01.06.2013 Views

Highlights from the Synthesis of Gibberellins:

Highlights from the Synthesis of Gibberellins:

Highlights from the Synthesis of Gibberellins:

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Highlights</strong> <strong>from</strong> <strong>the</strong> Syn<strong>the</strong>sis <strong>of</strong> <strong>Gibberellins</strong>:<br />

a 30 Year Odyssey<br />

HO<br />

A Friday Afternoon Seminar<br />

6 February 2004<br />

01-gibberellin-GA3-title.cdx 2/5/04 5:10 PM<br />

OC<br />

CH 3<br />

O OH<br />

H<br />

H<br />

CO 2H<br />

Jonathan R. Scheerer


<strong>Highlights</strong> <strong>from</strong> <strong>the</strong> Syn<strong>the</strong>sis <strong>of</strong> <strong>Gibberellins</strong>:<br />

HO<br />

OC<br />

CH 3<br />

O OH<br />

H<br />

H<br />

CO 2H<br />

Outline <strong>of</strong> Presentation:<br />

I. Introduction to <strong>Gibberellins</strong>: History, Ubiquity, and Biology<br />

II. Biosyn<strong>the</strong>sis<br />

III. Gibberellic Acid: Structure and Reactivity<br />

IV. Conversion <strong>of</strong> Gibberellic Acid into o<strong>the</strong>r <strong>Gibberellins</strong><br />

V. Total Syn<strong>the</strong>sis<br />

VI. Partial Syn<strong>the</strong>sis / Stragedy<br />

Relvant Reviews:<br />

Mander, Chem. Rev. 1992, 573-612.<br />

Mander, Nat. Prod. Rep. 2003, 49-69.<br />

MacMillan, Nat. Prod. Rep. 1996, 229.<br />

Crozier, A. Ed. The Biochemistry and Physiology <strong>of</strong> <strong>Gibberellins</strong>. Praeger: New York, 1983. (vol 1 and 2)<br />

02-gibberellin-outline.cdx 2/5/04 5:11 PM


HO<br />

OC<br />

CH 3<br />

O<br />

H<br />

A Brief History <strong>of</strong> Gibberellin Research:<br />

H<br />

CO 2H<br />

1898 - first research paper, links disease to fungal infection<br />

OH<br />

1828 - first reports <strong>of</strong> "bakanae" disease in rice plants (foolish seedling; stupid rice crop)<br />

1912 - Kurosawa found that filtrates <strong>from</strong> infected dried rice seedlings also causes disease<br />

Concludes that bakanae is caused by discrete chemical<br />

1935 - First use <strong>of</strong> term "gibberellin" in scientific literature<br />

1938 - Crystalline compound (mix <strong>of</strong> three gibberellins) isolated <strong>from</strong> fungal filtrate<br />

1945 - Research expands to U.S. and U.K.<br />

1955 - compound isolated. termed "gibberellic acid"<br />

1958 - correct structure proposed (stereochemical ambiguities remain)<br />

1961 - structure verified by X-ray<br />

1978 - First total syn<strong>the</strong>sis (Corey)<br />

03-bakanae.cdx 2/5/04 5:19 PM


2<br />

HO2C 19<br />

C 20 and C 19 <strong>Gibberellins</strong>: Structure and Nomenclature<br />

1<br />

A<br />

3 4<br />

2<br />

3<br />

20<br />

CH3 10<br />

H<br />

CH3 18<br />

OC<br />

19<br />

CH3 18<br />

O<br />

H<br />

5<br />

9<br />

6<br />

H C<br />

8 14<br />

7 CO2H B<br />

11<br />

H<br />

7 CO2H 12<br />

15<br />

D<br />

13<br />

16<br />

C 20-Gibberellin Skeleton<br />

1<br />

5<br />

9<br />

6<br />

11<br />

8<br />

12<br />

14<br />

15<br />

13<br />

16<br />

C 19-Gibberellin Skeleton<br />

05-gibberellin-structureB.cdx 2/5/04 5:13 PM<br />

17<br />

17<br />

GA 12<br />

HO2C HO2C ent-gibberell-16-ene-7,19-dioic acid<br />

GA 9<br />

O<br />

R<br />

H<br />

O<br />

H<br />

R = CO 2H<br />

ent-norgibberell-16-ene-7,19-dioic acid 19,10-lactone


HO<br />

2<br />

3<br />

11 12<br />

1 O<br />

OC<br />

19 5<br />

H<br />

9<br />

6<br />

H<br />

8 14<br />

15<br />

OH<br />

13<br />

16<br />

17<br />

CH3 18<br />

7 CO2H Gibberellic Acid (GA 3)<br />

H 3C<br />

Fermented <strong>from</strong> Gibberellia fujikuroi (a fungus) on ton scale<br />

Bioactive at low concentrations ((sub-nanomolar common for applications)<br />

Widely investigated and applied for commercial uses<br />

Retail prices: $10 / g<br />

Current yields: 15-30 g / L culture<br />

Also bio-available in decent quantity:<br />

07-gibberellin-GA3.cdx 2/5/04 8:55 PM<br />

GA 3<br />

HO<br />

OH<br />

O<br />

OC<br />

R<br />

O<br />

H<br />

H<br />

Me<br />

GA 4<br />

O<br />

H<br />

H<br />

CO 2H<br />

OH<br />

R = CO2H HO<br />

OC<br />

O<br />

H<br />

Me<br />

H<br />

CO 2H<br />

GA 1<br />

OH


HO<br />

OC<br />

CH 3<br />

O OH<br />

H<br />

H<br />

CO 2H<br />

Representative Biological Functions <strong>of</strong> <strong>Gibberellins</strong>:<br />

A Brief History <strong>of</strong> <strong>Gibberellins</strong>:<br />

– Stimulate stem elongation by stimulating cell division elongation<br />

– Breaks seed dormancy in plants which require winter freezing<br />

– Stimulates flowering/budding in response to leng<strong>the</strong>ning days<br />

