01.06.2013 Views

Microencapsulation Methods for Delivery of Protein Drugs

Microencapsulation Methods for Delivery of Protein Drugs

Microencapsulation Methods for Delivery of Protein Drugs

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Biotechnol. Bioprocess Eng. 2001, 6: 213-230<br />

<strong>Microencapsulation</strong> <strong>Methods</strong> <strong>for</strong> <strong>Delivery</strong> <strong>of</strong> <strong>Protein</strong> <strong>Drugs</strong><br />

Yoon Yeo, Namjin Baek, and Kinam Park*<br />

Departments <strong>of</strong> Pharmaceutics and Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA<br />

INTRODUCTION<br />

Recent advances in recombinant DNA technology have resulted in development <strong>of</strong><br />

Abstract<br />

new protein drugs. Due to the unique properties <strong>of</strong> protein drugs, they have to be delivered<br />

many<br />

parenteral injection. Although delivery <strong>of</strong> protein drugs by other routes, such as pulmonary<br />

by<br />

nasal routes, has shown some promises, to date most protein drugs are administered by par-<br />

and<br />

routs. For long-term delivery <strong>of</strong> protein drugs by parenteral administration, they have been<br />

enteral<br />

into biodegradable microspheres. A number <strong>of</strong> microencapsulation methods have been<br />

<strong>for</strong>mulated<br />

and the currently used microencapsulation methods are reviewed here. The microen-<br />

developed,<br />

methods have been divided based on the method used. They are: solvent evaporacapsulation<br />

phase separation (coacervation); spray drying; ionotropic gelation/polyelectrolyte<br />

tion/extraction;<br />

interfacial polymerization; and supercritical fluid precipitation. Each method is de-<br />

complexation;<br />

scribed <strong>for</strong> its applications, advantages, and limitations.<br />

Keywords: protein, peptide, drug delivery, microparticle, microencapsulation<br />

advances in biotechnology have brought<br />

Significant<br />

availability <strong>of</strong> recombinant peptide pro-<br />

ever-increasing<br />

drugs in large quantities. The successful completein<br />

<strong>of</strong> the human genome project will undoubtedly<br />

tion<br />

to the explosion <strong>of</strong> new protein drugs with exqui-<br />

lead<br />

bioactivities. Since protein drugs carry out biologisite<br />

processes and reactions with high specificity and<br />

cal<br />

protein drugs will continue to be drugs <strong>of</strong><br />

potency,<br />

<strong>for</strong> treating various diseases. Formulating pro-<br />

choices<br />

drug delivery systems, however, poses several probtein<br />

Due to extremely low bioavailability <strong>of</strong> protein<br />

lems.<br />

by oral administration, which is the most conven-<br />

drugs<br />

mode <strong>of</strong> drug delivery, protein drugs are usually<br />

ient<br />

by parenteral route. One way <strong>of</strong> minimizing<br />

administered<br />

and improving patient compliance is to pro-<br />

discom<strong>for</strong>t<br />

sustained-release <strong>for</strong>mulations that deliver protein<br />

duce<br />

continuously over long periods <strong>of</strong> time. Another<br />

drugs<br />

in protein drug delivery is to maintain the terti-<br />

challenge<br />

protein structure, which is essential to bioactivity. Exary<br />

<strong>of</strong> protein drugs to unfavorable conditions during<br />

posure<br />

tends to reduce their bioactivities.<br />

<strong>for</strong>mulation<br />

widely used approach <strong>for</strong> long-term delivery <strong>of</strong><br />

Most<br />

drugs has been parenteral administration <strong>of</strong><br />

protein<br />

drugs in microspheres made <strong>of</strong> biodegradable<br />

protein<br />

Preparation <strong>of</strong> protein drug-containing mi-<br />

polymers.<br />

without reducing bioactivity has been the<br />

crospheres<br />

<strong>of</strong> microencapsulation methods. A number <strong>of</strong> mi-<br />

goal<br />

methods have been developed through<br />

croencapsulation<br />

the years, but none <strong>of</strong> the methods has been ideal <strong>for</strong><br />

Corresponding author<br />

*<br />

+1-765-494-7759 Fax: +1-765-496-1903<br />

Tel:<br />

e-mail: kpark@purdue.edu<br />

protein drugs. Each method has its own advan-<br />

loading<br />

as well as limitations. For further improvement in<br />

tages<br />

technologies, it is important to un-<br />

microencapsulation<br />

the strengths and drawbacks <strong>of</strong> each method.<br />

derstand<br />

1 lists examples <strong>of</strong> microencapsulation processes<br />

Table<br />

in the literature. <strong>Microencapsulation</strong> processes<br />

found<br />

been frequently classified either chemical or me-<br />

have<br />

[1]. Chemical processes refer to methods that<br />

chanical<br />

the change <strong>of</strong> solvent property, chemical reaction<br />

utilize<br />

monomers, or complexation <strong>of</strong> polyelectro-<br />

between<br />

In mechanical processes, a gas phase is utilized at<br />

lytes.<br />

stage to provide <strong>for</strong>ce to break up materials to<br />

some<br />

particles. There are many situations, however,<br />

small<br />

such a distinction is not clear.<br />

where<br />

MICROENCAPSULATION METHODS<br />

SOLVENT EVAPORATION/EXTRACTION<br />

evaporation/extraction methods have been<br />

Solvent<br />

used to prepare microspheres loaded with vari-<br />

widely<br />

drugs, especially hydrophobic drugs. For the encapous<br />

<strong>of</strong> peptide and protein drugs, oil/water (o/w),<br />

sulation<br />

(o/o) and water/oil/water (w/o/w) emulsifica-<br />

oil/oil<br />

methods have been used. Depending on the numtion<br />

<strong>of</strong> emulsions produced during the preparation <strong>of</strong><br />

ber<br />

solvent evaporation/extraction can be<br />

microspheres,<br />

into two methods, single emulsion and double<br />

divided<br />

(Fig. 1).<br />

emulsion<br />

<strong>Methods</strong><br />

Emulsion (o/o or o/w) <strong>Methods</strong><br />

Single<br />

single emulsion methods, peptides/proteins are pre-<br />

In


214 Biotechnol. Bioprocess Eng. 2001, Vol. 6, No. 4<br />

Table 1. Examples <strong>of</strong> microencapsulation methods<br />

Chemical processes<br />

1.<br />

evaporation and extraction<br />

Solvent<br />

solvent extraction<br />

Crygenic<br />

separation (Coacervation)<br />

Phase<br />

addition<br />

Non-solvent<br />

change<br />

Temperature<br />

polymer or salt addition<br />

Incompatible<br />

interaction (complex coacervation)<br />

Polymer-polymer<br />

complexation<br />

Polyelectrolyte<br />

polymerization<br />

Interfacial<br />

Mechanical processes<br />

2.<br />

drying<br />

Spray<br />

chilling<br />

Spray<br />

desolvation<br />

Spray<br />

Supercritical fluid precipitation<br />

Single Emulsion Double Emulsion<br />

suspension/solution<br />

<strong>Protein</strong><br />

polymer solution (oil)<br />

in<br />

Emulsion (o/o or o/w)<br />

solution<br />

<strong>Protein</strong><br />

water in<br />

oil or water oil<br />

removal<br />

Solvent<br />

drying &<br />

Hardened microsphere<br />

Primary emulsion (w/o)<br />

water<br />

Secondary emulsion (w/o/w)<br />

removal<br />

Solvent<br />

drying &<br />

Hardened microsphere<br />

1. Single emulsion (left) and double emulsion (right) sol-<br />

Fig.<br />

evaporation methods <strong>for</strong> microencapsulation <strong>of</strong> proteins.<br />

vent<br />

in a dispersed phase, which is a polymer solution in<br />

sent<br />

solvent such as dichloromethane or ethyl ace-<br />

organic<br />

Polylactic acid (PLA) and poly(lactide-co-glycolide)<br />

tate.<br />

are the most widely used biodegradable syn-<br />

(PLGA)<br />

polymers <strong>for</strong> sustained-release preparations. The<br />

thetic<br />

kinetics <strong>of</strong> active components can be controlled<br />

release<br />

changing molecular weight and/or copolymer ratio<br />

by<br />

those polymers. <strong>Drugs</strong> can be dispersed as solid parti-<br />

<strong>of</strong><br />

or dissolved in polymer solution. The drug solution<br />

cles<br />

suspension is added into a continuous phase, which<br />

or<br />

be mineral oil (o/o) or aqueous solution (o/w) con-<br />

can<br />

emulsifiers. Emulsification is carried out by agitaining<br />

homogenization, or sonication. Emulsifiers in<br />

tation,<br />

continuous phase stabilize o/o or o/w emulsions<br />

the<br />

produced. Emulsifiers such as Span 85 [2], sorbi-<br />

being<br />

sesquioleate [3], aluminium tristearate [4] have<br />

tan<br />

used <strong>for</strong> o/o interface, and Carbopol been ® [2], 951<br />

cellulose [5], polyvinyl alcohol (PVA) [6] have<br />

methyl<br />

used <strong>for</strong> o/w interface.<br />

been<br />

solvent in dispersed phase is removed by sol-<br />

Organic<br />

evaporation or by solvent extraction. In solvent<br />

vent<br />

process, hardening <strong>of</strong> emulsion occurs<br />

evaporation<br />

volatile organic solvent in dispersed phase leaches<br />

when<br />

continuous phase and evaporates from continuous<br />

into<br />

at atmospheric pressure. Using vacuum or a mod-<br />

phase<br />

increase in temperature can accelerate the evapoerate<br />

<strong>of</strong> organic solvent. In solvent extraction process,<br />

ration<br />

emulsion is transferred to a large amount <strong>of</strong> water<br />

the<br />

other quenching medium, and the extraction <strong>of</strong> or-<br />

or<br />

solvent occurs faster than in solvent evaporation<br />

ganic<br />

Thus, microspheres produced by solvent ex-<br />

process.<br />

process are more porous than the ones protraction<br />

by solvent evaporation. The porous structure<br />

duced<br />

results in faster release <strong>of</strong> peptide/protein drugs.<br />

usually<br />

long-term sustained release, solvent evaporation is<br />

For<br />

The prepared microspheres are collected by<br />

preferred.<br />

centrifugation or filtration, and freeze-dried.<br />

Emulsion (w/o/w) <strong>Methods</strong><br />

Double<br />

double emulsion methods, an aqueous drug solu-<br />

In<br />

is first emulsified in a polymer-dissolved organic<br />

tion<br />

The w/o emulsion is then added into an aque-<br />

solvent.<br />

phase that contains emulsifier, thereby <strong>for</strong>ming w/<br />

ous<br />

emulsion. Then, the organic solvent is removed by<br />

o/w<br />

extracting into external aqueous phase and evaporation.<br />

Applications<br />

Emulsion<br />

Single<br />

emulsion solvent evaporation method has been<br />

Single<br />

to prepare microspheres/nanospheres containing<br />

used<br />

peptide and protein drugs. Insulin solution in<br />

various<br />

solvent was used in emulsification to prepare<br />

organic<br />

[7]. Other researchers used solid particles<br />

nanospheres<br />

bovine serum albumin (BSA) [2] or ovalbumin (OVA)<br />

<strong>of</strong><br />

instead <strong>of</strong> protein solution, in a hope that protein<br />

[4],<br />

can be preserved in organic solvent. High en-<br />

activity<br />

efficiency was obtained using protein particapsulation<br />

The prepared microparticles tend to show initial<br />

cles.<br />

release pr<strong>of</strong>iles. Table 2 lists some examples <strong>of</strong><br />

burst<br />

preparation using protein particles. A<br />

microparticle<br />

approach <strong>of</strong> protein particle preparation was used<br />

novel<br />

the encapsulation <strong>of</strong> bovine superoxide dismutase<br />

<strong>for</strong><br />

into PLGA/PLA microspheres [5]. <strong>Protein</strong><br />

(bSOD)<br />

particles were prepared by lyophilization <strong>of</strong><br />

spherical<br />

glycol (PEG) aqueous mixture.<br />

protein-polyethylene<br />

approach resulted in high encapsulation efficiency<br />

This<br />

and high activity <strong>of</strong> the loaded enzyme (95%). In<br />

(88%)


Biotechnol. Bioprocess Eng. 2001, Vol. 6, No. 4 215<br />

2. Encapsulation <strong>of</strong> protein particles by single emul-<br />

Table<br />

evaporation methods<br />

sion/solvent<br />

<strong>Protein</strong><br />

particles<br />

Spray-dried<br />

BSA<br />

Micronized<br />

OVA<br />

Lyophilized<br />

bSOD/PEG<br />

)<br />

(% 75<br />

S<br />

O<br />

D<br />

o<br />

f b<br />

e<br />

50<br />

le<br />

a<br />

s<br />

e<br />

re<br />

u<br />

la<br />

tiv<br />

Q<br />

u<br />

m<br />

100<br />

25<br />

Polymer Type<br />

PLGA o/o<br />

o/w<br />

Encapsulation<br />

efficiency<br />

>90%<br />

20-50%<br />

Initial<br />

in release<br />

1 day<br />


216 Biotechnol. Bioprocess Eng. 2001, Vol. 6, No. 4<br />

100<br />

)<br />

e<br />

(%<br />

m<br />

75 z<br />

y<br />

o<br />

s<br />

o<br />

f ly<br />

e<br />

50<br />

le<br />

a<br />

s<br />

e<br />

re<br />

u<br />

la<br />

tiv<br />

Q<br />

u<br />

m<br />

25<br />

0<br />

3. Release <strong>of</strong> lysozyme from PEG-PBT microspheres. Mo-<br />

Fig.<br />

weight <strong>of</strong> PEG segment was 600. Polyvinyl alcohol<br />

lecular<br />

was used as a stabilizer in the external aqueous phase.<br />

(4%)<br />

percentage <strong>of</strong> PBT in PEG-PBT block copolymer<br />

Increasing<br />

resulted in slower release <strong>of</strong> lysozyme. From reference [16].<br />

