18.06.2013 Views

Administration of Miltefosine and Meglumine Antimoniate in Healthy ...

Administration of Miltefosine and Meglumine Antimoniate in Healthy ...

Administration of Miltefosine and Meglumine Antimoniate in Healthy ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Toxicologic Pathology, 000: 1-6, 2009<br />

Copyright # 2009 by The Author(s)<br />

ISSN: 0192-6233 pr<strong>in</strong>t / 1533-1601 onl<strong>in</strong>e<br />

DOI: 10.1177/0192623309344088<br />

Toxicol Pathol Onl<strong>in</strong>eFirst, published on August 18, 2009 as doi:10.1177/0192623309344088<br />

<strong>Adm<strong>in</strong>istration</strong> <strong>of</strong> <strong>Miltefos<strong>in</strong>e</strong> <strong>and</strong> <strong>Meglum<strong>in</strong>e</strong> <strong>Antimoniate</strong><br />

<strong>in</strong> <strong>Healthy</strong> Dogs: Cl<strong>in</strong>icopathological Evaluation <strong>of</strong> the Impact<br />

on the Kidneys<br />

PAOLO BIANCIARDI, 1 CLAUDIO BROVIDA, 2 MARIALUISA VALENTE, 3 LUCA ARESU, 4 LAURA CAVICCHIOLI, 4 CLAUDIA VISCHER, 5<br />

LUCIE GIROUD, 5 AND MASSIMO CASTAGNARO 4<br />

1 20147 Milano, Italy<br />

2 ANUBI Ospedale per Animali da Compagnia, 10024 Moncalieri, Tor<strong>in</strong>o, Italy<br />

3 Department <strong>of</strong> Medical-Diagnostic Sciences <strong>and</strong> Special Therapies, University <strong>of</strong> Padua, Medical School,<br />

35121 Padova, Italy<br />

4 Dipartimento di Sanità Pubblica Patologia Comparata e Igiene Veter<strong>in</strong>aria, Facoltà di Medic<strong>in</strong>a Veter<strong>in</strong>aria,<br />

Università degli Studi di Padova, 35020 Legnaro, Padova, Italy<br />

5 Virbac S.A., Carros, France<br />

ABSTRACT<br />

In can<strong>in</strong>e leishmaniosis (CanL), kidneys are affected <strong>in</strong> virtually all dogs. Treatment <strong>of</strong> CanL is limited <strong>in</strong> Europe to meglum<strong>in</strong>e antimoniate <strong>and</strong><br />

miltefos<strong>in</strong>e. This study evaluated the pharmacological, toxicological, <strong>and</strong> pathological effects <strong>of</strong> both drugs <strong>in</strong> healthy beagle dogs. Four male <strong>and</strong><br />

four female dogs were divided <strong>in</strong>to two groups. The animals <strong>in</strong> Group 1 were adm<strong>in</strong>istered an oral solution <strong>of</strong> 2% <strong>of</strong> miltefos<strong>in</strong>e at 2 mg/kg b.w. once<br />

a day, for twenty-eight days. The animals <strong>in</strong> Group 2 were adm<strong>in</strong>istered a preparation <strong>of</strong> meglum<strong>in</strong>e antimoniate at 100 mg/kg b.w. subcutaneously<br />

once a day for twenty-eight days. After treatment, all dogs were followed-up for a further twenty-eight days. Dogs were observed daily <strong>and</strong> cl<strong>in</strong>ically<br />

exam<strong>in</strong>ed ten times throughout the study. On days -1 <strong>and</strong> 55 a renal biopsy was performed on all dogs <strong>and</strong> analyzed by light microscopy, immun<strong>of</strong>luorescence,<br />

<strong>and</strong> electron microscopy. All the exam<strong>in</strong>ations failed to demonstrate any lesions <strong>in</strong> the miltefos<strong>in</strong>e-treated dogs. Conversely, all the<br />

meglum<strong>in</strong>e antimoniate–treated dogs demonstrated severe tubular damage, characterized by tubular cell necrosis <strong>and</strong> apoptosis. In conclusion,<br />

although no cl<strong>in</strong>ical signs <strong>of</strong> renal disease were evident, the use <strong>of</strong> meglum<strong>in</strong>e antimoniate <strong>in</strong> the pharmacological treatment approach <strong>of</strong> CanLaffected<br />

dogs should be carefully considered.<br />

Keywords: Leishmania; kidney; dogs; miltefos<strong>in</strong>e; meglum<strong>in</strong>e antimoniate; pharmacological effect.<br />

INTRODUCTION<br />

Can<strong>in</strong>e leishmaniosis (CanL) is a multisystemic disease with<br />

variable cl<strong>in</strong>ical signs (Baneth 2006; Ciaramella et al. 1997) . The<br />

majority <strong>of</strong> affected dogs present with poor body condition, generalized<br />

muscular atrophy, lymphadenomegaly, <strong>and</strong> excessive<br />

sk<strong>in</strong> scal<strong>in</strong>g. Kidneys are affected <strong>in</strong> virtually all dogs with<br />

CanL, <strong>and</strong> renal disease might be the only apparent abnormality<br />

<strong>in</strong> <strong>in</strong>fected dogs (Baneth <strong>and</strong> Shaw 2002; Costa et al. 2003).<br />

Until recently, the most commonly used drug for the treatment<br />

<strong>of</strong> CanL has been the pentavalent antimony meglum<strong>in</strong>e<br />

antimoniate (N-methylglucam<strong>in</strong>e antimoniate, Glucantime,<br />

Mérial), alone or <strong>in</strong> comb<strong>in</strong>ation with allopur<strong>in</strong>ol (Miró,<br />

Cardoso, et al. 2008; Nieto et al. 1992, Noli <strong>and</strong> Auxilia 2005).<br />

In 2007, the first oral therapy for CanL based on miltefos<strong>in</strong>e<br />

became available <strong>in</strong> some EU countries. <strong>Miltefos<strong>in</strong>e</strong> (1-Ohexadecylphosphochol<strong>in</strong>e,<br />

Milteforan, Virbac), an alkylphosphochol<strong>in</strong>e<br />

<strong>and</strong> a membrane-active synthetic ether–lipid<br />

Address correspondence to: Paolo Bianciardi, DVM, Dip.EVPC, via<br />

dell’Usignolo 1, Milano, Italy; e-mail: paolobianci@libero.it.<br />

F<strong>in</strong>ancial Disclosure: All expenses required for trial (availablity <strong>of</strong> dogs,<br />

materials for procedures <strong>and</strong> laboratory analyses) were f<strong>in</strong>anced by Virbac SA.<br />

Abbreviations: LA, Luca Aresu; LC, Laura Cavicchioli; MC, Massimo<br />

Castagnaro.<br />

1<br />

analogue orig<strong>in</strong>ally developed for the treatment <strong>of</strong> cutaneous<br />

metastasis from mammary carc<strong>in</strong>omas (Hilgard et al. 1993),<br />

has proved to be an effective treatment for both human cutaneous<br />

<strong>and</strong> visceral leishmaniosis (Jha et al. 1999; Pearson<br />

2003; Sundar et al. 1998; Sundar et al. 1999; Verma <strong>and</strong> Dey<br />

