04.06.2013 Views

Surface Plasmon Polaritons (SPPs) - Introduction and basic properties

Surface Plasmon Polaritons (SPPs) - Introduction and basic properties

Surface Plasmon Polaritons (SPPs) - Introduction and basic properties

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Surface</strong> <strong>Plasmon</strong> <strong>Polaritons</strong> (<strong>SPPs</strong>)<br />

-<br />

<strong>Introduction</strong> <strong>and</strong> <strong>basic</strong> <strong>properties</strong><br />

- Overview<br />

- Light-matter interaction<br />

- SPP dispersion <strong>and</strong> <strong>properties</strong><br />

St<strong>and</strong>ard textbook:<br />

- Heinz Raether, <strong>Surface</strong> <strong>Plasmon</strong>s on Smooth <strong>and</strong> Rough <strong>Surface</strong>s <strong>and</strong> on Gratings<br />

Springer Tracts in Modern Physics, Vol. 111, Springer Berlin 1988<br />

Overview articles on <strong>Plasmon</strong>ics:<br />

- A. Zayats, I. Smolyaninov, Journal of Optics A: Pure <strong>and</strong> Applied Optics 5, S16 (2003)<br />

- A. Zayats, et. al., Physics Reports 408, 131-414 (2005)<br />

- W.L.Barnes et. al., Nature 424, 825 (2003)


Elementary excitations <strong>and</strong> polaritons<br />

Elementary excitations:<br />

• Phonons (lattice vibrations)<br />

• <strong>Plasmon</strong>s (collective electron oscillations)<br />

• Excitions (bound state between an excited electron <strong>and</strong> a hole)<br />

<strong>Polaritons</strong>:<br />

Commonly called coupled state between an elementary excitation <strong>and</strong> a photon<br />

= light-matter interaction<br />

<strong>Plasmon</strong> polariton: coupled state between a plasmon <strong>and</strong> a photon.<br />

Phonon polariton: coupled state between a phonon <strong>and</strong> a photon.


• free electrons in metal are treated as an electron liquid of high density<br />

• longitudinal density fluctuations (plasma oscillations) at eigenfrequency<br />

• quanta of volume plasmons have energy , in the order 10eV<br />

Volume plasmon polaritons<br />

propagate through the volume for frequencies<br />

<strong>Surface</strong> plasmon polaritons<br />

<strong>Plasmon</strong>s<br />

h ω = h<br />

p<br />

4πne<br />

m<br />

0<br />

2<br />

n<br />

≈<br />

23<br />

10 cm<br />

Maxell´s theory shows that EM surface waves can propagate also along a metallic<br />