<strong>of</strong> glycolide in PLGA polymers result in rapid deg-<br />

tents<br />

<strong>of</strong> the polymer, resulting in faster release <strong>of</strong> the<br />

radation<br />

drugs. The release pr<strong>of</strong>ile can also be controlled<br />

loaded<br />

the processing factors, such as shear <strong>for</strong>ces, since<br />

by<br />

shear <strong>for</strong>ces tend to produce smaller microparticles<br />

high<br />

release drugs at a faster rate due to higher surface<br />

which<br />

area and shorter diffusion path length.<br />

Limitations<br />

0 10 20 30 40 50<br />

Time (days)<br />

23%<br />

45%<br />

solvent evaporation/extraction methods have<br />

While<br />

used widely in preparing microparticles <strong>for</strong> pep-<br />

been<br />

delivery, the methods are still not ideal and<br />

tide/protein<br />

many aspects to be improved. First, the drug<br />

have<br />

efficiency into microspheres is not high.<br />

encapsulation<br />

protein drugs can be produced in larger scale<br />

Although<br />

to development <strong>of</strong> genetic engineering technique,<br />

due<br />

cost is still high. Thus, increasing the encapsulation<br />

the<br />

is still quite important <strong>for</strong> preparing micro-<br />

efficiency<br />

Second, the solvent evaporation/extraction<br />

spheres.<br />

require use <strong>of</strong> toxic organic solvents, such as<br />

methods<br />

and ethyl acetate, as a solvent <strong>for</strong> dis-<br />

dichloromethane<br />

biodegradable polymers. To meet the regulatory<br />

solving<br />

regarding the residual solvent in the final<br />

requirement<br />

the use <strong>of</strong> toxic organic solvent should be<br />

products,<br />

or avoided. Third, in most situations, the<br />

minimized<br />

proteins are released with the initial burst release,<br />

loaded<br />

in many situations the loaded proteins are not re-<br />

and<br />

completely. The initial burst release may cause<br />

leased<br />

response in patients due to abnormally high<br />

abnormal<br />

concentration in blood. Incomplete release <strong>of</strong> the<br />

drug<br />

proteins is <strong>of</strong>ten related to protein stability. Pro-<br />

loaded<br />

have to maintain their 3-dimensional con<strong>for</strong>mateins<br />

to keep their bioactivity. <strong>Protein</strong>s, however, are<br />

tion<br />

prone to be denatured and to <strong>for</strong>m aggregates by vari-<br />

factors, including exposure to large interface beous<br />

organic and aqueous phases, shear <strong>for</strong>ce in the<br />

tween<br />

steps (e.g., homogenization, and sonication),<br />

processing<br />

protein-polymer interaction. Some reports showed<br />

or<br />

the loss <strong>of</strong> protein activity or denaturation/ aggre-<br />

that<br />

<strong>of</strong> protein could be minimized by using stabilizgation<br />

such as poloxamer, BSA or hydroxypropyl-βers<br />

[13,14,18]. Fourth, although continuous<br />

cyclodextrin<br />

<strong>of</strong> peptide/protein drugs is desirable, there are<br />

release<br />

where pulsatile release is preferred as in the<br />

situations<br />

<strong>of</strong> insulin delivery. Furthermore, the timing and the<br />

case<br />

amount <strong>of</strong> the released insulin need to be con-<br />

exact<br />

carefully. This type <strong>of</strong> release can not be obtrolled<br />

by biodegradable microspheres prepared by soltained <br />

vent evaporation/extraction methods.<br />

Modifications <strong>of</strong> Solvent Extraction<br />

an ef<strong>for</strong>t to protect proteins from denaturation<br />

In<br />

microencapsulation processes, alternative methods<br />

during<br />

been developed to minimize exposure <strong>of</strong> protein<br />

have<br />

to denaturing conditions, such as high tempera-<br />

drugs<br />

ture and water-oil interfaces [19].<br />

Spray-desolvation<br />

involves spraying a polymer solu-<br />

Spray-desolvation<br />

onto desolvating liquid. For example, microdroplets<br />

tion<br />

made by spraying PVA aqueous solution onto ace-<br />

were<br />

bath, where the polymer solvent (water) was extone<br />

into acetone and PVA precipitated to <strong>for</strong>m solid<br />

tracted<br />

[20]. This method was also applied to<br />

microparticles<br />

peptides and BSA as model drugs in PLGA.<br />

encapsulate<br />

micronized drug was suspended in a PLGA-acetone<br />

The<br />

and atomized ultrasonically into ethanol bath,<br />

solution<br />

where microspheres were precipitated [21].<br />

Solvent Extraction<br />

Cryogenic<br />

is dissolved in an organic solvent such as di-<br />

PLGA<br />

together with protein powders. As shown<br />

chloromethane,<br />

Fig. 4, the polymer/protein mixture is atomized over<br />

in<br />

bed <strong>of</strong> frozen ethanol overlaid with liquid nitrogen, at<br />

a<br />

temperature below the freezing point <strong>of</strong> the poly-<br />

a<br />

solution. The microdroplets freeze upon<br />

mer/protein<br />

the liquid nitrogen, then sink onto the fro-<br />

contacting<br />

ethanol layer. As the ethanol layer thaws, the mizen<br />

which are still frozen sink into the ethanol.<br />

croparticles<br />

the solvent in the microparticles<br />

Dichloromethane,<br />

thaws and is slowly extracted into ethanol, result-<br />

then<br />

in hardened microparticles containing proteins and<br />

ing<br />

matrix.<br />

polymer<br />

process was used to produce a microsphere <strong>for</strong>-<br />

This<br />

<strong>for</strong> human growth hormone (hGH) [23-26].<br />

mulation<br />

to the encapsulation process, hGH is <strong>for</strong>mulated<br />

Prior<br />

zinc to produce insoluble Zn:hGH complex. The<br />

with<br />

<strong>of</strong> this complex contributed to stabilize<br />

encapsulation<br />

during the fabrication process and within the mi-<br />

hGH<br />

after hydration [23,24]. An in vivo study <strong>of</strong><br />

crospheres<br />

<strong>for</strong>mulation demonstrated a lower Cmax and an ex-<br />

this<br />

serum level <strong>for</strong> weeks, but a similar bioavailabiltended<br />

as compared with the protein in solution [26]. The<br />

ity,


Biotechnol. Bioprocess Eng. 2001, Vol. 6, No. 4 217<br />

suspension<br />

<strong>Protein</strong><br />

polymer solution<br />

in<br />

Liquid nitrogen<br />

Frozen<br />

microspheres<br />

4. Schematic diagram <strong>of</strong> the ProLease Fig. ® encapsulation<br />

From reference [22].<br />

process.<br />

<strong>for</strong>mulation using this method (referred to as<br />

hGH<br />

ProLease ® was approved by the FDA in December 1999,<br />

)<br />

an injectable suspension <strong>for</strong> once- or twice-a-month<br />

as<br />

under a brand name <strong>of</strong> Nutropin depot adminitration, ® .<br />

this process, all manipulations are per<strong>for</strong>med at<br />

In<br />

temperatures, there<strong>for</strong>e thermal denaturation <strong>of</strong><br />

low<br />

drugs can be prevented. There are no aqueous<br />

protein<br />

thus the protein is not subjected to oil-water<br />

phases,<br />

where some proteins may denature. In addi-<br />

interfaces<br />

the process utilizes solvents in which most protion,<br />

are insoluble (dichloromethane as a polymer solteins<br />

ethanol as an extraction solvent), there<strong>for</strong>e a high<br />

vent,<br />

efficiency can be achieved [22,27]. How-<br />

encapsulation<br />

this system is not easy to apply to various protein<br />

ever,<br />

The use <strong>of</strong> liquid nitrogen also makes scale-up<br />

drugs.<br />

difficult. The system still utilizes toxic organic<br />

rather<br />

and thus it has similar problems associated<br />

solvents,<br />

solvent evaporation/extraction methods.<br />

with<br />

PHASE SEPARATION (COACERVATION)<br />

<strong>Methods</strong><br />

Nozzle<br />

Extraction solvent<br />

Atomized<br />

droplets<br />

<strong>of</strong> solvent<br />

Extraction<br />

microspheres<br />

from<br />

Drug particle<br />

Release modifier<br />

PLG microsphere<br />

by phase separation is basically a<br />

<strong>Microencapsulation</strong><br />

process: (1) phase separation <strong>of</strong> the coating<br />

three-step<br />

to <strong>for</strong>m coacervate droplets; (2) adsorption <strong>of</strong><br />

polymer<br />

coacervate droplets onto the drug surface; and (3)<br />

the<br />

<strong>of</strong> the microcapsules [28], as shown in Fig.<br />

solidification<br />

Phase separation techniques can be classified accord-<br />

5.<br />

to the method to induce phase separation; noning<br />

addition, temperature change, incompatible<br />

solvent<br />

or salt addition, and polymer-polymer interac-<br />

polymer<br />

[29]. tion<br />

Addition<br />

Non-solvent<br />

polymer to be coated is dissolved in a good sol-<br />

The<br />

and drug may be dissolved or suspended or emulvent,<br />

in the polymer solution. Then the first nonsified<br />

(also called ‘coacervating agent’ or ‘phase insolvent<br />

which is miscible with the good solvent but<br />

ducer’)<br />

not dissolve the polymer is slowly added to the<br />

does<br />

solution system. The polymer is concen-<br />

polymer-drug<br />

as the solvent <strong>for</strong> the polymer is slowly extracted<br />

trated<br />

the first non-solvent. The polymer is then induced<br />

into<br />

by<br />

Induced<br />

Non-solvent<br />

1.<br />

Temperature change<br />

2.<br />

Salt / Incompatible polymer<br />

3.<br />

4. Polymer-polymer interaction<br />

separation<br />

Phase<br />

the coating polymer<br />

<strong>of</strong><br />

Drug particle<br />

<strong>of</strong><br />

Adsorption<br />

droplets<br />

coacervate<br />

<strong>of</strong><br />

Solidification<br />

microcapsules<br />

the<br />

5. Schematic diagram <strong>of</strong> the <strong>for</strong>mation <strong>of</strong> a coacervate<br />

Fig.<br />

From reference [30].<br />

microcapsule.<br />

phase separate and <strong>for</strong>m coacervate droplets that<br />

to<br />

the drug (Fig. 6(A)). The coacervate droplet size<br />

contain<br />

be controlled by adjusting the stirring speed. At this<br />

can<br />

<strong>of</strong> the process, the coacervates are usually too s<strong>of</strong>t<br />

point<br />

be collected, and thus they are usually transferred to<br />

to<br />

large body <strong>of</strong> a second non-solvent (also called ‘hard-<br />

a<br />

agent’) to harden the microparticles [31].<br />

ening<br />

polyesters, such as PLA and PLGA, are used,<br />

When<br />

widely used solvents are dichloromethane, ethyl<br />

most<br />

and acetonitrile. The first non-solvents <strong>for</strong> the<br />

acetate,<br />

are low-molecular weight liquid polybutadi-<br />

polymers<br />

low-molecular weight liquid methacrylic polymers,<br />

ene,<br />

oil, vegetable oil, and light liquid paraffine oils.<br />

silicone<br />

hydrocarbons, such as heptane, hexane, and<br />

Aliphatic<br />

ether, have been used as the second non-<br />

petroleum<br />

solvent.<br />

Change<br />

Temperature<br />

system comprised <strong>of</strong> a polymer and a solvent exists<br />

A<br />

a single phase at all points above the phase boundary.<br />

as<br />

is dispersed in the polymer solution with stirring.<br />

Drug<br />

the temperature is decreased below the curve (Fig.<br />

As<br />

phase separation <strong>of</strong> the dissolved polymer occurs<br />

6(B)),<br />

the <strong>for</strong>m <strong>of</strong> immiscible liquid and the polymer coa-<br />

in<br />

around the dispersed drug particles, thus <strong>for</strong>ming<br />

lesces<br />

Further cooling accomplishes gelation<br />

microcapsules.<br />

solidification <strong>of</strong> the coating. The microcapsules are<br />

and<br />

from the solvent by filtration, decantation, or<br />

collected<br />

techniques [32].<br />

centrifugation<br />

Polymer Addition or Salt Addition<br />

Incompatible<br />

two chemically different polymers dissolved in<br />

When<br />

common solvent are incompatible and do not mix in<br />

a<br />

phase separation takes place. This phenome-<br />

solution,<br />

is well described by the phase diagram <strong>of</strong> a ternary<br />

non<br />

consisting <strong>of</strong> a solvent, and two polymers, X<br />

system<br />

Y (Fig. 6(C)). A drug is dispersed in a solution <strong>of</strong><br />

and<br />

Y (point a in Fig. 6(C)) and polymer X is added<br />

polymer<br />

the system, denoted by the arrowed line. When the<br />

to<br />

boundary is passed with the further addition <strong>of</strong><br />

phase<br />

X, polymer rich phase begins to separate to<br />

polymer<br />

immiscible droplets containing the drug, and coa,-<br />

<strong>for</strong>m


218 Biotechnol. Bioprocess Eng. 2001, Vol. 6, No. 4<br />

( A )<br />

1 0 0 %<br />

0 0 % 1 0 0 %<br />

1<br />

o n s o l v e n t P o l y m e r<br />

N<br />

( C )<br />

S o l v e n t<br />

S o l v e n t<br />

2 p h a s e s<br />

1 0 0 %<br />

2 p h a s e s<br />

1 0 0 %<br />

1 0 0 %<br />

o l y m e r Y P X r e m y l o P<br />

6. General phase diagrams <strong>of</strong> phase separation techniques based on solvent (A), temperature (B), incompatible polymers (C),<br />

Fig.<br />

interpolymer interactions (D). From reference [32].<br />

and<br />

to make microcapsules [32]. In a similar manner<br />

lesce<br />

salts can be added to aqueous solution <strong>of</strong> wa-<br />

inorganic<br />

ter-soluble polymers to cause phase separation.<br />

Interaction (Complex Coacervation)<br />

Polymer-polymer<br />

interaction <strong>of</strong> oppositely charged polyelectro-<br />

The<br />

can result in the <strong>for</strong>mation <strong>of</strong> a complex with relytes<br />

solubility leading to phase separation (Fig. 6(D)).<br />

duced<br />

method is <strong>of</strong>ten called complex coacervation [1].<br />

This<br />

method differs from incompatible polymer addi-<br />

The<br />

in that both polymers become part <strong>of</strong> the final caption<br />

wall. Gelatin is normally used as a cationic polymer<br />

sule<br />

pH below its isoelectric point. A variety <strong>of</strong> natural<br />

at<br />

synthetic anionic polymers are available <strong>for</strong> interac-<br />

and<br />

with gelatin to <strong>for</strong>m complex coacervates. A well<br />

tion<br />

example <strong>of</strong> natural polyanion <strong>for</strong> making com-<br />

known<br />

coacervates with gelatin is gum arabic. Aqueous<br />

plex<br />

<strong>of</strong> gum arabic and gelatin are adjusted to pH<br />

solutions<br />

and warmed to 40-45°C. The pI <strong>of</strong> gelatin is 8.9. The<br />

4.5<br />

charged macromolecules interact to undergo<br />

oppositely<br />

separation, to which a water insoluble liquid core<br />

phase<br />

is added and emulsified to yield the desired<br />

material<br />

size. The mixture is then slowly cooled <strong>for</strong> an<br />

droplet<br />

During the cooling cycle, phase separation is<br />

hour.<br />

enhanced, resulting in the microcapsules <strong>for</strong>med<br />

further<br />

the core material with thin film <strong>of</strong> coacervate [32].<br />

on<br />

harden the microcapsules, the capsules are normally<br />

To<br />

further and treated with glutaraldehyde. This<br />

cooled<br />

a<br />

( B )<br />

( D )<br />

1 0 0 %<br />

1 0 0 %<br />

- e P + e P<br />

is mainly <strong>for</strong> water insoluble materials, include-<br />

method<br />

inks <strong>for</strong> carbonless paper, perfumes <strong>for</strong> advertising<br />