2004) <strong>and</strong> later on for can<strong>in</strong>e visceral leishmaniosis (Mateo<br />

et al. 2009; Miró, Oliva, et al. 2009).<br />

Although the treatment <strong>of</strong> CanL is currently limited <strong>in</strong> some<br />

EU countries ma<strong>in</strong>ly to meglum<strong>in</strong>e antimoniate <strong>and</strong> miltefos<strong>in</strong>e,<br />

the <strong>in</strong>formation on the impact <strong>of</strong> these drugs on the<br />

cl<strong>in</strong>ical <strong>and</strong> kidney status <strong>of</strong> healthy dogs is limited.<br />

S<strong>in</strong>ce the evaluation <strong>of</strong> the impact <strong>of</strong> these drugs on the kidneys<br />

<strong>in</strong> CanL affected dogs is not practical ow<strong>in</strong>g to the <strong>in</strong>fluence<br />

<strong>of</strong> underly<strong>in</strong>g renal disease, the aim <strong>of</strong> this study was to<br />

evaluate the pharmacologic, toxicologic, <strong>and</strong> pathologic effects<br />

<strong>of</strong> a st<strong>and</strong>ard treatment with both drugs <strong>in</strong> healthy beagle dogs.<br />

Animals<br />

MATERIALS AND METHODS<br />

Four healthy male <strong>and</strong> four healthy female beagle dogs from<br />

Harlan (Netherl<strong>and</strong>s) were used. The animals were seven to<br />

n<strong>in</strong>e months <strong>of</strong> age <strong>and</strong> weighed from 7 to 9 kg at the start


2 BIANCIARDI ET AL. TOXICOLOGIC PATHOLOGY<br />

Treatment Groups<br />

<strong>of</strong> the study. They were housed <strong>in</strong> <strong>in</strong>dividual cages <strong>in</strong> an environmentally<br />

controlled room with a twelve-hour light cycle, a<br />

temperature <strong>of</strong> 18 C + 3 C <strong>and</strong> 55% + 10% relative humidity.<br />

They were fed daily with dry pet food (Virbac Vet Complex)<br />

accord<strong>in</strong>g to their <strong>in</strong>dividual weight. Dr<strong>in</strong>k<strong>in</strong>g water<br />

was available ad libitum. All procedures <strong>and</strong> ma<strong>in</strong>tenance <strong>of</strong><br />

animals were <strong>in</strong> accordance with <strong>in</strong>ternal procedure <strong>and</strong> the<br />

pr<strong>in</strong>ciples <strong>of</strong> humane treatment as elaborated by the National<br />

Institutes <strong>of</strong> Health. All dogs were identified with a code tattooed<br />

on the <strong>in</strong>side <strong>of</strong> the ear flap.<br />

Study Design<br />

The dogs were divided <strong>in</strong>to two r<strong>and</strong>omized groups<br />

(Table 1). The animals <strong>in</strong> Group 1 were adm<strong>in</strong>istered an oral<br />

solution <strong>of</strong> 2% <strong>of</strong> miltefos<strong>in</strong>e (Milteforan, Virbac) at a dose<br />

rate <strong>of</strong> 2 mg/kg b.w. once a day, for twenty-eight consecutive<br />

days (1 mL/10 kg/day). The oral solution was poured onto the<br />

dogs’ food at mealtime. The animals <strong>in</strong> Group 2 were adm<strong>in</strong>istered<br />

an <strong>in</strong>jectable preparation <strong>of</strong> meglum<strong>in</strong>e antimoniate (Glucantime,<br />

Mérial) at a dose rate <strong>of</strong> 100 mg/kg b.w.<br />

subcutaneously once a day for twenty-eight consecutive days<br />

(3.3 mL/10 kg/day).<br />

Dogs were observed daily <strong>and</strong> cl<strong>in</strong>ically exam<strong>in</strong>ed ten times<br />

throughout the study. At the <strong>in</strong>itial pre-<strong>in</strong>clusion visit, day -4,<br />

dogs were cl<strong>in</strong>ically exam<strong>in</strong>ed <strong>and</strong> r<strong>and</strong>omized. On the same<br />

day, the animals were weighed, <strong>and</strong> this procedure was<br />

repeated weekly until the end <strong>of</strong> the study (to adjust the drug<br />

dose rates accord<strong>in</strong>g to body weight). Dogs underwent weekly<br />

complete cl<strong>in</strong>ical exam<strong>in</strong>ations on days -1, 6, 13, 21, 27, 34, 41,<br />

48, <strong>and</strong> 55. On days -1, 27, <strong>and</strong> 55, a blood sample was taken<br />

from the jugular ve<strong>in</strong>. Furthermore, a ur<strong>in</strong>e sample was collected<br />

from the bladder, by cystocentesis, prior to the biopsy<br />

procedure. The analyses performed <strong>in</strong>cluded rout<strong>in</strong>e hematology,<br />

biochemistry, <strong>and</strong> prote<strong>in</strong> electrophoresis on the blood <strong>and</strong><br />

complete ur<strong>in</strong>alysis. All the samples were analyzed by the same<br />

laboratory (Vébiotel Laboratoire de Biologie Vétér<strong>in</strong>aire,<br />

Arcueil, France). On days -1 <strong>and</strong> 55, an ultrasound-guided<br />

renal biopsy was performed under anaesthesia on all dogs<br />

(Table 2). After the cl<strong>in</strong>ical evaluation, an <strong>in</strong>travenous catheter<br />

(22G) was placed <strong>in</strong> the left or right cephalic ve<strong>in</strong> <strong>and</strong> connected<br />

to an <strong>in</strong>fusion l<strong>in</strong>e, for fluid therapy (normal sal<strong>in</strong>e solution,<br />

0.9% NaCl at the rate <strong>of</strong> 10 mL/kg/hour) <strong>and</strong> anaesthesia<br />

<strong>in</strong>duction. Anaesthesia was performed us<strong>in</strong>g an association <strong>of</strong><br />

tiletam<strong>in</strong>e chloride <strong>and</strong> zolazepam chloride (Zoletil 50, Virbac),<br />

at the dose <strong>of</strong> 0.15 mL/kg <strong>in</strong>jected <strong>in</strong>travenously. The dog<br />

TABLE 1.—Identification <strong>of</strong> dogs <strong>in</strong> each treatment group.<br />

Group 1: <strong>Miltefos<strong>in</strong>e</strong> (Milteforan, Virbac: 1 mL/10 kg orally<br />

Group 2 <strong>Meglum<strong>in</strong>e</strong> antimoniate (Glucantime, Mérial: 3.3 mL/10 kg s.c.<br />

once a day for twenty-eight days)<br />

once a day for twenty-eight days)<br />

H7E 1023 Female H7I 1417 Female<br />

H7I 1401 Female H7G 1329 Female<br />

H7F 1144 Male H7F 1076 Male<br />

H7G 1342 Male H7E 0886 Male<br />

TABLE 2.—Study protocol.<br />

Day Actions<br />

D -4 Weight - cl<strong>in</strong>ical exam<strong>in</strong>ation<br />

R<strong>and</strong>omization<br />

D -1 Cl<strong>in</strong>ical exam<strong>in</strong>ation<br />

Blood sampl<strong>in</strong>g<br />

Ur<strong>in</strong>e sampl<strong>in</strong>g<br />

Kidney biopsy<br />

D0 to D27 1st treatment with miltefos<strong>in</strong>e with the food (Group 1)<br />

