18.06.2013 Views

Boundary Lyer Theory

Boundary Lyer Theory

Boundary Lyer Theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

McGRAW-I4ILL SERIES IN MECHANICAL ENGINEERING<br />

RARRON . Cryogenic System<br />

JACK r. IIOLMAN, Southern. Methodist University<br />

Co1tsu1lin.g Editor<br />

ISC:KERT . hzlroduclion lo Heat and M ar Tran.fer<br />

ECKERT AND DRAKE . Ana1y.ri.r of Jim1 and Mos,r 7i-nnsfr.r<br />

ECKEK.~ AND DRAKE - Ifen1 attd A4ass 7ian.fer<br />

HAM, CRANE, AND RODERS . Mechanics of Machinery<br />

HARTENRERO AND DENAVIT . Kinen~nlic Synlhesis of Ihkages<br />

rrmm . Turbulence<br />

jmonsm AND AYRE . EtlGqineering Vihralions<br />

~~v1NAl.i . Ettgitteering Consideraliot~.~ n/.Ylrc.~r, .ylroi~, ntzd Slretzgth<br />

KAYS . Co~tvecliue Heal and Mass Trcrtzsfir<br />

LICIIIY . fh~bt~s/ion Engine' Proce~~es<br />

M A R ~ N . Kil~~tnalics and Dytian~ks a/ machine.^<br />

IVIELAN . I)!/~lan~ics qf Machinery<br />

PIIELAN . ~ll~ldfltlletll~l~,~ of n/fecharlim/ h.rigtl<br />

RAVEN . Aulotnnlic Corrlrol En.gineerirtg<br />

SOHP,N(:K . 7'hroric.r ?f Engitteering Expwir~lenlnlio~l<br />

noundary -layer <strong>Theory</strong><br />

Dr. HERMANN SCHLICHTING<br />

Profresor J3rncrit.11~ nt, tlrc Ihgincrrirrg U~~ivrr~it.~ of ~ ~~IIIIR(.~Iwc~~,<br />

Orr~~lnrl~<br />

Forrner 13ircctor of thc Arrodynnrninclre Vcr~rrclrsnnslnlt (;iittirrgcn<br />

Dr. J. KESTIN<br />

I'rofe~sor at ljrown Univrmity in Providcncr, Rliodc Ialand<br />

McGRAW-HILL BOOK COMPANY<br />

New York - St. Louis . San Francisco . Auckland . BogotL .<br />

Diisselilorf . Johannesburg . London . Madrid . Mexico . Montrenl .<br />

New Uelhi - Pa~iarno . Pnri~l . Siio I'nulo . Singtrporo Sydnoy Tokyo . Toronto


Library of Congress Gtnlogi~~g in 1'11blirntio11 Data<br />

Virsl p~tl~lisl~r


vi Contents<br />

CIIAPTEII V. Exnct ~olutiona of the Nnvier-Stokes eqnationa<br />

a. Parallel flow<br />

1. Pnrnllel flow through n straight channel and Couetto flow<br />

2. The Hagen-Poiseuille theory of flow through a pipe<br />

3. The flow between two concentric rotnting cylinders<br />

4. The n~~ddenly accelerated plone wall; Stokes's first problcrn<br />

5. I%w forn~at,ion in Couet,tc motion<br />

6. Flow in n pipe, start,ing fro~n rest<br />

7. 'The flow near nn oscillating flat plate; Stolccs's second problem<br />

8. A genernl class of non-steady solutions<br />

b. Other exact solr~t.ions<br />

9. Stngrdon in plane flow (FIie~nenz flo~v)<br />

9a. Two-tiimensiond IIOII-steady stagnntion flow<br />

10. Stagnntion in three-dimensional flow<br />

11. Flow near a rotating dink<br />

12. k'low in convergent nnd divergent cl~nnnels<br />

1:). Concl~~ding re~nnrk<br />

Refrr~nces<br />

CIIAYL'ER VI. Very slow motion<br />

n. The d~fircntinl eqrmtions for the rase of very slow motion<br />

b. I'nrallel flow pnst n sphere<br />

c. The I~ydrodynnrnic theory of Iubricnt,ion<br />

d. The llelc-Sl~aw flow<br />

Rcfcrrnrrs<br />

Fort B. Lnnninnr boundary layers<br />

CHAPTER Vll. l3011ntlary-lnycr equntion for tun-dirnrnaionnl inrompreusible flow;<br />

houndnry lnyer on n plntc<br />

n. Derivation of bortntlnry-lnyer equations for two-dimcnsional flow<br />

b. The scp~riition of a I)o~mdary layer<br />

c. A ren~nrlc on t,l~e integration of tl~c bortntlary-layer eqr~ntions<br />

d. Skin friction<br />

e. 'The 1)oundnry lnycr dong a flat. platc<br />

I. Ib~~nclnry Inyer of I~igi~er order<br />

11 rlrrcnrrs<br />

a. l)ejwn(lrncc of t,l~e cl~nrc~ctcrist.ics of n 11onnd:~ry lnycr on tltc Iley~~olds ~~n~nbcr<br />

b. "Sin~ilnr" solnt~ioos of the ho~n~dnry-layer ~qnnLions<br />

r. 'l'rnnnforn~nt~ion of t h bo~~ntlary-laycr cqontions into t,ho hcnt-conduction<br />

oqnal,io~~<br />

(1. 'I'l~e ~non~cnt,um nnd cnorgy-int.cgrnl equations for t,lw l~o~~ndnry laycr<br />

I~.clorcnrcn<br />

' 1 1 1 1 1 I 15unrt sol~~tions of the steady-stnk bountlnry-lnyrr rquntions in twotlirnensinnnl<br />

n~otio~~<br />

n. I%\r pnst a wrdgr<br />

b. Flon in n convergent cl~annel<br />

c. Flow pnuta nylindcr; nymmet.rical cnso (Blnsi~~s series)<br />

(I. Jh~ntlnry lnyer for the potential flow given by U(x) = Uo - axn<br />

e. Flow in the mn.lte of flat, plab at zero inridcnce<br />

1. 'rho t.mo-tli~nr~~sio~~nl lnn~innr jet<br />

g. I'arnllrl sl.~cnn~n in Inminnr llow<br />

t<br />

11 Flou in tlw inlrt Ir~~gth of n straight cl~nnnol<br />

i. Tlw rnctl~od or finite dillcrcncrs<br />

j 13oundory lnycr of second order<br />

Rcfrrrnrc~s<br />

Contcntn vii<br />

\ l l X. ,\pproxi~nntc ~nctl~otls for tl~r solnt,ion of t,l~e' two-tli~~~r~~nion:il, strncly<br />

l)o~~~~~I:~ry.l~iycr ~rpntinns<br />

n. ,\p!)lii.nt,ion of tlw III~III~~II~IIIII eq~~nlint~ t.o the flow pnnL n fI11t pllbt,e nt mro<br />

incdcnce<br />

b. The npproxi~natc method due to 'I%. vou I


A I l l<br />

1 :<br />

I I I. I.IIIII~II:I~ Iio1111(1nry li~yrrs in cwnprrssil)lr flow<br />

I .<br />

IZo~~~~cl:~ry-l:~yrr rontrol ill Inluit~nr flow<br />

n. hlrtlwcls of l)o~i~~~l:~ry-l:~yrr co~~trol<br />

I. hI(it,im~ of tllr solid \ d l<br />

2. ~\wvIrr:~l in11 or t IN* Iio1111(1ary hyvr (l)Io!vi~~g)<br />

3. SIIVI inn<br />

4. It~jcvl irm of n clilliwwt, gns<br />

6. I'rrvrt~l in11 t~f trn~lsit ion hy IIIC provisint~ ofs~~i(nl~lr sl~nprs. I,n~~~it~nr 11cr0fni1s<br />

I;. ('onli~~g of I I I wtll ~<br />

I). lto~~~~(l~~ry-I~tjcr<br />

s~wtinn<br />

I . Tl~rorvl iw~l rc:s~~lln<br />

I. I. I~'IIIII~:II~~II~I~~<br />

COII~~~OIIR<br />

I .2. 15xnct SOIIII~OIIS<br />

I.:!. ,\1qiroxi111:1lr .ml~~tio~~s<br />

2. lCx~ic~ri~~~vnI:~l vrsttlts oil s~~ctiou<br />

2.1. I wrrasr in lift.<br />

2.2. I)vrrrnsc? in clr:tg<br />

c,. 111jrr.tiri11 of ;I dill'rrcv~l g;ln (I


Y Contents<br />

A " I<br />

XI X 'I'lirorrt.irnl nsnnn~ptiona for Ilio cnlcul:~t.ion of turbr~lcnt flows<br />

('Il~\Pl'lCI1 XX. l'nrlwlrnt flow tl~ror~gh pipru<br />

a. Exprrin~cntnl restllts for 811100th piprs<br />

h. J


'I'i~blr 17.1 : Ikl~cwclcnrc of rrilirnl Rcyriolcln IIIIIII~I~ of vnlocil.y yrofilrn will1 nuotioll on<br />

din~c~~~~ionIcs$ n~~ction vol11111e f:wIor E, :~.fter UlricI~ [24:1J<br />

'T:ll,le 20.1: Iht.io of Inearl to 1nnxi111u111<br />

n<br />

of t,hc vclocity cliatribution, according to eqri. (20.fi)<br />

vc1ot.it.y ill pipe lir,w in t,ertns of tho expone~~t<br />

'I':hlr 21.1: T


xvi I'orcworcI<br />

Thc result was t.11~ l)onk or 483 pages and 206 figuros publisl~ctl in 1061 in the Gcrrnnn<br />

Inng~tagn. \Vhcn t,llis book bcca.mc Icnown t,o rcscarcll workers and educntors in<br />

t,llc Unit,oti St.ntcs, t.l~cro was nn inunctlint.c request from srvrral quarters for an lhg-<br />

MI t.mnslal.ion, sinro no rnrnpar:~blc book was nvnilnhlc in the 1Snglish Inngungr.<br />

'I'hc tcc:l~t~ical contcnt. of t h present. I':t~glisl~ etlit.io~t is dcscril~ctl in t,hc nr~thor's<br />

prcf:~c.e. 'l'hc c~npl~:mis is 011 t,l~o ftlntl;rmrl~l;rI pllysiral itlras rntd~cr ~,II:LII on mntl~ctn:lt.ic.:tl<br />

rrfinrlnrllt,. RIt:t.l~otls of t,llcort:t,icnl nn:~l~sis qrc sot forth dong with s11c:l1<br />

rxlwrirnont~d tln.t,n as arc pcrt.in(-nt t,n (Icfinc the regions of applic:tbilit,y of 1I1o<br />

I~llcwrc:l~icnl rcsult.s or t.n givr: 1i11ysic:rl it~sifillt, i~~t,o<br />

t,I~t: pl~c~~omcnn.<br />

\Vasl~ingtot~ I). C., 1)corml)cr 1064 Ilugl~ I,. I)rytlrn<br />

Author's Preface to the Seve~itl~ (English) Edition<br />

Whcn J decided in 1075 to writ,c n new rclit,ion of t.11i.q boolc I cnmc t,o t,llc conclusion<br />

t.l~nt, t.l~o prccrtli~~g sc:qncnrc of n (lcvlnnn rdit,ioll followc:tl I)y nn 15nglisl1 c:clit.iotl<br />

was no longrr prscticnltlc. 'I'hc rcnsotl for it wn.8 lllc 11cnvily incronsrtl cost, of p.int,ing.<br />

Conscqncntly, I suggrst.rcl 1.0 the bwo publishing cornlmnics, G. llrnun in I


xviii Ar~t,l~or's Prefncr t.o tho Seventh (Englisl~) Er1it.ion<br />

Along with this ncw material, I fee1 t,hat I ought, to niention the topics which I<br />

spcoifioally omit,t,ctl l,o include. I do not, discuss t,he effect of chemieal reactions on<br />

flow processes in boundary laycrs as they occur in the presence of hypersonic flow.<br />

The sarnc applios t.o I)onndnry Inycrs in rna.gncto-fl~~itl-clytin~~tics, low-dcnsitty flows<br />

and Rows of non-Nowt,onian fluids. I still t.11onght that T ought to refrain from giving<br />

a.n rxposit,ion of t,lir st,at,ist,ical t,heory of t,ttrl)~~lenrc in this etlit,ion, as in t,hc prcviolls<br />

OIICR, hrrnusc no~~~dnys t.l~crc arc avnilnblc otlrcr, good prcscnt,nt.ions in I,oolr form.<br />

Oncc again, t,hc lists of refcrenccs have bcen expanclcd considcrahly in many<br />

rhnpt,crs. The nurnl~cr of illust,rations increasctl by about G5, hut 20 old ones havc been<br />

omit,t.cil; the number of pages increased hy about 70. In spite of t,his, I hope that<br />

t,he original character of t,liis book has becn retained, and that it, still can provide<br />

tlie reader wit,l~ a bird'.?-e?y view of this important branch of the physics of fluids.<br />

As I worlrrd on the new manuscript I once more enjoyed t,hc vigorous assistance<br />

that I rcccivetl from scvrral of my professional collcagues. Professor K. Gersten cont.tihutctl<br />

sect,ions on boundary layers of second orrlcr t,o the part on laminar boundary<br />

lnycrs (Seas. VIIf ant1 IX j) . This is a special field which he successfully worked out<br />

in rccent ycnrs. l'rofcssor T. K. Fnnneloep contributed the completely reformulated<br />

sc-ct.ion on the nurncrical inkgration of t,hc boundary-layer equations included in<br />

Scc. IXi. In t.hc part on turbulent boundary layers, Professor E. Truckenbrodt<br />

provitlcrl me witall a new version of the largest portion of Chapter XXII on twodimensional<br />

and rot~ationally symmetric boundary layers Dr. 1,. M. Mack of the<br />

California Institute of Technology was good enough to contribute a new section on<br />

the stability of boundary layers in supersonic flow, Sec. XVIle. Dr. J. C. Rotta<br />

tliorougl~ly reviewed Part I) on turbulent boundary layers and made many additions<br />

to it*. For the Russian litcrxtnre I rccrivstl nlurh help from Professor Milrhailov. The<br />

translation was once again cnt,rustctl to Professor J. Kestin's competent pen I express<br />

my sincerc thnnlrs lo all tliose gcntlcmen for thcir valuable cooperation.<br />

I should also like to rcpcat my aclrnowlcdgemcnt of thc hclp I rcceived from<br />

scvernl professional friends whcn I worked on the fifth (German) edition Nat.urally,<br />

their contributions havc now bcen rctaincd for tlie seventh edition. This is the ex-<br />

tcnsivc contribution on comprcssiblc hminar bountlary layers inChapter XIIT written<br />

by Dr. F.W. Rirgcls, Profcssor I


From Author's Preface to the First (German) Edition<br />

Since :t,I~o~tt, the Ocgit~ning of 1.11~ twrrcnt ccnt,ttr.y niot1t:rn rcsr:~rclt in t,It(* lit*ltl<br />

of fluitl clyn:rntics has :~clticvctl grcat sut:ccsscs nntl Itas h:n able to provitlc :I Cllc:.<br />

oretiral clarific:ttion of obscrvc:tl pltcnonwna which tJlc scicncc of rlnssirnl Ilytlrotlyn:imics<br />

of t,ltc ~)rocctling c:cntnry failctl t,o (lo. 1kcnLi:~lly t.llrt:c br:tnc:ltcs of llr~itl<br />

tlyr~:~rnic,s 11:~vc bccomc p:~rticnlarly well clcvelopctl during t,hc last fift,y years; tllcy<br />

inclutlc hountlary-layer tl~cory, gas dynamics, and acrofoil Lllcory. 7'1m prcscrit t~ook<br />

is conccrncd with the branch knnwn as 1)ountl:~ry-layer thcory. This is the oltl(:st<br />

branch of modern fluitl dynamics; it w:is fou~~tlctl by 1,. I'mntltl in 1904 wllcn Ilc:<br />

succcedctl in showing how flows involving fluids of very s~nnll viscosity, in particular<br />

wntm ant1 air, the most imporl;:~nt, oncs from the point of vicw of applications, c:ln<br />

11c m:dc :~tncn:~blc! lo rnnthomr~t,icnI r~nnly.qix. 'l'llis wris rdliovotl by ttiking I.II(: cl1i:c:l.s<br />

of friction into account only in regions whcrc they arc rsscnt,i:d, namely in tho thin<br />

boundary layer which exists in t h irntnctliatc ncigt~bourl~oocl of a solid body. This<br />

concopt matlc it possible to clarify many pllcnomona wliich occur in flows and which<br />

Imtl prcvionsly bccn incotl~pmllcrtsit)le. Most important of dl, it, Itas bcconto possiblr<br />

to subject problems connected with thc occurrenor: of drag to a tllcorctical an:tlysis.<br />

r<br />

llte<br />

,<br />

scicnco of aeronautical engineering was making rapitl progress ant1 was soon<br />

&ble to utilize these t,l~coretical results in pract.ical applications. It tfitl, furthertnorc,<br />

pose many problcms which could be solvctl with the aid of the ncw bonntla.ry-layc:r<br />

theory. Arronautical engineers have long sinco matlc: the conccpt of a tmuntlary<br />

layer one of everyday use and it is now unt.hir:Icable tm do without it,. In other fieltls<br />

of lnaclline design in wltich problems of flow occur, in particular in the design of<br />

t,url~ornacl~incry, the theory of boundary layers made much slower progress, I,trt,<br />

in motlcrn tin:es t,hc:sc rlcw conccpt,~ Itavo come to t,hc fore in suc:I~ applic.ztions as well.<br />

r 7<br />

I he prcwnt 1)ooIt Ims hcrn writhxi principally for cnginecrs. It is thc olzt.comc:<br />

of a course of Icct,urcs which the Author tlclivcrctl in t,llc Winter Scmcstcr of 1941/42<br />

for the scinnt,ific worltcrs of tho Aoronauf.ical Itcscarch Institut,c in I3r:~11nscl1wcig. Tho<br />

stll)jtwt. mnttcr has bcclrt utili;r.ctl aftcr tho war in nlany spc(:i:d 1cct11rt:s 11cld at tl~c<br />

ISngitleering Univcrsit,y in 13munschwcig for sttdcnb of rnccl~anical engineering ant1<br />

physirs. Dr. IT. IIahnclnann prepared a set of locturc notes :iftcr the first sorics<br />

of lectures \rat1 been givcn. 'L'lrcsc were rcad mxd amplifier1 by t.hc Autlior. They wwc<br />

subscq~lcr~tly published in mimeograpltctl form by the Office for Scicrltific I)ocurncnt,at.ion<br />

(Zontmlc fiir wisscnschaft~lichcs 13cricltt~swc.scn) nntl tlist.rit~nt.ntl 1.0 :t<br />

lirnit,crl circle of intcrcstctl scicntifir: workors.<br />

Several years after the war tho autdtor tlecitlcd con~plkt~cly to re-edit, this older<br />

c:ompilat.ion and to publish it in the form of a book. 'l'hc tho sccrnctl ~~articularly<br />

propitious becausc it appeared rip for thc publication of a comprel~cnsivc I)ook,<br />

and because t.hc results of tltc research work carried oul, tlt~ring fhc last trn t.o twcnt,y<br />

yrxm rounrlctl off trltc wltolc ficld.


'She book is tlivitlctl ink four main ptrts. 'L'hc first, part contains two introtluct,ory<br />

ch:tpters in which t,hc funtlamcnti~ls of 1)onntlary-layer theory arc cxpoundetl<br />

without, the use of mathematics and then proccccls to prepare tho matl~ernatical<br />

and physical jllstification for the tl~cory of laminar bourulary laycrs, and includes<br />

the theory of thormal boundary Iaycrs. Tho t,llird part is concerned with the pllenomenon<br />

of transition from laminar to t,urbulent flow (origin of turbulence), arid the<br />

fourth pert is devoted to tnrl~ulcnt flows. It is now possible to take the vicw that<br />

the theory of laminar boundary laycrs is complete in its main outline. Tho physical<br />

relations have been complctcly clarifictl; the meifhods of calculation have been<br />

largely worked out and have, in many cascs, bccn simplified to such an extent, that<br />

they should present no difficulties to engineers. Jn discussing turbulent flows use<br />

has been made essentially only of t,hc scmi-empirical thcorics which derive from<br />

Prantltl'~ mixing length. Tt is true that according to present views these theories<br />

possess a number of shortcomings but nothing superior has so far been devised<br />

to take their plate, nothing, that is, which is useful to the engincer. No accour~t<br />

of the slstistical theories of tr~rbulcnce has been inclutlcd because they have<br />

not yet attained any pract.ical significance for engineers.<br />

As int,imat,cd in the t.itle, the emphasis has bccn laid on thc thcorcticnl trcatmcnt<br />

of problems. An attcmpl, has bccn made t.o hring thcse consiclcrations into a form<br />

which can he rasily graspctl by engineers. Only a small numl~cr of results has hccn<br />

quoted from among Ifhe very voluminous oxperimcntal material. They have bccn<br />

chosen for their suitability to give a clear, physical insight. int,o the phenomena and<br />

to proviclc direct rcrific:rtion of thc t.l~cory prcsentcd. Some examples have been<br />

chosen, namely those a~sociat~ctl with tur1)nlcnt flow, because they constitute the<br />

fonntlation of the semi-empirical theory. An attempt was made to tlcmonstrat,e<br />

that essential progress is not, mndc through an accum~~lation of extensivc exprrirnental<br />

rcsriltn but rather through a small number of fundamental cxperiment,~ hacked by<br />

theoretical consitlerat,ions.<br />

Brarmschweig, October 1050 - IIermann Schlichting<br />

Introduction<br />

Towards the end of the 19th ccntury the science of fluid mechanics began $0<br />

dcvclop in two tlircctions which had pmct,ically no points in common. On t,hc onc<br />

side therc was the science of theoretical hydrody~tamics which was evolvctl from<br />

Euler's equations of motion for a frictionless, non-viscous fluid and which achieved a<br />

high degree of completeness. Since, however, the results of this so-called classical<br />

science of hydrodynamics stood in glaring contradiction to experimental results - in<br />

particular as regards the very important problem of pressure losses in pipcs and<br />

channels, as well as with regard to the drag of a body which moves t,hrongh a mass<br />

of fluid - it had litt,lc practical importance. For this rcason, practical cngincers,<br />

prompted by thc need to solve the i~nport~ant prok~lcms arising from the rapid<br />

progress in t,echnology, developed their own highly empirical science of hydraulic^.<br />

The scicnce of hydranlics was based on a large number of cxperinlentd tlal,a :mtl<br />

difl'ercd greatly in its mct,l~ods antl in its objccts from the scicncc of t.hcorct,icnl<br />

hydrodynamics.<br />

At the beginning of the present cent.ury L. Prandtl clisti~lguished himself by<br />

showing how to unify thcse two divergent I~ranchcs of fluitl dynamics. He achieved<br />

a high degree of correlation between theory and experiment and paved the way<br />

to the remarkably successful development of fluid mechanics which has taken place<br />

over tlhe past sevent,y years. It had bcen realized even bcfore l'randtl that the discre-<br />

pancies between t,he results of classical hydrodynamics and experiment. were, in<br />

very many cases, due to the fact that the theory neglected fluid friction. Moreover,<br />

the complete equations of motion for flows with friction (the Navier-Stolres equa-<br />

tions) ha.d been known for a long time. However, owing to the great mathematical<br />

difficulties connected wit,ll the solution of t,llcse equations (with the exception of :L<br />

small uuniber of particular cascs), tho way to a thcorcticnl treatment of viscous<br />

fluid motion was barred. Furthermore, in the case of the two most important fluids,<br />

n:~mcly water antl air, the viscosity is very small and, conseqnently, tho forccs<br />

due to viscous friction are, generally speaking, very small compared with the<br />

remaining forces (gravity and pressure forces). For this reason it was very difficult<br />

to comprehend that t,he frictional forces omitted from thc classical theory influenced<br />

thc motion of a fluitl to so large an extent.<br />

In a pzpcr on "Fluid Motion with Very Small Friction", read bcfore the Mathc-<br />

maticd Congress in IIeidelberg in 1004, I,. Prandt,lt showed how i't was possible tJo<br />

analyze viscous flows precisely in cascs which had great pmctica.1 importance. Wit,h<br />