– Can induce seedless fruit development (par<strong>the</strong>nocarpic)<br />

– Can delay senescence (ripening) in leaves and fruit<br />

– Induces maleness (sex expression) in dioecious flowers<br />

– O<strong>the</strong>r growth effects on fruit and budding<br />

08-gibberellin-functions.cdx 2/5/04 5:15 PM


HO 2C<br />

HO Me<br />

OH<br />

mevalonic acid (MVA)<br />

10-gibberellin-biosyn<strong>the</strong>sis1cdx 2/5/04 12:29 PM<br />

Gibberellin Biosyn<strong>the</strong>sis: Three Stages<br />

H3C H<br />

Stage A Stage B<br />

OC<br />

O<br />

H<br />

CH 3<br />

H<br />

H3C CH3 ent-kaur-16-ene<br />

H<br />

CO 2H<br />

C 19-gibberellins<br />

and C 20-gibberellins<br />

HO 2C<br />

H 3C<br />

H<br />

CH 3<br />

H<br />

CO 2H<br />

HO 2C<br />

Stage C<br />

H 3C<br />

H<br />

CH 3<br />

H<br />

CHO<br />

GA 12-aldehyde


HO 2C<br />

HO<br />

*<br />

CH 3<br />

OH<br />

mevalonic acid (MVA)<br />

DMAPP<br />

Dimethylallyl<br />

pyrophosphate<br />

OPP IPP<br />

Isopentenyl<br />

pyrophosphate<br />

OPP<br />

11-gibberellin-biosyn<strong>the</strong>sis2 2/5/04 12:30 PM<br />

Gibberellin Biosyn<strong>the</strong>sis: Stage A<br />

Stage A<br />

H 3C<br />

H<br />

H3C CH3 IPP IPP<br />

OPP<br />

GPP<br />

*<br />

*<br />

H<br />

*<br />

*<br />

ent-kaur-16-ene<br />

FPP<br />

H 3C<br />

H<br />

H 3C CH 3<br />

H<br />

OPP<br />

OPP<br />

ent-CCP<br />

ent-copalyl<br />

pyrophosphate<br />

OPP<br />

GGPP<br />

geranyl-geranyl<br />

pyrophosphate


H 3C<br />

H<br />

H 3C CH 3<br />

12-biosyn<strong>the</strong>sis3.cdx 2/5/04 10:11 PM<br />

H<br />

Gibberellin Biosyn<strong>the</strong>sis: ent-CCP to ent-kaurene<br />

OPP<br />

ent-CCP<br />

ent-copalyl pyrophosphate<br />

H a<br />

H<br />

H 5S<br />

H 5R<br />

H 4<br />

OPP<br />

H 3C<br />

H<br />

H 3C CH 3<br />

H<br />

ent-kaur-16-ene<br />

H5R H5S H a<br />

H<br />

H 4<br />

H 5R<br />

H 5S<br />

H<br />

H5R H5S H a<br />

H a<br />

H<br />

H 4<br />

H


H S<br />

H R<br />

H 3C<br />

H<br />

H 3C CH 3<br />

H 3C<br />

OH<br />

H<br />

CH3 13-biosyn<strong>the</strong>sis4.cdx 2/5/04 10:35 PM<br />

H<br />

ent-kaur-16-ene<br />

H<br />

H 3C<br />

H<br />

H<br />

HS CH3 O<br />

ent-kaur-16-en-19-al<br />

Gibberellin Biosyn<strong>the</strong>sis: Stage B<br />

Stage B<br />

ent-kaur-16-en-19-ol<br />

HO 2C<br />

CH 3 H<br />

H<br />

CH 3<br />

CHO<br />

GA 12-aldehyde<br />

biosyn<strong>the</strong>tic progenitor<br />

<strong>of</strong> all gibberellins<br />

same biosyn<strong>the</strong>sis for<br />

fungal or higher order plants<br />

H 3C<br />

H<br />

HO 2C CH 3<br />

H a<br />

H<br />

Hd Hb H c<br />

HO 2C<br />

H<br />

H 3C<br />

H<br />

HO 2C CH 3<br />

CH 3 H<br />

H b<br />

H a<br />

H<br />

H d<br />

Hd Hb O<br />

see next slide<br />

OH


H<br />

HO2C Enz<br />

H 3C<br />

H 3C CH 3<br />

O<br />

H<br />

H<br />

H<br />

ent-kaur-16-ene<br />

Fe 4+<br />

OH<br />

14-biosyn<strong>the</strong>sis5.cdx 2/5/04 12:37 PM<br />

H<br />

Gibberellin Biosyn<strong>the</strong>sis: Ring Contraction<br />

Enz<br />

HO 2C<br />

Stage B<br />

OH<br />

Fe 3+<br />

HO<br />

HO2C H<br />

H<br />

O<br />

O<br />

H<br />

H<br />

H<br />

H<br />

1,2-radical<br />

shift<br />

HO 2C<br />

CH 3 H<br />

H<br />

CH 3<br />

HO 2C OHC<br />

H<br />

radical trapping<br />

CHO<br />

GA 12-aldehyde


HO 2C<br />

CH 3 H<br />

H<br />

CH 3<br />

CHO<br />

GA 12-aldehyde<br />

R<br />

O<br />

HO 2C<br />

CO<br />

OH<br />

-very complex<br />

H<br />

-parallel pathways<br />

Me<br />

-organism dependent<br />

(fungal or higher order plants)<br />

-converge to common GA<br />

GA n<br />

R<br />

OC<br />

Me<br />

CH 3 H<br />

H<br />

CH 3<br />

H<br />

CO 2H<br />

CO 2H<br />

many complex, as yet incompletely<br />

defined, oxidative processes<br />

15-biosyn<strong>the</strong>sis6.cdx 2/5/04 12:40 PM<br />

Gibberellin Biosyn<strong>the</strong>sis: Stage C<br />

O<br />

H<br />

H<br />

CO 2H<br />

R<br />

R<br />

and/or<br />

HO<br />

R<br />

HO 2C<br />

O<br />

R<br />

HO2C CO<br />

Me<br />

CH 3 H<br />

H<br />

CH 3<br />

H<br />

H<br />

CH 3<br />

CHO<br />

early or late oxidations <strong>of</strong> C3, C13<br />

H<br />

OH H<br />

CO 2H<br />

CO 2H<br />

R<br />

R<br />

OH<br />

R<br />

HO 2C<br />

HO<br />

R<br />

HO2C R<br />

HO2C CH 3 H<br />

H<br />

CH 3<br />

R = H, OH<br />

O<br />

H<br />

CH 3<br />

H<br />

CH 3<br />

oxidative decarboxlyation<br />

CO 2H<br />

H<br />

CO 2H<br />

H<br />

CO 2H<br />

R<br />

R<br />

R


HO<br />

GA 3<br />

OC<br />

CH 3<br />

O OH<br />

H<br />

H<br />

Gibberellic Acid<br />

HO<br />

OC<br />

CH 3<br />

H<br />

retrograde<br />

aldol / aldol<br />

Rearrangements <strong>of</strong> Gibberellic Acid in Basic Media<br />

CO 2H<br />

CO 2H<br />

via<br />

O<br />

O OH<br />

H<br />

16-GA3rearrangements.cdx 2/5/04 11:41 AM<br />

O<br />

–OOC<br />

–O<br />

H 3C<br />

H<br />

H<br />

CH 3<br />

Base<br />

H<br />

CO 2H<br />

CO 2H<br />

0.01 N NaOH<br />

O OH<br />

H<br />

OH<br />

HO<br />

HO<br />

OC<br />

O<br />

CH 3<br />

H<br />

CO<br />

HO<br />

HO<br />

CH 3<br />

H<br />

HO 2C<br />

CO 2H<br />

H<br />

CO 2H<br />

isolable<br />

H<br />

CH 3<br />

O OH<br />

H<br />

favored equatorial<br />

C3 configuration<br />

H<br />

CO 2H<br />

OH<br />

OH<br />

transformation can be<br />