1st treatment with meglum<strong>in</strong>e antimoniate by s.c.<br />

<strong>in</strong>jection (Group 2)<br />

Daily observation<br />

D6; D13; D21 Weight - cl<strong>in</strong>ical exam<strong>in</strong>ation<br />

D27 Weight - cl<strong>in</strong>ical exam<strong>in</strong>ation<br />

Blood sampl<strong>in</strong>g<br />

Ur<strong>in</strong>e sampl<strong>in</strong>g<br />

D28 to D54 Daily observation<br />

D34; D41; D48 Weight - cl<strong>in</strong>ical exam<strong>in</strong>ation<br />

D55 Weight - cl<strong>in</strong>ical exam<strong>in</strong>ation<br />

Blood sampl<strong>in</strong>g<br />

Ur<strong>in</strong>e sampl<strong>in</strong>g<br />

Kidney biopsy<br />

was positioned <strong>in</strong> right lateral recumbency for the first biopsy<br />

that was performed on the left kidney on day -1, <strong>and</strong> vice versa<br />

on the right kidney, with the dog recumbent on the left side on<br />

day 55. This approach was chosen to avoid that the second<br />

biopsy would be performed on scarred tissue follow<strong>in</strong>g the previous<br />

procedure. For both procedures, the haircoat was clipped<br />

<strong>and</strong> the sk<strong>in</strong> area prepared aseptically.<br />

The biopsies were ultrasound guided (GE, mod Logic E,<br />

with microconvex 5–9 Mhz probe) <strong>and</strong> performed us<strong>in</strong>g an<br />

18G True-cut disposable biopsy needle driven by a gun, with a<br />

spr<strong>in</strong>g trigger system (Magnum Bard). Based on an immediate<br />

evaluation by the pathologist, us<strong>in</strong>g a stereomicroscope, one or<br />

two biopsies were taken from the renal caudal pole <strong>of</strong> each dog.<br />

To avoid clot formation <strong>in</strong> the renal pelvis, fluid therapy was<br />

ma<strong>in</strong>ta<strong>in</strong>ed for about thirty m<strong>in</strong>utes after each biopsy until the<br />

dogs woke up, whereas the femoral pulse <strong>and</strong> the capillary<br />

refill time (CRT) were cont<strong>in</strong>uously monitored. Before discharge,<br />

each dog was checked by ultrasound for signs <strong>of</strong><br />

hemorrhage at the biopsy site.<br />

Once the dogs were completely awake <strong>and</strong> cl<strong>in</strong>ically normal,<br />

they were taken to their <strong>in</strong>dividual cages. For the h<strong>and</strong>l<strong>in</strong>g<br />

<strong>of</strong> the biopsy specimens, a st<strong>and</strong>ard protocol was followed.<br />

Renal biopsies were divided <strong>in</strong>to three parts for light microscopy,<br />

immun<strong>of</strong>luorescence, <strong>and</strong> electron microscopy


Vol. 000, No. 00, 2009 MILTEFOSINE AND GLUCANTIME IN DOGS 3<br />

purposes. Renal biopsies were evaluated at the Department <strong>of</strong><br />

Public Health, Comparative Pathology <strong>and</strong> Veter<strong>in</strong>ary<br />

Hygiene–Anatomical Pathology Section <strong>of</strong> Padua University.<br />

Light Microscopy<br />

For light microscopy, biopsies were fixed <strong>in</strong> formal<strong>in</strong>,<br />

embedded <strong>in</strong> paraff<strong>in</strong>, <strong>and</strong> serially sectioned at 4-mm <strong>in</strong>tervals.<br />

Alternate sections were sta<strong>in</strong>ed with: hematoxyl<strong>in</strong>-eos<strong>in</strong> (HE),<br />

periodic acid-Schiff (PAS), acid-fuchs<strong>in</strong> orange G (AFOG),<br />

Masson’s Trichrome, Periodic acid-Schiff methanam<strong>in</strong>e<br />

(PASM), <strong>and</strong> Miller’s elast<strong>in</strong> sta<strong>in</strong>. The evaluations were performed<br />

bl<strong>in</strong>ded by three <strong>in</strong>dependent pathologists (LA, LC,<br />

MC). Discordant data were reevaluated by the <strong>in</strong>vestigators,<br />

<strong>and</strong> a consensus evaluation was used for the def<strong>in</strong>itive analysis.<br />

Immun<strong>of</strong>luorescence<br />

For direct immun<strong>of</strong>luorescence exam<strong>in</strong>ation, fresh unfixed<br />

renal biopsies were embedded <strong>in</strong> optimal cutt<strong>in</strong>g temperature<br />

(OCT) compound, snap-frozen <strong>in</strong> liquid nitrogen, <strong>and</strong> stored<br />

at –80 C. Subsequently, 5-mm-thick sections were fixed with<br />

acetone for fifteen m<strong>in</strong>utes. After wash<strong>in</strong>g with phosphate buffered<br />

sal<strong>in</strong>e (PBS) (two passages), slides were <strong>in</strong>cubated with<br />

FITC-labelled anti-goat IgA, IgG, IgM <strong>and</strong> complement C3<br />

antibodies (Bethyl Laboratories, Inc., Montgomery, TX, USA).<br />

Primary antibodies were omitted as negative controls <strong>and</strong> substituted<br />

with PBS.<br />

Electron Microscopy<br />

Renal tissue specimens were fixed <strong>in</strong> Karnovsky fixative,<br />

stored <strong>in</strong> 0.1 M sodium cacodylate (pH 7.2), <strong>and</strong> postfixed <strong>in</strong><br />

2% 0s0 4, buffered with 0.1 M sodium cacodylate (pH 7.2).<br />

After r<strong>in</strong>s<strong>in</strong>g twice for thirty m<strong>in</strong>utes each time with distilled<br />

water, tissue specimens were sta<strong>in</strong>ed with 2% uranyl acetate<br />

twice for two hours each time at room temperature, dehydrated<br />

<strong>in</strong> a graded series <strong>of</strong> acetone, <strong>and</strong> embedded <strong>in</strong> Durcopan ACM<br />

(Fluka Ag., Buchs, Switzerl<strong>and</strong>). Ultrath<strong>in</strong> sections (50 nm)<br />

were sta<strong>in</strong>ed with lead citrate <strong>and</strong> exam<strong>in</strong>ed with a LEO electron<br />

microscope (Carl Zeiss electron microscopes, NY).<br />

Basel<strong>in</strong>e Characteristics<br />

RESULTS<br />

At the pre-<strong>in</strong>clusion visit (day -4) <strong>and</strong> at the day -1 visit, all<br />

dogs were cl<strong>in</strong>ically healthy. The blood analyses performed on<br />

all dogs on day -1 did not show any significant abnormalities.<br />

The ur<strong>in</strong>alysis performed on day -1 <strong>in</strong>dicated an abnormal<br />

ur<strong>in</strong>e prote<strong>in</strong>/ur<strong>in</strong>e creat<strong>in</strong><strong>in</strong>e (Up/Uc) ratio <strong>in</strong> only one dog<br />

from Group 2 (Up/Uc ratio ¼ 1.74).<br />

Body weight<br />

The dogs <strong>in</strong> Group 1 had a weight ga<strong>in</strong> <strong>of</strong> 0.5 to 0.9 kg<br />

between day -4 <strong>and</strong> day 55. Three <strong>of</strong> the four dogs <strong>in</strong> Group<br />