II. Schlicl~ling and II. U6rtlcr. rol I1 pp '15-584.<br />

Abl~anrllnngc~~ rur


the aid of thorctical considcmtiotis anti scvcrnl simplo oxperimenk, ho provcd t.hat<br />

the flow about n solid body can be dividod into two regions: a very thin lnycr in t,l~e<br />

neighbourhood of t.he body (ho~~mla.r?j lmycr) whcrc friction plays an essential part,<br />

and thc remaining region ontdc this laycr, where frict,ion may be ncglcctcd. On<br />

tho basis of Lhis Ilypot,l~esis I'mntltl succccdctl in giving a physically pct~rt~rating<br />

nxplnt~at~ion of tlrt: iml)ort,n.ncc of viscous flows, achicvit~g at tho samc timc n maximum<br />

tlegrcc of simplification of the attcntlant rnatltemntical rlifficnlties. The t,heorct,ical<br />

considerations werc even tJ~cri snpport,cd by simplc cxpcrimcntn pcrformcxl in a<br />

small water tonncl which Prn.ridL1 built, wil,h his own hands. Ilc thus took the first<br />

step towards a re~tnification of tl~cory and pmcticc. This boundary-layer theory proved<br />

cxtrcmely fruit,ful in that, it provided an cKcctive tool for the tlevelopmcnt of fluid<br />

tlynamivs. Since the 1)cginning of the cnrrcnt century the new theory has been tlcvcloprd<br />

at n vcry fast r:lta untlcr t,hc atlditionnl st~imulns obtained from the recently<br />

fountlctl science of aerodynamics. In a vcry short time it hecame one of thc fo~~ndat,ion<br />

stonrs of modern Ilnid clynamics t,ogcthcr with thct other very inlportant tlevclopmenk<br />

-- t h acrofoil theory and thc sciencc of gas dynamics.<br />

In more recent t,imcs a good deal of at,t,ent,ion has been devotctl to stdies of the<br />

mntlirmatirnl just.ification of boundary-layer theory. According to tllcse, boundarylayer<br />

theory provitlcs us wit,h a first approximation in the framework of a more<br />

general t,hcory designed t,o ca1culat.e ~symptot~ic expansions of t,he solutions to the<br />

complet,e equat,ions of motion. The l~rol~lc~n is retlucetl to :L so-called singular perturbation<br />

which is then solved by t.hc mct.liod of mat,chcd asymptotic expnnsions.<br />

I3ountlary-layer t.hrory t,hus providcs us with n cIassic example of the npplication<br />

of thc met,liotl or singular pcrt,nrbnt,ion. A general presentation of pert>urbation<br />

rnct,horls in flnid mechanics was prepared by M. Van Dykt:t. The basis of these<br />

rnat,hotls can be Itraced to 1,. J'raritlt.I's early co~lt~ribut~ions.<br />

'I'lic 11onntlar.y-layer tlicory finds its application in the nnlcnlxtion of t,he skinfriction<br />

dmg whic:h ac1.s on a body as it is moved t,hrongh a fluid : for example the<br />

rlr:lg cxpcricncctl by a flat p1n.t~ at,xcro incitlcnce, tilo t1m.g of a ship, of an aeroplane<br />

wing, aircraft, t~acrllr, or t,rrrl)ine I)latlc. 13o11ndnry-layer flow 11:~s t,I~c peculiar property<br />

t.ll:~t, untlor ccrt.airl conditions lhe flow in the imnictliat,c ncighbonrhood of a solid<br />

wall 1)ccomcs rcvcrscd causing the I~ountlary laycr to separate from it. This is accompnnirtl<br />

11y a morc or lrss pronouncctl fonnat,ion of eddies in the wake of t,hc body.<br />

'J'hus t.hc prcssnrc distribution is rltangcd and differs marlrctlly from that in a<br />

frict.ionl(\ss strcnm. ?'hc tleviation in prcssurc tlist,ribution from the ideal is the<br />

canse of form drag, antl its cniculat.ion is thl~s made possible with the aid of bouriclarylaycr<br />

t.llnory. 13ountlary-hycr t,heory gives an answer t,o the vcry irnp~rt~ant question<br />

of' w11n.t shape mnst, a hotly t~o given in orclrr to avoid t.llis dct.rimarital scpn.ration.<br />

Scpnr:rI.ion mn also oc.c:ltr in l.llc int.crn:tl flow t.hrorrg11 R (:11nnnc1 ant1 is not, confined<br />

to rst,rrnnl Ilows past solitl I~otlicx. I'rol~lrms conrrcct,crl with l.11~ How of fluids<br />

throilgl~ t,hc cl~m~ncls ftm~~ctl by t.hc blntlcs of t,urhomachines (rotary compressors<br />

ant1 t,url)inos) ran also he 1,rrntrtl wit,ll tho n.itl of 11ountl:~ry-hycr t,Jlcory. I'r~rt.llcrmore,<br />

~~lw~lon~cnn wllic:l~ occur at, t,llc point of rnn.xirnnm hft, of nn acrofoil and which arc<br />

assocht,t:tl with st.:~llitl~ (:;I.II 1)c 11ntlcrsI.oot1 only on thr 11n.sis of I~onntlary-layer<br />

theory. Ihdly, problrms of l~cat transfer I)ctwcwl n solitl hody ant1 n fluitl (ps)<br />

flowing past iL also bclong to thc class of problems in wltic41 l)o~~t~tl:~ry-l:~yc.r 1)11vnomrnn<br />

play n dccisivc pnrL.<br />

At, first the l~ountlary-layer theory was devclopotl rnn.inly for tl~c two of 1:~nlin:lr<br />

flow in an incon~prcssil)lc fluitl, RR in 1.llis c:uw t h ~)l)~t~o~nt:t~oIo~it::l.l I~j,~)oI.I~t-sis<br />

for shr:~ring st.rrsscs a1rr:ttly cxistctl in thc form of Sto1tt.s'~ I:\w. 'l'l~is t,t,l,it: W:IS<br />

sul)scqucntly tlcvclopctl in a 1:Lrgc ~lurnhcr of rcsonrclt p:Lpcrs :LII(I rt::1(:11vtl s1tt~11 a<br />

stagc of pcrfoct.ion Iht at prcscnt tltc problem of Intninar llow c:1.11 III: consitlt~rctl<br />

to h:lvc hccn solved in its main oullinc. 1,:llcr the Ll~cory w:ls cxl.ot~clt:tl 1.0 int:lurlc<br />

turl~ulcnt, incornprcssil)lc bountlary layers which are morc irnportzmt from (ht: poitlt,<br />

of vicw of practical applications. It is true that in tltc cnsc of t~trl)~~lcnt. flows 0. Iloynolds<br />

introduced the fundamentnlly important conccpt of nppnrcnt, or virt,~tnl tltrl)ulent<br />

stresses as far back as 1880. IIowevcr, this conccpt was in it,sc.lf itisuffioirnt tso<br />

mn.ke tltc theoretical analysis of turbulent flows possible. Great progress was acllicvecl<br />

with the intmtlnction of I.'randtl's mixinglcrtgt.l~ thcory (1025) which, t,ogol,hrr wit,li<br />

systematic cxperimcnt.s, paved the way for the thcorctical ttrcntmcnt of turl1111c1tt<br />

flows wit,l~ the aid of boundary-ln.yrr t.hcory. llowevcr, a rational theory of fully<br />

developed turbnlcnt flows is st,ill noncxist.cnt,, antl in vicw of the cxl,rtmc complexit,y<br />

of sucll flows it will remain so for a consitlcmhlc time. Onc cannot even be<br />

ccrtain that science will cvcr be successfnl in this t,aslr. Tn modern times tho phcnomena<br />

which occur in the boundary laycr of R cornprcssiblc flow have becomc the<br />

subject of intensive investigntions, the impulse having Iwcn provided by thc rapid<br />

incrcasc in tllc spcctl of flight of motlcrn aircmft,. In atltlition to a velocity 1)oitntlary<br />

laycr suc:h flows dcvclop a tllcrrnal bonntlnry hycr ant1 its cxist~cncc phys :I.U irnportant<br />

part in the process of heat txansfcr bctwceri the Iluitl and the solitl body<br />

past which it flows. At vcry high Mach numbers, the surface of Lhc solid wall bccornrs<br />

heatetl to a high t,cmperature owing to the protlnct.ion of frictional heat ("tllcrrnnl<br />

barrirr"). This phenomenon prcscnts a tliffic:nlt analytic problem whose ~ol~ttion<br />

is import.ant in n.ircmft tlcsign antl in the ~~ritlcrsl~anding of the motion or satellites.<br />

r 7<br />

1 he phenomenon of tmnsit,ion from liltninar to turbulcnt flow which is ~~I~~:LIIIBII-<br />

t.aI for t,he science of fluid tlynamirs was first investigated at thc end of tl~c I0t.11 cent,nry,<br />

naniely by 0. 12eynoltls. In 3914 1,. 1'm.ndtl cnrrictl out, his fnmous expcrimrnts<br />

with sphcrrs antl ~uccccdc~I in showing that the llow in Ihc 1)ountlnry layer car1 also I)c<br />

either laminar or turbulcnt and, furthermore, that, tltc problem of separnt,ion, ant1<br />

hence the problcm of the calculat~ion of dmg, is govcrnctl by this tran~it~ion. Y'hcoretirat<br />

invest,igations into t,he process of transilion from laminar to tnrbulcnt flow are<br />

basctl on t.110 acceptlance of Iteynoltls's 11ypot11o~is l,liat tohe lattm occurs ns a conscclucncc<br />

of an instability dcvolopcd by Ihc 1nminn.r 1)onntlary layer. 1'rnntlt.l ittif.int.ctl<br />

his thcorc1.icn.l investigntion of trnnsition in tllc ycar 1921 ; after marly v:rin cflort.~,<br />

succcss came in the ycar 1920 wlicn W. Tollmicn compntrd theorct,icnlly t,hc crit,ic:aI<br />

Reynolds numbor for transition on a flat plate at zero incidence. Ilowcvrr, nlorc<br />

t.lran ten years werc to pass 1)efore l'ollmicn's theory coialtl ho vtdficd throngl~ tho<br />

vcry carcful experin~enLs performed by 11. 1,. 1)rytlcn antl his coworltcrs. Tho stn1)ilit.y<br />

tltcory is capsblc of taking into account the cKcct of a nurnhcr of parnmctcrs (pmssurc<br />

gradient,, suction, Mach numlter, transfcr of heat,) on tmnsition. This theory has<br />

found m ~ny important applications, among them in tl~c dosign of scrofoils of' very<br />

low drag (1aminn.r ncrofoils).


Modc:rn invcstigalions in id~c ficld of fluitl dynamics in general, as well as in<br />

t(11c ficld of bountlary-hycr rcscarch, are characterized by a vcry close relation<br />

bc!twcen theory ant1 cxpcrimcnt,. The most important steps forwards have, in most<br />

cases, barn t,nltcn as a result of a smdi numl~cr of fi~ndamcntd cxpcrimcnt,~ bacltetl<br />

by t,hcorot,icnl considcrat,ions. A rcvicw of tJ~c tlcvclopmcnt of boundary-layer<br />

t.Ileory wllich st~rcsscs tllc rnuf,nal cross-fertilization bctwccn theory and cxpcrirncnt,<br />

is containctl in an n.rliclc writtrn 11y A. lktz?. Vor about, twenty years aft,er its<br />

inccption I)y T,. I'randtl in 1904 thc bonndnry-la.ycr tllcory was being developed<br />

nln~ost exclwivcly in his own institute in Goettingen. One of the reasons for this<br />

st.nt,c of nffnirs may well havc been root,cd in the circum~t~ancc that, J'randtl's first<br />

pnblionthn on boundary-layer theory which appeared in 1904 was very dimcult to<br />

understantl. This period can be said to have ended with I'randtl's Wilbur Wright<br />

Meniorial I,ect,ureo which was dclivcrcd in 1927 at a meeting of the Royal Aeronautical<br />

Society in 1,ontlon. In later years, roughly since 1930, other research worlters, particularly<br />

t,hosc in Grent nrit.ain and in tllo U.S.A., also took an active pn,rt in its<br />

tlevrlopmcnt. Toclay, the study of boundary-layer theory has spread all over thc<br />

world; together with othr branches, it constitutes one of t,he most import,ant pillars<br />

of fluid mechanics.<br />

Tho first survey of this I~mnch of science was given by 1%'. Tollmien in 1931<br />

in two short articles in the "llan~lbnch dcr ISxpcrirncnt~alpl~ysiIr" :. S11orl~I.v aftcrwartls<br />

(1936), Prnrdtl p~~l)lishcd a cotnprnl~cnsivc presentation it1 "Aerodynamic<br />

'J'hcory" ctlitctl I,y W. I?. Durands. lluring t.he intcrvcning four dccndcs tllc volume<br />

of rescarch into this subject has grown cnorrnonsly$. According to a review published<br />

by 11. I,. Drydcn in 195.5, t,hc rate of publication of papers on boundary-layer<br />

theory reached one hundred per a.nn7r.m at that time. Now, some twenty years later,<br />

this rate has more than tripled. Like several other fields of research, the t,heory<br />

of ho~rntlary layers has reachetl a volume which is so enormous that an individual<br />

scientist., even one working in this field, cannot be expected to master all of its<br />

specializctl subtlivisions. It is, tl~rrcforc, right that, the task of describing it in a<br />

nlotlcrr~ Ilanclboolt has been cnt.rustcd t,o several authorst. The hist,orical development,<br />

of bountlary-layer theory has recently been traccd by I. Tani*.<br />

. .<br />

" 1,. J'mllrlI,l, Tho goncmlion of vortiron ill fluirls ofatn.zII viscosit,y (15td1 Wilbilr Wright Memorial<br />

Jfir(llr% 1!J27). J. Jtoy. Aoro. Soc. 31, 721-741 (1!)27).<br />

: (!/. tho bildiogr.zl~hy on 11. 780.<br />

: I,. l'r:~n(ll,l, T11c 111ecl1a.11irs ol' vi~coun fluids. Arrodynamii~ tl1oory (W. I?. Ihrm~d, rd.), \'ol. 3,<br />

34 208, I%crlin, 1935.<br />

6 11. Schlirh~ing. So~ne tlrvcloprncn(.s of I~oundnry-layer rcsearch in the past thirty years (The<br />

'I%ird L~tlcl~r~lcr Metnorin.l J,rcture, I!W)). J. hy. Aero. Soc. 64, 03- 80 (l%U).<br />

Srr nl?lo: 11. Srlilicl~l ing, Rccrrtt progress in houndn.ry-lnycr research (The 37th Wright. Brothers<br />

I ~ ~ i t r 1tt11r1,<br />

i : ! 7 ) \ I .Jttiri:~l 1 427 - 440 (1!)74).<br />

* I. 'I':\t~i. Ilislory of I~o~~nrlnry-lilyor rmrnrcl~. An~~rinl Itrv. rrf Izluid Mwhnnirs 9, 87- 11 t (1977).<br />

Part A. Fundamental laws of motion for a viscous fluid<br />

CHAPTER I<br />

Outline of fluid motion with friction<br />

Most t.Ileoret.ica1 invcst,igat,ions in the ficld of fluid dynamics arc based on the<br />

concrpt of a perfect,, i. c. frictlionlcss antl incompressible, fluid. In the motion of<br />

sucl~ a perfect flnid, two cont,act.ing layers cxpcricnrc no tnngcntinl forccs (sl~caring<br />

st,rcssrs) b ~~l, act on tach other wit.11 normal forccs (j)rcssums) only. This is cqr~ivalcnt,<br />

t.o stal.i~~g tl~nf, a pcrfvct, fluitl olrcrs no inl.crria1 rc~isI.antx to a c11angc in SII:I~O. The<br />

tl~cory describing !,hc motion of a pcrft:cl. lluitl is ~natl~c~~~~nt.ic:~lly vcry far tlnvclopctl<br />

ant1 supplies in many cases a satisfactory dcscril;t,ion of real motions, such as e. g.<br />

tlle motion of surface waves or the formation of liquid jets in air. On the ot.her hand<br />

the theory of perfect fluids fails completely to account for the drag of a body. In this<br />

connrxion it leads to thc statement that a I~otly wllich moves uniformly t,llrongh a<br />

fluid which cxt.ends t,o infinity experienccv no drag (tl'Alcmbcrt.'s pamtlox).<br />

'Pliis unacceptable result of thc thcory of a pcrfect Iluid can be traccd to the fact<br />

that. t.11e inner layers of a real fluitl tmnsmit t,angent,ial as well as normal stresses,<br />

this lxing also the case ncar n solitl wall wetted by a fluid. Thesc tangential or frict,ion<br />

forccs 111 a rrxl Ilnitl arc conncctctl with a propertry which is callctl the viscosil?/ of<br />

thc Ilnid.<br />

IZccai~sc of tho almnce of t,angcnt,ial forccs, on the 1)oundary bctwccn a perfect<br />

llnitl :~t~tl a. solitl wnII Lhcrc cxist,s, in gcnt~rnl, :I. tlilrrrcncc in rc~l:~l.ivc t,:~ngrnl.i:il<br />

vrloc.it.ics, i. c. t.11crc is slip. On t,hc other hi~ntl, in r(::11 ll~~i(ls the cxi~t.cn(:t~ of int.crmolecular<br />

att,ractions causcs thc flnitl to adl~crc to a solitl wall antl t,his gives risc<br />

l,o slrraring stmsscs.<br />

. 1<br />

,<br />

hc exist,cncc of tangcnlial (sl~caring) s,,rcssc:s nr~l lhc condiliols 01 ,to dip n(::~.r<br />

solitl walls const.itut1e the essential tliffcrcnccs bctwccn a perfect and a real fluid.<br />

Clert,ain fluids wl~ich arc of great, practicd imporl,ance, such as water and air, havc<br />

vcry smnll coefficients of viscosity. In many instances. tl~c motion of such llwids ol<br />

sn~nll viscosity - a.grccs - vcry well wit.11 that of a perfect Iltritl, bccausc in most cases the<br />

shearing stressc?~ arc vcry small. For this reason the cxist,cncc of viscosit,y is corrlplctcly<br />

nrglcct.cd in the t,heory of perfect fluids, ma.inly bcca.11se this introdnccs a far-reacl~ing<br />

'<br />

simplificatiott of the equations of mot,ion, as a result of ext.cnsivc niathematical<br />

theory I~ecomcs possilh. 11 is, I~owcvcr, islpm&,<br />

ss the fact that,


even in fluitls wit,lt vcry srnall viscosit,ics, unliltc in pcrfwt. fluiels, t.he rontlit.ion of<br />

no slip near n, solill I~oundary prevails. 'l'l~is c:ot~dil~ion of no slip int,rotlures in many<br />

(::~sos very hrgc tliscrcpar~cics in t,hc laws of moLiorl of perfect an(\ ronl fluids. In pnrt.icular,<br />

t h vcry largc tliscrcpel~cy 1)ctwccn Llle vdr~o of' drag in a rral ant1 a pnrkct,<br />

Iltti(1 I1:w its pl~ysical origin in the contlil,ion of no slip nwr :L wall.<br />

'I'l~is 11oolc t1r:rls wil,l~ 1.11~ rnot,ior~ of llrlitls of'sm:~II visrosil,y, I)(-r:~llsr of t.l~c grc:~L<br />

I~:~ct,ical itnporl.ance of' the problcln. Ihrirtg 1,llc course of lhc st~dy it will l~cconlc<br />

clear how this p:trtJy consistent ant1 p:l,rl.ly tlivcrgcnt I)cl~aviour of pcrfrct and real<br />

fluids can be cxpl:tinotl.<br />

h. Viscosity<br />

'I%(: II:L~,II~C of' vi~rosit~y can 11cst I)c vi~rdizcd with the :lid of t,ltc following cx-<br />

~wrimnnt,: Consitlcr the ~not~ion of a fluid l)cl,\vccrt two very long pn.rallnl ~)latcs, one<br />

of wl~inh is at rrst, the other moving wit,l~ n, constant velocity pnrallcl t,o itdf, as<br />

sl~owu in Fig. 1 .l. 1,ct tJ1o clist.anco hctwcc~~ thc plates bc h,, the prrssnre Iwing const,nnt<br />

t.l~rol~gl~ot~t tllc fluid. Exprrintcnt t.c~:rcltcs t.l~:rt t.11~ fluitl atll~rrcs l.o l)ot.l~ ~valls, so<br />

I,II:II, it,s vclovity :rI, the lownr p1:~t.c is zero, :I,II(~ t,11:1t 3.t Lltc ltplwr ph1.c: is rt111al to<br />

t.11~ vcloeit,y of the plate, IJ. Ir'rtrt~l~ermor~, I.llc vclocit.y tIist,ril)r~t,ion ill t,llc fluid<br />

I)ct,wccn the pIat,cs is linear, so that, the fluid vclocit,y is proport,ion:ll tto t.ltc tlist,ancr ?/<br />

from t 11c. lowvr platr, :~ntl we h:tvr<br />

In ortlnr 1.0 s~lpport t,l~e motmion it is necessary to apply a I~n~~gc.nt,ial forcn t,o thn<br />

tlpprr l)lnto, tho force 1)cing in cc~t~ilibriurn with tl~c f'rict~ional forces in t,l~c fluid.<br />

It is Icnown from expcrimont,~ t,l~at tJtis forcc (ta.l~cn per unit awn of t,l~c plal,c)<br />

is proprt.ion:~.I to t,hc velocity 1J of the 11l11)er plat.c, ant1 invcrsrly proport,ion:~l to<br />

lhc tlist,:r.nrc~ h. 'l'llc 1'ricI.ion:ll force por nit, area, tlcnotctl by t (Srict.ional shearing<br />

sl,rcw) is, t,licreCore, proport.ionn1 1.0 lJ/h, for which in general we may als? ssulist.itr~t,c<br />

tlii/tl?/. 'l'ltc: 1)ro1)01.t~io11:rIil.y far:l.or I)ct,wcnn t ant1 d71 tly, wl~iclr we sl~all dc~~ot,c I)y ,u,<br />

I<br />

tlc11~1(1s or1 tho r~al~llrc of 1.110 ll~~i(l. 11, is ~rna.ll for. "lhiri" fluids, s11c11 nk wal.cr or<br />

:~l(:ol~ol, I~ut I:qn in the case of vcry viscous liquids, srtclt as oil or glyccrinc. 'I'hl~s<br />

wc 11;tve ol)t,:~inctl t,llc ftl~~tl:rrncnl,al rclnt,ion for fluid frict.ion in t,lte form<br />

><br />

du<br />

(1.2)<br />

= fL ~ I Y .<br />

Tl~r quantity p is n propertry of thc fluid and depcntls to n great cxl.cnt on it,s ternpcrnt,rlrc.<br />

It is n rneasuro of tho i)i.~co,qit~y OF the fl~iid. '1'11~ I:LW of' friction givrtl by<br />

cqn. (I .2) is 1znow11 :LS Nrwtotc's 1rr.v~ of friction. ICqn. (1.2) cnn bc rrg:~relvrl :I.R t,llc<br />

c1rlinil.ion of visc:osit.jy. It. is, Ilowevcr, nccxssary to st.ross that the cxnrnplc cot~siclcrc:d<br />

in IGg. 1.1 (:onstit~~t.rs :L p:~rt,ic~~larly simple case of fluit1 motion. A gnncr:~liz:~l,it,r~ of<br />

this sitn111v e:rsc is cont,:~.inc(l in Stolccs's I:IW of fridion (cf. (!II:L~. I I I). '1'11~ ~limc~~~si~<br />

of visrosi1,y c:all IIC tlotl~rc:c:tl wit,hol~t, diFlicull.y from cqn. (1.2)-I-. '1'110 sl~c:nritlg s1,rcw<br />

is ~ncnsurcd in N/m2 =I J'n nrld tltc vcloc:it,y grntlicnt du/tl?y in ~ o I. c ~IVII(Y*<br />

wllcre tho square 1~r;~(:Iccts arc IISC(~ to (Icr~ot~ 11ni1.s. '1'1~ :L~)OVC is not. 1hc o~~ly, or<br />

even the most, witlcly, employctl unit of viscosit,y. l'riblc? 1 .I lists t,he various t~nits<br />

togct.lrcr with thir conversion factors.<br />

.15qn. (1.2) is rc1:rtctl t.o IIooltc's law for all c~l:ist,ic: solicl I)otly in w11ic:h rasc: tl~c<br />

shearing sCrcss is proport,ional to the strain<br />

Ilrrc (: denotes lhe n~oclnlus of shear, y the change in anglc bct.wc.cn tfwo linrs<br />

wlliclt were originally nt right anglcs, nntl 6 tlcnotcs t.110 clisplr~ccmcnt, in t11c tlircc:t.ion<br />

of a1)scissae. Wllcrcas in thc cnsc of an elastic solid th: sl~caring strcss is proporl.ional<br />

t,o the nw~gniturle of the strain,, y, expcricnrc tcacl~cs tll:~t in tl~c case of fluitls it is<br />

proport,ionnl t.o the vale of chnnrlc. of strain tly/tll. If' we put<br />

we s1r;~ll obtain, as bcforr,<br />

a11<br />

t ' fl<br />

?I!/<br />

bccausc 5 = XI. Jlowcvcr, this analogy is not, complctc, I~cca~lsc t.llc: st,rc:ssas in :r<br />

flt~itl tlepcntl on one const,atlt., t,l~c viscosit.y ti, wllcw-:is tllose irl :tn iso1,ropic vI:~sLic:<br />

solicl tlnpcntl on two.