ing<br />

inserts, and liquid crystals <strong>for</strong> display devices.<br />

Applications<br />

2 p h a s e s<br />

P O L Y M E R C O N C E N T R A T I O N - w t %<br />

W a t e r<br />

1 0 0 %<br />

2 p h a s e s<br />

the non-solvent addition method does not in-<br />

Since<br />

an aqueous continuous phase as in w/o/w double<br />

clude<br />

methods, the water-soluble drugs may be pro-<br />

emulsion<br />

from partitioning into the water phase. This<br />

tected<br />

the non-solvent addition method one <strong>of</strong> the<br />

makes<br />

widely used techniques <strong>for</strong> encapsulating water-<br />

most<br />

compounds [28,33-41]. Triptoreline (luteinizing<br />

soluble<br />

releasing hormone analogue)-containing micro-<br />

hormone<br />

were prepared by the non-solvent addition<br />

capsules<br />

and the effect <strong>of</strong> the physicochemical nature <strong>of</strong><br />

method,<br />

polymer on the stability <strong>of</strong> the coacervate droplets<br />

the<br />

examined [34,35]. Triptoreline was suspended in<br />

was<br />

solution, and silicone oil was<br />

PLGA-dichloromethane<br />

added to the suspension as the first non-solvent.<br />

then<br />

embryonic microspheres were further hardened in<br />

The<br />

the second non-solvent. It was found that as<br />

n-heptane,<br />

copolymer became more hydrophobic, it dissolved<br />

the<br />

in dichloromethane and thus more silicone oil<br />

better<br />

necessary to desolvate the copolymer. The average<br />

was<br />

<strong>of</strong> the microspheres increased with the volume<br />

diameter<br />

silicone oil, thereby lowering the initial burst effect.<br />

<strong>of</strong><br />

was also observed from in vivo experiments. With op-<br />

It


Biotechnol. Bioprocess Eng. 2001, Vol. 6, No. 4 219<br />

d<br />

s<br />

e<br />

a<br />

R<br />

e<br />

le<br />

e<br />

%<br />

u<br />

la<br />

tiv<br />

C<br />

u<br />

m<br />

100<br />

75<br />

50<br />

25<br />

0<br />

0 2 4 6 8<br />

Time (days)<br />

100/0<br />

80/20<br />

0/100<br />

7. Release <strong>of</strong> GM-CSF from microspheres prepared from<br />

Fig.<br />

PLA (MW 6,100) (0/100), 80%/20% mixture <strong>of</strong> PLGA<br />

100%<br />

40,400)/PLA (80/20), and 100% PLGA (100/0). From<br />

(MW<br />

[41].<br />

reference<br />

microspheres, the in vivo peptide release reached<br />

timized<br />

peak level on day 15 and the effect lasted <strong>for</strong> 1<br />

the<br />

month.<br />

colony-stimulating factor<br />

Granulocyte-macrophage<br />

was encapsulated in different blends <strong>of</strong><br />

(GM-CSF)<br />

and low molecular weight PLA by the non-<br />

PLGA<br />

addition method, and the prepared microsolvent<br />

were characterized both in vitro and in vivo [41].<br />

spheres<br />

microspheres with high encapsulation efficiency<br />

The<br />

obtained within a size range between 20 µm and<br />

were<br />

µm. The in vitro release kinetics was dependent on<br />

80<br />

ratio <strong>of</strong> blended polymers. Steady release <strong>of</strong> GM-<br />

the<br />

could be achieved over a period <strong>of</strong> one week with-<br />

CSF<br />

significant burst effect using blend <strong>of</strong> low molecular<br />

out<br />

PLA and high molecular weight PLGA (Fig. 7).<br />

weight<br />

released from the microspheres was found to<br />

GM-CSF<br />

physically intact and biologically active both in vitro<br />

be<br />

in vivo. and<br />

avoid the aggregation <strong>of</strong> microparticles <strong>of</strong>ten en-<br />

To<br />

in non-solvent addition, a modified method<br />

countered<br />

developed [42]. Instead <strong>of</strong> adding non-solvent to a<br />

was<br />

mixture, the polymer solution was added<br />

polymer-drug<br />

an emulsion <strong>of</strong> aqueous ovalbumin in the non-<br />

to<br />

silicon oil. The obtained microspheres appeared<br />

solvent<br />

and remained individual, and displayed a small<br />

smooth<br />

release <strong>of</strong> entrapped ovalbumin over the first 12<br />

initial<br />

with the subsequent release pr<strong>of</strong>ile close to a<br />

hours,<br />

order kinetics <strong>for</strong> a month. Another modification<br />

zero<br />

the non-solvent addition method was introduced to<br />

<strong>of</strong><br />

protein entities from denaturation at the or-<br />

protect<br />

interface or unfolding and/or aggregaganic/aqueous<br />

within hydrophobic polymer matrix [40,43,44].<br />

tion<br />

hydrophilic nanoparticles were pre-<br />

Drug-containing<br />

prior to encapsulation with hydrophobic polymer.<br />

pared<br />

[40], agarose [43], and poly(vinyl alcohol) (PVA)<br />

Gelatin<br />

were used as nanoparticle matrices <strong>for</strong> BSA or insu-<br />

[44]<br />

Nanoparticles were suspended in PLGA-dichlorolin.<br />

solution. Microparticles embedded with nanomethane<br />

were made by phase separation method using<br />

particles<br />

oil as the first non-solvent and heptane as the<br />

silicone<br />

non-solvent. The average diameter <strong>of</strong> the hydro-<br />

second<br />

nanoparticle-hydrophobic microsphere composi-<br />

philic<br />

was 150-180 µm. The protein release from the mi-<br />

tes<br />

was prolonged to nearly two months, withcrospheres<br />

degradation nor aggregation <strong>of</strong> the protein as<br />

out<br />

by size exclusion chromatograms [44].<br />

shown<br />

separation by salt addition was adopted in<br />

Phase<br />

<strong>of</strong> ionotropic hydrogel in an attempt to<br />

preparation<br />

the size distribution <strong>of</strong> microspheres [45]. Prior<br />

control<br />

cross-linking with calcium ions, salts <strong>of</strong> monovalent<br />

to<br />

(e.g., sodium chloride) were added to aqueous solu-<br />

ions<br />

<strong>of</strong> poly [di(carboxylatophenoxy) phosphazene]<br />

tion<br />

to <strong>for</strong>m coacervate microdroplets with a size in<br />

(PCPP)<br />

range 1-10 µm. Upon addition <strong>of</strong> calcium chloride,<br />

the<br />

microdroplets were stabilized via cross-linking be-<br />

the<br />

PCPP and calcium salts without changing the<br />

tween<br />

and shape. The microsphere size increased linearly<br />

size<br />

the sodium chloride concentration, incubation<br />

with<br />

and polymer concentration. This method avoided<br />

time,<br />

use <strong>of</strong> organic solvents, heat, and complicated<br />

the<br />

equipment. Gelatin/Chondroitin 6-sulfate<br />

manufacturing<br />

microspheres were prepared to encapsulate pro-<br />

(CS6)<br />

using complex coacervation <strong>for</strong> the joint therapy<br />

teins<br />

Gelatin (a polycation) and CS6 (a polyanion) solu-<br />

[46].<br />

containing model proteins were mixed and vortions<br />

at 37°C, pH 5.5 to <strong>for</strong>m coacervates. The resulting<br />

texed<br />

microspheres were crosslinked with glu-<br />

coacervate<br />

It was claimed that proteins could be entaraldehyde.<br />

with high encapsulation efficiency, retaining<br />

capsulated<br />

bioactivity. The release <strong>of</strong> protein depended on the<br />

high<br />

<strong>of</strong> human matrix metalloprotease (MMP), since<br />

level<br />

coacervate was degraded by its gelatinase<br />

gelatin/CS6<br />

The MMP concentration is one <strong>of</strong> the factors<br />

activity.<br />

<strong>for</strong> the joint pain, and thus the MMP-<br />

responsible<br />

release property is <strong>of</strong> distinctive advantage<br />

responsive<br />

the delivery <strong>of</strong> MMP inhibitors or the receptors <strong>for</strong><br />

<strong>for</strong><br />

stimulating the synthesis <strong>of</strong> MMP to diseased<br />

cytokines<br />

Gelatin/CS6 showed no significant cytotoxic<br />

joints.<br />

effect in vitro.<br />

Advantages<br />

non-solvent addition method is preferred in en-<br />

The<br />

<strong>of</strong> water-soluble drugs, such as proteins,<br />

capsulation<br />

and vaccines, since drug-polymer mixtures are<br />

peptides,<br />

exposed to the continuous aqueous phase. This<br />

not<br />

the loss <strong>of</strong> water-soluble drugs to the water<br />

minimizes<br />

and results in the high encapsulation efficiency.<br />

phase<br />

advantage <strong>of</strong> the phase separation method is<br />

Another<br />

it enables efficient control <strong>of</strong> the particle size with<br />

that<br />

narrower size distribution by simply varying the<br />

a<br />

variables, such as concentration <strong>of</strong> added<br />

component<br />

[45] or the viscosity and amount <strong>of</strong> the non-<br />

salts<br />

and/or molecular weight <strong>of</strong> polymer used [47].<br />

solvent


220 Biotechnol. Bioprocess Eng. 2001, Vol. 6, No. 4<br />

Limitations<br />

many successful phase separation systems<br />

Although<br />

been demonstrated, each method has several limi-<br />

have<br />

The microspheres tend to aggregate and the<br />

tations.<br />

<strong>for</strong> mass production is difficult [48]. Agglom-<br />

scale-up<br />

occurs when the coacervate droplets are sticky<br />

eration<br />

adhere to each other be<strong>for</strong>e the solvent is com-<br />

and<br />

removed or be<strong>for</strong>e the droplets are hardened [31].<br />

pletely<br />

produce well-defined microspheres, wide ‘stability<br />

To<br />

is required. The stability window is defined as<br />

window’<br />

step where addition <strong>of</strong> non-solvent does not induce<br />

a<br />

but <strong>for</strong>ms stable coacervates [34]. The<br />

agglomeration<br />

window is affected by the physicochemical<br />

stability<br />

<strong>of</strong> polymers used and/or the viscosity <strong>of</strong> the<br />

nature<br />

added. The presence <strong>of</strong> residual solvents is<br />

non-solvent<br />

concern in the non-solvent addition method. The<br />

a<br />

includes at least three different solvents, i.e.,<br />

method<br />

polymer solvent and two polymer non-solvents. In<br />

the<br />

the polymer solvents are toxic compounds,<br />

general,<br />

as halogenated hydrocarbons (e.g., dichloro-<br />

such<br />

<strong>for</strong> which the exposure limits are regulated<br />

methane),<br />

the authority. For example, the concentration limit<br />

by<br />

dichloromethane is 600 ppm [49]. In addition to the<br />

<strong>for</strong><br />

solvent, two non-solvents are generally known<br />

polymer<br />

remain in a substantial quantity. A study showed<br />

to<br />

depending on the type <strong>of</strong> solvent and polymer used,<br />

that<br />

residual solvents could be minimized by appropriate<br />

the<br />

methods [38]. The solvents, however, were in<br />

drying<br />

hard to remove. High levels <strong>of</strong> residues may al-<br />

general<br />

the microsphere morphology due to their plasticizter<br />

effect. Moreover, it may cause a toxicity problem<br />

ing<br />

influence crucial properties such as release pr<strong>of</strong>iles<br />

and<br />

drug stability. Undoubtedly, the search <strong>for</strong> toxico-<br />

and<br />

and technologically acceptable solvents and<br />

logically<br />

should continue <strong>for</strong> the non-solvent addi-<br />

non-solvents<br />

method to be more useful.<br />

tion<br />

a polymer-polymer interaction (complex coacerva-<br />

In<br />

the limited pH range and the use <strong>of</strong> cross-linking<br />

tion),<br />

can be potential problems. Since the technique is<br />

agent<br />

on electrostatic interactions between two polye-<br />

based<br />

pH <strong>of</strong> the medium is an important factor.<br />

lectrolytes,<br />

example, in a gelatin-acacia system, the pH should<br />

For<br />

below the isoelectric point <strong>of</strong> gelatin (pH 8.9) to<br />

be<br />

it positively charged. The pH range suitable <strong>for</strong><br />

make<br />

gelatin-acacia system is between 2.6 and 5.5 [30].<br />

the<br />

condition, however, is not appropriate <strong>for</strong> encapsu-<br />

This<br />

<strong>of</strong> acid-labile drug entities. The pH range could<br />

lation<br />

extended by the addition <strong>of</strong> water-soluble nonionic<br />

be<br />

such as polyethylene glycol [50,51]. Glutaral-<br />

polymers,<br />

and <strong>for</strong>maldehyde are commonly used as crossdehyde<br />

agents to harden the microcapsules in this techlinking<br />

A condensation reaction occurs between the<br />

nique.<br />

groups <strong>of</strong> the protein (e.g., gelatin) and the alde-<br />

amino<br />

The cross-linking agents may diffuse into the<br />

hydes.<br />

and also react with drug entities, there<strong>for</strong>e this<br />

core<br />

may not be appropriate <strong>for</strong> the protein drugs.<br />

method<br />

toxicity problems arise as well [30].<br />

Potential<br />

SPRAY DRYING<br />

drying has been widely used in the pharmaceu-<br />

Spray<br />

food, and biochemical industries. The main applitical,<br />

in the pharmaceutical field include drying proccations<br />

granulation, preparation <strong>of</strong> solid dispersions, alteraess,<br />

<strong>of</strong> polymorphism <strong>of</strong> a drug, preparation <strong>of</strong> dry<br />

tion<br />

<strong>for</strong> aerosols, and encapsulation <strong>of</strong> drugs <strong>for</strong><br />

powders<br />

masking and protection from oxidation [52]. Since<br />

taste<br />

late 1970s, the spray drying technique has been<br />

the<br />

<strong>for</strong> making microparticulate systems <strong>for</strong> controlled<br />

used<br />

delivery.<br />

drug<br />

<strong>Methods</strong><br />

hydrophilic or hydrophobic polymer is dis-<br />

Either<br />

in a suitable solvent. Drug can be dissolved or<br />

solved<br />

in the solvent. Alternatively, drug solution<br />

suspended<br />

be emulsified in the polymer solution. The mixture<br />

can<br />

then sprayed through a nozzle <strong>of</strong> a spray dryer,<br />

is<br />

in solid microspheres that precipitated into<br />

resulting<br />

bottom collector [53]. Sometimes, the process<br />

the<br />

the use <strong>of</strong> plasticizers to <strong>for</strong>m microcapsules <strong>of</strong><br />

include<br />

spherical shape and smooth-surface by reducing<br />

regular<br />

rigidity <strong>of</strong> polymer chain [54].<br />

the<br />

Alternative Technique<br />

(congealing): Spray congealing includes<br />

Spray-chilling<br />

dissolution or dispersion <strong>of</strong> the drug in a melted<br />

the<br />

without using solvent. This mixture fluid is then<br />

carrier<br />

into a cold air stream to make small droplets<br />

sprayed<br />

solidified by cooling at the temperature lower than<br />

and<br />

melting point <strong>of</strong> the carrier. This method was used<br />

the<br />

encapsulate bovine somatotropin (bST) in fat or wax<br />

to<br />

bST was dispersed in molten fat or wax and<br />

[55].<br />

through an air/liquid spray nozzle. The micro-<br />

sprayed<br />

were <strong>for</strong>med as the molten droplets and were<br />

spheres<br />

on sieves in the desired size range (45-180 µm).<br />

collected<br />

was demonstrated that the microspheres were effec-<br />

It<br />

in maintaining increased level <strong>of</strong> bST in the blood<br />

tive<br />

treated animals <strong>for</strong> 4 weeks, increasing weight gains<br />

<strong>of</strong><br />

and milk production.<br />

Applications<br />

spray-drying is relatively simple, fast and easy<br />

Since<br />

scale-up, it has been tried as an attractive alternative<br />

to<br />

the conventional methods, such as coacervation and<br />

to<br />

method to encapsulate protein drugs [48,56-<br />

emulsion<br />

The spray drying technique was applied to produce<br />

65].<br />

microparticles containing thyrotropin releasing<br />

PLGA<br />

(TRH) [48]. TRH in water and PLGA in ace-<br />

hormone<br />

were mixed to <strong>for</strong>m a clear solution and then<br />

tonitrile<br />

Since the microparticles produced by conven-<br />

sprayed.<br />

spray dryer tended to agglomerate and adhere to<br />

tional<br />

surface <strong>of</strong> the chamber, they designed a double noz-<br />

the<br />

system such that additional nozzle might spray a<br />

zle<br />

solution as an anti-adherent simultaneously<br />

mannitol<br />

8). Microparticles with mean particle size <strong>of</strong> 20 µm<br />

(Fig.


