04.10.2012 Views

ANAGRAM Hardware for HiFi™ Family Data Sheet June ... - ABC PCB

ANAGRAM Hardware for HiFi™ Family Data Sheet June ... - ABC PCB

ANAGRAM Hardware for HiFi™ Family Data Sheet June ... - ABC PCB

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Q5M-DS-110A JUNE-2007<br />

Abstract<br />

Q5 asynchronous sample rate converter data sheet.<br />

<strong>ANAGRAM</strong> <strong>Hardware</strong> <strong>for</strong> HiFi <strong>Family</strong><br />

Copyright © Anagram Technologies SA<br />

All rights reserved. No part of this work covered by Anagram Technology SA copyright may be reproduced or<br />

copied in any <strong>for</strong>m or by any means (graphic, electronic or mechanical, including photocopying, recording,<br />

taping or in<strong>for</strong>mation retrieval systems) without the written permission of Anagram Technology SA.<br />

Submit Documentation Feedback<br />

<strong>Data</strong> <strong>Sheet</strong><br />

<strong>June</strong> 2007<br />

<strong>ANAGRAM</strong> Technologies SA<br />

ZI Le Trési 6A<br />

1028 Préverenges<br />

Switzerland<br />

Phone: + 41 21 804 1960<br />

Fax: + 41 21 804 1961<br />

info@anagramtech.com


Document History<br />

Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Document Control<br />

No. Primary Author(s) Description of Version Date Completed<br />

100A TLn Initial revision 30-08-2005<br />

110A PHi Update to match the User Manual 110A 19-06-2007<br />

Related Documentation<br />

Part Number Description<br />

Q5M-PB-100A Q5 product brief.<br />

Q5E-UM-110A Q5 Evaluation board user manual.<br />

Ordering In<strong>for</strong>mation<br />

Part Number Description Package<br />

Q5M-PL-100A Asynchronous sample rate converter. Plastic<br />

Release Notice<br />

This document is under configuration control and updates will only be issued as a replacement document<br />

with a new version number.<br />

.<br />

Submit Documentation Feedback Page 2 of 56


About This <strong>Data</strong> <strong>Sheet</strong><br />

Company Address<br />

Notice<br />

Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Preface<br />

Preface<br />

This document provides the in<strong>for</strong>mation needed to design and integrate the Q5<br />

asynchronous sample rate converter module into your product. For more in<strong>for</strong>mation about<br />

this product, please refer to the product description available from the <strong>ANAGRAM</strong><br />

Technologies web site at http://www.anagramtech.com.<br />

<strong>ANAGRAM</strong> Technologies SA<br />

ZI Le Trési 6A<br />

1028 Préverenges<br />

Switzerland<br />

Phone +41 21 804 1960<br />

Fax +41 21 804 1961<br />

Email info@anagramtech.com<br />

<strong>ANAGRAM</strong> Technologies S.A. provides the enclosed product(s) under the following<br />

conditions:<br />

The user assumes all responsibility and liability <strong>for</strong> proper and safe handling of the goods.<br />

Further, the user indemnifies <strong>ANAGRAM</strong> Technologies from all claims arising from the<br />

handling or use of the goods. Please be aware that the products received may not be<br />

regulatory compliant or agency certified (FCC, UL, CE, etc.). EXCEPT TO THE EXTENT<br />

OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO<br />

THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL<br />

DAMAGES. <strong>ANAGRAM</strong> Technologies currently deals with a variety of customers <strong>for</strong><br />

products, and there<strong>for</strong>e our arrangement with the user is NOT EXCLUSIVE. <strong>ANAGRAM</strong><br />

Technologies assumes NO LIABILITY FOR APPLICATIONS ASSISTANCE, CUSTOMER<br />

PRODUCT DESIGN, SOFTWARE PERFORMANCE, OR INFRINGEMENT OF PATENTS<br />

OR SERVICES DESCRIBED HEREIN.<br />

Please read the <strong>Data</strong> <strong>Sheet</strong> and, specifically, the Warnings and Restrictions notice in the<br />

<strong>Data</strong> <strong>Sheet</strong> prior to handling the product. This notice contains important safety in<strong>for</strong>mation<br />

about temperatures and voltages. For further safety concerns, please contact the<br />

<strong>ANAGRAM</strong> Technologies customer support. Persons handling the product must have<br />

electronics training and observe good laboratory practice standards. No license is granted<br />

under any patent right or other intellectual property right of <strong>ANAGRAM</strong> Technologies<br />

covering or relating to any machine, process, or combination in which such <strong>ANAGRAM</strong><br />

Technologies products or services might be or are used.<br />

Module Warnings and Restrictions<br />

It is important to operate this product within the specified input and output ranges described<br />

in the <strong>Data</strong> <strong>Sheet</strong>. Exceeding the specified input range may cause unexpected operation<br />

and/or irreversible damage to the Module. If there are questions concerning the input<br />

range, please contact <strong>ANAGRAM</strong> Technologies customer support prior to connecting the<br />

input power. Applying loads outside of the specified output range may result in unintended<br />

Submit Documentation Feedback Page 3 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Preface<br />

operation and/or possible permanent damage to the Module. Please consult the <strong>Data</strong><br />

<strong>Sheet</strong> prior to connecting any load to the Module. If there is uncertainty as to the load<br />

specification, please contact <strong>ANAGRAM</strong> Technologies customer support.<br />

How to Use This Document<br />

Throughout this document, the abbreviation QM and the term Q5 Module are<br />

synonymous with the Q5 Asynchronous Sample Rate Converter.<br />

Chapter 1 Overview of the Q5 Module functionality.<br />

Chapter 2 Electrical and per<strong>for</strong>mance characteristics.<br />

Chapter 3 Interfacing and application in<strong>for</strong>mation <strong>for</strong> hardware and systems engineers.<br />

Chapter 4 Software mode operation.<br />

Chapter 5 <strong>Hardware</strong> mode operation.<br />

Chapter 6 Typical per<strong>for</strong>mance plots.<br />

Chapter 7 Mechanical and packaging in<strong>for</strong>mation.<br />

In<strong>for</strong>mation About Cautions and Warnings<br />

If You Need Assistance<br />

Note<br />

A NOTE provides additional or special in<strong>for</strong>mation to assist<br />

operation and maintenance personnel. Disregarding a NOTE<br />

may cause inconvenience but will not result in personal injury or<br />

equipment damage.<br />

Caution<br />

A CAUTION is provided in a procedure whenever electrical or<br />

mechanical damage may occur. Failure to heed a CAUTION<br />

may result in some <strong>for</strong>m of damage to the equipment; however,<br />

personal injury is unlikely.<br />

If you have questions regarding either the use of this module or the in<strong>for</strong>mation contained<br />

in the accompanying documentation, please contact the <strong>ANAGRAM</strong> Technologies<br />

Customer Support +41 (21) 804-1960 or visit the <strong>ANAGRAM</strong> Technologies web site at<br />

http://www.anagramtech.com.<br />

Submit Documentation Feedback Page 4 of 56


Repair and Maintenance<br />

Copyright<br />

Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Preface<br />

Routine maintenance is not required. This product named as Q5 Module is warranted to<br />

be free of any defect with respect to per<strong>for</strong>mance, quality, reliability and workmanship <strong>for</strong> a<br />

period of SIX (6) months from the date of shipment from <strong>ANAGRAM</strong> Technologies SA.<br />

In the event that your product proves to be defective in any way during this warranty period,<br />

we will gladly repair or replace this piece of equipment with a unit of equal or superior<br />

per<strong>for</strong>mance characteristics.<br />

Should you find this Q5 Module has failed after your warranty period has expired, we will<br />

repair your defective piece of equipment <strong>for</strong> as long as suitable replacement components<br />

are available. You, the owner, will bear any labor and/or component costs incurred in the<br />

repair or refurbishment of said equipment, beyond the SIX (6) months warranty period. Any<br />

attempt to repair this product by anyone during this period other than by <strong>ANAGRAM</strong><br />

Technologies SA or any authorized 3 rd party, will void your warranty.<br />

<strong>ANAGRAM</strong> Technologies SA reserves the right to assess any modifications or repairs<br />

made by you and decide if they fall within warranty limitations, should you decide to return<br />

your product <strong>for</strong> repair. In no event shall <strong>ANAGRAM</strong> Technologies SA be liable <strong>for</strong> direct,<br />

indirect, special, incidental, or consequential damages (including loss and profits) incurred<br />

by the use of this product. Implied warranties are expressly limited to the duration of this<br />

warranty.<br />

A Return Material Authorization number (RMA) will be issued to you, as well, as specific<br />

shipping instructions, should you wish our factory to repair your Q5 Module. The RMA<br />

number has to be requested from <strong>ANAGRAM</strong> Technologies S.A be<strong>for</strong>e sending back the<br />

failed module. A temporary replacement, if required, will be made available <strong>for</strong> a nominal<br />

charge. Any shipping costs incurred, will be the responsibility of the customer. All products<br />

shipped to you from <strong>ANAGRAM</strong> Technologies SA, will be shipped collect.<br />

© 2006 <strong>ANAGRAM</strong> Technologies SA. All right reserved<br />

Contents of this publication may be not reproduced in any <strong>for</strong>m without the written<br />

permission of <strong>ANAGRAM</strong> Technologies S.A. Reproduction or reverse engineering of<br />

copyrighted software is prohibited.<br />

Submit Documentation Feedback Page 5 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Table of Contents<br />

LIST OF FIGURES ............................................................................................................ 8<br />

LIST OF TABLES.............................................................................................................. 9<br />

LIST OF PLOTS .............................................................................................................. 10<br />

1 INTRODUCTION....................................................................................................... 12<br />

1.1 Highlights........................................................................................................................................12<br />

1.2 Functional Block Diagram...............................................................................................................12<br />

1.3 DSS Synchronization..................................................................................................................13<br />

1.4 Q5 Upsampling ...........................................................................................................................14<br />

1.5 ATF Adaptive Time Filtering .......................................................................................................14<br />

1.6 DSD to PCM Conversion................................................................................................................15<br />

1.7 DSF Filtering ...............................................................................................................................16<br />

2 CHARACTERISTICS AND SPECIFICATIONS ........................................................ 17<br />

2.1 Electrostatic Discharge Warning ....................................................................................................17<br />

2.2 Recommended Operating Conditions ............................................................................................17<br />

2.3 Absolute Maximum Operating Conditions......................................................................................17<br />

2.4 Per<strong>for</strong>mance Specifications............................................................................................................18<br />

2.5 Digital Filter Characteristics............................................................................................................18<br />

2.6 Pin Descriptions..............................................................................................................................18<br />