8 I. Ont,line of fluid lnotion with friction<br />

kp soc/m2<br />

kp hr/m2<br />

I'n see<br />

kg/m lir J<br />

Ibf sec/ft2<br />

Ihf hr/ft2<br />

Il,/ft scc<br />

m2/sec<br />

m2/hr<br />

cm2/scc (Stokes)<br />

ft2/sec<br />

ftz/hr<br />

I<br />

1<br />

2.7778 x<br />

1 X lo-"<br />

9.2903 x<br />

2.5806 x<br />

Table 1 .l. Visco~ity conversion factors Numerical values: In t,lrc case of liquids the vi~cosit~y, /t, is nearly indcpcndent,<br />

n. Aldl~te viscosity 11<br />

of pressurc and tlccreascs at a high raLc with increasing tcmpcrat,urc. 111 thc case of<br />

gascs, to n first npproximat,ion, thc vi~cosit~y cnn be talrcrr to be intlcpcntlcnt of<br />

prcmitrc bi~t, it irrrrcnscs wil,lr l,cmllcrnl,rtrc. 'I'Iio Itinc?~nal,ic vi~cosil,~, 11, for litl~~itl.q<br />

has t,hc smw type of t,cmpcrrat.i~ro tloj~otttlottc:o as p, I)ct.n.~tso 0l1r tltwsit,y, 0, (-IIJLII~~S<br />

only ~liglrtly with tcnrpomI,urc, Ilowcvcr, in t h caw of gn.scs, for whiclt C, tlcc:ro:t..qc~<br />

consitlcrsbly with incrc:~sitig tc1npcrn1,11rc, 11 incrcascs rnpitlly willit (,cmpcmt.urc.<br />

Table 1.2 contains some numerical values of Q, p and v for water and air.<br />

Table 1.3 contains some additional lisefitl tlat,a.<br />

0. I


10 I. Or~llinr of lluicl rnot,ion with fricl.ir~n<br />

111 ortlvr 1,o i~nswrr 1,Irc ~IIICS~~~OII of wI~t:i.l~rr it is ncccssiwy 1.0 l.aI


1. Orrl.li~rr: of firtit1 motion with rrirtiotr<br />

ILln. (1.1 I ) statcs thi~t thc volumc r;.tc of flow is propnrtiounl to tllc first Ix)wcr<br />

the 1)rC"Urc (1'0p ppr unit lrngth (pl-p2)/l irnd to 1.h.: fourt,ll powor of tllc ra(jills of<br />

thc pipe. Lf the mran velocity over tho cross-scctioa li = 112 is intrr)~llllsrl,<br />

eqn. (1.1 1) can bc rrwrittcn as<br />

%n (1-1 1) can be ~t,ili~(:d 6'. the cxperimcnt.al dctern~jna'io~ ilf~JIC viSCmit,y, ,;.<br />

v 3<br />

Ihc nICtllo(1 corlsisl* in thc mcanartw~cnt of tlrc rate of flow ilnd of (,llc pressurn (jmp<br />

across a fixall portion of ~1 cn(dl:lry tube of know11 m;llur. Thus cIlollg~l dnt,a rite<br />

provided to dctcrtninc 11 from ecrn. 1 . I .11).<br />

\ --,-<br />

The type of flow to'which cqns. (1.10) and (1.1 I) apply exists in reality only for<br />

rclativcly small radii arid flow v~locit~ics. For larger vclorities and radii the character<br />

of tho motion changes complctcly: thc prcssurc drop ceases to bc proportional to<br />

the first powcr of thc rncan volocit,y as indicated by eqlt. (1.12), but becomes approximately<br />

proportionnl to the second power of u. The velocity distrib~lt~ion across<br />

a secbiori hccomcs much more ur~iforln and thc well-ordered laminar ]notion is<br />

replaced hy a flow in which irregular and fluctuat,ing radial and axial velocity comporlcnts<br />

arc supcritnposcd on thc main motion, so that, consequently, irlt,crlsivc<br />

mixing in a radial djrcction takes placc. In such cases Newton's law of frict.iorl,<br />

eqn. (1.2), ceases to be applicable. This is the case of lurbule?tt flow, to l)c tliscnsscd<br />

in great tl(:t,ail latcr in Chap. XX.<br />

1. I'rinciplc of similarity; the Reynolds a d Mach numbers<br />

Thc typr of fluid n~ot~ion cliseussnid in tho I preenling Scct,ion wr. very simple<br />

bcnasc evcry fluid part,icle ninvcd utr(lcr the infl~lcnec of friotior~al and pressure<br />

hrcas orrl.y, incrtia brcrs laing cvcrywhcre cqurl in zero. 111 a divergent or convergent<br />

ch~~nn(:l fl11i11 p:wticlrn arc n.rtcd uport by inert.ia forces in atl(lif.io11 to pressure and<br />

frirtiorr forrrs.<br />

e. 15nciple of ~irnilarit~; the Roynolda and Much nurnbern<br />

In the present section we shall endeavour to answcr a very fundamcntol qllcstiorr,<br />

~lamcly that conrcrnrd wibh the conditions under which flows of diffcrcnt fluids<br />

about two gcomct,ricellg sinrilnr bodics, and with identical initial How dircctions<br />

~lisl,lity gcomnt,rically similar strc!ntnlincs. Such mol.iorrs which havc gconrot~rirnlly<br />

strrcarnlincs arc cnllctl tb?l,atrm.icctbl?y sirnilrr.r, or .qimilnr /10111~9. Jkr two Ilowa<br />

nl)ont, grornotrici~lly aimili~r Iwtlicv (!:. y. irbout two spltorca) wiI.11 ~lill'(:r(:ttL ( Iui~ la,<br />

tlillilrcllt vclocitics . r~rltl . tiillkrcni; .... -. iincw tlirncrtsior~s, to bo ~irnilar, it,, is cvidcnLly<br />

~~ccessary ihat the folIo~v~~~g~q!~~~t,i~n<br />

.. shoulcl be satislic(l ;.st ?ll~g~,~~me_tr,~~~!y sirni,l.r<br />

Point$ thC . . f6FCCS . - . . acting on a fluid particlc must !car a fixccl ~ tio-lt cvcry instant<br />

. . .<br />

df t.iiiG,<br />

\Vc shall now cdnsicter the irn~~ort,nrrt casc whcn only f'rict,ional and inert,ia<br />

forces are prcscnt,. IClaslic forces which may bc duc to clrangcs in volrnnc will hc<br />

cxcllltlcd, i. c. it will bc assumed that tho flnid is incompressible. Gmvit:r.t.ior~:rl<br />

forces will also be cxcludccl so th:~t, conscqucntly, frcc surfaces are not adtnittctl,<br />

anti in the interior of thc fluid the forcc of gravity is assumed to be bal:~r~cccl 1)y<br />

buoyancy. Undcr thcsc assumptions the condit,ion of similarity is satisficcl only if<br />

at all points the ratio of incrtia ant1 friction forccs is thc satnc. In<br />

a mot,ion pnrallel to the x-axis thc inertia force pcr unit volume has the magnit,urlc<br />

of g l)lr/l)l, whcrc u ~Icnotcs tlrc componctlt of vclocity in tlrc x-dircctiorr and I)/1)1<br />

clcnot,cs the sribstantivc dcrivativc. In tho casc of stcady flow wc can replace it<br />

by e aslax - dx/dt = e v a@x, where all/ax dcnotcs thc r:hangc in vc1ocit.y with<br />

position. 'I111us the incrtia forcc per unit, volumc is cqui~l to C, u aulax. For thc friction<br />

force it is easy to deduce an cxprcssion from Newton's law of friction, cqn. (1.2).<br />

Considering a fluid pnrt,iclc for which tho x-direction coincides with thc dircct.ion of<br />

motion, Fig. 1.3, it is found that the rcsnltant of shcaring forccs is equal to<br />

a~<br />

=-dxdyd~.<br />

a~<br />

Hence the friction force per unit volumc is equal to atlay, or by eqn. (1.2), top a2u/ay2.<br />

Consequently, the condition of similarity, i. e. the condition that at all corresponding<br />

points the ratio of the inertia to the friction force must be constant, can be<br />

written as:<br />

-Inertin - fxcc 2 !L =,on, t.<br />

Friction force p a2u/aya<br />

13<br />

Fig, 1.3. Frictional forces<br />

acting on,a fluid particlc<br />

It is now necessary to investigate how these forces are changed when the magnitudes<br />

which determine the flow arc varied. The latter includc the density e, the viscosit,y<br />

p, a representative velocity, e. g. the frcc stream velocity V, and a characteristic<br />

linear dimension of the body, c. g. the diamctm d of the sphcrc.


The vclwil y IL at some point i11 tlrc velocit,y field is proportional to tlte free<br />

strrnm velocity IT, l,he vcloci0y gratlicnt au/ar is proportional to Vld, antl similarly<br />

a2tr/~y2 is proporlional to V/d2. Ilcnce the ratio<br />

Thereforc, tllc condition of ~irnilarit~y is sat,isfictl if the ql~antil~y p V d/p f~as the same<br />

value in bol,l~ flows. The (pntity p V d/p, which, with 11.1~ = v, can also IN wriLt,cn<br />

ns V d/v, is a tlimcnsiotlloss nnrnl)cr \>cen.tlsc it is the mt.io of t,l~c t,wo forces. It is<br />

known as t.110 Ilayitnk1.c ~slr.?ttl)ar, R. Thus t,wo flovs arc similar when the lt:lin<br />

three crqna(.ions :<br />

F : )I -4- 0 : 0 ,<br />

the solution of wlticl~ is<br />

Din~ctlsint~lcss quantities: 'I'hn reasoning followctl in tho precetling drrivi~f ion<br />

of the Rcynoltls numl~er can be e~t~entled to inclndc the casc of diffcre~~t Itrynolrls<br />

numbers in the consitlerat,ion of the velocity ficltl ant1 forccs (normn.l :mtl tangont.i:rl)<br />

for flows wiLh geornetrica.lly sitnilar boundaries. Let thr position of :L point in (.he<br />

space around the gcomctrically similar bodies bc intlica1,cd by thc coortlin:tl.t~s 1, !/,<br />

z; t~llen tho rat,ios z/d, y/d, z/tl arc its tlinicnsiotlless coortlirt:~l,cs. Tl~c vc~loc:il.y c:otltponcnt,s<br />

arc lnatlc dimensionloss by relirrring tllern to the free-stream vch:iI,y V,<br />

thus 711 V, 111 V, w/ V, and lhc normal and st~caring strosscs, p :~ritl t, can bo mn.clcr tlirnct~sionlcss<br />

by reforring thorn t,o Lllc tloubfc of t,llc tlyrtatnic lieatl, i. e. to p V2 t.hus: p/p 1'"<br />

and t/p V2. The previously cn~~nciatcd principle of dynnmical sinlilarit,y can Im c~x1)rt~s-<br />

sod in :Ln alternative form by asserting t ht for the two gcornctricnlly similar sys1,cnls<br />

with equal Reynolds numbers the dirncnsionless quantitics 141 Y, . . ., p/p V2 i~nd<br />

t/e V2 depend only on the dimensionless coortlinatcs x/d, y/d, z/d. If, Ilowcvcr, the<br />

two systems are geometrically, but not dynamically, similar, i. c. if t.lleir Rcynoltls<br />

numbers are different, t,llen the tlimensionless quantit,ies under consideratlion innst,<br />

also depend on the chamctcristic quantities V, d, Q, 14 of the two ~ystcrns. Applying<br />

the principle t,llat physical laws must be independent of the systcn~ of nnit.s, it. fi~llows<br />

that tl~e tlimensionless quarifities u/ V, . . ., p/e V2, T/Q VZ can only depend on a<br />

dimcrlsionless combinatlion of V, d, Q, and 11. which is unique, being the Itcynolds<br />

number R = V d e/p. Thus we are led to the conclusion that for t01c two gcon~cbrically<br />

similar systmns which have different Rcynolds numbers antl which arc bring<br />

compared, the dimensionless quantities of the field of flow can only be funcI.ions of<br />

tlic tthree din~ensionless space coordinates z/d, y/d, z/d and of t.lw Rcynolcls<br />

number R.<br />

The precc(ling dirr~cnsinnal annlysin can bc ~~lilizctl to tu:~ltc an irnport,:r.ttt,<br />

assertion about the t.otal force excrtcd l)y a fluid strealn on an imrncrsotl hotly. 7'11c<br />

force acting on tho bocly is the surface intcgral of all normal and ~llcaring stmsst:s<br />

acting on it. If P denotes the component of the resultant force in any given direction,<br />

it is possil~le<br />

to write a tlirncnsionless forco coefficient of the form P/d2 Q V2, 1~11,<br />

stead of the a,re:b d2 it is cnstomary to clloose a diKcrcnt charactcrist.ic aro:l, A, of<br />

t,he immersed body, e. g. the frontal a.rea exposed by the botly to tile flow tlircct


of I,ho resultant forcc parallcl to the unciisturbctl initial vrlority is referred to as t11e<br />

drag I), and the component perpencliculnr to that tlircct.ion is callctl lift, 5. Hencc<br />

the dimensionless cocfficicnts for lift and drag become<br />

L I)<br />

C - nnd C, = - - --- - ,<br />

, - A<br />

(I .Id)<br />

18VSA<br />

if the tlynnn~ic: 11cad 4 Q V2 is SCICC~C~ for rcfcrcrlce instcatl of t,hc tlunnt,ity e V2.<br />

Thus tho argumcnt leads to the conclusion that the tlimcnsionless lift a,nd drag<br />

coefficients for geometrically similar systems, i. c. for geometrically sirnilar bodies<br />

which have t h same orientatmion with respect to the free-8trea.m direction, are<br />

functions of orie variable only, nmnoly the Reynolds numhcr:<br />

c,,=/,(R); CD=/~(R). (1.15)<br />

It is ncccssary to strcss once more that this importmt conclusion from Reyr~olds's<br />

principle of similarity is valid only if the assumptions undcrlying it are satisfied,<br />

i. c. if the forces acting in the flow arc due to friction and inertia only. In the<br />

casc of compressible fluids, whcn elastic forccs arc important, and for motions with<br />

free surfaces, whcn gravitational forccs must be taken into consideration, eqrrs. (1.15)<br />

do not apply. In such cases it is ncccssary to deducc diKerent similarity principles in<br />

which the tlimensionless Froudc numlw F = v/G~ (for gravity and inertia) and<br />

the c1imensionless Mach number M == V/c (for compressible flows) are included.<br />

The importance of the similarit,y principle given in eqns. (1.14) and (1.15) is<br />

very great ns far as the scicnccs of th~orct~icsl and cxpcrimcntal fluid mechanics are<br />

concerned. First, the dimcnsior~lcss cocfficicnts, C,,, C,, and R are irlclependent of<br />

the system of unilm. Secondly, their use leads to a considerable sirnplificntion in<br />

the cxtcnt of expcrimcntal worlc. In most cases it is impossible to tlcterminc the<br />

func(.ions f,(R) and /,(R) throrctic:ally, antl exporimcnt,:~i ~ncthotls must be 11sot1.<br />

S~~pposing tl~ali it is tlcsirccl to tlrtcrrnino thc tlr:~~ cocfficicr~t ITI, for a spot,ilic:tl<br />

s11:q)c of hly, c. g. a sjhcrc, tllcn witl~ot~t the application of Lhc principle of sirni1:~rit.y<br />

it wo111tl hc? ncccssary to carry out drag mcasuremcnt.~ for four indepcntler~t variables,<br />

V, d, Q, and p, antl this would const,itute a trcmondous programme of work. It<br />

follows, however, Lhat t2he drag cocfficicnt for sphcros of diKcrcnt tlinmctors with<br />

different stream vclocitics antl tliffcrcnt fluicls clcpcntls solcly on onc v:~ri:~l)lc, 1.h~<br />

Reynolds r1urn1)cr. Fig. 1.4 rcprcscnts thc dmg cocfficicnt of circular cplintlcrs as<br />

a fi~nct~ion of the Itoynolds number antl shows the exccllcnt agrccment hetwceri<br />

expcrimcnt antl Reynolds's principle of similarity. The cxperimentnl point,s for<br />

the drag cocfficicnt, of circular cylinders of widely differing diameters fall on a single<br />

curve. 'The same applies to points ohtnined for the drag cocfficicnt of spheres plotted<br />

against t,ho Iteynoltle number in Fig. 1.5. The sutltlcn decrease in the value of thc<br />

drag coefficient which occurs near R = 5 x lo5 in the case of circular cylinders and<br />

near R = 3 x 10"n the casc of spheres will be discussed, in n~ore detail, later.<br />

Fig. 1.6 reproduces photographs of the stream$nes about circular cylinders in oil<br />

taken by P. JIomann [7]. They give a good idea of the changes in the ficld of flow<br />

associated with various Reynolds numbers. For small Reynolds numbers the wake<br />

is laminar, but at increming Rcynolds numbers at first very regular vortex patterns,<br />

known as Khrmhn's vortcx &recta, are formed. At sLill higher Reynolds numbers,<br />

not shown here, tho vortex patterns become irregular and turbulent in character.<br />

c. Principle of si~nileril.~; 1110 Ilcynolds nnti Mach numlwxs<br />

2 = V'J<br />

Fig. 1.4. Drag coefficient for circular cylinrlcrn n, a function of tlie Jleynoltls n~~nibcr<br />

4 00<br />

700<br />

C~ roo<br />

80<br />

60<br />

10<br />

70<br />

10<br />

8<br />

G<br />

L<br />

7<br />

I<br />

08<br />

0 6<br />

0 4<br />

0 2<br />

0 1<br />

08<br />

0 a<br />

Fig. 1.5. Drag coefficient for spheres aa n fiulction of tho Reynolds nulnbcr<br />

Curve (1): Stokcs's theory, eqn. (6.10); curve (2): Oseen'a thcory, eqn. (0.13)<br />

17


Fig. 1.6. Firld of flow of oil nho~~t n cirr~~lnr rylintlor at wrying IZrynolcln n~c~nbnrs nltcr Homnnn<br />

171: Irnnnition from lnrninnr flow t,o n vortrx ntrrt-t, ill I:~n~innr fhv. Tl~r<br />

R = 65 t.o R - 281 I)c tnltrn from Fig. 2.9<br />

freqrwnry rnngr for<br />

e. Principle of 8irnilnrit.y; t,he Itcynolds ntld Mac11 nlt~r~bcrs 19<br />

\V. Jonm, J. J. Cillotta and 12. \V. \Val.<br />

krr [a]


20 I. Outlinc of fluid rnolim with frict.iot~ f. Comparison hrtween thc theory of pcrfcct 11r;itls anti cxpcrin~cnt 21<br />

f. Compnrison between tl~c theory of pcrfcct fluids ntd rxperi~nrt~t<br />

In the cases of t,hc motion of water ant1 air, wllich arc the most ilnport.ant ones<br />

in engineering applications, the Itcynoltls nurnl)crs arc vcry Inrgc l)rml~sc of thc<br />

very low viscositics of thcsc fluids. 1.t wor~ld, thorcforc, apl)c:tr rcasonal)lc t,o c-xpccL<br />

very good :tgrecrncnt 1)clwccn cxperin~cnt, and a 1,hcory in which tl~c itlllllcncc of<br />

viscosity is ncglcctcd alt,ogcthcr, i. c. with the thcory of pcrfcct fluitls. In any case<br />

it secms uscful to bcgin thc comparison with experiment by rcfcrcnce to thory<br />

of perfcct fluids, if only on ncconnt of tho large num1)er of cxist,ing explicit mnthematical<br />

solnt,ions.<br />

In fact, for certain clnsscs of problems, st~clr as wave formation and tidal motion,<br />

exccllent results werc obtained wit01 t,hc aid of this theoryt. Most problems to bc<br />

rliscusscd in this book consist in I,hc study of the motion of solid 9odics through fluids<br />

at rcst, or of lluitls flowing through pipes a.nd channels. In such cascs t,hc use of<br />

the theory of pcrfcct fluids is limited because it,s solutions do not satisfy thc con-<br />

I<br />

tliLion of no slip at the solid surfacc which is always the case! with rcal fluids even<br />

at very small viscositics. In a pcrfcct tluitl thcro is slip at a yall, and tJlis circamst,ance<br />

inLroduccs, cvcn for slndl viscositics, such funtl:~.mc:~t.al tliKcrcnccs that it<br />

I<br />

is rather surprising to find in somc cascs (e. g. in the case of vcry slender, stream-linc<br />

bodies) that thc two solutions display a good measure of agreement. The greatest<br />

tliscrepancy betwccn the theory of a perfcct fluid and experiment exists in the<br />

consitlcration of drag. The perfcct-fluid theory leads to the conclusion that when<br />

an n.rhit,mry solid body movcs through an infinitely extended fluid at rcst it expericnccs<br />

no forcc acting in the clircction of motion, i. e. that its drag is zero (dlAlembcrt's<br />

paradox). This rcsult is in glaring cont.radiction to observed fact, as drag is<br />

mcnsurod on all bodics, evcn if it can bccome vcry smaU in the case of a streamline<br />

body in stcady flow parallcl to its axis.<br />

By way of ill~~stration we now propose to make some remarks concernirlg tlhe<br />

flow about a circular cylinder. The arrangcmmt of streamlines for a perfcct fluid is<br />

given in Fig. 1.9. It follows at once from considerations of symmetry that the resultant<br />

forcc in the direction of motiorl (drag) is equal to zero. The pressure clistributiou<br />

according to the theory of frictionless motion is given in Fig. 1.10, togcther with the<br />

results of measurements at three values of the Reynolds numbcr. At the leading<br />

edge, all measured pressure distributions agree, to a certain extent, with that for a<br />

perfcct fluid. At, the trailing end, the discrepancy between theory and measurement<br />

becomcs large because of the large drag of a circular cylinder. The pressure distribution<br />

at, the lowest, sobcritical Reynolds numbcr R = 1.0 x 105 diffcrs most from<br />

that given by potential theory. The measurements corresponding to the two largest<br />

Rcynolds numbers, R = 6.7 x 105 and R = 8.4 x 106, are closer to the potential<br />

curve t,han those performed at t,hc lowest Reynolds number. The large variation of<br />

pressure distril)ution wit,l~ Rcynolcls numbcr will be discussed in detail in the next<br />

cl~apt~er. A corresponding pressure-distrih~t~ion curbe around a meridian section of o,<br />

spl~cre is rcproduccd in Fig. 1.11. Here, t,oo, measurements show large differences for<br />

the two Reynolds numbers, and, again, the smaller Reynolds numbcr lies in the range<br />

Fig. 1.0. Frictionlcss flow about a<br />

circular cylinder Pig. 1.10<br />

Pig. 1.10. Pre~strre distribution on a circular cylinder in the suhcrit.icnl and er~pcrcriLic~ll range of<br />

Reynolds nnnihers after t,he ~neasurements of 0. Flncl~sbnrt [4] and A. Roahko [13]. qm - - 1<br />

e 1''<br />

is the stagnntion pressure of the oncoming flows<br />

- frlctionlerur flow Flacl,s,,nrl<br />

--- R = 1.9 x 10'<br />

. . . . . R - 8.4 x 10' Itonlikn (1001)<br />

Fig. 1.1 1. Pressure distribution<br />

around n sphere in the suhcri-<br />

tical and supercriticnl range of .<br />

Reynolds numbers, aa mea-<br />

sured by 0. Flachsbart [3]<br />

1 i:G<br />

of largc clrng cocfficicnl,~, whrrcas tho Irwgcr valuc lics in lhc rmgo of srnnll clrq<br />

coefficients, Pig. 1.5. In this case the n,czsnrcd prcssltre-cli~t~ributior~ curve for tho<br />

largo Reynolds number approximat,es the theorct~cai di:rvo of frictionless flow very<br />

well over the greatest part of the circumfcrcnce. ,<br />

Considerably better agrcemcnt between the theo~etical and measured pressure<br />

distribution is obtained for a streamline body in a flow parallel bo its axis [5],<br />

Fig. 1.12. Good agreement exists here over almost the whole length of the body,<br />

with the exception of a small region near its trailing end. As will be shown later<br />

this circumstance is a consequence of the gradual pressurc increash in the downstream<br />

direction.<br />

Although, generally speaking, the theory of perfect fluids does not lead to<br />

useful results as far as drag calculations are concerned, the lift can be calculated from<br />

it v~ry successfully. Fig. 1.13 represents the relation between the lift cocfficicnt and<br />

angle of inritlcncc, as nteasurctl hy A. Bctx [2] in thc caso of a Zhukovsltii :iwofoil