Biotechnol. Bioprocess Eng. 2001, Vol. 6, No. 4 221<br />

Raw<br />

materials<br />

8. Schematic diagram <strong>of</strong> a spray dryer used <strong>for</strong> prepara-<br />

Fig.<br />

<strong>of</strong> PLGA microparticles containing TRH. From reference<br />

tion<br />

[48].<br />

obtained, from which zero order release <strong>of</strong> TRH<br />

were<br />

<strong>for</strong> one month with a minimal initial burst.<br />

continued<br />

4 lists some examples <strong>of</strong> microspheres prepared by<br />

Table<br />

drying.<br />

spray<br />

Advantages<br />

<strong>of</strong> the major advantages <strong>of</strong> spray drying is its<br />

One<br />

applicability. Both hydrophilic and hydrophobic<br />

general<br />

can be used with proper selection <strong>of</strong> the sol-<br />

polymer<br />

[52]. Spray drying is useful <strong>for</strong> encapsulating even<br />

vent<br />

drugs, such as proteins or peptides, be-<br />

heat-sensitive<br />

it involves mild temperatures [52]. Although<br />

cause<br />

drying includes hot air stream, the temperature <strong>of</strong><br />

spray<br />

droplets may be maintained below the drying air<br />

the<br />

due to rapid evaporation <strong>of</strong> the solvent.<br />

temperature<br />

effective temperature applied to the drug itself is<br />

The<br />

enough to be used <strong>for</strong> proteins. Moreover, spray<br />

mild<br />

is time effective. Spray drying can yield results<br />

drying<br />

to those <strong>of</strong> conventional methods in terms<br />

equivalent<br />

size distribution, particle morphology, and release<br />

<strong>of</strong><br />

yet with the advantage <strong>of</strong> high encapsulation<br />

kinetics,<br />

and the short duration <strong>of</strong> the preparation<br />

efficiency<br />

[53]. The spray drying equipment is easily<br />

procedure<br />

at the manufacturing site. Also, as a one-stage<br />

available<br />

process, spray drying is ideal <strong>for</strong> production <strong>of</strong><br />

closed<br />

materials and good manufacturing practice<br />

sterile<br />

(GMP) [30].<br />

Limitations<br />

TRH-PLGA<br />

solution<br />

Air filter<br />

Pump<br />

air<br />

Double<br />

nozzle<br />

Heater<br />

Drying<br />

chamber<br />

Mannitol<br />

solution<br />

Spray<br />

nozzle<br />

Blower<br />

Cyclone<br />

Receiver<br />

During spray drying, considerable amounts <strong>of</strong> the<br />

4. Examples <strong>of</strong> microencapsulation <strong>of</strong> proteins by spray<br />

Table<br />

drying<br />

Polymer Solvent <strong>Protein</strong> Particle<br />

size<br />

β-glucuronidase<br />

Bovine<br />

somatotropin<br />

Human<br />

erythropoietin<br />

Albumin/<br />

with<br />

Acacia<br />

as PVP<br />

coacervate<br />

stabilizer<br />

anhy- Poly<br />

dride<br />

PLGA<br />

Distilled<br />

water<br />

5 µm<br />

Dichloro-<br />

1-5 µm<br />

methane <br />

Dichloro-<br />

10 µm<br />

methane<br />

Release kinetics Ref.<br />

initial burst<br />

Biphasic:<br />

within 6h followed<br />

(31%)<br />

zero order release <strong>for</strong> 2<br />

by<br />

weeks<br />

release <strong>for</strong> 6 h due to<br />

90%<br />

fast degradation <strong>of</strong><br />

the<br />

and small parti-<br />

polymer<br />

size cle<br />

burst during 24 h<br />

Initial<br />

no further release <strong>for</strong><br />

and<br />

months, likely due to<br />

2<br />

interac-<br />

protein-polymer<br />

and insoluble protein<br />

tion<br />

aggregates<br />

can be lost during the process due to sticking<br />

material<br />

the microparticles to the wall <strong>of</strong> the drying chamber.<br />

<strong>of</strong><br />

drying process can <strong>of</strong>ten lead to change <strong>of</strong> poly-<br />

Spray<br />

<strong>of</strong> the spray dried drugs [66,67]. For exammorphism<br />

progesterone crystal in its original alpha <strong>for</strong>m (m.p.<br />

ples,<br />

turned into beta <strong>for</strong>m (m.p. 395K) when it was<br />

402K)<br />

dried in combination with PLA. Fiber <strong>for</strong>mation<br />

spray<br />

be another major problem in spray drying PLA [67].<br />

can<br />

are <strong>for</strong>med due to insufficient <strong>for</strong>ces present to<br />

Fibers<br />

up the liquid filament into droplets. It depends on<br />

break<br />

the type <strong>of</strong> polymer and, to a lesser extent, the<br />

both<br />

<strong>of</strong> the spray solution. For example, ethyl cellu-<br />

viscosity<br />

solutions made spherical droplets at relatively high<br />

lose<br />

however PLA solutions <strong>of</strong> considerably<br />

concentrations,<br />

concentration and viscosity resulted in fibers.<br />

low<br />

are a number <strong>of</strong> process variables that should be<br />

There<br />

<strong>for</strong> drug encapsulation. They include feed<br />

optimized<br />

properties, such as viscosity, uni<strong>for</strong>mity, and<br />

material<br />

<strong>of</strong> drug and polymer mixtures, feed rate,<br />

concentration<br />

<strong>of</strong> atomization, and the inlet and outlet tem-<br />

method<br />

[32]. The dependence on so many variables<br />

peratures<br />

become a problem in terms <strong>of</strong> reproducibility and a<br />

may<br />

process. In addition, the amount <strong>of</strong> polymer<br />

scale-up<br />

drugs <strong>for</strong> encapsulation may be limited, since<br />

and/or<br />

fluid <strong>of</strong> high viscosity cannot be sprayed.<br />

GELATION /<br />

IONOTROPIC<br />

COMPLEXATION<br />

POLYELECTROLYTE<br />

gelation (IG) is based on the ability <strong>of</strong><br />

Ionotropic<br />

to crosslink in the presence <strong>of</strong> counter<br />

polyelectrolytes<br />

to <strong>for</strong>m hydrogels. Since the use <strong>of</strong> alginate <strong>for</strong> cell<br />

ions<br />

[68], ionotropic gelation has been widely<br />

encapsulation<br />

used <strong>for</strong> both cell and drug encapsulation.<br />

Method<br />

is one <strong>of</strong> the most widely used polyanion <strong>for</strong><br />

Alginate<br />

Alginate is composed <strong>of</strong> 1,4-linked<br />

microencapsulation.<br />

beta-D-mannuronic acid and alpha-D-guluronic acid<br />

[60]<br />

[56]<br />

[62]


222 Biotechnol. Bioprocess Eng. 2001, Vol. 6, No. 4<br />

(A)<br />

(B)<br />

HO HO<br />

-OOC<br />

OHO<br />

9. Monomer units (A) found in alginate and the alginate<br />

Fig.<br />

structure (B). From reference [69].<br />

polymer<br />

Divalent and trivalent cations induce gelation<br />

residues.<br />

binding mainly to the guluronic blocks (Fig. 9). The<br />

by<br />

and macro-spheres are produced by dropping a<br />

microor<br />

drug-loaded alginate solution into aqueous cal-<br />

cell-<br />

chloride solution. Calcium ions diffuse into the<br />

cium<br />

drops, <strong>for</strong>ming a three dimensional lattice <strong>of</strong><br />

alginate<br />

crosslinked alginate. Polyelectrolyte complexa-<br />

ionically<br />

(PEC) with oppositely charged polyelectrolytes<br />

tion<br />

be added to increase the mechanical strength <strong>of</strong><br />

may<br />

hydrogel and/or to provide a permeability barrier.<br />

the<br />

instance, addition <strong>of</strong> polycation (usually poly-L-<br />

For<br />

allows a membrane <strong>of</strong> polyelectrolyte complex<br />

lysine)<br />

<strong>for</strong>m on the surface <strong>of</strong> alginate beads [69]. A number<br />

to<br />

natural and synthetic polyelectrolytes have been in-<br />

<strong>of</strong><br />

Examples are listed in Table 5.<br />

vestigated.<br />

most <strong>of</strong> the droplets have been made with sy-<br />

Since<br />

needles, the particle sizes have been relatively<br />

ringe<br />

Smaller droplets can be <strong>for</strong>med using a vibration<br />

large.<br />

or air atomization method to extrude the algi-<br />

system<br />

solution (Fig. 10) [30]. The latter involves a Turbonate<br />

air-atomizer. Pressurized air is fed to mix with the<br />

tak<br />

alginate solution, <strong>for</strong>cing tiny liquid droplets<br />

sodium<br />

through the orifice <strong>of</strong> a nozzle. The calcium ions<br />

out<br />

the droplets <strong>of</strong> sodium alginate on contact to<br />

crosslink<br />

microgel droplets, which were further crosslinked<br />

<strong>for</strong>m<br />

poly-L-lysine to <strong>for</strong>m a membrane on the droplets.<br />

by<br />

obtained using this method were within<br />

Microparticles<br />

size range 5-15 µm [91].<br />

the<br />

Applications<br />

OH<br />

Mannuronate (M)<br />

OH<br />

O -OOC<br />

O<br />

OH<br />

-OOC OHO<br />

O HO<br />

O<br />

HO<br />

-OOC<br />

OHO<br />

-OOC<br />

has been widely used in microcapsule sys-<br />

IG/PEC<br />

<strong>for</strong> cell encapsulation [82,87-89,92-94] and drug<br />

tems<br />

systems [76,77,83,85,86,95,96]. Due to mild<br />

delivery<br />

conditions, IG/PEC has recently attracted a new<br />

process<br />

<strong>for</strong> an application to protein delivery [71,78-<br />

attention<br />

Calcium alginate hydrogels have been<br />

81,84,90,97,98].<br />

<strong>for</strong> delivery <strong>of</strong> vascular endothelial growth factor<br />

used<br />

[71]. The alginate beads demonstrated the abil-<br />

(VEGF)<br />

to incorporate VEGF with efficiency between 30%<br />

ity<br />

67% and constant release (5%/day) <strong>of</strong> VEGF <strong>for</strong> up<br />

and<br />

O<br />

OH<br />

O<br />

OH<br />

OH<br />

OH<br />

(G)<br />

Guluronate<br />

-OOC<br />

OH<br />

OH<br />

O<br />

OH<br />

O -OOC<br />

G M M G G<br />

O<br />

OH<br />

O<br />

5. Examples <strong>of</strong> ionotropic gelation (IG) and polyelec-<br />

Table<br />

complexation (PEC)<br />

trolyte<br />

Polyelectrolytes IG with PEC with References<br />

Alginate (-) Calcium (+) - [70-72]<br />

Alginate (-) Calcium (+) Poly-L-Lysine (+) [73]<br />

Alginate (-) Calcium (+) Chitosan (+) [74, 75]<br />

Chitosan (+)<br />

Carboxymethyl<br />

cellulose (-)<br />

Tripolyphosphate<br />

(TPP)(-)<br />

- [76-81]<br />

Aluminium (+) Chitosan (+) [82]<br />

κ-carrageenan (-) Potassium (+) Chitosan (+) [83]<br />

ι-carrageenan (-) Amines (+) - [84]<br />

Pectin (-) Calcium (+) - [85]<br />

Gelan gum (-) Calcium (+) - [86]<br />

Alginate and<br />

cellulose sulfate (-)<br />

Calcium (+)<br />

Poly (methylene-<br />

co-guanidine) (+)<br />

[87, 88]<br />

Polyphosphazene (-) Calcium (+) Poly-L-Lysine (+) [89, 90]<br />

Sodium<br />

alginate<br />

10. Schematic diagram <strong>of</strong> the preparation <strong>of</strong> alginate-<br />

Fig.<br />

microcapsules.<br />

polylysine<br />

14 days. The ionic interaction between VEGF and<br />

to<br />

contributed to maintaining the biological activ-<br />

alginate<br />

ity <strong>of</strong> VEGF.<br />

Advantages<br />

main advantage <strong>of</strong> IG/PEC is the mild <strong>for</strong>mula-<br />

The<br />

conditions <strong>for</strong> maintaining cell viability and protion<br />

integrity. All <strong>of</strong> the polyelectrolytes are watertein<br />

and thus proteins can be encapsulated without<br />

soluble,<br />

<strong>of</strong> organic solvents or elevated temperatures, both<br />

use<br />

which may damage protein integrity. Also, this sys-<br />

<strong>of</strong><br />

tem is simple, fast and cost-effective.<br />

Limitations<br />

Turbotak<br />

atomizer<br />

chloride<br />

Calcium<br />

solution<br />

Polylysine<br />

added<br />

Pressurized<br />

gas<br />

Microcapsule<br />

biggest problem in applications <strong>of</strong> IG/PEC <strong>for</strong><br />