surface with a broad spectrum of eigen frequencies<br />

from ω = 0 up to ω = ω 2<br />

Particle (localized) plasmon polaritons<br />

p<br />

ω > ω p<br />

ω<br />

p<br />

−3


Bulk<br />

metal<br />

Metal<br />

surface<br />

Metal sphere<br />

localized <strong>SPPs</strong><br />

<strong>Plasmon</strong> resonance positions in vacuum<br />

+ + + +<br />

- - - -<br />

++ -- ++ -- ++ --<br />

+<br />

-<br />

+ +<br />

-<br />

-<br />

ω p<br />

ε =<br />

ε =<br />

ε =<br />

0<br />

−1<br />

−2<br />

drude<br />

model<br />

drude<br />

model<br />

ω p<br />

ω p<br />

2<br />

3


Optical technology using<br />

- propagating surface plasmon polaritons<br />

- localized plasmon polaritons<br />

Topics include:<br />

<strong>Surface</strong> <strong>Plasmon</strong> Photonics<br />

Localized resonances/ - nanoscopic particles<br />

local field enhancement - near-field tips<br />

Propagation <strong>and</strong> guiding - photonic devices<br />

- near-field probes<br />

Enhanced transmission - aperture probes<br />

- filters<br />

Negative index of refraction - perfect lens<br />

<strong>and</strong> metamaterials<br />

SERS/TERS - surface/tip enhanced Raman scattering<br />

Molecules <strong>and</strong> - enhanced fluoresence<br />

quantum dots<br />

Also called:<br />

• <strong>Plasmon</strong>ics<br />

• <strong>Plasmon</strong> photonics<br />

• <strong>Plasmon</strong> optics


Nanophotonics using plasmonic circuits<br />

Atwater et.al., MRS Bulletin 30, No. 5 (2005)<br />

Nanoscale plasmon waveguides<br />

• Proposal by Takahara et. al. 1997<br />

Metal nanowire<br />

Diameter


Subwavelength-scale plasmon waveguides<br />

Krenn, Aussenegg, Physik Journal 1 (2002) Nr. 3


Some applications of plasmon resonant nanoparticles<br />

• SNOM probes<br />

• Sensors<br />

• <strong>Surface</strong> enhanced<br />

Raman scattering (SERS)<br />

• Nanoscopic waveguides for light<br />

S.A. Maier et.al., Nature Materials 2, 229 (2003)<br />

T. Kalkbrenner et.al., J. Microsc. 202, 72 (2001)


Literature:<br />

Light-matter interactions in solids<br />

EM waves in matter<br />

Lorenz oscillator<br />

Isolators, Phonon polaritons<br />

Metals, <strong>Plasmon</strong> polaritons<br />

- C.F.Bohren, D.R.Huffman, Absorption <strong>and</strong> scattering of light by small particles<br />

- K.Kopitzki, Einführung in die Festkörperphysik<br />

- C.Kittel, Einführung in die Festkörperphysik


EM-waves in matter (linear media) - definitions<br />

Polarization<br />

P = ε χ with suszeptibility<br />

χ<br />

0 E<br />

Electric displacement<br />

( + χ ) E ε E<br />

D = ε 0E + P = ε 0 1 = 0ε<br />

Complex refractive index<br />

N = n + iκ<br />

=<br />

ε = ε′<br />

+ iε<br />

′<br />

ε ′ = n<br />

2<br />

ε ′<br />

= 2nκ<br />

= 1+<br />

χ<br />

2<br />

+ κ<br />

ε<br />

Complex dielectric function<br />

Relationship between N <strong>and</strong> ε


EM-waves in matter (linear media) - dispersion<br />

E = E 0e<br />

i( kr −ωt)<br />

i( kr −ωt)<br />

B = B0e c<br />

ω = k =<br />

ε<br />

c<br />

n<br />

k<br />

2 ω<br />

( k⋅ k)=<br />

c 2 ε ε(ω) <strong>and</strong> thus k = k´ + ik´´ are complex numbers!<br />

( kr−ωt<br />

) i(<br />

k′<br />

r−<br />

t ) −k′<br />

′ r<br />

i ω<br />

E = E e = E e e<br />

0<br />

wavevector k = 2π<br />

λ<br />

frequency ω = 2πf<br />

Dispersion in transparent media without absorption:<br />

Dispersion generally:<br />

k <strong>and</strong> ε are real<br />

ε >0<br />

0<br />

propagating wave exponential decay of amplitude


+<br />

2<br />

ω0 = Km<br />

γ = bm<br />

-<br />

ω 0<br />

Harmonic oscillator (Lorentz) model<br />

m&x<br />

& + bx&<br />

+ Kx<br />

= eE<br />

= eE<br />

p = ex<br />

= ε αE<br />

P = Np<br />

= ε χE<br />

0<br />

0<br />

0<br />

e<br />

iωt<br />

e m<br />

iΘ eE<br />

x =<br />

E = Ae<br />

2 2<br />

ω −ω<br />

− iγω<br />

m<br />

0<br />

2<br />

ω p<br />

ε = 1+<br />

χ = 1+<br />

2 2<br />

ω −ω<br />

− iγω<br />

2 2 ωp = Ne / mε0 plasma frequency<br />

0<br />

ω 0


One-oscillator (Lorentz) model<br />

from Bohren/Huffman<br />

N =<br />

n + iκ<br />

=<br />

R =<br />

n<br />

ε<br />

2 2 ( n −1)<br />

+ κ<br />

2 2 ( + 1)<br />

+ κ


2<br />

1,6<br />

1,2<br />

0,8<br />

0,4<br />

0<br />

-0,4<br />

-0,8<br />

eps'<br />

Weak <strong>and</strong> strong molecular vibrations<br />

weak oscillator: ε‘ > 1<br />

wavenumber / cm -1<br />

eps''<br />

860 880 900 920 940<br />

caused by: molecular vibrations<br />

examples: PMMA, PS, proteins<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