22<br />

I. Outliric of fluid motion with friction<br />

Fig. I .12. Prmsr~re distrihnt,ion<br />

nlm~t n ~trenw-line body of<br />

rcvolntion: cornpnrison bctneon<br />

tllcory arid mrnsuremcnt.<br />

nftcr Fuhr~nann [5]<br />

Fig. 1.13. Lift nnd drag roeffi-<br />

cicnt of n Zliukovnkii profile in<br />

plnnm flow, ns ~nenaurod by<br />

lktz 121


Outline of boundary-layer theory<br />

a. Thc boundary-layer concept<br />

tn tho casc of fluitl motions for which the measured pressure distribution nearly<br />

agrcrs with the perfect-fluid thcory, such as the flow past the streamline body<br />

in Fig. 1.12, or the aerofoil in Fig. 1.14, the influence of viscosity at high Reynolds<br />

numbers is confined to a very thin layer in the immediate neighbourhoocl of the<br />

solid wall. If tho condition of no slip were not to be sat,isfit:d in the casc of a real<br />

fluitl there wollltl 1)c no appreciable tliKcrcncc between the field of flow of thc real<br />

fluitl as comparcd with that of a pcrfcct fluitl. The fact thaL at t,hc wnll thc fluid<br />

adlicres to it means, howcvcr, that frictional forces rctarcl the motion of the fluid<br />

in a thin laycr near the wall. In that, thin layer the velocity of the fluid increases<br />

from zero at thc wall (no slip) to its full value which corresponds to external frictionless<br />

flow. The layer under consideration is called the boundary layer, and the concept<br />

is duo to L. Prantltl 1263.<br />

Figurc 2.1 reproduces a picturc of the motihn of water along a thin flat plate<br />

in which the s!,rcamlincs wcrc made visible bjr the sprinkling of particles on the<br />

surfn.cc of thc water. The traces lcft by the particles arc proportional to the velocity<br />

of flow. Tt is scen that there is a very thin laycr near the wall in which the velocity<br />

is' considorably smallcr t,han at a 1n.rgcr distance from it.. The thickness of this<br />

holtntlary laycr incrc,ascs along thc plate in a downstream direction. Fig. 2.2 repre-<br />

~nnb tliagrammatically the vclocity distribution in such a boundary layer at the<br />

a. The hollndary-laycr concept 25<br />

plate, with t>hc tlimensiorls across it considerably cxaggcratctl. In front of the<br />

leading edge of the plate t,he vrlocit,y elistribrttion is rtnifornl. With increasing distattrc<br />

from thc leading edge in the downstrmm direrlion the thiclrness, cf, of t,lle retardetl<br />

layor incrrasrs continrlor~sly, nn ilicrrnsing qunnlitira of hit1 I)oc*onlo t1TTcy-lrtl.<br />

15vitlcr1tly tho lhiclrnrss or the 1)ountl:~ry Inycr t1wrcvw.s wit11 Oc~crrasir~~ viwosity.<br />

Fig. 2.2. Sketch of borlntlnry ---<br />

layer on a flat plate in pnr-<br />

allel flow at zero inciclcnce -<br />

On the other hand, even with very small viscosities (large Reynolds numbcrs) t.hc<br />

frictional shearing strcsses T = /c au/a!j in the 1)oundary laycr arc consitlcrnblc<br />

bccnusc of the Inrgc vclocily gr~diont, across lllo Ilow, wllcrct~s o~tl~sitlo tho I~ou~~tlttry<br />

layer t11cy arc very small. This physical pict~~rc suggcst~n that the field of flow in t.1~<br />

casc of lluids of small viscosil.y can I)c tlivitlctl, for tho purpose or matliornnt,icnl<br />

annlysis, into two regions: thc t.llin boundary laycr near the wnll, in whic:h rriction<br />

must be taken into account, antl the region outside thr boundary layer, whcrc the<br />

forces due to friction are small antl may be ncglcct~cd, and where, thcrcforc, the<br />

perfect-fluid theory offers a very good approximation. Such a division of the field<br />

of flow, as we shall see in more detail It~tcr, brings about a considerable simplification<br />

of the ~nat,l~ematical theory of the motion of fluids of low viscosity. In fact, t,he<br />

t,heoretical study of such motions was only made possible by Prandt.1 whorl he<br />

introclucctl this concept.<br />

We now propose to explain the basic concepts of boundary-layer thcory wit11<br />

the aid of purcly physical ideas antl without the nsc of ~nat~hcmatics. The rnathcrn:~t.ical<br />

bor~ntlary-layer tllcory which forms the main topic of this book will bc tlisc~~sscel<br />

in the following chaptcrs.<br />

The dccrlcratctl fluid pnrticles in thc boundary laycr (lo not, in all cnscs, rrmnin<br />

in the thin lnycr which atlhcrcs to thr I~ody along thc whole wcttcd lc~~glh of ~ I I P<br />

wall. In some cases the boundary layer increases its thickness considerably in the<br />

downstrcarn tlirection and the flow in tho boundary laycr beconics revcrscd. 'l'his<br />

causes the decclcratcd fluid particles to be forced outwards, which rnmns illat<br />

thc boundary hycr is scpnrated from t11c wall. Wc thcn spcalr of boundniy-ltryer<br />

sepalation. This phenomenon is always associatrd with the formation of vortircs<br />

and with largc energy losses in the wake of the body. It o_ccur_sprjmarjly nrar blunt<br />

bodies, such %s circular cylinders ~ncl~sph_c-~~. Behind such a body thcrc exists a region<br />

of strongly dccrleratrtl flow (so-calletl wake), in whicl~ the pressure distribution<br />

deviates considerably from that in a frictionless fluid, as seen from Figs.l.10 arlcl 1 11<br />

in the ~rsprctiw cnscs of a rylindcr and a sphere. The large drag of such bodics can<br />

be explained by the existence of this large deviation in pressure distribution, which<br />

is, in turn, a consequence of boundary-layer separation.


2 (i<br />

TI. O~~tlittr of Imun~lnry-lsyw throry<br />

E~tin~nIin~t of houndnry-lnyer thickllr~s: 'rhc t,l~ickness ofa boundary layor whir11<br />

llas riot sepnrnlrtl can I)(! casily rst,irnnLrtl in thc following way. Whcrcas friction<br />

forccs can be ncglcctctl with rcspoct t.o incrt,ia forccs out,side tho bourltlary Ixynr,<br />

owing to low viscosit,y, thry arc of a comparable order of magnitrldc inside it. 'rhc<br />

inert,ia forcc prr nit volun~ is, as cxplninctl in Scct,ion l e, equal to Q 71 &L/~x. For<br />

a pIat,o of longlh 1 tho gr:ttlinnt arr/a:r is proportional to ll/l, where IJ tlrnotes thr<br />

velocil,y onLsitlv the! I)ountl:wy Inyrr. Ilct~rc Ihc irlnrl,in forcc is of tho ortlcr I, 1J2/1.<br />

On the othcr l~antl the friction forcc per nr~it volurnc is equal to at/@/, wllirll, on tho<br />

assurnpt~ion of lnrninnr flow, is cqunl t,o 11, a21t/i)?/2. The velocity gratliont al~/ay in a<br />

tlirrcLion prrl~rnrliculnr t,o t.l~c wall is of t,lm ordcr Ill6 so that thc friction forcc ])or<br />

~ti)il~ ~olt~tnv is i)~/&y - lI/d2. Proni the cotdit.iorl of equality of the friction :md<br />

inertia forcrs tho following rc.l:ll ion is obhined:<br />

U e UZ<br />

t4 82 - 1<br />

or, solving for I Itr Imuntl;~r~-layrr tlriclcr~rss Ot:<br />

The I~nlnr,ric:nl f:~rt,or wltid~ is, so f:w, st.ill untlct,crn~ined will be drduc:ctl Iatcr<br />

(C!l~:lp. VII) from tho exact solut,ion givcn by [I. 13lasius 141, and it will turn out<br />

t.llnt it is cqrlal 1.0 5, al)proxinlatcly. llrncc for lnmiarrr flow in the bountlary layer<br />

wn hnvo<br />

(2.1 a)<br />

'rho tlinlrt~sionlc~ss 1,our~lnr~-lnyer thirknrss, rcfcrrctf to the length of the plate, 1.<br />

twronles .<br />

wllorr R, clrnotcs tho ltcynoltls nunlber rclatod to the Icngth of the plat.c, 1. Tt is<br />

won from cqn. (2.1) tallat thc boundary-layer thickness is proportional in 4; and<br />

t,o I. If I is ropla.cetl hy the variable tlist~nce z from the leading edge of the plate,<br />

it is seen that d increases proporti~nxt~ely to ii. On tho other hand tho relative<br />

boul~(~ary-Iaycr t,I~ickncss O/i decrems with increasing Reynolds number as I I ~ R<br />

so that in tho limiting case of frictionless flow, with R -+ oo, tllc boundary-layer<br />

t.lrickness vanishes.<br />

We are now in a position to estimate the shearing stress zo on the wall, and<br />

consrq~~ontly, t.hr t,ot,ni drag. According to Newrton's law of friction (1.2) we have<br />

- - --<br />

t A ~~lore rigororts tlrfiniliott of Im~lrtclnry-Iayrr thicknrsn in given st the end of lhia section.<br />

wherc sl~bscrip~ 0 tlenotes the value at the wall, i. e. for y = 0. Witll thc estimate<br />

(au/a~)~ - U/d we obtain 7, - ,u U/d and, inserting the value of d from cqn. (2.11,<br />

we have<br />

We cart now for~n a dirncnsionlrss sl,rcss with rcTrrnrlrc lo I, llz, ns c~xpl:~ittc~cl<br />

in Cltnp. I, ant1 obtain<br />

c,, - =<br />

I'q .<br />

1<br />

- -<br />

The numrric:ll fartor follows from 11 Blasius's cxart solution, atttl is I 328, so tll:~~,<br />

the drag of a ~~lntr in parallrl 1nmin:~r flow 1)rromc.s<br />

Tltc following nt~mrrical rxamplc will serve t,o il11tst~~rt.c: t.hr l)rec:rcling c:st,i~rt:~ t.iolt :<br />

Laminar flow, stipulntctl here, is obt:~it~rtl, as is known r'ronl exprritnctlt,, for Itcynolds<br />

numbers CJllv not cxceccling :d)outt 6 x 10Ql.o 10% lpor 1nrgc.r I


28<br />

TI. Ot~(,linc! of bor~ndnry-layer thoory b. Srparation antl vortex fortnn(.ion 20<br />

Dalinition of Imnndnry-layer thickness: Thc clefinition of lhc bountlary-laycr<br />

t.lrickncss is to a ccrtain extent arbitrary l)ccausc transitsion from the velocity in<br />

t,l~c borlndary t,o that o~~t.sitlc it t,:~.ltcs plncc asympt,olically. Tlris is, IIOW~VC~, of<br />

no pract,icn.l import,ancc, I~ccnusc t,hc vclocil~y in thc bor~ntlnry laycr at.t,:iins :I. vnl~lc<br />

whic:h is vrry c:losc t,o fho cxl,crt~n.l vcloriLy drcatly at, a small tlistancc frotn the<br />

wnll. 11, is Ijossil~ln to tlcfino Lhc I)o~lnd;~~.y-l:~yc:r thioltncss :IS l.l~nl rlis1,:~noo from lllc:<br />

wnll wllorc: t,hc vclonity tlilTcrs 11y I pcr ct:111 from the oxt,crnn,l vrlociLy. \Vil.l~ titis<br />

dnfinition the rtrtmcric:d f:~.ct.or in cqn. (2.2) has thc value 5. [nst,ead of t,hc bonntlarylaycr<br />

t.lricknc~s, anotlrcr qunnt.it$y, thc dinplr~cement thickness a, is somct.imcs used,<br />

Fig. 2.3. It, is dcfinetl by thc cqnntion<br />

(2.6)<br />

'Ilc displnccment tl~icltncss indicates l.llc tlistancc by which the external strcamlines<br />

arc shift,cd owing to tire fonnat,ion of t,l~c boundary Iaycr. In the case of a plate<br />

in parallel flow nntl at zcro incidcncc tlrc tlisplaccmrnt thickness is about & of the<br />

bountlary-layer IJ~icltncss 0 givcn in cqn. (2.1 a).<br />

..<br />

b. Srpamlion and vortcx forrnntion<br />

llte bo~~ntln.ry laycr ncnr a fht plate in par:~llcl flow and al, zcro incitlencc is<br />

part,icrllarly sirnplc, Ijccausc the static prcssurc remains conshnt in the whole field<br />

of Ilow. Sincc orlt,sitlc the 1m11ntI:~ry lnyrr tho vclocily rcnmins constant t,hc samc<br />

qjplics to the prcss~~re l~ecausc in the frictiorrlcss flow Bcrl~orrlli's cquation remains<br />

vnlitl. Furthcnnorc, tlrc prcssnrc rcmnins scnsibly constnnt over thc width of t,hc<br />

\)o~~~rrlary layer at a givcn rlist.ancc x. 1Icncc tlrc prossurc over thc widt.11 of tlrc<br />

1)ountlary Iaycr has tlrc snmc mngnittrtlc ns out.sitle t.hc boundary laycr at the samc<br />

tlist.ancc, ant1 the same applies lo cnscs of arbit,mry body pl~n.pcs whcn tho prcssnrc<br />

o~rt.sitlc 1.h~ I)o~ln(l:~ry I:~yt:r vnrics along t,lrc wall wit11 t,l~c 1cngl.h of arc. 'l'his fnct<br />

is cxprcsscd by saying 1,h:~L t,lrc cstcrnnl prcssnrr is "i~n~rcssctl" on thc boundary<br />

Inycr. Ilcncc in the cnsc of the motion pst a plate l,hc prcssnrc rcmains constant.<br />

througIrouL t,llr: bountlnry Inycr.<br />

'j'lrr phrnonrrnon of 1murrtl:~ry InycrsrpnraLiot \ ~nrt~tiot~c~tlprc~viously<br />

--. - - isi!rtinral~ly<br />

c~onnrclctl wrtl~ tlrr prcssurc t1istril)ution in ti16 orintlary layrr In the boundary<br />

lnycr on a plate rro srpnmlion takrs phrr as no back-fldw occurs<br />

In ortlcr to r\plnitr t IIV very import nrrt pl~rnornrr~on of bountlary-lnycr s~paration<br />

let us rorrritlrr 1 hr Ilow :~ljouI n Ijlrrnt hotly, r g abont, a rirrnlar rylintlrr, as shown<br />

it1 IClg 2 4 111 ft ic.1 inl~lcw flow, t l ~c flu~tl par1 irlrs nrr :~rc.rlrmlrtl on tlw npstmam<br />

half frorn D to E, and decelerated on the downstream half from E to F. Ifcnce the<br />

pressure decreases frorn D to E antl increases from i' to F. Wltcrl the flow is stmtcd<br />

up the motion in the first inst,arlt is very nearly frict,ionlcss, ant1 rcmains so as Img as<br />

t h bounthry lnycr remains thin. Outsitlo lhc I~onntl:~ry lrtycr lllcro is n tprr~l~s~ornlctl.io~<br />

of pressure into 1tincl.ic energy idong 11 R, 1.110 rcverso hlting pl:~c:o r~lottg IC I(', so<br />

IJtaL IL parlidc nrrivo~ ILL 11' with Llto HILIII~> vclocil,y 11s it, IIIL~ nl, J). A lIrci(l ~~:~rl.iclt:<br />

wltich lrroves in IJIC i~nmctlinlo vioi~til~y of tho wtdl in I,llc bo~lntl:r.ry I:~.yor rc:~n:iit~s<br />

under the influence of the same pressure field as that existing outside, I)crause the<br />

external pressure is imprcssctl on the boundary layer. Owing tlo tlrc large friction<br />

forces in the thin boundary layer such a psrtic:lc consumcs so much of its kinbtic<br />

Fig. 2.4. Doundary-layer scpara-<br />

tion ~ind vortex forrnntion on a<br />

circular cylinder (dingran~n~atir)<br />

S - point nf scl~nrnllo~~<br />

energy on its pat.h from D to E that thc remaintlcr is too slnall to srlrmount t.hc<br />

"pressure hill" from E to F. Such a parLicle cannot move far into t,hc region of'<br />

increasing pressure between lC antl P antl its molion is, evcntunlly, arrcst,ed. The<br />

external pressure causcs it t,lrcrl t,o move in tho opposite clircction. Tlrc pl~otogra~l~s<br />

reproduced in Fig. 2.5 il1nstrat.e the sequence of cvent.s near the downstrcarn side of<br />

a round body when ,z fluid flow is started. The prcssurc increases along t,Ile I,otly<br />

contour from left t,o right, the flow Ilnving been ma.tlc visil)lc by sprinltlitrg nlrtminirlm<br />

drrst on tho surface of thc water. Tlrc boundary layer can be casily rccognizetl by<br />

rcfcrcncc to tlte short traces. In Fig. 2.5s, Lakcn shortly aftcr the start of lhc rnot,iorl;<br />

the rcvcrsc motmion has just begun. In Fig. 2.5b the rcvcrsc nrotion lrns pci~-t,r:.tctl<br />

a consitlcrablc distancc forward :~nd l,l~c boundary Iayor lrns tllicltcnctl n.pprcci:~l)ly.<br />

Fig. 2 .5~ shows how this rcvcrsc mot,ion givcs risc to a vortex, whoso sizc is incrc,iscd<br />

still furthx in Fig. 2.6tI. 'l'hc vorLcx bccorncs scp:~mlctl shortly afLcr~:~r~Is n.td rnovc!s<br />

tlow~~strearn in tho fluid. This circnn~stancc changcs complctcly blrc fiolcl of flow<br />

in tho waltc, and Lhc prcssnrc clisLrib~lI,ion suKcrs a rntlical change, as cornparctl<br />

with frictio~rlcss Ilow. 'L'llc find statc of nrotion can I)(> inrcrrctl from Wig. 2.6. In<br />

t,he eddying region bclrind tlic cylinder there is consitlcrable suction, as sccri fro111<br />

the pressure distribution curve in Fig. 1.10. This suction causes a large prcssurc drag<br />

on t.he body.<br />

1<br />

At a larger distance from the body it is possible to discern a rcgul:~r patt,ern<br />

of vorticcs which move alternately clockwise and courrt~crclocltwise, and wllich is<br />

known as a IGirmiin vortex strect [20], Fig. 2.7 (scc also Fig. 1.6). In Fig. 2.6 a vortex<br />

moving in a clockwise direction can be seen to be about to detach it,sclf from the<br />

body before joining the pattern. In a further pzpcr, von Kilrmhn [21] proved<br />

that such vorticcs are gcncrally nrrstablc with rcspcct to small tli~t~urbancrs pnrallcl


Fie. 2.511<br />

Fig. 2 .5~<br />

Fig. 2.5b<br />

Fig. 2.5d<br />

to thr1ns14vt:s. 'I'lrc only nrmngnncnt which shows ncnt.ral cqoilil,rium is t,hat with<br />

- . 0.281 ([Cia. 2.8). vort,ex sl.rcet moves with n vcloc:it,y IL, which is slnallc\r<br />

I,II:I.II t.Ilc flow vrIorii,y II in front of t,ho body. It cnn l)c rcpdetl as a highly idealized<br />

pict,~~rr of t.hc mot,ion in the wake of (,hc body. The kinetic energy cont,ainetl in the<br />

vrlocit,y ficltl of the vortcx strect must be continually created, as the body moves<br />

t.llrongh tile fnitl. On the basis of this rcpresentrn.,tion it is possible t,o deduce an<br />

exprrssion for t.hc drng from the perfect-fluid theory. Its ~nngnit,utle per nnit lengt,h<br />

of tllr eYlindric:~l hotly is given hy<br />

Fig. 2.7. KhrmQn vortex strcct, from<br />

A. Tirn~nc [38]<br />

Fig. 2.8. Strrnmlinm in nvortrx strrrt<br />

(hll = 0 28). Thr fluid i8 nt rc~t, nt<br />

infinity, and th~ vortrx street move8<br />

Circdur cylittder. 'l'hc frequency wit,lr which vor1,irc~s arr shrtl in a I


32<br />

I I. 011t.linc of boundary-leycr theory<br />

Fig. 2.9. The Stroul~nl nurnher, 5, for thc I


S - point orscpnrnt.ion<br />

T'ig. 2.12. I)ingmnitnnt,ic represell-<br />

t.nf,ion of flow ill t,lw 11o1lt)tlnry<br />

layer near n point, of wpnrnt.ion<br />

Fig. 2.14. Flow with 1)ortnrlnry-<br />

In.yor srlc(.iott on upper wdl of<br />

Irighly tlivcrgetlt clln~~nrl<br />

Fig. 2.1.5. Flow wit,lt honndnry-<br />

layer ~uction on 110th wall8 of<br />

highly divergent channel<br />

1). Scp~ralion and vortex iormntion 35<br />

src1.s t,hc wall at a tlcfinitc angle, ant1 t,l~c point of s~p:iri~t,ion it,sclf is cl~:tern~inctl by<br />

tltr ro~trlitinn that t.hc velocil,y grarlicnt. normal to the wall vanisltcts t.htrc:<br />

Scparal.ion, as clrsc:ril)ctl for ll~c r:~: of a c:irc~~liir ctyli~~tlcr, ciin :LISO occur in<br />

a highly divergent rhxnncl, Fig. 2.13. In fror~t of the t.ltroat t . 1 prcssnre ~ tlccrcasrs<br />

in thc dirrctiol~ of flow, atltl thc flow atlhcrcs complclcly t.o thc walls, as in a fricf,ionIcs?i<br />

fl11id. Jlowcvcr, bcl~intl t,ho throat t.hc tlivcrgcncc of the cl~anncl is so Inrgc? t.I~:it. t.11~<br />

bountlary layer becomes scparatetl from both walls, rind vorticcs arc l'nrmcd. YYIC<br />

stream fills now only a srnall portion of the cross-scct.iona1 area of t.11~ cl~anncl. llowever,<br />

separation is prevented if boundary-layer suction is npplictl n.t t,ltc wall (Ipig~.<br />

2.14 ant1 2.16).<br />

?'lm photograpl~s in Figs. 2.16 nnd 2.17t j)rovc t.hat the atlvrrsr 1)1vss1irt:<br />

gr:dicnt t,ogct,llcr wilh fricl.ion near t.lra wall tlctcrn~inc the proccas of sc~):~r:iLion<br />

which is intlcpcntlcnt of such other circumstance as c. g. tltc curvnture of thc wall.<br />

'Jlhc first pictme shows the mot,ion of a fluid against a wall at right angles to it (planc<br />

stagnnt.ion flow). Along thc streamline in t.h~-~dane of symmetry which lm,tls ho t,hc<br />

st,agnat,ion point tllcrc is a cot~sitlcrablc prcssllre incrcnsc in t,hc clircclion of flow. No<br />

separation, howcver, occurs, because no wall friction is prescnt. 'I'herc is no sepnmt,ion<br />

near the wall, either, because here t,he flow in thc boundary laycr takes place in the<br />

direction of decreasing pressure on both sides of the plnnc of symmetry. If now a tl~in<br />

wall i~ placed along thc planc of syrnmctry at right anglcs to thc first, wdl, Fig. 2.17,<br />

the ncw boundary laycr will show a pressure increase in t,hc direction of flow.<br />

Conscqurnt.ly, scparnt,ion now occurs nm,r 1,Ite planc wall. 'L'hc incitlcnce of scpnmt.ion<br />

is often rattler scnsitivc to srnall chnngc?~ in the shpc of t.he solid botly, parl.ic:~~lnrI~.<br />

witen thr prcssrm tlistribut,ion is strongly affcct.ct1 by this char~gc in shape. A very<br />

instructive exnrnplc is given in Lhc pit:t,urcs of Fig. 2.18 whicl~ show photogrnpl~s<br />

of the flow fioltl altout a n~otlrl of :I mot.or vehicle (t,hc Volkswa~gcrl clclivcry van),<br />

123, 351. Whcn t,ho nosc was Il:kt, giving it an angular shape (a), the flow past thc:<br />

fairly slmrp corners in front causcd largo su&ion followed by :L large pressure incrcnsc<br />

along the sidc walls. This led to ronlplcte scpnration and to the formati011 of a wide<br />

wake behind the body. Thc drag coefficient of the velricle with this angular shape<br />

had a valnc: of C, .= 0.76. Thc liwgc: suction nrar the front cnd i d l h scp:~ri~t.ion<br />

along tl~c side walls were clinlinat,c:tl when the shape wa9 chnngctl by a.rltling th:<br />

round nose shown at (I)). Simultm~cortsl~, tho drag cocfticienl became rna.rltrtlly<br />

smaller and had a value of CD = 0.42. Further rcscarch on such vchiclcs have beell<br />

performed by 11'. H. IIucho [In] for the rase of a non-~yrnrnct~ric strcam.<br />

t Fig. 2.16. and 2.17. have I)een tdten from Llte "Strom~~ngrn in I)antpfkossrln~~lnfcn"<br />

by TI. FocLthgcr, Mittcilltngcn tlcr Vercinip~oc! Ilr*.'IUUU:ICrsqelbenit,7.e.r, No. 73, p. Ihl (1!)39).