3 INTERFACING AND OPERATION........................................................................... 21<br />

3.1 General Description........................................................................................................................21<br />

3.2 Typical Connections .......................................................................................................................22<br />

3.3 Interfacing to Digital Audio Receivers and Transmitters ................................................................23<br />

3.4 Interfacing to High Per<strong>for</strong>mance D/A Converters...........................................................................24<br />

3.5 Reference Master Clock.................................................................................................................24<br />

3.6 Reset and Power On ......................................................................................................................25<br />

3.7 Audio Serial Ports - RX0 Input .......................................................................................................25<br />

3.8 Audio Serial Ports - TX0 Output .....................................................................................................27<br />

3.9 Audio Serial Ports – TX1 Output ....................................................................................................28<br />

3.10 <strong>Data</strong> Resolution and Dither ............................................................................................................28<br />

3.11 Incoming Sampling Rate and Locking............................................................................................29<br />

3.12 Muting.............................................................................................................................................29<br />

3.13 Phase Inversion..............................................................................................................................29<br />

3.14 Direct Downsampling......................................................................................................................29<br />

3.15 Stereo DSD to PCM Conversion ....................................................................................................29<br />

3.16 Interrupt Request / Unlock Detection .............................................................................................30<br />

3.17 <strong>Data</strong> Valid Input ..............................................................................................................................30<br />

3.18 Serial Port Interface (SPI Port).......................................................................................................30<br />

Submit Documentation Feedback Page 6 of 56


4 SOFTWARE MODE .................................................................................................. 33<br />

4.1 General Description........................................................................................................................33<br />

4.2 Module Registers Overview ...........................................................................................................33<br />

4.2.1 Input Control Register ..............................................................................................33<br />

4.2.2 Output Control Register............................................................................................34<br />

4.2.3 Process Control Register .........................................................................................34<br />

4.2.4 Software Revision Register ......................................................................................34<br />

4.2.5 Product ID Register ..................................................................................................35<br />

5 HARDWARE MODE ................................................................................................. 36<br />

5.1 General Description........................................................................................................................36<br />

5.2 Default Configuration......................................................................................................................36<br />

5.3 Function Selection..........................................................................................................................36<br />

6 PERFORMANCE PLOTS ......................................................................................... 37<br />

6.1 Standard Measurement Conditions................................................................................................37<br />

6.2 FFT Plot, Sine wave, 0dBFS, 1kHz Per<strong>for</strong>mance Plots .................................................................37<br />

6.3 FFT Plot, Sine wave, -60dBFS, 1kHz Per<strong>for</strong>mance Plots..............................................................40<br />

6.4 FFT Plot, Sine wave, 0dBFS and -3dBFS, 20kHz Per<strong>for</strong>mance Plots...........................................43<br />

6.5 FFT Plot, Sine wave, 0dBFS, 80kHz Per<strong>for</strong>mance Plots ...............................................................46<br />

6.6 Linearity, 200Hz Tone, 0 -140dBFS input, Per<strong>for</strong>mance Plots ......................................................47<br />

6.7 FFT Plot, IMD, 10 and 11kHz Per<strong>for</strong>mance Plots ..........................................................................49<br />

6.8 THD+N vs Input Amplitude.............................................................................................................51<br />

6.9 THD+N vs Input Frequency............................................................................................................53<br />

6.10 Passband Ripple ............................................................................................................................55<br />

7 PACKAGING AND DIMENSIONS ............................................................................ 56<br />

7.1 Package Dimensions Metric...........................................................................................................56<br />

Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Submit Documentation Feedback Page 7 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

List of Figures<br />

Figure 1 Functional block diagram.................................................................................................13<br />

Figure 2 Clock domain block diagram illustrating DSS ..............................................................13<br />

Figure 3: ATF vs standard upsampling ..........................................................................................14<br />

Figure 4: ATF vs standard upsampling error path .........................................................................15<br />

Figure 5: ATF vs standard upsampling jitter response ..................................................................15<br />

Figure 6: ATF vs standard upsampling jitter analysis ....................................................................15<br />

Figure 7 Pinout top down view.......................................................................................................20<br />

Figure 8 Typical connections in software mode.............................................................................22<br />

Figure 9 Typical connections in hardware mode. ..........................................................................22<br />

Figure 10 Interfacing to a digital receiver.......................................................................................23<br />

Figure 11 Interfacing to a digital transmitter...................................................................................23<br />

Figure 12 Interfacing with dual mono 384kHz D/A converters.......................................................24<br />

Figure 13 Reset timing requirements.............................................................................................25<br />

Figure 14 Input stereo data <strong>for</strong>mats...............................................................................................26<br />

Figure 15 TX0 output data <strong>for</strong>mats ................................................................................................27<br />

Figure 16 TX1 output data <strong>for</strong>mat ..................................................................................................28<br />

Figure 17 SPI protocol <strong>for</strong> register read / write operations ............................................................31<br />

Figure 18 SPI port timing requirements .........................................................................................32<br />

Figure 19 Housing physical dimensions (metric). ..........................................................................56<br />

Submit Documentation Feedback Page 8 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

List of Tables<br />

Table 1 Recommended operating ratings......................................................................................17<br />

Table 2 Absolute maximum ratings................................................................................................17<br />

Table 3 Per<strong>for</strong>mance specifications...............................................................................................18<br />

Table 4 Digital filter characteristics ................................................................................................18<br />

Table 5 Pinout Descriptions. ..........................................................................................................20<br />

Table 6 Reference master clock frequency ...................................................................................24<br />

Table 7 Reset timing requirements ................................................................................................25<br />

Table 8 Serial input clocks in PCM mode ......................................................................................26<br />

Table 9 Serial input clocks in DSD mode.......................................................................................27<br />

Table 10 TX0 output frequency sampling vs CLKIN frequency .....................................................27<br />

Table 11 TX0 output clocks ...........................................................................................................27<br />

Table 12 TX1 output frequency sampling vs CLKIN frequency .....................................................28<br />

Table 13 TX1 output clocks ...........................................................................................................28<br />

Table 14 SPI byte definitions <strong>for</strong> register read / write operations ..................................................31<br />

Table 15 SPI port timing requirements ..........................................................................................32<br />

Table 16: Overview of command registers ....................................................................................33<br />

Table 17 Input Control Register .....................................................................................................34<br />

Table 18 Output Control Register ..................................................................................................34<br />

Table 19 Process Control Register ................................................................................................34<br />

Table 20 Software Revision Register.............................................................................................35<br />

Table 21 Product ID Register.........................................................................................................35<br />

Submit Documentation Feedback Page 9 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

List of Plots<br />

Plot 1: FFT 0dBFS 1kHz PCM 32.0 - PCM 48.0............................................................................37<br />

Plot 2: FFT 0dBFS 1kHz PCM 32.0 - PCM 192.0..........................................................................37<br />

Plot 3: FFT 0dBFS 1kHz PCM 44.1 - PCM 48.0............................................................................38<br />

Plot 4: FFT 0dBFS 1kHz PCM 44.1 - PCM 192.0..........................................................................38<br />

Plot 5: FFT 0dBFS 1kHz PCM 48.0 - PCM 96.0............................................................................38<br />

Plot 6: FFT 0dBFS 1kHz PCM 44.1 - PCM 96.0............................................................................38<br />

Plot 7: FFT 0dBFS 1kHz PCM 48.0 - PCM 48.0............................................................................38<br />

Plot 8: FFT 0dBFS 1kHz PCM 48.0 - PCM 192.0..........................................................................38<br />

Plot 9: FFT 0dBFS 1kHz PCM 192.0 - PCM 48.0..........................................................................39<br />

Plot 10: FFT 0dBFS 1kHz PCM 192.0 - PCM 192.0......................................................................39<br />

Plot 11: FFT 0dBFS 1kHz DSD - PCM 96.0 ..................................................................................39<br />

Plot 12: FFT 0dBFS 1kHz PCM 192.0 - PCM 96.0........................................................................39<br />

Plot 13: FFT 0dBFS 1kHz DSD - PCM 48.0 ..................................................................................39<br />

Plot 14: FFT 0dBFS 1kHz DSD - PCM 192.0 ................................................................................39<br />

Plot 15: FFT -60dBFS 1kHz PCM 44.1 - PCM 48.0.......................................................................40<br />

Plot 16: FFT -60dBFS 1kHz PCM 44.1 - PCM 192.0.....................................................................40<br />

Plot 17: FFT -60dBFS 1kHz PCM 44.1 - PCM 96.0.......................................................................40<br />

Plot 18: FFT -60dBFS 1kHz PCM 48.0 - PCM 48.0.......................................................................40<br />

Plot 19: FFT -60dBFS 1kHz PCM 48.0 - PCM 96.0.......................................................................41<br />

Plot 20: FFT -60dBFS 1kHz PCM 192.0 - PCM 48.0.....................................................................41<br />

Plot 21: FFT-60dBFS 1kHz PCM 192.0 - PCM 192.0....................................................................41<br />

Plot 22: FFT -60dBFS 1kHz PCM 48.0 - PCM 192.0.....................................................................41<br />

Plot 23: FFT -60dBFS 1kHz PCM 192.0 - PCM 96.0.....................................................................41<br />

Plot 24: FFT -60dBFS 1kHz DSD - PCM 48.0 ...............................................................................41<br />

Plot 25: FFT -60dBFS 1kHz DSD - PCM 96.0 ...............................................................................42<br />

Plot 26: FFT-60dBFS 1kHz DSD - PCM 192.0 ..............................................................................42<br />

Plot 27: FFT 0dBFS 20kHz PCM 44.1 - PCM 48.0........................................................................43<br />

Plot 28: FFT 0dBFS 20kHz PCM 44.1 - PCM 192.0......................................................................43<br />

Plot 29: FFT 0dBFS 20kHz PCM 44.1 - PCM 96.0........................................................................43<br />

Plot 30: FFT 0dBFS 20kHz PCM 48.0 - PCM 48.0........................................................................43<br />

Plot 31: FFT 0dBFS 20kHz PCM 48.0 - PCM 96.0........................................................................44<br />

Plot 32: FFT 0dBFS 20kHz PCM 192.0 - PCM 48.0......................................................................44<br />

Plot 33: FFT 0dBFS 20kHz PCM 192.0 - PCM 192.0....................................................................44<br />

Plot 34: FFT 0dBFS 20kHz PCM 48.0 - PCM 192.0......................................................................44<br />

Plot 35: FFT 0dBFS 20kHz PCM 192.0 - PCM 96.0......................................................................44<br />

Plot 36: FFT -3dBFS 20kHz DSD - PCM 48.0 ...............................................................................44<br />