2 had a weight ga<strong>in</strong> <strong>of</strong> 0.15 to 0.7 kg dur<strong>in</strong>g the same period.<br />

One dog from Group 2 (H7E 0886) had a weight loss <strong>of</strong><br />

0.15 kg between Day -4 <strong>and</strong> Day 55.<br />

Cl<strong>in</strong>ical Results<br />

Globally, all the animals rema<strong>in</strong>ed cl<strong>in</strong>ically healthy<br />

throughout the study period.<br />

Blood Results<br />

The blood exam<strong>in</strong>ations performed on day 27 did not show<br />

any relevant abnormality. The hematological <strong>and</strong> biochemical<br />

results were with<strong>in</strong> the normal range for all dogs. At day 55,<br />

one dog <strong>in</strong> Group 2 (H7E 0886) showed an <strong>in</strong>creased urea value<br />

(0.8g/L; cut<strong>of</strong>f level: 0.6 g/L).<br />

Ur<strong>in</strong>e Results<br />

The ur<strong>in</strong>alysis performed on day 27 <strong>in</strong>dicated <strong>in</strong>creased<br />

ur<strong>in</strong>e prote<strong>in</strong> levels <strong>in</strong> four dogs (two dogs <strong>in</strong> each group), with<br />

all other parameters rema<strong>in</strong><strong>in</strong>g with<strong>in</strong> normal reference ranges.<br />

At the exam<strong>in</strong>ation performed on day 55, three out <strong>of</strong> the four<br />

dogs still showed <strong>in</strong>creased ur<strong>in</strong>e prote<strong>in</strong> levels, without any<br />

other detected abnormalities.<br />

Light Microscopy<br />

Sampl<strong>in</strong>g for light microscopy was adequate <strong>in</strong> all biopsies,<br />

with a mean glomerular count <strong>of</strong> 17.4 (range, ten to thirty-six<br />

glomeruli). Light microscopy evaluation <strong>of</strong> the renal biopsies<br />

showed no alterations <strong>in</strong> the eight dogs at basel<strong>in</strong>e (day -1).<br />

After fifty-five days, the two groups <strong>of</strong> dogs treated with the<br />

two compounds presented different histology features. The<br />

four dogs treated with miltefos<strong>in</strong>e showed normal glomeruli<br />

<strong>and</strong> m<strong>in</strong>imal vacuolization <strong>of</strong> the proximal tubular epithelial<br />

cells with a scattered distribution. The vascular compartment<br />

was with<strong>in</strong> normal limits. The four dogs treated with meglum<strong>in</strong>e<br />

antimoniate showed a normal glomerular pattern. The<br />

predom<strong>in</strong>ant f<strong>in</strong>d<strong>in</strong>gs were restricted to the tubular compartment<br />

<strong>and</strong> were similar <strong>in</strong> all dogs treated with this drug. Diffusely,<br />

tubular cells showed marked swell<strong>in</strong>g with pale<br />

cytoplasm, <strong>and</strong> <strong>in</strong> multifocal areas, coagulative necrosis<br />

features were evident. Sloughed tubular cells were present <strong>in</strong><br />

tubular lum<strong>in</strong>a, <strong>and</strong> <strong>in</strong>dividual tubular cell necrosis with picnotic<br />

nuclei was characteristic <strong>in</strong> these tubules (Figure 1). Some<br />

tubular cells underwent apoptosis with phagocytosis <strong>of</strong> apoptotic<br />

bodies by neighbor<strong>in</strong>g epithelial cells (Figures 2 <strong>and</strong> 3). No<br />

tubular casts or crystall<strong>in</strong>e deposits were evident. The lum<strong>in</strong>al<br />

borders were markedly irregular, with simplified cells alternat<strong>in</strong>g<br />

with enlarged, hypereos<strong>in</strong>ophilic cells. Focal <strong>in</strong>terstitial<br />

edema with m<strong>in</strong>imum mononuclear <strong>in</strong>flammatory <strong>in</strong>filtrates<br />

without tubulitis was evident. Vessels were normal.<br />

Immun<strong>of</strong>luorescence<br />

Immun<strong>of</strong>luorescent reactions for IgG, IgM, IgA <strong>and</strong> C3<br />

were negative <strong>in</strong> the renal biopsies at basel<strong>in</strong>e (day -1) <strong>and</strong> at<br />

the control time (day 55) <strong>in</strong> both groups.


4 BIANCIARDI ET AL. TOXICOLOGIC PATHOLOGY<br />

FIGURE 1.—Sloughed tubular cells are present <strong>in</strong> tubular lum<strong>in</strong>a, <strong>and</strong><br />

<strong>in</strong>dividual tubular cell necrosis with pyknotic nuclei are evident.<br />

400 ; hematoxyl<strong>in</strong> <strong>and</strong> eos<strong>in</strong>.<br />

Electron Microscopy<br />

Electron microscopy confirmed the severe tubular damage<br />

seen <strong>in</strong> the meglum<strong>in</strong>e antimoniate–treated dogs. Proximal<br />

tubules exhibited epithelial simplification with reduced organellar<br />

content, loss or attenuation <strong>of</strong> brush border, cellular<br />

detachment from the tubular basement membrane, apical blebb<strong>in</strong>g,<br />

widened <strong>in</strong>tercellular spaces, <strong>in</strong>dividual cell necrosis, <strong>and</strong><br />

focal shedd<strong>in</strong>g <strong>of</strong> cytoplasmic debris <strong>in</strong>to the tubular lumen. No<br />

lesions were detected at the ultrastructural level <strong>in</strong> the<br />

miltefos<strong>in</strong>e-treated dogs.<br />

DISCUSSION<br />

The kidneys are affected <strong>in</strong> virtually all dogs with CanL, <strong>and</strong><br />

renal disease might be the only apparent abnormality <strong>in</strong><br />

<strong>in</strong>fected dogs. Renal disease can progress from asymptomatic<br />

prote<strong>in</strong>uria to the nephrotic syndrome or chronic renal failure<br />

with glomerulonephritis, tubulo<strong>in</strong>terstitial nephritis, <strong>and</strong> amyloidosis<br />

(Kout<strong>in</strong>as et al. 1999). Glomerular lesions develop<strong>in</strong>g<br />