effected by palladium


CH 3<br />

HO<br />

GA 3<br />

H<br />

OC<br />

CO 2H<br />

Rearrangements on Gibberellic Acid in Acidic Media<br />

CH 3<br />

O OH<br />

H<br />

H<br />

Gibberellic Acid<br />

H<br />

CO 2H<br />

CH 3<br />

O<br />

1,2 shift<br />

OH<br />

17-GA3rearrangements-acid.cdx 2/5/04 11:38 AM<br />

R<br />

CH 3<br />

H<br />

H +<br />

(or H 2NNH 2)<br />

CO 2H<br />

OH<br />

CH 3<br />

HO<br />

HO 2C<br />

CH 3<br />

Thermodynamically<br />

more stable C9 epimer<br />

H<br />

CH 3<br />

H<br />

CO 2H<br />

Gibberellenic Acid<br />

CO 2H<br />

"...gibberellic acid has enjoyed<br />

a significant notoriety for instability and<br />

rearrangement. This view appears to be<br />

exagerated." L.Mander<br />

OH<br />

OH<br />

CH 3<br />

H +<br />

H<br />

H +<br />

CO 2H<br />

H 2NNH 2<br />

OH


AcO<br />

OC<br />

Me<br />

O<br />

H<br />

CO 2Me<br />

BH 3<br />

18-GA-C11oxidation.cdx 2/5/04 11:34 AM<br />

C11 oxidation: Bishydroboration<br />

H 2B<br />

BH 3•SMe 2<br />

H 2O 2, NaOAc<br />

H<br />

AcO<br />

HB<br />

H<br />

HO<br />

OC<br />

Me<br />

O<br />

H<br />

H<br />

OC<br />

Me<br />

HO<br />

O<br />

H<br />

H<br />

CO 2Me<br />

HO<br />

H<br />

H<br />

H<br />

CO 2Me<br />

e.g. GA 35<br />

H<br />

OH<br />

OH<br />

OH<br />

H


OC<br />

Me<br />

O H<br />

H<br />

CO 2Me<br />

Br OH<br />

H<br />

OC<br />

H<br />

Me<br />

OH<br />

Br<br />

OAc<br />

Br O<br />

CO 2H<br />

19-GA-C12oxidation.cdx 2/5/04 11:32 AM<br />

O<br />

H<br />

H<br />

C12 oxidation <strong>of</strong> Gibberellin Skeleton<br />

Pb(OAc) 4, I 2<br />

OH<br />

H<br />

H<br />

Pb 4+<br />

OC<br />

Me<br />

OC<br />

Me<br />

GA 70 GA69<br />

O<br />

H<br />

O H<br />

H<br />

O<br />

CO 2Me<br />

Br OH<br />

H<br />

CO 2H<br />

H<br />

OH<br />

Zn<br />

–1e –<br />

Br<br />

OAc<br />

Br<br />

OC<br />

Zn, HOAc<br />

Me<br />

O<br />

H<br />

H<br />

O<br />

H<br />

CO 2H<br />

GA 31<br />

OH<br />

OC<br />

Me<br />

OH<br />

O<br />

H<br />

H<br />

H<br />

CO 2Me<br />

OH<br />

OH<br />

OAc


MOMO<br />

MOMO<br />

MOMO<br />

acyloin<br />

rearrangement<br />

OC<br />

Me<br />

OC<br />

O<br />

H<br />

2 steps<br />

Me<br />

OC<br />

Me<br />

H<br />

O<br />

H<br />

CO 2Me<br />

CO 2Me<br />

H<br />

CO 2Me<br />

NaOMe<br />

20-GA-C14hydroxlation.cdx 2/5/04 11:29 AM<br />

O<br />

H<br />

H<br />

C14 Hydroxylation <strong>of</strong> Gibberellin Skeleton<br />

OH<br />

O<br />

OAc<br />

OTBS<br />

OH<br />

O<br />

O<br />

O<br />

OH<br />

OH<br />

1) DMDO<br />

2) TBAF<br />

MOMO<br />

HO H<br />

O<br />

OH<br />

OC<br />

Me<br />

O<br />

H<br />

dipole<br />

minimized?<br />

OH<br />

H<br />

HO O<br />

Ab initio: ∆5.7 kcal<br />

MOMO<br />

H<br />

CO 2Me<br />

OC<br />

Me<br />

OH<br />

O<br />

OH<br />

O<br />

H<br />

NaOMe<br />

H<br />

OH<br />

CO2Me OAc<br />

Mander, Tetrahedron, 1998, 11637.<br />

O


O<br />

HO 2C<br />

9 : 1 at C4<br />

OC<br />

Me<br />

O<br />

O<br />

O<br />

H<br />

H<br />

H<br />

Me<br />

O–<br />

H<br />

CO 2Me<br />

NaOH<br />

O<br />

OC<br />

21-GA-C18hydroxlation.cdx 2/5/04 11:25 AM<br />

C18 Hydroxylation <strong>of</strong> Gibberellin Skeleton<br />

H<br />

CO 2Me<br />

O<br />

H<br />

H<br />

H<br />

H<br />

CO 2Me<br />

H<br />

AllylOH<br />

DBU<br />

HO<br />

HO<br />

OC<br />

O<br />

O<br />

H<br />

OH<br />

OC<br />

H<br />

CO 2Me<br />

O<br />

H<br />

H<br />

H<br />

RhCl(PPh 3) 3<br />

DABCO<br />

CO 2Me<br />

H<br />

2 : 3 mixture <strong>of</strong><br />

3α and 3β−OH<br />

Thomson, Mander, JCS Perkin I, 2000, 2893.


MOMO<br />

OC<br />

CH 3<br />

H<br />

OC<br />

CH 3<br />

Li/NH 3<br />

tBuOH<br />

H<br />

O OMOM<br />

H<br />

H<br />

CO 2Me<br />

CO 2Me<br />

O<br />

OMOM<br />

22-GA-C19toC20.cdx 2/5/04 11:23 AM<br />

Conversion <strong>of</strong> C 19 <strong>Gibberellins</strong> into C 20 Variants<br />

CH 3<br />

H<br />

H<br />

CO 2Me<br />

KH, DMF; O 2<br />

Li/NH 3<br />

tBuOH<br />

OMOM<br />

HO 2C<br />

HO 2C<br />

CHO<br />

H<br />

CH 3<br />

H<br />

H<br />

CH 3<br />

H<br />

CO 2Me<br />

Cu (powder)<br />

PhH, 80˚C<br />

CO 2Me<br />

C 20 gibberellins: e.g. GA 19<br />

OMOM<br />

N 2<br />

OMOM<br />

O<br />

SOCl 2;<br />

CH 2N 2<br />

H<br />

CH 3<br />

H<br />

CO 2Me<br />

OK OK O O<br />

OMOM<br />

OK<br />

O<br />

Mander, Tet. Lett. 1985, 5725.<br />

O


SnR 3<br />

PhO<br />

S<br />

RO<br />

O<br />

R 3Sn-S<br />

O<br />

O<br />

O<br />

O<br />

O<br />

CO<br />

Me<br />

CO<br />

Me<br />

OPh<br />

Me<br />

H<br />

H<br />

H<br />

H<br />

CO 2Me<br />

H<br />

CO 2Me<br />

Bu 3SnH<br />

H<br />

CO 2Me<br />

23-GA-radicalcascade.cdx 2/5/04 11:15 AM<br />

Radical Cascade: Attempted Deoxygenation at C3<br />

OAc<br />

OAc<br />

OAc<br />

Bu 3SnH<br />

R 3Sn-S<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

equatorial (α)<br />

C3 hydroxyl removed<br />

without event<br />

5-exo<br />

O<br />

O<br />

H<br />

H<br />

Me<br />

Me<br />

H<br />

H<br />

CO 2Me<br />

H<br />

H<br />

CO 2Me<br />

OAc<br />

R 3Sn-S<br />

O<br />

O<br />

OAc<br />

O<br />

O<br />

H<br />

Me<br />

H<br />

5-exo<br />

H<br />

CO 2Me<br />

OAc<br />

Barton, McCombie, JCS Perkin I, 1975, 1574.<br />

Mander,TL, 1996, 4255.<br />

*syn<strong>the</strong>tic application: Sherburn,JACS, 2003, 12108.


