14.12.2012 Views

Natural Products with Halogen-Bearing Stereogenic Centers ...

Natural Products with Halogen-Bearing Stereogenic Centers ...

Natural Products with Halogen-Bearing Stereogenic Centers ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MeO<br />

H<br />

N<br />

<strong>Natural</strong> <strong>Products</strong> <strong>with</strong> <strong>Halogen</strong>-<strong>Bearing</strong> <strong>Stereogenic</strong> <strong>Centers</strong>:<br />

<strong>Natural</strong> Origin and Synthesis<br />

Dr. Jared T. Shaw<br />

Evans Group Seminar<br />

February 1, 2002<br />

Occurrence of <strong>Halogen</strong>ated <strong>Natural</strong> <strong>Products</strong>:<br />

Gribble, G. W., Progress in the Chemistry of Organic <strong>Natural</strong> <strong>Products</strong>, 1996, 68, 1-498. 2288 references!<br />

Gribble, G. W., Acc. Chem. Res., 1998, 31, 141-152.<br />

Constituents of Laurencia:<br />

Erickson, K. L., Marine <strong>Natural</strong> <strong>Products</strong>, 1983, 31-256.<br />

Fluorinated <strong>Natural</strong> <strong>Products</strong>:<br />

Harper, D. B., O'Hagan, D. O., <strong>Natural</strong> Product Reports, 1994, 11, 123-133.<br />

Haloperoxidases:<br />

Butler, A., Walker, J. V., Chem. Rev., 1993, 93, 1937-1944.<br />

Butler, A., Coord. Chem. Rev., 1999, 187, 17-35.<br />

Franssen, M. C. R., Catalysis Today, 1995, 22, 441-457.<br />

Synthesis of <strong>Halogen</strong>ated <strong>Natural</strong> <strong>Products</strong>:<br />

Murai, A., Studies in <strong>Natural</strong> <strong>Products</strong> Chemistry, 1997, 19, 411-461.<br />

<strong>Halogen</strong>ated <strong>Natural</strong> <strong>Products</strong> Synthesized in the Evans Group<br />

Completed:<br />

Br<br />

Me<br />

H<br />

OH<br />

H<br />

O<br />

HO<br />

MeO<br />

N<br />

Epibatidine<br />

shaw 01/02 2/4/02 1:54 PM<br />

Cl<br />

HO<br />

O<br />

O<br />

N<br />

H<br />

H<br />

H<br />

H<br />

O<br />

H<br />

H<br />

H<br />

H<br />

O<br />

Me<br />

O<br />

Me<br />

N Me<br />

H O<br />

O<br />

HO<br />

Cl<br />

O<br />

H<br />

O<br />

N H<br />

H<br />

N<br />

N<br />

H<br />

O H<br />

N<br />

H<br />

NH<br />

O<br />

O<br />

O O<br />

HO<br />

Phorboxazole B<br />

HO<br />

OH<br />

OH<br />

O<br />

OH<br />

HO<br />

Teicoplanin<br />

O<br />

O<br />

HO<br />

O<br />

HO<br />

Cl<br />

HO<br />

O<br />

H<br />

N<br />

H<br />

H<br />

NH<br />

HO<br />

NH<br />

O<br />

Cl<br />

O<br />

H<br />

N<br />

OH<br />

OH<br />

NH 2<br />

O<br />

OH<br />

N<br />

H<br />

O<br />

O<br />

H 2N<br />

Cl<br />

H<br />

N<br />

O<br />

Vancomycin<br />

O<br />

O<br />

Me<br />

In Progress:<br />

Me<br />

MeO<br />

Me<br />

Me<br />

O<br />

H OH<br />

O<br />

OH<br />

NH<br />

Me<br />

O<br />

MeO<br />

Me<br />

O O Me<br />

H<br />

O<br />

O<br />

NH<br />

NHMe<br />

Callipeltoside A<br />

H<br />

Cl


Distribution of <strong>Halogen</strong>ated <strong>Natural</strong> <strong>Products</strong><br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

16/103<br />

F<br />

Cl<br />

812/2051 630/1782<br />

Br<br />

"Chiral" = Contains A <strong>Halogen</strong>-<strong>Bearing</strong> Stereocenter<br />

Outline<br />

8/70<br />

I<br />

Total<br />

"Chiral"<br />

I. Fluorinated natural products<br />

II. Chlorinated/brominated natural products<br />

A. biogenesis<br />

B. Methods of stereoselective chlorination and bromination<br />

1. SN2 Displacement: "X - "<br />

2. Electrophilic halogenation: "X + "<br />

3. Polycyclization<br />

4. Acyclic stereocontrol employing haloalkenes<br />

5. The Kharasch reaction<br />

C. Syntheses<br />

1. Oppositiol, prepinnaterpene, laurencial, dactylyne<br />

2. Comparative syntheses of laurencin and related structures<br />

3. Comparative syntheses of kumausyne and kumausallene<br />

4. Syntheses aplysiapyranoids and thyrsiferol/venusatriol by electrophilic monocyclization<br />

5. Selected polycyclzations leading to natural products<br />

6. Diels-Alder spproaches to plocamium natural products and virantmycin<br />

7. Callipeltoside sidechain<br />

8. Halomon<br />

9. Outlyers: Hapalindole G & Axinellamines<br />

shaw 03/04 2/4/02 1:56 PM


HO<br />

F<br />

O<br />

N<br />

N<br />

O O<br />

Me Me<br />

The Fluorinated <strong>Natural</strong> <strong>Products</strong><br />

•Most fluorinated natural products are derived from fluoroacetyl Co-A<br />

F<br />

H 2NSO 2<br />

F<br />

O<br />

O<br />

SCoA<br />

SCoA<br />

n<br />

n=4, 6, 7, 8<br />

NHBz<br />

shaw 05/06 2/4/02 1:57 PM<br />

N<br />

F<br />

N<br />

MsCl;<br />

KOt-Bu<br />

58%<br />

O<br />

N<br />

N<br />

HO OH<br />

Nucleocidin<br />

OH<br />

OH<br />

F<br />

O<br />

O<br />

OH<br />

Me<br />

HO2C OH<br />

HO2C CO2H F<br />

(2R, 3R)-2-fluorocitric acid<br />

F<br />

H 2NSO 2<br />

The Fluorinated <strong>Natural</strong> <strong>Products</strong>:<br />

Moffatt's Synthesis of Nucleocidin<br />

NH 2<br />

N<br />

N<br />

N<br />

O N<br />

O O<br />

Me Me<br />

N<br />

TFA/<br />

H 2O<br />

77%<br />

NHBz<br />

N<br />

BzCl/Pyr<br />

97%<br />

H 2NSO 2<br />

F<br />

N<br />

O N<br />

O O<br />

Me Me<br />

N<br />

O N<br />

O O<br />

Me Me<br />

NH 2<br />

N<br />

N<br />

N<br />

O<br />

NBz 2<br />

N<br />

F<br />

H<br />

F<br />

O<br />

OH<br />

N<br />

N<br />

HO OH<br />

F<br />

Nucleocidin<br />

AgF/I 2<br />

77%<br />

(Bu 3Sn) 2O;<br />

H 2NSO 2Cl<br />

87%<br />

NH 2<br />

O<br />

NH 2<br />

N<br />

O<br />

OH<br />

N<br />

OH<br />

4-fluorothreonine<br />

I<br />

F<br />

Gribble, 1996<br />

N<br />

O N<br />

NBz 2<br />

N<br />

N<br />

O O<br />

Me Me<br />

diastereoselection 65:35<br />

HO<br />

F<br />

1) LiN 3/DMF; 93%<br />

2) hv; H + /H 2O;<br />

NaBH 4; 26%<br />

N<br />

O N<br />

O O<br />

Me Me<br />

NH 2<br />

Moffatt, J. G., et al, J. Am. Chem.Soc., 1976, 98, 3346-3357.<br />

N<br />

N


The Biogenic Origin of <strong>Halogen</strong>ated <strong>Natural</strong> <strong>Products</strong><br />

• Chlorine is incorporated by nucleophilic displacement as Cl - or through the reactions of alkenes <strong>with</strong><br />

chloroperoxidases (CPO's), ie as "Cl + "<br />

• Bromine is almost exlusively incorproated as "Br + " by bromoperoxidases (BrPO's)<br />

• Iodoperoxidases have been identified, but not studied in as much detail as CPO and BrPO<br />

As a result, most halogen-bearing stereogenic centers occur as halohydrins or polycyclics!<br />