<strong>in</strong> dogs dur<strong>in</strong>g <strong>in</strong>fection with Leishmania organisms are associated<br />

with the presence <strong>of</strong> immune complexes (Nieto et al.<br />

1992) <strong>and</strong> have been classified histologically as mesangial glomerulonephritis,<br />

membranous glomerulonephritis, membranoproliferative<br />

glomerulonephritis, <strong>and</strong> focal segmental<br />

glomerulosclerosis (Aresu, Pregel, et al. 2008). Tubulo<strong>in</strong>terstitial<br />

nephritis has been reported with different <strong>in</strong>cidences by different<br />

authors <strong>in</strong> CanL-affected dogs, but it has never been<br />

observed as a solitary lesion (Aresu, Rastaldi, et al. 2008). The<br />

occurrence <strong>of</strong> tubulo<strong>in</strong>terstitial lesions is generally considered<br />

as a consequence <strong>of</strong> the progression <strong>of</strong> immune-mediated glomerular<br />

lesions, which are classically primary lesions (Zatelli<br />

et al. 2003).<br />

Despite the high prevalence <strong>of</strong> kidney damage, <strong>in</strong>crease <strong>of</strong><br />

serum creat<strong>in</strong><strong>in</strong>e <strong>and</strong> urea result<strong>in</strong>g from primary kidney failure<br />

is evident only when the majority <strong>of</strong> nephrons are lost, which<br />

happens rather late dur<strong>in</strong>g disease progression (Baneth et al.<br />

2008).<br />

FIGURES 2 AND 3.—Diffuse desquamation <strong>of</strong> apoptotic tubular epithelial<br />

cells <strong>in</strong>to the lumen, several with pyknotic nuclei. Granular casts<br />

are evident with necrotic cell debris. 400 ; hematoxyl<strong>in</strong> <strong>and</strong> eos<strong>in</strong>.<br />

Treatment with antimonials has sometimes been po<strong>in</strong>ted out<br />

as be<strong>in</strong>g responsible for the deterioration <strong>of</strong> renal conditions <strong>of</strong><br />

already affected kidneys <strong>in</strong> leishmaniotic dogs. Nevertheless,<br />

the <strong>in</strong>formation available on the toxicology, pharmacok<strong>in</strong>etics,<br />

<strong>and</strong> pharmacodynamics <strong>of</strong> this drug <strong>in</strong> the dog is scarce. A specific<br />

study with meglum<strong>in</strong>e antimoniate has shown that the<br />

pharmacok<strong>in</strong>etic behavior <strong>of</strong> this drug <strong>in</strong> healthy dogs differs<br />

considerably from that described <strong>in</strong> man (Tassi et al. 1994).<br />

This <strong>and</strong> similar studies (Belloli et al. 1995) have shown that<br />

the subcutaneous route <strong>of</strong> adm<strong>in</strong>istration is the most suitable<br />

to ma<strong>in</strong>ta<strong>in</strong> the serum level <strong>of</strong> antimony (Sb) over time. After<br />

subcutaneous adm<strong>in</strong>istration, the availability <strong>of</strong> the drug was<br />

close to 100%, <strong>and</strong> the maximum concentration <strong>of</strong> antimony was<br />

achieved with<strong>in</strong> three to five hours, with an immediate decl<strong>in</strong>e <strong>in</strong><br />

the drug concentration, which reached values close to the detection<br />

limit only eighteen hours after <strong>in</strong>jection. The half-life was <strong>of</strong><br />

121 + 6 m<strong>in</strong>utes (Tassi et al. 1994). <strong>Meglum<strong>in</strong>e</strong> antimoniate has<br />

been reported to be rapidly elim<strong>in</strong>ated by the kidneys <strong>in</strong> healthy<br />

dogs, ma<strong>in</strong>ly by glomerular filtration. After subcutaneous <strong>in</strong>jection,<br />

more than 80% <strong>of</strong> the drug is elim<strong>in</strong>ated through the kidneys<br />

(Belloli et al. 1995; Tassi et al. 1994).


Vol. 000, No. 00, 2009 MILTEFOSINE AND GLUCANTIME IN DOGS 5<br />

Monitor<strong>in</strong>g <strong>of</strong> Sb ur<strong>in</strong>ary excretion <strong>in</strong>dicates that the kidneys<br />

are the almost exclusive route <strong>of</strong> elim<strong>in</strong>ation <strong>of</strong> meglum<strong>in</strong>e<br />

antimoniate (Hantson et al. 2000); however, no specific<br />

guidel<strong>in</strong>es exist for dosage adjustment <strong>in</strong> renal failure. Even<br />

if nephrotoxicity has rarely been related to this treatment <strong>in</strong><br />

humans, some cases <strong>of</strong> acute renal failure as a result <strong>of</strong> acute<br />

tubular necrosis, followed by death after receiv<strong>in</strong>g Glucantime,<br />

have been reported <strong>in</strong> human patients (Rodrigues et al. 1999).<br />

In animals, renal function was assessed <strong>in</strong> rats treated with<br />

the pentavalent antimonials, Glucantime (meglum<strong>in</strong>e antimoniate,<br />

Rhodia) or Pentostam (sodium stibogluconate, Wellcome).<br />

When adm<strong>in</strong>istered at a dose rate <strong>of</strong> 30 mg <strong>of</strong> Sb<br />

(Glucantime or Pentostam) per 100 g <strong>of</strong> body weight per day<br />

for thirty days, renal functional changes were observed consist<strong>in</strong>g<br />

<strong>of</strong> disturbances <strong>in</strong> ur<strong>in</strong>e concentrat<strong>in</strong>g capacity, suggest<strong>in</strong>g<br />

an <strong>in</strong>terference <strong>of</strong> the drugs <strong>in</strong> the action <strong>of</strong> antidiuretic<br />

hormone on the distal tubules <strong>and</strong> collect<strong>in</strong>g ducts. The disturbance<br />

<strong>in</strong> ur<strong>in</strong>e concentration was reversible after a seven-day<br />

period without the drugs be<strong>in</strong>g adm<strong>in</strong>istered. No significant<br />

histopathological alterations were observed <strong>in</strong> the kidneys <strong>of</strong><br />

the rats treated with the drugs. Only the rats treated with a high<br />

dose <strong>of</strong> Pentostam (200 mg/100 g body weight/day) demonstrated<br />

functional <strong>and</strong> histopathological alterations <strong>of</strong> acute<br />

tubular necrosis (Veiga et al. 1990)<br />

Adverse effects <strong>of</strong> antimonial therapy <strong>in</strong> humans <strong>in</strong>clude<br />

lethargy, anorexia, pneumonia, nausea, urticaria, fever, vomit<strong>in</strong>g,<br />

abscess formation, cardiotoxicity, hepatotoxicity, <strong>and</strong><br />

nephrotoxicity (Davidson 1998; Ikeda-Garcia et al. 2007).<br />

In dogs, the most commonly observed adverse effects associated<br />

with meglum<strong>in</strong>e antimoniate are apathy, anorexia,<br />

vomit<strong>in</strong>g, diarrhea, <strong>and</strong> pa<strong>in</strong> at the site <strong>of</strong> <strong>in</strong>jection (Baneth <strong>and</strong><br />

Shaw 2002); however, the frequency <strong>and</strong> severity <strong>of</strong> these<br />

adverse effects are unknown (Bravo et al. 1993; Noli 1999).<br />

<strong>Miltefos<strong>in</strong>e</strong> has only recently become available for the treatment<br />