-0,2<br />

-0,4<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

strong oscillator: ε‘ < 0<br />

eps' eps''<br />

860 880 900 920 940<br />

wavenumber / cm -1<br />

crystal lattice vibrations<br />

SiC, Xonotlit, Calcite, Si 3 N 4<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

-10


Optical <strong>properties</strong> of polar crystals<br />

note:<br />

lattice has transversal T <strong>and</strong> longitudinal L<br />

oscillations but only transversal phonons<br />

can be excited by light<br />

N = n + iκ<br />

=<br />

2<br />

ω<br />

2<br />

( k ⋅k ) = ε<br />

E = E0e<br />

i<br />

c<br />

ε<br />

( kr−ωt<br />

)<br />

A n = 0,<br />

κ =<br />

B<br />

A<br />

B<br />

n = ε , κ =<br />

ω<br />

k = i<br />

c<br />

k =<br />

ω<br />

c<br />

ε<br />

ε<br />

ε<br />

A: total reflection<br />

B: transmission <strong>and</strong> reflection<br />

0<br />

R =<br />

n<br />

B A B<br />

γ = 0<br />

2 2 ( n −1)<br />

+ κ<br />

2 2 ( + 1)<br />

+ κ


γ > 0<br />

SiC - single oscillator model


General dispersion for nonconductor<br />

ω 0 = 0<br />

permanent dipoles<br />

e.g. water<br />

phonons<br />

molecular vibrations<br />

resonances<br />

restoring forces<br />

ω0 > 0


Dispersion in polar crystals - phonon polaritons<br />

Dispersion relation for<br />

k<br />

2<br />

2 2<br />

ω ω<br />

= ε = ε<br />

2 2<br />

c c<br />

photon like<br />

γ = 0<br />

2 2<br />

ω −ω<br />

L ( ωs<br />

) 2 2<br />

ω −ω<br />

T<br />

strong coupling of mechanical <strong>and</strong><br />

electromagnetic waves, polariton like<br />

γ = 0<br />

between TO <strong>and</strong> LO<br />

there is no solution for<br />

real values ω <strong>and</strong> k<br />

frequency gap:<br />

E ∝ e<br />

ω<br />

−i<br />

t −kr<br />

e<br />

no propagation<br />

reflection


- Intrab<strong>and</strong> transitions<br />

- longitudinal plasma oscillations<br />

- ω 0 = 0 i.e. no restoring force<br />

- ω P = plasma frequency<br />

ε<br />

2<br />

ω p<br />

1+<br />

2<br />

ω −ω<br />

− iγω<br />

= 2<br />

0<br />

ω 0 = 0<br />

ε<br />

2<br />

ω p<br />

1−<br />

ω − iγω<br />

= 2<br />

2<br />

ω p<br />

ε′<br />

= 1−<br />

2 2<br />

ω + γ<br />

ε′<br />

′ =<br />

ω<br />

ω<br />

2<br />

p<br />

γ<br />

2<br />

ω p<br />

≈1<br />

− 2<br />

ω<br />

2<br />

ω pγ<br />

≈<br />

2 2 3<br />

( ω + γ ) ω<br />

Metals - drude model<br />

γ = 0<br />

E = E0e<br />

i<br />

( kr−ωt<br />

)<br />

ω<br />

k = i<br />

c<br />

n = 0,<br />

κ =<br />

ω >> γ = 1/τ (1/ collision time)<br />

collisions usually by electron-phonon scattering<br />

ε<br />

ε<br />

k =<br />

ω<br />

c<br />

ε<br />

n = ε , κ =<br />

total reflection transmission<br />

generally:<br />

