />

30<br />

20<br />

10<br />

5<br />

1<br />

Fit Summary and Model<br />

ANOVA<br />

Highest order polynomial: Reduced Cubic Model<br />

Model: 0.0001 significant<br />

Lack of fit: 0.1123 not significant<br />

Adj. R-square: 0.9733<br />

Pred. R-square: 0.7747<br />

Diagnostics<br />

Normal Plot of Residuals Residuals vs. Predicted Externally Studentized Residuals Box-Cox Plot for Power Transforms<br />

Normal Plot of Residuals<br />

-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00<br />

Internally Studentized Residuals<br />

Internally Studentized Residuals<br />

Internally Studentized Residuals<br />

Internally Studentized Residuals<br />

3.00<br />

2.00<br />

1.00<br />

0.00<br />

-1.00<br />

-2.00<br />

-3.00<br />

2<br />

Residuals vs. Predicted<br />

0.00 10.00 20.00 30.00 40.00<br />

Predicted<br />

2<br />

22<br />

Externally Studentized Residuals<br />

Externally Studentized Residuals<br />

6.00<br />

4.00<br />

2.00<br />

0.00<br />

-2.00<br />

-4.00<br />

-6.00<br />

Externally Studentized Residuals<br />

1 4 7 10 13 16<br />

Run Number<br />

Ln(ResidualSS)<br />

Ln (ResidualSS)<br />

8.00<br />

7.00<br />

6.00<br />

5.00<br />

4.00<br />

3.00<br />

2.00<br />

Box-Cox Plot for Power Transforms<br />

-3 -2 -1 0 1 2 3<br />

Predicted Run Number Lambda<br />

Lambda


2<br />

Response 5: Droplet Size - Model Graphs<br />

10<br />

2<br />

40<br />

60.000<br />

B: Silicone<br />

A: Acrylat<br />

70.000<br />

0.000 10.000<br />

30<br />

20<br />

3<br />

10<br />

2<br />

20.000<br />

Droplet Size<br />

Design-Expert® Software<br />

Component Coding: Actual<br />

Droplet Size<br />

Design points above predicted value<br />

Design points below predicted value<br />

40<br />

3.75<br />

X1 = A: Acrylat<br />

X2 = B: Silicone<br />

X3 = C: Oleyl Alcohol<br />

50.000<br />

C: Oleyl Alcohol<br />

23<br />

Droplet Size<br />

Droplet Size<br />

50<br />

B (60.000)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

C (0.000)<br />

A (20.000)<br />

A (70.000)<br />

B (10.000)<br />

C (50.000)


Normal % Probability<br />

Normal % Probability<br />

99<br />

95<br />

90<br />

80<br />

70<br />

50<br />

30<br />

20<br />

10<br />

5<br />

1<br />

Response 6: Droplet Distribution Range -<br />

Diagnostics<br />

Fit Summary and Model<br />

ANOVA<br />

Highest order polynomial: Reduced Cubic Model<br />

Model: 0.0001 significant<br />

Lack of fit: 0.2831 not significant<br />

Adj. R-square: 0.9230<br />

Pred. R-square: 0.7410<br />

Diagnostics<br />

Normal Plot of Residuals<br />

-2.00 -1.00 0.00 1.00 2.00<br />

Internally Studentized Residuals<br />

Internally Studentized Residuals<br />

Internally Studentized Residuals<br />

Internally Studentized Residuals<br />

3.00<br />

2.00<br />

1.00<br />

0.00<br />

-1.00<br />

-2.00<br />

-3.00<br />

Residuals vs. Predicted<br />

0.00 2.00 4.00 6.00 8.00 10.00<br />

Predicted<br />

2<br />

24<br />

Externally Studentized Residuals<br />

Externally Studentized Residuals<br />

6.00<br />

4.00<br />

2.00<br />

0.00<br />

-2.00<br />

-4.00<br />

-6.00<br />

Externally Studentized Residuals<br />

1 4 7 10 13 16<br />

Run Number<br />

Ln(ResidualSS)<br />

Ln (ResidualSS)<br />

12.00<br />

10.00<br />

8.00<br />

6.00<br />

4.00<br />

Recommended<br />

Transformation:<br />

Square Root<br />

Normal Plot of Residuals Residuals vs. Predicted Externally Studentized Residuals Box-Cox Plot for Power Transforms<br />

