06.06.2013 Views

Pitchwise distributions of ensemble average velocites

Pitchwise distributions of ensemble average velocites

Pitchwise distributions of ensemble average velocites

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

FEM for Turbomachinery Flows<br />

Corsini and Rispoli Inoue and Kuroumaru free vortex rotor (1984)<br />

Navier-Stokes prediction obtained with XENIOS finite<br />

element code (1991) - grid 59 × 21 × 31<br />

tip clearance t = 1.8% lc<br />

PS<br />

Vp/Uc<br />

passage<br />

Trailing<br />

vortex<br />

vortex<br />

Va/Uc<br />

trailing vortex<br />

Vr/Uc<br />

wake<br />

SS<br />

tip clearance t = 1.2% lc<br />

<strong>Pitchwise</strong> <strong>distributions</strong> <strong>of</strong> <strong>ensemble</strong> <strong>average</strong> <strong>velocites</strong><br />

Alessandro Corsini, BUTE - 28 November 2000


FEM for Turbomachinery Flows<br />

Corsini and Rispoli Inoue and Kuroumaru free vortex rotor (1984)<br />

Navier-Stokes prediction obtained with XENIOS finite<br />

element code (1991) - grid 59 × 21 × 31<br />

tip clearance t = 1.8% lc<br />

Vr/Uc<br />

Va/Uc<br />

Vp/Uc<br />

Leakage vortex<br />

wake<br />

PS SS<br />

tip clearance t = 1.2% lc<br />

<strong>Pitchwise</strong> <strong>distributions</strong> <strong>of</strong> <strong>ensemble</strong> <strong>average</strong> <strong>velocites</strong><br />

Alessandro Corsini, BUTE - 28 November 2000


FEM for Turbomachinery Flows<br />

Corsini and Rispoli Storer and Cumpsty linear cascade (1991)<br />

Navier-Stokes prediction obtained with XENIOS finite<br />

element code - grid 59 × 21 × 31<br />

tip clearance t = 1.8% lc<br />

te le<br />

0.5<br />

0.3<br />

0.4<br />

Navier-Stokes prediction obtained with Dawes finite volume code<br />

(1987) - grid 61 × 25 × 33<br />

tip clearance t = 4% lc<br />

Blade surface static pressure distribution (Cp) - pressure side<br />

Alessandro Corsini, BUTE - 28 November 2000


FEM for Turbomachinery Flows<br />

Corsini and Rispoli Storer and Cumpsty linear cascade (1991)<br />

te<br />

Navier-Stokes prediction obtained with XENIOS finite<br />

element code - grid 59 × 21 × 31<br />

tip clearance t = 1.8% lc<br />

leakage flow influence<br />

-0.6<br />

le<br />

Navier-Stokes prediction obtained with Dawes finite volume code<br />

(1987) - grid 61 × 25 × 33<br />

tip clearance t = 4% lc<br />

Blade surface static pressure distribution (Cp) - suction side<br />

Alessandro Corsini, BUTE - 28 November 2000


FEM for Turbomachinery Flows<br />

Corsini and Rispoli Storer and Cumpsty linear cascade (1991)<br />

Navier-Stokes prediction obtained with XENIOS finite<br />

element code - grid 59 × 21 × 31<br />

tip clearance t = 1.8% lc<br />

Leakage velocity<br />

Navier-Stokes prediction obtained with Dawes finite volume code<br />

(1987) - grid 61 × 25 × 33<br />

tip clearance t = 2% lc<br />

Chordwise distribution <strong>of</strong> <strong>average</strong>d tip leakage flow velocity<br />

Alessandro Corsini, BUTE - 28 November 2000


FEM for Turbomachinery Flows<br />

Corsini and Rispoli Storer and Cumpsty linear cascade (1991)<br />

Navier-Stokes prediction obtained with XENIOS finite<br />

element code - grid 59 × 21 × 31<br />

tip clearance t = 1.8% lc<br />

0.5<br />

0.4<br />

0.3<br />

0<br />

Navier-Stokes prediction obtained with Dawes finite volume code<br />

(1987) - grid 61 × 25 × 33<br />

tip clearance t = 2% lc<br />

Blade surface static pressure distribution (Cp) - pressure side<br />

prediction measurement<br />

Alessandro Corsini, BUTE - 28 November 2000


FEM for Turbomachinery Flows<br />

CFD ORIENTED AXIAL FAN DESIGN IMPROVEMENT (1)<br />

• CFD INTER-BLADE FLOW PHYSICS PREDICTION<br />

R<br />

blade tip<br />

fraction <strong>of</strong> chord lenght<br />

Velocity field close to the blade suction side<br />

modeled streamtraces<br />

predicted streamtraces<br />

• Blade lift synthesized by use <strong>of</strong> “cone couple” model<br />

R<br />

blade tip<br />

fraction <strong>of</strong> chord lenght<br />

Velocity field close to the blade pressure side<br />

separate optimization <strong>of</strong> blade pressure and suction sides<br />

extend the validity <strong>of</strong> 2D cascade concept<br />

modeled streamtraces<br />

predicted streamtraces<br />

Alessandro Corsini, BUTE - 28 November 2000


FEM for Turbomachinery Flows<br />

CFD ORIENTED AXIAL FAN DESIGN IMPROVEMENT (2)<br />

• on the basis <strong>of</strong> computed pitch-<strong>average</strong>d flow<br />