Plot 37: FFT -3dBFS 20kHz DSD - PCM 96.0 ...............................................................................45<br />

Plot 38: FFT -3dBFS 20kHz DSD - PCM 192.0 .............................................................................45<br />

Plot 39: FFT 0dBFS 80kHz PCM 192.0 - PCM 192.0....................................................................46<br />

Plot 40: LINEARITY 200Hz PCM 44.1 - PCM 48.0........................................................................47<br />

Plot 41: LINEARITY 200Hz PCM 44.1 - PCM 192.0......................................................................47<br />

Submit Documentation Feedback Page 10 of 56


Plot 42: LINEARITY 200Hz PCM 44.1 - PCM 96.0........................................................................47<br />

Plot 43: LINEARITY 200Hz PCM 48.0 - PCM 48.0........................................................................47<br />

Plot 44: LINEARITY 200Hz PCM 48.0 - PCM 96.0........................................................................48<br />

Plot 45: LINEARITY 200Hz PCM 192.0 - PCM 48.0......................................................................48<br />

Plot 46: LINEARITY 200Hz PCM 192.0 - PCM 192.0....................................................................48<br />

Plot 47: LINEARITY 200Hz PCM 48.0 - PCM 192.0......................................................................48<br />

Plot 48: LINEARITY 200Hz PCM 192.0 - PCM 96.0......................................................................48<br />

Plot 49: IMD -7dBFS 10kHz 11kHz PCM 44.1 - PCM 48.0 ...........................................................49<br />

Plot 50: IMD -7dBFS 10kHz 11kHz PCM 44.1 - PCM 192.0 .........................................................49<br />

Plot 51: IMD -7dBFS 10kHz 11kHz PCM 44.1 - PCM 96.0 ...........................................................49<br />

Plot 52: IMD -7dBFS 10kHz 11kHz PCM 48.0 - PCM 48.0 ...........................................................49<br />

Plot 53: IMD -7dBFS 10kHz 11kHz PCM 48.0 - PCM 192.0 .........................................................50<br />

Plot 54: IMD -7dBFS 10kHz 11kHz PCM 192.0 - PCM 48.0 .........................................................50<br />

Plot 55: IMD -7dBFS 10kHz 11kHz PCM 192.0 - PCM 192.0 .......................................................50<br />

Plot 56: THD+N vs AMPL 1kHz PCM 44.1 - PCM 48.0 .................................................................51<br />

Plot 57: THD+N vs AMPL 1kHz PCM 44.1 - PCM 192.0 ...............................................................51<br />

Plot 58: THD+N vs AMPL 1kHz PCM 44.1 - PCM 96.0 .................................................................51<br />

Plot 59: THD+N vs AMPL 1kHz PCM 48.0 - PCM 48.0 .................................................................51<br />

Plot 60: THD+N vs AMPL 1kHz PCM 48.0 - PCM 96.0 .................................................................52<br />

Plot 61: THD+N vs AMPL 1kHz PCM 96.0 - PCM 48.0 .................................................................52<br />

Plot 62: THD+N vs AMPL 1kHz PCM 192.0 - PCM 48.0 ...............................................................52<br />

Plot 63: THD+N vs AMPL 1kHz PCM 48.0 - PCM 192.0 ...............................................................52<br />

Plot 64: THD+N vs AMPL 1kHz PCM 96.0 - PCM 192.0 ...............................................................52<br />

Plot 65: THD+N vs AMPL 1kHz PCM 192.0 - PCM 96.0 ...............................................................52<br />

Plot 66: THD+N vs FREQ 0dBFS PCM 44.1 - PCM 48.0 ..............................................................53<br />

Plot 67: THD+N vs FREQ 0dBFS PCM 44.1 - PCM 192.0 ............................................................53<br />

Plot 68: THD+N vs FREQ 0dBFS PCM 44.1 - PCM 96.0 ..............................................................53<br />

Plot 69: THD+N vs FREQ 0dBFS PCM 48.0 - PCM 48.0 ..............................................................53<br />

Plot 70: THD+N vs FREQ PCM 48.0 - PCM 96.0..........................................................................54<br />

Plot 71: THD+N vs FREQ PCM 96.0 - PCM 48.0..........................................................................54<br />

Plot 72: THD+N vs FREQ PCM 192.0 - PCM 48.0........................................................................54<br />

Plot 73: THD+N vs FREQ PCM 48.0 - PCM 192.0........................................................................54<br />

Plot 74: THD+N vs FREQ PCM 96.0 - PCM 192.0........................................................................54<br />

Plot 75: THD+N vs FREQ PCM 192.0 - PCM 96.0........................................................................54<br />

Plot 76: Passband Ripple 0dBFs PCM 44.1 - PCM 48.0 ...............................................................55<br />

Plot 77: Passband Ripple 0dBFs PCM 44.1 - PCM 192.0 .............................................................55<br />

Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Submit Documentation Feedback Page 11 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Introduction<br />

1 Introduction<br />

This chapter gives a brief introduction to the features and principle technologies behind the<br />

Q5 Module a 384kHz high per<strong>for</strong>mance asynchronous sample rate converter.<br />

1.1 Highlights<br />

The Q5 Module is a high per<strong>for</strong>mance asynchronous sample rate converter designed <strong>for</strong><br />

high end, pro and consumer audio applications. Key features <strong>for</strong> the Q5 Module include:<br />

High resolution asynchronous 24bit / 384kHz sample rate converter.<br />

Integrates with DSS synchronization technology <strong>for</strong> superb jitter rejection.<br />

DSD to PCM conversion with Q5 Upsampling <strong>for</strong> seamless audio <strong>for</strong>mat<br />

integration.<br />

Automatic input sampling frequency sensing.<br />

Supports sample rates input from 32 to 192kHz and word length from 16 to 24bit.<br />

Up to -147dBFS THD+N (1kHz, 0dBFS).<br />

Two digital output ports, 8xFS upsampled output port and an additional direct<br />

downsampled 1x / 2x / 4xFS output port are available.<br />

Input <strong>for</strong>mat: I2S or 2 channel DSD.<br />

Output <strong>for</strong>mat: I2S and DSP.<br />

Selectable output word length and dithering.<br />

Standalone hardware and configurable software modes available.<br />

1.2 Functional Block Diagram<br />

The Q5 Module integrates four key technologies, Q5 Upsampling, DSS<br />

Synchronization, ATF Adaptive Time Filtering, and DSF SACD Conversion <strong>for</strong> DSD<br />

processing support to deliver a highly integrated asynchronous sample rate converter and<br />

digital synchronizer. The module features a single audio input port capable of supporting<br />

PCM data up to 24bit from frequencies 32 to 192kHz or stereo DSD (2.8224MHz). In either<br />

case, the DSD signal or the direct PCM input are upsampled to a common internal 8xFS<br />

PCM <strong>for</strong>mat.<br />

Submit Documentation Feedback Page 12 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

1.3 DSS Synchronization<br />

Figure 1 Functional block diagram<br />

Introduction<br />

The Q5 Module employs a concept of clock management called DSS synchronization<br />

which allows any incoming audio stream to be resynchronized and retimed to a local high<br />

quality clock. By using a stable clock reference, the negative effects of inter-component<br />

jitter can be minimized. When converting the digital audio signal to an analog through high<br />

per<strong>for</strong>mance D/A converters, this reduction in jitter has enormous benefits in the level of<br />

detail and clarity in the reconstructed analog sound.<br />

Figure 2 Clock domain block diagram illustrating DSS<br />

Submit Documentation Feedback Page 13 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

1.4 Q5 Upsampling<br />

Introduction<br />

Q5 Upsampling allows digital audio signals from virtually any audio source to be<br />

resampled, resynchronized and retimed to extraordinary levels of detail. In effect,<br />

upsampling the digital data stream (up to 384kHz) allows existing “standard” CDs to have<br />

the enhanced audio clarity, richness and dynamic range that would normally be associated<br />

with SACD or DVD-A disks “upgrading” the tremendous investment that has already been<br />

made in high quality CD recordings. You may be astonished once you begin to hear what<br />

you have been missing!<br />

Three proprietary <strong>ANAGRAM</strong> technologies are included in Q5: adaptive time filtering,<br />

data-to-system synchronization, and a virtual time-domain model. These technologies<br />

effectively reduce noise artefacts caused by imperfect digital systems and allow the digital<br />

signal to closer represent the true analog sound of the studio mastered audio data.<br />

1.5 ATF Adaptive Time Filtering<br />

Adaptive Time Filtering or ATF is a resampling process that allows audio data to be<br />

interpolated at a higher precision than standard techniques used in off-the-shelve sample<br />

rate converters. ATF uses an advanced polynomial curve fitting algorithm that closer<br />

matches the original audio data, than sample-and-hold, or piece-wise linear estimation<br />

interpolators, commonly used today. This advanced technique allows jitter invoked errors in<br />

the resampling process to be minimized to a point where they no longer become relevant,<br />

and as this process is extremely efficient, ATF allows Q5 Upsampling to be implemented<br />

on low cost DSPs boosting overall system per<strong>for</strong>mance without impacting on cost.<br />

Standard interpolators are of two types, sample-and-hold, or piece-wise linear and typically<br />

have a maximum output signal sampling frequency limited to 192kHz. The diagram below<br />

shows a comparison between normal upsampling and Q5 Upsampling running at 384kHz<br />

using ATF in the theoretical case where all clocking is jitter free. In the following diagrams<br />

we will show how ATF provides superior per<strong>for</strong>mance in the presence of jitter and how it<br />

minimizes the impact of resampling jitter.<br />

Figure 3: ATF vs standard upsampling<br />

The first thing to notice between ATF and other interpolators is the error path between<br />

output samples. This error path in a sample-and-hold interpolator will have a path that does<br />

not follow the original sample data, as show below. In the case of ATF, the error path is<br />

determined by the smooth curve fitting algorithm, which recalculates a new path every<br />

sample, resulting in a path that closely follows the original audio input data.<br />

Submit Documentation Feedback Page 14 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Introduction<br />

Figure 4: ATF vs standard upsampling error path<br />

Having an error path that closely matches the original data will have two benefits:<br />

resampling errors caused by jitter appearing on data clocks and by using arbitrary non<br />

integer sample rates e.g. 44.1kHz to 48kHz will be minimized. In the case of Q5 the<br />

extremely small residual error that is left is designed to be beyond the dynamic range of<br />

