07.06.2013 Views

Advances in biosensors: principle, architecture and applications

Advances in biosensors: principle, architecture and applications

Advances in biosensors: principle, architecture and applications

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

<strong>Advances</strong> <strong>in</strong> <strong>biosensors</strong>: pr<strong>in</strong>ciple, <strong>architecture</strong> <strong>and</strong> <strong>applications</strong><br />

Veeradasan Perumal, Uda Hashim<br />

Institute of Nano Electronic Eng<strong>in</strong>eer<strong>in</strong>g (INEE), University Malaysia Perlis (UniMAP),<br />

Perlis, Malaysia<br />

Correspondence to:<br />

Veeradasan Perumal,<br />

Biomedical Nano Diagnostics Research Group,<br />

Institute of Nano Electronic Eng<strong>in</strong>eer<strong>in</strong>g (INEE),<br />

University Malaysia Perlis (UniMAP),<br />

01000 Kangar Perlis, Malaysia<br />

E-mail: veeradasan@hotmail.my<br />

Tel: 04-9798580<br />

Fax’s: 04-9798578<br />

Summary<br />

The ability to detect pathogenic <strong>and</strong> physiologically relevant molecules <strong>in</strong> the body with high<br />

sensitivity <strong>and</strong> specificity offers a powerful opportunity <strong>in</strong> early diagnosis <strong>and</strong> treatment of<br />

diseases. Early detection <strong>and</strong> diagnosis can be used to greatly reduce the cost of patient care<br />

associated with advanced stages of many diseases. However, despite their widespread cl<strong>in</strong>ical<br />

use, these techniques have a number of potential limitations. For example, a number of<br />

diagnostic devices have slow response times <strong>and</strong> are burdensome to patients. Furthermore,<br />

these assays are expensive <strong>and</strong> cost the health care <strong>in</strong>dustry billions of dollars every year.<br />

Therefore, there is a need to develop more efficient <strong>and</strong> reliable sens<strong>in</strong>g <strong>and</strong> detection<br />

technologies. A biosensor is commonly def<strong>in</strong>ed as an analytical device that uses a biological<br />

1


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

recognition system to target molecules or macromolecules. Biosensors can be coupled to a<br />

physiochemical transducer that converts this recognition <strong>in</strong>to a detectable output signal.<br />

Typically <strong>biosensors</strong> are comprised of three components: (1) the detector, which identifies the<br />

stimulus; (2) the transducer, which converts this stimulus to a useful output; <strong>and</strong> (3) the signal<br />

process<strong>in</strong>g system, which <strong>in</strong>volves amplification <strong>and</strong> display of the output <strong>in</strong> an appropriate<br />

format. The goal of this comb<strong>in</strong>ation is to utilize the high sensitivity <strong>and</strong> selectivity of<br />

biological sens<strong>in</strong>g for analytical purposes <strong>in</strong> various fields of research <strong>and</strong> technology. Here<br />

we review some of the ma<strong>in</strong> advances <strong>in</strong> this field over the past few years, explore the<br />

application prospects, <strong>and</strong> discuss the issues, approaches, <strong>and</strong> challenges, with the aim of<br />

stimulat<strong>in</strong>g a broader <strong>in</strong>terest <strong>in</strong> develop<strong>in</strong>g <strong>biosensors</strong> <strong>and</strong> improv<strong>in</strong>g their <strong>applications</strong> <strong>in</strong><br />

medical diagnosis.<br />

Key words: transducer; bioreceptor; enzyme; antibody; DNA; pathology, diagnosis<br />

INTRODUCTION<br />

Over the past decade, many important technological advances have provided us with the tools<br />

<strong>and</strong> materials needed to construct biosensor devices. S<strong>in</strong>ce the first <strong>in</strong>vention of Clark Oxygen<br />

Electrode sensor, there are many improvements <strong>in</strong> sensitivity, selectivity, <strong>and</strong> multiplex<strong>in</strong>g<br />

capacity of modern biosensor. Before the various types of biosensor technologies <strong>and</strong><br />

application are discussed, it is first important to underst<strong>and</strong> <strong>and</strong> def<strong>in</strong>e ‘biosensor’. A<br />

biosensor accord<strong>in</strong>g to IUPAC recommendations 1999, a biosensor is an <strong>in</strong>dependently<br />

<strong>in</strong>tegrated receptor transducer device, which is capable of provid<strong>in</strong>g selective quantitative or<br />

semi-quantitative analytical <strong>in</strong>formation us<strong>in</strong>g a biological recognition element (Thevenot et<br />

al. 1999). Essentially it is an analytical device, which <strong>in</strong>corporat<strong>in</strong>g a biological or biological<br />

derived recognition element to detect specific bio-analyte <strong>in</strong>tegrated with a transducer to<br />

convert a biological signal <strong>in</strong>to an electrical signal (Lowe 2007). The purpose of a biosensor<br />

is to provide rapid, real-time, accurate <strong>and</strong> reliable <strong>in</strong>formation about the analyte of<br />

<strong>in</strong>terrogation. Ideally, it is a device that is capable of respond<strong>in</strong>g cont<strong>in</strong>uously, reversibly, <strong>and</strong><br />

does not perturb the sample. Biosensors have been envisioned to play a significant analytical<br />

2


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

role <strong>in</strong> medic<strong>in</strong>e, agriculture, food safety, homel<strong>and</strong> security, bioprocess<strong>in</strong>g, environmental<br />

<strong>and</strong> <strong>in</strong>dustrial monitor<strong>in</strong>g (Luong et al. 2008). A biosensor consists of three ma<strong>in</strong> elements, a<br />

bioreceptor, a transducer <strong>and</strong> a signal process<strong>in</strong>g system (David et al. 2008). A biological<br />

recognition element or bioreceptor is generally consists of an immobilized biocomponent that<br />

is able to detect the specific target analyte (Kahn & Plaxco 2010). This biocomponents are<br />

ma<strong>in</strong>ly composed of antibodies, nucleic acids, enzyme, cell <strong>and</strong> etc. Transducer <strong>in</strong> the other<br />

h<strong>and</strong> is a converter. The reaction between the analyte <strong>and</strong> bioreceptor br<strong>in</strong>g about a chemical<br />

changes such as the production of a new chemical, release of heat, flow of electrons <strong>and</strong><br />

changes <strong>in</strong> pH or mass. The biochemical signal is converted <strong>in</strong>to an electrical signal by the<br />

transducer. Some of the commonly used transducers have been discussed <strong>in</strong> 3.0. Eventually,<br />

signal process<strong>in</strong>g where the electrical signal is amplified <strong>and</strong> sent to a microelectronics <strong>and</strong><br />

data processor. A measurable signal is produced, such as digital display, pr<strong>in</strong>t-out or optical<br />

changes. Figure 1 shows a schematic diagram of the typical components <strong>in</strong> a biosensor. There<br />

is a need for simple, rapid <strong>and</strong> reagentless method for specific determ<strong>in</strong>ation, both qualitative<br />

<strong>and</strong> quantitative, of various compounds <strong>in</strong> various <strong>applications</strong> (Shantilatha et al. 2003).<br />

Hence, it is paramount to have fast <strong>and</strong> accurate chemical <strong>in</strong>telligence which particularly<br />

conspicuous <strong>in</strong> human health care.<br />

Fig. 1.0. Biosensor operation.<br />

3


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

CLASSIFICATION OF BIOSENSOR<br />

Biosensors can be classified either by the type of biological signal<strong>in</strong>g mechanism they utilize<br />

or by the type of signal transduction they employ. Figure 2.0 shows the different categories of<br />

biosensor.<br />

Fig. 2.0. Different categories of biosensor.<br />

BASED ON BIOLOGICAL SIGNAL<br />

The bioreceptor or biological recognition element is the significant dist<strong>in</strong>guish<strong>in</strong>g feature of a<br />

biosensor. The bioreceptor compromises the recognition system of a sensor towards the target<br />

analyte. Essentially it is crucial for a bioreceptor to be selective <strong>and</strong> sensitive towards the<br />

specific target analyte to prevent the <strong>in</strong>terference by other substance from sample matrix<br />

(Lowe 2007). Generally <strong>biosensors</strong> can be classified by the type of biological signal<strong>in</strong>g<br />

mechanism they utilize. The biological signal<strong>in</strong>g used by <strong>biosensors</strong> can be divided <strong>in</strong>to five<br />

major mechanisms (Fig. 3.0). Here, we will discuss each of these mechanisms <strong>in</strong> detail <strong>and</strong><br />

their application:<br />

4


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

Fig. 3.0. Methods of biosens<strong>in</strong>g with various biological signal mechanism: (a) antibody/antigen; (b)<br />

enzyme catalyze; (c) nucleic acid; (d) cell-based; (e) biomimetic.<br />

Enzyme based sensor<br />

Enzyme based biosensor are the earliest biosensor among all the other biosensor, these<br />

biosensor is first <strong>in</strong>troduced by Clark <strong>and</strong> Lyons <strong>in</strong> 1962 an amperometric enzyme electrode<br />

for glucose sensor which use ‘soluble’ enzyme electrode (Shantilatha et al. 2003). S<strong>in</strong>ce the<br />

first biosensor, enzyme based biosensor has face a massive growth <strong>in</strong> usage for various<br />

application till present. Enzymes are very efficient biocatalysts, which have the ability to<br />

specifically recognize their substrates <strong>and</strong> to catalyze their transformation. These unique<br />

properties make the enzymes powerful tools to develop analytical devices (Leca-Bouvier <strong>and</strong><br />

Blum 2010). Enzyme-based <strong>biosensors</strong> associate <strong>in</strong>timately a biocatalyst-conta<strong>in</strong><strong>in</strong>g sens<strong>in</strong>g<br />

layer with a transducer. Enzyme based biosensor work<strong>in</strong>g pr<strong>in</strong>cipal is based on catalytic<br />

5


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

action <strong>and</strong> b<strong>in</strong>d<strong>in</strong>g capabilities for specific detection (David et al. 2008). The enzyme based<br />

<strong>biosensors</strong> were made of enzyme as bioreceptor which is specific to detect targeted analyte<br />

form sample matrix. The lock <strong>and</strong> key <strong>and</strong> <strong>in</strong>duced fit hypothesis can apply to expla<strong>in</strong> the<br />

mechanism of enzyme action which is highly specific for this type of biosensor. This specific<br />

catalytic reaction of the enzyme provides these types of biosensor with the ability to detect<br />

much lower limits than with normal b<strong>in</strong>d<strong>in</strong>g techniques. This high specificity of enzyme–<br />

substrate <strong>in</strong>teractions <strong>and</strong> the usually high turnover rates of biocatalysts are the orig<strong>in</strong> of<br />

sensitive <strong>and</strong> specific enzyme-based biosensor devices (Leca-Bouvier <strong>and</strong> Blum 2010).<br />

Ideally enzyme catalytic action can be <strong>in</strong>fluence by several factors such as the concentration<br />

of the substrate, temperature, presence of competitive <strong>and</strong> non-competitive <strong>in</strong>hibitor <strong>and</strong> pH<br />

(Cass 2007). Essentially the Michaelis-Menten equation can be used to further expla<strong>in</strong> the<br />

detection limit of enzyme based biosensor (Park<strong>in</strong>son <strong>and</strong> Pejcic 2005). Glucose oxidase<br />

(GOD) <strong>and</strong> horseradish peroxidase (HRP) are the most widely used enzyme based biosensor<br />

that has been reported <strong>in</strong> literature. However, some recent studies have shown that enzyme<br />

based biosensor can be used to detect cholesterol, food safety <strong>and</strong> environmental monitor<strong>in</strong>g,<br />

heavy metals <strong>and</strong> also Pesticides (Am<strong>in</strong>e et al 2006, Zapp et al. 2011, Nomngongo et al. 2012,<br />

Soldatk<strong>in</strong> et al. 2012, Ju <strong>and</strong> K<strong>and</strong>imalla 2008). Moreover, a recent studies reported the used<br />

of enzyme catalytic implication <strong>in</strong>corporat<strong>in</strong>g with nucleic acid biosensor for DNA detection<br />

(He et al. 2011, L<strong>in</strong> et al. 2011).<br />

Immunosensors<br />

An antibodies based biosensor was applied for the first time to detection <strong>in</strong> the 1950s, open<strong>in</strong>g<br />

the doors to the possibility of immuno-diagnosis (Donahue <strong>and</strong> Albitar 2010). S<strong>in</strong>ce then,<br />

there have been vigorous effort made to develop immunosensor which composed of<br />

antigen/antibody as bioreceptor as a tool for cl<strong>in</strong>ical diagnostics (Conroy et al 2009; Orazio<br />

2011). An antibody is ‘Y’ shaped immunoglob<strong>in</strong> (Ig) that is made up of two heavy cha<strong>in</strong>s (H)<br />

<strong>and</strong> two light cha<strong>in</strong>s (L). However some of human antibodies form dimeric or pentameric<br />

structure by utiliz<strong>in</strong>g disulphide bonds <strong>and</strong> an extra prote<strong>in</strong> called the jo<strong>in</strong><strong>in</strong>g or J- cha<strong>in</strong><br />

(Wood 2006, Pohanka 2009). Each of the cha<strong>in</strong> has a constant <strong>and</strong> variable part. The variable<br />

part is specific to the antigen that is b<strong>in</strong>d with correspond<strong>in</strong>g antigen which is highly specific<br />

<strong>and</strong> selective (Conroy et al 2009, Donahue <strong>and</strong> Albitar 2010). Hence, an immunosensor which<br />

composed of antigen as bioreceptor utilizes the ability of antibody to b<strong>in</strong>d with correspond<strong>in</strong>g<br />

antigen which is highly specific, stable, <strong>and</strong> versatile. The specificity of an antibody towards<br />