IGg. 2.16. Frrc stagnation flow witl~o~~tarpn. Fig. 2.17. 1)rcrlrrated 8Lag11:~tiorl flow with<br />

ration, au pliotogmphrtl by Fotttingrr<br />

scprntion, ns pllotogrnphed by Focttingcr<br />

I fa1 Anaubr nose 1 I<br />

I (b) Round nose I I<br />

0. %?<br />

- ( - z z 0 -<br />

I<br />

no separation<br />

IFig. 2.18. I'low n.l,orrl, n ~n~(lcl of a motor vrl~inlc (Volltsw:i.gc:n tlclivrry vrm). nftrr 15. Morller<br />

1231. n) Angulrrr noso wi1I1 mpnmtcd flow nlong tho whole of the aidc wall nnd lnrge drag codficicr~t<br />

(C,, = 0.70); h) ltord iionc with no ~cpnrntion nntl small clrng cocflhic~lt (CD = 0.42)<br />

b. Separation and vortcx formation 3 7<br />

Separation is also important for the lifting properties of nn aerofoil. At small<br />

incidence anglcs (up to about lo0) the flow does not separate on either side antl<br />

closely approximates frictionless contlitions. The prcssurc distrihntion for slleh a cnsr<br />

("S~IIII~" flow, Vig. 2.11)n) WILR givo11 in Vig. 1.14. Will1 inoron~ing i~tcitlo~~cn t,lrc\rc*<br />

is tlangcr of srparnt,ioti on t h sucI,ion side of tho nerofoil, I)cer~~~so t,l~e l)rcss~~re ill.<br />

crcnw bccomcs sleepcr. Por n given angle of incidenc~, which is nljout l!jO, ~cparation<br />

Litinlly occurs. The scpwation point is located fairly closely behind the lcading cdge.<br />

Thc wr-kc, Fig. 2.19b, shows a large "(lead-water" nrca. The friclionless, lift-creating<br />

flow patter-n has Iwcornc dislurbcd, and the drag has become very largo. The ,heginning<br />

of scpnrat.ion nwrly coincidcs with the occurrence of maximum lift of the<br />

acrofoil.<br />

Structural oerodynomics. Flow around land-bnsed bluff bodies, suc11 as struc-<br />

tures antl buildings, is consiclcral~ly more complex than flow around streamlined botlies<br />

and aircraft. The principal cause of complication is the presence of the ground ant1<br />

the shear created in the turbulent wind as a consequence. The interaction between<br />

the incident shcar flow and the stsruct,ure produces coexisting static and tlynamic loads<br />

[8, 9, 101. Tlie fluctuating forces produced by vortex formation and shedding can<br />

induce oscillat,ions in thc structures nt. their natural frcql~cncics.<br />

The flow patterns observed on a tlctachcd rectangulnr building is shown sahrmali-<br />

cally in Fig. 2.20. In front of the building there appears a bound vortrx whirh arises<br />

from the interaction of the boundary layer in t,he sheared flow (d V/dz > 0) ant1 the<br />

ground. There is, furthermore, strong vortex shedding from the sharp corllcrs of the<br />

building and a complex wake is created behind it. So far no theoretical mcthotls have<br />

been developed to cope with this ext,remely complicated flow pattern. It is, therefore,<br />

necessary to rcsort to wind-tunnel studies with the aid of adequately scalctl models.


3 8<br />

\<br />

Y?\<br />

If. 011tli11e of boundary-layer throry<br />

Fig. 2.20. Overall view of<br />

flow pat,tmn (schematic)<br />

around a rcctnngular st.ructure<br />

[MI. a) Side view with<br />

foreward hound vortex in<br />

the stagnation zonr and a<br />

~cperatod roof lmtntlnry<br />

layer; h) ~tpwitd fme and<br />

vortex ~hcdding from the<br />

t hn windward rornrr of thr<br />

roof<br />

Fig. 2.21. Acrofoil and cir-<br />

cular cylinder drawn in<br />

such relation to each other<br />

as to produce the same drag<br />

in parallel flows (parallel to<br />

axis of svrnmetry of awofoil)<br />

circuhr cr/linder: Drag<br />

To conclude this section, we wish t,o tlisc~iss n particr~ln.rly telling example of<br />

enectively it is possible to reduce the drag of a body in n st,rearn wl~et~ the srl)nrntioll<br />

of the boundary layer is completely elirninatrtl antl when, in ntltlit,iol~, the I~otl~ itsrlf<br />

is given a shape which is contlucivc to low rcsist.nncr. Pig 2.21 ill~lstrnt.cs tllr c.i~(:ct,<br />

R fnvvrnble sllnpe (strenndine body) on drag: it syintrteLrlc ncrofoil n~~tl a rirc-lllar<br />

c:ylintlcr (thin wire) have brrn drnwr~ hrrc to n relative scdo wllicl~ rtssr1rc:s c:clrlnl tIrng<br />

in slwnms of cqnnl velocit,~. The cylinder has a tlrag corfficicnt (:I, % 1 wit,l~ rc?spct,<br />

to it,s frontd arcn (scr also Fig. 1.4). 011 t.hc otllcr hnnrl, l .1~ (Irag cocfficic:t~t.oft II(, ;I(.I.ofoil,<br />

rcferrctl to iLs cross-seclionnl arm, has the very low vnl~lc* of f:, - 0.00(;. 'I'll!:<br />

cxt.romrly low tllxg of thc ncrofoil is ncl~icvetl ns n rcsctlt, of n cnrt$r~ll~ cltosc.~~ ,)l.olilc~<br />

which assures llmt the boundnry Inycr rernnins laminar ovcr nlmost t,l~c \vl~olc of its<br />

wett.ed Irngth (Inminnr ncrofoil). Tfit,l~is conncxion, Chap. XVf l nt~tl, c!s~)rc.i:tll~, Icig.<br />

17.14, sl~o~~ltl Ije consult.cd.<br />

c. Turhulertt llnw in n pipe and in n bot~ntlnry layer<br />

hlensnren~cnt,s show t11n.t the t.ypc of mol,iorl tl~ro~~glr n rirwlnr pipr which was<br />

calculal.cd in Section ld, and in wl~ich 1.11~ vclocily tlislril)trt.ion w:~s p:wnbolic,<br />

exists only at low and n~odcrnte Reynolds numbers. The fact that in thc laminar<br />

motion tinder disoussion fluid Inminno slide over each other, and ll~i~t tllcrc: aro no<br />

rndial vclocit.y romponrnt.s, so t.hnt t.he prcsslrre clrop is proportiot~:~l t,o the firs1<br />

power of t.he lncnn flow vrlocit.y, const.itmtrs nn esscnt.in1 c:l~arnrt.rristic: of this t.ypc<br />

of flow. This cI~arnrt.rrist,ic of the motion can bc mntlc rlrnrly visil,lo 1,s inlrotl~lcit~g<br />

a dye into the st.rmm and by tliscl~nrging it tl~rougl~ a t,llin t~~l)c, Fig. 2.22. At, t,l~c<br />

motlernt,~ Rrynolds nunlhers associntcd wit,l~ Intnit~nr flow tl~e tlyc is visit)lr in<br />

lhr form oi a clearly tlefinetl t,l~read ext,cnding ovcr thr. wllolc Irngtl~ of t,hc pip.,<br />

Fig. 2.22a. 13y increr~sing tlte flow velocity it, is pnssil~lc 1.0 rmch a stngr. .vheii t.hc<br />

Ruid pnrtic!les cease to move alor~g st,m.igl~t linrs antl t .1~ rcgrllnrity oC the mot.ior~<br />

brrnks down. l'l~c colourcd Lltrencl bcc:o~nc~ mixed wit,\) the flltitl, its sharp out.li~tc?<br />

becomrs blurred ant1 nvcmt.11a.ll.y thc whole cross-srrtioll Iwrotnrs colortrrtl, Pig. 2.221).<br />

On t.lw n,xinl n~otion t,hcrc are now s~~pr~.i~njmotl irrc~gr1l:tr rntlial Il~~ct.rt:~t.iot~s wl~irlt<br />

clli.c.t the mixing. Such a flow pnttern is cnllccl l~~fiule~r!. 'l'l~r tljw cxl~crilnrnt was<br />

first carried out by 0. Reynolds 1291, who nscertninctl tl~nt, the taansitsic.n honl<br />

the laminar to Llle t~~rh!cnt t,ypc of motion ttaltcs pl:rcc at a tlcfinit.~ v:t.lnr of IIIV<br />

I


In t,hc tr~rl~ulont region the pressure tlrop becomes approximately pr~port~ional<br />

t,o the square of the mean flow velocity. In this case a consiclerably larger pressure<br />

tliffcrencc is requirctl in ordcr to pnss a fixed quantit,y of fluid t.hrol1g11 the pipc,<br />

ns corrlparocl with laminar flow. l'his follows from t,ho fact that t.ho plrcnomcnoll of<br />

t.url)ltlrr~t mixing dissipat,cs a largc q~t:tt~t,it,y of' enorgy which c:~~~scs the rcsist,:tnc:c?<br />

1.0 Ilow t.o incrcasc considcr:tl)ly. lrurl,llcr~norr, in Ihc casr? of Lurl~ulcrlt, llow t,hc volodistritlu(.ion<br />

over the cross-scct,ior~al arca is much tnoro cvcn thrl in hminnr<br />

flow. 'rhis circumst,ance is also t,o be explained by turbulent mixing which causes an<br />

cxc:hangc of momcntum bctwecn the layers near the axis of the tube and those near<br />

t,hc walls. Most pipc flows which are encountererl in engineering appliances occur at<br />

such high Reynolds numbcrs that turbrllcrlt motion prevails as a rule. Thc laws of<br />

turb~llent motion through pipes will be discrlssed in detail in Chap. XX.<br />

111 a way which is similar to the motlion through a pipe, the flow in a boundary<br />

laycr along a wall also becomes turbulent when the extcrnal velocity is sufficient,ly<br />

largc. ISxpcrimental investigations into the transition from laminar to turbulent<br />

flow in the I,ollntlnry Inyer were first carried out by J. M. Burgers [GI and I3. G.<br />

vnll (lcr licgge Zijncrl 1171 as wcll as by M. IIansen [lG]. The t,ransit.iorl from<br />

laminar to turbulent flow in the boundary layer becomes most clearly discernible<br />

by a sutltlcn a.nd largc increase in the boundary-layer thiclrncss ant1 in the shearing<br />

stress near the wall. According to eqn. (2.1), with 1 replaced by the current co-<br />

ortlinatc s, the dimensionless boundary-layer thickness 6/1/1'27~; becomes constant<br />

for laminar flow, and is, as seen from eqn. (2.la), approximately equal to 5. Fig. 2.23<br />

contains a plot of this tlimcrlsiorllcss boundary-layer thickness agairlst the IZcynoltls<br />

number IJ, z/v. At R, > 3-2 x 10" very sharp increase is clearly visil)le, and<br />

Fig. 2.23. Boundnry-layer thickness plob-<br />

tedr against the Reynolds number based<br />

on'the current lcngth z along a plate in<br />

pnrnllel flow at zero incidence, ~s mea-<br />

sured by llanscn [I61<br />

as sprn from rqn. (2 1 a). llr~lrc to thr rritiral Rrynoltls r~urnl~rr<br />

there corrcspontls Rg crlt = 2800. The bountlary Inyrr or1 :I plate is Inr11in:cr near t.l~t:<br />

leading edge and bcconles turbulent f~lrt.llcr tlowr~st,rca~n. 'I'llc nbscissn r,,,, of tl~t<br />

point of lrn~lsit~ion can be clctcrminctl from L11c ktlow~~ v:~lric of R, .,,,. In t.llc caso<br />

of n plate, as in the prcviot~sly discussed pipc flow, the nun~cricnl vaI11o of R,,,,<br />

dcpcntls to a ~narkctl degree on the amount of' tlist.~lrl~ancc in tho nxt,crn:tl flow, :111tj<br />

the value R, = 3.2 x 10%hot1lcl be regartlet1 ns a lower limit,. With oxccpt.iorl:~Ily<br />

(list-rrrbnncc-frcc cxt.crnal flow, valrlcs of R, , - 10%rlrltl higllrr 11:~vc been :~tt.ail~rtl.<br />

A 1):~rticul:trly rernarltable phcnorncnon connccld with the transit.ioll from<br />

laminar to trlrbrllt:nt flow occurs in tJle casc of blunt llotlics, s11cl1 as circ~~lar cylintlers<br />

or spheres. It will be seen from Figs. 1.4 ard 1.5 t,llaL the tlmg coef'ficierlt ofa circrtlar<br />

cylintlcr or a sphcro suffcrs a sutltlcn :d consitlcral~le dccrcasc Ilr:lr Itcynoltls<br />

n~iml~crs 1.' I)/v of bout 5 X lo5 or 3 x lo5 rcspccLive1~. This fact was first, obscrvrtl<br />

on sphcrcs by G. 1I:iffrl 1141. It. is a conscquerlcc of t,ransition which causes t.he<br />

point of separation to movc clownstacam, l)cca~rsc, in the case of a turbulcr~t 1)ountlary<br />

laycr, the accelerating influence of the cxt.crn:d flow extmds furlhr due t,o t.t~rbulrr~t.<br />

mixing. ~Tcncc the point of separation whicll lies near the equator for a laminar<br />

I)o~rr~tlary I:~ycr nlovcs over a cor~sitlcml~lo tlislnr~cc in the downstream tlircct.ior~.<br />

In t,urn, the tlcad arca decreases considcmbly, anti thc pressure di~t~ribution becomes<br />

more like t,hat for frictionless motion (Fig. 1.11). The decrease in thc rlcad-wat,cr<br />

region consitlcmbly reduces the prcssrlrc dmg, and that shows itself as a jump in<br />

the curve G, .= f(R). L. Pmnrltl [26] provctl tl~e corrcctncss of t,hc prrcccling<br />

reasoning 11y nlo~inl~ing n Ihiri wirc ring III; a ~Ilort, (li~Im(:c in fro~tt or IJIO ccl~i:ll,or<br />

of a sphere. This car~scs the boundary laycr to bccome art,ificially turl)~llcrlt at n lower<br />

Reynolds nl~mbcr and the tlccrcasc in t,hc drag cocfficicr~t taltes place carlicr Lllar~<br />

would otherwise be the case. Figs. 2.24 and 2.26 reproduce photographs of flows<br />

which have been made visible by smoke. They reprcscnt the subcritical pattern<br />

with a large value of the drag coefficient and the supercritical pattern with a small<br />

dead-water arca and a small value of the drag coefficient. The supercritical pat,tern<br />

was achieved with Prandt,l's tripping wire. The preceding cxporimcnt shows in<br />

a convincing manncr t,hat the jump in the drag curve of a rircular cylintlcr and<br />

sphere can only be interprctcd as a borindary-layer phcnomcnor~. Othor bodies<br />

with a blunt or rounded slcrn. (c. g. elliptic cyli~~tlcrs) display :I type of relationship<br />

bctwcen drag coefficient and Rcynoltls number wllicl~ is s~~l)sta~~li:illy similar. \'Vit,h<br />

increasing slcntlcrness the jump in t h curve bccomcs ~'iro~rcssivcl~ less pronor~nccd.<br />

For a streamline body, such ns that shown it1 Fig. 1.12 t.h(:rc is rlo jump, I~nc:~usc<br />

no :lpprrci:r.l)lc scp:~.rnt,io~~ occ~lrs; t,lw wry gmtlrr:~l Iyssrlrc ir~c!rr:lso on I,l~c Il;lclt


42<br />

11. 011tli11e of Iw~~ntlnry-Inyrr theory<br />

of suc.11 I~otlics csan I x overcome by tl~c bor~ntla.ry layer witho~~t separat.ion. AS we<br />

sl~all also scc Int,cr in grrat,er tlrtail, t,he pressure di~tribut~ion in thc ext,ernal flow<br />

t~xrrt,s a clet~isivc influt:nce on t,hc positmion of t.11~ transition point. Thc bountlnry<br />

Ia.yrr is laminar in the region of prcssurc deereast, i. e. rol~ghly from t.l~e leading<br />

ntlgc? to t.hr pint of minimum pressure, ant1 becomes t~~rhulent, in most cases,<br />

from t.l~:~t point onward througl~o~~t, t.l~r region of prcsslrrc inrrcn.sc. In this corrnexion<br />

it is iml~ort,ant to statc tht, scpamt,ion can only bc nvoitletl in rcgiorrs of incrensing<br />

prcssnrc n h the ~ flow in thc bountlnry layer is turlrulcnt. A laminar 1)ountlary layer,<br />

as wc shall see Int.er, can support, only n very smnll pressure rise so t,hat. scparat,iorr<br />

would occur even wit.l~ very slcndcr botlics. In prt.icular, this remark also applies to<br />

the flow past nn aerofoil wit,li n pressure dist,rit)ut,iorl similnr to that in Fig. 1.14. In<br />

t.llis cnse scpamt~ion is most liltcly t,o ocrur on t.he sncI,ion side. A smoot,l~ flow pattern<br />

nround n.n ncrohil, contlucivc t.o ~ I I C creation of lift, is possihlr only wit.11 a t,~~rhnlent<br />

bountla.ry Ia.ycr. Summing up it, ma.)i be st.at,rtl that, t.hc small drag of slencler bodies<br />

as wrll &s t.11~ lift, of acrofoils are ma.& possible 1,111~ough thc cxist,enec of n t,url)ulent,<br />

t)ountla,ry Inyer.<br />

Bounclnry-lnyer thickness: (~cr~erally spealc~r~g, the thicknesq of a tnrbulcnt<br />

Imr~ntlary hycr is larger than that of n laminar boundary layer owing to grratcr<br />

energy losses in the former. Nenr a smooth flat plate at zero incidence the boundary<br />

layer incrcascs downstream in proportion to xoR (x = distance from leading edge)<br />

It will he ~llown Inter in Chap. XXI that the boundary-layer tl~ieknrss variation<br />

in (nrt)nlrnt flow is given by the rqnntion<br />

f<br />

d lJm,l -'I5 *<br />

= 0.37 ( ) = 0.37 (Rl)-'1' (2.9)<br />

1<br />

whic-ll c:orrcspontls 1.0 rqn. (2.2) for laminar flow. I'ahlr 2.1 givns vnlnes for thn<br />

I~o~~~~~l:r.ry-I:tyc:l. t11i(~Ii11ns~ o:~l~:uIal.r~I from eqn. (Z.!)) for several typical casos of air<br />

:~1d watl~r flows.<br />

c. Twhulent flow in n pipe nr~d in a hourldnry lnycr 43<br />

Tnhle 2.1. Thickness of bormdary Inyer, 6, at t.rniling edge oF flnt plate nt zero inridencc in<br />

parallel t.nrlwlent flow<br />

U, = rrcr ntrenlll vrloclty: I = lrnqth or p1al.e: r = kinrn>nl.le risrasily<br />

Air<br />

v = 150 x 10-e ftZ/~~v:<br />

100<br />

200<br />

2 0<br />

5 0<br />

750<br />

Methods for the prevention of separation: Sopnrnt,ion is mostly nn r~ntlcsir:~.I~lt!<br />

pl~rnomcnon bccnusr, it clltr~il~ lnrgo onorgy losncs. I'nr thin rcnson rnctllo~ls I~r~vo 1,cm<br />

tleviscd for the artificial prcvcntion of separation. Thc simplest met.hotl, from t,l~c<br />

physical point of view, is to move the wall with the stream in order to rcdr~ce hhc<br />

velocity difference between them, and hence to remove the cause of boundary-layer<br />

formation, but this is very difficult to nchicvc in engineering practice. Ilowcvcr,<br />

I'rnndtl t has shown on n rolaling circdar cyli?zP.r tllat this method is very rfrcct.ivn.<br />

On the side where the wall and stream move in thc same direction separnt.ion is oornpletely<br />

prevented. Moreover, on the side where the wall and strenn~ move in oppositc<br />

tlircct,ions, separation is slight so that on the whole it is possible to obtain a gootl<br />

experimental approximation to perfcct flow with circulation ant1 a large lift..<br />

Another very effective method for tlic prcvcnt,ion of separation is hm~d


44 11. Outline of boundary-layer theory References 45<br />

to the aerofoil at considerably larger incidence angles than yould otllcrwisr be tlr~<br />

rase. stalling is clrl:cyetl, nntl much largtr maximum-lift values are achieved [3F].<br />

Aft,er having given a short out,lino of the fnntlamentd physical principles of<br />

fl~~id motions wit,l~ vcry snlnll friot.ion, i. c. of thc boundary-layer theory, wc shnll<br />

proneed to clovc!lop n mtional theory of tl~cso pl~cnorncnn froln 0110 oq111~1.ions 01'<br />

motion of V~SCOIIS fluids. Thf: description will be arr:~ngctl in the following way : Wt:<br />

shall begin in Part A by deriving Ghc general Navicr-Stjokes equations from whicl~,<br />

in turn, we shall derive Prandtl's boundary-layer equations with the nick of the<br />

sirnplificntions which can be inl,rotlucctl as a consequence of the small values of viscosit,~<br />

This will be followed in Part I3 by a tlc~cript~ion of the metjhods for the integmtion<br />

of these cqnat.ions for the caso of laminar flow. 111 Part C we shall discuss the<br />

poblem of tho origin of t,nrbulcnt flow, i. o. we shall discuss tho process of transition<br />

from laminar t,o t,urbulent flow, treating it, as a problem in the stabiliLy of laminar<br />

mot,ion. Finally, Pn.rt .D will contain the bountlary-laycr theory for completely<br />

tlcvclopcrl turbulent motions. Whereas the theory of laminar boundary layers can<br />

I)c trcat,ctl as n dctlnctlive sequence Imsctl on t,hc Nnvicr-Stolres tlifTerent,i~l equationx<br />

for viscous fluids, tho same is not,, at prcscnt,, possible for turbulent flow, t)ccnusc thc!<br />

mccl~anism or turbulent flow is so complcx t.hat it cannot be mastered by purely<br />

t.l~rorct,icnl mct,hods. For t,his reason a t~rc;~iisc on tlnrl~nlcnt flow must, draw 11e:~vily<br />

on exprrimentnl result,s ant1 t,llc subjcrt mnst Ijc presented in t,hc form of a semicmpiriral<br />

throry.<br />

References<br />

[I] Acl~enbach, E.: J':xperilnent,s on the flow past spheres at vcry high Reynolds numbers.<br />

JFM 54, 505--575 (1972).<br />

121 Ilcrger, J':., ant1 Wille, It.: Perioclic flow phenon~c~~n. Annual Reviow of Fluid hlcch. 4,<br />

% ><br />

313--340 (1072).<br />

(31 nerger, 15. : Ucst.iln~nung dcr l~ydrodyn:~l~~iwI~c~~ (:riissen einer Iins. (:iiltingcn 1!)07;<br />

L. Math. u. I'h~.s. Mi, 1-37 (1908); Engl. trnt~sl. in SAC'\ Thl 1250.<br />

151 Ulenk. H.. I~urlis, I).. and Licbcm, I,.: uber die 3lcssung von \\'irbelfrequer~zcl~. 1,uftfnhrt-<br />

L ,<br />

forsrh"ngl2, 38--41 (1935).<br />

[O] Burgers, J. M.: 'The motion of n fluid in thr houndnry lnycr nlong n plnne sn~ootl~ surfnce.<br />

1 Roc. First lnternationnl Congress for Applied Mcchnnics, 1)elft. 11J-- 128 (I!)24).<br />

171 (;h:~ng, P.K.: Sep:~rntion of flow. l'ergnn~ot~ Press. \Vnshington I>.C., 1!)70.<br />

[R] C,rrn~nk, J. E.: Ap~~lirntion of fluid n~rchnnics to \r-intl enginrering -- t\ Frcetnnn Scholnr<br />

Icrture. Trnns. AhNlC Fh~ids Engineering 97, Ser. I, 9--38 (1!)75): sre nlso: Lahor:~tory<br />

sin~rtlntiot~ of the ntlnosphcric houndnry Inycr. t\lA,\ .J. 9. 174(i-1754 (1!171).<br />

18111 Cerlnnk, .I. E.: Acrodynnn~ics of h~tildingn. r\n~~ilal He icw of Fluid Blrch. 8, 75-- 100 (1970).<br />

,!I] Crnnnt. JE.. and S~~CII, w.z.: \\lint~.tunnci siln6tion of wincl ionciing on structures.<br />

Jlrctinp: I'reprint 1417, r\SCIC Sntionnl Structural 1Sngineering Alreting. 13nltit11orr. hfnry-<br />

Inrd, 171-- 2j April, 1971.<br />

[I01 j)nvenport, ,\. G.: 'rhc rclntionship of wind structure to wind Ionding. Pror. Confercnrc on<br />

\\.i~~tl 15llrrts on I3uildi11~u nnd Str~wtures, Sntionnl I'hynirnl I,nhor:~tory. 'Trtldingtol~,<br />