24bit audio which is far superior of that of sample-and-hold or piece-wise linear<br />

interpolators.<br />

Figure 5: ATF vs standard upsampling jitter response<br />

Per<strong>for</strong>ming an frequency domain analysis of the resampling error invoked by data jitter or<br />

arbitrary non integer sample ratios we find that ATF has some interesting properties. Firstly<br />

since ATF is a non-linear process resampling errors are uncorrelated with amplitude,<br />

which is not the case with the sample and hold interpolator, and secondly due to the<br />

smooth time domain function of ATF, error harmonics will be greatly reduced.<br />

Figure 6: ATF vs standard upsampling jitter analysis<br />

1.6 DSD to PCM Conversion<br />

The Q5 Module can use a Direct Stream Digital (DSD) audio stream @ 2.8224MHz (64 x<br />

44.1kHz) as input audio source. A DSD stream is a one bit delta-sigma modulated digital<br />

audio signal sampled in a sequence of very high frequency. This <strong>for</strong>mat is used to store<br />

audio on Super Audio Compact Disc (SACD). Audio processing of the input DSD stream<br />

inside the Q5 Module is done by first converting the DSD data to PCM <strong>for</strong>mat thanks to<br />

Submit Documentation Feedback Page 15 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Introduction<br />

the DSF Filtering, then using standard PCM audio processing techniques. The audio<br />

channel configuration supported by the Q5 Module is 2-channel stereo DSD.<br />

1.7 DSF Filtering<br />

Due to its very high sampling rate (2.8224MHz) and one bit nature, DSD is incompatible<br />

with already implemented signal processing functions targeting standard PCM data. Thus<br />

Anagram has developed Direct Stream Filtering (DSF Filtering) algorithm that can<br />

convert DSD streams to PCM up to 8xFS with superb quality. The Q5 Module integrates<br />

this feature in order to supply very high audio quality from a DSD audio stream and<br />

there<strong>for</strong>e significantly enhance per<strong>for</strong>mance of any audio applications requiring SACD<br />

support.<br />

Submit Documentation Feedback Page 16 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Interfacing and Operation<br />

2 Characteristics and Specifications<br />

This chapter identifies important in<strong>for</strong>mation regarding the Q5 Module that you should<br />

know be<strong>for</strong>e getting started.<br />

2.1 Electrostatic Discharge Warning<br />

Many of the components in the Q5 Module are susceptible to damage by electrostatic<br />

discharge (ESD). Customers are advised to observe proper ESD handling precautions<br />

when unpacking and handling the Q5 Module, including the use of a grounded wrist strap<br />

at an approved ESD workstation.<br />

Caution<br />

Failure to observe ESD handling procedures may result in<br />

damage to the Q5 Module.<br />

2.2 Recommended Operating Conditions<br />

Hereafter is given recommended conditions where the module should work properly.<br />

Exceeding these conditions is not advisable but acceptable. Table 1 summarizes the<br />

recommended data points.<br />

Parameter Recommended Condition<br />

Power Supply +3.3V / +3.6V<br />

Input Audio VIL(min/max): 0V / +0.4V VIH(min/max): +2.2 / +3.6V<br />

Input SPI VIL(min/max): 0V / +0.4V VIH(min/max): +2.2 / +3.6V<br />

Table 1 Recommended operating ratings<br />

2.3 Absolute Maximum Operating Conditions<br />

The user should be aware of the absolute maximum operating conditions <strong>for</strong> the Q5<br />

Module. Exceeding these conditions may result in damage to the QM. Table 2 summarizes<br />

the critical data points.<br />

Parameter Maximum Condition<br />

Power Supply −0.5V / +3.8V<br />

Input Audio −0.3 to +3.6V<br />

Input SPI −0.3 to +3.6V<br />

Table 2 Absolute maximum ratings<br />

Submit Documentation Feedback Page 17 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Caution<br />

Interfacing and Operation<br />

Failure to respect the Absolute Maximum Operating conditions<br />

may result in damage to the internal Q5 Module components.<br />

2.4 Per<strong>for</strong>mance Specifications<br />

Parameter Min Typ Max Unit<br />

Input Resolution 16 - 24 bit<br />

Input Frequency 32 - 192 kHz<br />

Sample Rate Ratio – Upsampling 1:12<br />

Sample Rate Ratio – Downsampling 4:1<br />

Dynamic Range - 24 - bit<br />

THD+N -140 -144 -147 dB<br />

Table 3 Per<strong>for</strong>mance specifications<br />

2.5 Digital Filter Characteristics<br />

Parameter Typ Unit<br />

Passband 0.454 x FSin -<br />

Passband Ripple ±0.004 dB<br />

Stopband 0.546 x FSin -<br />

Stopband Attenuation 150 dB<br />

2.6 Pin Descriptions<br />

Table 4 Digital filter characteristics<br />

PIN # Name I/O Description<br />

1 VDD1 Power<br />

2 VDD2 Power<br />

3 RESET<br />

4 MD_CS Input<br />

Digital Power - Digital core power supply,<br />

+3.3V.<br />

Digital Power - Digital core power supply,<br />

+3.3V.<br />

Input Reset – Active low.<br />

Control port Chip Select (SPI) – Internally<br />

pulled-up with a 10k resistor.<br />

5 MD_SCLK Input Control Port Clock - SPI port clock input<br />

Submit Documentation Feedback Page 18 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

6 MD_MOSI Input<br />

Interfacing and Operation<br />

Serial Control <strong>Data</strong> Input (SPI) – MD_MOSI<br />

is the input data line <strong>for</strong> the control port<br />

interface.<br />

7 MD_MISO Output<br />

Serial Control <strong>Data</strong> Output (SPI) –<br />

MD_MISO is the ouput data from the control<br />

port interface.<br />

8 DGND1 Ground Ground <strong>for</strong> I/O and core logic.<br />

9 CLKIN Input<br />

10 DGND2 Ground Cut Pin<br />

Master Clock Input – Master clock input <strong>for</strong><br />

module. Typically a crystal based source at<br />

24.5760MHz.<br />

11 FLAG0 Input Not used – Connect to GND.<br />

12 FLAG1 Input<br />

DSD Input – High indicates that the incoming<br />

audio is a 2 channels DSD audio stream, low<br />

<strong>for</strong> 2 channels PCM stream .<br />

13 FLAG2 Input Not used – Connect to GND.<br />

14 FLAG3 Input<br />

15 DETECT Input<br />

<strong>Data</strong> Valid – When low, the incoming audio<br />

data stream is valid and should be processed.<br />

When high, the incoming audio data stream is<br />

not valid and the output is muted.<br />

Reserved <strong>for</strong> Backwards Compatibility –<br />

Do not connect this pin.<br />

16 DGND3 Ground Ground <strong>for</strong> I/O and core logic.<br />

17 RX0_FSYNC Input<br />

18 RX0_BITCLK Input<br />

19 RX0_SDATA1 Input<br />

20 RX0_SDATA2 Input<br />

PCM Serial Audio Input Frame Sync –<br />

Frame sync clock <strong>for</strong> audio data on<br />

RX0_SDATA1 pin. Do not connect in DSD.<br />

Serial Audio Input bit Clock – PCM/DSD<br />

Serial bit clock <strong>for</strong> audio data on on<br />

RX0_SDATA1 pin.<br />

Serial Audio <strong>Data</strong> PCM / DSD Left – Stereo<br />

PCM audio data serial input pin. DSD left-<br />

channel audio data serial input pin.<br />

Serial Audio <strong>Data</strong> DSD Right – DSD rightchannel<br />

audio data serial input pin.<br />

21 DGND4 Ground Ground <strong>for</strong> I/O and core logic.<br />

22 TX1_FSYNC Output<br />

23 TX1_BITCLK Output<br />

24 TX1_SDATA1 Output<br />

Serial Audio Output Frame Sync – Frame<br />

sync clock <strong>for</strong> audio data on TX1_SDATA1 /<br />

TX1_SDATA2 pin.<br />

Serial Audio Output bit Clock – Serial bit<br />

clock <strong>for</strong> audio data on on TX1_SDATA1 /<br />

TX1_SDATA2 pin.<br />

Serial Audio Output Left / Stereo –<br />

Upsampled left mono channel PCM audio<br />

data serial output pin when configured <strong>for</strong><br />

8xFS Upsampling.<br />

25 TX1_SDATA2 Output<br />

Serial Audio Output Right – Upsampled<br />

right channel PCM audio data serial output pin<br />

when configured <strong>for</strong> 8xFS Upsampling.<br />

26 DGND5 Ground Ground <strong>for</strong> I/O and core logic.<br />

Submit Documentation Feedback Page 19 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Interfacing and Operation<br />

27 TX0_FSYNC Output<br />

Serial Audio Output Frame Sync – Frame<br />

sync clock <strong>for</strong> audio data on TX0_SDATA1<br />

pin.<br />

28 TX0_BITCLK Output<br />

Serial Audio Output bit Clock – Serial bit<br />

clock <strong>for</strong> audio data on on TX0_SDATA1 pin.<br />

Serial Audio Output Stereo – Direct<br />

29 TX0_SDATA1 Output downsampled stereo channel PCM audio data<br />

serial output pin.<br />

30 TX0_SDATA2 Output Serial Audio Output Reserved– Reserved.<br />

31 DGND6 Ground Ground <strong>for</strong> I/O and core logic.<br />

32 INTREQ Output<br />

32<br />

Interrupt Request – Uses when event occurs<br />

(like unlock).<br />

Table 5 Pinout Descriptions.<br />

INTREQ<br />

DGND6<br />

TX0_SDATA2<br />

TX0_SDATA1<br />

TX0_BITCLK<br />

TX0_FSYNC<br />

DGND5<br />

TX1_SDATA2<br />

TX1_SDATA1<br />

TX1_BITCLK<br />

TX1_FSYNC<br />

DGND4<br />

RX0_SDATA2<br />

RX0_SDATA1<br />

RX0_BITCLK<br />

RX0_FSYNC<br />

Top down view<br />

17<br />

1 16<br />

VDD1<br />

VDD2<br />

RESET<br />

MD_CS<br />

MD_SCLK<br />

MD_MOSI<br />

MD_MISO<br />

DGND1<br />

CLKIN<br />

DGND2<br />

FLAG0<br />

FLAG1<br />

FLAG2<br />

FLAG3<br />

DETECT<br />

DGND3<br />

Figure 7 Pinout top down view<br />

Submit Documentation Feedback Page 20 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Interfacing and Operation<br />

3 Interfacing and Operation<br />

This chapter provides practical application in<strong>for</strong>mation <strong>for</strong> hardware and systems engineers<br />

who will be designing the Q5 Module into their product.<br />

3.1 General Description<br />

The Q5 Module is a two-channel, asynchronous sample rate converter (ASRC) with input<br />

sampling frequencies from 32 to 192kHz, and outputs up to 384kHz being supported. Bestin-class<br />

dynamic range and THD+N are achieved by employing an innovative upsampling<br />

kernel known as Q5 with better than 144dB of image rejection. The digital filters provide<br />