6


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

the b<strong>in</strong>d<strong>in</strong>g side of its antigen is a function of its amio acids (Fowler et al. 2008). Those days,<br />

there are two type of detection method which frequently used <strong>in</strong> immunosensor which are<br />

optical <strong>and</strong> electrochemical. However optical detection transduction method has suffered from<br />

poor sensitivity when coupled with radioimmunoassay, the short half-life of radioactive<br />

agents, concerns of health hazards, <strong>and</strong> disposal problems. Electrochemical detection<br />

overcomes problems associated with other modes of detection of immunoassays <strong>and</strong><br />

immunosensors. In contrast, electrochemical immunoassays <strong>and</strong> immunosensors enable fast,<br />

simple, <strong>and</strong> economical detection that is free of these problems (Fowler et al. 2008).<br />

However, recent advance <strong>in</strong> science <strong>and</strong> technology has created an optical transduction<br />

method a new path towards highly sophisticated automated <strong>in</strong>strument. Hence, Optical <strong>and</strong><br />

electrochemical detection method are ga<strong>in</strong><strong>in</strong>g mutual importance for development of<br />

immunosensor (Shankaran et al. 2007, Bhatta et al. 2010). Accord<strong>in</strong>g to Ramirez et al. 2009,<br />

Immunosensors have been envisioned to play an important role <strong>in</strong> the improvement of public<br />

health by provid<strong>in</strong>g <strong>applications</strong> for which rapid detection, high sensitivity, <strong>and</strong> specificity are<br />

important, <strong>in</strong> areas such as cl<strong>in</strong>ical chemistry, food quality, <strong>and</strong> environmental monitor<strong>in</strong>g.<br />

The development of immunosensor for bacteria <strong>and</strong> pathogen detection has ga<strong>in</strong>ed a great<br />

deal of attention due to its application <strong>in</strong> the po<strong>in</strong>t of care measurement (POC) (Skottrup et al.<br />

2008, Barton et al. 2009, Braiek et al. 2012, Holford et al. 2012). Some recent studies shown<br />

that immunosensor is widely explored toward the detection of cancer/tumor. S<strong>in</strong>ce the<br />

traditional diagnostics method is poor <strong>in</strong> sensitivity, selectivity <strong>and</strong> time consum<strong>in</strong>g,<br />

immunosensor are become promis<strong>in</strong>g tools for cancer detection at early stages of cancer<br />

[Ushaa et al. 2011].<br />

DNA/Nucleic acid sensor<br />

The use of nucleic acids sequence for the specific diagnostics application has developed s<strong>in</strong>ce<br />

the early 1953 <strong>and</strong> still grow<strong>in</strong>g widely (Liu A. et al. 2012). The highly specific aff<strong>in</strong>ity<br />

b<strong>in</strong>d<strong>in</strong>g’s reaction between two s<strong>in</strong>gle str<strong>and</strong> DNA (ssDNA) cha<strong>in</strong>s to form double str<strong>and</strong>ed<br />

DNA (dsDNA) is utilized <strong>in</strong> nucleic acids based biosensor which appo<strong>in</strong>t the nucleic acids as<br />

biological recognition element. This method has promoted the development of DNA based<br />

sensor from the traditional method such as coupl<strong>in</strong>g of electrophoretic separations <strong>and</strong> radio<br />

iso-tropic which are high cost, hazardous, time consum<strong>in</strong>g <strong>and</strong> etc. (Park<strong>in</strong>son <strong>and</strong> Pejcic<br />

2005). This biosensor work<strong>in</strong>g pr<strong>in</strong>cipal is based on recognition of the complementary str<strong>and</strong><br />

by ssDNA to form stable hydrogen bond between two nucleic acids to become dsDNA. In<br />

7


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

order to achieve this, an immobilized ssDNA is used as probe <strong>in</strong> bioreceptor which the base<br />

sequence is complementary to the target of <strong>in</strong>terest. Exposure of target to the probe which<br />

results <strong>in</strong> hybridization of complementary ssDNA to form dsDNA will result <strong>in</strong> produc<strong>in</strong>g<br />

biochemical reaction that allows transducer amplified the signal <strong>in</strong>to electrical one.<br />

Subsequently, literature shows that the present of some l<strong>in</strong>ker such as thiol or biot<strong>in</strong> is needed<br />

<strong>in</strong> the effort to immobilize the ssDNA onto the sens<strong>in</strong>g surface (Cagn<strong>in</strong> et al. 2009, Larzerges<br />

et al. 2012). An important property of DNA is that the nucleic acid lig<strong>and</strong>s can be denatured<br />

to reverse b<strong>in</strong>d<strong>in</strong>g <strong>and</strong> the regenerated by controll<strong>in</strong>g buffer ion concentration (Park<strong>in</strong>son <strong>and</strong><br />

Pejcic 2005). The nucleic acid biological recognition layer which <strong>in</strong>corporates with transducer<br />

is easily synthesizable, highly specific <strong>and</strong> reusable after thermal melt<strong>in</strong>g o the DNA duplex<br />

(Teles <strong>and</strong> Fonseca 2008). In addition, this biosensor possesses a remarkable specificity to<br />

provide analytical tools that can measure the presence of a s<strong>in</strong>gle molecule species <strong>in</strong> a<br />

complex mixture (Brett 2005). DNA based biosensor has potential application <strong>in</strong> cl<strong>in</strong>ical<br />

diagnostic for virus <strong>and</strong> disease detection (Chua et al. 2011, Lui C. 2009, Thuy et al. 2012).<br />

Moreover, Yeh et al. 2012 recently has reported optical biochip for bacteria detection based<br />

on DNA hybridization with detection limit of 8.25 ng/ml. However, electrochemical<br />

transduction is most ab<strong>and</strong>on method used to study<strong>in</strong>g DNA damage <strong>and</strong> <strong>in</strong>teraction which<br />

reported <strong>in</strong> literature. The development of electrochemical DNA biosensor has received a<br />

great deal of attention lately <strong>and</strong> this has largely been driven by the need to developed rapid<br />

response, high sensitivity, good selectivity <strong>and</strong> experimental convenience (Liu A. et al. 2012).<br />

Cell based sensor<br />

Cell based sensor are the type of biosensor, which use liv<strong>in</strong>g cell as the biospecific sens<strong>in</strong>g<br />

element <strong>and</strong> are based on the ability of liv<strong>in</strong>g cell to detect the <strong>in</strong>tracellular <strong>and</strong> extracellular<br />

microenvironment condition, physiological parameter <strong>and</strong> produces response through the<br />

<strong>in</strong>teraction between stimulus <strong>and</strong> cell (Wang <strong>and</strong> Liu 2010). Microorganisms such as bacteria<br />

<strong>and</strong> fungi can be used as <strong>biosensors</strong> to detect specific molecules or the overall ‘‘state’’ of the<br />

surround<strong>in</strong>g environment (Acha et al. 2010). Furthermore, prote<strong>in</strong>s that are present <strong>in</strong> cells<br />

can also be used as bioreceptors for the detection of specific analyte (Acha et al. 2010).<br />

Essentially, liv<strong>in</strong>g cell based biosensor is a unique biosensor <strong>in</strong> contrast to other type of<br />

biosensor that conta<strong>in</strong>s materials that extracted from liv<strong>in</strong>g th<strong>in</strong>gs. These types of biosensor<br />

has leveraged of pros <strong>and</strong> cons. The detection limit of this biosensor is ma<strong>in</strong>ly determ<strong>in</strong>ed by<br />

the natural environmental conditions <strong>in</strong> which the cell can stay alive for long period where<br />

8


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

need the control the physical <strong>and</strong> chemical parameter of environment. However the major<br />

limitation with cell based biosensor are the stability of the cell, which depends on various<br />

conditions such as the sterilization, lifetime, biocompatibility <strong>and</strong> etc. Another issue that<br />

governs the success of a cell based sensor are depends primarily ion selectivity, <strong>in</strong> which cell<br />

based sensor has poor selectivity of microbial sensor due to the multireceptor behavior of the<br />

<strong>in</strong>tact cells (Belk<strong>in</strong> <strong>and</strong> Gu 2010). Despite these pitfalls the cell based biosensor still favorable<br />

among the researcher due to the advantages over the enzymes based biosensor. The cell based<br />

biosensor are less sensitive to <strong>in</strong>hibition by solutes <strong>and</strong> are more tolerant of suboptimal pH<br />

<strong>and</strong> temperature values than enzyme based biosensor, though they must not exceed the narrow<br />

range <strong>in</strong> case of the cells dy<strong>in</strong>g, a longer lifetime can be expected than with the enzymatic<br />

sensors <strong>and</strong> they are much cheaper because active cells do not need to be isolated (Struss et al.<br />

2010). Literature revealed that, cell based sensor have become an emerg<strong>in</strong>g tools for medical<br />

diagnostics (i.e. such as disease detection), environmental analysis, food quality control,<br />

chemical-pharmaceutical <strong>in</strong>dustry <strong>and</strong> drugs detection (Veiseh et al. 2007, Banerjee <strong>and</strong><br />

Bhunia 2009, Banerjee <strong>and</strong> Bhunia 2010, Wang, T et al. 2010, Melamed et al. 2012, Bohrn et<br />

al. 2012, Liu, Q et al. 2012 ). Similarly, Sh<strong>in</strong>de et al. 2012 conclude that cell based biosensor<br />

is envisioned to be an emerg<strong>in</strong>g frontier <strong>in</strong> the area of nano-diagnotics due to their attractive<br />

characteristic.<br />

Biomimetic sensor<br />

A biomimetic biosensor is an artificial or synthetic sensor that mimics the function of a<br />

natural biosensor. These can <strong>in</strong>clude aptasensors, where aptasensors use aptamers as the<br />

biocomponent (David et al. 2008). Aptamers were reported for the first time <strong>in</strong> the early<br />

1990s where described as artificial nucleic acid lig<strong>and</strong>s. Aptamers were thus chemically<br />

related to nucleic acid probes, but behaved more like antibody <strong>and</strong> show<strong>in</strong>g surpris<strong>in</strong>g<br />

versatility compared to other bio-recognition components (Schneider et al 2010, Brys et al.<br />

2007). Aptamer are synthetic str<strong>and</strong>s of nucleic acid that can be designed to recognize am<strong>in</strong>o<br />

acids, oligosaccharides, peptides, <strong>and</strong> prote<strong>in</strong>s. An aptamer has few advantages over antibody<br />

based biosensor such as high b<strong>in</strong>d<strong>in</strong>g efficiency, avoid<strong>in</strong>g the use of animal (i.e reduced<br />

ethical problem), smaller <strong>and</strong> less complex, <strong>and</strong> etc. However, common challenge fac<strong>in</strong>g<br />

aptasensor is that they <strong>in</strong>herent the properties of nucleic acids such as structural pleomorphic<br />

<strong>and</strong> chemical simplicity which reduced the assay efficiency <strong>and</strong> also <strong>in</strong>crease its production<br />

cost. Subsequently, some effort has been directed towards characterization <strong>and</strong> optimization<br />

9


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

of aptamer to overcome this limitation. Aptamer properties such as their high specificity,<br />

small size, modification <strong>and</strong> immobilization versatility, regenerability or conformational<br />

change <strong>in</strong>duced by the target b<strong>in</strong>d<strong>in</strong>g have been successfully exploited to optimize a variety of<br />

bio-sens<strong>in</strong>g formats (Schneider et al 2010). Aptamer based biosensor has been widely used <strong>in</strong><br />

various application. Recently sufficient progress has been made <strong>in</strong> biomimetics sensor <strong>and</strong><br />

aptasensor for cl<strong>in</strong>ical application (Vallet-Regi <strong>and</strong> Arcos 2008). This <strong>in</strong>clud<strong>in</strong>g cl<strong>in</strong>ical<br />

diagnostics to detect pathogen, virus <strong>and</strong> <strong>in</strong>fectious disease (Strehlitz et al 2008, Toress-<br />

Chavolla <strong>and</strong> Alocilja 2009, Wang Y. Et al. 2012, Weng et al. 2012).<br />

10


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

BASED ON TRANSDUCTION<br />

Biosensor are normally categorized accord<strong>in</strong>g to the transduction method they employ (figure<br />

2.0). The transducer is component of biosensor, which has important role <strong>in</strong> the signal<br />

detection process. Hence transducer can be def<strong>in</strong>ed as a device that convert a wide range of<br />

physical, chemical or biological effect <strong>in</strong>to an electrical signal with high sensitivity <strong>and</strong><br />

m<strong>in</strong>imum disturbance to the measur<strong>and</strong> (Lowe 2007). There are various number of transducer<br />

methods has developed over the decade; however recent literature review has highlighted the<br />

most common methods that available (figure 2.0). This group can be further divided <strong>in</strong>to two<br />

general categories; labeled <strong>and</strong> label free type, which label free type biosensor grow<strong>in</strong>g<br />

further recently (Park<strong>in</strong>son <strong>and</strong> Pejcic 2005).<br />

11


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

Fig. 4.0: Methods of biosens<strong>in</strong>g with various transducer mechanisms: (a) Optical; (b)<br />

Electrochemical; (c) Calorimetric - thermal; (d) Piezoelectric- mass sensitive.<br />

Electrochemical biosensor<br />

Electrochemical sensor <strong>in</strong> which an electrode is used as the transduction element, represent an<br />

important subclass of sensor. Accord<strong>in</strong>g to IUPAC recommendation 1999, an electrochemical<br />

biosensor is self-conta<strong>in</strong>ed <strong>in</strong>tegrated device, which is capable of provid<strong>in</strong>g specific<br />

quantitative or semi-quantitative analytical <strong>in</strong>formation us<strong>in</strong>g a biological recognition element<br />

(biochemical receptor) which is reta<strong>in</strong>ed <strong>in</strong> direct spatial contact with an electrochemical<br />

transduction element (Thevenot et al. 1999, 2001). Electrochemical <strong>biosensors</strong> measure the<br />

current produced from oxidation <strong>and</strong> reduction reactions. This current produced can be<br />

correlated to either the concentration of the electroactive species present or its rate of<br />

production/consumption. The result<strong>in</strong>g electrical signal is related to the recognition process<br />

by target <strong>and</strong> analyte, <strong>and</strong> is proportional to the analyte concentration. A review by Wang et<br />

al. (2008) has revealed that electrochemical immunosensors are gradually <strong>in</strong>creas<strong>in</strong>g <strong>in</strong><br />

popularity <strong>in</strong> cl<strong>in</strong>ical analysis <strong>and</strong> this is partly due to improved sensor design. Similarly,<br />