Jlid(llrnrx. (:rrnt Itritnin. 26--28 ,111nr I!l(i:l. Ilcr Mnjmty's Stationnry 0flic.r. I,ontlol~.<br />

\'()I. I, 54 -- I I2 (I !N\5).<br />

[ll] Dotnm, U.: Ein Beitrag zur StabilitAtstheorie der Wirbelstmssen unbr Berucksicht,igu~~g<br />

endlieher und zeitlich wachsender Wirbelkerndurchmesser. Ing.-Arch. 22, 400 - 410<br />

i 1954) -,.<br />

[12] Ihhu, W.: Uber den Einfluss 1aniinn.rcr und t~~rbulcnlcr St.riimrtng nvf dnu Riinlg~nbild von<br />

Wnssor untl Nit,rol~cnzol. Ilclv. phys act,:^ 12. 100--228 (I!):)!)).<br />

II3] Ihrgin, W.\\'., nncl l


[:j2a] I?o~cilhrntl, I,.: Thr forn~atior~ of vortices horn n surface of cliscontin~iitj~. Proc. Roy. Soc.<br />

A 134, 170 (1931).<br />

[:XI] Jl,r~bact~, 11.: Uher dir 1ht.stehung und Iqortl~c\vegnt)g dcs \Yirbrlpnnres bei zylindriscl~on<br />

I


48<br />

111. Derivation of the eqrtat,ionn of motion of a compressible viucoou fluid<br />

The etl~lnl,ions of motiot~ ore dcrivotl from Nowton's Second Law, which shtes<br />

that the product of mass and accelcrntion is equal to Lhe sum of the external forces<br />

acting on t,hc Imdy. In fluid mot.ion iL is necessary to consider t,hc followil~g two<br />

classes of forcrs : forces acLing thro~~ghorrt the mass of the botly (grsvit,ational forces)<br />

ant1 forces arting on Lhc bounrlnry (pmssurc and friction). If F r= Q g denot,rs the<br />

gravit,;\t,iorl:~l force per unit volumo (g 7.7 vcrtor of accrlcmt,ion due t,o graviLy) ant1<br />

I' denot,es the force on the boundary per unit volume, then the equations of motion<br />

can I)c written in t,ho following vector form<br />

1' = i I', -{ j P,, + k Pz surface force . (3.4)<br />

'I'l~e syn~l)ol I)tr-/l)l tlcnot.c~s hcrc t,l~c sul,st.antivc :wc:cler:~t~ion which, like the sul)stant,ivc<br />

tlrrivat.ivc ol' tlonsit.y, ronsist,s of Lhc local cont,ribution (in non-steady flow)<br />

c?tv/at, nntl tho convrot.ivr cont,ribut.ion (tl~~c to t,ranslation) drtr/dl = (w-gmd) rc~t<br />

'I'l~n I)otly li)rcrs arc: t,o I)c rcgardctl as givcl~ extcrtwl l'nrct>s, but, t.he surfnee forcrs<br />

tlrpncl on t,l~e rate at, which t,hr fluirl is stwined by the vrlocit,y field present in it,.<br />

l'l~o system of fhrcrs dot.crmincs a slrrtc o/ stress, :mtl it is now our task to intlicat,e<br />

t,l~c rclat~ionsl~i~, l~ct,\vcen st.rcss and ri~tc! of st.min, noting t.l~at it can only be give11<br />

empirically. In our presrnt, tlcriv:ttion \vosl~:~ll rcst,rict,ntt.ention toisotropic, Newto7iinn<br />

/b?cirls for which it may Iw nssun~ed 1,11:1t. t Iris relnl ion is a linear one. All gases and<br />

manjr litl~~itls of int.crcst it] bountlnry-hyrr t.l~eory, in pnrt.icnlnr wat.er, belong t,o t.his<br />

clt~ss. A fluitl is snitl 1.0 I)(, isot,ropir wl~cn the rrlnt.ion 1)ct.wcrn t.he coml)oncnts of<br />

st,rcss ant1 t.l~ost: of 1.11~ rat,? ol strain is t.ho sxnlr in all directions; it is said t,o bo<br />

Newtnni:ln whcn t,l~is rclat.io~l is linrnr, t.l1:11. is whcn the Ilnid obrys Strokes's law of<br />

f.ricl,ion. In t,l~r cnsc of isotropic, cl;~stir solid Imlirs, cxpcriment tmches I,lmt t,l~c<br />

st.nt.c of strc-ss tlrpcnds on thr rnngnit~uclc of sttrain il.sclf, most engineering mat.erinls<br />

obeying Jlooltc's lincnr Inw whic:h is somcwl~nt analogons.l.o Stokes's law. \Vhcrens<br />

t,he rcl:~tion l,nt,\vccn stxcss and st.r:~in for an isotropic elastic solid involves t,wo const.nnt,s<br />

whicl~ cl~nrnctcrizc t.hc propcrt,ins of a given mat,crial (e. g. elirst,ic motlnl~~s:ml<br />

I'oisstm's rat,io), the rc,l;~t,ion bct\vccn st,rrss and rate of shin in nn isot,ropic fl~~itl<br />

irrvolvcs n, singlr ronst,:~nt. (1.11~ viscosity, p) ns long as rel:~xat.ion pl~cnornena do not<br />

occwr wit,l~in it.. ns we sl~:lll sro in Scr. Ill(>. ,<br />

b. General stress system in e, dcfor~nablo body<br />

I#. General stress system in a deformable body<br />

In order to writo down expressions for the ~urface forces ncting on the bo~~ndarjr,<br />

let, 118 imngino n mnll prirrillcpipctl of volumo d V = !lx (I!/ tlz isol~cto(l<br />

49<br />

~IIU(.ILII~,ILII~~<br />

from the botly of the fluid, Fig. 3.1, and let its lower loft-l~nr~tl vcrttcx coincide wit.11<br />

the point x, y, Z. On the two faces of nrcn dy . tlz which arc pcrpcn(lictlIar 1.0 tho<br />

z-axis thcre net two resr~lt~nnt stresses (vectors = surface forcc per 1111it arca):<br />

Fig. 3.1. 1)rrivation of the expressions<br />

for the strrm tensor of nn inl~ornogcneo~ln<br />

utrcss nystcrn and of its syrnmetry in the<br />

absence of n volurl~ctric distribution of<br />

local moments<br />

apz<br />

pz and pl -4- dx rcspcctively<br />

ax<br />

.<br />

(Subscript x denotes that the stress vector nets on an elementary plane which is<br />

perpendicular to the x-djrection.) Similar terms are obtained for the faces dz . tlz<br />

and ilx . dy whir11 are perpendicular to the y- and z-axes respectivrly. Ilencc the three<br />

net components of the surface forre are:<br />

"=<br />

plane 1 direction x: - .<br />

8%<br />

dx . dy . dz<br />

and t01e rcw~lt~ant srlrfacc forrc P per unit volume is, tl~crcforc, given I)y<br />

The quantities p,, p,, p, are vectors wl~icl~ can be rrsolvcd into components perpendicular<br />

to each face, i. e., into normal stressos denotetl by a with a suitable<br />

subscript indicating the tlirection, and into components parallel to each facc, i. o.<br />

into ~hcaring slrcsscs denoted by t. The symbol for n shvnring stress will I)o ~~rovitlrd


50<br />

111. l)crivnt,ion of thc cquntion~ of moI.ior~ of n cornprrcmihlo viscous fluid<br />

with two snbscripta: the first subscript indicates the axis to which the face is per-<br />

pendicular, and the second inclicat8cs the direction to which the shearing stress is<br />

parallrl. With this notation we have<br />

The strrss syst,on~ in soen to require nine scalar qun.nt,itics for its clcscript,ion. ?'heso<br />

nine quantitirs forrn a alresa tensor. The sel of nine components of the stress<br />

t.rl~sor is somct,imcs callrtl bhe st-rcss matrix :<br />

'I'llo st.ress t,cnsor and tho correspor~ding matrix are symmetric, which means<br />

t.llat two shearirrg stresses with subscript8 which differ only in their order are equal.<br />

This can be tlcmonstrated with reference to thc equations of motion of an elemcnt<br />

of fluid. Tn gcncml, itas motion can be sepnrntetl into an instantaneous translation and<br />

an inst,znt,ancorw rotat.ion, and only t,l~c Iattor needs to he consideretl for our purpose.<br />

Denoting t,hc inst,antaneous angular ncccleratiorl of t.11~ element by &(ti),, h,, h,),<br />

we cnn wrik for t,ho rot.ation about. tjho y-axis that<br />

where tlly is t,hc elementary momcnt of inertia about, the y-axis. Now the momcnt<br />

of inertia, dI, is proportional to the fifth power of the linear cli~nensions of the par~llelr~iped,<br />

whereas its volumc, tl IT, is proportional to their third power. On contracting<br />

thc clcmcnt to a point, we notice that the left-hand sitlc of t


52<br />

111. I)rr.ivnt.iot~ of tho rrlrtnt,ions of ~ndion of n cotnprc.ssiblc viscous fluid<br />

'1'110 system of the Ihrcw cq~t:~t,ions (3.1 1 ) aotrt.air~s the six st,rrsscs a,, a,, a,,<br />

T,,, t , s,,. Tho next tdc is t80 tlct,crlninc the relation between them and the<br />

strair~s so as to enable 11s t,n introduc~ the vrlocity components u, v, w into eqn. (3.1 1).<br />

Before giving this rclat,ion in See. 111 tl wo shall ir~vcstigat.~ t,l~c syst,om of st,mins<br />

in great,cr detail.<br />

c. The rntc nt which a fluid element i~ stmined in flow<br />

Whrn a cont,inl~o~ls l)odq. of fluitl is rnatlc to flow, every rlcmcnt in it is, gcncrally<br />

sptvdting, clis~,ln.cctl t.o a new posit,ion in t1he course of time. 1)uring t.his motion<br />

rlcmpnts of flrlitl l)ccon~c st,minctl, ant1 since the mot,ion of t.hn flnicl is completely<br />

tlet.rrminrt1 when the vclocit,y vect,or rrr is given as a funct,ion of t,ime and positpion,<br />

tr, = ru(z,?/,z,t), them cxist Itincrnat,ic rrlnt,ions l)et,wcen the components of t,hc<br />

r:~.tc of st.min and t,ltis function. 'Vhe rntc nt which an clement or fluid is strained<br />

tlcprt~ls on t.11~ ~~1.lbz.t: n~otion of t,wo poin1.s wit.hin it. We, therefore, consitlor the<br />

t,wo neigl~l~onring points A ant1 B whirh arc st~own in Fig. 3.2. Owing to t.he presence<br />

of t,ho vrlority field, point A will be tlisplncctl to A' in t,ime dl by a distat~ce s = ro dt ;<br />

sinrr, I~owevor, tho vclocity at B, imngincd at a dist,ancc dr from A, is different,<br />

point H will move t,o B' displ:md from 1% by s -1- (1.9 = (ui -1-tlrri) dt. More explicitly,<br />

if t,hr componcnt.~<br />

l)oint, I 0. 'i'l~c rclat,ive velocity ol'<br />

any point B with respect t,o A is now<br />

antl tho field consists of planes x =- const which displace thcmsclvcs nniformly<br />

wit,ll a velocit,y which is proportional Lo the clistancc tlx away from the plane x = 0.<br />

An elementary parallelepiped with A anti R :~t its vertices placed in such a vclocity<br />

field will be distorted in extension, its face BC receding from AD wil.11 nn inorcasing


Fig. 3.3. Tmcd clintor1,ion of fluid rlenlc.111<br />

whcn &/ill: > 0 wil.11 nll olhr lrrnin bring<br />

eqnnl to zrro; rrniforrn exlcnnion in the z-<br />

direction<br />

vr1ocait.y. Thus 2, reprcscnt~ t.he rate of rhn,gdion in the x-dircct,ion sufli?retl by the<br />

clcmctit. Similarly, the atlclit,ivc terms C, = a11/'11/ ant1 C, = aio/i)z drscri1)e the rate<br />

of rlorig:rl.io~l ir~ t,llc y- xntl z-tlircctions, rcspcctively.<br />

(~r I az lr I, dy dy


56 11 I . 1)t.rivntion of t.lm cquntionrr of n~olinn of n rotnprcasibln viscous tlnitl<br />

arltl r?n/8z 11avc posit,ive nonvanishing vnlnrs, the right, angle at A will distort owing<br />

t,o t,l~e sl~pcrposit,ion of t.wo n~ot,ions, t,llc st.:~tc of affairs bcing illr~st,ral,etl in Fig. 3.5.<br />

1L is clr:~r that, 1.hr right n.tiglr at. A now distorts at t,wiac the mtc<br />

tlcscrilwtl by I wo of the orf-tliagon;~l . . t,rr~ns of matrix (3.15%). In general, t,hc thrcc<br />

~ff-dii~gon~l t.rrms Ex!, - F,/,, F,, = d,,, :LII~ E,, = Fyr tlcsrxibc the rate of dist,ort,ion<br />

of a right, nnglc locatrd in ;L plane nornmnl t,o the axis the index of which does not<br />

nppt'ar ns n srll)script.. 'l'hr tlistort.ion is volume-preserving and affects only the<br />

shape of t,hc rlcmcnt .<br />

(lirrr~mstanrrs nro ilgain tli!fcrcnt in the pzrticulxr case when au/ay = - av/az<br />

illrrwt.r;ct,ctl in Kg. 3.6. k'roni t.11~ preceding considerations and from the fact that.<br />

t~ow 2,, - t) \\.e ran infsr n.t oncc tllat, the right angle at A remains undistorted.<br />

'I'his is also rlrar from thr diagram which shows that the fluid element rotates with<br />

rcsprrt, t,o t.llr rcfkrencr point A. Insla~rtnneo~~sly, this rotdon occurs without<br />

dist.ortion ant1 call Iw dcsoril)rtl as a rigitl-l)otly rot,ntion. The instant,ancons nngulnr<br />

vrlorit,y of this rot,at,ion in<br />

It, is now rasy t.o see that the component. < of curl in from cqn. (3.15b), known as<br />

t,hc vort.irit,y oft.11~ vclocit,y ficld, reproscnt,~ t.lw angular velocity of this instant.nneo~~s<br />

rigitl-lmlj~ rrfi:.:t ion, and that,<br />

c. The! rate ~t whir11 a Ihid elcnwnt is ~Lrainctl in flow 57<br />

(a) A pure tmnslation t1escril)ctl by the vclocit.y components w, v, 1il of it,.<br />

(b) A rigid-body rotation described by the con~poncnt,~ 5, 7, 5' of c~~rl icr.<br />

(e) A volrrmctric dilatation tlcscrilmi by e -- tliv in, the iinmr dil:it,:~tions in<br />

the tlircctior~ or the axes bcing described I)y d,, i, :tnd E,, rrs~)e(:t.ivoly.<br />

((I) A tlist,ort.ion in shapc drscribctl by t.hr cornponcnt.~ i,, (,I,(: wit11 rnixt:tl<br />

inclicrs.<br />

Only tho last, two motions produce an intxinsic tleformation of n llr~itl olcme~lt,<br />

surrour~tling tho rrfercncc point A, lhc first two causing a mere, general, tlisplacerncnt,<br />

of its location.<br />

T11c el~ment~s of matrix (3.15a) constit,rrte the componcnt.s of ;t symrnet~ric<br />

tensor known :IS t,he rate-of-slmitt lensor; it,s mat.l~ematical propertics arc analogous<br />

to those of the cq~rally symmct.ric st,ress t,cnsor. It is known from the theory of<br />

elasticit$y 13, 71 or from general c:onsidcrations of hnsor algebra [I I ] tht wit,l~<br />

every symmetric tensor it is possil)lc t.o associate three rnrlt.rrally orthogond pritt,cipnl<br />

axes which tlctormine tlrrce mut,nnlly ortllogonal principnl plar~cs t,l~:~t is a privilcgctl<br />

Cart,esian syst,crn of coordinat,cn. In t.llin syst,cm of coortlinatlcs, t,he stlrcss vert,or<br />

or the inst~wt.t~ncor~s nrolion in tiny ono of the prinoip:~l planes is nornr:d lo it., LhaL<br />

is, pnrallel t,o one of the axes. IVlrcn sr~cl~ a special system of c~ordinat~cs is used,<br />

the n~at~rices (3.10) or (3.15a) retain their diagonal tmms onlv. DcnoLirra the valrrcs<br />

of tlw respective romponer~ts by symbols with I);ir<br />

matrircs<br />

It slrould, finally, bc remembered that, such :L t,rnrrsli)r~i~:~liot~ of c~oortlin:~t.vs tlo~<br />

not affect, the sum of the diagonal terms, so that<br />

Iz'ig. 3.7. I'rincipial axes for<br />

st.rrss ;ind ral.c: of sl.r:~in


of flltitl is strcsscd in thrcc nlutually pcrpcndicirlar tlire~t~ions, and its faccs arc<br />

displaactl instantaneortsl~ also in tlrrec niut.ually perpendicular directions, as suggested<br />

by Pigs. 3.7a antl I). This tlocs not., of course, moan tlmt bllcre exist no shearing<br />

strrssrs in ot.Ilrr pl:~nrs or t,llat. t,l~o sltapc of t.lw clcmrnt rcmr~ins ~lntlistortrd.<br />

11. Rclntion between stress and rote of deformation<br />

It sl~nuld, 1)crhaps, 1~ st.rcsscd once more that the cql~at~ions which relate tho<br />

surface forces to the flow ficld must, be ol)tainetl by a pcrc~pt~ivc interpretation of'<br />

experimental resulB and that our intcrcst is restricted to isotropic and Newtonian<br />

fluids. l'hc consitlcmt,ions of the precctling section provided 11s with a useful mathcmatical<br />

franlcwork which allows us now to statc thc rcquircmcnt~s suggcstcd by<br />

experimcnt.~ in a somewhat, morc prerisc form.<br />

When the fluit1 is at rcst, it dcvclops a uniform ficld of hydroslatic st,rcss<br />

(nrgat.ivc prrssurc - p) which is idcnt.ica1 witli the thermodynamic pressure.<br />

When the fluid is in mot.ion, t,l~c equation of statc still tlcternlines a pressure at,<br />

ovcry point ("principlc of local st,atc" 141), and it is rnnvcnicnt to consider t,he<br />

tlcviat,oric normal strcssrs<br />

togrtl~cr wit,lt the nnc:lrangotl shearing strosscs. The six q~~ant.itirs so obtjainctl<br />

cor~st,itrct,c a symnlct,rit: strcss tensor thc cxistcnrc of which is tluc to the tnotiorl<br />

hccnusc at rcst. :ill it.s componcnls vanislt irlcnt.irally. l'rom what Ilns bcen snit1<br />

brfnrc it follows that tllc components or this tlcviat,oric tcnsor arc creatctl solcly<br />

by t,hc componcnls of the ra1.c-or-shin tensor, t.11at is to thc exclusion of the cornponcnt.~<br />

v, 17, m of vc~1ocit.y as wc:ll as of the componcnts (, ?I, 5 of vort,icit,y. This<br />

is rclnivnlent. to s:r\,ing I,l~:rt the inst.nnt.:lncolts t.r:tnslat.ion [component motion (a)]<br />

as wrll as tho inst,:~.rtt,ancou rigitl-hotly rot,:~tion Icompor~c~~t motion (I))] of' an<br />

t,lrtnrnt of llrtitl protlucc no surface fnrccs on it in atltlit.ion to the exi~t~ing cotn-<br />

~wmrnt.s of l~ytlrost.:tl~ic prrsstlm. 'l'hc procctling st.atcmcnL, cvidcnl.ly, rnorrly rcprcscnt,~<br />

x prcciso 1oc::d formnlnt.ion of wltat we cxpoct Lo observe whcn :I Gnitc I)otly<br />

of Ilt~id performs n gcncral mot,ion wl~icll is ir~tlist~ing~rishablc from tltnt of an<br />

~:q,~~ivalcnt rigill hn(ly. We thus cmncl~dr th:it the erprrssions for tho components<br />

a, , 0,'. . . ., T ~, of blrc tlcviatoric st.rcss t.cwsor can ront,airr in lhcm only the velocit,y<br />

gratlicnt,~ aupx, . . ., alll/az in approprintc combinations which we now procccd to<br />

clet,crmine. 'I'ltcsr: rclntions are postnlnt.ct1 t,o Oc lincar; thcy must rcmain unchangccl<br />

by a rotation of the syst.crn of coortlirlalcs or by an intcrct~ange of nxcs 1.0 ensure<br />

isot,rolry. Isotaopy also rctluirc-s that at every point, in t,hc continuum, tfhc principal<br />

a.xcs of t,llo strrss t,cnsor must roinridc with the principal axes of the rate-of-strain<br />

t,crisor, for, ot.I~(~rwisr, :I. prrfcrrcd diroct,ion wollld 1)c introduced. rllltc simplest<br />

way to arllicvc otlr aim is to select an arlrilmrf point, in the cont,inunrn antl t,o<br />

itn:~girin Llr:~.t, the locnl syst.crn of roordir~at~cs ?, ?7,'2 has been provisionally so clloscn<br />

as t.o coincitlc with the t,llrcc common princ:ipal axes of tltc two trcnsor~. 'l'hc corn-<br />

I)ot~i.ttt.s of t,l~v vo1ocit.v lic*ltl in t,his syst,c:m of coordinntcs are dcnototl by ?(., ii, 111.<br />

of which conicides with it and on the sum of tho three, each with a different factor<br />

of ~moportionalit,y. Thus we record, dircctJy in terms of tho spacc-clcrivat,ives, tJ~at,<br />

'l'!.,? rlmlt,iti?s ?I,, 0, :~nd 4, r], C do not appcnr in ti~csc cxprcssiorts for t.11~ ~.r:~.sotls<br />

jtlst explained. In each expression, the lnst term represents thc appropriate rate<br />

of lincar dilatat,ion. that is, in essence, n change in allape, and tho first, terrn rcllrescnb<br />

the vollrmetric clilatfation, that is the rate of change in volume, in csscnct.,<br />

a change in density. Thc factors 2 kl the last terms are not essential, beirrg mcrely<br />

convenient to facilit,ate thc interpretation, as we shall see 1at.er. Tlrc fact


80 111. l)rrivnt.ior~ of the cquationu of lnot,ion of a con~presaiblc viscouu fluid<br />

where div rrt has been used for hrrvity. 'J'hc rcatlrr may notice the regularity with<br />

whir11 the indices x, y, z, the componrnfs n, v, in, antl tl~r coortlinntrs x, y, z arc<br />

permutcdt.<br />

Applying t,l~ese equations t,o the si~nplc casc rcprescnt.ctl in Fig. I .I, we rccovcr<br />

eqn. (1.2) and so confirm that t,hc precctling more gcnernl rrlat,ion rccluces to<br />

Newt,on's law of friction in t01r casc of simple shear ant1 docs, t,l~orcfore, const.itxtc<br />

it,s proper gcnoralimtion. At the samr timr, we identify tshe factor 11. with the viscosity<br />

of t,he fluid, amply disc~~ssetl in Scc 1 h, antl, incid~nt~ally, justify the factor 2 previously<br />

inserted int,o eqns. (3.21). The physical significance of the second factor, 1, requires<br />

furt.Iicr tliscilsaion, t~ut we 11ot.c that, it, plays no part in an incompressible fluid when<br />

div 119 = 0; it then disappears from the equat,ions a.lt.oget,hcr, ant1 so is seen to be<br />

in~port.nnt for r~ompressible Ruitls only.<br />

e. Stokes's hypothesis<br />

Althougl~ the problem l,l~at we arc about to discuss has arise11 more than a<br />

ccntury and a half ago, the physical intcrpretatiort of the second fact,or, 1, in<br />

eqns. (3.21) or (8.22a, b) and for flows in which tliv rcJ does not vanish ident,ically,<br />

is still being disputed, even though the vabe which should be given to it in the<br />

ioorkirtg eq~u~fio?~~ is not. l'his numerical VRIIIC is determined with the aid of a. hypothsis<br />

:~tlvancod by G. G. St,oltcs in 1845 11.71. Without, for Lhe nlomcnt,, concerning<br />

o~~rsclvcs with the physical reasons which just.ify Stokes's h?yjvath~s~:s, we first st.ate<br />

that according t.o it,, it is neerssary to assume<br />

This rclatrs the value of the fartor 1 to the visrosity, 14, of thr romprrssible fluid<br />

and redures thr number of propertics whic41 rhamct~erize the field of stresscs in<br />

a flowing romprcssiblc fluid from t,wo to onr, that is to thr same num1)cr as is<br />

rrq~~irctl for rcn incomprrssihlr f111itl<br />

Subst,it.nting t,l~is v:duc ir~t,o eqr~s. (3.22a), we ol~tairl the normal corni)oncnt,s<br />

of tlevin.t.orio stmss :<br />

aw<br />

a,' = - /L div IJ 2 ,u az ,<br />

3<br />

t 'hc aboyc ncL of six cqnnl.iona can be oontrac:tcd to a single one in Cartesian-hnsor notation<br />