<strong>of</strong> CanL, therefore very little is known <strong>of</strong> its effect on the<br />

kidney <strong>of</strong> leishmaniotic dogs <strong>in</strong> the field. Several pharmacok<strong>in</strong>etic<br />

studies have been performed with miltefos<strong>in</strong>e, <strong>in</strong> laboratory<br />

animals <strong>and</strong> <strong>in</strong> the target species; miltefos<strong>in</strong>e was also<br />

assayed <strong>in</strong> dog plasma, ur<strong>in</strong>e, <strong>and</strong> feces by HPLC-MSMS analyses<br />

(Virbac, data on file Study Nos. F-107.010000-60008;<br />

F-107.010000-60010; F-107.010000-60027).<br />

In rats <strong>and</strong> dogs, miltefos<strong>in</strong>e showed an absolute bioavailability<br />

<strong>of</strong> 82% <strong>and</strong> 94%, respectively, with the time for<br />

maximum concentration values (T max) rang<strong>in</strong>g from four to<br />

forty-eight hours. In dogs, after repeated oral adm<strong>in</strong>istration<br />

<strong>of</strong> miltefos<strong>in</strong>e <strong>in</strong> food for twenty-eight days, plasma clearance<br />

was determ<strong>in</strong>ed to be 3.40 + 0.447 mL/kg/hr, correspond<strong>in</strong>g to<br />

an overall body extraction ratio <strong>of</strong> about 0.06% for a 10-kg dog.<br />

This f<strong>in</strong>d<strong>in</strong>g suggests that, <strong>in</strong> dogs, the metabolic efficiency to<br />

transform miltefos<strong>in</strong>e <strong>in</strong>to its different metabolites is low <strong>and</strong><br />

that there is no hepatic first-pass metabolism.<br />

The term<strong>in</strong>al elim<strong>in</strong>ation half-life <strong>in</strong> rats was approximately<br />

eighty hours (3.3 days), <strong>and</strong> 153 hours (153 + 13.7 hr) <strong>in</strong> dogs,<br />

equivalent to 6.3 days. This long term<strong>in</strong>al half-life can be<br />

expla<strong>in</strong>ed by the low plasma clearance <strong>of</strong> miltefos<strong>in</strong>e. Consider<strong>in</strong>g<br />

this term<strong>in</strong>al half-life <strong>in</strong> dogs, a steady state can be<br />

expected after about three to four weeks <strong>of</strong> repeated daily<br />

adm<strong>in</strong>istration <strong>of</strong> miltefos<strong>in</strong>e.<br />

In dogs, repeated adm<strong>in</strong>istration <strong>of</strong> 2 mg/kg/day <strong>of</strong> miltefos<strong>in</strong>e<br />

for twenty-eight days led to an accumulation <strong>in</strong>dex <strong>of</strong><br />

7.65 + 1.99. The accumulation <strong>in</strong>dex is the ratio between the<br />

amount <strong>of</strong> miltefos<strong>in</strong>e (AUC0-24hr) reached at a steady state <strong>and</strong><br />

that obta<strong>in</strong>ed after the first adm<strong>in</strong>istration <strong>of</strong> miltefos<strong>in</strong>e. After<br />

the last adm<strong>in</strong>istration, the Cmax was 32582 + 4030 ng/mL<br />

with a mean Tmax <strong>of</strong> 5.0 + 2.0 hours.<br />

These data <strong>in</strong>dicate an <strong>in</strong>crease <strong>of</strong> plasma miltefos<strong>in</strong>e concentration<br />

with<strong>in</strong> the first two weeks <strong>of</strong> treatment, reach<strong>in</strong>g a<br />

‘‘steady state’’ until the end <strong>of</strong> treatment (twenty-eight days).<br />

At the end <strong>of</strong> treatment, there is a slow <strong>and</strong> l<strong>in</strong>ear decrease<br />

<strong>of</strong> plasma miltefos<strong>in</strong>e with complete elim<strong>in</strong>ation <strong>in</strong> a further<br />

four weeks. <strong>Miltefos<strong>in</strong>e</strong> is widely distributed <strong>in</strong> body organs,<br />

undergoes a slow metabolic breakdown, <strong>and</strong> is metabolized<br />

<strong>in</strong> the liver <strong>in</strong>to chol<strong>in</strong>e <strong>and</strong> chol<strong>in</strong>e-conta<strong>in</strong><strong>in</strong>g metabolites<br />

(Berman 2005).<br />

<strong>Miltefos<strong>in</strong>e</strong> is slowly excreted <strong>in</strong> the feces. The mean fecal<br />

clearance observed was low (0.32 + 0.13 mL/kg/hr), which is<br />

very similar to the bile flow rate <strong>in</strong> dogs, suggest<strong>in</strong>g that miltefos<strong>in</strong>e<br />

fecal clearance is actually a biliary clearance. The contribution<br />

<strong>of</strong> fecal clearance to total body clearance was 10% +<br />

4.86%, mean<strong>in</strong>g that the elim<strong>in</strong>ation <strong>of</strong> miltefos<strong>in</strong>e is likely to<br />

undergo an extensive, but slow, metabolism.<br />

As fecal clearance represents about 10% <strong>of</strong> total clearance,<br />

it can be concluded that only about 10% <strong>of</strong> the adm<strong>in</strong>istered<br />

dose is elim<strong>in</strong>ated as its parent drug <strong>in</strong> the feces (i.e., about<br />

200 mg/kg/day).<br />

The miltefos<strong>in</strong>e ur<strong>in</strong>ary concentration was rather low <strong>and</strong><br />

below the limit <strong>of</strong> quantification (20 ng/mL <strong>of</strong> miltefos<strong>in</strong>e)<br />

after three days. The contribution <strong>of</strong> renal clearance to total<br />

body clearance was considered as negligible (about 0.03%).<br />

These results suggest that ur<strong>in</strong>e is therefore only a m<strong>in</strong>or route<br />

<strong>of</strong> miltefos<strong>in</strong>e parent drug elim<strong>in</strong>ation.<br />

As <strong>in</strong> human be<strong>in</strong>gs, side effects <strong>in</strong>duced by miltefos<strong>in</strong>e <strong>in</strong><br />

dogs are mostly gastro<strong>in</strong>test<strong>in</strong>al, such as occasional vomit<strong>in</strong>g<br />

<strong>and</strong> diarrhea. They are dose-dependent <strong>and</strong> at the recommended<br />

dose rate (2 mg/kg/day) are generally mild <strong>and</strong> transient,<br />

disappear<strong>in</strong>g without therapy after the end <strong>of</strong> treatment<br />

period.<br />

Our results confirm that the impact <strong>of</strong> miltefos<strong>in</strong>e on kidney<br />

functions <strong>and</strong> on the cl<strong>in</strong>ical status <strong>of</strong> dogs is limited. The only<br />

abnormal cl<strong>in</strong>ical value was limited to an abnormal Up/Uc ratio<br />

<strong>in</strong> one dog from the meglum<strong>in</strong>e antimoniate–treated group<br />