"Br + "<br />

Me<br />

Me<br />

R<br />

R'<br />

"X + "<br />

Nu<br />

R<br />

+<br />

X<br />

R'<br />

Nu = H 2O, X - , ROH, C=C<br />

Examples of <strong>Halogen</strong> Biosynthesis<br />

HO Cl<br />

Me Me<br />

Br +<br />

epoxidation<br />

Cl<br />

Laurencenyne Prerogioloxepane<br />

- attack<br />

HO Cl<br />

O<br />

Br H H Cl<br />

Rogioloxepane C<br />

shaw 07/08 2/4/02 1:58 PM<br />

Me<br />

Me<br />

Me<br />

Geranyllinalool<br />

H<br />

OH<br />

O<br />

H<br />

O<br />

Br H H Cl<br />

Rogioloxepane B<br />

Isolated from Laurencia microcladia<br />

Br<br />

Me<br />

R<br />

Me<br />

Nu<br />

X<br />

R'<br />

Me<br />

O<br />

Br H H Cl<br />

Rogioloxepane A<br />

Me<br />

Me<br />

3-Bromobarekoxide<br />

isolated from Laurencia luzonensis<br />

O<br />

Pietra, F., et al, Helv. Chim. Acta, 1992, 75, 310-322<br />

Jefford, C. W. Chem. Commun., 2000, 1155-1156


Examples of <strong>Halogen</strong> Biosynthesis<br />

• The vast majority of the natural products herein discussed are isolated from the seaweeds (algae)<br />

of the genus Laurencia and Plocamium.<br />

• Sea hares of the species Aplysia that feed on the seaweed are also sources of the natural products<br />

and can modify them<br />

Laurencia seaweed<br />

V-BrPO=<br />

Vanadium<br />

Bromoperoxidase<br />

H-CPO=<br />

Heme-<br />

Chloroperoxidase<br />

shaw 09/10 2/4/02 2:00 PM<br />

Br<br />

Me<br />

Br<br />

HO<br />

Me<br />

Me Me<br />

Me<br />

O<br />

Me<br />

OH<br />

Me<br />

Br<br />

Cl<br />

Aplysia sea hare<br />

Br<br />

Br<br />

Me<br />

Me Me<br />

O<br />

Me<br />

Me<br />

Br<br />

Cl<br />

O Me<br />

+<br />

Br<br />

Cl<br />

Me<br />

Me<br />

Me Me<br />

O<br />

Me<br />

Br<br />

Cl<br />

Faulkner, D. J., et al, Comp. Biochem. Physiol., 1974, 49B, 37-41<br />

Haloperoxidases Catalyze Selective Oxidations<br />

AcO<br />

Ph<br />

n-Bu<br />

S Me<br />

V-BrPO/<br />

H2O2 pH 6.5<br />

25 °C<br />

O -<br />

S +<br />

Me<br />

S S +<br />

Me<br />

Ph Me<br />

H-CPO/<br />

H2O2 pH 5.5<br />

25 °C<br />

Ph<br />

n-Bu<br />

O<br />

O -<br />

Me<br />

O<br />

Me Me<br />

OH<br />

Me<br />

H-CPO/<br />

H2O2 pH 5.5<br />

25 °C<br />

AcO<br />

OH<br />

Me<br />

Yield (%) ee (%)<br />

6 0<br />

99 89<br />

67 96<br />

78 96<br />

52 95<br />

Ph Me 20 90<br />

Sulfoxidation: Allenmark, A., et al, J. Org. Chem., 1997, 62, 8455-8458<br />

Epoxidation: Hager, L. P. & Jacobsen, E. N., et al, J. Am Chem. Soc., 1993, 115, 4415-4416<br />

Propargylic Oxidation: Hager, L. P. & Hu, S., J. Am. Chem. Soc., 1999, 121, 872-873<br />

Benzylic Oxidation: Zaks, A., et al, J. Am. Chem. Soc., 1995, 117, 10419-10424


Haloperoxidases Catalyze Unselective Bromohydrin Formation<br />

OH<br />

Me<br />

OH<br />

OH<br />

Me<br />

OH<br />

Br<br />

Br<br />

(+/-) (+/-)<br />

H-CPO, Br - , H2O2 H-LPO, Br<br />

61% 39%<br />

- , H2O2 V-BrPO, Br<br />

- -<br />

- N-Bromoacetamide 75% 25%<br />

, H2O2 66% 34%<br />

H-CPO=Heme-dependent chloroperoxidase from Caldariomyces Fumago (fungus)<br />

H-LPO=Heme-dependent lactoperoxidase (haloperoxidase) from bovine milk<br />

V-BrPO=Vanadium-dependent bromoperoxidase from Corallina Officinalis (marine algae)<br />

