04.06.2013 Views

A Coupled Volume-of-Fluid/ Level Set Method in OpenFOAM

A Coupled Volume-of-Fluid/ Level Set Method in OpenFOAM

A Coupled Volume-of-Fluid/ Level Set Method in OpenFOAM

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A <strong>Coupled</strong> <strong>Volume</strong>-<strong>of</strong>-<strong>Fluid</strong>/ <strong>Level</strong> <strong>Set</strong> <strong>Method</strong><br />

<strong>in</strong> <strong>OpenFOAM</strong><br />

Kathr<strong>in</strong> Kissl<strong>in</strong>g<br />

19.11.2010<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 1 / 19


Overview<br />

1 Motivation<br />

2 <strong>Volume</strong>-<strong>of</strong>-<strong>Fluid</strong> <strong>in</strong> <strong>OpenFOAM</strong> R○<br />

3 <strong>Coupled</strong> <strong>Level</strong>-<strong>Set</strong>/<strong>Volume</strong>-<strong>of</strong>-<strong>Fluid</strong> Approach<br />

4 Results<br />

5 Summary and Outlook<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 2 / 19


Motivation<br />

Representation <strong>of</strong> sharp<br />

<strong>in</strong>terfaces to capture<br />

phenomena at the <strong>in</strong>terface<br />

Application <strong>of</strong> a Surface<br />

Captur<strong>in</strong>g method<br />

<strong>OpenFOAM</strong> framework<br />

Motivation<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 3 / 19


<strong>Volume</strong>-<strong>of</strong>-<strong>Fluid</strong> <strong>in</strong> <strong>OpenFOAM</strong> R○<br />

<strong>Volume</strong>-<strong>of</strong>-<strong>Fluid</strong> <strong>in</strong> <strong>OpenFOAM</strong> R○<br />

volumetric phase-fraction α1:<br />

phase 1: α1 = 1<br />

phase 2: α1 = 0<br />

<strong>in</strong>terface: 0 < α1 < 1<br />

Captur<strong>in</strong>g <strong>of</strong> the <strong>in</strong>terface<br />

∂α1<br />

∂t + ∇ · (Uα1) + ∇ · (Urα1α2) = 0<br />

relative velocity at the <strong>in</strong>terface<br />

Ur = m<strong>in</strong> (cα1 |U| , max (|U|)) · n<br />

Compression <strong>of</strong> the <strong>in</strong>terface controlled by parameter cα<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 4 / 19


<strong>Volume</strong>-<strong>of</strong>-<strong>Fluid</strong> <strong>in</strong> <strong>OpenFOAM</strong> R○<br />

<strong>Volume</strong>-<strong>of</strong>-<strong>Fluid</strong> <strong>in</strong> <strong>OpenFOAM</strong> R○<br />

phase averaged material properties<br />

cont<strong>in</strong>uity equation<br />

ρ =<br />

N<br />

(αiρi), µ =<br />

i=1<br />

∇ · U = 0<br />

N<br />

(αiµi)<br />

i=1<br />

mixture approach<br />

⇒ one equation to describe the transport <strong>of</strong> momentum<br />

∂ (ρU)<br />

∂t +∇·(ρUU) = −∇p∗ +∇·(µ∇U)+(∇U · ∇µ)−f·x∇ρ+σκ∇α1<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 5 / 19


<strong>Coupled</strong> <strong>Level</strong>-<strong>Set</strong>/<strong>Volume</strong>-<strong>of</strong>-<strong>Fluid</strong> Approach<br />

<strong>Volume</strong>-<strong>of</strong>-<strong>Fluid</strong> <strong>in</strong> <strong>OpenFOAM</strong> -<br />

problems <strong>of</strong> the implemented approach<br />

diffus<strong>in</strong>g <strong>in</strong>terface<br />

unphysical behaviour dur<strong>in</strong>g elongation<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 6 / 19


<strong>Volume</strong>-<strong>of</strong>-<strong>Fluid</strong> and <strong>Level</strong>-<strong>Set</strong><br />

volumetric phase fraction α:<br />

phase 1 α = 1<br />

phase 2 α = 0<br />

<strong>in</strong>terface 0 < α < 1<br />

transport <strong>of</strong> α:<br />

+ ∇ · (Uα) = 0<br />

∂α<br />

∂t<br />

<strong>Level</strong>-<strong>Set</strong> function φ:<br />

distance between cellcentre<br />

and <strong>in</strong>terface<br />

transport von φ:<br />

+ ∇ · (Uφ) = 0<br />

∂φ<br />

∂t<br />

phase averaged momentum balance<br />

∂ (ρU)<br />

∂t + ∇ · (ρUU) = −∇p∗ + ∇ · (µ∇U) + (∇U · ∇µ) − f · x∇ρ + σκ∇α1<br />

mass-conservative<br />

sharp <strong>in</strong>terface<br />

diffusion <strong>of</strong> the <strong>in</strong>terface<br />

not mass-conservative<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 7 / 19