Maria et al. (2008) revealed that the electrochemical immunosensor is a promis<strong>in</strong>g alternative<br />

compared to exist<strong>in</strong>g laboratory method. Wang (2006) has reported the use of<br />

electrochemical-based device for po<strong>in</strong>t-of-care cancer diagnostics which has brought the<br />

electrochemical biosensor to new level <strong>in</strong> cl<strong>in</strong>ical diagnostics. Subsequently, all this report<br />

has reveal the electrochemical biosensor has advantages such as fast, simple, low cost, high<br />

sensitivity, <strong>and</strong> relatively simple <strong>in</strong>strumentation (Grieshaber et al. 2008, Mono et al. 2012).<br />

Depend<strong>in</strong>g upon the nature of electrochemical changes detection dur<strong>in</strong>g a biorecognition<br />

event, electrochemical <strong>biosensors</strong> fall <strong>in</strong>to one of four categories: amperometric,<br />

potentiometric, impedance <strong>and</strong> conductometric.<br />

Amperometric<br />

Amperometric sensor are based on the measurement of current as a function of time result<strong>in</strong>g<br />

from the oxidation <strong>and</strong> reduction of an electroactive species <strong>in</strong> a biochemical reaction that<br />

ma<strong>in</strong>ly depends on the concentration of an analyte with a fixed potential. There are three type<br />

of electrode that usually employed <strong>in</strong> a amperometric sensor; The work<strong>in</strong>g electrode which<br />

usually made of gold (Au), carbon (c), plat<strong>in</strong>um (Pt), A reference electrode usually silver or<br />

12


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

silver chloride (Ag/AgCl) which has a fixed potential that controlled the potential of the<br />

work<strong>in</strong>g electrode <strong>and</strong> the third electrode which called the counter or auxiliary where <strong>in</strong>cluded<br />

sometime to help measure the current flow (Wang J. 1996, Wang Y. et al. 2008). As the<br />

certa<strong>in</strong> molecule are oxidized or reduced (redox reactions) at <strong>in</strong>ert metal electrodes, electrons<br />

are transferred from the analyte to the work<strong>in</strong>g electrode or to the analyte from the electrode<br />

(Banica 2012). The direction of flow of electrons depends upon the properties of the analyte<br />

which can be controlled by the electric potential applied to the work<strong>in</strong>g electrode. If the<br />

work<strong>in</strong>g electrode is driven to a positive potential an oxidation reaction occurs, <strong>and</strong> the<br />

current flow depends on the concentration of the electroactive species (analyte) diffus<strong>in</strong>g to<br />

the surface of the work<strong>in</strong>g electrode. Similarly, if the work<strong>in</strong>g electrode is driven to a<br />

negative potential then a reduction reaction occurs (Park<strong>in</strong>son <strong>and</strong> Pejcic 2005). A third<br />

electrode called the counter electrode is often used to help measure the current flow. There are<br />

three generation of biosensor : first generation biosensor where the normal product of the<br />

reaction diffuses to the transducer <strong>and</strong> causes the electrical response, second generation<br />

<strong>biosensors</strong> which <strong>in</strong>volve specific “mediators” between the reaction <strong>and</strong> the transducer <strong>in</strong><br />

order to generate improved response, <strong>and</strong> third generation <strong>biosensors</strong> where the reaction itself<br />

causes the response <strong>and</strong> no product or mediator diffusion is directly <strong>in</strong>volved (Saxena <strong>and</strong><br />

Malhotra 2003, Wang Y. et al. 2008). The amperometric transduction can be <strong>in</strong>tegrated with<br />

Enzyme, Nucleic acids <strong>and</strong> Immunosensor biological recognition element for various<br />

application such as glucose detection, disease, environmental monitor<strong>in</strong>g <strong>and</strong> etc. (Ivnitski et<br />

al. 1998, Ivnitski et al. 2003, Am<strong>in</strong>e et al. 2006, Wang J. et al. 2006, Wang Y. et al. 2008,<br />

Fang et al. 2011). However, there are limitation us<strong>in</strong>g this biosensor where, the presence of<br />

electroactive <strong>in</strong>terference <strong>in</strong> sample matrix can cause the transducer generate the false current<br />

read<strong>in</strong>g (Rogers <strong>and</strong> Masc<strong>in</strong>i 1999). There been various method identified to overcome this<br />

limitation such as dilut<strong>in</strong>g the sample, coat<strong>in</strong>g the electrode with various polymer, change the<br />

medium of analyte, add<strong>in</strong>g mediator <strong>and</strong> etc. (Jelen et al 2002, Belluzo et al. 2007, Sh<strong>in</strong>de et<br />

al. 2012).<br />

Potentiometric<br />

Potentiometric <strong>biosensors</strong> rely on the use of ion-selective electrode <strong>and</strong> ion-sensitive field<br />

effect transistor for obta<strong>in</strong><strong>in</strong>g the analytical <strong>in</strong>formation. In such sensor, the biological<br />

recognition element converts the recognition process <strong>in</strong>to a potential signal to provide an<br />

analytical signal. Potentiometric transduction is first reported <strong>in</strong> the year 1969 where the<br />

13


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

enzyme based sensor is used for urea detection (Schelfer <strong>and</strong> Shcubert 1992, Saxena <strong>and</strong><br />

Malhotra 2003). Potentiometric sensor consists of two electrode where work<strong>in</strong>g (or Indicator)<br />

electrode to develops a variable potential from recognition process <strong>and</strong> reference electrode<br />

(usually Ag/AgCl) which require to provide a constant half-cell potential. The work<strong>in</strong>g<br />

pr<strong>in</strong>ciple of the potentiometric transduction is depends on the potential difference between the<br />

<strong>in</strong>dicator electrode <strong>and</strong> reference electrode which accumulate dur<strong>in</strong>g recognition process <strong>in</strong> an<br />

electrochemical cell when zero or negligible amount of current flow through the electrode.<br />

The electrical potential difference or electromotive force (EMF) between two electrodes is<br />

measured us<strong>in</strong>g a high impedance voltmeter. The work<strong>in</strong>g electrode is made of permselective<br />

ion-conductive membrane which sometimes called an ion-selective electrode (ISE). The<br />

measurement of potential response of an potentiometric device is governed by the Nernst<br />

equation <strong>in</strong> which the logarithm of the concentration of the substance be<strong>in</strong>g measured is<br />

proportional to the potential difference (Grieshaber et al. 2008, Wang Y. et al. 2008).<br />

Accord<strong>in</strong>g to Bakker <strong>and</strong> Pretsch 2010 recent progress enabled development <strong>and</strong> application<br />

of potentiometric sensors with limits of detection (LODs) <strong>in</strong> the range 10 -8 to 10 -11 M. These<br />

LODs relate to total sample concentrations <strong>and</strong> are def<strong>in</strong>ed accord<strong>in</strong>g to a def<strong>in</strong>ition unique to<br />

potentiometric sensors. The ISEs has the largest number of application <strong>in</strong> cl<strong>in</strong>ical chemistry<br />

particularly the determ<strong>in</strong>ation of the biologically relevant electrolytes <strong>in</strong> physiological fluids,<br />

as billions of measurement are performed each year all over the world (Makarychev-<br />

Mikhailov et al. 2008). This comes as no surprise consider<strong>in</strong>g that potentiometric transduction<br />

mechanism is very attractive for the operation of biosensor due to its selectivity, simplicity,<br />

rapid, low cost <strong>and</strong> ma<strong>in</strong>tenance free measurement. However, the device is still less sensitive<br />

<strong>and</strong> often slower than the amperometric counterpart (Makarychev-Mikhailov et al. 2008). The<br />

field effect transistor have been used for the fabrication of <strong>in</strong>tegrated biosensor <strong>and</strong> there are<br />

many device derived from this pr<strong>in</strong>ciple such as ion-selective field effect transistor (ISFET),<br />

electrolyte –<strong>in</strong>sulator semiconductor (EIS), light addressable potentiometric sensor (LAPS),<br />

CHEMFET, BioFET <strong>and</strong> ENFET (Saxena <strong>and</strong> Malhotra 2003). Essentially, the LAPS device<br />

is an example optical/electrochemical hybrid technique which consists of n-type silicon doped<br />

with phosphorus <strong>and</strong> an <strong>in</strong>sulat<strong>in</strong>g layer that takes advantage of the photovoltaic effect <strong>in</strong><br />

present of light source as a light emitt<strong>in</strong>g diode (LED), flashes rapidly (Pohanka <strong>and</strong> Skladal<br />

2008). A review by Koncki 2007 has revealed the application of potentiometric based<br />

biosensor <strong>in</strong> biomedical analysis. The author concludes that bioaff<strong>in</strong>ity-based biosensor us<strong>in</strong>g<br />

potentiometric transduction is not reliable. However, LAPS devices has proved to be highly<br />

successful for immunoassay <strong>and</strong> overcome the previous less sensitivity problem encounter by<br />

14


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

potentiometric transduction (Wang et al. 2010, Jia et al. 2012). Recently, Jia et al. 2012 has<br />

developed graphene oxide modified light addressable potentiometric sensor for ssDNA with<br />

detection limit (LOC) of 1 pM to 10 nM.<br />

Conductometric<br />

In this method the analytical <strong>in</strong>formation is obta<strong>in</strong>ed by measur<strong>in</strong>g of electrolyte conductivity,<br />

which varies with the changes <strong>in</strong> the ionic species concentration. In other word,<br />

conductometric based transduction provides <strong>in</strong>formation about the ability of an electrolyte<br />

solutions to conduct an electric current between electrodes. The conductometric device made<br />

of two electrodes which separated by certa<strong>in</strong> distance or medium such as nanowire, etc. Most<br />

of the work that is reported <strong>in</strong> the literature on conductometric sensor associated with<br />

enzymes where the ionic strength, <strong>and</strong> thus the conductivity, of a solution between two<br />

electrodes changes as a result of an enzymatic reaction. The AC supply is used to apply across<br />

the electrode for conductivity measurement. Thus, the ionic composition changes <strong>and</strong><br />

provides a conductance which measure us<strong>in</strong>g an Ohmmeter. However, some recent studies<br />

has shown the conductometric transduction employed <strong>in</strong> micro/nano electronic device such as<br />

FET to directly monitor the changes <strong>in</strong> conductance of an electrode as a result of the<br />

hybridization of DNA, complementary antibody-antigen pair, etc.(Arya et al. 2007, Hnaie<strong>in</strong> et<br />

al. 2008, Tang et al. 2011). The major advantages of conductometric device are nonrequirement<br />

of reference electrode, <strong>in</strong>expensive, possibility of m<strong>in</strong>iaturization <strong>and</strong> direct<br />

electrical response (Grleshaber et al. 2008, Lee et al. 2012). Unfortunately, the<br />

conductometric transduction measurement is an additive property, hence less sensitive<br />

compared to the other electrochemical methods <strong>and</strong> strongly dependence of the response upon<br />

buffer capacity (Wang 1996). A review by Arora 2012 revealed that, conductometric based<br />

transducer have envisioned for detection of food borne pathogens. However, recent literature<br />

shown that conductometric based transduction has received a great deal of attention <strong>and</strong><br />

overcome the previous less sensitivity problem. Subsequently, some research has been<br />

directed toward the improvement of performance <strong>and</strong> sensitivity (Kannan et al. 2012).<br />

Electrical impedance spectroscopy<br />

Electrical impedance spectroscopy (EIS) based transduction method is not typically used<br />

electrochemical detection; however this method has only recently become popular tools for<br />

15


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

bioreceptor transduction. These method are known to be similar to electrochemical detection<br />

an conductivity detection that scan the detection volume with an electrical frequency sweep,<br />

<strong>in</strong> the range of 10khz <strong>and</strong> 10mhz (McGu<strong>in</strong>ness <strong>and</strong> Verdonk 2009). Essentially, impedance<br />

spectroscopy has major advantages on lower concentration detection. A recent study shows<br />

the EIS based transduction has been employed <strong>in</strong> tumor growth detection <strong>in</strong> 100-600 fg/ml<br />

with the sensitivity/detection limit of 100 fg/ml (Onur <strong>and</strong> Kemal 2011). The EIS type<br />

measurement is suitable for real time monitor<strong>in</strong>g s<strong>in</strong>ce it is able to provide a label free or<br />

reagentless detection (Park<strong>in</strong>son <strong>and</strong> Pejcic 2005, Pejcic et al. 2006). In EIS measurement, the<br />

sample is placed on the sens<strong>in</strong>g device such as nanogap, <strong>and</strong> a controlled alternat<strong>in</strong>g voltage<br />

is applied to the electrode, <strong>and</strong> the current flows through the sample are monitored. The<br />

electrical impedance result<strong>in</strong>g from the sample is calculated as the ratio of voltage over<br />

current. The result<strong>in</strong>g electrical impedance measurement has both a magnitude <strong>and</strong> a phase, a<br />

complex number. For any time-vary<strong>in</strong>g voltage applied, the result<strong>in</strong>g current can be <strong>in</strong> phase<br />

with the applied voltage (resistive behavior), or out of phase with it (capacitive behavior). The<br />

EIS consists of 3 electrode system, a potentiostats <strong>and</strong> a frequency response analyzer (FRA).<br />

The three electrode which are work<strong>in</strong>g electrode that provides the measurement of current,<br />

counter electrode that provides current to cell <strong>and</strong> reference electrode for voltage<br />

measurement. The potentiostats function as a high <strong>in</strong>put impedance provider <strong>and</strong> to ma<strong>in</strong>ta<strong>in</strong><br />

the voltage across the electrode (Barsoukov <strong>and</strong> Macdonald 2005). Eventually, the FRA is<br />