γ > 0 leads to damping of transmitted wave n > 0, κ > 0<br />

0


ω T = 0<br />

Aluminium<br />

ω L = ω P


Free <strong>and</strong> bound electrons in metals<br />

ε bound<br />

ε drude<br />

Bound electrons contribute like a Lorenz oscillator<br />

where<br />

ε = ε + ε<br />

ε<br />

metal<br />

drude<br />

drude<br />

2<br />

ω p,<br />

d<br />

1−<br />

ω − iγ<br />

ω<br />

= 2<br />

d<br />

bound<br />

2<br />

ω p,<br />

j<br />

∑ 2<br />

ω −ω<br />

− iγ ω<br />

ε bound = 2<br />

j 0<br />

j


ω<br />

ω p<br />

0<br />

Metals - plasmon polaritons<br />

<strong>Plasmon</strong> polariton dispersion (γ = 0)<br />

2<br />

ω<br />

= ω<br />

2<br />

p +<br />

ω =<br />

c<br />

2<br />

k<br />

ck<br />

2<br />

k<br />

E ∝ e<br />

ω<br />

−i<br />

t −kr<br />

e<br />

no propagation<br />

reflection


Dielectric function of metals <strong>and</strong> polar crystals<br />

Metal<br />

collective free electron oscillations (plasmons)<br />

no restoring force<br />

plasma frequency<br />

(longitudinal oscillation)<br />

Polar crystal<br />

strong lattice vibrations (phonons)<br />

transversal optical<br />

phonon frequency, TO<br />

Reststrahlenb<strong>and</strong><br />

longitudinal optical<br />

phonon frequency, LO


<strong>Surface</strong> <strong>Plasmon</strong> <strong>Polaritons</strong> (<strong>SPPs</strong>)<br />

-<br />

<strong>Introduction</strong> <strong>and</strong> <strong>basic</strong> <strong>properties</strong><br />

- Overview<br />

- Light-matter interaction<br />

- SPP dispersion <strong>and</strong> <strong>properties</strong><br />

St<strong>and</strong>ard textbook:<br />

- Heinz Raether, <strong>Surface</strong> <strong>Plasmon</strong>s on Smooth <strong>and</strong> Rough <strong>Surface</strong>s <strong>and</strong> on Gratings<br />

Springer Tracts in Modern Physics, Vol. 111, Springer Berlin 1988<br />

Overview articles on <strong>Plasmon</strong>ics:<br />

- A. Zayats, I. Smolyaninov, Journal of Optics A: Pure <strong>and</strong> Applied Optics 5, S16 (2003)<br />

- A. Zayats, et. al., Physics Reports 408, 131-414 (2005)<br />

- W.L.Barnes et. al., Nature 424, 825 (2003)


z<br />

x<br />

<strong>Surface</strong> polaritons (SPs)<br />

Coupled state between photons <strong>and</strong> elementary excitations at the interface between a<br />

material with ε < 0 <strong>and</strong> a dielectric.<br />

- radiative surface polaritons are coupled with propagating EM waves.<br />

- nonradiative surface polaritons do not couple with propagating EM waves.<br />

- for perfectly flat surfaces SPs are always nonradiative!<br />

- mixed transversal <strong>and</strong> longitudinal EM field.<br />

In contrast to TIR the surface polariton field on both sides of the interface are evanescent.<br />