<strong>Coupled</strong>-<strong>Level</strong>-<strong>Set</strong>/<strong>Volume</strong>-<strong>of</strong>-<strong>Fluid</strong> (CLSVOF) Approach<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 8 / 19


Reconstruction <strong>of</strong> the Interface<br />

1 identification <strong>of</strong> the cells describ<strong>in</strong>g the <strong>in</strong>terface<br />

cells with φ < (0.5 √ ∆x) 0 < α < 1<br />

(depend<strong>in</strong>g on the position <strong>of</strong> the<br />

<strong>in</strong>terface)<br />

sign (φ) = −1 α = 1<br />

sign (φ) = 1 α = 0<br />

2 l<strong>in</strong>ear reconstruction <strong>of</strong> α from φ<br />

p := ai,j,k (x − xi) + bi,j,k (y − yj) + ci,j,k (z − zk) + di,j,k<br />

plane p represent<strong>in</strong>g the 0-contour <strong>of</strong> the <strong>Level</strong>-<strong>Set</strong> variable<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 9 / 19


Reconstruction <strong>of</strong> the Interface<br />

1 identification <strong>of</strong> the cells describ<strong>in</strong>g the <strong>in</strong>terface<br />

cells with φ < (0.5 √ ∆x) 0 < α < 1<br />

(depend<strong>in</strong>g on the position <strong>of</strong> the<br />

<strong>in</strong>terface)<br />

sign (φ) = −1 α = 1<br />

sign (φ) = 1 α = 0<br />

2 l<strong>in</strong>ear reconstruction <strong>of</strong> α from φ<br />

p := ai,j,k (x − xi) + bi,j,k (y − yj) + ci,j,k (z − zk) + di,j,k<br />

plane p represent<strong>in</strong>g the 0-contour <strong>of</strong> the <strong>Level</strong>-<strong>Set</strong> variable<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 10 / 19


Reconstruction <strong>of</strong> the <strong>in</strong>terface<br />

1 computation <strong>of</strong> the plane coefficients ai,j,k, bi,j,k, ci,j,k, di,j,k by error<br />

m<strong>in</strong>imation<br />

Ei,j,k =<br />

i ′ X=i+1<br />

j ′ =j+1 X<br />

k ′ X=k+1<br />

i ′ =i−1 j ′ =j−1 k ′ =k−1<br />

wi ′ −i,j ′ −j,k ′ −kδ (φi ′ ,j ′ ,k ′)<br />

(φi ′ ,j ′ ,k ′ − ai,j,k (xi ′ − xi) − bi,j,k (yj ′ − yj)<br />

−ci,j,k (zk ′ − zk) − di,j,k)<br />

2 weight<strong>in</strong>g functions<br />

central cell: w = 16<br />

sourround<strong>in</strong>g cells: w = 1<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 11 / 19


Reconstruction <strong>of</strong> the <strong>in</strong>terface<br />

3 computation <strong>of</strong> the coefficients ai,j,k, bi,j,k, ci,j,k, di,j,k by solv<strong>in</strong>g the<br />

correspond<strong>in</strong>g l<strong>in</strong>ear equation system<br />

2<br />

6<br />

4<br />

P P P whX 2 P P P whXY P P P whXZ P P P whX<br />

P P P whXY P P P whY 2 P P P whYZ P P P whY<br />

3 2<br />

P P P P P P P P P 2<br />

whXZ whYZ whZ P P P 7<br />

P P P P P P P P P<br />

whZ 5<br />

P P P<br />

whX<br />

whY<br />

whZ<br />

wh<br />

·<br />

6<br />

4<br />

with the abbreviations<br />

wh = wi−i ′ ,j−j ′ ,k−k ′H φi ′ ,j ′ ,k ′<br />

<br />

X = xi ′ − xi<br />

Y = yi ′ − yi<br />

Z = zi ′ − zi<br />

a i,j,k<br />

b i,j,k<br />

c i,j,k<br />

d i,j,k<br />

3<br />

2<br />

7<br />

5 =<br />

6<br />

4<br />

P P P whX φ<br />

P P P whY φ<br />

P P P whZφ<br />

P P P whφ<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 12 / 19<br />

3<br />

7<br />

5


Reconstruction <strong>of</strong> the <strong>in</strong>terface<br />

Computation <strong>of</strong> the phase fraction<br />

1 transformation <strong>of</strong> the coord<strong>in</strong>ate system<br />