"One of the most interesting, yet unsolved problems in the area of<br />

marine biohalogenation, is the biogenesis of the chiral<br />

halogenated marine natural products."<br />

Butler, A. Chem. Rev., 1993, 93, 1937–1944.<br />

"All haloperoxidases catalyze smooth, yet unselective<br />

chlorination, bromination or iodination of relatively electron-rich<br />

groups in organic compounds...However, there must be more<br />

stereo- and/or regioselective halogenating enzymes in nature,<br />

regarding the presence of halometabolites like 44 and 45."<br />

Franssen, M. C. R., Catalysis Today, 1994, 22, 441-457<br />

Me<br />

Me<br />

shaw 11/12 2/4/02 2:01 PM<br />

Br<br />

Br<br />

Cl<br />

Me<br />

H<br />

O<br />

Br<br />

C<br />

OH<br />

Coughlin, P., et al, Biotechnology Letters, 1993, 15, 907-912<br />

Enzyme-Catalyzed Bromohydrin Formation<br />

HO<br />

Laurediol<br />

O<br />

H<br />

Br<br />

OH<br />

OH<br />

E-Prelauretin<br />

Lactoperoxidase;<br />

NaBr, H 2O 2, pH 5.5<br />

0.05% Yield<br />

(0.41% BORSM)<br />

Lactoperoxidase;<br />

NaBr, H2O2, pH 5.5<br />

0.03% Yield<br />

(0.19% BORSM)<br />

Me<br />

Me<br />

Me<br />

O<br />

H<br />

Me Me<br />

H<br />

Cl Cl<br />

44 45<br />

O<br />

H<br />

Br<br />

O<br />

H<br />

Br<br />

OH<br />

E-Prelauretin<br />

O<br />

Laurallene<br />

Murai, A., et al:<br />

Tetrahedron Lett., 1995, 36, 737-740<br />

Tetrahedron, 1997, 53, 8371<br />

Cl<br />

Br<br />

H<br />

Cl


HN<br />

HN<br />

R<br />

Nucleophilic Displacement:<br />

OR<br />

R R'<br />

O<br />

R'<br />

Br -<br />

-or-<br />

CBr4/PR3 LA/Br -<br />

Methods of <strong>Halogen</strong>ation<br />

R<br />

Br<br />

R R'<br />

Bromoetherification/ Oxymercuration-Bromination<br />

Me<br />

O<br />

O<br />

Me<br />

Me<br />

OH<br />

Hg(OTF) 2<br />

Me<br />

CCl 3<br />

CCl 3<br />

OH<br />

"Br + "<br />

O<br />

TfHg<br />

Me Me<br />

R 1<br />

O<br />

Br<br />

Br<br />

OH<br />

O<br />

R'<br />

Me Me<br />

LiBr; Br2<br />

Br<br />

O<br />

Me Me<br />

Methods of <strong>Halogen</strong>ation<br />

CCl 3<br />

M = Cu, Fe, Ru, Mo<br />

CuCl/BiPy<br />

61%<br />

CuCl/BiPy<br />

98%<br />

shaw 13/14 2/4/02 2:02 PM<br />

R 1<br />

O<br />

HN<br />

Cl Cl<br />

HN<br />

Cl<br />

R 2<br />

O<br />

The Kharasch Reaction:<br />

R 2<br />

Cl<br />

Cl<br />

Cl<br />

O<br />

Cl<br />

Cl<br />

Cl<br />

M n<br />

Me<br />

O<br />

M n+1 Cl<br />

Me<br />

O<br />

O<br />

Me<br />

O<br />

O<br />

Me<br />

O<br />

R<br />

R<br />

R'<br />

R 1<br />

R 1<br />

CCl 3<br />

Cycloaddition/Sigmatropic<br />

Rearrangement:<br />

Cl<br />

O<br />

O<br />

Br<br />

OH<br />

Cl<br />

Cl Cl<br />

Cl<br />

R 2<br />

R<br />

R' Br<br />

R Cl<br />

O<br />

Polyene Cyclization<br />

Br<br />

R 2<br />

Me<br />

Me<br />

R 2<br />

R 3<br />

Me<br />

Hg(OTFA) 2, etc<br />

or Br +<br />

Me<br />

Me<br />

Me<br />

O<br />

CuCl/BiPy<br />

74%<br />

O<br />

O<br />

O<br />

Me<br />

O<br />

Me<br />

R<br />

R<br />

O<br />

Cl<br />

OMe<br />

Cl<br />

Cl<br />

Weinreb, S. M., et al, Tetrahedron, 1988, 44, 4671-4678<br />

Itoh, K., et al, J. Org. Chem, 1993, 58, 464-470<br />

Speckamp, W. N., et al, Synlett, 1993, 739


O<br />

H<br />

O H<br />

Br<br />

PMBO<br />

Me OH<br />

EtO 2C<br />

Me<br />

O O<br />

X<br />

O O<br />

shaw 15/16 2/4/02 2:03 PM<br />

O<br />

Br<br />

MsO<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

T. Masamune's Prepinnaterpene & Oppositol<br />

Me<br />

BnO H<br />

Me OH<br />

Me<br />

OBn<br />

OBn<br />

Bu 4NBr, 100 °C<br />

55% (35% alkene)<br />

OBn<br />

OTBS<br />

CO 2Et<br />

Me<br />

2 steps<br />

92%<br />

HO<br />

MsO BnO<br />

MeLi<br />

100%<br />

Br<br />

Me<br />

H<br />

Me<br />

CHO<br />

Br<br />

Me<br />

OBn<br />

Me<br />

O<br />

Bu 4NBr<br />

100 °C<br />

H<br />

Br<br />

OBn<br />

PPTs<br />

HO<br />

Br<br />

Me<br />

H<br />

Me<br />

96%<br />

Oppositol<br />

BnO<br />

63%<br />

Me<br />

Me<br />

Br<br />

Me<br />

OBn<br />

Br -<br />

3 steps<br />

95%<br />

Br<br />

Me<br />

BnO<br />

H<br />

HO Me Me<br />

Prepinnaterpene<br />

Me<br />

Me<br />

Me<br />

Br<br />

10%<br />

OBn<br />

(+ 20% alkene)<br />

Masamune, T., et al, Tetrahedron Lett, 1987, 28, 4303-4306<br />

Synthesis of Prepinnaterpene & Oppositol:<br />

Improved Core Syntheses<br />

PdCl 2(BINAP)<br />

Me<br />

86%ee<br />

X=I, OTf<br />

Me<br />

PMBO<br />

5 steps<br />

TBSO<br />

EtO 2C<br />

PMBO<br />

H<br />

O O<br />

Oppositol<br />

Me<br />

EtO 2C<br />

O O<br />

Me<br />

ds = "excellent"<br />

O<br />

H<br />

Me<br />

Br<br />

KOt-Bu<br />

PMBO<br />

KO<br />

OBn<br />

O<br />

H<br />

Masamune<br />

Intermediate<br />

EtO<br />

EtO 2C<br />

O O<br />

Me<br />

O<br />

Me<br />

OBn<br />

Shibasaki, M., et al, Tetrahedron Asymm, 1995, 28, 757-766<br />

Kim, D., et al, Tetrahedron Lett, 1997, 38, 415-416<br />

Br<br />

Me<br />

Br<br />

KHMDS<br />

Br<br />

Br<br />

O OPMB


Me<br />

Me<br />

O<br />

Me<br />

Me<br />

Me<br />

OsO 4<br />

83%<br />

Me<br />

O<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Iwata's Laurencial<br />

OH<br />

Me<br />

Me<br />

Me<br />

diastereoselection 95:5<br />

Me<br />

HO<br />

8 steps<br />

Me<br />

Br<br />

Me<br />

PivO<br />

O<br />

O<br />

Me<br />

shaw 17/18 2/4/02 2:05 PM<br />

Me<br />

Br<br />

B<br />

A<br />

OH<br />

O<br />

Me<br />

OH<br />

MeMgI<br />

81%<br />

SOCl 2,<br />

ZnCl 2<br />

81%<br />

87%<br />

OH<br />

MeO OMe<br />

Me<br />

Me<br />

Me Me<br />

Me<br />

Me<br />

Me<br />

Me<br />

O<br />

Me<br />

Me<br />

O<br />

O<br />

Cl<br />

Me<br />

O<br />

Me<br />

Me<br />

Me<br />

O<br />

O<br />

Me<br />

Me<br />

Me<br />

O O<br />

O<br />

Br<br />

O<br />

Br<br />

Me<br />

PPTs<br />

O<br />

O3, MeOH<br />

pTSA<br />

46%<br />

A: diastereoselection >95:5<br />

B: diastereoselection 70:30<br />

Synthesis of Dactylyne<br />

Murai's regioselective epoxy alcohol opening:<br />

O<br />

R OH<br />

R<br />

Br<br />

OTBS<br />

O<br />

O<br />

OBz<br />

OMPM<br />

OH<br />

Ti(Oi-Pr) 4/<br />

Et 2NH-HX<br />

OR<br />

Et 2AlCl/<br />

Et 2NH-HX<br />

Ti(Oi-Pr) 4/<br />

Et2NH-HBr 78%<br />

O<br />

Me<br />

OHC<br />

1) MsCl<br />

2) DBN<br />

73%<br />

Me<br />

Me<br />

Me<br />

Me<br />

Me<br />

Me<br />

Me<br />

O<br />

Cl<br />

O<br />

(+/-)-Laurencial<br />

Br<br />

Me<br />

O<br />

89%<br />

O<br />

Me<br />

O<br />

H<br />

O<br />

Me<br />

OH<br />

Me<br />

Me<br />

Iwata, C, et al, Tetrahedron, 1998, 54, 1396-1406<br />

R OH<br />

R<br />

HO<br />

X<br />

X<br />

HO<br />

HO<br />

see also Sharpless, K. B., et al, J. Org. Chem., 1985, 50, 15571560<br />

Cl<br />

Cl<br />

HO<br />

OMs<br />

OH<br />

Et 2AlCl<br />

90-100%<br />

E = Dactylyne<br />

Z = Isodactylyne<br />

PivO<br />

OH<br />

Br<br />

Br<br />

OTBS<br />

OH<br />

O<br />

OBz<br />

OMs<br />

OMPM<br />

OH<br />

Murai, A, et al, Tetrahedron Lett, 1992, 33,<br />

4349-4352


TMS<br />

TBDPSO<br />

TMS<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong><br />

• Before the 1988 synthesis of Laurenyne by Overman, there was only one synthesis<br />

of an oxocane-containing natural product known, ie T. Masumune's synthesis of Laurencin in<br />

0.003% yield.<br />

• In the last decade, however, many syntheses of medium-ring ether natural products from the<br />

Laurencia series have appeared.<br />

OH<br />

shaw 19/20 2/4/02 2:07 PM<br />

O<br />

H<br />

OAc<br />

Br<br />

Me<br />

Laurencin<br />

Principle Synthetic Challenges:<br />

1) medium ring formation<br />

2) diastereoselectivity across ring<br />

3) regiochemical control of unsaturation<br />

O<br />

Cl<br />

Laurenyne<br />

Overman's Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Laurenyne<br />

O<br />

SAD<br />

Cl<br />

OTs<br />

TMS<br />

single diastereomer<br />

SnCl 4<br />

37%<br />

OH<br />

10 steps<br />

Me<br />

O<br />

TBDPSO<br />

TMS<br />

Et 3NHCl/<br />

Ti(Oi-Pr) 4<br />

68%<br />

O<br />

O<br />

Cl<br />

OEt<br />

Cl<br />

OTs<br />

Laurenyne<br />

TMS OH TMS Cl<br />

+<br />

OH<br />

Cl<br />

HO<br />

OH<br />

regioselectivity 25:75<br />

TsCl/Pyr<br />

86%<br />

OTBDPS<br />

EtO<br />

PPTs TMS Cl<br />

98%<br />

HO<br />

20 Steps, 0.6% yield<br />

Absolute Configuration<br />

Reassigned<br />

OTs<br />

Overman, L. E., et al, J. Am. Chem. Soc., 1988, 110, 2248-2256


PivO<br />

i-Pr 3Si<br />

MeO<br />

PhS<br />

OMe<br />

Me<br />

O<br />

OSEM<br />

OH<br />

Overman's Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Laurencin<br />

O<br />

H<br />

n-BuLi;<br />

(-)-Ipc2BOMe; OH<br />

EtCHO<br />

70% yield<br />

92% ee OSEM<br />

OAc<br />

Me<br />

13 Steps<br />

O<br />

H<br />

OAc<br />

PhS<br />

SnCl4 57%<br />

5g scale<br />

PivO<br />

OH<br />

Me<br />

1) Br2/DPPE 2) TBAF<br />

40%<br />

Me<br />

O<br />

1) TBSOTf<br />

2) 9-BBN<br />

3) Pd(PPh 3) 4<br />

OMe<br />

SPh<br />

OAc<br />

Br<br />

Me<br />

87% for<br />

3 steps<br />

OSEM<br />

OAc<br />

80%<br />

O<br />

H<br />

OAc<br />

Br<br />

Me<br />

SPh<br />

SPh<br />

Laurencin<br />

OTBS<br />

OSEM<br />

O<br />

OSEM<br />

Me<br />

1) TBAF 2)<br />

OMe /DIPEA<br />

Br<br />

OPiv<br />

MeO<br />

Me<br />

24 steps/2% yield<br />

OPiv<br />

Overman, L. E., et al, J. Am. Chem. Soc., 1995, 117, 5958-5966<br />

Overman's Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Isolaurepinnacin<br />

O<br />

1) PhSO2Cl 2) Et2AlCl/ Et2NH2Br 94%<br />

OSO2Ph OH<br />

Br<br />

MeLi<br />

91%<br />

Me Me Me<br />

OTIPS<br />

O<br />

H<br />

Br<br />

H<br />

Cl<br />

(+)-Isolaurepinnacin<br />

12 steps/15% Yield<br />

shaw 21/22 2/4/02 2:08 PM<br />

(R)-BINAl-H<br />

5 steps/<br />

49%<br />

MeO<br />

Me<br />

OMe<br />

OH<br />

O<br />

Br<br />

OTIPS<br />

O<br />

H<br />

Br<br />

H<br />

Cl<br />

diastereoselection >95:5<br />

SiMe 3 Et 2AlCl<br />

SnBu 3<br />

88%<br />

MeO<br />

Br<br />

Cl<br />

1) BCl3 OH 2) TBAF<br />

Me<br />

90%!<br />

Me<br />

5 steps<br />

total<br />

Overman, L. E., et al, J. Am. Chem. Soc., 1993, 115, 9305-9306<br />

Br<br />

Br<br />

OH<br />

OTIPS<br />

O<br />

SiMe 3<br />

OMe<br />

Cl<br />

SiMe 3<br />

AgOTf/<br />

DIPEA<br />

95%<br />

OTIPS


TMS<br />

MeO<br />

Murai's Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Laurencin<br />

OTBS Me<br />

+ Me O<br />

O<br />

O Br<br />

A B<br />

regioselection<br />

7:1<br />

O<br />

Me O<br />

Si<br />

Me<br />

H<br />

O<br />

Si<br />

OH<br />

O<br />

OH<br />

Pt<br />

O<br />

O<br />

H<br />

OAc<br />

OH<br />

Me<br />

Li°<br />

77%<br />

O<br />

H<br />

OAc<br />

OH<br />

thermodynamic<br />

control, 12:1<br />

1) CBr 4/Oct 3P; 87%<br />

2) TBAF-HF/97%<br />

Br<br />

OTBS<br />

PivO<br />

Me<br />

O<br />

Laurencin<br />

Me<br />

O<br />

O<br />

Me<br />

O<br />

1) TBAF/95%<br />

2) SO 3-Pyr/86%<br />

Pb(OAc) 4<br />

92%<br />

O<br />

27 steps from A & B<br />

2.5% yield<br />

PivO<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Holmes & Clark's Laurencin<br />