The<br />

protein delivery, in spite <strong>of</strong> the great advan-<br />

controlled<br />

<strong>of</strong> mild conditions, is that the matrix and memtage<br />

<strong>for</strong>med by IG/PEC is not capable <strong>of</strong> controlling<br />

brane<br />

release rate <strong>for</strong> a long period <strong>of</strong> time. It does not<br />

the<br />

in cell encapsulation, where the membrane<br />

matter<br />

should provide sufficient permeability <strong>for</strong> the cell prod-


Biotechnol. Bioprocess Eng. 2001, Vol. 6, No. 4 223<br />

i.e., a therapeutic protein. However, <strong>for</strong> IG/PEC to<br />

uct,<br />

used <strong>for</strong> controlled delivery <strong>of</strong> protein entities, a cer-<br />

be<br />

type <strong>of</strong> dense membrane (e.g., biodegradable polytain<br />

preferably capable <strong>of</strong> controlling the release rate,<br />

mers),<br />

be incorporated or alternative combinations <strong>of</strong><br />

should<br />

should be explored to control the<br />

polyelectrolytes<br />

<strong>of</strong> the membrane, so that the release rate<br />

permeability<br />

be controlled over the desired span. Thus far, the<br />

may<br />

rate <strong>of</strong> the protein is likely to depend on the<br />

release<br />

properties <strong>of</strong> the model protein or the<br />

physicochemical<br />

medium in which the microparticles are placed<br />

release<br />

In case <strong>of</strong> alginate-poly-L-lysine system, all para-<br />

[71].<br />

are tied to a single chemical complex, there<strong>for</strong>e<br />

meters<br />

is not easy to optimize the capsule condition. For this<br />

it<br />

new combinations <strong>of</strong> polyelectrolytes were<br />

reason,<br />

to allow independent modification <strong>of</strong> capsule<br />

proposed<br />

including size, wall thickness, mechanical<br />

parameters<br />

permeability, and surface characteristics [99].<br />

strength,<br />

issue in IG/PEC is that some polyelectrolytes<br />

Another<br />

have biocompatibility problem. There have been<br />

might<br />

arguments concerning the biocompatibil-<br />

contradictory<br />

<strong>of</strong> alginates [100-102]. A host <strong>for</strong>eign-body reaction<br />

ity<br />

occurred on account <strong>of</strong> the implanted algi-<br />

(fibrosis)<br />

particles and mannuronic acid block was<br />

nate-based<br />

to be responsible <strong>for</strong> the fibrotic response, as a<br />

found<br />

stimulator <strong>of</strong> IL-1 and TNF-α production. Use <strong>of</strong><br />

potent<br />

<strong>of</strong> high guluronic acid content was suggested<br />

alginates<br />

minimize the cytokine response. On the other hand,<br />

to<br />

study indicated that alginate particles with<br />

another<br />

guluronic acid contents provoked stronger re-<br />

high<br />

than the high mannuronic acid alginate particles<br />

sponse<br />

In general, polyionic hydrogels obtained by<br />

[102].<br />

have rather low mechanical strength. A few<br />

IG/PEC<br />

have suggested ways to overcome this problem<br />

papers<br />

exploring alternative combinations <strong>of</strong> polyanions<br />

by<br />

polycations [87,99], introducing a different process<br />

and<br />

[103], or applying additional coating [82,98].<br />

INTERFACIAL POLYMERIZATION<br />

polymerization features in situ polymeri-<br />

Interfacial<br />

<strong>of</strong> reactive monomers on the surface <strong>of</strong> a droplet<br />

zation<br />

or particles.<br />

Method<br />

reactive monomers (typically dichloride and<br />

Two<br />

are respectively dissolved in immiscible sol-<br />

diamine)<br />

and mixed to <strong>for</strong>m o/w emulsion (dichloride in oil<br />

vents<br />

and diamine in water phase). The monomers dif-<br />

phase<br />

to the o/w interface where they react to <strong>for</strong>m a<br />

fuse<br />

membrane (Fig. 11). A typical example <strong>of</strong> this<br />

polymeric<br />

is making nylon microcapsules [104]. Nona-<br />

method<br />

phase (chloro<strong>for</strong>m/cyclohexane) containing surqueous<br />

(e.g., sorbitan trioleate) and aqueous buffer confactant<br />

drugs to be incorporated (enzymes or proteins),<br />

taining<br />

protein (e.g., BSA or hemoglobin) and dia-<br />

protective<br />

are prepared respectively. Two phases are mixed<br />

mine<br />

and stirred to make an w/o emulsion in an ice bath un-<br />

11. <strong>Microencapsulation</strong> by interfacial polymerization<br />

Fig.<br />

From reference [104].<br />

method.<br />

the desired droplet size is reached. Another nonaque-<br />

til<br />

phase containing acid chloride is added to the emulous<br />

<strong>for</strong> interfacial polymerization. Polymerization is<br />

sion<br />

by addition <strong>of</strong> excess nonaqueous phase.<br />

quenched<br />

are allowed to sediment and collected<br />

Microcapsules<br />

then washed in saline several times to remove or-<br />

and<br />

solvents and byproducts.<br />

ganic<br />

combinations <strong>of</strong> monomers can be used to<br />

Various<br />

a range <strong>of</strong> polymer membranes [104]. Sebacoyl<br />

obtain<br />

and 1,6-hexane diamine can be used to <strong>for</strong>m<br />

chloride<br />

polyamide nylon 6, 10. The microcapsules using<br />

the<br />

system, however, tend to be fragile and difficult to<br />

this<br />

Terephthaloyl chloride and 1,6-hexane diamine<br />

handle.<br />

yield polyester membrane. Alternatively tere-<br />

can<br />

chloride can be used in combination with Lphthaloyl<br />

to yield poly(terephthaloyl L-lysine). Typically<br />

lysine<br />

chlorides and diamines are reactive monomers;<br />

acid<br />

isocyanates can be used instead <strong>of</strong> or as a par-<br />

however,<br />

substitute <strong>for</strong> acid chloride [105]. Alternatively, the<br />

tial<br />

composed <strong>of</strong> only one type <strong>of</strong> monomer can be<br />

polymer<br />

on the interface (Interfaicial addition polymeri-<br />

<strong>for</strong>med<br />

[104]. Polyalkylcyanoacrylate belongs to this<br />

zation)<br />

Aqueous drug solution and oil phase containing<br />

type.<br />

monomer are mixed to <strong>for</strong>m an w/o<br />

cyanoacrylate<br />

The polymerization is initiated by water in<br />

emulsion.<br />

aqeous phase with cyanoacrylate dissolved in the oil<br />

the<br />

phase.<br />

Application<br />

Monomer B<br />

Monomer A<br />

Polymer membrane<br />

insulin nanoparticles were prepared using<br />

Recently<br />

addition polymerization techniques [106].<br />

interfacial<br />

were prepared by addition <strong>of</strong> ethyl 2-<br />

Nanoparticles<br />

to a stirred w/o microemulsion consistcyanoacrylate<br />

<strong>of</strong> aqueous insulin solution, oil and surfactant. To<br />

ing<br />

exhaustive washing steps after polymerization<br />

avoid<br />

biocompatible oils (caprylic/capric triglyc-<br />

reaction,<br />

and mono-/diglycerides) and surfactants (polyerides<br />

80 and sorbitan monooleate) were used to <strong>for</strong>sorbate<br />

the microemulsions. The obtained poly(ethyl 2mulate<br />

is known to be biodegradable. Since incyanoacrylate)<br />

was confined to the aqueous phase in w/o emulsulin <br />

sions, a high encapsulation efficiency (86%) could be


224 Biotechnol. Bioprocess Eng. 2001, Vol. 6, No. 4<br />

Insulin was released with initial burst over<br />

achieved.<br />

first 30 minutes followed by a constant release up<br />

the<br />

to 3 h, after which the release rate declined.<br />

Limitations<br />

this method was initially proposed <strong>for</strong> en-<br />

Although<br />

encapsulations, it has some serious problems in<br />

zyme<br />

First, large w/o interface is produced during<br />

practice.<br />

reaction, where proteins or enzymes are likely to be<br />

the<br />

Second, large amounts <strong>of</strong> proteins may par-<br />

inactivated.<br />

in the polymerization reaction changing its bioticipate<br />

activity. Third, it is <strong>of</strong>ten hard to control the<br />

logical<br />

reaction. The yield and quality <strong>of</strong> the<br />

polymerization<br />

obtained by interfacial polymerization may<br />

membrane<br />

controlled by a number <strong>of</strong> factors, such as chemical<br />

be<br />

<strong>of</strong> reactive monomers, and reaction conditions.<br />

natures<br />

monomer concentrations, temperature, the mixing<br />

The<br />

and the reaction time are likely to be important<br />

rate,<br />

[105]. Fourth, exhaustive washing steps are<br />

parameters<br />

to remove monomers, byproducts, organic sol-<br />

required<br />

and surfactants. At the same time, several washvents,<br />

steps may lead to further loss <strong>of</strong> water soluble drugs.<br />

ing<br />

pH change due to HCl byproduct <strong>for</strong>med by reac-<br />

Fifth,<br />

<strong>of</strong> an acid chloride and an amine can damage the<br />

tion<br />

labile drugs.<br />

acid<br />

SUPERCRITICAL FLUID PRECIPITATION<br />

fluid is defined as a fluid <strong>of</strong> which tem-<br />

Supercritical<br />

and pressure are simultaneously higher than at<br />

perature<br />

critical point, i.e. critical temperature Tc and critical<br />

the<br />

Pc, at which the density <strong>of</strong> gas is equal to that<br />

pressure<br />

the remaining liquid and the surface between the<br />

<strong>of</strong><br />

phases disappears (Fig. 12). In practice, the term is<br />

two<br />

used to describe a fluid in the relative vicinity <strong>of</strong><br />

<strong>of</strong>ten<br />

critical point, where a gas can be highly compressed<br />

the<br />

a small change <strong>of</strong> pressure into a fluid which is not<br />

with<br />

liquid but almost close to liquid in density. These two<br />

a<br />

features <strong>of</strong> supercritical fluids (i.e., a high<br />

distinctive<br />

and a liquid-like density) enabled super-<br />

compressibility<br />

fluids to attract considerable interest recently as<br />

critical<br />

<strong>for</strong> microparticle production.<br />

vehicles<br />

<strong>Methods</strong><br />

are two main routes to particle <strong>for</strong>mation with<br />

There<br />

fluids: the rapid expansion <strong>of</strong> supercritical<br />

supercritical<br />

(RESS); and supercritical antisolvent crystal-<br />

solutions<br />

(SAS) routes [108]. RESS exploits the liquid-like<br />

lization<br />

power <strong>of</strong> the supercritical fluids while SAS uses<br />

solvent<br />

fluid as an antisolvent. Carbon dioxide is<br />

supercritical<br />

commonly used since the critical conditions are<br />

most<br />

attainable, i.e., Tc=31°C and Pc=73.8 bar. CO2 is<br />

easily<br />

benign, relatively non-toxic, non-<br />

environmentally<br />

inexpensive, and has a reasonably high<br />

inflammable,<br />

dissolving power. [109]<br />

RESS(Rapid expansion <strong>of</strong> supercritical solutions): In<br />

12. Pressure-temperature projection <strong>of</strong> the phase diagram<br />

Fig.<br />

a pure component. From reference [107].<br />

<strong>for</strong><br />

the drug and the polymer are dissolved in a su-<br />

RESS,<br />

fluid at high pressure and precipitated by<br />

percritical<br />

the solvent’s density through a rapid decom-<br />

reducing<br />

(expansion) [110]. The actual solubility <strong>of</strong> the<br />

pression<br />

in supercritical fluids can be higher than the<br />

solutes<br />

calculated assuming ideal gas behavior at the<br />

value<br />

temperature and pressure by factors <strong>of</strong> up to 10 same 6<br />

Rapid expansion <strong>of</strong> supercritical solutions, there-<br />

[107].<br />

can lead to very high supersaturation ratios. Since<br />

<strong>for</strong>e,<br />

supercritical fluid is a gas after expansion, the solid<br />

the<br />

product is recovered in pure, solvent-free <strong>for</strong>m.<br />

antisolvent crystallization): The<br />

SAS(supercritical<br />

is also called as ASES (aerosol solvent extrac-<br />

method<br />

system) or PCA (precipitation with a compressed<br />

tion<br />

antisolvent). In SAS, a supercritical fluid is used as<br />

fluid<br />

anti-solvent that causes precipitation <strong>of</strong> solids. The<br />

an<br />

are dissolved in a suitable organic phase. At high<br />

solutes<br />

anti-solvent enters into the solution and low-<br />

pressures,<br />

the solvent power, thereby precipitating the solutes.<br />

ers<br />

precipitation is followed by a large volume expan-<br />

The<br />

and the solid product is collected. SAS process is<br />

sion<br />

in Fig. 13. As a modification <strong>of</strong> the SAS, the<br />

illustrated<br />

phase can be sprayed into a supercritical fluid,<br />

organic<br />

causes the solutes to precipitate as fine particles.<br />

which<br />

method is also called gas-antisolvent (GAS)<br />

This<br />

SAS is useful <strong>for</strong> processing <strong>of</strong> solids which are<br />

method.<br />

to solubilize in supercritical fluids, such as pep-<br />

difficult<br />

tides and proteins.<br />

Applications<br />

Solid Liquid<br />

Gas<br />

TEMPERATURE<br />

supercritical<br />

region<br />

fluid<br />

Critical point<br />

<strong>of</strong>fers distinctive advantages over the conven-<br />

RESS<br />

methods, such as no requirements <strong>of</strong> surfactants,<br />

tional<br />

a solvent-free product, and moderate process<br />

yielding<br />

[107]. However, the very low solvent power<br />

conditions


Biotechnol. Bioprocess Eng. 2001, Vol. 6, No. 4 225<br />

Carbon<br />

dioxide<br />

Pump<br />

Precipitation<br />

vessel<br />

13. Schematic diagram <strong>of</strong> the SAS method. From refer-<br />

Fig.<br />

[111]. ence<br />

common supercritical solvents toward the high mo-<br />

<strong>of</strong><br />

weight polymers and the solutes <strong>of</strong> therapeutic<br />

lecular<br />

such as proteins has restricted RESS to a<br />

importance<br />

low molecular weight polymers and a limited range<br />

few<br />

drugs, e.g., lovastatin [107,112]. Lovastatin was dis-<br />

<strong>of</strong><br />

in supercritical CO2 together with DL-PLA and<br />

solved<br />

subjected to RESS. The morphology <strong>of</strong> the copre-<br />

then<br />

product was found to be very sensitive to the<br />

cipitation<br />

amounts <strong>of</strong> drug and polymer, ranging from<br />

relative<br />

networks at high drug loading to drug<br />

bicontinuous<br />

encapsulated within polymer at low drug load-<br />

needles<br />

ings.<br />

has been applied to protein drugs <strong>for</strong> size reduc-<br />

SAS<br />

[113] and bioerodible polymers <strong>for</strong> microencapsulation<br />

<strong>of</strong> pharmaceuticals in a polymer matrix [114]. Retion<br />

this technique was used to produce PLGA microcently,<br />

containing lysozyme [115]. PLGA in dichlorospheres<br />

solution with suspended lysozyme was<br />

methane<br />

into a CO2 vapor phase through a capillary<br />

sprayed<br />

to <strong>for</strong>m droplets which solidified after falling<br />

nozzle<br />

a CO2 liquid phase. In this study, several problems<br />

into<br />

encountered in SAS process were overcome.<br />

previously<br />

size (70 µm) large enough to encapsulate pro-<br />

Particle<br />

particles was achieved by delayed precipitation ustein<br />

CO2 vapor phase above a CO2 liquid phase. Aggloing<br />

due to plasticization <strong>of</strong> the polymer by CO2 meration<br />

minimized at the optimum temperature <strong>of</strong> –20 was oC. many proteins are insoluble in organic solvents<br />