<strong>for</strong> lower latency processing and a direct downsampling option allows <strong>for</strong> dual digital output<br />

ports driven at different sampling frequencies.<br />

The audio input port supports the I2S standard and the 2 channels 2.8224MHz DSD audio<br />

data <strong>for</strong>mats <strong>for</strong> supporting virtually any standard audio source from CD, USB, HDMI or<br />

SACD. The output port supports the I2S standard and DSP audio data <strong>for</strong>mats. Word<br />

lengths from 16 to 24bit are supported. Input ports are operated in Slave mode, deriving<br />

their word and bit clocks from external input devices. Output ports are operated in Master<br />

mode allowing the incoming data stream to be reclocked and synchronized around a single<br />

high quality master clock, referred to as DSS synchronization. In the Master mode of the<br />

output ports, the FSYNC and BITCLK clocks are derived from the system master clock<br />

CLKIN.<br />

The Q5 Module includes a four-wire SPI port, which is used to access on-chip control<br />

and status registers in Software mode. The SPI port facilitates interfacing to<br />

microprocessors or digital signal processors that support synchronous serial peripherals. In<br />

<strong>Hardware</strong> mode, dedicated control flags are provided <strong>for</strong> basic functions. These pins can<br />

be hard-wired or driven by logic or host control. In addition to the normal control interfaces,<br />

the Q5 Module provides a soft mute function in software mode as well as automatic input<br />

frequency sensing.<br />

Submit Documentation Feedback Page 21 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

3.2 Typical Connections<br />

Interfacing and Operation<br />

The Q5 Module can be operated in software mode where the SPI port is used to<br />

configure the module.<br />

Figure 8 Typical connections in software mode.<br />

The Q5 Module can be operated in hardware mode whereby the SPI port is not needed<br />

to configure the module but rather the FLAG pins. In that mode, the MD_CS pin has to be<br />

left unconnected.<br />

Figure 9 Typical connections in hardware mode.<br />

Submit Documentation Feedback Page 22 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Interfacing and Operation<br />

3.3 Interfacing to Digital Audio Receivers and Transmitters<br />

The Q5 Module audio input and output ports are designed to interface to a variety of<br />

audio devices, including receivers and transmitters commonly used <strong>for</strong> AES/EBU and<br />

S/PDIF communications. Figure 10 illustrates interface between CS8416 receiver and the<br />

Q5 Module input port which works as Slave and the receiver as Master.<br />

Figure 10 Interfacing to a digital receiver.<br />

Figure 11 shows the interface between the Q5 output port and the DIT4192 transmitter<br />

input port whereby the Q5 Module works as Master and the transmitter as Slave.<br />

Figure 11 Interfacing to a digital transmitter.<br />

Submit Documentation Feedback Page 23 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Interfacing and Operation<br />

3.4 Interfacing to High Per<strong>for</strong>mance D/A Converters<br />

In addition to drive transmitters, the Q5 Module is designed specifically to drive high<br />

per<strong>for</strong>mance D/A converters. Thus the module is able to drive bother dual 384kHz<br />

compatible DACs and an external transmitter at the same time. Connection to dual DACs,<br />

configured in mono mode, and to the transmitter is given in Figure 12. In that case the Q5<br />

works as Master and the DACs / Transmitter as Slave.<br />

Figure 12 Interfacing with dual mono 384kHz D/A converters.<br />

3.5 Reference Master Clock<br />

The Q5 Module requires a master clock <strong>for</strong> operation. This clock must be supplied at the<br />

CLKIN input (pin 9). The Q5 Module can be clocked by an external crystal, a sine wave<br />

input, or a buffered, shaped clock derived from an external clock oscillator.<br />

The Q5 Module is designed to work with a single frequency. As a result, all the audio<br />

output sampling frequencies will be derived from a multiple of 48kHz.<br />

Parameter Typ Unit<br />

CLKIN frequency 24.5760 MHz<br />

Table 6 Reference master clock frequency<br />

Submit Documentation Feedback Page 24 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

3.6 Reset and Power On<br />

Note<br />

Interfacing and Operation<br />

To reduce clock perturbations, a correct line adaptation is required<br />

on the CLKIN input. Dedicated clock lines, ending and serial<br />

resistors can help to minimize perturbations.<br />

The Q5 Module may be reset using the RESET input (pin 3). This latter has to be held<br />

low <strong>for</strong> a minimum of 450ns to guaranty a proper reset. Figure 13 shows the reset timing <strong>for</strong><br />

the Q5 Module.<br />

Parameter Description Typ Unit<br />

Timing Requirements<br />

tCKIN Serial Clock High Period 40.7 ns<br />

tCKINL Serial Clock High Period 20.3 ns<br />

tCKINH Serial Clock High Period 20.3 ns<br />

tWRST Serial Clock Low Period (min) 450 ns<br />

Table 7 Reset timing requirements<br />

Figure 13 Reset timing requirements<br />

There is an internal power on reset, so the user should not need to <strong>for</strong>ce a reset sequence<br />

after power up in order to initialize the module.<br />

In Software mode, there is a 200ms delay after the RESET rising edge be<strong>for</strong>e attempting<br />

to write to the SPI port due to internal logic requirements.<br />

3.7 Audio Serial Ports - RX0 Input<br />

The RX0 audio input port is a four-wire synchronous serial interface working in slave mode.<br />

In PCM mode, the port use three signals, namely RX0_FSYNC (pin 17), RX0_BITCLK (pin<br />

18) and RX0_SDATA1 (pin 19). RX0_FSYNC provides the frame synchronization clock<br />

while RX0_DATA1 and RX0_BITCLK are used to respectively transfer the serial audio data<br />

Submit Documentation Feedback Page 25 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Interfacing and Operation<br />

and clock the serial data into the port. The latter supports sampling frequencies up to<br />

192kHz. The audio data word length may be up to 24bit and the audio data is always binary<br />

two’s complement with the MSB first.<br />

In DSD mode, the port uses three signals, namely RX0_BITCLK (pin 18), RX0_SDATA1<br />

(pin 19) and RX0_SDATA2 (pin 20) pins. RX0_BITCLK provides the DSD clock<br />

synchronization (2.8224MHz) while RX0_SDATA1 and RX0_SDATA2 are respectively the<br />

left and right channel data.<br />

Figure 14 illustrates the audio data stream of each mode. Table 8 and Table 9 give more<br />

in<strong>for</strong>mation about clocks of each mode.<br />

In software mode, the Input Control Register (see § 4.2.1) allows to select the input audio<br />

data <strong>for</strong>mat mode. Two bit are used to choose the mode, namely FMT0 and FMT1. The<br />

configuration in the Input Control register is OR-ed with the DSD Input (see below <strong>for</strong><br />

further detail on DSD Input).<br />

In hardware mode, it is the DSD Input pin (FLAG1) that allows the input audio data <strong>for</strong>mat<br />

mode to be configured. When DSD Input flag is high, the DSD mode is selected as<br />

opposed to low where the PCM mode is enabled.<br />

FSYNC<br />

BITCLK<br />

SDATA<br />

BITCLK<br />

SDATA1<br />

SDATA2<br />

I2S <strong>Data</strong> Format 16-24bits<br />

Left Channel<br />

MSB LSB<br />

DSD <strong>Data</strong> Format 1-bit<br />

Left Channel <strong>Data</strong><br />

Right Channel <strong>Data</strong><br />

Right Channel<br />

MSB LSB<br />

Figure 14 Input stereo data <strong>for</strong>mats<br />

Parameter Description Min Max Unit<br />

FSYNC Frame Sync Clock 32 192 kHz<br />

BITCLK Serial bit Clock 2.048 12.288 MHz<br />

Table 8 Serial input clocks in PCM mode<br />

Submit Documentation Feedback Page 26 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Parameter Description Value Unit<br />

FSYNC Frame Sync Clock Not used<br />

BITCLK Serial bit Clock 2.8224 MHz<br />

Table 9 Serial input clocks in DSD mode<br />

3.8 Audio Serial Ports - TX0 Output<br />

Interfacing and Operation<br />

The TX0 audio output port is a three-wire synchronous serial interface working in master<br />

mode. TX0_SDATA1 (pin 29) output is the PCM downsampled serial data output. The<br />

TX0_BITCLK (pin 28) output operates at a rate of 64xFSYNC. The left/right word clock<br />

referred to as frame sync, TX0_FSYNC (pin 27) is also configured as output pin and it can<br />

be set to operate at rates of 1xFS, 2xFS or 4xFS (see § 4.2.2).<br />

The audio data word length may be up to 24bit. The audio data is always Binary Two’s<br />

Complement with the MSB first. Refer to Figure 15 TX0 output data <strong>for</strong>mats <strong>for</strong> the output<br />

data <strong>for</strong>mats.<br />

FSYNC<br />

BITCLK<br />

SDATA<br />

CLKIN Frequency<br />

I2S <strong>Data</strong> Format 16-24bits<br />

Left Channel<br />

MSB LSB<br />

Right Channel<br />

MSB LSB<br />

Figure 15 TX0 output data <strong>for</strong>mats<br />

TX0 Output Frequency<br />

1xFS 2xFS 4xFS<br />

24.5760MHz 48 96 192 kHz<br />

Table 10 TX0 output frequency sampling vs CLKIN frequency<br />

Parameter Description Value<br />

FSYNC Frame Sync Clock 48/96/192kHz<br />

BITCLK Serial bit Clock 64xFSYNC<br />

Table 11 TX0 output clocks<br />

Unit<br />

Submit Documentation Feedback Page 27 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

3.9 Audio Serial Ports – TX1 Output<br />

Interfacing and Operation<br />

The TX1 audio output port is a four-wire synchronous serial interface working in master<br />

mode. The TX1_SDATA1 (pin 24) and TX1_SDATA2 (pin 25) pins are the PCM upsampled<br />

serial data output. The TX1_BITCLK (pin 23) output operates at a rate of 32xFSYNC. The<br />

word clock TX1_FSYNC (pin 22) is also configured as output pin and it can be set to<br />

operate at rates of 8xFS (see § 4.2.2).<br />

The audio data word length may be up to 24bit. The audio data is always Binary Two’s<br />

Complement with the MSB first. Refer to Figure 16 <strong>for</strong> the output data <strong>for</strong>mats.<br />