OTBDPS<br />

OTBDPS<br />

diastereoselection<br />

3.5:1<br />

shaw 23/24 2/4/02 2:12 PM<br />

Me Me<br />

Si<br />

Si<br />

O<br />

Me Me<br />

O<br />

= "Pt(DVS) 2<br />

O<br />

OTBDPS<br />

OTBDPS<br />

HO<br />

O<br />

O<br />

diastereoselection >95:5<br />

KOH/H2O2 HO<br />

65%<br />

HO<br />

O<br />

OTBDPS<br />

OH<br />

O<br />

1) pTSA<br />

2) PivCl<br />

85%<br />

OH<br />

O OH<br />

Me<br />

Me<br />

O<br />

Murai, A., et al, Tetrahedron Lett, 1992, 4345-4348<br />

O<br />

OTBDPS<br />

O<br />

74%<br />

KHMDS<br />

(2R,8αS)-CSO<br />

Me<br />

Me<br />

N<br />

O S<br />

O<br />

O<br />

Br<br />

Me<br />

O<br />

O<br />

O<br />

OTBDPS<br />

O<br />

O<br />

H<br />

O<br />

OAC<br />

Laurencin<br />

OTBDPS<br />

26 steps<br />

0.4% yield<br />

Holmes, A. B., et al, J. Am. Chem. Soc., 1993, 115, 10400-10401.


O<br />

HO<br />

O<br />

1<br />

O<br />

OTBDPS<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Holmes & Clark's Laurencin - Retraction!<br />

KHMDS<br />

(2R,8αS)-CSO<br />

HO<br />

HO<br />

O<br />

O<br />

O<br />

O<br />

OTBDPS<br />

OTBDPS<br />

Br<br />

Me<br />

O<br />

H<br />

OAC<br />

Laurencin<br />

"The synthesis of lactone 1 as reported by J. S. Clark, Ph. D. Thesis, Cambridge University,<br />

1988, is correct. The synthesis of (+)-laurencin in ref 1 is difficult to account for and must<br />

probably be charged to the fallibility of the other junior author and the gullibility of the senior<br />

author."<br />

Holmes, A. B., et al, J. Am. Chem. Soc., 1996, 118, 6806.<br />

OH<br />

O<br />

(R)-Malic Acid<br />

OH<br />

shaw 25/26 2/4/02 2:13 PM<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Holmes & Clark's Laurencin - Retooled<br />

HO<br />

O<br />

Br - PPh 3 +<br />

OH<br />

• Use of various oxidants in the enolate oxidations<br />

failed to provide acceptable yields or selectivities<br />

O<br />

O<br />

OTBDPS<br />

• Route was abandoned and the correct diastereomer<br />

of hydroxy-lactone was prepared from malic acid<br />

• Stereochemical assignments were carefully monitored<br />

en route to laurencin<br />

O<br />

H<br />

Me<br />

O<br />

O<br />

Me<br />

HO<br />

Various [O]<br />

Bad<br />

Reaction!<br />

Br<br />

Me<br />

O<br />

HO<br />

OH<br />

O<br />

O<br />

H<br />

O<br />

OAC<br />

Laurencin<br />

Me<br />

O<br />

Me<br />

O<br />

OTBDPS<br />

Holmes, A. B., et al, J. Am. Chem. Soc., 1997, 119, 7483-7498


HO<br />

Me<br />

O<br />

O<br />

(+)-DET<br />

+<br />

Me<br />

O<br />

O OTBS<br />

12<br />

steps<br />

Cl<br />

Me<br />

shaw 27/28 2/4/02 2:15 PM<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Murai's Obtusenyne<br />

Cl<br />

1) n-BuLi<br />

2) Lindlar's Cat.<br />

OTBS<br />

89%<br />

O O<br />

Cl<br />

O OTBS<br />

HO<br />

Me<br />

diastereoselection<br />

2:1<br />

EtMgBr<br />

CuI<br />

DMDO; DIBALH<br />

71%<br />

Cl<br />

TfO<br />

O OTBS<br />

O<br />

OH<br />

Cl<br />

Br<br />

Me<br />

Cl<br />

OTBS<br />

OTBS<br />

KHMDS/<br />

PhNTf 2<br />

O<br />

(+)-Obtusenyne<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Suzuki's Rogioloxepane A<br />

OBn<br />

OTBS<br />

BnO OH<br />

H H<br />

Me O<br />

OMPM<br />

+<br />

Me<br />

O<br />

11steps<br />

OMPM<br />

OTBS<br />

Br<br />

H H<br />

Cl<br />

O<br />

O O<br />

Cl<br />

O<br />

O<br />

Cl<br />

OH<br />

OTBS<br />

Cl<br />

OTBS<br />

Murai, A., et al, J. Org. Chem., 1999, 64, 2616-2617<br />

n-BuLi/<br />

OBn<br />

BF3•OEt2 Me<br />

78% OTBS<br />

(Bu 3Sn) 2O;<br />

Zn(OTf) 2<br />

75%<br />

Me<br />

(+)-Rogioloxepane<br />

OBn<br />

OH<br />

O<br />

OH<br />

27 steps/5% yield<br />

Absolute Configuration<br />

Confirmed<br />

OMPM<br />

OTBS<br />

OMPM<br />

Suzuki, T., et al, Tetrahedron Lett., 2001, 42, 1543-1546


BnO<br />

N O<br />

BnO<br />

Me<br />

O<br />

H<br />

H<br />

O O<br />

diastereoselection >95:5<br />

BnO<br />

Me<br />

BnO<br />

Me<br />

BnO<br />

O<br />

H<br />

H<br />

+<br />

O<br />

Bn<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Crimmins' Laurencin<br />