Since<br />

are less likely to be denatured when suspended, this<br />

and<br />

can be extended to other proteins.<br />

method<br />

Advantages and Limitations<br />

Pump<br />

Expansion<br />

vessel<br />

Polymer<br />

solution<br />

Vent<br />

Solvent<br />

fluids, particularly CO2 <strong>of</strong>fers various<br />

Supercritical<br />

when compared with widely used organic<br />

advantages<br />

It is relatively non-toxic, environmentally ac-<br />

solvents.<br />

non flammable, and inexpensive. In general,<br />

ceptable,<br />

with narrow size distribution can be achieved<br />

particles<br />

supercritical fluid methods. Potential advantages<br />

using<br />

include mild process temperatures, the potential <strong>for</strong><br />

also<br />

and the possibility <strong>for</strong> aseptic preparation <strong>of</strong><br />

scale-up<br />

6. Examples <strong>of</strong> micorencapsulation <strong>of</strong> maromolecular<br />

Table<br />

by IG/PEC<br />

drugs<br />

<strong>Protein</strong><br />

Salmon<br />

calcitonin<br />

IG/PEC<br />

system<br />

Encapsulation<br />

efficiency<br />

Particle<br />

size<br />

Chitosan-TPP 54-59% 0.9 mm<br />

Insulin Chitosan-TPP > 87%<br />

Bovine<br />

albu-<br />

serum<br />

min<br />

Dextran<br />

Horseradish<br />

preoxidase<br />

Chitosan/<br />

PEO/PPO-<br />

TPP<br />

Alginate-<br />

Calcium-<br />

Chitosan<br />

carrageenan<br />

ι<br />

amines -<br />

with Varies<br />

<strong>for</strong>mulations<br />

49-89%<br />

(depend-<br />

1-72%<br />

on amine<br />

ing<br />

employed)<br />

300-400<br />

nm<br />

200-1000<br />

nm<br />

-1.07 0.91<br />

mm<br />

50 µm<br />

Release kinetics Ref.<br />

burst (


226 Biotechnol. Bioprocess Eng. 2001, Vol. 6, No. 4<br />

effect and incomplete release behavior. As an ideal<br />

burst<br />

technique, one should satisfy the follow-<br />

encapsulation<br />

conditions. First, the manufacturing conditions<br />

ing<br />

be mild enough to conserve the protein stability<br />

should<br />

the process. Oil-water interface, shear <strong>for</strong>ces, or<br />

during<br />

may be major causes <strong>of</strong> protein denaturation and<br />

heat<br />

Second, high encapsulation efficiency is<br />

aggregation.<br />

Even if the progress <strong>of</strong> genetic engineering<br />

important.<br />

many therapeutic proteins available at a lower<br />

made<br />

than be<strong>for</strong>e, protein drugs are in general much<br />

price<br />

expensive than other low molecular drugs. Third,<br />

more<br />

is preferable to minimize the exposure to toxic or-<br />

it<br />

solvents. Fourth, the manufacturing process<br />

ganic<br />

be reproducible and easy to scale up to the<br />

should<br />

scale. Also, aseptic manufacturing should<br />

commercial<br />

available. Fifth, in order to ensure product quality as<br />

be<br />

injectable <strong>for</strong>mulation, uni<strong>for</strong>m size distribution <strong>of</strong><br />

an<br />

microparticles should be achievable.<br />

the<br />

numerous novel protein drugs coming<br />

Considering<br />

the genome projects, new microencapsulation sys-<br />

from<br />

that minimizes use <strong>of</strong> toxic organic solvents and<br />

tems<br />

denaturating conditions will be invaluable tools<br />

protein<br />

the future, and this is an exciting time to be involved<br />

in<br />

the microencapsulation technology.<br />

in<br />

REFERENCES<br />

Thies, C. (1996) A survey <strong>of</strong> microencapsulation proc-<br />

[1]<br />

pp. 1-19. In: S. Benita (ed.). <strong>Microencapsulation</strong>:<br />

esses.<br />

and Industrial Applications. Marcel Dekker, Inc.,<br />

<strong>Methods</strong><br />

York, USA.<br />

New<br />

Wang, H. T., E. Schmitt, D. R. Flanagan, and R. J. Lin-<br />

[2]<br />

(1991) Influence <strong>of</strong> <strong>for</strong>mulation methods on the in<br />

hardt<br />

controlld release <strong>of</strong> protein from poly(ester) micro-<br />

vitro<br />

J. Controlled Release 17: 23-32.<br />

spheres.<br />

Pradhan, R. S. and R. C. Vasavada (1994) Formulation<br />

[3]<br />

in vitro release study on poly(DL-lactide) micro-<br />

and<br />

containing hydrophilic compounds: glycine hospheres<br />

J. Controlled Release 30: 143-154.<br />

mopeptides.<br />

Uchida, T., A. Yagi, Y. Oda, and S. Goto (1996) Microen-<br />

[4]<br />

<strong>of</strong> ovalbumin in poly(lactide-co-glycolide) by<br />

capsulation<br />

oil-in-oil (o/o) solvent evaporation method. J. Micro-<br />

an<br />

13: 509-518.<br />

encapsulation<br />

Morita, T., Y. Sakamura, Y. Horikiri, T. Suzuki, and H.<br />

[5]<br />

(2000) <strong>Protein</strong> encapsulation into bioegradable<br />

Yoshino<br />

by a novel S/O/W emulsion method using<br />

microspheres<br />

glycol) as a proein micronization adjuvant.<br />

poly(ethylene<br />

Controlled Release 69: 435-444.<br />

J.<br />

Kawashima, Y., H. Yamamoto, H. Takeuchi, and Y. Kuno<br />

[6]<br />

Mucoadhesive DL-lactide/glycolide copolymer<br />

(2000)<br />

coated with chitosan to improve oral deliv-<br />

nanospheres<br />

<strong>of</strong> elcatonin. Pharm. Develop. Technol. 5: 77-85.<br />

ery<br />

Kawashima, Y., H. Yamamoto, H. Takeuchi, S. Fujioka,<br />

[7]<br />

T. Hino (1999) Pulmonary delivery <strong>of</strong> insulin with<br />

and<br />

DL-lactide/glycolide copolymer (PLGA) nano-<br />

nebulized<br />

to prolong hypoglycemic effect. J. Controlled Respheres<br />

62: 279-287.<br />

lease<br />

Ogawa, Y., H. Okada, M. Yamamoto, and T. Shimamoto<br />

[8]<br />

In vivo release <strong>of</strong> leuprolide acetate from micro-<br />

(1988)<br />

prepared with polylactic acids or copoly(lactic/<br />

capsules<br />

acids and in vivo degradation <strong>of</strong> these polymers.<br />

glycolic)<br />

Pharm. Bull. 36: 2576-2581.<br />

Chem.<br />

Okada, H., T. Heya, Y. Ogawa, and T. Shimamoto (1988)<br />

[9]<br />

release injectable microcapsules <strong>of</strong> a luteiniz-<br />

One-month<br />

hormone-releasing hormone agonist (leuprolide aceing<br />

<strong>for</strong> treating experimental endometriosis in rats. J.<br />

tate)<br />

Exp. Ther. 244: 744-750.<br />

Pharmacol.<br />

Lu, W. and T. G. Park (1995) <strong>Protein</strong> release from<br />

[10]<br />

acid) microspheres: protein stabil-<br />

poly(lactic-co-glycolic<br />

problems. PDA J. Pharm. Sci. Technol. 49: 13-19.<br />

ity<br />

Igartua, M., R. M. Hernandez, A. Esquisabel, A. R. Gas-<br />

[11]<br />

M. B. Calvo, and J. L. Pedraz (1997) Influence <strong>of</strong><br />

con,<br />

variables on the in-vitro release <strong>of</strong> albumin<br />

<strong>for</strong>mulation<br />

biodegradable microparticulate systems. J. Micro-<br />

from<br />

14: 349-356.<br />

encapsulation<br />

Cleland, J. L., A. Mac, B. Boyd, J. Yang, E. T. Duenas, D.<br />

[12]<br />

D. Brooks, C. Hsu, H. Chu, V. Mukku, and A. J. S.<br />

Yeung,<br />

(1997) The stability <strong>of</strong> recombinant human<br />

Jones<br />

hormone in poly(lactic-co-glycolic acid) (PLGA)<br />

growth<br />

Pharm. Res. 14: 420-425.<br />

microspheres.<br />

Sturesson, C. and J. Carlfos (2000) Incorporation <strong>of</strong> pro-<br />

[13]<br />

in PLG-microspheres with retention <strong>of</strong> bioactivity. J.<br />

tein<br />

Release 67: 171-178.<br />

Controlled<br />

Morlock, M., H. Koll, G. Winter, and T. Kissel (1997) Mi-<br />

[14]<br />

<strong>of</strong> rh-erythropoietin, using biodecroencapsulation<br />

poly(D,L-lactide-co-glycolide): protein stability<br />

gradable<br />

the effects <strong>of</strong> stabilizing excipients. Eur. J. Pharm.<br />

and<br />

43: 29-36.<br />

Biopharm.<br />

Bezemer, J. M., R. Radersma, D. W. Grijpma, P. J. Dijkstra,<br />

[15]<br />

A. van Blitterswijk, and J. Feijen (2000) Microspheres<br />

C.<br />

protein delivery prepared from amphiphilic mul-<br />

<strong>for</strong><br />

copolymers. 1. Influence <strong>of</strong> preparation techtiblock<br />

on particle characteristics and protein delivery. J.<br />

niques<br />

Release 67: 233-248.<br />

Controlled<br />

Bezemer, J. M., R. Radersma, D. W. Grijpma, P. J. Dijkstra,<br />

[16]<br />

A. van Blitterswijk, and J. Feijen (2000) Microspheres<br />

C.<br />

protein delivery prepared from amphiphilic mul-<br />

<strong>for</strong><br />

copolymers. 2. Modulation <strong>of</strong> release rate. J. Contiblock<br />

Release 67: 249-260.<br />

trolled<br />

Morlock, M., T. Kissel, Y. X. Li, H. Koll, and G. Winter<br />

[17]<br />

Erythropoietin loaded microspheres prepared<br />

(1998)<br />

biodegradable LPLG-PEO-LPLG triblock copoly-<br />

from<br />

protein stabilization and in-vitro release properties.<br />

mers:<br />

Controlled Release 56: 105-115.<br />

J.<br />

Sah, H. (1999) Stabilization <strong>of</strong> proteins against methyl-<br />

[18]<br />

chloride/water interface-induced denaturation and<br />

ene<br />

J. Controlled Release 58: 143-151.<br />

aggregation.<br />

Gombotz, W. R., M. S. Healy, and L. R. Brown (1991)<br />

[19]<br />

low temperature casting <strong>of</strong> controlled release mi-<br />

Very<br />

US Patent 5,019,400.<br />

crospheres.<br />

Ting, T., I. Gonda, and E. M. Gripps (1992) Microparticles<br />

[20]<br />

PVA <strong>for</strong> nasal delivery. I. Generation by spray-drying<br />

<strong>of</strong><br />

spray-desolvation. Pharm. Res. 9: 1330-1335.<br />

and<br />

Sam, A. P., F. D. Haan, and C. Dirix (1994) A novel proc-<br />

[21]<br />

<strong>for</strong> manufacturing PLG microparticles by spray desoless<br />

avoiding the use <strong>of</strong> toxic solvents. Proc. Int. Symp.<br />

vation<br />

Release Bioact. Mater., June 27-30. Nice, France.<br />

Controlled<br />

Tracy, M. A. (1998) Development and scale-up <strong>of</strong> a mi-<br />

[22]<br />

protein delivery system. Biotechnol. Prog. 14:<br />

crosphere


Biotechnol. Bioprocess Eng. 2001, Vol. 6, No. 4 227<br />

108-115.<br />

Johnson, O. L., J. L. Cleland, H. J. Lee, M. Charnis, E.<br />

[23]<br />

W. Jaworowicz, D. Shepard, A. Shahzamani, A. J.<br />

Duenas,<br />

and S. D. Putney (1996) A month-long effect from<br />

Jones,<br />

single injection <strong>of</strong> microencapsulated human growth<br />

a<br />

Nat. Med. 2: 795-799.<br />

hormone.<br />

Johnson, O. L., W. Jaworowicz, J. L. Cleland, L. Bailey, M.<br />

[24]<br />

E. Duenas, C. Wu, D. Shepard, S. Magil, T. Last,<br />

Charnis,<br />

J. S. Jones, and S. D. Putney (1997) The stabilization<br />

A.<br />

encapsulation <strong>of</strong> human growth hormone into bio-<br />

and<br />

microspheres. Pharm. Res. 14: 730-735.<br />

degradable<br />

Cleland, J. L., O L. Johnson, S. Putney, and A. J. S. Jones<br />

[25]<br />

Recombinant human growth hormone poly-(lac-<br />

(1997)<br />

acid) microsphere <strong>for</strong>mulation developtic-co-glycolic<br />

Adv. Drug <strong>Delivery</strong> Rev. 28: 71-84.<br />

ment.<br />

Lee, H. J., G. Riley, O. Johnson, J. L. Cleland, N. Kim, M.<br />

[26]<br />

L. Bailey, E. Duenas, A. Shahzamani, M. Marian,<br />

Charnis,<br />

J. Jones, and S. D. Putney (1997) In vivo characteriza-<br />

A.<br />

<strong>of</strong> sustained-release <strong>for</strong>mulations <strong>of</strong> human growth<br />

tion<br />

J. Pharmacol. Exp. Ther. 281: 1431-1439.<br />

hormone.<br />

Johnson, O. L. and M. A. Tracy (1999) Peptide and pro-<br />

[27]<br />

drug delivery. pp. 816-833. In: E. Mathiowitz (ed.).<br />

tein<br />

<strong>of</strong> Controlled Drug <strong>Delivery</strong>. Jone Wiley &<br />

Encyclopedia<br />

Inc., New York, USA.<br />

Sons,<br />

Nihant, N., S. Stassen, C. Grandfils, R. Jerome, and P.<br />

[28]<br />

(1994) <strong>Microencapsulation</strong> by coacervation <strong>of</strong><br />