HO<br />

OC<br />

Me<br />

Zn<br />

O<br />

H<br />

90%<br />

F 3C<br />

H<br />

CO 2Me<br />

TsCl, pyr<br />

TsO<br />

O<br />

HO<br />

OC<br />

Me<br />

24-GA3-coreytotal1.cdx 2/5/04 12:45 PM<br />

Dismantling and Reconstituting <strong>the</strong> A-Ring<br />

O<br />

OH<br />

H<br />

methyl gibberellate<br />

HO2C CO2Me Corey-Carney Acid<br />

O<br />

H<br />

I<br />

OC<br />

Me<br />

H<br />

CO 2Me<br />

O<br />

H<br />

H<br />

CO 2Me<br />

OH<br />

NaBr,<br />

HMPA<br />

OH<br />

Br<br />

OC<br />

Me<br />

O<br />

H<br />

1) I 2, NaHCO 3<br />

2) TFAA, pyr<br />

60%<br />

H<br />

CO 2Me<br />

HO<br />

HO<br />

HO 2C<br />

CH 3<br />

OH<br />

Zn<br />

H<br />

CH 3<br />

H<br />

H<br />

CO 2Me<br />

OH<br />

1) mCPBA<br />

2) NaOH<br />

OH<br />

76%<br />

Danheiser, Strategies and Tactics in Organic Syn<strong>the</strong>sis.<br />

Ed. Lindberg 1984, 22-65.


THPO<br />

O<br />

OMe<br />

o-allyl eugenol<br />

K, TiCl 3<br />

(50%)<br />

H<br />

Corey Syn<strong>the</strong>sis <strong>of</strong> GA 3: Hydronaphthalene Approach<br />

THPO<br />

OH<br />

OH<br />

7 steps<br />

H<br />

BnO<br />

CHO<br />

"...quenching reactions involving<br />

50g <strong>of</strong> potassium can provide moments<br />

<strong>of</strong> great drama, as well as piquant stimulation<br />

for <strong>the</strong> experimentalist."<br />

25-GA3-coreytotal2.cdx 2/5/04 12:47 PM<br />

O<br />

1) Cl 3CCO) 2O,<br />

NEt 3, DMSO<br />

2) MEMCl, iPr 2NEt<br />

60%<br />

O<br />

O<br />

THPO<br />

OMe<br />

1) H 2, Rh/C<br />

2) Li, NH 3<br />

3) PDC<br />

50% <strong>from</strong> [4+2] adduct<br />

H<br />

HO<br />

THPO<br />

O<br />

H<br />

BnO<br />

OMEM<br />

PhH, 80˚C<br />

90%<br />

OMOM<br />

O<br />

HO<br />

H<br />

BnO<br />

Oxidation Products:<br />

H<br />

H<br />

COR<br />

OH<br />

O<br />

O<br />

O<br />

O<br />

1) DHP, TsOH<br />

2) NaBH 4<br />

H<br />

H<br />

OMe<br />

3) MOMCl, iPr 2NEt<br />

4) LAH<br />

5) MsCl, NEt 3 ; H 2O<br />

R=H / OH<br />

O<br />

O<br />

Corey, JACS, 1978, 8034.<br />

OH<br />

OH


Cl<br />

THPO<br />

O<br />

O<br />

Contraction <strong>of</strong> B-Ring; A-Ring Formation through Cycloaddition<br />

H<br />

H<br />

O<br />

OMEM<br />

OMEM<br />

26-GA3-coreytotal3.cdx 2/5/04 12:51 PM<br />

1) OsO 4, NMMO<br />

2) Pb(OAc) 4<br />

nBuLi;<br />

O<br />

Cl Cl<br />

72%<br />

OHC<br />

OHC<br />

H<br />

OMEM<br />

89%<br />

THPO<br />

O<br />

78%<br />

HO<br />

H<br />

OMEM<br />

1) Ph 3PCH 2<br />

HMPA, 65˚<br />

2) AcOH<br />

57%<br />

160˚C, PhH<br />

H<br />

H<br />

OMEM<br />

LiN(iPr)C6H11; O<br />

Cl<br />

H<br />

MeI<br />

55%<br />

O<br />

O<br />

70%<br />

Bn 2NH 2 + -TFA –<br />

OHC<br />

O<br />

THPO<br />

Me<br />

H<br />

O<br />

H<br />

H<br />

OMEM<br />

O<br />

OMEM<br />

Corey, JACS, 1978, 8034.


HO<br />

HO<br />

O<br />

Me<br />

I<br />

OC<br />

Me<br />

H<br />

O<br />

O<br />

H<br />

H<br />

H<br />

CO 2Me<br />

OMEM<br />

OH<br />

1) TFAA, pyr<br />

2) Zn<br />

3) PrSLi<br />

27-GA3-coreytotal4.cdx 2/5/04 12:53 PM<br />

Gibberellic Acid Endgame: Corey<br />

1) ZnBr 2<br />

2) KOH, Na 2RuO 4<br />

HO<br />

OC<br />

Me<br />

95%<br />

1) mCPBA<br />

2) NaOH<br />

3) I 2, NaHCO 3<br />

O<br />

H<br />

H<br />

CO 2H<br />

OH<br />

HO 2C<br />

HO 2C<br />

GA 3<br />

H<br />

Me<br />

H<br />

Me<br />

H<br />

CO 2H<br />

H<br />

CO 2Me<br />

OH<br />

TsCl, NEt 3;<br />

MeOH<br />

OH<br />

Corey-Carney Acid<br />

Corey, JACS, 1978, 8034.