O<br />

Bn<br />

N<br />

O<br />

(Cy 3P) 2RuCl 2CHPh<br />

94%<br />

Bn<br />

H<br />

O<br />

Bn<br />

O<br />

N<br />

N<br />

TESO OAc<br />

Me<br />

Me<br />

O<br />

O<br />

O<br />

7 steps<br />

49%<br />

TESO O<br />

shaw 29/30 2/4/02 2:23 PM<br />

H<br />

O<br />

I<br />

O<br />

O<br />

O<br />

NaHMDS/<br />

Allyl-I<br />

71%<br />

NaHMDS/<br />

Allyl-I<br />

75%<br />

Br<br />

Me<br />

BnO<br />

Me<br />

BnO<br />

O<br />

N<br />

O<br />

O<br />

Bn<br />

diastereoselection >95:5<br />

H<br />

O<br />

Bn<br />

O<br />

O<br />

H<br />

OAc<br />

Laurencin<br />

N<br />

O<br />

O<br />

PivCl/Et3N LiXp 76%<br />

HO 2C<br />

OBn<br />

18 Steps/6% yield<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Crimmins' Isolaurallene<br />

O<br />

OSO 2Ar<br />

NaHMDS<br />

75%<br />

(Cy 3P) 2RuCl 2CHPh<br />

OH<br />

94%<br />

LiCuBr2 67%<br />

BnO<br />

Me<br />

BnO<br />

TESO<br />

Me<br />

H<br />

O<br />

H<br />

O<br />

Bn<br />

O<br />

N<br />

TESO<br />

Me<br />

O<br />

O<br />

H<br />

H<br />

OH<br />

O<br />

OBn<br />

Me<br />

BrCH 2CO 2H<br />

NaH; 88%<br />

Me<br />

Crimmins, M. T., et al, Org. Lett., 1999, 1, 2029-2032<br />

O<br />

OAc<br />

O<br />

C<br />

O<br />

NaBH4; Swern<br />

83%<br />

4 steps<br />

OH<br />

65%<br />

BnO<br />

O<br />

Me H<br />

BnO<br />

Me<br />

H<br />

O<br />

CHO<br />

OAc<br />

PPTs/MeOH<br />

CBr4/Oct3P 58%<br />

Br<br />

Br<br />

Me<br />

O<br />

O<br />

H<br />

H<br />

(-)-Isolaurallene<br />

C<br />

OBn<br />

1) (4- d Icr) 2BCH 2CHCH 2<br />

2) Ac 2O; 93%<br />

OBn<br />

Crimmins, M. T., et al, J. Am. Chem. Soc., 2001, 123, 1533-1534<br />

Br


O<br />

PMBO CO 2Et<br />

Br<br />

Me<br />

year<br />

Overman 1995<br />

Murai 1992<br />

Holmes 1997<br />

Boeckman 2001<br />

Crimmins 1999<br />

shaw 31/32 2/4/02 2:23 PM<br />

O<br />

OPMB<br />

CO 2Et<br />

O<br />

H<br />

Boeckman's Laurencin<br />

1) CBS<br />

Reduction<br />

2) PhCOCl<br />

82%<br />

78%<br />

8 steps<br />

O<br />

O<br />

H<br />

H<br />

O<br />

OPMB<br />

Murai<br />

Intermediate<br />

O<br />

PMBO CO2Et Me<br />

O<br />

PMBO<br />

98% ee<br />

9 steps<br />

1) LiAlH 4<br />

2) Dess-<br />

Martin<br />

Br<br />

CO 2Et<br />

Me<br />

O<br />

H<br />

KHMDS<br />

76%<br />

MeO 2C<br />

MeO 2C<br />

PMBO<br />

OAC<br />

Laurencin<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Summary<br />

O<br />

H<br />

OAc<br />

Laurencin<br />

ds<br />

across ring<br />

>95:5<br />

92:8<br />

58:42<br />

-<br />

>99:1<br />

Principle Synthetic Challenges:<br />

1) Medium Ring Ether Formation<br />

2) Alkene Regiochemistry<br />

3) Diastereoselectivity<br />

rs<br />

of alkene #steps %yield<br />

>95:5<br />

88:12<br />

>95:5<br />

-<br />

>95:5<br />

24<br />

>27 (30)<br />

>28<br />

22<br />

18<br />

2<br />

2.5<br />

1.2<br />

4<br />

6<br />

Boeckman, R. K. Jr., et al, Unpublished Results<br />

comments<br />

good ds, general route<br />

*first, but not best<br />

good if claisen route panned out...<br />

Good 8-membered ring synthesis<br />

high yielding, general, but uses<br />

oxazolidinone auxiliary at 3 stages of<br />

the synthesis<br />

*"first" post-masamune


O<br />

Cl<br />

"Br + "<br />

Cl<br />

OH<br />

OH<br />

TMSO<br />

AcO<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Kumausyne & Kumausallene<br />

Me<br />

H<br />

H<br />

O<br />

H<br />

Br<br />

- HOAc<br />

H<br />

O<br />

H<br />

Br<br />

Kumausyne Kumausallene<br />

O<br />

O<br />

Br<br />

Cl<br />

(+/-)-trans-maneonene-B<br />

Holmes, A. B., et al, Chem Comm, 1984, 1594-1595.<br />

Me<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Overman's Kumausyne<br />

O<br />

H<br />

BnOCH2CHO RSO3H 69% O<br />

H<br />

H<br />

O<br />

H<br />

OTBS<br />

(EtO) 2P(O)CLiCl2 88%<br />

TMSO<br />

O<br />

H H<br />

OTBS<br />

n-BuLi<br />

88%<br />

TMSO<br />

shaw 33/34 2/4/02 2:24 PM<br />

O<br />

H H<br />

OTBS<br />

Me<br />

Me<br />

Me<br />

O<br />

OBn<br />

H<br />

O<br />

H<br />

Br<br />

AcO<br />

C<br />

mCPBA<br />

72%<br />

O<br />

O<br />

H<br />

O<br />

OBn<br />

+<br />

O<br />

O<br />

H<br />

O<br />

H<br />

H<br />

14%<br />

58%<br />

O<br />

H<br />

OH<br />

73%<br />

diastereoselection >95:5<br />

4 steps<br />

Me<br />

H<br />

O<br />

SiMe 3<br />

BF 3•OEt 2<br />

H<br />

O<br />

H<br />

Br<br />

(+/-)-Kumausyne<br />

Me<br />

O<br />

Me<br />

O<br />

H<br />

O<br />

H<br />

58%<br />

Me<br />

OBn<br />

CHO<br />

Overman, L. E., et al, J. Am. Chem. Soc., 1991, 113, 5378-5384


MeO<br />

R<br />

O<br />

OTHP<br />

OTHP<br />

OH<br />

O<br />

OMe<br />

TBDPSO<br />

TBDPSO<br />

TBDPSO<br />

shaw 35/36 2/4/02 2:25 PM<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Boukouvalas Kumausyne<br />

5 steps<br />

TMS<br />

HO OH<br />

HO<br />

AcO<br />

O<br />

OTBDPS<br />

5 steps<br />

OTBDPS<br />

H<br />

O<br />

H<br />

Br<br />

(+/-)-Kumausyne<br />

PdCl2(0.1 equiv)<br />

CuCl2(3 equiv)<br />

CO, NaOAc, HOAc<br />

93%<br />

TMS<br />

P + Ph3Br -<br />

93%<br />

91:9 E:Z<br />

Me<br />

O<br />

HO<br />

O<br />

O<br />

O<br />

O<br />

DIBAL-H<br />

100%<br />

Sugimura<br />

Intermediate<br />

OTBDPS<br />

OTBDPS<br />

Boukouvalas, J., et al, J. Org. Chem., 1998, 63, 916-917<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Martín's Biomimetic synthesis of Kumausyne<br />

12 steps<br />

H<br />

OH<br />

O<br />

H H<br />

Br<br />

+<br />

1) TBCD<br />

2) HCl/MeOH<br />

92%<br />

O<br />

H H<br />

Br<br />

diastereoselection 50:50<br />

Me<br />

Me<br />

Me<br />

OH<br />

Br Br<br />

Br<br />

O<br />

TBCD<br />

Br<br />

11 steps<br />

OTHP<br />

OTHP<br />

TBDPSO<br />

TBDPSO<br />

HO<br />

H<br />

OH<br />

1) TBCD<br />

2) HCl/MeOH<br />

79%<br />

O<br />

H H<br />

Br<br />

diastereoselection 83:17<br />

7 steps<br />

H<br />

O<br />

H<br />

Br<br />

(+)-Deacetylkumausyne<br />

Me<br />

Me<br />

Me<br />

Martín, V. S., et al, J. Org. Chem., 1997, 62, 1570-1571


O<br />

TMS<br />

Br<br />

H<br />

O<br />

H<br />

O<br />

H<br />

kumausyne<br />

intermediate<br />

HO<br />

C<br />

OH<br />

O<br />

H<br />

H<br />

O<br />

H<br />

O<br />

H<br />

O<br />

OBn<br />

H<br />

H<br />

O<br />

O<br />

(+/-)-Kumausallene<br />

BnO<br />

Br<br />

OH<br />

Br<br />

O<br />

H<br />

HO<br />

Br<br />

OH<br />

Br<br />

shaw 37/38 2/4/02 2:30 PM<br />

H<br />

O<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Overman's Kumausallene<br />

OTBS<br />

H<br />

1) LHMDS/PhSeCl<br />

2) O3, Pyridine<br />

70%<br />

OTBS<br />

H Br<br />

Me<br />

Me<br />

Me<br />

O<br />

O<br />

H<br />

H<br />

1) DCC/DMAP<br />

2) Sb(SPh) 3<br />

78%<br />

1) Swern<br />

2) TiCl4; 78%; TMS Ti(Oi-Pr) 4<br />

Br<br />

H<br />

ds=84:16<br />

C<br />

H<br />

O<br />

O<br />

H H<br />

O<br />

Br<br />

H<br />

HON<br />

Me<br />

OBn<br />

C<br />

S<br />

NaOMe/<br />

MeOH<br />

83%<br />

diastereoselection<br />

>90:10<br />

S<br />

OSO 2Ar<br />

H<br />

O<br />

H<br />

O<br />

H<br />

HO 2C<br />

+<br />

H<br />

O<br />

H<br />

O<br />

H<br />

H<br />

MeO 2C<br />

O<br />

H<br />

OTBS<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Evans' Kumausallene<br />

1) TBS-Cl/Im.<br />

2) PBu3, CO2Me 97%<br />

OBn<br />

(TBCD)<br />

86%<br />

1) DIBAL-H<br />

- + 2) BrPh3 P<br />

3)TBAF<br />

diastereoselection 94:6<br />

BnO<br />

O<br />

BnO<br />

TMS<br />

diastereoselection 29:71<br />

OBn<br />

OTBS<br />

CO 2Me<br />

H<br />

O<br />

OTBS<br />

H<br />

O<br />

H<br />

O<br />

H<br />

OTBS<br />

Me<br />

LiBr 2Cu;<br />

73%<br />

H<br />

Me<br />

O<br />

OH<br />

Me<br />

Overman, L. E., et al, J. Org. Chem., 1993, 58, 2468-2477<br />

O<br />

H<br />

1) Jones [O]<br />

2) Et3N, Bu3P, PhSeBr<br />

57-74%<br />

O 1) K-Selectride<br />

2) PPTs<br />

84%<br />

Br<br />

H<br />

C<br />

H<br />

O<br />

BnO COSePh<br />

O<br />

CO2Me BnO<br />

O<br />

H H<br />

Br<br />

(-)-Kumausallene<br />

Et 3B, O 2,<br />

(TMS) 3SiH<br />

92%<br />

O<br />

O<br />

CO 2Me<br />

Evans, P. A., et al, Angew. Chem. Int. Ed., 1999, 38, 3175-3177<br />

Me


O<br />

HO<br />

HO<br />

H<br />

HO CO2Et EtO2C OH<br />

H<br />

MeO 2C<br />

Cl<br />

CCl 3<br />

O<br />

OH<br />

OH<br />

6 steps<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Lee's Kumausyne & Kumausallene<br />