force factor is evaluated ( l t)<br />

cl<br />

optimum c l * is defined (Howell, 1942) ⇒ optimum solidity values ( l t)<br />

*<br />

c l * ( l ) cl<br />

t ( t)<br />

l *<br />

SS cone 0.893 1.004 1.124<br />

PS cone 0.591 0.859 1.453<br />

• optimized axial fan rotor geometry with FORWARD SWEPT blades<br />

casing<br />

midspan<br />

hub<br />

L<br />

ps<br />

T<br />

ps<br />

*<br />

ps<br />

=<br />

l > L T = l<br />

ss<br />

ss<br />

*<br />

ss<br />

Alessandro Corsini, BUTE - 28 November 2000


FEM for Turbomachinery Flows<br />

• NON FREE VORTEX DESIGN<br />

• CIRCULAR ARC CAMBERED<br />

PLATE<br />

SWEPT AXIAL FAN ROTOR<br />

Unswept bladed<br />

rotor<br />

Swept bladed rotor<br />

blade number 12 12<br />

hub-to-casing diameter ratio 0.676 0.676<br />

tip clearance (percent span) 2 % 2 %<br />

flow coefficient Φ 0.50 0.50<br />

Ideal total head rise<br />

coefficient Ψ<br />

0.70 0.70<br />

hub mid tip hub mid tip<br />

blade solidity l / t 1.53 1.24 1.05 1.79 1.23 1.13<br />

forward sweep angle, deg 0 0 0 30 30 30<br />

stagger angle, deg 47.9 42.2 38.3 56.3 43.1 37.4<br />

camber angle, deg 27.4 23.1 19.9 35.4 25.4 20.3<br />

Alessandro Corsini, BUTE - 28 November 2000


FEM for Turbomachinery Flows<br />

ϕ3a<br />

SWEPT AXIAL FAN ROTOR FLOW SURVEY (1)<br />

ϕ1a<br />

R<br />

ψ3<br />

a) b)<br />

ψth,FSW<br />

<strong>Pitchwise</strong>-<strong>average</strong>d flow data for FSW and USW rotors<br />

(circles: FSW; squares: USW)<br />

ψth,USW<br />

R<br />

Alessandro Corsini, BUTE - 28 November 2000


FEM for Turbomachinery Flows<br />

SWEPT AXIAL FAN ROTOR FLOW SURVEY (2)<br />

R<br />

R<br />

0.25<br />

USW<br />

FSW<br />

0.2<br />

PS<br />

PS<br />

0.3<br />

Uc<br />

0.3<br />

0.6<br />

0.6<br />

C<br />

C<br />

0.2<br />

SS<br />

[deg]<br />

SS<br />

[deg]<br />

ST<br />

ST<br />

W<br />

W<br />

Axial flow coefficient behind the rotor<br />

Alessandro Corsini, BUTE - 28 November 2000


FEM for Turbomachinery Flows<br />

SWEPT AXIAL FAN ROTOR FLOW SURVEY (3)<br />

R<br />

R<br />

USW<br />

FSW<br />

PS<br />

PS<br />

Uc<br />

0.55<br />

0.55<br />

1.25<br />

0.8<br />

C<br />

C<br />

1.2<br />

0.8<br />

Fig. 5: Local ideal total head rise coefficient<br />

behind the rotor<br />

SS<br />

[deg]<br />

SS<br />

[deg]<br />

W<br />

ST<br />

W<br />

ST<br />

Ideal total head rise coefficient<br />

behind the rotor<br />

Alessandro Corsini, BUTE - 28 November 2000


FEM for Turbomachinery Flows<br />

SWEPT AXIAL FAN ROTOR FLOW SURVEY (4)<br />

R<br />

R<br />

USW<br />

FSW<br />

PS<br />

PS<br />

Uc<br />

-0.08<br />

Uc<br />

-0.05<br />

C<br />

C<br />

0.0<br />

radial flow coefficient<br />

behind the rotor<br />

W<br />

SS<br />

ST<br />

W<br />

SS<br />

[deg]<br />

ST<br />

[deg]<br />

0.06<br />

0.08<br />

0.05<br />

Alessandro Corsini, BUTE - 28 November 2000


FEM for Turbomachinery Flows<br />

DF<br />

SWEPT AXIAL FAN ROTOR LOADING<br />

Diffusion factor pr<strong>of</strong>ile along the span<br />

(circles: FSW; squares: USW)<br />

DF( R ) =<br />

1 − w w + Δw / 2σ<br />

w<br />

out<br />

in<br />

p<br />

in<br />

R<br />

Alessandro Corsini, BUTE - 28 November 2000


FEM for Turbomachinery Flows<br />

R<br />

R<br />

SWEPT AXIAL FAN ROTOR LOSS BEHAVIOR<br />

USW<br />

PS<br />

FSW<br />

PS<br />

0.7<br />

Uc<br />

0.1<br />

0.1<br />

0.6<br />

0.6<br />

SS<br />

[deg]<br />

SS<br />

[deg]<br />

Loss coefficient distribution<br />

at 98% blade chord<br />

ω =<br />

0in<br />

Δω<br />

p −<br />

p 0.<br />

5ρV<br />

0out<br />

2<br />

in<br />

Δω(R) = ω FSW − ω USW | R<br />

Loss improvement factor<br />

Alessandro Corsini, BUTE - 28 November 2000<br />

R


FEM for Turbomachinery Flows<br />

SWEPT AXIAL FAN ROTOR FLOW SURVEY (5)<br />

streamlines on blade suction side streamlines on blade pressure side<br />

8% pitch from blade pressure side<br />

Alessandro Corsini, BUTE - 28 November 2000

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!