FSYNC<br />

BITCLK<br />

SDATA1<br />

SDATA2<br />

CLKIN Frequency<br />

DSP <strong>Data</strong> Format 16-24 bit<br />

Left Channel (word n) Left Channel (word n+1)<br />

MSB LSB MSB LSB<br />

Right Channel (word n) Right Channel (word n+1)<br />

MSB LSB MSB LSB<br />

Figure 16 TX1 output data <strong>for</strong>mat<br />

TX1 Output Frequency<br />

8xFS<br />

24.5760MHz 384 kHz<br />

Table 12 TX1 output frequency sampling vs CLKIN frequency<br />

Parameter Description Value<br />

FSYNC Frame Sync Clock 8xFS (384kHz)<br />

BITCLK Serial bit Clock 32xFSYNC<br />

Table 13 TX1 output clocks<br />

3.10 <strong>Data</strong> Resolution and Dither<br />

When using the serial audio input port in I²S mode all input data is treated as MSB aligned<br />

2’s complement. Any truncation that has been done prior to the Q5 Module to less than<br />

32bit should have been done using an appropriate dithering process. There is no dithering<br />

mechanism on the input side of the Q5 Module, so care must be taken to ensure that no<br />

truncation occurs. However, dithering is used internally inside the Q5 Upsampling algorithm<br />

where appropriate.<br />

The audio output TX0 can be set to 16, 20 or 24bit output word width. Dithering is applied<br />

and is automatically scaled to the selected output word length. The audio output on port<br />

TX1 is always set to 32 bit.<br />

Unit<br />

Submit Documentation Feedback Page 28 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

3.11 Incoming Sampling Rate and Locking<br />

Interfacing and Operation<br />

When the Q5 Module processes the incoming audio data stream, it calculates the ratio<br />

between the input and output sample rates and uses this in<strong>for</strong>mation to set up various<br />

internal parameters. In PCM input mode, the Q5 Module accepts standard sampling<br />

frequencies of 32, 44.1, 48, 88.4, 96, 176.4 and 192kHz with a +/- 3% deviation from the<br />

nominal value. Whereas in DSD input mode, the Q5 Module accepts standard sampling<br />

frequencies of 2.8224MHz. If a non standard input sampling frequency is found or the<br />

standard sampling rate deviates more than 3% percent from the nominal value the Q5<br />

Module will NOT process the incoming data and will be a status of unlocked.<br />

The Q5 Module can dynamically compensate <strong>for</strong> drift and fluctuations in the incoming<br />

input sampling frequency (FSIN) where the module will track the incoming sample rate and<br />

automatically adjust the sample rate conversion process in order to maintain the highest<br />

level of audio quality.<br />

In Software mode, Input Control Register (see §4.2.1) functions as status registers, which<br />

contains the input frequency sampling detected. The INTREQ pin reflects the lock state of<br />

the module (see § 3.16). If there is a change in the input FS the INTREQ signal goes low to<br />

indicate an unlock state until the Q5 Module reacquires a valid ratio. At this point, the<br />

INTREQ will transition high.<br />

3.12 Muting<br />

The TXx_SDATA1, TX1_SDATA2, TXx_BITCLK and TXx_FSYNC pins are all low (hard<br />

mute) when module is either in reset state or unlocked ( no audio source or <strong>Data</strong>_Valid =<br />

1). These pins become valid as soon as the Q5 Module gets locked. When the module is<br />

locked, TXx_SDATA1and TX1_SDATA2 pins can be set to all zero (soft mute), while<br />

TXx_BITCLK and TXx_FSYNC are still valid, through the configuration of the “Mute” bit in<br />

the SPI process control register (see § 4.2.3 ). As a result, in hardware mode, only the<br />

<strong>Data</strong>_Valid (FLAG3) pin can be used whereas in software mode, there are two ways to put<br />

the module in mute which are the <strong>Data</strong>_Valid pin or the “Mute” bit in the SPI register.<br />

3.13 Phase Inversion<br />

The Q5 Module includes a phase inversion function whereby the output data can be<br />

inverted compared with audio input signal. By default this function is disabled and can only<br />

be enable in software mode. The selected configuration can be changed through the LSB<br />

bit called PHI of the Process Control Register (see § 4.2.3). All other features of the module<br />

don’t affect this function.<br />

3.14 Direct Downsampling<br />

The Q5 Module features a direct downsampling function located between the Q5<br />

Upsampler and the Audio Serial port TX0. The audio Serial port TX1 is directly connected<br />

to the upsampler. The downsampling function allows the selection of the output audio<br />

sampling frequency at 1x FSOUT, 2x FSOUT or 4xFSOUT. This makes the direct<br />

downsampler suitable <strong>for</strong> application where the output <strong>for</strong>mat has to be I2S operating at 48,<br />

96 or 192kHz e.g. S/PDIF transmitter or stereo DAC.<br />

In Software mode, Output Control register (see § 4.2.2) allows the TX0 output sampling<br />

frequency to be configured. In <strong>Hardware</strong> mode FSOUT is fixed at 48kHz/ 16bit.<br />

3.15 Stereo DSD to PCM Conversion<br />

The Q5 Module includes a stereo DSD to PCM converter. This gives the possibility of<br />

connecting a DSD input stream on the RX0 input port and using this stream as main audio<br />

source. The selection of the DSD input <strong>for</strong>mat is done by setting FLAG1 pin in hardware<br />

Submit Documentation Feedback Page 29 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Interfacing and Operation<br />

mode (see § 5.3). In software mode, the FMT bit in Input control register (see § 4.2.1)<br />

allows to enable the DSD input <strong>for</strong>mat.<br />

As described in paragraph 3.7, the RX0 audio input port is a four-wire synchronous serial<br />

interface that is configured to operate in Slave Mode. The RX0_SDATA1 and<br />

RX0_SDATA2 lines are the serial audio data inputs <strong>for</strong> DSD left and right channels<br />

respectively. DSD data <strong>for</strong>mat is 1bit stream, there<strong>for</strong>e no frame synch is needed (caution:<br />

Do not connect RX0_FSYNC). The serial bit clock is 2.8224MHz.<br />

3.16 Interrupt Request / Unlock Detection<br />

The Q5 Module has an interrupt request pin used to in<strong>for</strong>m external devices when an<br />

event has occurred in the module. Currently the functionality of this pin is not configurable<br />

and represents the lock condition of the module. Thus when the IRQ is high the module has<br />

locked to a valid input sampling frequency from the incoming audio stream. When low, the<br />

module has not been able to detect a valid input sampling frequency and is unlocked,<br />

consequently the outputs are hard muted.<br />

3.17 <strong>Data</strong> Valid Input<br />

The Q5 Module uses the <strong>Data</strong>_Valid (FLAG3) input pin to know whether it should attempt<br />

to synchronize with the incoming audio data stream. If the <strong>Data</strong>_Valid pin is high then the<br />

module will never attempt to lock and the outputs will be hard muted. If the <strong>Data</strong>_Valid pin<br />

is low then the module will attempt to find the input sampling frequency and process the<br />

audio data as long as they are valid. The INTREQ pin can be used to track the module<br />

state (lock / unlock).<br />

3.18 Serial Port Interface (SPI Port)<br />

The SPI port, which is disabled in hardware mode, is the interface used when the Q5<br />

Module operates in software mode. This port is used to access registers allowing the Q5<br />

Module to transmit in<strong>for</strong>mation to the host device (referred as master) and to be configured<br />

<strong>for</strong> the desired operational mode and <strong>for</strong>mat. The operation of the SPI port may be<br />

completely asynchronous with respect to the audio stream rates. However, it is<br />

recommended to keep the port pins static if no operation is required.<br />

The SPI port is a four-wires serial interface where MD_CS (active low) is the module chip<br />

select signal, MD_SCLK is the control port bit clock (input into the module from the host<br />

device), MD_MOSI is the input data line from master and MD_MISO is the output data line<br />

to the master. <strong>Data</strong> is clocked in on the rising edge of MD_SCLK and clocked out on the<br />

falling edge.<br />

Table 14 SPI byte definitions <strong>for</strong> register read / write operations and Figure 17 SPI protocol<br />

<strong>for</strong> register read / write operations illustrate the operation of the SPI port as well as the<br />

protocol <strong>for</strong> register read and write operations. Figure 18 SPI port timing requirements<br />

shows the critical timing parameters <strong>for</strong> the SPI port interface, which are listed in Table 15<br />

SPI port timing requirements.<br />

Submit Documentation Feedback Page 30 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

SPI Write<br />

Register<br />

SPI Read<br />

Register<br />

Header Byte<br />

<strong>Data</strong> Byte<br />

MD_CS<br />

MD_SCLK<br />

MD_MOSI<br />

MD_MISO<br />

MD_MOSI<br />

MD_MISO<br />

MSB LSB<br />

0 0 0 RW 0 A2 A1 A0<br />

MSB LSB<br />

D7 D6 D5 D4 D3 D2 D1 D0<br />

Set MD_CS = 0 to write/read a single register location<br />

Header Byte <strong>Data</strong> Byte<br />

Header Byte<br />

Hi-Z<br />

Interfacing and Operation<br />

<strong>Data</strong> Byte<br />

Hi-Z Hi-Z<br />

Set A2-0 to register address <strong>for</strong> read/write operation<br />

Set to 0<br />

Set to 0 <strong>for</strong> Read, Set to 1 <strong>for</strong> Write<br />

Set to 0<br />

Contains register data bits<br />

Figure 17 SPI protocol <strong>for</strong> register read / write operations<br />

Byte Name MSB bit6 bit5 bit4 bit3 bit2 bit1 LSB<br />

Header Byte 0 0 0 R/W 0 A2 A1 A0<br />

<strong>Data</strong> Byte D7 D6 D5 D4 D3 D2 D1 D0<br />

A2-A0 : Register address selection (See § 4.2 <strong>for</strong> SPI register address definition)<br />

R/W : 0 = Register Read / 1 = Register Write<br />

D0-D7 : Register data (See § 4.2 <strong>for</strong> SPI register data definition)<br />

Table 14 SPI byte definitions <strong>for</strong> register read / write operations<br />