O<br />

Alternative Route to Key Tricyclic Intermediate: The Hammer and Tongs Approach<br />

O<br />

Me<br />

O<br />

O<br />

6 steps<br />

H<br />

H<br />

48%<br />

OBn<br />

OMEM<br />

O<br />

OH Me<br />

O<br />

3 steps 7 steps<br />

OBn<br />

67% 60%<br />

NaOH,<br />

EtOH<br />

1) EtOCHO, NaH<br />

2) KOtBu, MeI<br />

88%<br />

28-GA3-coreytotalrevised1.cdx 2/5/04 12:54 PM<br />

46% 4 steps<br />

O<br />

O<br />

O<br />

OMe<br />

H<br />

H<br />

O<br />

Me<br />

O<br />

OMEM<br />

3 steps<br />

O<br />

O<br />

1) EtOCHO, NaH<br />

2) RedAl<br />

3) H +<br />

4) Ph 3PCH 2<br />

39%<br />

O<br />

O<br />

H<br />

H<br />

OH<br />

OMs<br />

O<br />

KOtBu<br />

93%<br />

O<br />

Corey, JACS, 1978, 8034.<br />

OMEM


O<br />

H<br />

1) BuLi;<br />

2) DBU<br />

Br<br />

OMEM<br />

enantioselective variant<br />

has appeared<br />

Br Br<br />

Br Br CHO<br />

Cope Rearrangement for B/C Ring Junction<br />

9 steps saved over original<br />

syn<strong>the</strong>sis<br />

29-GA3-coreytotalrevised2.cdx 2/5/04 12:58 PM<br />

1) nBu 2CuLi<br />

2) MEMCl, iPr 2NEt<br />

65%<br />

R<br />

O<br />

H<br />

O<br />

N B<br />

Ts<br />

nBu<br />

10% mol<br />

99%ee<br />

81%<br />

R = 3-indole<br />

MeO2C Me<br />

+ C2 isomer<br />

2: 1<br />

1) BF3•OEt2 87%<br />

2) TMSOTf, NEt3 53%<br />

O<br />

Br<br />

H<br />

Br O<br />

CHO<br />

Br<br />

O<br />

1) 9BBN;<br />

NaOH, H 2O 2<br />

2) PDC<br />

5 steps<br />

76%<br />

Br<br />

[3,3]<br />

Br<br />

CO 2Me<br />

OTMS<br />

160˚C<br />

DMSO, H2O NaCl<br />

71%<br />

H<br />

Br O<br />

CO 2Me<br />

OTMS<br />

Corey, JACS, 1982, 6129.<br />

Corey, JACS, 1994, 3611.


MeO<br />

HO 2C<br />

MeO<br />

TFA<br />

MeO<br />

CO 2Me<br />

35%<br />

CO 2Me<br />

OMe<br />

30-GA3-mandertotal1.cdx 2/5/04 1:00 PM<br />

MeO<br />

Mander: Fluorene Approach<br />

1) Li, NH 3<br />

2)<br />

CO 2Me<br />

OCOCH 2Cl<br />

O<br />

O<br />

N 2<br />

OCOCH 2Cl<br />

I<br />

MeO<br />

MeO<br />

OMe<br />

CO2H CO<br />

88% 2Me<br />

36%<br />

1) HCN; NaOH<br />

2) (ClCH 2CO) 2O<br />

3) (ClCO) 2; CH 2N 2<br />

64%<br />

1) Na 2CO 3, MeOH<br />

2) H + , (HOCH 2) 2<br />

3) MOMCl, iPr 2NEt<br />

4) tBu(chx)NLi; CO 2<br />

5) H 2, Pd/C<br />

68%<br />

MeO<br />

MeO<br />

PPA<br />

CO 2Me<br />

CO 2Me<br />

H<br />

CO 2H<br />

OMOM<br />

O<br />

O<br />

O<br />

Mander, JACS. 1980, 6626.


MeO<br />

PhOCO<br />

MeO<br />

Mander: A-Ring Assembly through Birch Reduction/Alkylation<br />

CO 2Me<br />

OC<br />

Br<br />

Me<br />

CO 2H<br />

O<br />

H<br />

CO 2H<br />

H<br />

CO 2Et<br />

H<br />

CO 2Me<br />

31-GA3-mandertotal2.cdx 2/5/04 1:03 PM<br />

OMOM<br />

O<br />

O<br />

O<br />

O<br />

OMOM<br />

O<br />

O<br />

1) KOtBu, K, NH 3; MeI<br />

2) CH 3CHN 2<br />

66%<br />

KHCO 3, KBr 3<br />

86%<br />

Na, NH 3; MeI<br />

C7 ester controls alkylation<br />

MeO<br />

MeO<br />

MeO 2C<br />

MeO 2C<br />

PhOCO<br />

HO 2C<br />

Me<br />

Me<br />

H<br />

Me<br />

CO 2Me<br />

H<br />

CO 2Et<br />

H<br />

CO 2Et<br />

O<br />

O<br />

OMOM<br />

O<br />

O<br />

OMOM<br />

O<br />

O<br />

4 steps<br />

Mander, JACS. 1980, 6626.<br />

Baker, Chem. Com. 1972, 951.


PhOCO<br />

OC<br />

1) DBU<br />

2) H 2O, H +<br />

3) TMSCl<br />

90%<br />

O<br />

Br<br />

Me<br />

PhOCO<br />

H<br />

CO 2Et<br />

PhOCO<br />

OC<br />

Br<br />

H<br />

Me<br />

31B-GA3-mandertotal3.cdx 2/6/04 10:12 AM<br />

O<br />

OMOM<br />

O<br />

O<br />

OC<br />

H<br />

Me<br />

H<br />

O<br />

CO 2Me<br />

Mander: Gibberellic Acid<br />

5 steps<br />

H<br />

CO 2Me<br />

OTMS<br />

O<br />

OH<br />

O<br />

O<br />

OC<br />

O<br />

H<br />

Me<br />

H<br />

CO 2Me<br />

NBS, hν<br />

95%<br />

1) Ph 3PCH 2,<br />

ClCH 2CH 2OTMS<br />

2) K 2CO 3, MeOH<br />

3) nPrSLi, HMPA<br />

75%<br />

OH<br />

O<br />

O<br />

O<br />

PhHC<br />

O<br />

HO<br />

1) OsO 4, NMMO<br />

2) PhCHO, H +<br />

OC<br />

OC<br />

Me<br />

H<br />

Me<br />

O<br />

H<br />

O<br />

H<br />

H<br />

CO 2Me<br />

CO 2H<br />

OH<br />

OH<br />

O<br />

O<br />

GA 3<br />

Mander, JACS. 1980, 6626.


O<br />

O<br />

Me<br />

89%<br />

OC<br />

Me<br />

O<br />

OMe<br />

O<br />

H<br />

OCOCCl 3<br />

O<br />

H<br />

N 2<br />

CO 2Me<br />

H<br />

CO 2Me<br />

OH<br />

O<br />

O<br />

TFA<br />

1) KH, Et 3NH-OAc<br />

2) (sia) 2BH; NaOOH<br />

3) PDC<br />

OH<br />

O<br />

32-GA3-mandertotal4.cdx 2/5/04 1:09 PM<br />

O<br />

Mander: A-ring Aldol Approach (GA 1)<br />

OCOCCl 3<br />

O<br />

O<br />

99% O<br />

49% O<br />

80%<br />

1) (H 2C=CHCH 2) 3Al<br />

2) (EtCO) 2O, DMAP<br />

78%<br />

K 2CO 3,<br />

MeOH<br />

1:1 at C3<br />

60%<br />

HO<br />

OC<br />

O<br />

Me<br />

O<br />

H<br />

4 steps<br />

H<br />

CO 2Me<br />

H<br />

CO 2Me<br />

N 2<br />

OH<br />

O<br />

O<br />

OH<br />

O<br />

O<br />

HO<br />

OH<br />

O<br />

1) (sia) 2BH;<br />

NaOOH<br />

2) PDC<br />

3) LDA; Ph 2Se 2<br />

4 steps<br />

50%<br />

OC<br />

Me<br />

O<br />

H<br />

hv,MeOH<br />

CO 2Me<br />

GA 1<br />

H<br />

CO 2Me<br />

OH<br />

O<br />

O<br />

OH<br />

Mander, JACS. 1980, 6626.