Br<br />

8 steps<br />

H<br />

EtO 2C<br />

C<br />

MeO<br />

PhSe<br />

H<br />

O<br />

O<br />

H<br />

H<br />

O<br />

H<br />

O<br />

H<br />

O<br />

O<br />

H H<br />

Br<br />

Kumausallene<br />

I<br />

SePh<br />

CO 2Et<br />

CO 2Et<br />

Me<br />

Bu 3SnH, AIBN<br />

86%<br />

Bu 3SnH, AIBN<br />

86%<br />

13 steps<br />

MeO<br />

EtO 2C<br />

EtO 2C<br />

AcO<br />

O<br />

H<br />

CO2Et O<br />

H<br />

diastereoselection >95:5<br />

13 steps<br />

H<br />

O<br />

H<br />

Br<br />

Kumausyne<br />

O<br />

H<br />

H O<br />

9 Steps<br />

O<br />

H<br />

H O<br />

CO 2Et<br />

OH<br />

Overman Intermediate<br />

Me<br />

Lee, E, et al, Tetrahedron Lett, 1997, 38, 7757-7758<br />

Lee, E, et al, Tetrahedron Lett, 1998, 39, 317-318<br />

Synthesis of Aplysia <strong>Natural</strong> <strong>Products</strong>:<br />

Successful Application of Lee's Radical Methodology<br />

H<br />

O<br />

O<br />

H<br />

H<br />

(3Z)-Dactomelyne<br />

shaw 39/40 2/4/02 2:31 PM<br />

Diethyl Tartrate<br />

O<br />

Et<br />

Br<br />

7 steps;<br />

45%<br />

O<br />

Ph<br />

7 steps<br />

55%<br />

AIBN<br />

Cl<br />

Cy3SnH Cl<br />

67% MeO2C TBDPSO<br />

Cl<br />

H<br />

O<br />

O<br />

H<br />

H<br />

O<br />

O<br />

CO 2Me<br />

O<br />

H<br />

Br<br />

diastereoselection >95:5<br />

MeO 2C<br />

Cl<br />

Ph<br />

Et 3B<br />

TMS 3SiH<br />

98%<br />

AIBN<br />

Cy 3SnH<br />

67%<br />

Ph<br />

O<br />

O<br />

HSiR 3<br />

O<br />

TBDPSO<br />

Cl<br />

Lee, E, et al, J. Am. Chem. Soc. , 1995, 117, 8017-8017<br />

H<br />

O<br />

Ph<br />

MeO2C O<br />

H<br />

O<br />

diastereoselction 93:7<br />

Cl<br />

O<br />

H<br />

H<br />

9 steps<br />

40%<br />

O<br />

Br<br />

Br CO 2Me


L-arabinose<br />

TMS<br />

HO<br />

O<br />

3<br />

steps<br />

O<br />

TMS<br />

81%<br />

HO<br />

Overman<br />

Sugimura<br />

Lee<br />

Martín<br />

Boukoulavas<br />

shaw 41/42 2/4/02 2:33 PM<br />

Me<br />

O<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Sugimura's Kumausyne<br />

O<br />

Me<br />

O<br />

OTBDPS<br />

O<br />

Me<br />

PPh 3 + Br -<br />

OTBDPS<br />

CHO<br />

O<br />

Me<br />

DIBAL-H<br />

100%<br />

5 steps<br />

11%<br />

+ SiMe 2Ph BF 3•OEt 2<br />

O<br />

O<br />

AcO<br />

O<br />

OTBDPS<br />

H<br />

O<br />

H<br />

Br<br />

Kumausyne<br />

7 steps<br />

30%<br />

Me<br />

Me<br />

Me<br />

O<br />

O<br />

Me<br />

HO<br />

O<br />

O<br />

O<br />

Me<br />

Me<br />

12%<br />

O O<br />

Sugimura, H., et al, Tetrahedron Lett, 1995, 38, 5789-5792<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Summary of Kumausyne and Kumausallene<br />

AcO<br />

Br<br />

C<br />

H O<br />

Me<br />

H<br />

H<br />

O<br />

H<br />

Br<br />

H<br />

O<br />

H<br />

Br<br />

Kumausyne Kumausallene<br />

1991<br />

1995<br />

1997<br />

1997<br />

1998<br />

13/5.4<br />

16/1.3<br />

17/2.5<br />

21/13<br />

13/6.2<br />

Overman<br />

Lee<br />

Evans<br />

1993<br />

1998<br />

1998<br />

+<br />

Me<br />

O<br />

O<br />

SiMe 2Ph<br />

Me Me<br />

73%<br />

diastereoselection >95:5<br />

year #steps/%yield year #steps/%yield<br />

17/2<br />

29/0.4<br />

14/6<br />

Me


Br<br />

Me<br />

Me<br />

Cl<br />

Me<br />

O<br />

regioselection 33:66<br />

Me<br />

Synthesis of Aplysia <strong>Natural</strong> <strong>Products</strong>:<br />

Jung's Aplysiapyranoid D<br />

N SH<br />

Me +<br />

Cl<br />

OTBS<br />

Br<br />

+<br />

Cl<br />

O<br />

Me Me<br />

Br<br />

Cl<br />

4 steps<br />

Me<br />

O<br />

Me<br />

Me<br />

Me<br />

OTBS<br />

TBAF<br />

43% (two steps)<br />

Me<br />

O<br />

Me<br />

Me<br />

OH<br />

Me Me<br />

TBCD<br />

Cl<br />

Me<br />

1) Swern<br />

2) Cr2Cl2/CHCl3 77%<br />

OH<br />

Me<br />

Me<br />

OH<br />

Br<br />

SAE<br />

90%<br />

>95%ee<br />

Cl<br />

OTBS<br />

Me<br />

TBSCl<br />

Me<br />

O<br />

Me<br />

Me<br />

83%<br />

O<br />

Me Me<br />

Cl<br />

Aplysiapyranoid D<br />

Synthesis of Aplysia <strong>Natural</strong> <strong>Products</strong>:<br />

Jung's Aplysiapyranoids A & C<br />

OH<br />

Cl<br />

OH<br />

Me Me<br />

Me<br />

Me<br />

Me<br />

shaw 43/44 2/4/02 2:34 PM<br />

5 steps<br />

OH<br />

NH 4Br/DMSO<br />

Ti(OiPr) 4<br />

Br<br />

94%<br />

4 steps<br />

Br<br />

Me<br />

OH<br />

Me<br />

Me<br />

Cl<br />

OH<br />

Me<br />

OH<br />

Me<br />

Me<br />

Cl<br />

OH<br />

NH 4Cl/DMSO<br />

Ti(OiPr) 4<br />

84%<br />

Cl<br />

Me<br />

Me<br />

Me<br />

OH<br />

OH<br />

Jung, M. E., et al, J. Org. Chem., 1992, 56, 1347-1348<br />

1) Swern<br />

2) CrCl2/CHCl3 22%<br />

TBCD<br />

41%<br />

Br<br />

Br<br />

TBCD<br />

40%<br />

Me<br />

Me<br />

Me<br />

OH<br />

Me<br />

Me<br />

O<br />

Me<br />

Cl<br />

Aplysiapyranoid A<br />

Br<br />

Cl<br />

Me<br />

Jung, M. E., et al, Tetrahedron Lett., 1993, 34, 923-926<br />

Jung, M. E., et al, J. Org. Chem., 1998, 63, 2982-2987<br />

Br<br />

Cl<br />

Me<br />

O<br />

Me<br />

Cl<br />

Aplysiapyranoid C


Me<br />

Me<br />

Br<br />

Me<br />

Me<br />

Br<br />

E,E-<br />

Farnesol<br />

Geraniol<br />

O<br />

O<br />

Me<br />

Me<br />

7 steps<br />

22%<br />

shaw 45/46 2/4/02 2:36 PM<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Thyrsiferol & Venusatriol<br />

O<br />

Me<br />

O<br />

H<br />

Me OH Me<br />

OH<br />

O<br />

H<br />

Me<br />

OH<br />

Me<br />

Me<br />

Me<br />

O<br />

Me<br />

Me<br />

O<br />

H<br />

O<br />

Me OH Me<br />

OH<br />

O<br />

H<br />

Me<br />

OH<br />

Me<br />

(+)-Thysiferol Br<br />

(+)-Venusatriol<br />

Me<br />

Me<br />

"Br + "<br />

Me<br />

Me<br />

O<br />

H 2O<br />

Me<br />

O<br />

O<br />

H +<br />

Me<br />

Me<br />

O<br />

O<br />

Me<br />

Me Me<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Corey's Venusatriol<br />