dielectric ( ω)<br />

> 0<br />

surface wave<br />

ε d<br />

++ -- ++ -- ++ --<br />

ε<br />

( ω)<br />

< 0<br />

z<br />

E<br />

( z)<br />

∝<br />

e<br />

E<br />

− Im<br />

SP<br />

E(<br />

z)<br />

k z<br />

z<br />

±<br />

= E0<br />

e<br />

( k x±<br />

k z−ωt<br />

)<br />

i x z<br />

k = k′<br />

+ ik<br />

′′<br />

x<br />

k′<br />

x<br />

=<br />

x<br />

2π<br />

λ<br />

SP<br />

x


z<br />

Ez<br />

H y⊗<br />

x<br />

dielectric:<br />

E<br />

E<br />

⎛ E<br />

⎜<br />

= ⎜ 0<br />

⎜<br />

⎝ E<br />

metal/polar crystal:<br />

x<br />

+ + - - x<br />

x<br />

z<br />

⎞<br />

⎟<br />

⎟e<br />

⎟<br />

⎠<br />

e<br />

e<br />

i<br />

( k x+<br />

k z−ωt<br />

)<br />

x<br />

z<br />

( k x+<br />

k z−ωt<br />

)<br />

i xd zd<br />

( k x−k<br />

z−ωt<br />

)<br />

i xm zm<br />

SP fields<br />

Ez y H<br />

E<br />

H<br />

++ -- ++ -- ++ --<br />

++ -- ++ -- ++ --<br />

++ -- ++ -- ++ --<br />

++ -- ++ -- ++ --<br />

kx<br />

⎛ 0<br />

⎜<br />

= ⎜ H<br />

⎜<br />

⎝ 0<br />

y<br />

⎞<br />

⎟<br />

⎟e<br />

⎟<br />

⎠<br />

i<br />

( k x+<br />

k z−ωt<br />

)<br />

x<br />

z


z<br />

z<br />

x<br />

x<br />

Derivation of SPP dispersion – boundary conditions<br />

H<br />

Ez<br />

y<br />

dielectric<br />

z > 0<br />

z<br />

< 0<br />

metal<br />

⊗<br />

E<br />

x<br />

+ + - -<br />

longitudinal surface wave<br />

++ -- ++ -- ++ --<br />

εd ( ω)<br />

εm( ω)<br />

H<br />

E<br />

H<br />

E<br />

d<br />

d<br />

m<br />

m<br />

Ey<br />

H<br />

x<br />

= 0<br />

( 0,<br />

H , )<br />

= 0<br />

( 0,<br />

H , )<br />

= 0<br />

( E , 0 E )<br />

= ,<br />

xm<br />

yd<br />

ym<br />

e<br />

( E , 0 E )<br />

= ,<br />

xd<br />

H<br />

= z<br />

= 0<br />

zd<br />

e<br />

zm<br />

i<br />

( ) t z k x k + −ω<br />

e<br />

i<br />

i<br />

( ) t z k x k − −ω<br />

e<br />

xd<br />

xm<br />

i<br />

( ) t z k x k − −ω<br />

xm<br />

zd<br />

( ) t z k x k + −ω<br />

xd<br />

zm<br />

zd<br />

zm<br />

xm<br />

Boundary<br />

bonditions (z=0)<br />

ε E = ε E<br />

m<br />

E =<br />

xm<br />

H =<br />

ym<br />

xd<br />

zm<br />

E<br />

xd<br />

H<br />

k = k =<br />

d<br />

yd<br />

k<br />

x<br />

zd


Derivation of SPP dispersion<br />

Derivation of SPP dispersion<br />

E<br />

H<br />

t<br />

c ∂<br />

∂<br />

= 1<br />

curl ε<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

∂<br />

=<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

×<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

∂<br />

∂<br />

∂<br />

z<br />

x<br />

t<br />

y<br />

z<br />

y<br />

x<br />

E<br />

E<br />

c<br />

H 0<br />

1<br />

0<br />

0<br />

ε<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

−<br />

=<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

⎛<br />

∂<br />

∂<br />

−<br />

z<br />

x<br />

y<br />

x<br />

y<br />

z<br />

E<br />

E<br />

c<br />

H<br />

H<br />

0<br />

0<br />

ω<br />

ε<br />

Maxwell eq.:<br />

z-component:<br />

Diel.:<br />

Metal:<br />

zm<br />

m<br />

y<br />

x<br />

E<br />

c<br />

H<br />

k<br />

ω<br />

ε<br />

−<br />

=<br />

+<br />

zd<br />

d<br />

y<br />

x<br />

E<br />

c<br />

H<br />

k<br />

ω<br />

ε<br />

−<br />

=<br />

+<br />

x-component:<br />

Diel.:<br />

Metal: ym<br />

zm<br />

ym<br />

z<br />

H<br />

k<br />

H +<br />

=<br />

∂<br />

−<br />

yd<br />

zd<br />

yd<br />

z<br />

H<br />

k<br />

H −<br />

=<br />

∂<br />

−<br />

x<br />

m<br />

y<br />

zm<br />

E<br />

c<br />

H<br />

k<br />

ω<br />

ε<br />

−<br />

=<br />

+<br />

x<br />

d<br />

y<br />

zd<br />

E<br />

c<br />

H<br />

k<br />

ω<br />

ε<br />

+<br />

=<br />

+<br />

( )<br />

t<br />

z<br />

k<br />

x<br />

k<br />

i zd<br />

x<br />

e<br />

ω<br />

−<br />

+<br />

( )<br />

t<br />

z<br />

k<br />

x<br />

k<br />

i zm<br />

x<br />

e<br />

ω<br />

−<br />

−<br />

Diel.:<br />

Metal:


x-component:<br />

Metal<br />

Diel.<br />

I:<br />

II:<br />

I / II:<br />

Derivation of SPP dispersion<br />

k<br />

k<br />

zm<br />

zd<br />

H<br />

H<br />

k<br />

k<br />

y<br />

y<br />

zm<br />

zd<br />

ω<br />

= −ε<br />

m E<br />

c<br />

ω<br />

= ε d Ex<br />

c<br />

ε m = −<br />

ε<br />

d<br />

x<br />

k<br />

ε<br />

zd<br />

d<br />

+<br />

k<br />

ε<br />

zm<br />

m<br />

=<br />

0


generally:<br />

2 2 2<br />

kx + k y + kz<br />

at interface metal/dielectric:<br />

kzd<br />

ε<br />

d<br />

0<br />

+<br />

k<br />

ε<br />

zm<br />

m<br />

=<br />

= 0<br />

k<br />

2<br />

2<br />

ω<br />

ε<br />

2<br />

c<br />

Dispersion relation of <strong>SPPs</strong><br />

k<br />

k<br />

k<br />

2<br />

x<br />

2<br />

zd<br />

k =<br />

2<br />

zm<br />

xd<br />

k<br />

xm<br />

2<br />

⎛ ω ⎞<br />

= ⎜ ⎟<br />

⎝ c ⎠<br />

2<br />

⎛ ω ⎞<br />

= ⎜ ⎟<br />

⎝ c ⎠<br />

ε mε<br />

d<br />

ε + ε<br />

2<br />

⎛ ω ⎞<br />

= ⎜ ⎟<br />

⎝ c ⎠<br />

m<br />

d<br />

( ε + ε )<br />

m<br />

ε<br />

2<br />

d<br />

d<br />

( ε + ε )<br />

m<br />

ε<br />

2<br />

m<br />

d<br />

dielectric:<br />

metal:<br />

2 2<br />

kx + kzd<br />

= ε d<br />

2 2<br />

kx + kzm<br />

= ε m<br />

2<br />

ω<br />

2<br />

c<br />

2<br />

ω<br />

2<br />

c<br />

( ε m ) < 0 <strong>and</strong> ε m > ε d real kx<br />

Re →<br />

k zd <strong>and</strong> k zm are imaginary


E<br />

k<br />

k<br />

k<br />

2<br />

x<br />

2<br />

zd<br />

2<br />

zm<br />

SP<br />

2<br />

⎛ ω ⎞<br />

= ⎜ ⎟<br />

⎝ c ⎠<br />

±<br />

= E0<br />

2<br />

⎛ ω ⎞<br />

= ⎜ ⎟<br />

⎝ c ⎠<br />

⎛ ω ⎞<br />

= ⎜ ⎟<br />

⎝ c ⎠<br />

ε mε<br />

d<br />

ε + ε<br />

2<br />

m<br />

e<br />

d<br />

( ε + ε )<br />

m<br />

ε<br />

2<br />

d<br />

( ε m ) < 0 <strong>and</strong> ε m > ε d real kx<br />

Re →<br />

k zd <strong>and</strong> k zm are imaginary<br />

d<br />

( ε + ε )<br />

m<br />

ε<br />

( k x±<br />

k z−ωt<br />

)<br />

i x z<br />

2<br />

m<br />

d<br />

Dispersion relation of <strong>SPPs</strong><br />

ω<br />

SP<br />

= ω<br />

p<br />

ω p<br />

1<br />

1+<br />

ε<br />

d<br />

ω<br />

photon<br />

in air<br />

ω =<br />

ckx<br />

ε ′ → −<br />

ε d<br />

surface plasmon polariton<br />

ω =<br />

ε + ε<br />

ε<br />

m d ckx<br />

mε<br />

d<br />

k x


ω<br />

SP<br />

= ω<br />

p<br />

ω p<br />

1<br />

1+<br />

ε<br />

d<br />

ω<br />

Volume vs. surface plasmon polariton<br />

2 2<br />

ω = ω p + c<br />

plasmon<br />

polariton<br />

2<br />