Me<br />

SEMO<br />

MOMOH 2C<br />

CN<br />

CO 2Me<br />

H<br />

Me<br />

O 3, MeOH<br />

86%<br />

H<br />

CN<br />

Yamada: Intermolecular [4+2] Ring A Construction<br />

H<br />

OMe<br />

CH 2OMOM<br />

SEMO<br />

MOMOH 2C<br />

2) NaOH<br />

3) Ac 2O<br />

57%<br />

33-GA3-yamadatotal.cdx 2/5/04 2:48 PM<br />

O<br />

H<br />

H<br />

Me<br />

Me<br />

allene,<br />

hν<br />

69%<br />

H<br />

O<br />

O<br />

H<br />

SEMO<br />

MOMOH 2C<br />

O<br />

CO 2Me<br />

CH 2OMOM<br />

O<br />

H<br />

H<br />

Me<br />

OMe<br />

H<br />

1) K, NH 3<br />

2) Swern<br />

CH 2OMOM<br />

1) AlCl 3<br />

2) mCPBA<br />

O<br />

49%<br />

Nakanishi, Chem. Com, 1969, 528.<br />

3) MOMCl, iPr 2NEt<br />

4) Ph 3PCH 2<br />

53%<br />

TMSO<br />

SEMO<br />

MOMOH 2C<br />

OC<br />

1) Na, NH 3<br />

2) AcOH, H 2O<br />

O<br />

H<br />

Me<br />

3) K 2CO 3, MeOH<br />

80%<br />

O<br />

SEMO<br />

MOMOH 2C<br />

H<br />

H<br />

Me<br />

H<br />

H<br />

H<br />

Me<br />

CH 2OMOM<br />

OMe<br />

10 steps<br />

CH 2OMOM<br />

OMOM<br />

OMe<br />

Yamada, TL, 1989, 971.


SEMO<br />

MOMOH 2C<br />

91%<br />

HO 2C<br />

OC<br />

H<br />

H<br />

Me<br />

H<br />

Me<br />

O<br />

H<br />

Me<br />

H<br />

CH 2OMOM<br />

8 steps<br />

H<br />

CO 2H<br />

H<br />

CO 2H<br />

34-GA3-yamadatotal2.cdx 2/5/04 2:50 PM<br />

Yamada: Syn<strong>the</strong>sis <strong>of</strong> Gibberellic Acid<br />

1) I 2, NaHCO 3<br />

2) DBU<br />

OMOM<br />

OMOM<br />

OMOM<br />

1) MOMCl, iPr 2NEt<br />

2) LDA<br />

99%<br />

HO<br />

HO 2C<br />

OC<br />

O<br />

H<br />

Me<br />

H<br />

Me<br />

H<br />

CO 2H<br />

H<br />

CO 2MOM<br />

OH<br />

GA 3<br />

6 steps (Corey et al)<br />

MOM-protected<br />

Corey-Carney Acid<br />

OMOM<br />

30% <strong>from</strong> tri-MOM-e<strong>the</strong>r<br />

Yamada, TL, 1989, 971.


CO 2Me<br />

O<br />

OMe<br />

H<br />

EtO2C MeO<br />

52%<br />

OC<br />

O<br />

H<br />

MeO<br />

H<br />

H<br />

O<br />

<strong>the</strong>n<br />

LiN(chx)iPr;<br />

MeI<br />

Br<br />

MgI<br />

OMEM<br />

OMEM<br />

36-GA3-DeClerqtotal.cdx 2/5/04 4:29 PM<br />

Syn<strong>the</strong>sis <strong>of</strong> GA 5 via Furan [4+2]: DeClercq<br />

Br<br />

5 steps<br />

81%<br />

1) PPTS<br />

2) NaClO 2<br />

50%<br />

46%<br />

O Br<br />

MeO 2C<br />

O<br />

CO 2Et<br />

OC<br />

Me<br />

O<br />

H<br />

H<br />

OH<br />

H<br />

CO 2H<br />

O<br />

kinetic<br />

product<br />

OH<br />

OH<br />

GA 5<br />

Bu 2CuLi<br />

65%<br />

O<br />

β-cyclodextrin<br />

H 2O, 65˚C<br />

96%<br />

>95:5<br />

MeO 2C<br />

EtO 2C<br />

O<br />

O<br />

CO 2Et<br />

OH<br />

3 steps<br />

50%<br />

H<br />

OH<br />

OH<br />

PhH<br />

80˚C<br />

OH<br />

OH<br />

<strong>the</strong>rmodynamic<br />

product<br />

DeClercq, Tet. Lett. 1986, 1731.


MeO 2C<br />

Me<br />

H<br />

Me<br />

Me<br />

Me<br />

(–)-methyl dehydroabietate<br />

1) H 2, RuO 2<br />

2) H 2CrO 4<br />

3) Ph 3PCH 2<br />

4) BH 3/H 2O 2<br />

H<br />

MeO2C Me<br />

epimerization at C6<br />

Me<br />

H<br />

MeO2C Me<br />

CO 2Me<br />

Me<br />

OH<br />

37-GA12-Tahara-total.cdx 2/5/04 3:00 PM<br />

H<br />

H<br />

GA 12 Syn<strong>the</strong>sis <strong>from</strong> Dehydroabiatate: Tahara<br />