(wit.l~ Einflkin's .sn~nrnnt,ion convention):<br />

u'IIc~(. tlw Kronrrkrr tlrlta dl, - 0 for i + j nntl dij - I for i -- J .<br />

the ~l~raring stresse~ remairhg unrhangrtl. Malting usr of eqrls. (3.20), wr obtain<br />

tl~r so-railed conrtitutioe eqlantion for an isotropir, Newtonian fluid<br />

in it,s final form, 11ot,ing that p reprcser~t.~ the local t,l~errnotlynarnic: prrssurrl-<br />

Regartled as a pure hypothesis, or ever1 guess, eqn. (3.23) can certainly be<br />

:~cceptctl on tho ground that the working eqr~at.ions which result from the substitut.ion<br />

of cqns. (3.26a,b) into (3.11) have been si~bject~cd to an unusually 1;trge number<br />

of cxpcritnentnl verifications, even ~~ntlcr quite cxt,remc conditions, as t,he reader<br />

will cor~crtlc after having studied this book. Thus, even if it should not rrprescnt,<br />

thr state of affairs exact.ly, it certainly constitut.cs an rxcellent approximation.<br />

Since the deviatoric components are the only ones which arise in motion,<br />

t,l~cy rcprrscr~t those components of stmss which produce dissipation in all isothertnnl<br />

flow, t,l~crc bcit~g further dissipatior~ in a t,cmperature field ~ IIC t,o thermal cor~tIuct,ion,<br />

(%:L~I. XI I . Fl~rt.hcrmore, since t,hc S:~cbor 1 occurs only in tho normal cornpo~~rnt,~<br />

cr,', a,', a,' wl~ich also cont~i~in the thcrnmdynaniic pressure, cqrls. (3.20), it I)ccomcs<br />

vlvar t,l~at. t,hc p11ysic:d significnncc of 1 is connectctl with t.he nicchanism of tlissip:\t,ion<br />

\\.IIPI~ t.he volume of t,hc fluid clcrncnt is changcyl at a finite rate as well :as<br />

\\.it,h t.11~ r.rl:~t.ion I)rt,wrrn the tohl st.rcss tensor :wtl t.l~c:rnmotlynnmic: II~OHSII~O.<br />

f. Bulk viscosity nrd tl~errnodynamic pressure<br />

\Ye now ~rvcrt to the genrral tlisc~~ssion, wiL11orrt ncccssarily arcaptir~g th(~<br />

\aldiI y of Stokrs's hgpothcsis, but, confine it to the casc wl~erl no shearing str~ssrs<br />

arr irivolvctl, 11cmusc their physical signifiranre arid origin is rlcar Conseq~lrntly,<br />

6<br />

In the compact tcnaorial notation wr would write


1:i~ 3.8. Qltnsintzt.ia cotnprrssion and orroill:rlory mobion of n upllorical maw ol fluid<br />

Wllcr1 tho syst.om is con~prcssed qrl;~sist~ntinally and reversibly, we again mcovtv<br />

1.11~ prcvions casc becauso then div rrt -> 0 :~s~mptoI.icall~. Wo note Lhnt in such<br />

cascs t,ho rate at which work is performed in a t.hcrn~oclyn:~rnicdly rcversihle process<br />

per 11ni1, vnlume hccomc:~<br />

rP - ptliv rrr (3.2Ga)<br />

which is t,l~r same as<br />

in the not,at.ion cr~sl,omary in thermodynamics.<br />

tl v<br />

Jk 7 p -- - (3.26 b)<br />

dl<br />

When div rrv is finite, and the fluid is compressed, cxpar~tlcd or made to oscillat.a,'<br />

at, n fuita d o , qualily hotwesn and -- P pcmist-9 ot~ly if tho coefficirnt<br />

11' " 1 I<br />

2<br />

3 lL<br />

(3.27)<br />

valrishm itlrntically (Stokes's I~~poLhsis); otl~or isc it docs not. If p' -l=O, the:<br />

oscillatory rnot,ion of a spl~ericat system, Pig. i .8b, would produce dissipation,<br />

oven if tht! tcnipcmture remained constant throughout the bulk of the gas. The<br />

snmp would be true in t31ie casc of cxpnnsion or compression at a finite rate. Por<br />

this reason, tlw coefficient 14' is cnllcrl the bulk viscosity of the fluid: it represenh<br />

tllnt. properLy, like t,lw shear visconit,y {L for deformation in shape, which is responsihlc<br />

for energy clisaipntion in a fluid of uniform tcmpornt~~ro during 8 cllnnge in volumo


g. The Nnvier-Stokes equations<br />

\Vith thc aid of rqns (3 20) the non-viscous pressrirr terms can I)r srparatcd<br />

in the equation of motion (3 11) so that thry bcrolnc<br />

Jntroducing the ronstitntive relntiotl from cqns. (3.24) we o1)tain the resultant<br />

surface force in tornis of thc velocity components, c. g, for the 2-direction we obtain<br />

with the aid of eqn. (3.10a):<br />

and corresponding exprcssior~s for the y- and z-cornponent,~. 111 the general case of<br />

a compressiblc flow, the viscosity /A nlust be regarded as dependent on the spacc<br />

coordinates, bccause p varies considerably with temperature (Tables 1.2 and 12.1),<br />

and the changes in velocit,y and pressure t,ogethcr with the heat due to friction<br />

bring about considcral~lc tetnpcraturc variations. The temperatllre dependence of<br />

viscosiLy p(T) must. bc obtainetl from expcrimcnts (cf. See. XTIla).<br />

If thcse expressions nrc introtlucrtl into the funtlamelltal eclunliol~s (R.11), we<br />

oljtain<br />

Tl~mx vwy wcll known tliffcrcntial equations forb the Itasis of tllc whole science<br />

of fluid mechanics. They are usu:dly rcferrcd td as the Navier-Stokes equations.<br />

t Iq indicinl notation:<br />

g. 7'11~ Nnvier-Stokes equatiotls 65<br />

It is necessary to include here the equation of continuity which, ns seen frorn ctp. (:j.]),<br />

assumes t,ho following form for cornprcssible flow:<br />

'I'lle :tltovc ctpat,ions tlo no1 givc n cornplcln tIoscript,ion of t.110 ~no(.io~r ol' :I, cwn-<br />

;mssible lluid bcca.usc changcs in pressure and dcnsit.y clfcct tcrnpcrature varint,ions,<br />

and principles of tl~crmodynamics must, t,Ilcreforr:, oncc morc enkr into the consit1cr:~tions.<br />

From thermotlynarnics we obtain, in the first, placc, the cllaractcristio<br />

equation (equation of state) which combines pressure, cIcnsit.y, :inti t,crnpemt,urc,<br />

:lnd which for a perfect gas has ttlle form<br />

with 12 drnoting the gas constant autl 7' denoting the nholutc tmnpcmt,urc. Srcontlly,<br />

if the process is not isothcmial, it is fnrthcr neccssary to makc IISC of tho cnrrgy<br />

cquat.ion which draws up a tdancc htwccn Itcat, and tnccl~ar~ic::tl cncrgy (First 1,:lw<br />

of'I'l~cr~notlynamir.s), and which furnishes a dilTerenLial equation for the tempcmturo<br />

tli~t~riln~tion. The energy equation will be tliscussctl it1 greater tlctail in C~I:L~). XI I.<br />

The final equation of the system is given by the empirical viscosity law p(Z7), it.8<br />

tlepentlencc on pressure being, normally, neglected. In all, if the forces X, J', Z are<br />

considered given, thcrc are seven eqnations for the seven v:wiablcs u, v, 70, p, p, T, p.<br />

For isothermal proccssos tltcsc rctlucc to five cqlmtions (3.29n,b,c), (3.30) nntl<br />

(3.31) for the five rtnknowns u, v, W, p, p.<br />

Ir~com~ressible flow: The above system of equations beconles further simplified<br />

in tl~r case of incompressible fluids (e = const) even if the temperature is not<br />

constant. First, as already shown in cqn. (3.la), we have tliv iu r: 0. Secondly,<br />

since tVcmpcr:~ture variations are, generally speaking, small in this case, the viscosity<br />

may be taken to be constantt.<br />

The cquation of state as wcll as the energy equation bccome superfluous as far<br />

a8 t he cnlculatioo of the field of flow is concerned. The field of flow can now be considered<br />

intleprntlmtly horn tl~c cqrtntions of tllcrmodynnniirs Tllc cquntions of motion<br />

(3 29n,l),c) ant1 (3.30) can be simplified and, if the accclcration terms arc wr~ttcn<br />

out fully, they assume the following form:


66<br />

111. 1)wivntion of the eqnntions of motion of a conlprr~sible vimwrr fluid<br />

With known body forcrs there arc four equations for the four unknowns u., v, tu, p.<br />

If vechr not,ation is nsrtl thc simplifird Navicr-Stokrs equations for incompres-<br />

~iblc flow, cqns. (3.32a,b.c), can bc shortcncd to<br />

whrre the sym1)ol V2 denotes the J,nplnce oprrator, V2 -- a2/i)x2 -1- a2/&y2 -1- a2/az2.<br />

Tho nlwvc Navier-Stokrs rquntio~~s diKer from Euler's equations of motion by<br />

the viscous terms ,IL V2 (11.<br />

'r'hc solutions of the above eqnations herome fully clrterminrtl physically whcn<br />

thr 1)ourltlary and initial rontlitions arc sprcifietl In the case of viscous fluids the<br />

rontlition of no slip on sold boundaries must, be satisfird, i. e., on a wall both the<br />

normal and tangential components of the velocity must, vanish:<br />

v, -- 0 , v, = 0 on solid walls . (3.35)<br />

. lhc<br />

,<br />

equations under discussion wcrr first tferivcd by M. Navier [9] in 1827 and<br />

by S. 1). I'nisson [lo] in 1831, on the basis of an argument which involved the<br />

ro~~sidrmtion of int,ermoleci~lar forces. Later the same equations were derived<br />

without the use of any such hypotheses by 13. de Saint Venant [14] in 1843 and<br />

by G. G. Stoltcs [13] in 1845. 'l'heir tlcrirations were based on the same assumption<br />

as made here, narnrly that the normal and shearing stresses are linear functions<br />

of thc rate of deformation, in conformity with the older law of friction, due to<br />

Newton, and that the thermodynamic pressure is equal to one-third of the sum of<br />

the normal stresses taken with an opposite sign.<br />

Since the hypothesis of linearity is evidently completely arbitrary, it is not<br />

a priori cerhain that the Navier-Stokes equations give a true description of the<br />

rnotio~~ of a fluid. Jt is, therefore, necessary to verify them, and that can only be<br />

arhicvecl by experiment,. In t.l~is connrxion it should, in any case, be noted that<br />

the enormous nla.tI~ernatical difficulties encountered when solving the Navier-Stokes<br />

cq~iations have so far prevented us from o1)taining a single ~nalytic solution in which the<br />

aonvcrtiva t,crn~s int,eract in a gcr~cral way with the friction terms. However, known<br />

solnt.ions, snch RS Inminnr flow throngh a circular pipe, as well as boundary-layer<br />

flows, to bc discussed later, a.gree so well wit,h experiment that the general validity<br />

of the Navior-Stolrcs cqnations can Iiarclly be doubted.<br />

CYliliclricnl coorclinntcs: We shall now transform the Navier-Stolccs equations<br />

t,o cylindrical coordinates for future reference. Jf r, +, z donot,e the radial, azimuthal,<br />

and axial coordinates, respectively, of a three-tlimc~lsional system of c~ortlinat~es,<br />

and v,, v,, v, donote the velocity components in the respective directions, then<br />

the transfor~nntion of varinbles [3, 111 for the rase of incompressible Huid flow,<br />

eqns, (3.33) and (3.34), leads to the following system of equations:<br />

Curvilinear coordinatee: Tt is often usrful to employ a aurvilinrar ~ysicm of<br />

coordinates which is adapted to the shape of the body. In t h rnsc of two-dirr~ensior~nl<br />

flow along a curved wall, it is possiblr to srlect a coordinate syst,cm whose<br />

abscissa, x, is measured along the wnl;, the ordinate, y, being rncn,snrrrl at right angles<br />

to it, ld'ig. 3.9. Thus the curvilinear net consistsof curv~s whicl~ are parallel to tlrr wall<br />

Fig. 3.!). Two-tlinlennionnl honntlary layer along n cnrvetl wall<br />

and of stmight, lines perpendicular to tlhem. The corresponding velocity compo~~er~ts are<br />

denotcd by 7~ and v, respectively. The radius of curvature at positmion R: is derlotetl<br />

by R(x); it is positive for walls which are convex outwartls, ant1 nrgat,ivc whon the<br />

wall is concave. Tho appropriate form of t,he comp1et.e Navicr-Stokes equation~1 has<br />

been derived Ity W. Tollmien [lFi]. They are:


111. 1)crivntion of tlir eql~ntions oC motion of a rornprcssiblo viscous fluid<br />

r 1<br />

lhe stless components we<br />

R au at,<br />

-- - 0<br />

1, , !/ ar -I- I -7& -<br />

and t,hr vortiritg [see cqn. (4.5)] bcrorncs<br />

[I] tlr (:root, S.lt., nnd Mwur, T.: Non-cqnilibriuni t,hermotlynnniics. Nort,l-llollantl J'ubl.<br />

Cn.. 19ii2.<br />

(21 I'iil)pl, A,: \'orlesl;ngcr~ iiber tcchnisclw hleol~nnilc. \'ol. 5, 'J'cul)r~er. Lcipzig, 1922.<br />

1.11 Hol~f, I,.: Zilw I"1iisniglteilcri. Cont,ribul,io~l to: lln~~tll~ncl~ tlcr Pl~ysik, Vol. VII (H. Geiger<br />

nrlcl J(. St.llrrl, rd.), lirrlin, 1027.<br />

[4] Kestiti, J.: A COIII.~~ in t.l~crt~iody~~n~~~it'~.<br />

VoI. I, J3lniplell, 19(M.<br />

[T,] I!cs(.i~~, , J.: Il:(~rtlo tllcr~nodynanliqr~c drs ph6no1niwe~ ~rrdversihlcs. Ilnp. No. 66---7, Lab.<br />

d Aht.I~t-r~niqr~c, hlcutlo~\, \!IN;.<br />

I(;] I,:LIII~. 11. : IIytIrodyr~~~~~ii(.~. 6th nd., (hnl~ridgc. I!lT,7; also ])over, 1045.<br />

(7 1 I,ovr. A. 1':. I I.: 'l'lw ~~~nt,l~e~~~:~t,icnI<br />

t,Ilcory of c~lnsticity. 41.11 cd.. Cnnlhridgc Uliiv. Press,<br />

1052.<br />

[HI hlc.iurlrr. .I.. nr~l Tlrik. 11. C.: 7~lic~rn~otly~~nn~ilc tlrr irrc~rrsil~lrn I'rozessc. Co~iI,rihut.iorl to<br />

I~:III(II,IIcII (11.1. I'I~y~ilc. Vol. 111/2 (S. I+'liiggr, ctl.), Springrr, 1959, 11p. 413 -523.<br />

[!I] Nnvicr. 174.: hI6rnoirc srlr Ics lois tlu ~~iortvc~nont clos flr~itlcs. MCm, cle I'Aci~rl. tlc Sri. 6,<br />

380---410 (1827).<br />

1101 I'oisson, S.ll.: hl6111oiro sur les 6qrlntions g611~rnlon tlr I1(.qnilibrc rt drt riln~~vetiicmt, (Ips<br />

c~orpmolitlos 6l11ntiq11os ct tics Iluiclcs. $1. do I'lkolo ~lol,y(yc~h~~. 1.1. I3!1-- l8li (IH:!l).<br />

[Ill I'rugrr, CV.: J~~t,rotl~tc(.iot~ to IIICOIIILIIICR OF co~~t,inun. C:imJ RI. CO., I!)(;].<br />

1121 l'rigoginn, I.: I


CHAPTER I V<br />

General properties of the Navier-Stakes equations<br />

Reforc pssing on to thc int,rgrat,inn of the Navitx-Stokrs cqunl.ions in the<br />

following ch:lpt,ers, it now sncms pcrtincnt, to discnss some of their general properties.<br />

In doing so wc shsll restrict ollrsclvcs to irrcornprcssiblc viscous fluitls.<br />

R. J)c.rivntion nf Reynolds's principle of sindnrity from the<br />

Nnvicr-Stokes cquntiorla<br />

TJr~til I,Ilc prrscnt day no gcncd a.nn.lyt,ic n~rthotl.s 11:tvr I~rcotnc availnblc for the<br />

intc-gmtion of t,hc Navirr-Sl.okcs~cl~~at~ions. I~urtl~crmorc, soluLion~ wl~inh arr vnlitl<br />

for all values of viscosity are Irnown only for some particular cases, c. g. for Poiseuille<br />

flow through a circular pipe, or for Couctte flow bet,ween two parallcl walls,<br />

onc of which is at mst,, the other moving along its own plane with a constant<br />

velocity (set: Fig. 1.1). For this reason tl~c problcm of calculatir~g the motion of<br />

a viscous fluitl was attaclrctl by first tackling limiting cases, that is, by solving prohlcrns<br />

for very large viscosit,ics, on the one hand, and for very small viscosities on<br />

the other, I)cmusr in t,ltis manner thc matllcmatical problem is considerably simpli-<br />

Actl. liowevrr, tho casr of modcratc viscosit,ics cannot be intmpolatd I~ct~ween<br />

thsc two rxtrornes<br />

1l:ven the limit,ing cases of vcry largc antl very small viscosities present great<br />

mat,hemntical tlifficulties so that rescarch into viscous fluid motion proceedetl<br />

to a largc cxtcnt. by experiment. In this conncxion t,hc Navier-Stnlrcs equations<br />

furnish vcry uscSul hints which point to a considerable rcduct,ion in the qnantity<br />

of cxperimcntal work required. It is ofhn possible to carry out. expcrimcnts on<br />

models, which means that in the experimental arrangement a geometrically similar<br />

model of tho aot11a1 body, but reduced in scale, is investigated in a wid tunnel,<br />

or other s~ritahlc arrangement. This always raises the question of the dynamic<br />

sim~ilnril?y of fluid mot.ions which is, evidcnt.ly, intimately connectmi with the question<br />

of how far rcsult.~ obta.inod wit,h motlcls can Jlc ntilizcd for the prediction of<br />

tho Id~aviour of the full-scale body.<br />

As alrr:dy oxpl~incrl in Chap. I, two fluitl nibtions are dynamically similar if,<br />

with gc?ornct,rit:ally sirnilnr k)oundn,ries, the velocity ficltls are geometrically similar,<br />

i. e., .if t1tc.v have gromctricnlly similar strcnrnlincs.<br />

This question was answcrrd in Chap. 1 for thr caw in which only inertia and<br />

visrntts fnrt~s t:~Itc pitrl. in the process. It was found there that for the two motions<br />

I<br />

the RrynoItIs IIII~I~JC~S mnst be rqunl (lirynolcls's pri~~~i~)lcb of sirnil:~rit.y). 'I'his<br />

roncllrsion was drawn by astimating thc forces in the strewn; wr now propose to<br />

tlctlr~ce it again directly from thc Navicr-Stolrcs equations.<br />

'rlrc Navicr-Stokes cqr1a1,ions cxpress tho condition of cqt~ilil>ri~~~~t,<br />

II:IIIICI~<br />

that for cnc11 pa.rticle thrc is eqrrilibriurn betwccn hly forcrs (woigI~(.), SII~~;LC~<br />

for~cs a~ttl jncrti:~. forcrs. 'J'hc sr~rfac!c forc:c:s co11sist. of prcwurr for(*c.s (IIO~~II:~~ Ii)r(:(:s)<br />

and frictiotl forrcs (sl1ea.r forccs). TZotljr forccs n.rc in~port,nt~t, only irl c::t.sc>s ~IIC:II<br />

tlicro is a free s~~rfncc or whcrl l,lto tlrtlsily clisl.ril~trl.ion is it~l~orno~c:~~c:o~ts. III 111,:<br />

(:xs~ of a hornogcnrol~s fl~titl in tltc :l.hscnc:t? oS n Srrc wtrfi~cc tltrrc is c:(l~tiIiI)t.i~tt~~<br />

l~ctwc(~t tho wcigltb of'c:at:l~ p;~.rl.ivlc at111 it,u I~.yrlrwld,iv I )IIO.~IIII~:~ l'orc;~!, in tl~c S:I,IIIC<br />

w:~y 3.8 at rost. Ilc:nco in 1.11~ rnot,iorl of a I~o~nogcncons Illticl, ir~ thc nt~sct~c:c of:^ I'rrc?<br />

snrf:icc, body forces can 11r canrcllctl if prcssttrc is t,dt~n to IIIC:II~ tho (Iillcr~~ncc<br />

I~ctwccn that in n~ot,ion a.nd at rcst. In t h following arpttnc~tt, wc sl~nll rc.st,ric:t. our<br />

at,tc~~tion to cases for whic:h this assttn~ption is trtrc bccalisc they arc t,ltc: tnost imporhnt<br />

oncs in n.pplicntions. Tltr~s bltc Nnvicr-Stoltcs rqnations will now c:ortt,air~<br />

only forces clue to pressure, viscosity, and inertia.<br />

Unclor thwc assumptions and ronvcntions ihc N~~vicr-Stolccs rqn:ttions for<br />

:In inromprcssiblc fluid, rcstrick:tl 10 stci~dy llow nncl in vcclor fnrttt, sinl1~lil:y to<br />

This clifl'crential equation must he indrpcnclent d the clloicc of the utli(.s for t.lrc<br />

various physical quantities, suc:h as velocity, prcssnrc, clc., which appe:lr in it.<br />

We now consider flows about two gcomctrically similar boclics of diKcrcnt lincar<br />

tlimcnsions in streams of different velocitics, c. g., flows past two spt~cms in wllictl<br />

the densitics and viscosities may also bc different. Wc shall invcstigatc the condition<br />

for dynamic similaritfly with the aid of tho Navier-Stokcs cquat,iot~s. Evidently,<br />

dynamic similarity will prevail if with a suitablc choice of the units of Icngf.h,<br />

tirnc, antl force, the Navicr-Stokes cqn. (4.1) is so tmnsforn~ctl that it, I)ccomcs<br />

identical for the two flows with geomctric:ally similar botir~tlarics. Now, it is [~ossiblc:<br />

to free oneself from the fortuitously selechcl units if clirncnsiorllcss q~~ntltitics n.rc<br />

introduced into cqn. (4.1). This is achievctl by snlcct.ing ccrt,:~in suitnhlc c:har:rt:taristic<br />

mxgnitudcs in thc flow as our ~rrtil,s, antl by refixring all otlwrs t,o t11c:nr.<br />

., .Ll~us c. g., thc frcc-slrcarn vcloci1,y anrltl tllc tlianlcl.cr of Ll~r sphrrc: cnlt IJC srl(:c:t.t:tl<br />

as the rcspcctivc 11ni1.s of vcloc:it.y and Icngth.<br />

1~r.t V, 1, and pl clcnotc tl~csc characteristic rcfcrcnco magt:itrltlrs. II' we now<br />

introtltlcc into thc Navicr-Sl.okcs oqn. (4.1) thc tlirrrrnsionlrss ri~tios


72 I\'. C:rncr:tl prol,e~lirs of thc Navier-Stokrs rquat.ions c. The Navicr-Stoltes equations intcrprctd as vortirit,~ t.rnnsport eqr~ntio~~s 73<br />

'J'his princildo was tlisc:ovrrctl I)y Osbornc Iteynoltls when he invrst,igxt.ctl fluitl<br />

~nolio~l thro~~gh ~'ipcs ""(1 is, t IlcrcSorc, ltnown ns the Reynolds priucipla o/ similnriby.<br />

'I'hc rli~nrt~sio~~lrss ratio<br />

e." = v z _ R<br />

Cc<br />

v<br />

(4.3)<br />

is cnllctl the Itcynoltls nrlni\)cr. JTere tho ratio of the dynamic viscosit,y 11, tm the<br />

clcr~si(,y e, tlcr~otctl by v = ,I./@, is the Itincmatic viscosity of the fl~~itl, int.rotl~lccd<br />

cn,rlicr. S~~niming np we can state that, flows nhout geon~ctrirally sirrlilnr bodies<br />

are tly~~n.miaally similar whcn the Rcynoltls numbers for the flows arc equal.<br />