Teyssie<br />

III. Characterization <strong>of</strong> the final microspheres. Po-<br />

PLGA:<br />

Int. 34: 289-299.<br />

lym.<br />

Kas, H. S. and L. Oner (2000) <strong>Microencapsulation</strong> using<br />

[29]<br />

pp. 301-328. In: D. L. Wise (ed.). Handbook<br />

coacervation.<br />

Pharmaceutical Controlled Release Technology. Marcel<br />

<strong>of</strong><br />

Inc., New York, USA.<br />

Dekker,<br />

Burgess, D. J. and A. J. Hickey (1994) Microsphere tech-<br />

[30]<br />

and applications. pp. 1-29. In: J. Swarbrick and J.<br />

nology<br />

Boylan (eds.). Encyclopedia <strong>of</strong> Pharmaceutical Technology.<br />

C.<br />

Dekker, Inc., New York, USA.<br />

Marcel<br />

Wu, W. S. (1995) Preparation, characterization, and drug<br />

[31]<br />

applications <strong>of</strong> microspheres based on biode-<br />

delivery<br />

lactic/glycolic acid polymers. pp. 1151-1200. In:<br />

gradable<br />

L. Wise (ed.). Encyclopedic Handbook <strong>of</strong> Biomaterials and<br />

D.<br />

Marcel Dekker, New York, USA.<br />

Bioengineering.<br />

J. A. (1986) <strong>Microencapsulation</strong>. pp. 412-429. In: L.<br />

[32]Bakan,<br />

H. A. Lieberman, and J. L. Kanig (eds.). The The-<br />

Lachman<br />

and Practice <strong>of</strong> Industrial Pharmacy. Lea & Febiger,<br />

ory<br />

USA.<br />

Philadelphia,<br />

Sanders, L. M., J. S. Kent, G. I. McRae, B. H. Vickery, T. R.<br />

[33]<br />

and D. H. Lewis (1984) Controlled release <strong>of</strong> LHRH<br />

Tice,<br />

from PLGA microspheres. J. Pharm. Sci. 73:<br />

analogue<br />

1294-1297.<br />

Ruiz, J. M., B. Tissier, and J. P. Benoit (1989) Microencap-<br />

[34]<br />

<strong>of</strong> peptide: a study <strong>of</strong> the phase separation <strong>of</strong><br />

sulation<br />

copolymers 50/50 by silicone oil. Int. J. Pharm. 49:<br />

PLGA<br />

69-77.<br />

Ruiz, J. M. and J. P. Benoit (1991) In vivo peptide release<br />

[35]<br />

PLGA copolymer 50/50 microspheres. J. Controlled<br />

from<br />

16: 177-186.<br />

Release<br />

Stassen, S., N. Nihant, V. Martin, C. Grandfils, R. Jerome,<br />

[36]<br />

R. Teyssie (1994) <strong>Microencapsulation</strong> by coacerva-<br />

and<br />

<strong>of</strong> PLGA: 1. Physicochemical characeristics <strong>of</strong> the<br />

tion<br />

separation process. Polymer 35: 777-785.<br />

phase<br />

Nihant, N., C. Grandfils, R. Jerome, and P. Teyssie (1995)<br />

[37]<br />

by coacervation <strong>of</strong> PLGA: IV. Effect<br />

<strong>Microencapsulation</strong><br />

the processing parameters on coacervation and encap-<br />

<strong>of</strong><br />

J. Controlled Release 35: 117-125.<br />

sulation.<br />

Thomasin, C., P. Johansen, R. Alder, R. Bemsel, G. Hot-<br />

[38]<br />

H. Altorfer, A. D. Wright, G. Wehrli, H. P. Merkle,<br />

tinger,<br />

B. Gander (1996) A contribution to over-coming the<br />

and<br />

<strong>of</strong> residual solvents in biodegradable micro-<br />

problem<br />

prepared by coacervation. Eur. J. Pharm. Biopharm.<br />

spheres<br />

16-24. 42:<br />

Thomasin, C., G. Corradin, M. Ying, H. P. Merkle, and B.<br />

[39]<br />

(1996) Tetanus toxoid and synthetic malaria an-<br />

Gander<br />

containing poly(lactide)/poly(lactide-co-gly-colide)<br />

tigen<br />

Importance <strong>of</strong> polymer degradation and<br />

microspheres:<br />

release <strong>for</strong> immune response. J. Controlled Release<br />

antigen<br />

131-145.<br />

41:<br />

Li, J. K., N. Wang, and X. S. Wu (1997) A novel biode-<br />

[40]<br />

system based on gelatin nanoparticles and<br />

gradable<br />

acid) microspheres <strong>for</strong> protein and<br />

poly(lactic-co-glycolic<br />

drug delivery. J. Pharm. Sci. 86: 891-895.<br />

peptide<br />

Pettit, D. K., J. R. Lawter, W. J. Huang, S. C. Pankey, N. S.<br />

[41]<br />

D. H. Lynch, J. A. Schuh, P. J. Morrissey, and<br />

Nightlinger,<br />

R. Gombotz (1997) Characterization <strong>of</strong> poly(glyco-<br />

W.<br />

microspheres <strong>for</strong><br />

lide-co-D,L-lactide)/poly(D,L-lactide)<br />

release <strong>of</strong> GM-CSF. Pharm. Res. 14: 1422-1430.<br />

controlled<br />

McGee, J. P., S. S. Davis, and D. T. O'Hagan (1995) Zero<br />

[42]<br />

release <strong>of</strong> protein from PLGA microparticles pre-<br />

order<br />

using a modified phase separation technique. J.<br />

pared<br />

Release 34: 77-86.<br />

Controlled<br />

Wang, N. and X. S. Wu (1998) A novel approach to stabi-<br />

[43]<br />

<strong>of</strong> protein drugs in PLGA microspheres using<br />

lization<br />

hydrogel. Int. J. Pharm.166: 1-14.<br />

agarose<br />

Wang, N., X. S. Wu, and J. K. Li (1999) A heterogeneously<br />

[44]<br />

composite based on poly(lactic-co-glycolic<br />

structured<br />

microspheres and poly(vinyl alcohol) hydrogel<br />

acid)<br />

<strong>for</strong> long-term protein drug delivery. Pharm.<br />

nanoparticles<br />

16: 1430-1435.<br />

Res.<br />

Andrianov, A. K., J. Chen, and L. G. Payne (1998) Prepara-<br />

[45]<br />

<strong>of</strong> hydrogel microspheres by coacervation <strong>of</strong> aquetion<br />

polyphosphazene solutions. Biomaterials 19: 109-115.<br />

ous<br />

Brown, K. E., K. Leong, C. Huang, R. Dalal, G. D. Green,<br />

[46]<br />

B. Haimes, P. A. Jimenez, and J. Bathon (1998) Gela-<br />

H.<br />

6-sulfate microspheres <strong>for</strong> the delivery <strong>of</strong><br />

tin/chondroitin<br />

proteins to the joint. Arthritis Rheum. 41:<br />

therapeutic<br />

2185-2195.<br />

Thomasin, C., B. Gander, and H. P. Merkle (1993)<br />

[47]<br />

<strong>of</strong> biodegradable polyesters <strong>for</strong> microen-<br />

Coacervation<br />

A physicochemical approach. Proc. Int. Symp.<br />

capsulation:<br />

Release Bioact. Mater., July 25-30. Washington<br />

Controlled<br />

USA. D.C.,<br />

Takada, S., Y. Uda, H., Toguchi, and Y. Ogawa (1995)<br />

[48]<br />

<strong>of</strong> a spray drying technique in the produc-<br />

Application<br />

<strong>of</strong> TRH-containing injectable sustained-release mition<br />

<strong>of</strong> biodegradable polymers. PDA J. Pharm. Sci.<br />

croparticles<br />

49: 180-184.<br />

Technol.<br />

FDA (1999) Guidance <strong>for</strong> industry; Impurities: Residual<br />

[49]<br />

VICH GL18. .<br />

solvents;<br />

Jizomoto, H. (1985) Phase separation induced in gelatin-<br />

[50]<br />

coacervation systems by addition <strong>of</strong> water-soluble<br />

based<br />

polymers. II: Effect <strong>of</strong> molecular weight. J.<br />

nonionic


228 Biotechnol. Bioprocess Eng. 2001, Vol. 6, No. 4<br />

Sci. 74: 469-472.<br />

Pharm.<br />

Jizomoto, H. (1984) Phase separation induced in gelatin-<br />

[51]<br />

coacervation systems by addition <strong>of</strong> water-soluble<br />

based<br />

polymers: I. <strong>Microencapsulation</strong>. J. Pharm. Sci.<br />

nonionic<br />

879-882.<br />

73:<br />

Giunchedi, P. and U. Conte (1995) Spray-drying as a<br />

[52]<br />

method <strong>of</strong> microparticulate drug delivery<br />

preparation<br />

an overview. S.T.P. Pharma Sci. 5: 276-290.<br />

systems:<br />

Pavanetto, F., B. Conti, I. Genta, and P. Giunchedi (1992)<br />

[53]<br />

evaporation, solvent extraction and spray drying<br />

Solvent<br />

polylactide microsphere preparation. Int. J. Pharm. 84:<br />

<strong>for</strong><br />

151-159.<br />

Wan, L. S. C., P. W. S. Heng, and C. G. H. Chia (1992)<br />

[54]<br />

and their effects on microencapsulation proc-<br />

Plasticizers<br />

by spray-drying in an aqueous system. J. Microencapess<br />

9: 53-62.<br />

sulation<br />

Steber, W., R. Fishbein, and S. M. Cady (1989) Composi-<br />

[55]<br />

<strong>for</strong> parenteral administration and their use. US Pattions<br />

4,837,381.<br />

ent<br />

Mathiowitz, E., H. Bernstein, S. Giannos, P. Dor, T. Turek,<br />

[56]<br />

R. Langer (1992) Polyanhydride microspheres. IV.<br />

and<br />

and characterization <strong>of</strong> systems made by<br />

Morphology<br />

drying. J. Appl. Polym. Sci. 45: 125-134.<br />

spray<br />

Gander, B., E. Wehrli, R. Alder, and H. P. Merkle (1995)<br />

[57]<br />

improvement <strong>of</strong> spray-dried, protein-loaded D,L-<br />

Quality<br />

microspheres by appropriate polymer solvent selec-<br />

PLA<br />

J. <strong>Microencapsulation</strong> 12: 83-97.<br />

tion.<br />

Gander, B., P. Johansen, H. Nam-Tran, and H. P. Merkle<br />

[58]<br />

Thermodynamic approach to protein microencap-<br />

(1996)<br />

into poly(D,L-lactide) by spray drying. Int. J.<br />

sulation<br />

129: 51-61.<br />

Pharm.<br />

Bittner, B., B. Ronneberger, R. Zange, C. Volland, J. M.<br />

[59]<br />

and T. Kissel (1998) Bovine serum albumin<br />

Anderson,<br />

poly(lactide-co-glycolide) microspheres: the influ-<br />

loaded<br />

<strong>of</strong> polymer purity on particle characteristics. J. Mience<br />

15: 495-514.<br />

croencapsulation<br />

Burgess, D. J. and S. Ponsart (1998) Beta-glucuronidase<br />

[60]<br />

following complex coacervation and spray dry-<br />

activity<br />

microencapsulation. J. <strong>Microencapsulation</strong> 15: 569-579.<br />

ing<br />

Witschi, C. and E. Doelker (1998) Influence <strong>of</strong> the micro-<br />

[61]<br />

method and peptide loading on PLA and<br />

encapsulation<br />

degradation during in vitro testing. J. Controlled Re-<br />

PLGA<br />

51: 327-341.<br />

lease<br />

Bittner, B., M. Morlock, H. Koll, G. Winter, and T. Kissel<br />

[62]<br />

Recombinant human erythropoietin (rhEPO)<br />

(1998)<br />

poly(lactide-co-glycolide) microspheres: influence<br />

loaded<br />

the encapsulation technique and polymer purity on<br />

<strong>of</strong><br />

characteristics. Eur. J. Pharm. Biopharm. 45:<br />

microsphere<br />

295-305.<br />

Bittner, B. and T. Kissel (1999) Ultrasonic atomization <strong>for</strong><br />

[63]<br />

drying: a versatile technique <strong>for</strong> the preparation <strong>of</strong><br />

spray<br />

loaded biodegradable microspheres. J.<br />

protein<br />

16: 325-41.<br />

<strong>Microencapsulation</strong><br />

Baras, B., M. A. Benoit, and J. Gillard (2000) Parameters<br />

[64]<br />

the antigen release from spray-dried poly(DL-<br />

influencing<br />

microparticles. Int. J. Pharm.200: 133-145.<br />

lactide)<br />

Baras, B., M. A. Benoit, and J. Gillard (2000) Influence <strong>of</strong><br />

[65]<br />

technological parameters on the preparation <strong>of</strong><br />

various<br />

poly(epsilon-caprolactone) microparticles<br />

spray-dried<br />

a model antigen. J. <strong>Microencapsulation</strong> 17: 485-<br />

containing<br />

498.<br />

Takenaka, H., Y. Kawashima, and S. Y. Lin (1981) Poly-<br />

[66]<br />

<strong>of</strong> spray-dried microencapsulated sulfamethmorphism<br />

with cellulose acetate phthalate and colloidal siloxazole<br />

montmorillonite, or talc. J. Pharm. Sci. 70: 1256-1260.<br />

ica,<br />

Bodmeier, R. and H. Chen (1988) Preparation <strong>of</strong> biode-<br />

[67]<br />

polylactide microparticles using a spray-drying<br />

gradable<br />

J. Pharm. Pharmacol. 40: 754-757.<br />

technique.<br />

Lim, F. and A. M. Sun (1980) Microencapsulated islets as<br />

[68]<br />

endocrine pancreas. Science 210: 908-910.<br />

bioartificial<br />

C., D. Poncelet, and R. J. Neufeld (1999) Encapsu-<br />

[69].Dulieu,<br />

and immobilization techniques. pp. 3-17. In: W. M.<br />

lation<br />

R. P. Lanza, and W. L. Chick (eds.). Cell En-<br />

Kuhtreiber,<br />

Technology and Therapeutics. Birkhauser, Boston,<br />

capsulation<br />

USA.<br />

Acarturk, F. and S. Takka (1999) Calcium alginate mi-<br />

[70]<br />

<strong>for</strong> oral administration: II. Effect <strong>of</strong> <strong>for</strong>mulacroparticles<br />

factors on drug release and drug entrapment effition<br />

J. <strong>Microencapsulation</strong> 16: 291-301.<br />

ciency.<br />

Peters, M. C., B. C. Isenberg, J. A. Rowley, and D. J.<br />

[71]<br />

(1998) Release from alginate enhances the bio-<br />

Mooney<br />

activity <strong>of</strong> vascular endothelial growth factor. J.<br />

logical<br />

Sci., Polym. Ed. 9: 1267-1278.<br />

Biomater.<br />

Kikuchi, A., M. Kawabuchi, A. Watanabe, M. Sugihara, Y.<br />

[72]<br />

and T. Okano (1999) Effect <strong>of</strong> Ca Sakurai, 2+ gel<br />

-alginate<br />

on release <strong>of</strong> dextran with different molecu-<br />

dissolution<br />

weights. J. Controlled Release 58: 21-28.<br />

lar<br />

Thu, B., P. Bruheim, T. Espevik, O. Smidsrod, G. Skjak-<br />

[73]<br />

and P. Soon-Shiong (1996) Alginate polycation<br />

Braek,<br />

I. Interaction between alginate and poly-<br />

microcapsules.<br />

Biomaterials 17: 1031-1040.<br />

cation.<br />

Takka, S. and F. Acarturk (1999) Calcium alginate mi-<br />

[74]<br />

<strong>for</strong> oral administration : I : Effect <strong>of</strong> sodium<br />

