04.06.2013 Views

Surface plasmons

Surface plasmons

Surface plasmons

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Basics :<br />

Dispersion relation of surface <strong>plasmons</strong><br />

References<br />

<strong>Surface</strong> <strong>plasmons</strong><br />

“Metal Optics”<br />

Prof. Vlad Shalaev, Purdue Univ., ECE Department,<br />

http://shay.ecn.purdue.edu/~ece695s/<br />

“<strong>Surface</strong> <strong>plasmons</strong> on smooth and rough surfaces and on gratings”<br />

Heinz Raether(Univ Hamburg), 1988, Springer-Verlag<br />

“<strong>Surface</strong>-plasmon-polariton waveguides”<br />

Hyongsik Won, Ph.D Thesis, Hanyang Univ, 2005.<br />

50nm


Metal Optics: An introduction<br />

Photonic functionality based on metals?!


What is a plasmon?<br />

Note: SP is a TM wave!


Plasmon-Polaritons<br />

Plasma oscillation = density fluctuation of free electrons<br />

+ + +<br />

- - -<br />

k<br />

+ - +<br />

Plasmons in the bulk oscillate at ω p determined by<br />

the free electron density and effective mass<br />

2<br />

Ne<br />

mε<br />

Plasmons confined to surfaces that can interact<br />

with light to form propagating “surface plasmon<br />

polaritons (SPP)”<br />

Confinement effects result in resonant SPP modes<br />

in nanoparticles<br />

2<br />

drude 1 Ne<br />

ω particle<br />

3 mε<br />

=<br />

ω<br />

drude<br />

p<br />

=<br />

0<br />

0


Local field intensity depends on wavelength<br />

(small propagation constant, k) (large propagation constant, k)


Dielectric constant of metal : Drude model<br />

σω ( )<br />

εEFF ( ω) = εB+<br />

i<br />

εω o<br />

= ε + i<br />

1 ⎛ σ ⎞<br />

= ε + i<br />

σ (1 + iωτ)<br />

B<br />

o<br />

⎜ ⎟<br />

ε oω⎝1 − iωτ<br />

⎠<br />

B<br />

o<br />

2 2<br />

εoω(1 + ω τ )<br />

B<br />

2 2<br />

ωτ p<br />

2 2 i<br />

2 2<br />

ωτ p<br />

3 3<br />

⎛ ⎞ ⎛ ⎞<br />

= ⎜ε− +<br />

⎜<br />

⎟ ⎜ ⎟<br />

1+<br />

ωτ ⎟ ⎜ωτ+ ωτ ⎟<br />

⎝ ⎠ ⎝ ⎠<br />

σ<br />

ne<br />

2<br />

2 o<br />

where, ω p = = : bulk plasma frequency ( ∼10<br />

eV for metal)<br />

ετ o εome<br />

Plasma frequency


Ideal case : metal as a free-electron gas<br />

• no decay (γ 0 : infinite relaxation time)<br />

• no interband transitions (ε B = 1)<br />

σ ( ω)<br />

εEFF ( ω) = εB+<br />

i<br />

εω<br />

o<br />

2 2 2 2 2<br />

⎛ ω pτ ⎞ ⎛ ωpτ ⎞ ⎛ ω ⎞<br />

τ →∞<br />

p<br />

= ⎜εB − + i<br />

⎯⎯⎯→ ε 1<br />

2 2 3 3 ε B = 1 EFF = −<br />

⎜<br />

⎟ ⎜ ⎟ ⎜ 2 ⎟<br />

1+<br />

ω τ ⎟ ⎜ωτ + ω τ ⎟ ⎜ ω ⎟<br />

⎝ ⎠ ⎝ ⎠ ⎝ ⎠<br />

ε<br />

r<br />

ω<br />

2<br />

p<br />

2<br />

= 1−<br />

0<br />

ω


<strong>Surface</strong>-<strong>plasmons</strong><br />

on dielectric-metal boundaries


Dispersion relation for EM waves in electron gas (bulk <strong>plasmons</strong>)<br />