Box-Cox Plot for Power Transforms<br />

-3 -2 -1 0 1 2 3<br />

Predicted Run Number Lambda<br />

Lambda


2<br />

Response 6: Droplet Distribution Range -<br />

Model Graphs<br />

2<br />

60.000<br />

B: Silicone<br />

A: Acrylat<br />

70.000<br />

0.000 10.000<br />

60<br />

40<br />

20<br />

3<br />

2<br />

20.000<br />

Droplet Droplet Distribution Distribution Range<br />

Design points above predicted value<br />

Design points below predicted value<br />

50.000<br />

C: Oleyl Alcohol<br />

25<br />

Droplet Distribution<br />

Droplet Distribution Range<br />

80<br />

60<br />

B (60.000)<br />

40<br />

20<br />

0<br />

C (0.000)<br />

A (20.000)<br />

A (70.000)<br />

B (10.000)<br />

C (50.000)


2<br />

2<br />

60.000<br />

B: Silicone<br />

Discussion: Response 3 & 5 & 6<br />

A: Acrylat<br />

70.000<br />

0.000 20<br />

10.000<br />

100<br />

40<br />

60<br />

80<br />

3<br />

0<br />

2<br />

0<br />

0<br />

20.000<br />

20<br />

Crystal Growth<br />

50.000<br />

C: Oleyl Alcohol<br />

2<br />

10<br />

2<br />

40<br />

60.000<br />

B: Silicone<br />

A: Acrylat<br />

70.000<br />

10<br />

0.000 10.000<br />

30<br />

20<br />

3<br />

2<br />

20.000<br />

Droplet Size<br />

26<br />

50.000<br />

C: Oleyl Alcohol<br />

2<br />

2<br />

60.000<br />

B: Silicone<br />

A: Acrylat<br />

70.000<br />

0.000 10.000<br />

60<br />

40<br />

20<br />

3<br />

2<br />

20.000<br />

Droplet Distribution<br />

50.000<br />

C: Oleyl Alcohol<br />

Crystal Growth Droplet Size Droplet Distribution Range


Optimization<br />

Constrains<br />

Solutions<br />

Lower Upper Lower Upper<br />

Name Goal Limit Limit Weight Weight Importance<br />

A:Acrylate is in range 20 70 1 1 3<br />

B:Silicone is in range 10 60 1 1 3<br />

C:Oleyl Alcohol is in range 0 10 1 1 3<br />

Tack maximize 0.3 0.41 1 1 3<br />

Shear Adhesion maximize 5.0 30.2 1 1 3<br />

Crystal Growth is target = 0 0 10.0 1 1 5<br />

Droplet Size minimize 3.75 40 1 1 3<br />

Droplet Distribution minimize 2.5 70 1 1 3<br />

Number Acrylate Silicone Oleyl Alcohol Tack<br />

27<br />

Shear<br />

Adhesion<br />

Crystal<br />

Growth<br />

Droplet<br />

Size<br />

Droplet<br />

Distribution Desirability<br />

1 20.2 59.8 0.0 0.41 26.19 4.81 7.3 5.0 0.750<br />

2 45.0 35.0 0.0 0.31 12.89 0.53 10.9 4.4 0.540


Optimization<br />

2<br />

2<br />

0.600<br />

60.000<br />

B: Silicone<br />

A: Acrylat<br />

70.000<br />

0.000 10.000<br />

0.400<br />

0.600<br />

0.200<br />

Prediction 0.750<br />

0.400<br />

3<br />

2<br />

Prediction 0.540<br />

20.000<br />

Desirability<br />

28<br />

50.000<br />

C: Oleyl Alcohol


Conclusion<br />

Is there a sticky sweet spot?<br />

No, there is not.<br />

But…<br />

29


Conclusion<br />

We know that:<br />

Oleyl alcohol neither stabilizes the polymer-polymer interaction nor the<br />

polymer-API interaction.<br />

Oleyl alcohol decreases the adhesion properties in most cases.<br />

Wet mixes with equal amounts of polymer tend to be less stable.<br />

The best results were found at the periphery of the design space.<br />

Crystal growth correlates with droplet size and droplet distribution.<br />

No profit of oleyl alcohol, the addition is unnecessary.<br />

Limited processing time must be taken into account for scale up.<br />

Design space needs to be augmented.<br />

Do process variables such as mixing speed or viscosity of the wet mix have<br />

an influence on crystal growth? (combined – design)<br />

30


Thank you!<br />

31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!