Me<br />

HO<br />

O<br />

Me<br />

O<br />

CN<br />

TBCD<br />

Zn°/HOAc<br />

Br<br />

Me<br />

O<br />

CN<br />

O<br />

R<br />

+ Me<br />

Me<br />

O<br />

Me<br />

O<br />

H<br />

61%<br />

Br<br />

+<br />

epimer 5%<br />

26%<br />

DIBAL-H<br />

54%<br />

Me<br />

O CHO<br />

Me<br />

Me<br />

Me<br />

O<br />

O<br />

H<br />

Br A<br />

Me<br />

BnO<br />

OH<br />

H<br />

OH<br />

PCC<br />

Me 43%<br />

Me<br />

Me<br />

BnO<br />

O<br />

OH<br />

1) Swern<br />

H<br />

Me<br />

OH<br />

Me<br />

Br<br />

Me H<br />

Me<br />

O<br />

H<br />

Me<br />

O O<br />

t-BuLi; CeCl3; A<br />

85%<br />

O<br />

Me<br />

O<br />

H<br />

Me OH Me<br />

O<br />

H<br />

OH<br />

(+)-Venusatriol<br />

H<br />

Me<br />

OH<br />

Me<br />

2) MeMgBr<br />

3) TsOH/H2O 84%<br />

Me<br />

Me<br />

O<br />

Me<br />

O<br />

Me<br />

O<br />

H<br />

HO H<br />

H<br />

Me<br />

H<br />

O<br />

O<br />

H<br />

Me<br />

Me<br />

O<br />

diastereoselection >95:5 Br<br />

diastereoselection >95:5<br />

Corey, E. J., et al, Tetrahedron Lett., 1988, 26, 3171-3174


Me<br />

Me<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Shirahama and Forsyth Improve the Bromocyclization<br />

R OH "Br +"<br />

Me<br />

+ Br<br />

Me<br />

O<br />

Me<br />

R<br />

H<br />

Me<br />

OR<br />

+ Br<br />

Me<br />

Me<br />

R<br />

O<br />

Me<br />

H<br />

+ Br<br />

Me<br />

Me Me<br />

O H<br />

Me<br />

Me<br />

O<br />

Me<br />

R<br />

Me<br />

Me<br />

O<br />

Me<br />

R<br />

Me<br />

Br O<br />

Me<br />

R<br />

Shirahama<br />

Br Br<br />

Me<br />

R = H 80% 0% 20%<br />

R = 0% 10% 90%<br />

R =<br />

R =<br />

Me<br />

Me<br />

Forsyth<br />

OBz<br />

OBz<br />

NC OH<br />

shaw 47/48 2/4/02 2:37 PM<br />

47% 32% 21%<br />

12% 36% 52%<br />

• Bulky R favors correct diastereomer, but also favors THF formation<br />

Me<br />

Me<br />

CN<br />

Shirahama, H., et al, J. Org. Chem., 1990, 55, 5088-5107<br />

Forsyth, C. J., et al, J. Am. Chem. Soc, 2000, 122, 9099-9108<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Forsyth's Oxymercuration as an alternative<br />

Hg(TFA) 2<br />

KBr<br />

X<br />

X<br />

Hg<br />

Me<br />

O<br />

H<br />

Me<br />

OR<br />

X Me<br />

X<br />

X Hg<br />

Me<br />

X<br />

Hg<br />

O<br />

Me<br />

H<br />

CN<br />

Me Me<br />

Me Me<br />

Me O CN<br />

Me O CN<br />

BrHg BrHg<br />

100%<br />

(79% isolated)<br />

Me Me<br />

Me O R<br />

Br<br />

Br 2, Pyridine<br />

300 nm<br />

79%<br />

Me<br />

BrHg<br />

Me<br />

0% 0%<br />

Me<br />

Me<br />

R<br />

Me<br />

Me Me<br />

O H<br />

O<br />

CN<br />

Me<br />

CN<br />

NC OH<br />

Me<br />

Cannot Be Prepared<br />

Enantioselectively or<br />

Resolved!