<strong>in</strong>corporated to supply the excitation waveform <strong>and</strong> provide a very convenient, high precision,<br />

wide b<strong>and</strong> method of measur<strong>in</strong>g the impedance (Barsoukov <strong>and</strong> Macdonald 2005). A recent<br />

review by Yang <strong>and</strong> Bashir 2008 discussed progress <strong>and</strong> application of impedance biosensor<br />

for foodborne pathogenic bacteria detection. Impedance spectroscopy has been widely used<br />

by many research groups to detect cancer/tumor cell, virus, bacteria <strong>and</strong> pathogen (Bayoudh<br />

et al. 2008, Diouani et al. 2008, Kukol et al. 2008, Hong <strong>and</strong> Jang 2012, Thi et al 2012, Ohno<br />

et al. 2012). This biosensor can become a powerful tool <strong>in</strong> the imm<strong>in</strong>ent future for cl<strong>in</strong>ical<br />

diagnostics (Pejcic <strong>and</strong> Marco 2006).<br />

Optical based biosensor<br />

Over the past decades, optical biosensor had made rapid advances <strong>and</strong> has been applied <strong>in</strong> a<br />

number of important area <strong>in</strong>clud<strong>in</strong>g food safety, security, lifescience, environmental<br />

monitor<strong>in</strong>g <strong>and</strong> medical (Tsoka et al. 1998, Vedr<strong>in</strong>e et al. 2003, Johansson et al 2008, Bhatta<br />

et al. 2010a, Bhatta et al 2012, Md Muslim et al 2012). In medical, optical transducer have<br />

16


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

been established <strong>in</strong> both rout<strong>in</strong>e medical diagnostic <strong>and</strong> for medical research application<br />

(Caygill et al. 2010). The word “optrode” is a comb<strong>in</strong>ation of the words “optical” <strong>and</strong><br />

“electrode” is sometimes used to def<strong>in</strong>e optic based device (Biran et al. 2008). This method of<br />

transduction has employed <strong>in</strong> many class of biosensor due to the many different types of<br />

spectroscopy such as absorption, fluorescence, phosphorescence, Raman, SERS, refraction<br />

<strong>and</strong> dispersion spectroscopy (Abdulhalim et al. 2007). These transduction methods are<br />

capable of measure different properties of target/analyte. Optical based biosensor able to<br />

provide a label free, real time <strong>and</strong> parallel detection (Francia et al. 2005, Fan et al. 2008,<br />

Bhatta et al. 2010b). The surface plasmon resonance or fluorescence which <strong>in</strong>tegrated with<br />

optical fiber is most popular method available for optical based biosens<strong>in</strong>g (Caygill et al<br />

2010). It appears that sensor based on optical fiber pr<strong>in</strong>cipal has ga<strong>in</strong><strong>in</strong>g the research <strong>in</strong>terest<br />

<strong>and</strong> be<strong>in</strong>g employed <strong>in</strong> biosensor studies for.<br />

Surface plasmon resonance<br />

Surface plasmon resonance (SPR) biosensor use surface plasmon waves (electromagnetic<br />

wave) to detect changes when the target analyte <strong>in</strong>teract with biorecognition element on the<br />

sensor. In pr<strong>in</strong>ciple, when the SPR biosensor is exposed to any changes, it will <strong>in</strong>duce<br />

changes <strong>in</strong> the refractive <strong>in</strong>dex which used to measure or observed the reaction. The SPR<br />

transducer are <strong>in</strong>corporate with biomolecule /biorecognition element which recognize <strong>and</strong><br />

able to <strong>in</strong>teract with specific analyte (Mol et al. 2010). Hence when target analyte <strong>in</strong>teract<br />

with the immobilized biomolecule on the sensor surface, it produces a change <strong>in</strong> the refractive<br />

<strong>in</strong>dex at the sensor surface (Mol et al. 2010). This, changes produce a variation <strong>in</strong> the<br />

propagation constant of the surface plasmon wave <strong>and</strong> this variation is measure to produce<br />

read<strong>in</strong>g. A spectrophotometer is used to measure the absorption spectrum of sample. There<br />

been various biorecognition element have been <strong>in</strong>corporates with SPR biosensor such as<br />

prote<strong>in</strong>, antibody-antigen, nucleic acids <strong>and</strong> enzyme (Endo et al. 2005, Mannelli et al 2006,<br />

Nguyen et al. 2007, Nakamura et al. 2008, Park et al. 2009). An important feature of SPR<br />

biosensor is that it is able to provide label-free sens<strong>in</strong>g without radioactive <strong>and</strong> fluorescence<br />

which makes it highly attractive for real time monitor<strong>in</strong>g (Fan et al. 2008, Endo et al. 2008).<br />

In addition, the SPR based transduction can be used to <strong>and</strong> <strong>in</strong>teraction without exhibit any<br />

special properties of fluorescence or characteristic absorption <strong>and</strong> scatter<strong>in</strong>g b<strong>and</strong>s (Homola et<br />

al. 2008). However, some reports suggest that these method has suffer from specificity due to<br />

non-specific <strong>in</strong>teraction with biorecognition element which wrongly correlated by these<br />

17


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

biosensor (Homola et al. 2008). The SPR based transductions are not suitable for study<strong>in</strong>g<br />

small analytes. Because the SPR measures the mass of material b<strong>in</strong>d<strong>in</strong>g to the sensor surface,<br />

very small analytes (M


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

human (Atias et al. 2009). More importantly, it was revealed that this type of transduction has<br />

detection limit of 5.5 × 10 −13 M (D<strong>in</strong>g et al. 2008). However, chemilum<strong>in</strong>escence transduction<br />

has few drawbacks such as less quantitative accuracy due to short lifetime <strong>and</strong> not suitable for<br />

real time monitor<strong>in</strong>g (Park<strong>in</strong>son <strong>and</strong> Pejcic 2005, Zhang et al. 2005, Mathews et al. 2009).<br />

Fluorescence<br />

The term Lum<strong>in</strong>escence as describe above is the product of atoms or molecule which relaxes<br />

from excited state to its ground state. The various types of lum<strong>in</strong>escence differ from the<br />

source of energy to obta<strong>in</strong> the excited state. This energy can be supplied by electromagnetic<br />

radiation (photolum<strong>in</strong>escence also termed as fluorescence or phosphorescence), by heat<br />

(pyrolum<strong>in</strong>escence), by frictional forces (tribolum<strong>in</strong>escence), by electron impact<br />

(cathodolum<strong>in</strong>escence) or by crystallization (crystallolum<strong>in</strong>escence) (Dodeigne et al. 2000).<br />

Hence, the fluorescence requires external light source (short-wavelength light) to <strong>in</strong>itiate the<br />

electronic transitions <strong>in</strong> an atoms or molecule which then produce lum<strong>in</strong>escence (Longer<br />

wavelength light). Eventually, fluorescence based biosensor has <strong>in</strong>corporate with<br />

flourochrome molecules which used to produce light dur<strong>in</strong>g the biorecognition event (Daly<br />

<strong>and</strong> McGrath 2003). S<strong>in</strong>ce most of the biological sens<strong>in</strong>g element <strong>and</strong> most analyte does not<br />

possess <strong>in</strong>tr<strong>in</strong>sic spectral properties, the biorecognition event is transduced to optical signal by<br />

coupl<strong>in</strong>g fluorescence an optically responsive reagents to the sens<strong>in</strong>g elements (Biran et al.<br />

2008). For example, the nucleic acid or antibodies is used to tag with flourochrome <strong>and</strong><br />

convert the hybridization <strong>in</strong>teraction between two complementary DNA st<strong>and</strong>s <strong>in</strong>to an optical<br />

signal (Ramanathan et al. 2005, Berdat et al. 2006, Schultz et al. 2008). In fact, fluorescence<br />

technology has been widely applied <strong>and</strong> embraced for immunochemical sens<strong>in</strong>g <strong>in</strong> the<br />

medical field (Hong <strong>and</strong> Kang 2006, Moghissi et al. 2008). Fluorescence based biosens<strong>in</strong>g<br />

were optimized widely <strong>in</strong> environmental monitor<strong>in</strong>g as reported by Védr<strong>in</strong>e et al. 2003.<br />

Nonetheless a recent article has been appear <strong>in</strong> the literature on the use of flourescene<br />

mark<strong>in</strong>g DNA biochip for analysis of DNA- carc<strong>in</strong>ogen adducts (Grubor et al. 2004). The<br />

major drawbacks of fluorescence technology are additional complexity of time-resolved<br />

<strong>in</strong>strumentation, <strong>in</strong> either the time or frequency doma<strong>in</strong>s or both <strong>and</strong> not suitable for real time<br />

monitor<strong>in</strong>g (Thompson 2008, Abdulhalim et al. 2007).<br />

19


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

Optical fiber<br />

Optical fiber or which sometimes called optrodes, has received considerable <strong>in</strong>terest for<br />

develop<strong>in</strong>g as biosensor particularly <strong>in</strong> lower detection limit (LOC) sens<strong>in</strong>g application.<br />

Optrodes based optical fiber <strong>biosensors</strong> are composed of few major components: a light<br />

source; biorecognition element which immobilized; an optical fiber which responsible to<br />

transmit the light <strong>and</strong> act as the substrate; <strong>and</strong> a detector (e.g., spectrophotometer) where the<br />

output light signals is measure. Hence, when the target analyte <strong>in</strong>teracts with biorecognition<br />

elements at the surface of the fiber, a biochemical reaction takes place result<strong>in</strong>g <strong>in</strong> the changes<br />

of optical properties. These changes can be collated to the analyte concentration. The light<br />

source is transmitted through the fiber optic, where the biorecognition event takes place. The<br />

same or different fiber is used to guide the output light to the detector. The current trends of<br />

bio-sens<strong>in</strong>g us<strong>in</strong>g optical fiber are ga<strong>in</strong><strong>in</strong>g researcher <strong>in</strong>terest due to its major advantages such<br />

as m<strong>in</strong>iaturized sensor with higher performances, fiber optical sensors with small size, high<br />

sensitivity, fast response, high selectivity, <strong>and</strong> low detection limits (Lee B. et al. 2009,<br />

Zhang,L. et al. 2011). Optical fiber based biosensor also have several advantages compared to<br />

electrochemical <strong>and</strong> other biosens<strong>in</strong>g such as higher sensitivity, safer, free from<br />

electromagnetic <strong>in</strong>terference, no reference electrode needed <strong>and</strong> suitable for real time<br />

monitor<strong>in</strong>g (Biran et al. 2008). In addition this type of transduction is flexible hence suitable<br />

for remote sens<strong>in</strong>g, s<strong>in</strong>gle molecule detection <strong>and</strong> reagentless (Biran et al. 2008). However,<br />

there are several drawbacks such as poor stability of biorecognition elements, sensitive to<br />

ambient light <strong>and</strong> etc. (Biran et al. 2008). Most of the work that is reported <strong>in</strong> the literature on<br />

optical fiber biosensor <strong>applications</strong> has employed the optic fiber with other optical method<br />

(Atias et al. 2009, Jang et al. 2009, Huang et al. 2009, Cecch<strong>in</strong>i et al. 2012). Furthermore,<br />

these methods have been used for various biomolecule detection such as antigen <strong>and</strong> nucleic<br />

acid (Brogan et al. 2005, Leung et al. 2007, Am<strong>in</strong> et al. 2012). Thus, expla<strong>in</strong>ed the versatility<br />

of optical fiber biosens<strong>in</strong>g. The optical fiber based biosens<strong>in</strong>g has widely be<strong>in</strong>g used pathogen<br />

<strong>and</strong> virus detection (Atias et al. 2009, Huang et al. 2009, Caygill et al 2010). Leung et al.<br />

2008 has reported label free detection of DNA hybridization for pathogen detection us<strong>in</strong>g<br />

fiber optic biosensor.<br />

Piezoelectric based biosensor<br />

Piezoelectricity can be expla<strong>in</strong> as a l<strong>in</strong>ear <strong>in</strong>teraction between mechanical <strong>and</strong> electrical<br />

systems <strong>in</strong> non-centric crystal or similar structure which first discover by Curie brothers <strong>in</strong><br />

20


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

1880 (Katzir 2006, Tichy et al. 2010). Essentially, the piezoelectric based biosensor work<strong>in</strong>g<br />

on the pr<strong>in</strong>cipal that an oscillat<strong>in</strong>g crystal resonates at a natural resonance frequency (Ste<strong>in</strong>em<br />

<strong>and</strong> Janshoff 2007, Tichy et al. 2010). The fundamental elements <strong>in</strong> a biosensor are transducer<br />

<strong>and</strong> biorecognition element. Hence, <strong>in</strong> piezoelectric biosensor the transducer is made of<br />

piezoelectric material (e.g., quartz) <strong>and</strong> the biosens<strong>in</strong>g material that coated on the<br />

piezoelectric material which vibrate at the natural frequency. The frequency is control by the<br />

external electrical signal which produces a certa<strong>in</strong> value of current, when the target analyte is<br />

exposed to the sens<strong>in</strong>g material the attachment/ reaction will cause the frequency shift which<br />

will produce changes <strong>in</strong> current read<strong>in</strong>g that can be collated to the mass of the analyte of<br />

<strong>in</strong>terest. There are two ma<strong>in</strong> types of piezoelectric sensors: bulk wave (BW) <strong>and</strong> surface<br />

acoustic wave (SAW). However, literature shows piezoelectric sensors are not receive much<br />

attention <strong>and</strong> <strong>in</strong>ferior compared to electrochemical <strong>and</strong> optical based biosens<strong>in</strong>g.<br />

Bulk wave (BW) <strong>and</strong> Surface acoustic wave (SAW)<br />

The bulk wave, quartz crystal microbalance <strong>and</strong> surface acoustic wave transducer is<br />

fundamentally based on the piezoelectric effect. The unique properties of piezoelectric<br />

material are utilized <strong>in</strong> this type of sens<strong>in</strong>g. Quartz is the most commonly used piezoelectric<br />

s<strong>in</strong>ce it is cheap, can be processed to yield s<strong>in</strong>gle crystal <strong>and</strong> can withst<strong>and</strong> chemical, thermal<br />

<strong>and</strong> mechanical stress; however, there is report that lithium niobate <strong>and</strong> lithium tantalate can<br />

aslo be used (Tichy et al. 2010). A recent review has shown that this method is very appeal<strong>in</strong>g<br />

when <strong>in</strong>tegrate with Microelectromechanical systems (MEMS) for biosens<strong>in</strong>g application<br />