(Up/Uc ratio ¼ 1.74) at the pre-<strong>in</strong>clusion visit, which can be<br />

expla<strong>in</strong>ed by blood contam<strong>in</strong>ation <strong>of</strong> the ur<strong>in</strong>e samples dur<strong>in</strong>g<br />

cystocentesis. In the miltefos<strong>in</strong>e-treated group, light microscopy<br />

exam<strong>in</strong>ations demonstrated normal glomeruli <strong>and</strong> m<strong>in</strong>imal<br />

vacuolization <strong>of</strong> the proximal tubular epithelial cells with<br />

scattered distribution. Immun<strong>of</strong>luorescent exam<strong>in</strong>ations failed<br />

to detect any immune deposits, <strong>and</strong> electron microscopy exam<strong>in</strong>ations<br />

did not demonstrate any lesions. Although there is a<br />

lack <strong>of</strong> cl<strong>in</strong>ical evidence <strong>of</strong> kidney <strong>in</strong>volvement, all the<br />

meglum<strong>in</strong>e antimoniate–treated dogs demonstrated morphological<br />

changes consistent with severe tubular damage. In light


6 BIANCIARDI ET AL. TOXICOLOGIC PATHOLOGY<br />

microscopy exam<strong>in</strong>ations, diffuse marked swell<strong>in</strong>g with pale<br />

cytoplasm <strong>of</strong> tubular cells <strong>and</strong> multifocal areas <strong>of</strong> coagulative<br />

necrosis were seen. Sloughed tubular cells <strong>and</strong> <strong>in</strong>dividual<br />

tubular cell necrosis with picnotic nuclei were also evident <strong>in</strong><br />

these tubules. Ultrastructural exam<strong>in</strong>ation confirmed the<br />

damage seen at the light microscopy level. This severe damage<br />

was evident four weeks after the end <strong>of</strong> the therapy without<br />

signs <strong>of</strong> regeneration <strong>of</strong> the damaged tissues.<br />

In conclusion, although <strong>in</strong> both groups <strong>of</strong> treated animals no<br />

cl<strong>in</strong>ical signs <strong>of</strong> renal disease were evident, <strong>in</strong> light <strong>of</strong> our morphological<br />

results on renal biopsies, the pharmacological treatment<br />

approach <strong>of</strong> CanL-affected dogs should be carefully<br />

evaluated.<br />

REFERENCES<br />

Aresu, L., Pregel, P., Bollo, E., Palmer<strong>in</strong>i, D., Sereno, A., <strong>and</strong> Valenza, F.<br />

(2008) Immun<strong>of</strong>luorescence sta<strong>in</strong><strong>in</strong>g for the detection <strong>of</strong> immunoglobul<strong>in</strong>s<br />

<strong>and</strong> complement (C3) <strong>in</strong> dogs with renal disease. Vet Rec 163,<br />

679–82.<br />

Aresu, L., Rastaldi, M. P., Pregel, P., Valenza, F., Radaelli, E., Scanziani, E.,<br />

<strong>and</strong> Castagnaro, M. (2008) Dog as model for down-expression <strong>of</strong><br />

E-cadher<strong>in</strong> <strong>and</strong> beta-caten<strong>in</strong> <strong>in</strong> tubular epithelial cells <strong>in</strong> renal fibrosis.<br />

Virchows Arch 453, 617–25.<br />

Baneth, G. (2006). Leishmaniases. In Infectious diseases <strong>of</strong> the dog <strong>and</strong> cat<br />

(3rd ed.), ed. C. E. Green, 685–98. Philadelphia: Saunders.<br />

Baneth, G., Kout<strong>in</strong>as, A. F., Solano-Gallego, L., Bourdeau, P., <strong>and</strong> Ferrer, L.<br />

(2008). Can<strong>in</strong>e leishmaniosis–new concepts <strong>and</strong> <strong>in</strong>sights on an exp<strong>and</strong><strong>in</strong>g<br />

zoonosis: part one. Trends Parasitol 24, 324–30.<br />

Baneth, G., <strong>and</strong> Shaw, S. E. (2002). Chemotherapy <strong>of</strong> can<strong>in</strong>e leishmaniosis. Vet<br />

Parasitol 106, 315–24.<br />

Belloli, C., Ceci, L., Carli, S., Tassi, P., Montesissa, C., De Natale, G., Marcotrigiano,<br />

G., <strong>and</strong> Ormas, P. (1995). Disposition <strong>of</strong> antimony <strong>and</strong> am<strong>in</strong>osid<strong>in</strong>e<br />

<strong>in</strong> dogs after adm<strong>in</strong>istration separately <strong>and</strong> together: implications<br />

for therapy <strong>of</strong> leishmaniasis. Res Vet Sci 58, 123–27.<br />

Berman, J. (2005) <strong>Miltefos<strong>in</strong>e</strong> to treat leishmaniasis, Expert Op<strong>in</strong> Pharmacother<br />

6, 1381–88.<br />

Bravo, L., Frank, L. A., <strong>and</strong> Brenneman, K. A. (1993). Can<strong>in</strong>e leishmaniasis <strong>in</strong><br />

the United States. Compendium on Cont<strong>in</strong>u<strong>in</strong>g Education for the Practic<strong>in</strong>g<br />

Veter<strong>in</strong>arian 15, 699–708.<br />

Ciaramella, P., Oliva, G., Luna, R. D., Gradoni, L., Ambrosio, R., Cortese, L.,<br />

Scalone, A., <strong>and</strong> Persech<strong>in</strong>o, A. (1997). A retrospective cl<strong>in</strong>ical study <strong>of</strong><br />

can<strong>in</strong>e leishmaniosis <strong>in</strong> 150 dogs naturally <strong>in</strong>fected by Leishmania <strong>in</strong>fantum.<br />

Vet Rec 141, 539–43.<br />

Costa, F. A., Goto, H., Saldanha, L. C., Silva, S. M., S<strong>in</strong>hor<strong>in</strong>i, I. L., Silva,<br />

T. C., Guerra, J. L. (2003). Histopathologic patterns <strong>of</strong> nephropathy <strong>in</strong><br />

naturally acquired can<strong>in</strong>e visceral leishmaniasis. Vet Pathol 40, 677–84.<br />

Davidson, R. N. (1998). Practical guide for treatment <strong>of</strong> leishmaniasis. Drugs.<br />

56, 1009–18.<br />

Hantson, P., Luyasu, S., Haufroid, V., <strong>and</strong> Lambert, M. (2000). Antimony<br />

excretion <strong>in</strong> a patient with renal impairment dur<strong>in</strong>g meglum<strong>in</strong>e antimoniate<br />

therapy. Pharmacotherapy 20, 1141–43.<br />

Hilgard, P., Klenner, T., Stekar, J., <strong>and</strong> Unger, C. (1993). Alkylphosphochol<strong>in</strong>es:<br />

a new class <strong>of</strong> membrane active anticancer agents. Cancer Chemother<br />

Pharmacol 32, 90–95.<br />

Ikeda-Garcia, F. A., Lopes, R. S., Ciarl<strong>in</strong>i, P. C., Marques, F. J., Lima, V. M.,<br />

Perri, S. H., <strong>and</strong> Feitosa, M. M. (2007). Evaluation <strong>of</strong> renal <strong>and</strong> hepatic<br />

functions <strong>in</strong> dogs naturally <strong>in</strong>fected by visceral leishmaniasis submitted<br />

to treatment with meglum<strong>in</strong>e antimoniate. Res Vet Sci 83, 105–8.<br />