croparticles<br />

type on drug release and drug entrapment effi-<br />

alginate<br />

J. <strong>Microencapsulation</strong> 16: 275-290.<br />

ciency.<br />

Polk, A., B. Amsden, K. D. Yao, T. Peng, and M. F. A.<br />

[75]<br />

(1994) Controlled release <strong>of</strong> albumin from chito-<br />

Goosen<br />

microcapsules. J. Pharm. Sci. 83: 178-185.<br />

san-alginate<br />

Shiraishi, S., T. Imai, and M. Otagiri (1993) Controlled<br />

[76]<br />

<strong>of</strong> indomethacin by chitosan-polyelectrolyte<br />

release<br />

optimization and in vivo/in vitro encapsulation.<br />

complex:<br />

Controlled Release 25: 217-225.<br />

J.<br />

Mi, F.-L., S.-S. Shyu, C.-Y. Kuan, S.-T. Lee, K.-T. Lu, and S.-<br />

[77]<br />

Jang (1999) Chitosan-polyelectrolyte complexation <strong>for</strong><br />

F.<br />

preparation <strong>of</strong> gel beads and controlled release <strong>of</strong><br />

the<br />

drug. I. Effect <strong>of</strong> phosphorous polyelectrolyte<br />

Anticancer<br />

and enzymatic hydrolysis <strong>of</strong> polymer. J. Appl.<br />

complex<br />

Sci. 74: 1868-1879.<br />

Polym.<br />

Fernandez-Urrusuno, R., P. Calvo, C., Remunan-Lopez, J.<br />

[78]<br />

Vila-Jato, and M. J. Alonso (1999) Enhancement <strong>of</strong> na-<br />

L.<br />

absorption <strong>of</strong> insulin using chitosan nanoparticles.<br />

sal<br />

Res. 16: 1576-1581.<br />

Pharm.<br />

Calvo, P., C. Remunan-Lopez, J. L. Vila-Jato, and M. J.<br />

[79]<br />

(1997) Chitosan and chitosan/enthylene oxide-<br />

Alonso<br />

oxide block copolymer nanoparticles as novel<br />

propylene<br />

<strong>for</strong> proteins and vaccines. Pharm. Res. 14: 1431-<br />

carriers<br />

1436.<br />

Calvo, P., C. Remunan-Lopez, J. L. Vila-Jato, and M. J.<br />

[80]<br />

(1997) Novel hydrophilic chitosan-polyethylene<br />

Alonso<br />

nanoparticles as protein carriers. J. Appl. Polym. Sci.<br />

oxide


Biotechnol. Bioprocess Eng. 2001, Vol. 6, No. 4 229<br />

125-132.<br />

63:<br />

Aydin, Z. and J. Akbuga (1996) Chitosan beads <strong>for</strong> the<br />

[81]<br />

<strong>of</strong> salmon calcitonin: Preparation and release<br />

delivery<br />

Int. J. Pharm.131: 101-103.<br />

characteristics.<br />

Long, D. D. (1996) Chitosan-carboxymethylcellulose hy-<br />

[82]<br />

as supports <strong>for</strong> cell immobilization. J. M. S. - Pure<br />

drogels<br />

Chem. A33: 1875-1884.<br />

Appl.<br />

Tomida, H., C. Nakamura, and S. Kiryu (1994) A novel<br />

[83]<br />

<strong>for</strong> the preparation <strong>of</strong> controlled release theo-<br />

method<br />

capsules coated with a polyelecrolyte complex<br />

phylline<br />

kappa-carrageenan and chitosan. Chem. Pharm. Bull.<br />

<strong>of</strong><br />

979-981.<br />

42:<br />

Patil, R. T. and T. J. Speaker (2000) Water-based micro-<br />

[84]<br />

delivery system <strong>for</strong> proteins. J. Pharm. Sci. 89: 9-15.<br />

sphere<br />

Sriamornsak, P. and J. Nunthanid (1998) Calcium pecti-<br />

[85]<br />

gel beads <strong>for</strong> controlled release drug delivery: I.<br />

nate<br />

and in vitro release studies. Int. J. Pharm.160:<br />

Preparation<br />

207-212.<br />

Kedzierewicz, F., C. Lombry, R. Rios, M. H<strong>of</strong>fman, and P.<br />

[86]<br />

(1999) Effect <strong>of</strong> the <strong>for</strong>mulation on the in-<br />

Maincent<br />

release <strong>of</strong> propranolol from gellan beads. Int. J.<br />

vitro<br />

129-136.<br />

Pharm.178:<br />

Brissova, M., I. Lacik, A. C. Powers, A. V. Anilkumar, and<br />

[87]<br />

Wang (1998) Control and measurement <strong>of</strong> permeabil-<br />

T.<br />

<strong>for</strong> design <strong>of</strong> microcapsule cell delivery system. J.<br />

ity<br />

Mater. Res. 39: 61-70.<br />

Biomed.<br />

Lacik, I., M. Brissova, A. V. Anilkumar, A. C. Powers, and<br />

[88]<br />

Wang (1998) New capsule with tailored properties or<br />

T.<br />

encapsulation <strong>of</strong> living cells. J. Biomed. Mater. Res. 39:<br />

the<br />

52-60.<br />

Bano, M. C., S. Cohen, K. B. Visscher, H. R. Allcock, and<br />

[89]<br />

Langer (1991) A novel synthetic method <strong>for</strong> hybri-<br />

R.<br />

cell encapsulation. Biotechnology 9: 468-471.<br />

doma<br />

Cohen, S., M. C. Bano, K. B. Visscher, M. Chow, H. R.<br />

[90]<br />

and R. Langer (1990) Ionically cross-linkable<br />

Allcock,<br />

a novel polymer <strong>for</strong> microencapsula-<br />

polyphosphazene:<br />

J. Am. Chem. Soc. 112: 7832-7833.<br />

tion.<br />

Kwok, K. K., M. J. Groves, and D. J. Burgess (1991) Pro-<br />

[91]<br />

<strong>of</strong> 5-15 µm diameter alginate-polylysine microduction<br />

by an air-atomization technique. Pharm. Res. 8:<br />

capsules<br />

341-344.<br />

Gharapetian, H., N. A. Davis, and A. M. Sun (1986) En-<br />

[92]<br />

<strong>of</strong> viable cells within polyacrylate memcapsulation<br />

Biotechnol. Bioeng. 28: 1595-1600.<br />

branes.<br />

Guiseley, K. B. (1989) Chemical and physical properties <strong>of</strong><br />

[93]<br />

polysaccharides used <strong>for</strong> cell immobilization. En-<br />

algal<br />

Microb. Technol. 11: 706-716.<br />

zyme<br />

Lanza, R. R. and W. L. Chick (1997) Transplantation <strong>of</strong><br />

[94]<br />

cells and tissues. Surgery 121: 1-9.<br />

encapsulated<br />

Bodmeier, R. and O. Paeratakul (1991) A novel multiple-<br />

[95]<br />

sustained release indmethacin-hydroxypropyl meunit<br />

delivery system prepared by ionotropic gethylcellulose<br />

<strong>of</strong> sodium alginate at elevated temperatures. Carlation<br />

Polym.16: 399-408.<br />

bohydr.<br />

Pillay, V., C. M. Dangor, T. Govender, K. R. Moopanar,<br />

[96]<br />

N. Hurbans (1998) Ionotropic gelation: encapsula-<br />

and<br />

<strong>of</strong> indomethacin in calcium alginate gel discs. J. Mition<br />

15: 215-226.<br />

croencapsulation<br />

Sezer, A. D. and J. Akbuga (1999) Release characteristics<br />

[97]<br />

chitosan treated alginate beads: I. Sustained release <strong>of</strong><br />

<strong>of</strong><br />

macromolecular drug from chitosan treated alginate<br />

a<br />

J. <strong>Microencapsulation</strong> 199: 195-203.<br />

beads.<br />

Hearn, E. and R. J. Neufeld (2000) Poly (methylene co-<br />

[98]<br />

coated alginate as an encapsulation matrix<br />

guanidine)<br />

urease. Process Biochem. 35: 1253-1260.<br />

<strong>for</strong><br />

Wang, T., I. Lacik, M. Brissova, A. V. Anikumar, A. Pro-<br />

[99]<br />

D. Hunkeler, R. Green, K. Shahrokhi, and A. C.<br />

kop,<br />

(1997) An encapsulation system <strong>for</strong> the im-<br />

Powers<br />

<strong>of</strong> pancreatic islets. Nat. Biotechnol. 15:<br />

muno-isolation<br />

358-362.<br />

Yang, H., R. James, and J. Wright (1999) Calcium algi-<br />

[100]<br />

pp. 79-89. In: W. M. Kuhtreiber, R. P. Lanza, and W.<br />

nate.<br />

Chick (eds.). Cell Encapsulation Technology and Thera-<br />

L.<br />

Birkhauser, Boston, USA.<br />

peutics.<br />

Soon-Shiong, P., M. Otterlie, G. Skjak-Braek, O. Smid-<br />

[101]<br />

R. Heintz, R. P. Lanza, and T. Espevik (1991) An<br />

srod,<br />

basis <strong>for</strong> the fibrotic reaction to implanted<br />

immunologic<br />

Transplant. Proc. 23: 758-759.<br />

microcapsules.<br />

Clayton, H. A., N. J. M. London, P. S. Colloby, P. R. F.<br />

[102]<br />

and R. F. L. James (1991) The effect <strong>of</strong> capsule com-<br />

Bell,<br />

on the biocompatibility <strong>of</strong> alginate-poly-l-lysine<br />

position<br />

J. <strong>Microencapsulation</strong> 8: 221-233.<br />

capsules.<br />

Shu, X. Z. and K. J. Zhu (2000) A novel approach to<br />

[103]<br />

tripolyphosphate/chitosan complex beads <strong>for</strong><br />

prepare<br />

release drug delivery. Int. J. Pharm. 201: 51-58.<br />

controlled<br />

Whateley, T. L. (1996) Microcapsules: preparation by<br />

[104]<br />

polymerization and interfacial complexation<br />

interfacial<br />

their application. pp. 349-375. In: S. Benita (ed.).<br />

and<br />

<strong>Methods</strong> and Industrial Applications.<br />

<strong>Microencapsulation</strong>:<br />

New York, USA.<br />

Dekker,<br />

Mathiowitz, E. and M. R. Kreitz (1999) Microencap-<br />

[105]<br />

pp. 493-546. In: E. Mathiowitz (ed.). Encyclopesulation.<br />

<strong>of</strong> Controlled Drug <strong>Delivery</strong>. Jone Wiley & Sons, Inc.,<br />

dia<br />

York, USA.<br />

New<br />

Watnasirichaikul, S., N. M. Davies, T. Rades, and I. G.<br />

[106]<br />

(2000) Preparation <strong>of</strong> biodegradable insulin nano-<br />

Tucker<br />

from biocompatible microemulsions. Pharm.<br />

capsules<br />

17: 684-689.<br />

Res.<br />

Debenedetti, P. G., J. W. Tom, S. Yeo, and G. Lim (1993)<br />

[107]<br />

<strong>of</strong> supercritical fluids <strong>for</strong> the production <strong>of</strong><br />

Application<br />

delivery devices. J. Controlled Release 24: 27-44.<br />

sustained<br />

Knutson, B. L., P. G. Debenedetti, and J. W. Tom (1996)<br />

[108]<br />

<strong>of</strong> microparticulates using supercritical flu-<br />

Preparation<br />

pp. 89-125. In: S. Cohen and H. Bernstein (eds.). Miids.<br />

Systems <strong>for</strong> the <strong>Delivery</strong> <strong>of</strong> <strong>Protein</strong>s and Vaccroparticulate<br />

Marcel Dekker, Inc., New York, USA.<br />

cines.<br />

Ghaderi, R., P. Artursson, and J. Carl<strong>for</strong>s (1999) Prepara-<br />

[109]<br />

<strong>of</strong> biodegradable microparticles using solutiontion<br />

dispersion by supercritical fluids (SEDS).<br />

enhanced<br />

Res. 16: 676-681.<br />

Pharm.<br />

Tom, J. W., G.-B. Lim, P. G. Debenedetti, and R. K.<br />

[110]<br />

(1993) Application <strong>of</strong> supercritical fluids in<br />

Prud'homme<br />

controlled release <strong>of</strong> drugs. In: E. Kiran and J. F.<br />

the<br />

(eds.). ACS Symposium Series 514: Supercritical<br />

Brennecke<br />

Engineering Science fundamentals and applications.<br />

Fluid<br />

Chemical Society, Washington, D.C., USA.<br />

American<br />

Soppimath, K. S., T. M. Aminabhavi, A. R. Kulkarni, and<br />

[111]<br />

E. Rudzinski (2001) Biodegradable polymeric nano-<br />

W.<br />

as drug delivery devices. J. Controlled Release 70:<br />

particles<br />

1-20.


230 Biotechnol. Bioprocess Eng. 2001, Vol. 6, No. 4<br />

Debenedetti, P. G., J. W. Tom, and S. Yeo (1993) Super-<br />

[112]<br />

fluids: A new medium <strong>for</strong> the <strong>for</strong>mulation <strong>of</strong><br />

critical<br />

<strong>of</strong> biomedical interest. Proc. Int. Symp. Controlled<br />

particles<br />

Bioact. Mater., July 25-30. Washington D.C., USA.<br />

Release<br />

Winters, M. A., B. L. Knutson, P. G. Debenedetti, H. G.<br />

[113]<br />

T. M. Przybycien, C. L. Stevenson, and S. J.<br />

Sparks,<br />

(1996) Precipitation <strong>of</strong> proteins in supercriti-<br />

Prestrelski<br />

carbon dioxide. J. Pharm. Sci. 85: 586-594.<br />

cal<br />

Randolph, T. W., A. D. Randolph, M. Mebes, and S. Ye-<br />

[114]<br />

(1993) Sub-micrometer-sized biodegradable partiung<br />

<strong>of</strong> PLA via the gas antisolvent spray precipitation<br />

cles<br />

Biotechnol. Prog. 9: 429-435.<br />

process.<br />

Young, T. J., K. P. Johnston, K. Mishima, and H. Tanaka<br />

[115]<br />

Encapsulation <strong>of</strong> lysozyme in a biodegradable<br />

(1999)<br />

by precipitation with a vapor-over-liquid anti-<br />

polymer<br />

J. Pharm. Sci. 88: 640-650.<br />

solvent.<br />

Bodmeier, R., H. Wang, D. J. Dixon, S. Mawson, and K.<br />

[116]<br />

Johnston (1995) Polymeric microspheres prepared by<br />

P.<br />

into compressed carbon dioxide. Pharm. Res. 12:<br />

spraying<br />

1211-1217.<br />

[Received May 22, 2001; accepted July 24, 2001]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!