(Nicu et al. 2005). In addition the review states that this type of transduction is suitable for<br />

sensitive, portable <strong>and</strong> real time biosens<strong>in</strong>g (Nicu et al. 2005). Piezoelectric transducer has<br />

been widely applied <strong>and</strong> embraced for immunosens<strong>in</strong>g application (Vaughan et al. 2007,<br />

Serra et al. 2008, Tothill 2009). Some report suggests that the piezoelectric transducer is<br />

suitable for DNA <strong>and</strong> prote<strong>in</strong> detection with detection limit of 1 ng/cm 2 (Nirschl et al. 2009).<br />

Several article have appear <strong>in</strong> the literature report<strong>in</strong>g the use of piezoelectric sensor <strong>in</strong> various<br />

application such as cholera tox<strong>in</strong> diagnostic detection, hepatitis B, hepatitis C, food borne<br />

pathogen detection <strong>and</strong> etc. (Skládal et al. 2004, Yao et al 2008, Serra et al. 2008, Chen et al.<br />

2008, Chen et al. 2010). More importantly, it was revealed that piezoelectric is very sensitive<br />

method, not<strong>in</strong>g that a detection limit of 8.6 pg/l was obta<strong>in</strong>ed for hepatitis B virus DNA <strong>and</strong><br />

25ng/mL for cholera tox<strong>in</strong> detection (Yao et al. 2008, Chen et al. 2010). The advantages<br />

us<strong>in</strong>g this type of transduction is the real time monitor<strong>in</strong>g, label free detection <strong>and</strong> simplicity<br />

21


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

of use (Dell’Atti et al. 2006, Chen et al. 2010). However, there are some drawbacks need to<br />

overcome such as specificity, sensitivity as well as <strong>in</strong>terference reduction (Glynn <strong>and</strong><br />

O’Connor 2010). In addition, this type of transducer method <strong>in</strong>volves format <strong>and</strong> calibration<br />

requirement (Leca-Bouvier <strong>and</strong> Blum 2010). A recent review by Kim et al. 2011 has review<br />

the pr<strong>in</strong>ciple <strong>and</strong> application of nano diagnostic for nanobiosensor. The review also<br />

concluded, that application range of the quartz crystal has been gradually exp<strong>and</strong>ed, new<br />

measur<strong>in</strong>g techniques that use the quartz crystal as a transducer for chemical sensors <strong>and</strong><br />

<strong>biosensors</strong> have been also developed (Kim et al 2011).<br />

Calorimetric based biosensor<br />

First enzyme based <strong>biosensors</strong> <strong>in</strong>troduce by Clark <strong>and</strong> Lyons <strong>in</strong> 1962 has <strong>in</strong>spired <strong>and</strong> attracts<br />

researcher <strong>in</strong>terest <strong>in</strong> develop<strong>in</strong>g calorimetric based transduction. In fact, almost all chemical<br />

<strong>and</strong> biological reaction <strong>in</strong>volves exchange of heat (Xie et al. 1999). Thus, the general idea of,<br />

generation <strong>and</strong> absorption of heat result<strong>in</strong>g <strong>in</strong> all biochemical reaction has contributed to the<br />

birth of calorimetric based biosens<strong>in</strong>g device. Initially, the calorimetric transduction has been<br />

employed for enzyme based sensor, <strong>and</strong> has subsequently been applied <strong>in</strong> cell <strong>and</strong><br />

immunosensor (Xie et al. 1999, Ahmad et al. 2010). The pr<strong>in</strong>cipal of calorimetric measured<br />

the changes <strong>in</strong> temperature <strong>in</strong> the reaction between biorecognition element <strong>and</strong> a suitable<br />

analyte. This change <strong>in</strong> temperature can be correlated to the amount of reactants consumed or<br />

products formed (Xie et al. 1999). A review by Yakovleva et al has discuss that among all<br />

various concept of thermal detection, enzyme thermistor (ET) has been research widely for<br />

various application. The major advantages of this type of thermal detection are the stability,<br />

<strong>in</strong>crease sensitivity <strong>and</strong> possibility of m<strong>in</strong>iaturation (Ahmad et al. 2010). In addition<br />

calorimetric based biosensor can be easily m<strong>in</strong>iaturised <strong>and</strong> <strong>in</strong>tegrated with microfluidic for<br />

<strong>in</strong>creased sensitivity (Zhang <strong>and</strong> Tadigadapa 2004). In the calorimetric device, the heat<br />

change is measured us<strong>in</strong>g either a thermistor (usually metal oxide) or thermopile (usually<br />

ceramic semiconductor). A review by Cooper 2003 has shown that this method is very<br />

appeal<strong>in</strong>g for label free screen<strong>in</strong>g of biomolecule <strong>in</strong>teraction. Some recent studies have shown<br />

that this technique capable of rapidly detect<strong>in</strong>g the DNA hybridization (Watterson et al. 2002,<br />

Buurma <strong>and</strong> Haq 2008, Paul et al. 2010, Xi et al. 2010). Recently, calorimetric method also<br />

has been used <strong>in</strong> food <strong>in</strong>dustry <strong>and</strong> environmental monitor<strong>in</strong>g (Maskow et al. 2012; Kirchner<br />

et al 2012).<br />

22


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

CONCLUSION AND OUTLOOK<br />

The past decade has seen great advancements <strong>in</strong> the field of biosensor along many fronts. This<br />

dynamic tool has been applied <strong>in</strong> many area of life science research, health care,<br />

environmental, food <strong>and</strong> military application. Biosensor technology has received heightened<br />

<strong>in</strong>terest over the past decade, s<strong>in</strong>ce it is a promis<strong>in</strong>g c<strong>and</strong>idate for lower detection limit with<br />

rapid analysis time at relatively low cost. However, the review shows that there is a lot of<br />

studies have been undertaken us<strong>in</strong>g <strong>in</strong>direct measurement with simple clean buffer solution<br />

<strong>in</strong>stead direct measurement for <strong>in</strong> situ real-sample monitor<strong>in</strong>g which is more vital.<br />

Technological advances have provided us with the tools <strong>and</strong> materials needed to construct<br />

biochip which <strong>in</strong>tegrated with microfluidic system, probe, sampler, detector, amplifier <strong>and</strong><br />

logic circuitry. This biochip is a promis<strong>in</strong>g c<strong>and</strong>idate for label free, reagentless, real time<br />

monitor<strong>in</strong>g, m<strong>in</strong>iaturization <strong>and</strong> low cost application. For medical application, this cost<br />

advantage will allow the development of extremely low cost, disposable biochips that can be<br />

used for <strong>in</strong>-home medical diagnostics of diseases without the need of send<strong>in</strong>g samples to a<br />

laboratory for analysis which time consum<strong>in</strong>g.<br />

ACKNOWLEDGEMENT<br />

Author Veeradasan Perumal thankfully acknowledges collaborators at the Institute of Nano<br />

Electronic Eng<strong>in</strong>eer<strong>in</strong>g (INEE) at University Malaysia Perlis (UniMAP). This work was<br />

supported by INEE at (UniMAP), through the Nano Technology project. The views expressed<br />

<strong>in</strong> this publication are those of the authors <strong>and</strong> do not necessarily reflect the official view of<br />

the fund<strong>in</strong>g agencies on the subject. The appreciation also goes to all the team members <strong>in</strong> the<br />

Institute of Nanoelectronic Eng<strong>in</strong>eer<strong>in</strong>g especially <strong>in</strong> the Biomedical Nano Diagnostics<br />

Research Group.<br />

23


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

REFERENCES<br />

Abdulhalim I, Zourob M, Lakhtakia A. Overview of Optical Biosens<strong>in</strong>g Techniques. In<br />

Marks RS, Lowe CR, Cullen DC, Weetall HH, Karube I (ed): H<strong>and</strong>book of Biosensors<br />

<strong>and</strong> Biochips. Wiley, We<strong>in</strong>heim 2007.<br />

Acha V, Andrews T, Huang Q, Sardar DK, Hornsby PJ. Tissue-Based Biosensors. In<br />

Zourob M (ed): Recognition receptors <strong>in</strong> <strong>biosensors</strong>. Spr<strong>in</strong>ger, New York 2010, pp. 365-<br />

382.<br />

Ahmad LM, Towe B, Wolf A, Mertens F, Lerchner J. B<strong>in</strong>d<strong>in</strong>g event measurement us<strong>in</strong>g a<br />

chip calorimeter coupled to magnetic beads. Sens Actuators B Chem. 145: 239–245,<br />

2010.<br />

Am<strong>in</strong> R, Kulkarni A, Kim T, Park SH. DNA th<strong>in</strong> film coated optical fiber biosensor. Curr<br />

Appl Phys. 12: 841–845, 2012.<br />

Am<strong>in</strong>e A, Mohammadi H, Bourais I, Palleschi G. Enzyme <strong>in</strong>hibition-based <strong>biosensors</strong> for<br />

food safety <strong>and</strong> environmental monitor<strong>in</strong>g. Biosens Bioelectron. 21: 1405–1423, 2006.<br />

Arora P, S<strong>in</strong>dhu A, Dilbaghi N, Chaudhury A. Biosensors as <strong>in</strong>novative tools for the<br />

detection of food borne pathogens. Biosens Bioelectron. 28: 1–12, 2011.<br />

Arya SK, S<strong>in</strong>gh SP, Malhotra, BD. Electrochemical Techniques <strong>in</strong> Biosensors. In Marks<br />

RS, Lowe CR, Cullen DC, Weetall HH, Karube I (ed): H<strong>and</strong>book of Biosensors <strong>and</strong><br />

Biochips. Wiley, We<strong>in</strong>heim 2007.<br />

Atias D, Liebes Y, Chalifa-Caspi V, Brem<strong>and</strong> L, Lobel L, Marks RS, Dussart, P.<br />

Chemilum<strong>in</strong>escent optical fiber immunosensor for the detection of IgM antibody to<br />

dengue virus <strong>in</strong> humans. Sens Actuators B Chem. 140: 206–215, 2009.<br />

Bakker E, Pretsch E. Potentiometric sensors for trace-level analysis. Trends Analyt Chem.<br />

24: 199–207, 2006.<br />

Banerjee P, Bhunia AK. Mammalian cell-based <strong>biosensors</strong> for pathogens <strong>and</strong> tox<strong>in</strong>s. Trends<br />

Biotechnol. 27: 179–88, 2009.<br />

Banerjee P, Bhunia AK. Cell-based biosensor for rapid screen<strong>in</strong>g of pathogens <strong>and</strong> tox<strong>in</strong>s.<br />

Biosens Bioelectron. 26: 99–106, 2010.<br />

Banica FG. Chemical Sensors <strong>and</strong> Biosensors: Fundamentals <strong>and</strong> Applications. Wiley,<br />

Chichester 2012.<br />

Barsoukov E, Macdonald J. Impedance spectroscopy: theory, experiment, <strong>and</strong> <strong>applications</strong>.<br />

Wiley, Hoboken 2005.<br />

Barton AC, Collyer SD, Davis F, Garifallou GZ, Tsekenis G, Tully E, O’Kennedy R,<br />

Gibson T, Millner PA, Higson SPJ. Labeless AC impedimetric antibody-based sensors<br />

with pgml(-1) sensitivities for po<strong>in</strong>t-of-care biomedical <strong>applications</strong>. Biosens<br />

Bioelectron. 24: 1090–1095, 2009.<br />

Bayoudh S, Othmane A, Ponsonnet L, Ben H. Electrical detection <strong>and</strong> characterization of<br />

bacterial adhesion us<strong>in</strong>g electrochemical impedance spectroscopy-based flow chamber.<br />

Colloid Surfaces A. 318: 291–300, 2008.<br />

Belk<strong>in</strong> S, Gu MB. Whole Cell Sens<strong>in</strong>g Systems I: Reporter Cells <strong>and</strong> Devices. Spr<strong>in</strong>ger,<br />

Hiedelberg 2010.<br />

24


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

Belluzo MS, Ribone MÉ, Lagier CM: Assembl<strong>in</strong>g Amperometric Biosensors for Cl<strong>in</strong>ical<br />

Diagnostics. Sensors. 8: 1366–1399, 2007.<br />

Berdat D, Mar<strong>in</strong> A, Herrera F, Gijs MAM. DNA biosensor us<strong>in</strong>g fluorescence microscopy<br />

<strong>and</strong> impedance spectroscopy. Sens Actuators B Chem. 118: 53–59, 2006.<br />

Bhatta D, Stadden E, Hashem E, Sparrow IJG, Emmerson GD. Label-free monitor<strong>in</strong>g of<br />

antibody-antigen <strong>in</strong>teractions us<strong>in</strong>g optical microchip <strong>biosensors</strong>. J Immunol Method.<br />

362: 121–126, 2010b.<br />

Bhatta D, Stadden E, Hashem E, Sparrow IJG, Emmerson GD. Multi-purpose optical<br />

<strong>biosensors</strong> for real-time detection of bacteria, viruses <strong>and</strong> tox<strong>in</strong>s. Sens Actuators B<br />

Chem. 149: 233–238, 2010a.<br />

Bhatta D, Villalba MM, Johnson CL, Emmerson GD, Ferris NP, K<strong>in</strong>g DP, Lowe CR. Rapid<br />

Detection of Foot-<strong>and</strong>-Mouth Disease Virus with Optical Microchip Sensors. Procedia<br />

Chem. 6: 2–10, 2012.<br />

Biran I, Yu X, Walt DR. Optrode-based fiber optic <strong>biosensors</strong> (bio-optrode). In Ligler F,<br />

Taitt C (ed): Optical <strong>biosensors</strong>: today <strong>and</strong> tomorrow. Elsevier, Amsterdam 2008, pp.3-<br />

82<br />

Bohrn U, Stütz E, Fuchs K, Fleischer M, Schön<strong>in</strong>g MJ, Wagner P. Monitor<strong>in</strong>g of irritant<br />

gas us<strong>in</strong>g a whole-cell-based sensor system. Sens Actuators B Chem. 175: 208–217,<br />