Parameter Description Min Max Units<br />

Timing Requirements<br />

tSPICHS Serial Clock High Period 2tSCLK –1.5<br />

tSPICLS Serial Clock Low Period 2tSCLK –1.5<br />

Submit Documentation Feedback Page 31 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

tSPICLK Serial Clock Period 4tSCLK –1.5<br />

tHDS Last MD_SCLK Edge to MD_CS Not<br />

Asserted<br />

2tSCLK –1.5<br />

tSPITDS Sequential Transfer Delay 2tSCLK –1.5<br />

tSDSCI MD_CS Assertion to First MD_SCLK<br />

Edge<br />

tSSPID <strong>Data</strong> Input Valid to MD_SCLK Edge<br />

(<strong>Data</strong> Input Setup)<br />

tHSPID MD_SCLK Sampling Edge to <strong>Data</strong><br />

Input Invalid<br />

Switching Characteristics<br />

2tSCLK –1.5<br />

Interfacing and Operation<br />

1.6 ns<br />

1.6 ns<br />

tDSOE MD_CS Assertion to <strong>Data</strong> Out Active 0 8 ns<br />

tDSDHI MD_CS Deassertion to <strong>Data</strong> High<br />

Impedance<br />

tDDSPID MD_SCLK Edge to <strong>Data</strong> Out Valid<br />

(<strong>Data</strong> Out Delay)<br />

tHDSPID MD_SCLK Edge to <strong>Data</strong> Out Invalid<br />

(<strong>Data</strong> Out Hold)<br />

Table 15 SPI port timing requirements<br />

Figure 18 SPI port timing requirements<br />

0 8 ns<br />

0 10 ns<br />

0 10 ns<br />

Submit Documentation Feedback Page 32 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Software Mode<br />

4 Software Mode<br />

This chapter provides the main in<strong>for</strong>mation of the software mode including control and<br />

status register definition. Reset defaults are also shown <strong>for</strong> each register bit.<br />

4.1 General Description<br />

The Q5 Module can work in software mode which requests the device to operate with a<br />

host system having an SPI port (see Figure 8). This mode allows the host system to<br />

configure or read in<strong>for</strong>mation from the Q5 Module by accessing registers through the SPI<br />

port (see § 3.18 <strong>for</strong> further details on SPI operational port). The following chapters give<br />

details and bit definition of each registers as well as their default setting after reset.<br />

4.2 Module Registers Overview<br />

Register <strong>Data</strong> bit<br />

Addr Name D7 D6 D5 D4 D3 D2 D1 D0<br />

00<br />

01<br />

02<br />

Input Control<br />

Register<br />

Output Control<br />

Register<br />

Process Control<br />

Register<br />

0 0 0 XFS2 XFS1 XFS0 FMT1 FMT0<br />

DTH OWW1 OWW0 TX1 TX01 TX00 0 0<br />

0 0 0 0 0 0 MUTE PHI<br />

03 Reserved 0 0 0 0 0 0 0 0<br />

04 Reserved 0 0 0 0 0 0 0 0<br />

05 Reserved 0 0 0 0 0 0 0 0<br />

06<br />

Software Revision<br />

Register<br />

REV7 REV6 REV5 REV4 REV3 REV2 REV1 REV0<br />

07 Product ID Register ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0<br />

Table 16: Overview of command registers<br />

4.2.1 Input Control Register<br />

Addr Register Name D7 D6 D5 D4 D3 D2 D1 D0<br />

00 Input Control 0 0 0 XFS2 XFS1 XFS0 FMT1 FMT0<br />

Read(R) / Write(W) R R R R R R R/W R/W<br />

Default 0 0 0 0 0 0 0 0<br />

Submit Documentation Feedback Page 33 of 56


FMT 1-0: Input Format<br />

00: I2S<br />

01: Reserved<br />

10: Reserved<br />

11: DSD<br />

Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Table 17 Input Control Register<br />

4.2.2 Output Control Register<br />

XFS2-0: Input Frequency Sampling<br />

000: Unlock 100: 88.2kHz<br />

001: 32kHz 101: 96kHz<br />

010: 44.1kHz 110: 176.4kHz<br />

011: 48kHz 111: 192kHz<br />

Invalid if Input Format is DSD.<br />

Software Mode<br />

Addr Register Name D7 D6 D5 D4 D3 D2 D1 D0<br />

01 Output Control DTH OWW1 OWW0 TX1 TX01 TX00 0 0<br />

Read(R) / Write(W) R/W R/W R/W R/W R/W R/W R R<br />

Default 0 0 0 0 0 1 0 0<br />

TX0 1-0: TX0 Output FS<br />

00: Reserved<br />

01: 1xFS<br />

10: 2xFS<br />

11: 4xFS<br />

TX1: TX1 Output FS<br />

0: 8xFS<br />

1: Reserved<br />

Table 18 Output Control Register<br />

4.2.3 Process Control Register<br />

OWW1-0:TX0 Output Word Width<br />

00: 16bit<br />

01: 20 bit<br />

10: 24bit<br />

11: Reserved<br />

DTH: TX0 Dithering<br />

0: Dithering OFF<br />

1: Dithering ON<br />

Addr Register Name D7 D6 D5 D4 D3 D2 D1 D0<br />

02 Process Control 0 0 0 0 0 0 MUTE PHI<br />

Read(R) / Write(W) R R R R R R R/W R/W<br />

Default 0 0 0 0 0 0 0 0<br />

PHI: Phase Inversion<br />

0: Phase Inversion OFF<br />

1: Phase Inversion ON<br />

MUTE: Mute<br />

0: Mute OFF<br />

1: Mute ON<br />

Table 19 Process Control Register<br />

4.2.4 Software Revision Register<br />

Addr Register Name D7 D6 D5 D4 D3 D2 D1 D0<br />

06 Software Revision REV7 REV6 REV5 REV4 REV3 REV2 REV1 REV0<br />

Read(R) / Write(W) R R R R R R R R<br />

Default - - - - - - - -<br />

Submit Documentation Feedback Page 34 of 56


REV7-3: Major revision REV3-0: Minor revision<br />

Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Table 20 Software Revision Register<br />

4.2.5 Product ID Register<br />

Software Mode<br />

Addr Register Name D7 D6 D5 D4 D3 D2 D1 D0<br />

07 Product ID ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0<br />

Read(R) / Write(W) R R R R R R R R<br />

Default 0 0 0 0 0 1 0 1<br />

ID7-0: ID Code <strong>for</strong> the Q5 Module. Permanently set to 00000101.<br />

Table 21 Product ID Register<br />

Submit Documentation Feedback Page 35 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

<strong>Hardware</strong> Mode<br />

5 <strong>Hardware</strong> Mode<br />

This chapter provides practical application in<strong>for</strong>mation <strong>for</strong> hardware and systems engineers<br />

who will be designing the Q5 Module into their product.<br />

5.1 General Description<br />

The Q5 Module can work in hardware mode which allows the device to operate without a<br />

host system or serial communication on the SPI port. The device is considered in <strong>Hardware</strong><br />

mode when the MD_CS pin is left unconnected or pulled up with a resistor (10 kΩ) to VDD.<br />

In this mode the module starts in a default configuration. However, the four FLAG pins<br />

remain valid.<br />

5.2 Default Configuration<br />

When the Q5 Module is released from reset, it starts in a default configuration which is<br />

the same <strong>for</strong> both <strong>Hardware</strong> and Software modes. Hereafter is listed the various default<br />

setting:<br />

Audio Serial Ports - RX0 Input: I2S <strong>for</strong>mat<br />

Audio Serial Ports - TX0 Output: DSP <strong>for</strong>mat, 8xFS, 24bit<br />

Audio Serial Ports – TX1 Output: I2S <strong>for</strong>mat, 1xFS, 16bit, Dithering disabled<br />

Phase Inversion: OFF<br />

Output Mute: OFF<br />

All other non configurable features are available the same way as explained in the above<br />

chapters.<br />

5.3 Function Selection<br />

Beyond the default setting, some FLAG pins are available to select other configurations.<br />

FLAG0 (pin 11): Not used<br />

FLAG1 (pin 12): DSD enable. Used to select the audio input stream. Low = 2<br />

channels PCM stream (I2S <strong>for</strong>mat). High = 2 channels DSD stream. For further<br />

details see § 3.7.<br />

FLAG0 (pin 11): Not used<br />

FLAG2 (pin 13): Not used<br />

FLAG3 (pin 14): <strong>Data</strong> Valid flag. Used to <strong>for</strong>ce the Q5 Module to remain<br />

unlocked and there<strong>for</strong>e muted. For further details see § 3.17.<br />

Submit Documentation Feedback Page 36 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Per<strong>for</strong>mance Plots<br />

6 Per<strong>for</strong>mance Plots<br />

This chapter gives typical per<strong>for</strong>mance plots of the Q5 Module in a typical operating<br />

environment.<br />

6.1 Standard Measurement Conditions<br />

Measurements <strong>for</strong> all per<strong>for</strong>mance plots are taken under the following conditions, unless<br />

otherwise stated:<br />

VDD1 = VDD2 = 3.3V<br />

Q5 Module installed in Q5 Evaluation Board<br />

Serial input and output <strong>for</strong>mat 24bit I2S<br />

Local master clock selected at 24.5760MHz<br />

Measurement Bandwidth = 20 to (FSout/2)Hz<br />

Audio Precision AP2700 version 3.10<br />

FFT 4095K points<br />

6.2 FFT Plot, Sine wave, 0dBFS, 1kHz Per<strong>for</strong>mance Plots<br />

Measurements <strong>for</strong> all per<strong>for</strong>mance plots are taken under the standard conditions.<br />

Plot 1: FFT 0dBFS 1kHz PCM 32.0 - PCM 48.0<br />

Plot 2: FFT 0dBFS 1kHz PCM 32.0 - PCM 192.0<br />

Submit Documentation Feedback Page 37 of 56


Plot 3: FFT 0dBFS 1kHz PCM 44.1 - PCM 48.0<br />

Plot 4: FFT 0dBFS 1kHz PCM 44.1 - PCM 192.0<br />

Plot 5: FFT 0dBFS 1kHz PCM 48.0 - PCM 96.0<br />

Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Per<strong>for</strong>mance Plots<br />

Plot 6: FFT 0dBFS 1kHz PCM 44.1 - PCM 96.0<br />

Plot 7: FFT 0dBFS 1kHz PCM 48.0 - PCM 48.0<br />

Plot 8: FFT 0dBFS 1kHz PCM 48.0 - PCM 192.0<br />

Submit Documentation Feedback Page 38 of 56


Plot 9: FFT 0dBFS 1kHz PCM 192.0 - PCM 48.0<br />

Plot 10: FFT 0dBFS 1kHz PCM 192.0 - PCM 192.0<br />

Plot 11: FFT 0dBFS 1kHz DSD - PCM 96.0<br />

Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Per<strong>for</strong>mance Plots<br />

Plot 12: FFT 0dBFS 1kHz PCM 192.0 - PCM 96.0<br />

Plot 13: FFT 0dBFS 1kHz DSD - PCM 48.0<br />

Plot 14: FFT 0dBFS 1kHz DSD - PCM 192.0<br />

Submit Documentation Feedback Page 39 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Note<br />