k<br />

2<br />

x<br />

ω = ck<br />

photon<br />

in air<br />

with damping<br />

x<br />

ε ′ → −<br />

ε d<br />

surface plasmon polariton<br />

ω =<br />

ε + ε<br />

ε<br />

m d ckx<br />

mε<br />

d<br />

k x<br />

volume plasmon<br />

surface plasmons<br />

non-propagating<br />

collective oscillations<br />

of electron plasma<br />

near the surface


ω p<br />

ω<br />

<strong>Plasmon</strong> polaritons:<br />

photon<br />

in air<br />

Light-electron coupling in<br />

• metals<br />

• semiconductors<br />

SP dispersion - plasmon vs. phonon<br />

ω<br />

ε ′ → −1<br />

surface plasmon<br />

polariton<br />

kx<br />

ck<br />

= x<br />

ε + 1<br />

ε<br />

ω LO<br />

ω TO<br />

ω<br />

Phonon polaritons:<br />

photon<br />

in air<br />

ε ′ → −1<br />

surface phonon<br />

polariton<br />

kx<br />

Light-phonon coupling in polar crystals<br />

• SiC, SiO 2<br />

• III-V, II-VI-semiconductors


metal/air<br />

interface<br />

E<br />

( x)<br />

k<br />

x<br />

ω<br />

= k′<br />

+ ′<br />

x ikx<br />

=<br />

c<br />

ik xx ik′<br />

x x −k<br />

x′<br />

′ x<br />

= E0e<br />

= E0e<br />

e<br />

propagating term exponential decay<br />

in x-direction<br />

L<br />

x<br />

1<br />

=<br />

2k′<br />

′<br />

x<br />

SP propagation length<br />

ε m<br />

ε + 1<br />

m<br />

propagation<br />

length<br />

intensity !<br />

ε d<br />

= 1<br />

2<br />

ω p<br />

ε m = 1−<br />

2<br />

ω + iγω<br />

γ = 0.<br />

2<br />

10<br />

7.5<br />

5<br />

2.5<br />

-2.5<br />

-5<br />

-7.5<br />

-10<br />

Lx( λvac)<br />

ε ′′ m<br />

ε ′ m<br />

Drude<br />

model<br />

0.4 0.6 0.8 1<br />

ω p<br />

ωSP<br />

=<br />

2<br />

200 ε = −1<br />

= 514. 5 nm : Lx<br />

= 1060 nm : Lx 22 μ<br />

500 μm<br />

20<br />

10<br />

5<br />

2<br />

1<br />

0.2 0.4 0.6 0.8 ω<br />

ω 1 p<br />

Example silver: λ = m<br />

λ =<br />

100<br />

50<br />

ω<br />

ω p


z<br />

x<br />

dielectric<br />

()<br />

ε d ω<br />

metal<br />

()<br />

ε m ω<br />

k<br />

x<br />

z<br />

SPP field perpendicular to surface<br />

E z<br />

Examples:<br />

silver:<br />

gold:<br />

E<br />

( z)<br />

= E<br />

0<br />

e<br />

− Im<br />

λ = 600 nm : Lz,<br />

m = 390 nm <strong>and</strong> Lz,<br />

m<br />

λ = 600 nm : Lz,<br />

m = 280 nm <strong>and</strong> Lz,<br />

m<br />

k z<br />

z<br />

L<br />

z<br />

=<br />

1<br />

Im k<br />

z-decay length<br />

(skin depth):<br />

z<br />

= 24 nm<br />

=<br />

31nm


<strong>SPPs</strong> have transversal <strong>and</strong> longitudinal el. fields<br />