2012.<br />

Braiek M, Rokbani KB, Chrouda A, Bakhrouf BA, Maaref A, Jaffrezic-Renault N. An<br />

Electrochemical Immunosensor for Detection of Staphylococcus aureus Bacteria Based<br />

on Immobilization of Antibodies on Self-Assembled Monolayers-Functionalized Gold<br />

Electrode. Biosensors. 2: 417–426, 2012<br />

Brett AMO. DNA based <strong>biosensors</strong>. In Gorton L (ed): Comprehensive Analytical<br />

Chemistry XLIV: Biosensors <strong>and</strong> Modern Biospecific Analytical Techniques. Elsevier,<br />

Amsterdam 2005, pp. 179-208.<br />

Brogan KL, Walt DR. Optical fiber-based sensors: application to chemical biology. Curr<br />

Op<strong>in</strong> Chem Biol. 9: 494–500, 2005.<br />

Brys E, Tombelli S, M<strong>in</strong>unni M, Masc<strong>in</strong>i M, Turner APF. Approaches to Allergy Detection<br />

Us<strong>in</strong>g Aptasensors. In Knopf GK, Bassi AS (ed): Smart Biosensor Technology. CRC<br />

Press, Boca Raton 2007, pp. 539-566.<br />

Buurma NJ, Haq I. Calorimetric <strong>and</strong> spectroscopic studies of Hoechst 33258: selfassociation<br />

<strong>and</strong> b<strong>in</strong>d<strong>in</strong>g to non-cognate DNA. J Mol Biol. 381: 607–621, 2008.<br />

Cagn<strong>in</strong> S, Caraballo M, Guiducci C, Mart<strong>in</strong>i P, Ross M, Santaana M, Danley D, West T,<br />

Lanfranchi G. Overview of electrochemical DNA <strong>biosensors</strong>: new approaches to detect<br />

the expression of life. Sensor. 9: 3122–3148, 2009.<br />

Cass T. Enzymology. In Marks RS, Lowe CR, Cullen DC, Weetall HH, Karube I (ed):<br />

H<strong>and</strong>book of Biosensors <strong>and</strong> Biochips. Wiley, We<strong>in</strong>heim 2007.<br />

Caygill RL, Blair GE, Millner PA. A review on viral <strong>biosensors</strong> to detect human pathogens.<br />

Anal Chim Acta. 681: 8–15, 2010.<br />

Cecch<strong>in</strong>i F, Manzano M, M<strong>and</strong>abi Y, Perelman E, Marks RS. Chemilum<strong>in</strong>escent DNA<br />

optical fibre sensor for Brettanomyces bruxellensis detection. J biotechnol. 157: 25–30,<br />

2012<br />

25


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

Chen H, Hu QY, Yue-Zheng, Jiang JH, Shen GL, Yu RQ. Construction of supported lipid<br />

membrane modified piezoelectric biosensor for sensitive assay of cholera tox<strong>in</strong> based on<br />

surface-agglut<strong>in</strong>ation of ganglioside-bear<strong>in</strong>g liposomes. Anal. Chim. Acta. 657: 204–<br />

209, 2010.<br />

Chen SH, Wu VCH, Chuang YC, L<strong>in</strong> CS. Us<strong>in</strong>g oligonucleotide-functionalized Au<br />

nanoparticles to rapidly detect foodborne pathogens on a piezoelectric biosensor. J<br />

Microbiol Meth. 73: 7–17, 2008.<br />

Chua A, Yean CY, Ravich<strong>and</strong>ran M, Lim B, Lalitha P. A rapid DNA biosensor for the<br />

molecular diagnosis of <strong>in</strong>fectious disease. Biosens Bioelectron. 26: 3825–3831, 2011.<br />

Conroy PJ, Hearty S, Leonard P, O’Kennedy RJ. Antibody production, design <strong>and</strong> use for<br />

biosensor-based <strong>applications</strong>. Sem<strong>in</strong> Cell Dev Biol. 20: 10–26, 2009.<br />

Cooper MA. Label-free screen<strong>in</strong>g of bio-molecular <strong>in</strong>teractions. Anal Bioanal Chem. 377:<br />

834–842, 2003.<br />

Daly CJ, McGrath JC. Fluorescent lig<strong>and</strong>s, antibodies, <strong>and</strong> prote<strong>in</strong>s for the study of<br />

receptors. Pharmacol Therapeut. 100: 101–118, 2003.<br />

Dell’Atti D, Tombelli S, M<strong>in</strong>unni M, Masc<strong>in</strong>i M. Detection of cl<strong>in</strong>ically relevant po<strong>in</strong>t<br />

mutations by a novel piezoelectric biosensor. Biosens Bioelectron. 21: 1876–1879, 2006.<br />

D<strong>in</strong>g C, Zhong H, Zhang S. Ultrasensitive flow <strong>in</strong>jection chemilum<strong>in</strong>escence detection of<br />

DNA hybridization us<strong>in</strong>g nanoCuS tags. Biosens Bioelectron. 23: 1314–1318, 2008.<br />

Diouani MF, Helali S, Hafaid I, Hassen WM, Snoussi MA, Ghram A. M<strong>in</strong>iaturized<br />

biosensor for avian <strong>in</strong>fluenza virus detection. Mat Sci Eng C. 28: 580–583, 2008.<br />

Dodeigne C, Thunus L, Lejeune R. Chemilum<strong>in</strong>escence as diagnostic tool. A review.<br />

Talanta. 51: 415–439, 2000.<br />

Donahue AC, Albitar M. Antibodies <strong>in</strong> Biosens<strong>in</strong>g. In Zourob M (ed): Recognition<br />

receptors <strong>in</strong> <strong>biosensors</strong>. Spr<strong>in</strong>ger, New York 2010, pp. 221-248.<br />

Endo T, Yamamura S, Kerman K, Tamiya E. Label-free cell-based assay us<strong>in</strong>g localized<br />

surface plasmon resonance biosensor. Anal Chim Acta. 614: 182–189, 2008.<br />

Endo T, Yamamura S, Nagatani N, Morita Y, Takamura Y, Tamiya E. Localized surface<br />

plasmon resonance based optical biosensor us<strong>in</strong>g surface modified nanoparticle layer for<br />

label-free monitor<strong>in</strong>g of antigent-antibody reaction. Sci Technol Adv Mat. 6: 491-500,<br />

2005.<br />

Fan X, White IM, Shopova SI, Zhu H, Suter JD, Sun Y. Sensitive optical <strong>biosensors</strong> for<br />

unlabeled targets: a review. Anal Chim Acta. 620: 8–26, 2008.<br />

Fang C, He J, Chen Z. A disposable amperometric biosensor for determ<strong>in</strong><strong>in</strong>g total<br />

cholesterol <strong>in</strong> whole blood. Sens Actuators B Chem. 155: 545–550, 2011.<br />

Fowler JM, Wong DKY, Halsall HB, He<strong>in</strong>eman WR. Recent developments <strong>in</strong><br />

electrochemical immunoassays <strong>and</strong> immunosensors. In Zhang X, Ju H, Wang J (ed):<br />

Electrochemical Sensors, Biosensors <strong>and</strong> Their Biomedical Applications. Elsevier, San<br />

Diego 2008, pp. 115-140.<br />

Francia GD, Ferrara VL, Manzo S, Chiavar<strong>in</strong>i S. Towards a label-free optical porous silicon<br />

DNA sensor. Biosens Bioelectron. 21: 661–665, 2005.<br />

26


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

Gámiz-gracia L, García-campa AM, Huertas-pérez JF, Lara FJ. Chemilum<strong>in</strong>escence<br />

detection <strong>in</strong> liquid chromatography : Applications to cl<strong>in</strong>ical , pharmaceutical ,<br />

environmental <strong>and</strong> food analysis — A review. Anal Chim Acta. 640: 7–28, 2009.<br />

Glynn B, O’Connor L. Nucleic Acid Diagnostic Biosensors. In Zourob M (ed): Recognition<br />

receptors <strong>in</strong> <strong>biosensors</strong>. Spr<strong>in</strong>ger, New York 2010, pp. 343-364.<br />

Guo Z, Yang F, Zhang L, Zheng X. Electrogenerated chemilum<strong>in</strong>escence energy transfer<br />

for the label-free detection of DNA. Sens Actuators B Chem. 177: 316–321, 2013.<br />

Grieshaber D, MacKenzie R, Voros J, Reimhult E. Electrochemical Biosensors - Sensor<br />

Pr<strong>in</strong>ciples <strong>and</strong> Architectures. Sensors. 8: 1400–1458, 2008.<br />

Grubor NM, Sh<strong>in</strong>ar R, Jankowiak R, Porter MD, Small GJ. Novel biosensor chip for<br />

simultaneous detection of DNA-carc<strong>in</strong>ogen adducts with low-temperature fluorescence.<br />

Biosens Bioelectron. 19: 547–556, 2004.<br />

He Y, Zhang S, Zhang X, Baloda M, Gurung AS, Xu H, Zhang X, Liu G. Ultrasensitive<br />

nucleic acid biosensor based on enzyme-gold nanoparticle dual label <strong>and</strong> lateral flow<br />

strip biosensor. Biosens Bioelectron. 26: 2018–2024, 2011.<br />

Hnaie<strong>in</strong> M, Hassen WM, Abdelghani A, Fournier-Wirth C, Coste J, Bessueille F, Leonard<br />

D, Jaffrezic-Renault N. A conductometric immunosensor based on functionalized<br />

magnetite nanoparticles for E. coli detection. Electrochem Commun. 10: 1152–1154,<br />

2008.<br />

Holford TRJ, Davis F, Higson SPJ. Recent trends <strong>in</strong> antibody based sensors. Biosens<br />

Bioelectron. 34: 12–24, 2012.<br />

Homola J, Yee SS, Myszka D. Surface plasmon resonance <strong>biosensors</strong>. In Ligler F, Taitt C<br />

(ed): Optical <strong>biosensors</strong>: today <strong>and</strong> tomorrow. Elsevier, Amsterdam 2008, pp. 185-242.<br />

Hong B, Kang KA. Biocompatible, nanogold-particle fluorescence enhancer for<br />

fluorophore mediated, optical immunosensor. Biosens Bioelectron. 21: 1333–1338,<br />

2006.<br />

Hong J, Lan K, Jang L. Chemical Electrical characteristics analysis of various cancer cells<br />

us<strong>in</strong>g a microfluidic device based on s<strong>in</strong>gle-cell impedance measurement. Sens<br />

Actuators B Chem. 173: 927–934, 2012.<br />

Huang JC, Chang YF, Chen KH, Su LC, Lee CW, Chen CC, Chen YMA, Chou C.<br />

Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid<br />

prote<strong>in</strong> <strong>in</strong> human serum us<strong>in</strong>g a localized surface plasmon coupled fluorescence fiberoptic<br />

biosensor. Biosens Bioelectron. 25: 320–325, 2009.<br />

Ivnitski D, Wolf T, Solomon B. An amperometric biosensor for real-time analysis of<br />

molecular recognition. Bioelectroch Bioener. 45: 27–32, 1998.<br />

Ivnitski D, Sitdikov R, Ivnitski N. Non-<strong>in</strong>vasive electrochemical h<strong>and</strong>-held biosensor as<br />

diagnostic <strong>in</strong>dicator of dental diseases. Electrochem. Commun. 5: 225–229, 2003.<br />

Jang HS, Park KN, Kang CD, Kim JP, Sim SJ, Lee KS. Optical fiber SPR biosensor with<br />

s<strong>and</strong>wich assay for the detection of prostate specific antigen. Opt Commun. 282: 2827–<br />

2830, 2009.<br />

Jelen F, Yosypchuk B, Kourilová A, Novotný L, Palecěk E. Label-free determ<strong>in</strong>ation of<br />

picogram quantities of DNA by stripp<strong>in</strong>g voltammetry with solid copper amalgam or<br />

mercury electrodes <strong>in</strong> the presence of copper. Anal chem. 74: 4788-4793, 2002.<br />

27


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

Jia Y, Y<strong>in</strong> XB, Zhang J, Zhou S, Song M, X<strong>in</strong>g KL. Graphene oxide modified light<br />

addressable potentiometric sensor <strong>and</strong> its application for ssDNA monitor<strong>in</strong>g. Analyst.<br />

137: 5866–5873, 2012.<br />

Johansson A, Kromer K, Sroka R, Stepp H. Cl<strong>in</strong>ical optical diagnostics – Status <strong>and</strong><br />

perspectives. Med Laser Appl. 23: 155–174, 2008.<br />

Ju H, K<strong>and</strong>imalla VB. Biosensors for pesticides. In Zhang X, Ju H, Wang J (ed):<br />

Electrochemical Sensors, Biosensors <strong>and</strong> Their Biomedical Applications. Elsevier, San<br />

Diego 2008, pp. 32-50.<br />

Kahn K, Plaxco KW. Pr<strong>in</strong>ciples of Biomolecular Recognition. In Zourob M (ed):<br />

Recognition receptors <strong>in</strong> <strong>biosensors</strong>. Spr<strong>in</strong>ger, New York 2010, pp. 3-46.<br />

Kannan B, Williams DE, Laslau C, Travas-Sejdic J. A highly sensitive, label-free gene<br />

sensor based on a s<strong>in</strong>gle conduct<strong>in</strong>g polymer nanowire. Biosens Bioelectron. 35: 258–<br />

264, 2012.<br />

Katzir S. The Beg<strong>in</strong>n<strong>in</strong>gs of Piezoelectricity: A Study <strong>in</strong> Mundane Physics. Spr<strong>in</strong>ger,<br />

Dordrecht 2006.<br />

Kim JM, Chang SM, Muramatsu H, Isao K. The pr<strong>in</strong>ciples <strong>and</strong> <strong>applications</strong> of nanodiagnosis<br />

system for a nano-biosensor. Korean J Chem Eng. 28: 987–1008, 2011.<br />

Kirchner P, Oberländer J, Friedrich P, Berger J, Rysstad G, Keusgen M, Schön<strong>in</strong>g MJ.<br />