Per<strong>for</strong>mance Plots<br />

On all plots where the input is in DSD mode, a raised noise level<br />

can be observed in the high frequencies. This has nothing to do<br />

with the Q5 Module. It is due to the intrinsic properties of the<br />

DSD modulator technique.<br />

6.3 FFT Plot, Sine wave, -60dBFS, 1kHz Per<strong>for</strong>mance Plots<br />

Measurements <strong>for</strong> all per<strong>for</strong>mance plots are taken under the standard conditions.<br />

Plot 15: FFT -60dBFS 1kHz PCM 44.1 - PCM 48.0<br />

Plot 16: FFT -60dBFS 1kHz PCM 44.1 - PCM 192.0<br />

Plot 17: FFT -60dBFS 1kHz PCM 44.1 - PCM 96.0<br />

Plot 18: FFT -60dBFS 1kHz PCM 48.0 - PCM 48.0<br />

Submit Documentation Feedback Page 40 of 56


Plot 19: FFT -60dBFS 1kHz PCM 48.0 - PCM 96.0<br />

Plot 20: FFT -60dBFS 1kHz PCM 192.0 - PCM 48.0<br />

Plot 21: FFT-60dBFS 1kHz PCM 192.0 - PCM 192.0<br />

Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Per<strong>for</strong>mance Plots<br />

Plot 22: FFT -60dBFS 1kHz PCM 48.0 - PCM 192.0<br />

Plot 23: FFT -60dBFS 1kHz PCM 192.0 - PCM 96.0<br />

Plot 24: FFT -60dBFS 1kHz DSD - PCM 48.0<br />

Submit Documentation Feedback Page 41 of 56


Plot 25: FFT -60dBFS 1kHz DSD - PCM 96.0<br />

Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Per<strong>for</strong>mance Plots<br />

Plot 26: FFT-60dBFS 1kHz DSD - PCM 192.0<br />

Note<br />

On all plots where the input is in DSD mode, a raised noise level<br />

can be observed in the high frequencies. This has nothing to do<br />

with the Q5 Module. It is due to the intrinsic properties of the<br />

DSD modulator technique.<br />

Submit Documentation Feedback Page 42 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

6.4 FFT Plot, Sine wave, 0dBFS and -3dBFS, 20kHz<br />

Per<strong>for</strong>mance Plots<br />

Measurements <strong>for</strong> all per<strong>for</strong>mance plots are taken under the standard conditions.<br />

Plot 27: FFT 0dBFS 20kHz PCM 44.1 - PCM 48.0<br />

Plot 28: FFT 0dBFS 20kHz PCM 44.1 - PCM 192.0<br />

Per<strong>for</strong>mance Plots<br />

Plot 29: FFT 0dBFS 20kHz PCM 44.1 - PCM 96.0<br />

Plot 30: FFT 0dBFS 20kHz PCM 48.0 - PCM 48.0<br />

Submit Documentation Feedback Page 43 of 56


Plot 31: FFT 0dBFS 20kHz PCM 48.0 - PCM 96.0<br />

Plot 32: FFT 0dBFS 20kHz PCM 192.0 - PCM 48.0<br />

Plot 33: FFT 0dBFS 20kHz PCM 192.0 - PCM 192.0<br />

Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Per<strong>for</strong>mance Plots<br />

Plot 34: FFT 0dBFS 20kHz PCM 48.0 - PCM 192.0<br />

Plot 35: FFT 0dBFS 20kHz PCM 192.0 - PCM 96.0<br />

Plot 36: FFT -3dBFS 20kHz DSD - PCM 48.0<br />

Submit Documentation Feedback Page 44 of 56


Plot 37: FFT -3dBFS 20kHz DSD - PCM 96.0<br />

Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Per<strong>for</strong>mance Plots<br />

Plot 38: FFT -3dBFS 20kHz DSD - PCM 192.0<br />

Note<br />

On all plots where the input is in DSD mode, a raised noise level<br />

can be observed in the high frequencies. This has nothing to do<br />

with the Q5 Module. It is due to the intrinsic properties of the<br />

DSD modulator technique.<br />

Submit Documentation Feedback Page 45 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Per<strong>for</strong>mance Plots<br />

6.5 FFT Plot, Sine wave, 0dBFS, 80kHz Per<strong>for</strong>mance Plots<br />

Measurements <strong>for</strong> all per<strong>for</strong>mance plots are taken under the standard conditions.<br />

Plot 39: FFT 0dBFS 80kHz PCM 192.0 - PCM 192.0<br />

Submit Documentation Feedback Page 46 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Per<strong>for</strong>mance Plots<br />

6.6 Linearity, 200Hz Tone, 0 -140dBFS input, Per<strong>for</strong>mance<br />

Plots<br />

Measurements <strong>for</strong> all per<strong>for</strong>mance plots are taken under the standard conditions.<br />

Plot 40: LINEARITY 200Hz PCM 44.1 - PCM 48.0<br />

Plot 41: LINEARITY 200Hz PCM 44.1 - PCM 192.0<br />

Plot 42: LINEARITY 200Hz PCM 44.1 - PCM 96.0<br />

Plot 43: LINEARITY 200Hz PCM 48.0 - PCM 48.0<br />

Submit Documentation Feedback Page 47 of 56


Plot 44: LINEARITY 200Hz PCM 48.0 - PCM 96.0<br />

Plot 45: LINEARITY 200Hz PCM 192.0 - PCM 48.0<br />

Plot 46: LINEARITY 200Hz PCM 192.0 - PCM 192.0<br />

Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Per<strong>for</strong>mance Plots<br />

Plot 47: LINEARITY 200Hz PCM 48.0 - PCM 192.0<br />

Plot 48: LINEARITY 200Hz PCM 192.0 - PCM 96.0<br />

Submit Documentation Feedback Page 48 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

6.7 FFT Plot, IMD, 10 and 11kHz Per<strong>for</strong>mance Plots<br />

Measurements <strong>for</strong> all per<strong>for</strong>mance plots are taken under the standard conditions.<br />

Plot 49: IMD -7dBFS 10kHz 11kHz PCM 44.1 - PCM<br />

48.0<br />

Plot 50: IMD -7dBFS 10kHz 11kHz PCM 44.1 - PCM<br />

192.0<br />

Per<strong>for</strong>mance Plots<br />

Plot 51: IMD -7dBFS 10kHz 11kHz PCM 44.1 - PCM<br />

96.0<br />

Plot 52: IMD -7dBFS 10kHz 11kHz PCM 48.0 - PCM<br />

48.0<br />

Submit Documentation Feedback Page 49 of 56


Plot 53: IMD -7dBFS 10kHz 11kHz PCM 48.0 - PCM<br />

192.0<br />

Plot 54: IMD -7dBFS 10kHz 11kHz PCM 192.0 -<br />

PCM 48.0<br />

Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Per<strong>for</strong>mance Plots<br />

Plot 55: IMD -7dBFS 10kHz 11kHz PCM 192.0 -<br />

PCM 192.0<br />

Submit Documentation Feedback Page 50 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

6.8 THD+N vs Input Amplitude<br />

Measurements <strong>for</strong> all per<strong>for</strong>mance plots are taken under the standard conditions.<br />

Plot 56: THD+N vs AMPL 1kHz PCM 44.1 - PCM<br />

48.0<br />

Plot 57: THD+N vs AMPL 1kHz PCM 44.1 - PCM<br />

192.0<br />

Per<strong>for</strong>mance Plots<br />

Plot 58: THD+N vs AMPL 1kHz PCM 44.1 - PCM<br />

96.0<br />

Plot 59: THD+N vs AMPL 1kHz PCM 48.0 - PCM<br />

48.0<br />

Submit Documentation Feedback Page 51 of 56


Plot 60: THD+N vs AMPL 1kHz PCM 48.0 - PCM<br />

96.0<br />

Plot 61: THD+N vs AMPL 1kHz PCM 96.0 - PCM<br />

48.0<br />

Plot 62: THD+N vs AMPL 1kHz PCM 192.0 - PCM<br />

48.0<br />

Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Per<strong>for</strong>mance Plots<br />

Plot 63: THD+N vs AMPL 1kHz PCM 48.0 - PCM<br />

192.0<br />

Plot 64: THD+N vs AMPL 1kHz PCM 96.0 - PCM<br />

192.0<br />

Plot 65: THD+N vs AMPL 1kHz PCM 192.0 - PCM<br />

96.0<br />

Submit Documentation Feedback Page 52 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

6.9 THD+N vs Input Frequency<br />

Measurements <strong>for</strong> all per<strong>for</strong>mance plots are taken under the standard conditions.<br />

Plot 66: THD+N vs FREQ 0dBFS PCM 44.1 - PCM<br />

48.0<br />

Plot 67: THD+N vs FREQ 0dBFS PCM 44.1 - PCM<br />

192.0<br />

Per<strong>for</strong>mance Plots<br />

Plot 68: THD+N vs FREQ 0dBFS PCM 44.1 - PCM<br />

96.0<br />

Plot 69: THD+N vs FREQ 0dBFS PCM 48.0 - PCM<br />

48.0<br />

Submit Documentation Feedback Page 53 of 56


Plot 70: THD+N vs FREQ PCM 48.0 - PCM 96.0<br />

Plot 71: THD+N vs FREQ PCM 96.0 - PCM 48.0<br />

Plot 72: THD+N vs FREQ PCM 192.0 - PCM 48.0<br />

Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Per<strong>for</strong>mance Plots<br />

Plot 73: THD+N vs FREQ PCM 48.0 - PCM 192.0<br />

Plot 74: THD+N vs FREQ PCM 96.0 - PCM 192.0<br />

Plot 75: THD+N vs FREQ PCM 192.0 - PCM 96.0<br />

Submit Documentation Feedback Page 54 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

6.10 Passband Ripple<br />

Per<strong>for</strong>mance Plots<br />

Measurements <strong>for</strong> all per<strong>for</strong>mance plots should be taken under the standard conditions.<br />

Plot 76: Passband Ripple 0dBFs PCM 44.1 - PCM<br />

48.0<br />

Plot 77: Passband Ripple 0dBFs PCM 44.1 - PCM<br />

192.0<br />

Submit Documentation Feedback Page 55 of 56


Q5M-DS-110A<br />

Q5 <strong>Data</strong> <strong>Sheet</strong><br />

Packaging and Dimensions<br />

7 Packaging and Dimensions<br />

This chapter provides the physical packaging dimensions <strong>for</strong> the Q5 Module.<br />

7.1 Package Dimensions Metric<br />

63.00<br />

15.00<br />

5.00<br />

2.55<br />

83.00<br />

76.00<br />

61.00<br />

Figure 19 Housing physical dimensions (metric).<br />

M3x10<br />

Submit Documentation Feedback Page 56 of 56<br />

56.00<br />

10.00

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!