z<br />

Ez<br />

H<br />

x<br />

y⊗<br />

El. field<br />

E<br />

E<br />

x<br />

=<br />

zd i<br />

k<br />

E z = i<br />

k<br />

ε ′<br />

E<br />

+ + - -<br />

At large values,<br />

m<br />

x<br />

− ε<br />

ε<br />

d<br />

x<br />

z<br />

the el. field in air/diel. has a strong<br />

transvers E z component compared to the<br />

longitudinal component E x<br />

E<br />

In the metal E z is small against E x<br />

m<br />

x<br />

Themag. fieldH is<br />

parallel to surface<br />

<strong>and</strong> perpendicular to<br />

propagation<br />

E<br />

E<br />

zm i<br />

x<br />

= −<br />

ε d<br />

− ε<br />

m<br />

−1<br />

ε ′ m<br />

At large k x , i.e. close to ε = - ε d ,<br />

both components become equal<br />

E ± iE<br />

z<br />

= (air: +i, metal: -i)<br />

x<br />

ωSP<br />

ω p<br />

ω


ω<br />

photon in air<br />

Dispersion <strong>and</strong> excitation of <strong>SPPs</strong><br />

photon in<br />

dielectric<br />

SPP dispersion<br />

k of photon in air is always < k of SPP<br />

k x<br />

no excitation of SPP is possible<br />

in a dielectric k of the photon is increased<br />

k of photon in dielectric can equal k of SPP<br />

SPP can be excited by p-polarized light<br />

(SPP has longitudinal component)<br />

thin metal film<br />

dielectric<br />

Kretschmann configuration<br />

E<br />

θ0<br />

k x<br />

R<br />

z<br />

x


Methods of SPP excitation<br />

n prism > n L !!


E<br />

ε d<br />

ε m<br />

ε<br />

0<br />

θ0<br />

k x<br />

R<br />

z<br />

Excitation by ATR<br />

Kretschmann configuration Otto configuration<br />

total reflection at prism/metal interface<br />

-> evanescent field in metal<br />

-> excites surface plasmon polariton at<br />

interface metal/dielectric medium<br />

metal thickness < skin depth<br />

ATR: Attenuated Total Reflection<br />

x<br />

E<br />

ε m<br />

ε d<br />

ε<br />

0<br />

θ0<br />

total reflection at prism/dielectric medium<br />

-> evanescent field excites surface plasmon<br />

at interface dielectric medium/metal<br />

usful for surfaces that should not be damaged<br />

or for surface phonon polaritons on thick crystals<br />

k x<br />

distance metal – prism of about λ<br />

R<br />

z<br />

x


z<br />

x<br />

SPP excitation requires kphoton,x = kSP,x ε d<br />

ε m<br />

ε 0<br />

k photon,x<br />

θ<br />

k SP,x<br />

R<br />

< k SP,x<br />

k photon,x<br />

no SPP excitation<br />

Excitation by ATR<br />

θ<br />

k photon,x<br />

k SP,x<br />

= k SP,x<br />

R<br />

SPP excitation<br />

k photon,x


z<br />

ε d<br />

ε m<br />

ε<br />

0<br />

x<br />

k<br />

c<br />

ω<br />

=<br />

k =<br />

ω<br />

c<br />

ε 0<br />

Excitation by Kretschmann configuration<br />

θ0<br />

k x =<br />

ω<br />

c<br />

0<br />

( )<br />

sin θ ε<br />

0<br />

m<br />

0<br />

kx ε m<br />

0<br />

ω0<br />

ω<br />

ω ε + 1 c<br />

= c =<br />

ε sin<br />

0<br />

ω = ck<br />

photon<br />

in air<br />

( θ )<br />

0<br />

0<br />

kx<br />

Resonance<br />

condition<br />

ω x<br />

photon in<br />

dielectric<br />

0 sin<br />

kx<br />

( )<br />

= c / k ε θ<br />

SPP dispersion<br />

ω<br />

ε m<br />

kx<br />

=<br />

c ε + 1<br />

m<br />

0


ω<br />

ω0<br />

θ0<br />

photon<br />

in air<br />

Kretschmann configuration – angle scan<br />

θ0<br />

R<br />

k x<br />

illumination freq. ω 0 = const.<br />

R<br />

s-polarized<br />

-> no excitation of <strong>SPPs</strong><br />

θ0<br />

p-polarized

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!