Realisation of a calorimetric gas sensor on polyimide foil for <strong>applications</strong> <strong>in</strong> aseptic food<br />

<strong>in</strong>dustry. Sens. Actuators B Chem. 170: 60–66, 2012.<br />

Koncki R. Recent developments <strong>in</strong> potentiometric <strong>biosensors</strong> for biomedical analysis. Anal<br />

Chim Acta. 599: 7–15, 2007.<br />

Kricka L. Cl<strong>in</strong>ical <strong>applications</strong> of chemilum<strong>in</strong>escence. Anal Chim Acta. 500: 279–286,<br />

2003.<br />

Kukol A, Li P, Estrela P, Ko-ferrigno P, Migliorato P. Label-free electrical detection of<br />

DNA hybridization for the example of <strong>in</strong>fluenza virus gene sequences. Anal Biochem.<br />

374: 143–153, 2008.<br />

Lara FJ, García-campa AM, Aaron J. Analytical <strong>applications</strong> of photo<strong>in</strong>duced<br />

chemilum<strong>in</strong>escence <strong>in</strong> flow systems — A review. Anal Chim Acta. 679: 17–30, 2010.<br />

Lazerges M, Perrot H, Rabehagasoa N, Compère C. Thiol- <strong>and</strong> Biot<strong>in</strong>-Labeled Probes for<br />

Oligonucleotide Quartz Crystal Microbalance Biosensors of Microalga Alex<strong>and</strong>rium<br />

M<strong>in</strong>utum. Biosensors. 2: 245–254, 2012.<br />

Leca-Bouvier BD, Blum LJ. Enzyme for Biosens<strong>in</strong>g Applications. In Zourob M (ed):<br />

Recognition receptors <strong>in</strong> <strong>biosensors</strong>. Spr<strong>in</strong>ger, New York 2010, pp. 177-220.<br />

Lee B, Roh S, Park J. Current status of micro- <strong>and</strong> nano-structured optical fiber sensors. Opt<br />

Fiber Technol. 15: 209–221, 2009.<br />

Lee I, Luo X, Huang J, Cui XT, Yun M. Detection of Cardiac Biomarkers Us<strong>in</strong>g S<strong>in</strong>gle<br />

Polyanil<strong>in</strong>e Nanowire-Based Conductometric Biosensors. Biosensors. 2: 205–220, 2012.<br />

Leung A, Shankar PM, Mutharasan R. A review of fiber-optic <strong>biosensors</strong>. Sens Actuators B<br />

Chem. 125: 688–703, 2007.<br />

Leung A, Shankar PM, Mutharasan R. Label-free detection of DNA hybridization us<strong>in</strong>g<br />

gold-coated tapered fiber optic <strong>biosensors</strong> (TFOBS) <strong>in</strong> a flow cell at 1310nm <strong>and</strong><br />

1550nm. Sens Actuators B Chem. 131: 640–645, 2008.<br />

28


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

Li D. Chemilum<strong>in</strong>escence. In Li D (ed): Encyclopedia of Microfluidics <strong>and</strong> Nanofluidics.<br />

Spr<strong>in</strong>ger, New York 2008, pp. 260.<br />

L<strong>in</strong> L, Liu Q, Wang L, Liu A, Weng S, Lei Y, Chen W, L<strong>in</strong> X, Chen Y. Enzyme-amplified<br />

electrochemical biosensor for detection of PML-RARα fusion gene based on hairp<strong>in</strong><br />

LNA probe. Biosens. Bioelectrons. 28: 277–83, 2011.<br />

Liu A, Wang K, Weng S, Lei Y, L<strong>in</strong> L, Chen W, L<strong>in</strong> X, Chen. (2012). Development of<br />

electrochemical DNA <strong>biosensors</strong>. Trends. Anal. Chem. 37: 101–111, 2012.<br />

Liu CC. Electrochemical Based Biosensors. Biosensors. 2: 269–272, 2012.<br />

Liu M, L<strong>in</strong> Z, L<strong>in</strong> J. A review on <strong>applications</strong> of chemilum<strong>in</strong>escence detection <strong>in</strong> food<br />

analysis. Anal Chim Acta. 670: 1–10, 2010<br />

Liu Q, Hu N, Zhang F, Wang H, Ye W, Wang P. Neurosecretory cell-based biosensor:<br />

monitor<strong>in</strong>g secretion of adrenal chromaff<strong>in</strong> cells by local extracellular acidification us<strong>in</strong>g<br />

light-addressable potentiometric sensor. Biosens Bioelectron. 35: 421–424, 2012.<br />

Luong JHT, Male KB, Glennon JD. Biosensor technology: Technology push versus market<br />

pull. Biotechnol. Adv. 26: 492–500, 2008.<br />

Makarychev-Mikhailov, S., Shvarev, A., & Bakker, E.: New trends <strong>in</strong> ion-selective<br />

electrodes. In Zhang X, Ju H, Wang J (ed): Electrochemical Sensors, Biosensors <strong>and</strong><br />

Their Biomedical Applications. Elsevier, San Diego 2008, pp. 71-109.<br />

Mannelli I, Courtois V, Lecaruyer P, Roger G, Millot MC, Goossens M, Canva M. Surface<br />

plasmon resonance imag<strong>in</strong>g (SPRI) system <strong>and</strong> real-time monitor<strong>in</strong>g of DNA biochip for<br />

human genetic mutation diagnosis of DNA amplified samples. Sens Actuators B Chem.<br />

119: 583–591, 2006.<br />

Maskow T, Wolf K, Kunze W, Enders S, Harms H. Rapid analysis of bacterial<br />

contam<strong>in</strong>ation of tap water us<strong>in</strong>g isothermal calorimetry. Thermochim Acta. 543: 273–<br />

280, 2012.<br />

Mathews ST, Plaisance EP, Kim T. Imag<strong>in</strong>g Systems for Westerns: Chemilum<strong>in</strong>escence vs.<br />

Infrared Detection. In Kurien BT, Scofield RH (ed): Methods <strong>in</strong> Molecular Biology,<br />

Prote<strong>in</strong> Blott<strong>in</strong>g <strong>and</strong> Detection. Humana Press, Totowa 2009, pp. 499-513<br />

McGu<strong>in</strong>ness RP, Verdonk E. Electrical impedance technology applied to cell-based assays.<br />

In Cooper MA (ed): Label Free Biosensors: Techniques <strong>and</strong> Applications. Cambridge<br />

University Press, New York 2009, pp. 251-278<br />

Md Muslim NZ, Ahmad M, Heng LY, Saad B. Optical biosensor test strip for the screen<strong>in</strong>g<br />

<strong>and</strong> direct determ<strong>in</strong>ation of l-glutamate <strong>in</strong> food samples. Sens Actuators B Chem. 161:<br />

493–497, 2012.<br />

Melamed S, Elad T, Belk<strong>in</strong> S. Microbial sensor cell arrays. Curr Op<strong>in</strong> Biotechnol. 23: 2–8,<br />

2012.<br />

Merwe PAVD. Surface plasmon resonance. In Hard<strong>in</strong>g S, Chowdhry PZ (ed): Prote<strong>in</strong>-<br />

Lig<strong>and</strong> <strong>in</strong>teractions: hydrodynamics <strong>and</strong> calorimetry. Oxford University Press, Bath<br />

2001, pp. 137-170.<br />

Mitchell J, Wu Y. Surface Plasmon Resonance Biosensors for Highly Sensitive Detection<br />

of Small Biomolecules. In Serra PA (ed): Biosensors. InTech, Rijeka 2010, pp. 151-168.<br />

Moghissi K, Str<strong>in</strong>ger MR, Dixon K. Fluorescence photodiagnosis <strong>in</strong> cl<strong>in</strong>ical practice.<br />

Photodiagn Photodyn. 5: 235–237, 2008.<br />

29


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

Mol NJD, Fischer MJE. Surface Plasmon Resonance: A General Introduction. In Mol NJD,<br />

Fischer MJE (ed): Surface Plasmon Resonance Methods <strong>and</strong> Protocols. Spr<strong>in</strong>ger, New<br />

York 2010, pp. 1-14.<br />

Mono R, Stred M, Sturd E. Application of Electrochemical Biosensors <strong>in</strong> Cl<strong>in</strong>ical<br />

Diagnosis. J Cl<strong>in</strong> Lab Anal. 34: 22–34, 2012.<br />

Morrison DWG, Dokmeci MRT, Demirci U, Hosse<strong>in</strong> AK. Cl<strong>in</strong>ical Applications of Micro<strong>and</strong><br />

Nanoscale Biosensors. In Gonsalves K, Halberstadt C, Laurenc<strong>in</strong> CT, Nair (ed):<br />

Biomedical Nanostructures. Wiley, Hoboken 2008, pp. 439-460.<br />

Nakamura H, Mogi Y, Akimoto T, Naemura K, Kato T, Yano K, Karube I. An enzymechromogenic<br />

surface plasmon resonance biosensor probe for hydrogen peroxide<br />

determ<strong>in</strong>ation us<strong>in</strong>g a modified Tr<strong>in</strong>der’s reagent. Biosens Bioelectron. 24: 455–460,<br />

2008.<br />

Nguyen B, Tanious FA, Wilson WD. Biosensor-surface plasmon resonance: quantitative<br />

analysis of small molecule-nucleic acid <strong>in</strong>teractions. Methods. 42: 150–161, 2007.<br />

Nicu L, Guirardel M, Chambosse FDR, Rougerie P, H<strong>in</strong>h S, Trevisiol E, Francois JM,<br />

Majoral JP, Cam<strong>in</strong>ade AM, Cattan E, Bergaud C. Resonat<strong>in</strong>g piezoelectric membranes<br />

for microelectromechanically based bioassay: detection of streptavid<strong>in</strong> gold<br />

nanoparticles <strong>in</strong>teraction with biot<strong>in</strong>ylated DNA. Sens Actuators B Chem. 110: 125-136,<br />

2005.<br />

Nirschl M, Blüher A, Erler C, Katzschner B, Vikholm-Lund<strong>in</strong> I, Auer S, Vörös J, Pompe<br />

W, Schreiter M, Mertig M. Film bulk acoustic resonators for DNA <strong>and</strong> prote<strong>in</strong> detection<br />

<strong>and</strong> <strong>in</strong>vestigation of <strong>in</strong> vitro bacterial S-layer formation. Sens Actuators A Phys. 156:<br />

180–184, 2009.<br />

Nomngongo PN, Cather<strong>in</strong>e Ngila J, Msagati TAM, Gumbi BP, Iwuoha EI. Determ<strong>in</strong>ation<br />

of selected persistent organic pollutants <strong>in</strong> wastewater from l<strong>and</strong>fill leachates, us<strong>in</strong>g an<br />

amperometric biosensor. Phys Chem Earth Pt A/B/C. 50-52: 252–261, 2012.<br />

Ohno R, Ohnuki H, Wang H, Yokoyama T, Endo H, Tsuya , Izumi M. Electrochemical<br />

impedance spectroscopy biosensor with <strong>in</strong>terdigitated electrode for detection of human<br />

immunoglobul<strong>in</strong> A. Biosens Bioelectron. 40: 422–426, 2012.<br />

Onur Z, Kemal M. A novel , ultra sensible biosensor built by layer-by-layer covalent<br />

attachment of a receptor for diagnosis of tumor growth. Anal Chim Acta. 706: 343–348,<br />

2011.<br />

Orazio PD. Biosensors <strong>in</strong> cl<strong>in</strong>ical chemistry — 2011 update. Cl<strong>in</strong> Chim Acta. 412: 1749–<br />

1761, 2011.<br />

Park<strong>in</strong>son G, Pejcic B. Us<strong>in</strong>g Biosensors to Detect Emerg<strong>in</strong>g Infectious Diseases, prepared<br />

for The Australian Biosecurity Cooperative Research Centre: pp.1-80, 2005. Retrieved<br />

from: http://www.abcrc.org.au/pages/project.aspx?projectid=75.<br />

Park TJ, Hyun MS, Lee HJ, Lee SY, Ko S. A self-assembled fusion prote<strong>in</strong>-based surface<br />

plasmon resonance biosensor for rapid diagnosis of severe acute respiratory syndrome.<br />

Talanta. 79: 295–301, 2009.<br />

Paul P, Hossa<strong>in</strong> M, Yadav RC, Kumar GS. Biophysical studies on the base specificity <strong>and</strong><br />

energetics of the DNA <strong>in</strong>teraction of photoactive dye thion<strong>in</strong>e: spectroscopic <strong>and</strong><br />

calorimetric approach. Biophy Chem. 148: 93–103, 2010.<br />

30


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

Pejcic B, Marco RD. Impedance spectroscopy: Over 35 years of electrochemical sensor<br />

optimization. Electrochim Acta. 51: 6217–6229, 2006.<br />

Pejcic B, Marco RD, Park<strong>in</strong>son G. The role of <strong>biosensors</strong> <strong>in</strong> the detection of emerg<strong>in</strong>g<br />

<strong>in</strong>fectious diseases. Analyst. 131: 1079–1090, 2006.<br />

Pohanka M. Monoclonal <strong>and</strong> polyclonal antibodies production-preparation of potent<br />

biorecognition element. J Appl Biomed. 7: 115–121, 2009.<br />

Pohanka M, Skládal P. Electrochemical <strong>biosensors</strong> – pr<strong>in</strong>ciples <strong>and</strong> <strong>applications</strong>. J Appl<br />

Biomed. 6: 57–64, 2008.<br />

Ramanathan A, Pape L, Schwartz DC. High-density polymerase-mediated <strong>in</strong>corporation of<br />

fluorochrome-labeled nucleotides. Anal biochem. 337: 1–11, 2005.<br />

Ramírez NB, Salgado AM, Valdman B. The Evolution <strong>and</strong> Development of Immunosensors<br />

for Health <strong>and</strong> Environmental Monitor<strong>in</strong>g: Problems <strong>and</strong> Persperctives. Brazilian J<br />

Chem Eng. 26: 227–249, 2009.<br />

Rogers KR, Masc<strong>in</strong>i M. Biosensors for field analytical monitor<strong>in</strong>g. Field Anal Chem<br />