• Dispersion relation:<br />

ω = ω(<br />

k)


Dispersion relation for surface <strong>plasmons</strong><br />

Exm Exd<br />

ε d<br />

ε m<br />

Z > 0<br />

Z < 0<br />

TM wave<br />

• At the boundary (continuity of the tangential E x , H y , and the normal D z ):<br />

= Hym = Hyd<br />

ε mEzm = ε dEzd


Dispersion relation for surface plasmon polaritons<br />

k H = ωε E<br />

zi<br />

yi<br />

i<br />

xi<br />

k H = ωε E<br />

zm<br />

k<br />

ε<br />

ym<br />

m<br />

k H =<br />

ωε E<br />

zd<br />

yd<br />

xm<br />

Exm = Exd<br />

Hym = Hyd<br />

k<br />

zm zd H ym = H yd<br />

m ε d<br />

( −ikziH<br />

yi,<br />

0,<br />

ikxiH<br />

yi )<br />

d<br />

xd<br />

( −iωε<br />

iE<br />

xi,<br />

0,<br />

−iωε<br />

iE<br />

zi )<br />

k k<br />

=<br />

ε ε<br />

zm zd<br />

m d


Dispersion relation for surface plasmon polaritons<br />

• For any EM wave:<br />

2<br />

2 ⎛ω⎞ 2 2<br />

= εi = x + zi x ≡ xm = xd<br />

k ⎜ ⎟ k k , where k k k<br />

⎝ c ⎠<br />

SP Dispersion Relation<br />

k<br />

x<br />

ω<br />

=<br />

c<br />

ε mεd ε + ε<br />

m d


<strong>Surface</strong> plasmon dispersion relation: relation<br />

ω<br />

p<br />

1+<br />

ε<br />

ω<br />

ω p<br />

d<br />

ω = ω + ck<br />

2 2 2 2<br />

p x<br />

ck x<br />

z<br />

ε<br />

d<br />

Dielectric:<br />

ε d<br />

x<br />

Metal: εm = ε '<br />

m +<br />

ε "<br />

m<br />

k<br />

x<br />

ω ⎛ ε ⎞ mε<br />

d =<br />

⎜<br />

⎟<br />

c ⎝ ε m + ε d ⎠<br />

1/<br />

2<br />

Radiative modes<br />

(ε'm > 0)<br />

Quasi-bound modes<br />

(−εd < ε'm < 0)<br />

Bound modes<br />

(ε' m < −ε d )<br />

k<br />

zi<br />

Re k x<br />

⎛ 2<br />

εi<br />

1/2<br />

⎞<br />

⎝εm + εd<br />

⎠<br />

ω<br />

= ⎜ ⎟<br />

c<br />

real k x<br />

real k z<br />

imaginary k x<br />

real k z<br />

real k x<br />

imaginary k z


X-ray wavelengths at optical frequencies !!<br />

λ vac=360 nm<br />

SiO2 Ag<br />

Very small<br />

SP wavelength


Excitation of surface <strong>plasmons</strong>


<strong>Surface</strong>-plasmon-polariton waveguides<br />

Ssurface plasmon polaritons<br />

propagating along very-thin(~ 10 nm) metal strips<br />

Dielectric – ε 3<br />

Metal – ε 2<br />

Dielectric – ε 1


When the film thickness becomes finite.<br />

mode<br />

overlap


Possibility of Propagation Range Extension<br />

frequency<br />

in-plane wavevector<br />

Long-Range SP:<br />

weak surface confinement, low loss<br />

Short-Range SP:<br />

strong surface confinement, high loss


Several 1 cm long, 15 nm thin and 8 micron wide gold stripes guiding LRSPPs<br />

3-6 mm long control electrodes<br />

low driving powers (approx. 100 mW) and high extinction ratios (approx. 30 dB)<br />

response times (approx. 0.5 ms)<br />

total (fiber-to-fiber) insertion loss of approx. 8 dB when using single-mode fibers


Fundamental symmetric mode of a metal stripe : thickness (T)<br />

14nm<br />

W=10um<br />

16nm<br />

T<br />

LR-SP WG<br />

18nm 20nm


P. Berini, PhotonicWest 2005.


(Spectalis Co.)