Me<br />

Me<br />

Me<br />

Me<br />

Synthesis of Aplysia <strong>Natural</strong> <strong>Products</strong>:<br />

Hoye's Polycyclization<br />

Me<br />

OH<br />

Me HO Me<br />

Homogeraniol<br />

2 steps<br />

Me<br />

Br<br />

Me H<br />

Me<br />

Me<br />

O<br />

Me<br />

O<br />

Me<br />

H<br />

Br<br />

Me H<br />

Me<br />

(+/-)-Aplysistatin<br />

shaw 49/50 2/4/02 2:39 PM<br />

H<br />

O<br />

CO 2Et<br />

Me SPh CO2Me<br />

OBn<br />

SPh<br />

AgBF 4/Br 2<br />

Br<br />

Me<br />

1) Hg(TFA) 2<br />

2) KBr<br />

3) Br2, LiBr, pyr, O2 44%<br />

Me<br />

O<br />

H<br />

Me<br />

O<br />

+<br />

Br<br />

Me<br />


Me<br />

Me<br />

NPS =<br />

Me<br />

Me<br />

Me<br />

Me<br />

HO<br />

HO<br />

Synthesis of Aplysia <strong>Natural</strong> <strong>Products</strong>:<br />

White's Aplysistatin<br />

O<br />

O<br />

1) NPS*/Et 3N<br />

2) NaBH 4<br />

79%<br />

Me<br />

shaw 51/52 2/4/02 2:41 PM<br />

R<br />

O<br />

SPh O<br />

O<br />

O<br />

N<br />

SPh<br />

Hg(TFA) 2<br />

KBr<br />

Br 2, LIBr, O 2, pyr<br />

Br<br />

Me H<br />

Me<br />

Br<br />

Me H<br />

Me<br />

Me<br />

O<br />

Me<br />

O<br />

Br<br />

Me H<br />

Me<br />

Me<br />

O<br />

H<br />

O<br />

(+/-)-Aplysistatin<br />

O<br />

O<br />

Me<br />

O<br />

Br<br />

Me H<br />

Me<br />

13% 28%<br />

H<br />

26%<br />

O<br />

O<br />

SPh<br />

mCPBA/∆<br />

68%<br />

Corey's Use of Mercuriocyclization:<br />

Aphidicolin & Stemodinone<br />

CO2Me Me<br />

OPO(OEt) 2<br />

t-Bu<br />

Hg(OTFA) 2;<br />

NaCl<br />

60%<br />

R=H or R=OTBS<br />

O<br />

O<br />

HO<br />

HO<br />

+<br />

+<br />

O<br />

Br<br />

Me H<br />

Me<br />

Me<br />

O<br />

H<br />

7%<br />

O<br />

O<br />

O<br />

O<br />

SPh<br />

White, J. D., J. Am. Chem. Soc., 1982, 104, 3923-3928<br />

ClHg<br />

H<br />

Me<br />

R<br />

CO2Me Me<br />

O<br />

CO2Me CO2Me Me Me<br />

O<br />

O<br />

H<br />

Me<br />

Me H<br />

(+/-)-Aphidicolin<br />

O<br />

H<br />

Me<br />

O<br />

H<br />

Me<br />

Me<br />

Me H<br />

HO Me<br />

H<br />

(+/-)-Stemodinone<br />

Corey, E. J. et al, J. Am. Chem. Soc., 1980, 102, 1742-1744<br />

Corey, E. J. et al, J. Am. Chem. Soc., 1980, 102, 7612-7613


Me<br />

Me<br />

Me<br />

Me<br />

Me<br />

Br<br />

Me H<br />

Me<br />

Synthesis of Laurencia <strong>Natural</strong> <strong>Products</strong>:<br />

Nishizawa's Isoaplysin-20<br />

Me<br />

OAc<br />

(E, E)-Farnesyl Acetate<br />

Me<br />

OH<br />

Me<br />

H H<br />

1.8%<br />

(+/-)-Isoaplysin-20<br />

Hg(TFA) 2/PhNMe 2<br />

KBr; LiBr, Br 2, O 2<br />

OH<br />

NaOH/H 2O<br />

Nishizawa, M., et al, J. Am. Chem. Soc., 1984, 106, 4290-4291<br />

O<br />

PhSe<br />

O<br />

Me<br />

Br<br />

Me H<br />

Me<br />

Me<br />

Br<br />

Me H<br />

Me<br />

Me<br />

OH<br />

Me<br />

H H<br />

16%<br />

Me<br />

OH<br />

Me<br />

H H<br />

1.8%<br />

OAc<br />

OAc<br />

Synthesis of Plocamium <strong>Natural</strong> <strong>Products</strong>:<br />

The Diels-Alder approach<br />

Me CHO<br />

Tol/170 °C<br />

53%<br />

Me<br />

CHO<br />

Li<br />

Cl Cl<br />

diastereoselection 77:23<br />

+ CHClBr -<br />

+<br />

30%<br />

Me<br />

Cl<br />

Cl<br />

Zn/HOAc<br />

89%<br />

Me<br />

shaw 53/54 2/4/02 2:43 PM<br />

Cl<br />

Cl<br />

"10%"<br />

HO<br />

CH 2Br 2<br />

Zn°/TiCl 4<br />

64%<br />

Me<br />

PhSe<br />

Cl<br />

+ Z isomer<br />

Me<br />

Cl<br />

NBS<br />

Cl<br />

Zn/HOAc<br />

"100%"<br />

Cl<br />

NaOCl<br />

75%<br />

PhSe<br />

Cl<br />

Me<br />

+<br />

H<br />

Me<br />

Me Me<br />

Me<br />

Me<br />

chair/chair/chair<br />

Me<br />

Br<br />

Me H<br />

Me<br />

H H<br />

Cl<br />

Me<br />

Me<br />

Br<br />

OH<br />

Cl<br />

PhSeCl<br />

68%<br />

Cl<br />

Br<br />

O<br />

Me<br />

Me<br />

Cl<br />

Cl<br />

Me<br />

Cl<br />

H<br />

O<br />

Me<br />

H H<br />

Me<br />

17%<br />

Me<br />

H<br />

O<br />

Me<br />

chair/boat/chair<br />

Me<br />

Me<br />

Me<br />

Cl<br />

Cl PHICl<br />

Br<br />

Br<br />

2<br />

+<br />

23%<br />

19% Cl 33% Cl<br />

Cl<br />

Cl<br />

Williard, P. G., et al, J. Org. Chem., 1985, 50, 3738-3749.<br />

Cl<br />

Me<br />

O<br />

OAc<br />

Me<br />

O


Me<br />

O<br />

Me<br />

Cl<br />

Cl<br />

O<br />

Me<br />

Si<br />

Si<br />

O<br />

Me<br />

O<br />

O<br />

Synthesis of Plocamium <strong>Natural</strong> <strong>Products</strong>:<br />

Shea's T2IM Diels-Alder Approach<br />

Me<br />

Si<br />

Me<br />

Me<br />

Br<br />

PhICl 2<br />

61%<br />

OH<br />

OH<br />

3 steps<br />

66%<br />

O<br />

O<br />

Me<br />

Br<br />

O<br />

CO 2t-Bu<br />

shaw 55/56 2/4/02 2:45 PM<br />

O<br />

Cl<br />

O<br />

Cl<br />

Cl<br />

Tol/∆<br />

74%<br />

96%<br />

DIBAL-H<br />

85%<br />

Me<br />

Si<br />

Me<br />

Cl<br />

Me<br />

Me<br />

Si<br />

O<br />

OH<br />

Cl<br />

O Br<br />

Me<br />

Me<br />

one<br />

pot!<br />

Br<br />

OH<br />

MeMgBr/Mg°<br />

Cl<br />

O<br />

Me<br />

Br<br />

1) TPAP/NMO<br />

2) CrCl2/CHCl3 E/Z=94:6<br />

89%; 58%<br />

Me<br />

Si<br />

Me<br />

Me<br />

Si<br />

Me<br />

Cl<br />

O<br />

Mg<br />

MgBr<br />

NiCl 2(dppp)/ Cl<br />

OMgBr<br />

Synthesis of Callipeltoside Sidechain:<br />

Chloroalkene Cyclopropanation<br />

57%<br />

Cl<br />

Cl<br />

O<br />

diastereoselection >98:2<br />

Et2Zn, TFA,<br />

CH2I2 82%<br />

O<br />

CO 2t-Bu<br />

DIBAL-H<br />

90%<br />

Cl<br />

Cl<br />

R<br />

Me<br />

Shea, K. J., et al, J. Org. Chem., 1997, 62, 8962-8963<br />

Cl<br />

61%<br />

R=CH 2OH<br />

OH<br />

Br<br />

Olivo, H., et al, Org. Lett., 2001, 2, 4055-4058<br />

Evans, D. A., et al, Org. Lett., 2001, 3, 503-505<br />

Patterson, I., et al, Angew. Chem. Int. Ed., 2001, 603-607<br />

Cl<br />

NOVOZYM-435<br />

vinylpropionate<br />


I<br />

MeO 2C<br />

MeO 2C<br />

Synthesis of Virantmycin:<br />

Corey's Ortho-Azaxylylene Intramolecular Diels-Alder<br />

O LiCl<br />

+<br />

Me<br />

Pd(OAc) 2 (2 mol%)<br />

HOAc<br />

85%<br />

Me<br />

CO2Et O<br />

O<br />

N<br />

O<br />

Me Me<br />

Cl<br />

Me<br />

4 steps<br />


HO<br />

HO<br />

Cl<br />

Halomon: The Final Frontier<br />

• The biggest challenge in HNP synthesis is the preparation of acyclic halogenated terpenes<br />

• Only two syntheses of Halomon have been reported, and there is still much room for improvement<br />

OH<br />

Cl Me<br />

Br<br />

N +<br />

Me Me<br />

Cl -<br />

Cl Cl<br />

Viehe's Salt<br />

Br<br />

Halomon<br />

75%<br />

Me<br />

Cl<br />

1) TBSCl<br />

2) Et 4N + Cl 2 -<br />

59%<br />

Cl<br />

TBSO<br />

Cl<br />

Me<br />

Br<br />

Cl Me<br />

Br<br />

Bu 4NBrCl 2<br />

HPLC<br />

25%<br />

OH<br />

Cl<br />

OH<br />

Et 4N + Br 3 -<br />

97%<br />

MeC(OMe) 3<br />

pTsOH/ 170 °C<br />

55%<br />

Cl<br />

Me<br />

Cl DBU<br />

Cl<br />

Me<br />

86%<br />

Br<br />

Cl<br />

Cl<br />

Br<br />

Neither Synthesis<br />

Gives ANY<br />

DIastereoselectivity<br />

Cl<br />

TBSO<br />

OH<br />

Me<br />

Br<br />

Br<br />

O<br />

Cl<br />

OMe<br />

MgBr<br />

87%<br />

Me<br />

Cl<br />

Me<br />

Me<br />

6 steps<br />

73%<br />

Cl<br />

Br<br />

Bu4NBrCl2 HPLC<br />

27%<br />

Cl<br />

Myrcene<br />

CHO<br />

Mioskowski, C., et al, Angew. Chem. Int. Ed., 1998, 37, 2085-2086<br />

Hirama, M., et al, Angew. Chem. Int. Ed., 2000, 39, 3430-3431<br />

Outlyers<br />

• Several recent diastereoselective syntheses of halogenated natural products<br />

employ selective, but not terribly general, halogenation reactions.<br />

Me<br />

Me<br />

Me<br />

Me<br />

O<br />

O<br />

O 75% Me<br />

Me H<br />

(-)-Carvone<br />

O -<br />

HO 2C<br />

OTBS<br />

NHCBz<br />

PhtN NPht<br />

O<br />

O<br />

O<br />

HS<br />

LiCl/<br />

CSA<br />

N +<br />

EDC<br />

Fukuyama, T., et al, J. Am. Chem. Soc., 1994, 116, 3125-3126<br />

Carreira, E. M., et al, J. Am. Chem. Soc., 2000, 122, 8793-8794<br />

shaw 59/60 2/4/02 2:49 PM<br />

N<br />

H<br />

+ CO2 S<br />

Cl<br />

Me<br />

OTBS<br />

H<br />

O<br />

NHCBz<br />

PhtN NPht<br />

HN<br />

RO<br />

Cl<br />

NH<br />

O<br />

O<br />

N<br />

NHR NHR<br />

O<br />

H HO<br />

H<br />

N<br />

N<br />

H<br />

CCl 4<br />

NH<br />

Me<br />

Me<br />

H<br />

Cl Me<br />

H<br />

NH<br />

Me<br />

NC<br />

(-)-Hapalindole G<br />

Cl<br />

Axinellamines<br />

OTBS<br />

NHCBz<br />

O<br />

O<br />

Me<br />

PhtN NPht<br />

diastereoselection >91:9


H 2N<br />

N<br />

H 2N<br />

H<br />

N<br />

H<br />

N<br />

N<br />

NH 2<br />

R 1<br />

N<br />

N<br />

O<br />

OH<br />

diastereoselection 81:19<br />

R 2<br />

H 2N<br />

N<br />

Outlyers II<br />

H 2N<br />

H<br />

N<br />

H<br />

N<br />

N<br />

H<br />

Cl +<br />

H<br />

NH 2<br />

Bn OTIPS<br />

OTIPS<br />

O<br />

Bn<br />

N<br />

N<br />

NTs<br />

O<br />

Bn<br />

O<br />

N<br />

N<br />

O<br />

H<br />

NTs<br />

O<br />

H<br />

OH<br />

Bn Cl<br />

OTBS<br />

∆; 79%<br />

NCS; 79%<br />

Bn OTIPS<br />

Bn OTIPS<br />

O<br />

N<br />

N H<br />

NTs<br />

mCPBA<br />

O<br />

N<br />

N OH H<br />

NTs<br />

Bn<br />

Bn<br />

H O<br />

H O<br />

shaw 61/62 2/4/02 2:51 PM<br />

OTBS<br />

R 1<br />

N<br />

N<br />

Summary<br />

O<br />

R 2<br />

H 2N<br />

HN<br />

HN<br />

N<br />

Cl<br />

HN<br />

H2N HO<br />

RO<br />

Cl<br />

N<br />

N<br />

HN<br />

H<br />

N<br />

H<br />

N<br />

H<br />

NH 2<br />

NH<br />

NH<br />

H<br />

R 1<br />

X<br />

Palauamines/<br />

Styloguanidines<br />

OH<br />

NHR<br />

Axinellamines<br />

NHR<br />

Kinnel, R. G., et al, J. Am. Chem. Soc., 1993, 115, 3376-3377<br />

Romo, D., et al, Org. Lett., 2001, 3, 1535-1538<br />

Poitier, P., et al, Eur. J. Org. Chem., 2001, 237-243<br />

• Many selective approaches to the construction of halogen-bearing stereocenters<br />

have been developed<br />

• Nucleophilic displacement of alcohols is an important and selective method for<br />

the construction of a bromine-bearing center<br />

• Mono- and polycyclizations provide the opportunity to use the introduction of bromine<br />

to control the stereo- and regiochemistry of other stereogenic centers<br />

• Few methods are truly general and most are developed in the context of one particular<br />

natural product class<br />

Y<br />

O<br />

R 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!