AlCl 3<br />

39%<br />

CO 2Me<br />

1) H 2CrO 4<br />

2) SOCl 2;<br />

CH 2N 2<br />

MeO 2C<br />

Me<br />

Me<br />

H<br />

Wenkert, JACS, 1958, 211.<br />

OH 1) H2, Pd/C<br />

2) AcCl, AlCl3 3) mCPBA;<br />

NaOH<br />

Me<br />

H<br />

MeO2C Me<br />

H<br />

Me<br />

MeO 2C Me<br />

H<br />

CO 2Me<br />

CrO 3, HOAc<br />

N 2<br />

O<br />

CO 2Me<br />

CuSO 4,<br />

hν<br />

1) CH 2N 2<br />

2) H 2SO 4<br />

Me<br />

H<br />

MeO2C Me O<br />

H<br />

MeO2C Me<br />

O<br />

Me<br />

H<br />

MeO2C Me<br />

Me H<br />

H<br />

CO 2Me<br />

GA 12<br />

KOH<br />

OH<br />

CO2H O<br />

Tahara, JCS Perkin I, 1972, 320.<br />

Tahara, TL, 1976, 1515.<br />

4 steps


MeO 2C<br />

Me<br />

H<br />

Me<br />

H<br />

(±)- <strong>from</strong> syn<strong>the</strong>sis <strong>of</strong><br />

steviol Tet ,1966, 879.<br />

Me<br />

O<br />

Me<br />

H<br />

H<br />

O<br />

MeO 2C<br />

H<br />

O<br />

O<br />

Cross, Hanson, JCS, 1963, 2944.<br />

1) NaBH 4<br />

2) TsCl, pyr<br />

38-GA12-Mori-total.cdx 2/5/04 3:03 PM<br />

4 steps<br />

Me<br />

O<br />

GA 12 Formal Syn<strong>the</strong>sis: Mori<br />

Me<br />

H<br />

Me<br />

1) Br 2, HOAc<br />

2) LiCl, DMF<br />

3) Ph 3PCH 2<br />

Me<br />

H<br />

H<br />

O<br />

H<br />

H<br />

MeO 2C<br />

H<br />

OTs<br />

O<br />

O<br />

Me<br />

H<br />

Me<br />

1) Ph 3PCHOAr<br />

2) H 3O +<br />

3) Ph3PCH2 10-30%<br />

H<br />

O<br />

H<br />

O<br />

1) KOH, tBuOH<br />

2) H 2CrO 4<br />

MeO 2C<br />

Me<br />

H<br />

Me<br />

1) NaH<br />

2) H 3O +<br />

3) H 2CrO 4<br />

10%<br />

H<br />

H<br />

HO2C Me<br />

H<br />

MeO 2C<br />

O<br />

CO 2H<br />

Me<br />

H<br />

Me<br />

H<br />

Me H<br />

H<br />

1) NBS, H 2O<br />

2) DHP, H +<br />

H<br />

O<br />

GA 12<br />

H<br />

OTHP<br />

Br<br />

Mori, Tet, 1976, 1497.


H<br />

Me<br />

Me<br />

O<br />

O<br />

10 steps<br />

37%<br />

Me<br />

H<br />

H<br />

O<br />

Me<br />

H<br />

MeO2C Me<br />

H<br />

H<br />

O<br />

1) Bu 3SnH,<br />

AIBN<br />

2) SiO 2<br />

H<br />

H<br />

Me<br />

Me<br />

O<br />

H<br />

H<br />

HO2C Me<br />

Me H<br />

H<br />

CO 2H<br />

H<br />

Me H<br />

OAc<br />

2) TBAF<br />

Me<br />

OAc<br />

OTES<br />

3:1 at C7<br />

OTES<br />

72% (4 steps)<br />

2) Ac2O Cross, Hanson, JCS, 1963, 2944.<br />

39-GA12-Ihara-formal.cdx 2/5/04 3:04 PM<br />

GA 12 Formal Syn<strong>the</strong>sis: Ihara<br />

1) 200˚C<br />

O<br />

GA 12<br />

SnR 3<br />

Me<br />

1) s-BuLi<br />

O<br />

H<br />

Me<br />

Me H<br />

Me<br />

O<br />

O<br />

A : B<br />

93% (1:18 mix)<br />

O<br />

H<br />

AcO<br />

H<br />

OTES<br />

Me<br />

O<br />

H<br />

5 steps<br />

88%<br />

Ihara, JACS, 2001, 1856.


O<br />

O<br />

H<br />

O<br />

O<br />

Three Routes to Bicycle:<br />

O<br />

O<br />

O<br />

O OEt MeO2C OEt<br />

OH<br />

40-GA3-Stork-CDring.cdx 2/5/04 3:05 PM<br />

O<br />

Stork D-ring Approach: Reductive Cyclization<br />

1) H 3O +<br />

2) NaBH 4<br />

3) (HOCH 2) 2 H +<br />

4) PDC<br />

O<br />

O<br />

O<br />

Br NC<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

H<br />

O<br />

O<br />

O<br />

H<br />

O<br />

MeO 2C<br />

O<br />

O<br />

CN<br />

1) K, NH 3,<br />

(NH 4) 2SO 4<br />

2) HOAc, H 2O<br />

O<br />

H<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

H<br />

H<br />

OH<br />

O<br />

O<br />

Stork, JACS, 1979, 7107.<br />

Stork, JACS, 1965, 1148.


MeO<br />

TBSO<br />

6 steps<br />

52%<br />

TBSO<br />

CO 2Me<br />

OC<br />

O<br />

H<br />

OH<br />

H<br />

OH<br />

I<br />

O 2N<br />

O O<br />

O<br />

CO 2Me<br />

N-tBu<br />

= L<br />

NiBr<br />

2 2<br />

41-anteridiogens3-Corey.cdx 2/5/04 3:31 PM<br />

Total Syn<strong>the</strong>sis <strong>of</strong> An<strong>the</strong>ridic Acid: Corey<br />

H<br />

TBSO<br />

TBSO<br />

H<br />

EtAlCl2 51% overall<br />

O O<br />

53%<br />

O O<br />

80%<br />

O 2N<br />

7 steps<br />

76%<br />

TBSO<br />

H<br />

1) TMSCl, LDA<br />

TBSO<br />

2) Eschemoser's<br />

salt, MeI, iPr2NEt 60%<br />

OC<br />

OH<br />

H<br />

N 2<br />

O O<br />

O<br />

H<br />

O<br />

1) Cu(II)L 2<br />

2) Br 2; DBU<br />

CO 2Me<br />

1) MeCO 3H<br />

2) LiNEt 2<br />

H<br />

57%<br />

4 steps<br />

90%<br />

TBSO<br />

HO<br />

OC<br />

O<br />

H<br />

H<br />

H<br />

O O<br />

OH<br />

CO 2H<br />

an<strong>the</strong>ridic acid<br />

original structure proposed as 3β−OH<br />

Corey, Myers, JACS, 1985, 5574.<br />

H


AcO<br />

HO2C Proposed Biomimmetic Syn<strong>the</strong>sis <strong>of</strong> An<strong>the</strong>ridic Acid Investigated<br />

H<br />

CO 2Me<br />

A or B<br />

AcO<br />

MeO2C A) Im 2CO, H 2O 2 intramolecular delivery<br />

B) mCPBA (k rel < 10 -2 ) intermolecular<br />

42-anteridiogens2.cdx 2/5/04 3:33 PM<br />

C9,10-epoxygibberellin<br />

H<br />

O<br />

CO 2Me<br />

Epoxide initiated<br />

1,2 bond migration<br />

Desired Bond Migration<br />

could not beEffected<br />

HO<br />

AcO<br />

MeO2C OC<br />

O<br />

H<br />

OH<br />

H<br />

OH<br />

CO 2H<br />

an<strong>the</strong>ridic acid<br />

original structure<br />

proposed as<br />

3β−OH<br />

CO 2H<br />

H<br />

Mander, JACS, 1987, 6839.<br />

H


HO<br />

MOMO<br />

MOMO<br />

OC<br />

O I<br />

O<br />

CO<br />

CO<br />

O<br />

H<br />

H<br />

KH<br />

H<br />

CO 2H<br />

43-anteridiogens.cdx 2/5/04 3:35 PM<br />

H<br />

CO 2Me<br />

CO 2Me<br />

Conversion <strong>of</strong> GA 7 into An<strong>the</strong>ridic Acid<br />

H<br />

GA 7<br />

H<br />

H<br />

O<br />

O<br />

4 steps<br />

HO<br />

OC<br />

an<strong>the</strong>ridic acid<br />

original structure<br />

proposed as<br />

3β−OH<br />

MOMO<br />

MOMO<br />

OC<br />

OC<br />

O<br />

H<br />

O<br />

H<br />

O<br />

H<br />

OH<br />

CO 2H<br />

CO 2Me<br />

CO 2Me<br />

H<br />

O<br />

H<br />

1) DBU<br />

2) H2, Rh<br />

O<br />

3) Ph3PCH2 H<br />

1) LiN(chx)iPr;<br />

Et 3NHCl<br />

2) SeO 2, tBuOOH<br />

3) Me 2BBr<br />

4) LiOH<br />

Mander, JACS, 1987, 6839.