2 representation <strong>of</strong> the plane as Z = AX + BY + C<br />

3 calculation <strong>of</strong> the cutt<strong>in</strong>g po<strong>in</strong>ts between plane and<br />

cubus<br />

4 projection <strong>of</strong> the cutt<strong>in</strong>g po<strong>in</strong>ts <strong>in</strong>to plane z=0<br />

5 def<strong>in</strong>ition <strong>of</strong> triplets<br />

6 <strong>in</strong>tegration over the triplets<br />

V =<br />

xj y(xk)<br />

xi<br />

y(xk)<br />

AX + BY + Cdydx<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 13 / 19


Reconstruction <strong>of</strong> φ from α<br />

Solv<strong>in</strong>g the <strong>in</strong>verse problem<br />

def<strong>in</strong>ition <strong>of</strong> the volumetric phase fraction as function <strong>of</strong> the <strong>Level</strong>-<strong>Set</strong><br />

variable<br />

1<br />

dxdydz<br />

Z<br />

zk+1/2<br />

Z<br />

yj+1/2<br />

Z<br />

xi+1/2<br />

z k−1/2<br />

y j−1/2<br />

x i−1/2<br />

H ` ` ´ ´<br />

ai,j,k (x − xi ) + bi,j,k y − yj + ci,j,k (z − zk ) + di,j,k dxdydz = αi,j,k<br />

if mass-conservation is not fulfilled after advection <strong>of</strong> φ und α:<br />

adaption <strong>of</strong> the parameter di,j,k<br />

d New<br />

i,j,k = d 1<br />

dxdydz<br />

i,j,k −<br />

R z k+1/2<br />

z k−1/2<br />

R z k+1/2<br />

z k−1/2<br />

re-evaluation <strong>of</strong> φ<br />

R y<br />

j+1/2 R x<br />

i+1/2<br />

y<br />

j−1/2<br />

x H<br />

i−1/2 ` ` ´ ´<br />

ai,j,k (x − xi ) + bi,j,k y − yj + ci,j,k (z − zk ) + di,j,k dxdydz<br />

R y j+1/2<br />

y j−1/2 + R x i+1/2<br />

x i−1/2 H ` a i,j,k (x − x i ) + b i,j,k<br />

` ´ ´<br />

y − yj + ci,j,k (z − zk ) + di,j,k dxdy<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 14 / 19


CLSVOF-Class<br />

Heaviside-function<br />

calculation <strong>of</strong> the plane-coefficients<br />

transformation <strong>of</strong> the coord<strong>in</strong>ate-system<br />

geometrical calculation <strong>of</strong> the cutt<strong>in</strong>g-po<strong>in</strong>ts<br />

calculation <strong>of</strong> the phase-fractions and the distribution <strong>of</strong> the <strong>Level</strong>-<strong>Set</strong><br />

function<br />

solution <strong>of</strong> the transport equations for φ and α<br />

reconstruction <strong>of</strong> the <strong>Level</strong>-<strong>Set</strong> field as a signed distance function<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 15 / 19


Circle <strong>in</strong> a Vortex<br />

Results<br />

normal implementation <strong>in</strong>terCLSVOFFoam<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 16 / 19


Results<br />

Results<br />

adaptive mesh ref<strong>in</strong>ement to achieve high resolution<br />

droplet under <strong>in</strong>fluence <strong>of</strong> gravity<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 17 / 19


Results<br />

Results<br />

transport <strong>of</strong> a droplet <strong>in</strong> a channel under zero gravity conditions<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 18 / 19


Summary and Outlook<br />

Summary<br />

Summary and Outlook<br />

implementation <strong>of</strong> the CLSVOF-method <strong>in</strong> <strong>OpenFOAM</strong><br />

sharp <strong>in</strong>terface<br />

Outlook<br />

still a small mass-conservation problem<br />

→ implementation <strong>of</strong> a 5th order WENO scheme<br />

parallelization<br />

CLSVOF <strong>in</strong> <strong>OpenFOAM</strong> 19.11.2010 19 / 19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!