Tunable Wavelength filter by direct heating a metal wire<br />

Polymer 2<br />

INPUT OUTPUT<br />

+ -<br />

Polymer 1<br />

Substrate<br />

Transmittance (dB)<br />

-40<br />

-45<br />

-50<br />

-55<br />

-60<br />

-65<br />

-70<br />

1544.1<br />

1540 1545 1550 1555 1560<br />

W avelength (nm )<br />

1558.3


Vertical directional couplers<br />

H. Won, APL vol.88, 011110 (2006)


Variable optical attenuator based on LR-SPP<br />

Submitted to EL, S. Park & S. Song


Localized <strong>Surface</strong> Plasmons :<br />

Nanofocusing and Nanolithography<br />

ω (10 15 s -1 )<br />

8<br />

6<br />

4<br />

2<br />

ω=c k x<br />

λ=337 nm; ε 1 = -1<br />

Broad<br />

dispersion<br />

0<br />

0 20 40 60 80 100<br />

k x (μm -1 )<br />

'<br />

1<br />

At large kx<br />

( ε1 →−ε2), z i ≈ .<br />

kx<br />

E = ± iE ( air : + i, metal :- i)<br />

z x<br />

Strong confinement at the interface<br />

Nano focusing


Propose metal nanowires.<br />

Beam radius -> zero!<br />

Propagation Loss<br />

(asymmetric mode)<br />

High


Asymmetric mode : field enhancement at a metallic tip<br />

Er Er Ez M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides,” Phys. Rev. Lett. 93, 137404 (2004)]<br />

50nm<br />

E z<br />

* See MOVIES : SPP propagation through a metallic tip


2007/5/1 ~<br />

an optical range resonator based on single mode metal-insulator-metal plasmonic gap waveguides.<br />

A small bridge between the resonator and the input waveguide can be used to tune the resonance frequency.<br />

FDTD with the perfectly matched layer boundary conditions


Plasmonic Crystal Demultiplexer and Multiports<br />

the realization of two-dimensional optical wavelength demultiplexers and multiports for surface <strong>plasmons</strong><br />

polaritons (SPPs) based on plasmonic crystals, i.e., photonic crystals for SPPs.


Slow Propagation, Anomalous Absorption, and Total External Reflection<br />

of <strong>Surface</strong> Plasmon Polaritons in Nanolayer Systems<br />

n=2<br />

n=1<br />

n=0


we show how the dispersion relation of surface plasmon polaritons (SPPs) propagating along a perfectly conducting wire can be tailored by<br />

corrugating its surface with a periodic array of radial grooves.<br />

Importantly, the propagation characteristics of these spoof SPPs can be controlled by the surface geometry, opening the way to important<br />

applications such as energy concentration on cylindrical wires and superfocusing using conical structures.


Summary : Plasmonic Photonics<br />

Plasmonics: the next chip-scale technology<br />

Plasmonics is an exciting new device technology that has recently emerged.<br />

A tremendous synergy can be attained by integrating plasmonic, electronic, and conventional dielectric photonic devices<br />

on the same chip and taking advantage of the strengths of each technology.<br />

Plasmonic devices,<br />

therefore, might interface naturally with similar speed photonic devices<br />

and similar size electronic components. For these reasons, plasmonics<br />

may well serve as the missing link between the two device<br />

technologies that currently have a difficult time communicating. By<br />

increasing the synergy between these technologies, plasmonics may be<br />

able to unleash the full potential of nanoscale functionality and<br />

become the next wave of chip-scale technology.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!