AcO<br />

75%<br />

OC<br />

O<br />

H<br />

an<strong>the</strong>ridic acid<br />

OMe<br />

COCHN 2<br />

CO 2Me<br />

Cu(acac) 2<br />

1) PhI(OAc) 2, I 2<br />

2) Hg(OAc) 2 HOAc<br />

Formal<br />

syn<strong>the</strong>sis<br />

44-an<strong>the</strong>ridiogens4-Mander.cdx 2/5/04 3:36 PM<br />

O<br />

H<br />

Syn<strong>the</strong>sis <strong>of</strong> An<strong>the</strong>ridiogens: Mander<br />

HO 2C<br />

71%<br />

OC<br />

OC<br />

O<br />

H<br />

O<br />

OMe<br />

H<br />

CO 2Me<br />

O<br />

1) PhI(OAc) 2, I 2<br />

2) HSnBu 3<br />

3) Zn, CH 2Br 2<br />

TiCl 4<br />

O<br />

H<br />

CO 2H<br />

H<br />

O<br />

H<br />

O<br />

O<br />

Me<br />

18h, rt<br />

added in situ<br />

GA 103<br />

75%<br />

1) hν, MeOH<br />

2) PDC<br />

3) H 2, Pd<br />

70%<br />

O<br />

O<br />

BnO 2C<br />

OH<br />

O<br />

OC<br />

H<br />

O<br />

H<br />

5 steps<br />

31%<br />

OC<br />

CO 2H<br />

O<br />

H<br />

N 2<br />

H<br />

O<br />

OMe<br />

HO<br />

H<br />

O<br />

GA 104<br />

H<br />

Mander, JACS, 1997, 3828.


H<br />

H<br />

O<br />

H<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

NaOMe<br />

H<br />

O<br />

H<br />

H<br />

O<br />

O<br />

O<br />

OH<br />

Me<br />

OH<br />

OH<br />

tBuMgCl<br />

H<br />

OH<br />

SMe<br />

14 steps<br />

MeO2C O SMe<br />

O<br />

MeO2C O O<br />

CO2Me House, JOC, 1973, 1398.<br />

O<br />

Zn,<br />

HOAc<br />

H<br />

OH<br />

H Br<br />

CO2Me Ziegler, JOC, 1971, 3707. (model system)<br />

MeO 2C<br />

CO 2Me<br />

45-cd-ring stragedy.cdx 2/5/04 3:43 PM<br />

Aldol C/D Ring Strategies Not Discussed<br />

Hg(II)O<br />

H 2SO 4<br />

HCl,<br />

acetone<br />

MeO 2C<br />

Ireland, JOC, 1966, 2530. (toward kaurenes)<br />

Takano, Ogasawara, Chem. Com., 1981, 635.<br />

Takano, Ogasawara, Chem. Com., 1981, 637.<br />

H<br />

OH


H<br />

MeO2C H<br />

O<br />

CO2Me 1) NaOMe<br />

CO2Me2) HCl<br />

O<br />

CO 2H<br />

CO 2H<br />

46-cd-ring stragedy2.cdx 2/5/04 3:44 PM<br />

Acylation C/D Ring Strategies Not Discussed<br />

BF 3<br />

AcOH<br />

PPA<br />

H<br />

H<br />

CO 2Me<br />

H<br />

O<br />

O<br />

O<br />

O<br />

O<br />

Baker, Chem. Com., 1971, 180.<br />

Lowenthal, JCS Perkin I, 1976, 944.<br />

Jammaer, Tet., 1975, 2293.


O<br />

H<br />

H<br />

MeO<br />

O<br />

O<br />

O<br />

OMs<br />

OTs<br />

CHO<br />

SPh<br />

DBU<br />

O<br />

H<br />

N<br />

H<br />

O<br />

MeS O<br />

O<br />

MeS O<br />

47-cd-ring stragedy3.cdx 2/5/04 3:46 PM<br />

Alkylation C/D Ring Strategies Not Discussed<br />

TFAA<br />

SnCl 4<br />

H<br />

O<br />

TFAA<br />

SPh<br />

O<br />

O<br />

O<br />

MeO<br />

CHO<br />

1) PhSCH 2Li<br />

2) TsOH<br />

6 steps<br />

SMe<br />

O<br />

H<br />

O<br />

H<br />

SMe<br />

CO 2Me<br />

O<br />

O<br />

SPh<br />

O<br />

GA 15<br />

Nagata, JACS, 1972, 4654.<br />

Trost, JOC, 1978, 1031.<br />

Mander, Syn<strong>the</strong>sis, 1981, 620.<br />

Barco, Tet., 1989, 3935.


H<br />

H<br />

MeO<br />

O<br />

Me<br />

Cl<br />

H<br />

OH<br />

O<br />

Me<br />

OH<br />

OMs<br />

CO 2H<br />

Ar<br />

CN<br />

H<br />

PCl 5<br />

H 3O +<br />

Cl<br />

O<br />

HO 2C<br />

O<br />

CN<br />

H O Zn, HOAc H<br />

48-cd-ring stragedy4.cdx 2/5/04 3:57 PM<br />

Rearrangement C/D Ring Strategies Not Discussed<br />

H 2O, acetone,<br />

2,6-Lutidine<br />

H<br />

poor conversion<br />

Ar<br />

H<br />

BF 3•OEt 2<br />

OH<br />

Me<br />

OH<br />

OH<br />

H<br />

H<br />

Cl<br />

OH CN<br />

Cross, MacMillan, JCS, 1958, 2520.<br />

OH<br />

O<br />

OH<br />

Ziegler, Tet., 1977, 373.<br />

Monti, JOC, 1978, 4062.<br />

Yamada, Syn<strong>the</strong>sis, 1977, 581.<br />

Mori, Tet., 1972, 3217.


49-cd-ring summary.cdx 2/5/04 3:58 PM<br />

A Summary <strong>of</strong> General C/D Ring Strategies<br />

H H<br />

I) Reductive Ring Closure<br />

II) Alkylation / Acylation<br />

III) Aldol<br />

IV) Carbenoid<br />

OH<br />

V) Rearrangement / Fragmentation<br />

H<br />

OH<br />

O<br />

"The problem <strong>of</strong> <strong>the</strong> syn<strong>the</strong>sis<br />

<strong>of</strong> gibberellic acid has provided <strong>the</strong> impetus for<br />

<strong>the</strong> development <strong>of</strong> many<br />

new syn<strong>the</strong>tic methods . . . " Corey

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!