Jha, T. K., Sunder, S., Thakur, C. P., Bachmann, P., Karbwang, J., Fischer, C.,<br />

Voss, A., <strong>and</strong> Berman, J. (1999). <strong>Miltefos<strong>in</strong>e</strong>, an oral agent, for the treatment<br />

<strong>of</strong> Indian visceral leishmaniasis. N Engl J Med 341, 1795–1800.<br />

Kout<strong>in</strong>as, A. F., Polizopoulou, Z. S., Saridomichelakis, M. N., Argyriadis, D.,<br />

Fytianou, A., <strong>and</strong> Plevraki, K. G. (1999). Cl<strong>in</strong>ical considerations on<br />

can<strong>in</strong>e visceral leishmaniasis <strong>in</strong> Greece: A retrospective study <strong>of</strong> 158<br />

cases (1989–1996). J Am Anim Hosp Assoc 35, 376–83.<br />

Mateo, M., Maynard, L., Vischer, C., Bianciardi, P., <strong>and</strong> Miró, G. (2009) Comparative<br />

study on the short term efficacy <strong>and</strong> adverse effects <strong>of</strong> miltefos<strong>in</strong>e<br />

<strong>and</strong> meglum<strong>in</strong>e antimoniate <strong>in</strong> dogs with natural leishmaniosis.<br />

Parasitol Res 105, 155–62.<br />

Miró, G., Oliva, G., Cruz, I., Canavate, C., Mortar<strong>in</strong>o, M., Vischer, C., <strong>and</strong><br />

Bianciardi, P. (2008). Multi-centric <strong>and</strong> controlled cl<strong>in</strong>ical field study<br />

to evaluate the efficacy <strong>and</strong> safety <strong>of</strong> the comb<strong>in</strong>ation <strong>of</strong> miltefos<strong>in</strong>e <strong>and</strong><br />

allopur<strong>in</strong>ol <strong>in</strong> the treatment <strong>of</strong> can<strong>in</strong>e leishmaniosis. Vet Dermatol 19<br />

(Suppl 1), 7–8.<br />

Miró, G., Cardoso, L., Pennisi, M. G., Oliva, G., <strong>and</strong> Baneth, G. (2008). Can<strong>in</strong>e<br />

leishmaniosis–new concepts <strong>and</strong> <strong>in</strong>sights on an exp<strong>and</strong><strong>in</strong>g zoonosis: Part<br />

two. Trends Parasitol 24, 371–77.<br />

Nieto, C. G., Navarrete, I., Habela, M. A., Serrano, F., <strong>and</strong> Redondo, E. (1992).<br />

Pathological changes <strong>in</strong> kidneys <strong>of</strong> dogs with natural Leishmania <strong>in</strong>fection.<br />

Vet Parasitol 45, 33–47.<br />

Noli, C. (1999). Leishmaniosis can<strong>in</strong>a. Waltham Focus 9, 16–24.<br />

Noli, C., <strong>and</strong> Auxilia, S. T. (2005). Treatment <strong>of</strong> can<strong>in</strong>e Old World visceral<br />

leishmaniasis: A systematic review. Vet Dermatol 16, 213–32.<br />

Pearson, R. D. (2003). Development status <strong>of</strong> miltefos<strong>in</strong>e as first oral drug <strong>in</strong><br />

visceral <strong>and</strong> cutaneous leishmaniasis. Curr Infect Dis Rep. 5, 41–42.<br />

Rodrigues, M. L., Costa, R. S., Souza, C. S., Foss, N. T., <strong>and</strong> Rosel<strong>in</strong>o, A. M.<br />

(1999). Nephrotoxicity attributed to meglum<strong>in</strong>e antimoniate (Glucantime)<br />

<strong>in</strong> the treatment <strong>of</strong> generalized cutaneous leishmaniasis. Rev Inst<br />

Med Trop Sao Paulo 41, 33–37.<br />

Sundar, S., Gupta, L. B., Makharia, M. K., S<strong>in</strong>gh, M. K., Voss, A., Resenkaimer,<br />

F., Engel, J., Murray, H. W. (1999). Oral treatment <strong>of</strong> visceral leishmaniasis<br />

with miltefos<strong>in</strong>e. Ann Trop Med Parasitol 93, 589–97.<br />

Sundar, S., Rosenkaimer, F., Makharia, M. K., Goyel, A. K., M<strong>and</strong>al, A. K.,<br />

Voss, A., Hilgard, P., <strong>and</strong> Murray, H. W. (1998). Trial <strong>of</strong> oral miltefos<strong>in</strong>e<br />

for visceral leishmaniasis. Lancet 352, 1821–23.<br />

Tassi, P., Ormas, P., Madonna, M., Carli, S., Belloli, C., De Natale, G.,<br />

Ceci, L., <strong>and</strong> Marcotrigiano, G. O. (1994). Pharmacok<strong>in</strong>etics <strong>of</strong><br />

N-methylglucam<strong>in</strong>e antimoniate after <strong>in</strong>travenous, <strong>in</strong>tramuscular <strong>and</strong><br />

subcutaneous adm<strong>in</strong>istration <strong>in</strong> the dog. Res Vet Sci 56, 144–50.<br />

Verma, N. K., <strong>and</strong> Dey, C. S. (2004) Possible Mechanism <strong>of</strong> <strong>Miltefos<strong>in</strong>e</strong>-<br />

Mediated Death <strong>of</strong> Leishmania donovani. Antimicrob Agents Chemother<br />

48, 3010–15.<br />

Veiga, J. P., Khanam, R., Rosa, T. T., Junqueira Júnior, L. F., Brant, P. C.,<br />

Raick, A. N., Friedman, H., <strong>and</strong> Marsden, P. D. (1990). Pentavalent antimonial<br />

nephrotoxicity <strong>in</strong> the rat. Rev Inst Med Trop Sao Paulo 32, 304–9.<br />

Virbac Data On File, European Registration Dossier: Study No. F-107.010000-<br />

60008.<br />

Virbac Data On File, European Registration Dossier: Study No. F-107.000000-<br />

40010.<br />

Virbac Data On File, European Registration Dossier: Study No. F-107.000000-<br />

40027 [Touta<strong>in</strong>, P. L., (2006) Expert Report: Study <strong>of</strong> the pharmacok<strong>in</strong>etics<br />

<strong>of</strong> miltefos<strong>in</strong>e <strong>in</strong> plasma, ur<strong>in</strong>e <strong>and</strong> faeces <strong>of</strong> dogs after oral<br />

repeated adm<strong>in</strong>istrations <strong>of</strong> miltefos<strong>in</strong>e <strong>in</strong> food for 28 days: Pharmacok<strong>in</strong>etic<br />

Analysis Report].<br />

Zatelli, A., Borgarelli, M., Santilli, R., Bonfanti, U., Nigrisoli, E., Zanatta, R.,<br />

Tarducci, A., <strong>and</strong> Guarraci, A. (2003). Glomerular lesions <strong>in</strong> dogs<br />

<strong>in</strong>fected with Leishmania organisms. Am J Vet Res 64, 558–61.<br />

For repr<strong>in</strong>ts <strong>and</strong> permissions queries, please visit SAGE’s Web site at http://www.sagepub.com/journalsPermissions.nav.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!