Technol. 2: 317-331, 1999.<br />

Lowe RS. Overview of Biosensor <strong>and</strong> Bioarray Technologies. In Marks RS, Lowe CR,<br />

Cullen DC, Weetall HH, Karube I (ed): H<strong>and</strong>book of Biosensors <strong>and</strong> Biochips. Wiley,<br />

We<strong>in</strong>heim 2007.<br />

Saxena V, Malhotra BD. Electrochemical Biosensors. In Malhotra BD, Turner APF (ed):<br />

<strong>Advances</strong> In Biosensors: Perspectives In Biosensor. JAI Press, Stamford 2003, pp. 63-<br />

100.<br />

Schelfer F, Schubert F. Biosensors : Techniques <strong>and</strong> Instrumentation <strong>in</strong> Analytical<br />

Chemistry. Elsevier, Amsterdam 1992.<br />

Schneider HJ, Lim S, Strong<strong>in</strong> RM. Biomimetic Synthetic Receptors as Molecular<br />

Recognition Elements. In Zourob M (ed): Recognition receptors <strong>in</strong> <strong>biosensors</strong>. Spr<strong>in</strong>ger,<br />

New York 2010, pp. 777-818.<br />

Schultz E, Gall<strong>and</strong> R, Du Bouëtiez D, Flahaut T, Planat-Chrétien A, Lesbre F, Hoang A,<br />

Voll<strong>and</strong> H, Perraut F. A novel fluorescence-based array biosensor: pr<strong>in</strong>ciple <strong>and</strong><br />

application to DNA hybridization assays. Biosens Bioelectron. 23: 987–994, 2008.<br />

Serra B, Gamella M, Reviejo AJ, P<strong>in</strong>garrón JM. Lect<strong>in</strong>-modified piezoelectric <strong>biosensors</strong><br />

for bacteria recognition <strong>and</strong> quantification. Anal Bioanal Chem. 391: 1853–1860, 2008.<br />

Shankaran D, Gobi K, Miura N. Recent advancements <strong>in</strong> surface plasmon resonance<br />

immunosensors for detection of small molecules of biomedical, food <strong>and</strong> environmental<br />

<strong>in</strong>terest. Sens Actuators B Chem. 121: 158–177, 2007.<br />

Shantilatha R, Varma S, Mitra CK. Design<strong>in</strong>g a simple biosensor. In Biosensors:<br />

Perspectives. In Malhotra BD, Turner APF (ed): <strong>Advances</strong> In Biosensors: Perspectives<br />

In Biosensor. JAI Press, Stamford 2003, pp. 1-36.<br />

Sh<strong>in</strong>de SB, Fern<strong>and</strong>es CB, Patravale VB. Recent trends <strong>in</strong> <strong>in</strong>-vitro nanodiagnostics for<br />

detection of pathogens. J Control Release. 159: 164–180, 2012.<br />

Skládal P, Riccardi CDS, Yamanaka H, Da Costa PI. Piezoelectric <strong>biosensors</strong> for real-time<br />

monitor<strong>in</strong>g of hybridization <strong>and</strong> detection of hepatitis C virus. J Virol Methods. 117:<br />

145–151, 2004.<br />

31


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

Skottrup PD, Nicolaisen M, Justesen AF. Towards on-site pathogen detection us<strong>in</strong>g<br />

antibody-based sensors. Biosens Bioelectron. 24: 339–348, 2008.<br />

Soldatk<strong>in</strong> OO, Kucherenko IS, Pyeshkova VM, Kukla AL, Jaffrezic-Renault N, El’skaya<br />

AV, Dzyadevych SV, Soldatk<strong>in</strong> AP. Novel conductometric biosensor based on threeenzyme<br />

system for selective determ<strong>in</strong>ation of heavy metal ions. Bioelectrochemistry. 83:<br />

25–30, 2012.<br />

Spr<strong>in</strong>ger T, Piliarik M, Homola J. Surface plasmon resonance sensor with dispersionless<br />

microfluidics for direct detection of nucleic acids at the low femtomole level. Sens<br />

Actuators B Chem. 145: 588–591, 2010.<br />

Ste<strong>in</strong>em C, Janshoff A. Spr<strong>in</strong>ger Series on Chemical Sensors <strong>and</strong> Biosensors: Piezoelectric<br />

Sensors. Spr<strong>in</strong>ger, Heidelberg 2007.<br />

Strehlitz B, Nikolaus N, Stoltenburg R. Prote<strong>in</strong> Detection with Aptamer Biosensors.<br />

Sensors. 8: 4296–4307, 2008.<br />

Struss AK, Pas<strong>in</strong>i P, Daunert S. Biosens<strong>in</strong>g Systems Based on Genetically Eng<strong>in</strong>eered<br />

Whole Cells. In Zourob M (ed): Recognition receptors <strong>in</strong> <strong>biosensors</strong>. Spr<strong>in</strong>ger, New<br />

York 2010, pp. 565-598.<br />

Tang J, Huang J, Su B, Chen H, Tang D. S<strong>and</strong>wich-type conductometric immunoassay of<br />

alpha-fetoprote<strong>in</strong> <strong>in</strong> human serum us<strong>in</strong>g carbon nanoparticles as labels. Biochem Eng J.<br />

53: 223–228, 2011.<br />

Teles F, Fonseca L. Trends <strong>in</strong> DNA <strong>biosensors</strong>. Talanta. 77: 606–623, 2008.<br />

Thevenot DR, Toth K, Durst RA, Wilson GS. Electrochemical <strong>biosensors</strong> : recommended<br />

def<strong>in</strong>itions <strong>and</strong> classification. Biosens Bioelectron. 16: 121–131, 2001.<br />

Thevenot DR, Toth K, Durst, RA, Wilson GS. Electrochemical Biosensors :<br />

Recommended defnitions <strong>and</strong> classification. Pure Appl Chem. 71: 2333–2348, 1999.<br />

Thi B, Nguyen T, En A, Peh K, Yue C, Chee L, F<strong>in</strong>k K, Chow VTK, Ng MML, Toh CS.<br />

Bioelectrochemistry Electrochemical impedance spectroscopy characterization of<br />

nanoporous alum<strong>in</strong>a dengue virus biosensor. Bioelectrochem. 88: 15–21, 2012.<br />

Thompson RB. Fluorescence lifetime biosens<strong>in</strong>g: Enter<strong>in</strong>g the ma<strong>in</strong>stream. In Ligler F,<br />

Taitt C (ed): Optical <strong>biosensors</strong>: today <strong>and</strong> tomorrow. Elsevier, Amsterdam 2008, pp.<br />

287-316.<br />

Thuy NT, Tam PD, Tuan MA, Le AT, Tam LT, Thu VV, Hieu NV, Chien ND. Detection of<br />

pathogenic microorganisms us<strong>in</strong>g biosensor based on multi-walled carbon nanotubes<br />

dispersed <strong>in</strong> DNA solution. Curr Appl Phys. 12: 1553–1560, 2012.<br />

Tichý J, Erhart J, Kitt<strong>in</strong>ger E, Prívratská J. Fundamentals of Piezoelectric Sensorics:<br />

Mechanical, Dielectric, <strong>and</strong> Thermodynamical Properties of Piezoelectric Materials.<br />

Spr<strong>in</strong>ger, Heidelberg 2010.<br />

Torres-Chavolla E, Alocilja EC. Aptasensors for detection of microbial <strong>and</strong> viral pathogens.<br />

Biosens Bioelectron. 24: 3175–3182, 2009.<br />

Tothill IE. Biosensors for cancer markers diagnosis. Sem<strong>in</strong> Cell Dev Biol. 20: 55–62, 2009.<br />

Tsoka S, Gill A, Brookman JL, Hoare M. Rapid monitor<strong>in</strong>g of virus-like particles us<strong>in</strong>g an<br />

optical biosensor: a feasibility study. J Biotechnol. 63: 147–153, 1998.<br />

Ushaa SM, Nagar NI, Rao GM. Design <strong>and</strong> analysis of nanowire sensor array for prostate<br />

cancer detection. Int J Nano Biomater. 3: 239–255, 2011.<br />

32


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

Vallet-Regí M, Arcos DA. Biomimetic Nanoceramics <strong>in</strong> Cl<strong>in</strong>ical Use: From Materials to<br />

Applications. RSC publish<strong>in</strong>g, Cambridge 2008.<br />

Vaughan RD, Guilbault GG. Piezoelectric Immunosensors. Piezoelectric Sensor. 5: 237–<br />

280, 2007.<br />

Védr<strong>in</strong>e C, Leclerc JC, Durrieu C, Tran-M<strong>in</strong>h C. Optical whole-cell biosensor us<strong>in</strong>g<br />

Chlorella vulgaris designed for monitor<strong>in</strong>g herbicides. Biosens Bioelectron. 18: 457–<br />

463, 2003.<br />

Veiseh M, Veiseh O, Mart<strong>in</strong> MC, Bertozzi C, Zhang M. S<strong>in</strong>gle-cell-based sensors <strong>and</strong><br />

synchrotron FTIR spectroscopy: a hybrid system towards bacterial detection. Biosens<br />

Bioelectron. 23: 253–260, 2007.<br />

Wang J. Electrochemical <strong>biosensors</strong>: towards po<strong>in</strong>t-of-care cancer diagnostics. Biosens<br />

Bioelectron. 21: 1887–1892, 2006.<br />

Wang J. Electrochemical transduction. In Taylor RF, Schultz JS (ed): H<strong>and</strong>book of<br />

Chemical <strong>and</strong> Biological Sensors. IOP Publish<strong>in</strong>g Ltd, Bristol 1996, pp. 119-133.<br />

Wang P, Liu Q. Cell-based <strong>biosensors</strong>: Pr<strong>in</strong>ciples <strong>and</strong> Applications. Artech House,<br />

Norwood 2010.<br />

Wang TH, Hui GH, Deng SP. A novel sweet taste cell-based sensor. Biosens Bioelectron.<br />

26: 929–934, 2010.<br />

Wang YX, Ye ZZ, Si CY, Y<strong>in</strong>g YB. Application of Aptamer Based Biosensors for<br />

Detection of Pathogenic Microorganisms. Ch<strong>in</strong>ese J Anal Chem. 40: 634–642, 2012.<br />

Wang Y, Zhang Z, Ja<strong>in</strong> V, Yi J, Mueller S, Sokolov J, Liu Z, Levon K, Rigas B,<br />

Rafailovich MH. Potentiometric sensors based on surface molecular impr<strong>in</strong>t<strong>in</strong>g:<br />

Detection of cancer biomarkers <strong>and</strong> viruses. Sens Actuators B Chem. 146: 381–387,<br />

2010.<br />

Wang Y, Xu H, Zhang J, Li G. Electrochemical Sensors for Cl<strong>in</strong>ic Analysis. Sensors. 8:<br />

2043–2081, 2008.<br />

Watterson J, Piunno PAE, Krull UJ. Practical physical aspects of <strong>in</strong>terfacial nucleic acid<br />

oligomer hybridisation for biosensor design. Anal Chim Acta. 469: 115–127, 2002.<br />

Weng CH, Huang CJ., Lee GB. Screen<strong>in</strong>g of Aptamers on Microfluidic Systems for<br />

Cl<strong>in</strong>ical Applications. Sensors. 12: 9514–9529, 2012.<br />

Wood, P. Underst<strong>and</strong><strong>in</strong>g Immunology. Pearson Education Limited, Dorchester 2006.<br />

Xi H, Kumar S, Dosen-Micovic L, Arya DP. Calorimetric <strong>and</strong> spectroscopic studies of<br />

am<strong>in</strong>oglycoside b<strong>in</strong>d<strong>in</strong>g to AT-rich DNA triple helices. Biochimie, 92: 514–529, 2010.<br />

Xie B, Ramanathan K, Danielsson B. Pr<strong>in</strong>ciples of enzyme thermistor systems: <strong>applications</strong><br />

to biomedical <strong>and</strong> other measurements. Adv Biochem Eng/Biotechnol. 64: 1–33, 1999.<br />

Yakovleva M, Bh<strong>and</strong> S, Danielsson B. The enzyme thermistor–a realistic biosensor concept<br />

A critical review. Anal Chim Acta. In Press, 2012. doi:10.1016/j.aca.2012.12.004<br />

Yang L, Bashir R. Electrical / electrochemical impedance for rapid detection of foodborne<br />

pathogenic bacteria. Biotechnol Adv. 26: 135–150, 2008.<br />

Yao C, Zhu T, Tang J, Wu R, Chen Q, Chen M, Zhang B, Huang J, Fu W. Hybridization<br />

assay of hepatitis B virus by QCM peptide nucleic acid biosensor. Biosens. Bioelectrons.<br />

23: 879–885, 2008.<br />

33


1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

Yeh CH, Chang YH, L<strong>in</strong> HP, Chang TC, L<strong>in</strong> YC. A newly developed optical biochip for<br />

bacteria detection based on DNA hybridization. Sens Actuators B Chem. 161: 1168–<br />

1175, 2012.<br />

Zapp E, Brondani D, Vieira IC, Scheeren CW, Dupont J, Barbosa AMJ, Ferreira VS.<br />

Biomonitor<strong>in</strong>g of methomyl pesticide by laccase <strong>in</strong>hibition on sensor conta<strong>in</strong><strong>in</strong>g<br />

plat<strong>in</strong>um nanoparticles <strong>in</strong> ionic liquid phase supported <strong>in</strong> montmorillonite. Sens<br />

Actuators B Chem. 155: 331–339, 2011.<br />

Zhang L, Lou J, Tong L. Micro/nanofiber optical sensors. Photonic Sensor. 1: 31–42, 2011.<br />

Zhang Y, Tadigadapa S. Calorimetric <strong>biosensors</strong> with <strong>in</strong>tegrated microfluidic channels.<br />

Biosens Bioelectron. 19: 1733–1743, 2004.<br />

Zhang, Z., Zhang, S., & Zhang, X.: Recent developments <strong>and</strong> <strong>applications</strong> of<br />

chemilum<strong>in</strong>escence sensors. Anal Chim Acta. 541: 37–46, 2005.<br />

34

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!