Thus Itcynoltls's similarity principle has been deducctl once nlorc, t,his t,imc<br />

from t,he Navicr-Strokes cq~mtions, having I~ccn previously derived first from an<br />

c:st.irnnt,ion or Sorccs :in(] sccontlly from dimensional analysis.<br />

b. I.'ricliordenn flow as LL801u1io~~n" of the Navicr-Stokes equations<br />

It nay bo worth not,ing, prent.hrt.ically, that, the .solutions for incomprcssil~lc /riclionless<br />

flown may also bc regarded as exact solutionn of tho Nnvier-Stokes cquat,ionn, bcca~~sc in such<br />

rases tho frictional tcrnls vanish itlont.irnlly. In the case of incomprcssiblc, fricl.ion~csn flows tho<br />

vr1oc.il.y vector can he rrprrscntn?tl an tho grntlicr~t of a potcnt.ial:<br />

w = grad di ,<br />

whrrr t.he potential @ RR~~S~IOS t,hc L:lplacc cquat.ion ,'<br />

V2@=0.<br />

We thn nl~o have grad (V2 @) - V2 (grad @) = 0, that is, V2 w = 0 .<br />

t See foot.nota on 1). 48.<br />

Tl~us the frictional terms in eqn. (4.1) vanish identically for potential flows, but generally<br />

speaking both boundary conditione (3.36) for the velocity cannot thcn be satisfied sin~ulta~~cot~sly.<br />

If the normal con~ponent must ccsmtmu prencribed vnlucs along n bouncinry, thn, in potential<br />

flow, l.l~o t,iw ont.inl oon~ponont i~ tl~oroby tlolorn~i~rnd no 1,Ilnt I,lm 110 dip oo11c1iI.io11 IVII~IIOI~ IN)<br />

sdislicd nt Lf~o mtnm l,i~no. Jd'or Lhis reason ow cnnnok regnril pohntinl ilowe a" pl~ysidl~<br />

moaningfill nolutiona of 1.110 Nnvicr-Stokon cquntionn, bocnuno tlmy do not nnt.inry thc ~w~:scril,rd<br />

boundary conditions. l'hcro exist^, howcver, an important cxccption to tho prccccling ~tx~cmcnt<br />

which occurn whon tho solid wall is in motion and when this condition docs not apply.<br />

The shylest parlicular case is that of flow pant a rotating cylinder wl~cn the pofential ROIIItion<br />

does constit,utc a meaningfnl solution to the Navicr-Stokcs cquntions, as explainctf ill<br />

grcatcr detail on p. 80. The rcadcr may rcfor t,o two papers, one by G. 1InnieI [4] and onc by.<br />

J. Aclteret [I], for fnrt.ller details.<br />

The following sect,ions will be rest,ricted to the consideration of plane (two-din\rnsional)<br />

flows because for such caocs only is it possible t,o inclicato son~e gcncral properties of Lhc Navicr-<br />

Stokes equations, and, on Mia oClrcr hand, plane flows ronstituh by fir tho lnrgrst clans of<br />

prohlcrns of prartirnl i~nportance.<br />

c. The Navier-Stokes equations interpreted as vorticity transport equatinns<br />

In t,he case of two-dimensional nori-stcatly flow in the x, y-pla~lc t,l~o vcloc:it.y<br />

vector bcco~ncs<br />

and the system of rquat,ions (3.32) and (3.33) trnnsforms into<br />

whicli furnishes three equations for u, v, and p.<br />

We now introduce the vector of vorticity, curl W, wl~ich rctluccs to t.hc one<br />

component about the z-axis for two-dimensional flow:<br />

I~rict,ionless motions are irrotat.ionn1 so that curl cct = 0 in s~lcll cascs. Eli-<br />

minating pressure from eqns. (4.4a, b) we obtain<br />

or, in short,hand form<br />

This equation is referred to as the vorlicity transport, or transfer, equatzor~ It stalvs<br />

that the subskmtive variation of vorticity, which consists of tlw lord ant1 rot~vrcl,~ct~


74<br />

TV. Gencrol proprtic~ of tho Novior-Stoke8 eqrtnlionrr<br />

terms, is cqrtal t,o thc rate of clissipntion of vorticity t,l~rough friction. Eqn. (4.6),<br />

togclher with thc equation of contir~uit~y (4.4c), form n system of two equations<br />

for thc two v~lorit~y components ?I, and V.<br />

Finally, it, is possible to transform t.hcsc two equations with two unknowns<br />

ir1t.o one eq~iat.ior~ with one unknown by introtl~tcing the &,ream fnnc,tion t(r(x. y).<br />

Put,l.it~p<br />

we see t,llaL tho cor~tinnil.~~ equation is s:tt,islictl aut~orn:rt.irally. In ncltlit,ion l.lle vorLici1,y<br />

from eqn. (4.5) I~t:conrcs<br />

w=- +v2y,t (4.9)<br />

C. The Nnvirr-Stoke3 rqwl.ion8 intcrprrtccl IW vorlicit,~ Lrnnsport rqunt ion3 76<br />

In this form the vorticit,y trnnspo~t cquntion contains only one unknown, 11). 'C11c<br />

left-hard side of cqn. (4.10) contains, as was the casc with the Navicr-Stokcs<br />

equations, the inertin term#, whcrcas kho right-hhrd siclo cont,ains tho frictional<br />

tcrms. It is a fourth-order partid dilfercntial cquatiorl in the strcarn functior~ 7,'<br />

Its solution in gcneral terms is, agnin, vcry clifficult, owing ho its bcing non-linr;rr.<br />

V. G1. Jenson 151 found a solution to thc vorticity transport cquatio~~ (4.10)<br />

for the case of a sphere by numcricnl integration. The resulting pattrcrns of s(.rcainlines<br />

for different Reynolds numbers arc seen plotted in Fig. 4.1 which also contnirls<br />

clingrams of the distribution of vorticity in thr flow fioltl. Tltc srnnllod Itc:ynol(l~<br />

number included, R = 5 in Figa. 4.1s anti 4.1~1, corresponds to thc casc w11c11 thc<br />

viscous forces by far outweigh the inertia forccs and the resulting flow can bc described<br />

nR crecping motion, Scc. IVd ar~tl(~11nptr.r VI. III this casc the wholc flow fit-It1<br />

is rotatior~al and tho pattcrns of strcnmlirlcs forward and aft are nenrly identicnl. As<br />

thc ltcynolds number is incrcnscd the sphere dcvclops on its rcar a scparatcd region<br />

with back-flow and the intensity of vorticity is progressively more concentrated near<br />

the downstream portion of the sphere, wherca.. in thc forward portion t11c flow becomes<br />

nearly irrot,ationnl. The flow patterns undcr consideration which have been<br />

deduced from the Nnvier-Stokes equation, allow us to rccognizc thc chnractcristic<br />

changes whieh take place in the stream as the Reynolds number is made to increase,<br />

even if at t,he highest Reynolds number rcachcd, R =. 40 in Figa. 4.1 c and 4.1 f, the<br />

boundary layer pattern has not yet had a chance to develop fully.<br />

Very extensive experimental inve~tigations of the wake behind a circular cylinder<br />

in the range of Reynolds numbers 5 < R < 40 nre described in two papers by M. Coutanceau<br />

nnd R. Bouard [lc, ld] who covered both steady and unsteady flows.<br />

The development of very efficient clcctmnic computers in modern times has made<br />

it possible to solve the Navicr-Stokes equations for flow past geometrically simple<br />

bodies by purely numerical methods. In order to do this, the differentid equations<br />

are replnccd by difference equations. The numerical techniques uscd for this purpose<br />

will be explained in Sec. 1x1. Without discussing this matter here in any ilcpt,h, we<br />

quote one interesting result. Figure 4.2 shows the flow past a rectangular plate placed<br />

at right anglcs to the stream calculated by J. E. Fromrn and 1;". H. Harlow 131. At<br />

the back of the plate there forms a vort,cx street similar to that bchintl a circular<br />

cylinder shown in Figs. 1.6 and 2.7. Figure 4.2ashowsan expcrirnentnlly detcrrnined<br />

pnttmn of slreamlincs, where*! Fig. 4.2b rcprcscnts thc calculatcd ficld, both for n<br />

Reynolds number Vdlv = 6000. Thc agrconcnt bctwccn tjhc two pttcrr~s is rcrnitrkably<br />

good, in spitc of thc fact that in this rnngo of 1tcyr1oldanrtml)crsl.l1c flow aequircs<br />

an oscillatmy character, Fig. 1.6. Tltc earliest attempts t,o obtain such nl~rncrical<br />

solut,iol~s t,o t,lm N:~virr-St,okw cyt~:ltions can hc t.rnt:c~tl 1.0 A. 'l'ltotn 101 ~111, ~,crformed<br />

such calculations for a circular cylindcr at the low Rcyr~olds nurnl~crs R -- 10<br />

to 20. I,ater, the calculations wcre carried to R = 100 [2]. As the R.cynoltls nurnbrr<br />

increases, the degree of difficulty of such numcrical int.egrat,ions increases st,ncply.<br />

In this conncxtion it is worth consulLing the comprchensivc sr~mmnry by A. l'horn<br />

and C. ,I. Apclt [7], as well the work of C. J. Apclt [I n] and I). N. tlc (2. Allen and<br />

R. V. Southwcll [I I)) nnd of If. B. Kcllcr nnd 11. Takami L5nl.


76 1V. Genrrnl proprrtir~ of thr Nnvirr-Stokm rqustio~~n r. 'I'llr litr~iting cnw of wry small visoo~~s hrrr~ 7 7<br />

Fig. 4.2n<br />

Fig. 4.2. T'nt,tcrn of st,rcnmlinra 1)cIiiutl<br />

a rect.nr~gulnr flat. plnto (lf/rt = 1.6) plnctrtl<br />

nt. right, nnglr t.o th flow at. n Itry~~olds<br />

nu~~iI)rr R = I' ![/I) = 6000, nfkr J. I m). 111 this case the [lroccss of m;~t,h(~lrl:~l,ic::~I<br />

sin~plificntion of the tliffcrcntial cqn. (4.10) requircs a consitlcrablc amount of rart:.<br />

It is not pcrlnissiblc simply t,o olnit (,lie viscous tcrrns, i. c., t,lle right,-h:~ntl side of<br />

(:(in. (4.10). This woultl rntlnco the ortlcr of t,llc oqu:~t,iot~ from four to two, :LII(I t.110<br />

solution of the simplifictl cquat.iou could not be made to salisfy the full bountl:lry<br />

condit.iol~s of t.Iw originn.1 cquat.ion. The problem wl~icll was ontlincd in tllc prccctling<br />

scr~t~cnccs belongs essentially to tl~e rcdrn of hou~cdnr?/-kr!/er lheory. We now proposc:<br />

to tliscuss briefly the genrral st.at,r~nc~lt,s which can t)c made about the solutions<br />

of the Nnvicr-St,oltes cqnnl,ions for t,ho special mse of small viscous forccs as cornpared<br />

wit.ll t,hc incrt,in forccs, thnt is in t,11r limiting case of very Inrgr: 1tt:ynolds<br />

n11m1)crs.<br />

The following analogy rnny scrvc to illust,rate tl16 c:llsr:~cter of the solut.ions<br />

of t,hc Navier-Stokcs cquat~ions for the litnit.ing c;~se or vt:ry small viscosil,y, i. c.,<br />

of vrry small friction terms, as compared with t,llc inertia terms Tl~e tcrnprrat1lrcb<br />

distribution O(r, y) aboul, a hot, I)otly in n fluid strrarn is clcscrihtl 1)y the following<br />

tlilTrr'rrrntial rqrlation, Chap. XI 1.


Ilcre v, c, :tntl k tlrnol,c 1.I1t: tlrnsity, sl>rc:ilic Itc::rt, :mi contlucl,ivit.y of Ihc lluitl<br />

rc!spwlivrly; 0 in tltc! tlilli~rcnc:c? I)ct,wco~~ Ihc loonl t,t:llll)onrt,r~rc: ant1 (,hat at :t vory<br />

1;rrgc tlisI.:~t~(:c fron~ t11c I)otly, wl~orc: IJlc: l.c:tnpcr:~l,~~rc:, 7', is c:onsl,ant ant1 cq~~:rl lso<br />

'/, i. c . 0 - - '/ - '/',,,. 'I'llt: vcloc(ity lic:ltl w(z, y) :rt1!1 ~(z, y) in oqn. (4.12) is ;~.ssurnctl<br />

to I)c known. 'L'hc t,ernpnrat~~rc: distribution on the I~ountlarics of Lhc botly tlcfinetl<br />

b?~ '/I,, 3 7', is prrsc:ril)ctl nrttl in the sirnplcst cnsc it is constant wit11 respect Lo<br />

sl)nct: and t.imc 1)111., gcncrnlly spcalting, it varies wit11 both. I'rom the pl~ysioal poinl.<br />

of view cqn. (4.12) roprosents the 11c:rt 1):~lanc:c Ihr an clcn~cnt,ary volut~~e. 'l'hc Icfh-<br />

Ilantl sitlc represents t.11~ qu:mt,it,y of heat, c:xcl~:~~~gotl I)y convcc:tiorl, whereas the<br />

rigl~t-ll:rnd side is the ~~~;~n(.it.v of 11r:lt t:xt:I~:~n~cd 11y con(I~t(:tion. T11c frit:l.ion:~l hcatl<br />

gcneratcd in tile fluid is ncglcetctl. Tf 7',, > T,, tho prol)lom is that of detcrrnining<br />

1.ltc tcmperatl~rc field around a hot body which is cooled. By inspection it is scrn<br />

that cqn. (4.12) is of the same form as eqn. (4.6) for the vorticity w. In fact thcy<br />

hccomc itlentiral if the vorticity is replaced by thc tcmpcraturc tliffercncc and t.hc<br />

kincmatic viscosity v by t,hc ratio kip c known as thc thcrmal diffusivity. 'l'hc bountlary<br />

conclit,ion 0 - 0 at a largc distance from thc body corresponds to the condition<br />

tr, = 0 for the undisturbed p,nrnllcl stmam also at a largc distance from the body.<br />

llcncc we may expect that thc solutions of the two equations, i. e. the dislribntion<br />

of vorticity antl that of tcmpcraturc around the body will be similar in chnrnctcr.<br />

Now, tllc tcmpcratlrre dist,riI)ution around the body may be pcrccivcd intnitivrly,<br />

to a ccrtnin cxlcnt. In the limiting ca.sc of zero velocity (fluid at rosl) the inflncncc of<br />

tilo I~eatccl 11otly will extend ~~niforrnly on all ~itics. With very small velocit,ics tho<br />

fluid arountl the hody will still he affectcd by it in all directions. With incrcnsing<br />

velocity of flow, howcvcr, it is clcarly seen that the rcgion affected by the higher<br />

tempcreturc of the body shrinks more and more into a narrow zone in the immetlint,c<br />

vicini1.y of the body, antl into a tail of hcatcd fluid bchind it., 1Pig. 4.3.<br />

. -<br />

-.__ -- -<br />

--__<br />

Fig. 4.3. Annlogy betfween trnlperntuw<br />

and vorticity di~tribution ill tho neigh-<br />

bol~rhd of R body plnml in a strerrrn<br />

of fl\lid<br />

a), b) IAndCq of rrgion or iw.rrhsrd trmprrsture<br />

n) for ~rnnll vclucitlrs<br />

---------__..______<br />

Ir) fur Inrge vrlucitirn uf flow<br />

'rllc so111l.ion of eqn. (4.1 2) ni~rst-, a.s mcnt,ionkd, be of a chn.ra.cter similar t.o that<br />

for vorticit,y. At snlall velocities (viscous forces hrge compared with inertia forces)<br />

t.hcro is vorticity in ihc whole region of llow around the body. On the other hand<br />

for' largc vcloeitics (V~SCOIIS forccs smnll compnrctl wibh ir~ctl~in forccs), we may<br />

rx-prct, i field of flnw in which vorticity is confined to a small Iaycr along the surfacc<br />

of the I)otly antl in a wake behind thc boily, whereas thc rest of the fcld of flow<br />

c. 'l'ho limiting caw nf vory ~nlnll V~RCOIIR li~rtm 79<br />

remains, practically speaking, free from vortioity (scc Vig. 4.1). 11, is, I.l~ercforc,<br />

to be cxpected that in the limiting case of very small viscons forces, i. e. nt 1;rrgc:<br />

Itcynolds numbers, the solutions of the Nevicr-S(.okcs cq~~:~t~ions arc SO ('otlsti(.~tt.rtl<br />

as 1.0 permit a suldivision of the ficld of flow inl,o an cxtcrn:~I rrgion wlti(*ll is fr~o<br />

from vorticity, and a thin layer near the I)otly togcthcr with a wakc I~(:llit~tl it.. I11<br />

1.11~: first, region tho Ilow mny Im oxpnctctl 1.0 sntisfy OIO ctl~~~rtions of I'ri(:(,iot~ltw<br />

flow, the potcr~t~ial llow theory bcing uscd for ih cvalnation, whcrcas in tllc sc~-otr(l<br />

region vorticity is inherent, and, thcrcfore, the Navicr-Stoltcs cq~iations m~~st. hn<br />

uscd for its evaluation. Viscous forccs are importm~t, i. c. of thc santc ortlcr 91'<br />

mngnitt~tlc n.9 inertia forces, only in tl~c scc:ontl region known :is thc bou~tdrtr?y Irr?yrr.<br />

This concept of a boundary layer was introduced into the scicncc of fluid mechanics<br />

by L. Prantitl at the beginning of thc present ccntury: it has proved t,o he vcry<br />

fruitful. The subdivision of the field of flow into tho frictionless oxtcrnnl Ilow iwtl<br />

the cssentinlly viscous boundary-laycr flow pcrmitkd thc reduction of the rnnt,llcmatical<br />

difficnlties inllorent in the Nnvicr-Stokes cqnatior~s to snch an extent, that<br />

it, lmmne possible to integrate them for a large numbcr of cascs. The tloscript.ion<br />

of t,l~csc methods of integration forms t.hc subject of the boundary-laycr thnory prcscntctl<br />

in the following chapters.<br />

From a nt~mcrical analysis of the available soluteions of the Navicr-Stokc~s<br />

cq~~ations it is also poasiblo to show directly that in tho limiting case of vcry lnrgc<br />

Reynolds numbers there exists a thin boundary laycr in which the influcncc of viscosit,y<br />

is conccntratcd. We shall rcvcrt to this topic in Chnp. V.<br />

The previously discussed limiting case in which viscous forcrs heavily outweigh<br />

inertia force3 ((creeping motion, i. e., very small Reynolds number) results in a considerable<br />

mathematical simplification of the Navier-Stokes equations. By omitting<br />

the inertia terms their order is not rcduced, but they become linear. 'J'hc second<br />

limiting case, when inertia forces outweigh viscous forces (boundary layer, i e. very<br />

large Reynolds numbem) present8 greatrr mathematical difficulties than creeping<br />

motion For, if we simply substitute v = 0 in the Navior-Stokcs equations (3.32),<br />

or in the stream-function equation (4.10), wc thereby suppress the derivatives of Lltr<br />

highest order and with the simpler equation of lowcr order it is impossible to satisfy<br />

sirr~ultancously all boundary conditions of the cornpleto tliKrrcntial equnt~ous.<br />

However, this does not signify that the solutions of sucll an equation, sin~ldificd by<br />

t.he elimination of viscous terms, lose their physical meaning. Moreover, it is possil~lc<br />

to prove that this solut,ion agrees with the &mplete solutionof the full ~ svic~:-~toke~<br />

cq11nt.ions nlmost. everywhere in t,he limiting case of vrry large Reynoltls nrtmb~rs.<br />

Tho exception is confincd to n thin lnycr near the wall - the bountlnry In.yc;r. l'h~ls,<br />

thr complete nolution of t.hc Nnvicr-Stmkcs cqtralions c:nn I)c tl~orrgl~l of nrc t:onrcisI,ing<br />

of two sointions, thc so-cnllctl "outcr" solution which is ohtninctl with the nid of<br />

Eulor's equations of motion, and a so-callcd "inner" or bonndnry-1n.yc.r solnt.ion<br />

which is valid only in the thin layer adjacent to the wall. The "inner" solut,ion<br />

satisfies thc so-called houndary-layer eqmtions which are dctlncctl from tho Navicr-<br />

Stokes equations by ~oortlinat~e stretching nnti pwqsagc to tho limit R + m, n.s will<br />

be shown in Chnp. VII. The outer and inncr solutions must he malchcd t,o ench other<br />

by exploiting the condition that thcrc must exist nn overlapping rrgion in which<br />

bbth s&tions are valid.


80<br />

I\'. Crnrtnl proprrtirs of the Nnvier Stnlzcs rqr~ntions<br />

f. Mntlwn~nticnl illctntrntion of tltc process of goirlg to the limit R 4 oo t<br />

Let IU rotinitlrr t.lie tlnmpr(l vihrntious of n point-mass tlmrrihctl hy t,hc tlifirrnlinl cr(~~nt,ion<br />

Herc irr donolrn the vihrnling mnsn, c (.lie spring c:or~ntnnt., k I.l)c. tlnniping f:wto~.. r t.I~t: Irng(.ll<br />

roordinnt.~ nlcrlmcrccl from t,lw jiosit,ion of ril~~ilibrin~n. nnrl I t.lw ti~nr. '1'11r initial ron(lilions arc<br />

ILRRIIII~~C~ t,o be<br />

r-O at 1-0. (4.14)<br />

In ruinlogy with (.tie Nnvier-Stnkon eqr~ntions for t.lie cnse \rhcn thr lrinrnintic visronity, I*, is very<br />

sninll, we condcr hcrr tlw limitsing rnsc of vrry smnll mnss nr, hrrn~~nr this loo rnrlnrs 1.11~ lerm<br />

of thc Iiigllest ordrr in cqn. (4.13) to brromt: very small.<br />

l'lir complrtr solrition of cqn. (4.13) s~~hjrrt tn the initinl rondit.ion (4.14) hns the form<br />

x = A {exp ( I )<br />

-- cxp (-k 11iri)): irr -t 0, (4.15)<br />

where A in n frre constnnt \vl~osc v11111e rnn hr (Irtrrn~inr(l with rrfcrct~cr to 11 srron(l initinl contlit,ion.<br />

If we put, in - 0 in eqn. (4.13), we nrc lrtl to t.lw simplified rqr~t~t.ion<br />

wiiirli is of first orckr, nnrl whose solrclion is<br />

d x<br />

k- f e:r =0,<br />

tlt<br />

TO(/) = A rxp ( - ctlk). (4.17)<br />

This solrrtion is idcnt,irnl wit,h the first term of the aomplctc solr~tion dur to the feliritous choice<br />

of t.lw ndjuntnhle co~~utnnt,. However. this solution rnnnot he ~nntlc t.o satisfy t,lie init,iol coridit.ion<br />

(4.14); it thus reprc~entR a eolut,ion for 1n.rge values of thr time, t ( Lco~~l~r" so111t.ion). 'l'hr8oIntion<br />

for smnll vnlrtcs of time ("inner" solt~tion) snlisfies n.noLhrr diflerentinl equation \rliirlt can also<br />

be dnrivwl from eqn. (4.13). 111 order to nchicw this, t.hr in~lopcntlrnt vnrinl~lr: t is "stret.cllcd"<br />

in t,hnt a now "inner" vnrinhle<br />

iv int,roduccd. 111 this manner, cqn. (4.13) is Ira~~sformetl t,o<br />

wliicl~ p)vrrnn ll~r "innrr" ~ol~~t~ion. WII: soI111io11 now is<br />

I<br />

1.1 (I*) = A, rxp ( - kt*) 1 A,.<br />

t* = t/m (4.18)<br />

t 1 nln i~~dcl~f.cvl 1.0 Profrssor Klnns Grrnten for (I1c rosisrtl vrrnion of t,liin section.<br />

* 1,. I'r~l.wlt.l, Annrhnr~liche 1t11t1 ~~wtzlirhc hlnt,henintik. I,rrt,ures drlivrrrd nt. (;oet,t.ingrn Univrrnil.y<br />

ill t.hr \Yint.rr-Srmcnt,rr of 1!):11/:12.<br />

f. Mnt,lremnticnl illust,ration of the procens of going t.o the limit R -t m 8 1<br />

In sl>il.c of thn sirnl~lificatiorl, Il~e diflixentinl rqrrnt,ion (4.20) is onr of noco~irl ~lcgrrr: it c.nn 1)r<br />

mntlc? t.o e:rt.idy LIIO initial rondit,iot~ (4.14) hy t.1~ clmirr<br />

P 7<br />

Il~c vnll~c of const.nnt. Az folloaw froin t.110 tnnl.ol~i~ip; to t11c "o~~lrr" nnl~~t,io~~, rt111. (4.17). 111 1111<br />

ovrrlnpping rnngr, tht. is for ~noclcr:i(c vnlt~rn of tiinr, t.hc nol~~lionn in nqnn. (4.17) i ~nd (4.21)<br />

nit~nl. ngrr:r. 'l'lit~s \VO tnr~sl, II~v~~<br />

or, in wortln: 'l'h "or~t,nr" limit of t.lic "innrr" solntion IR~,<br />

"outer" solnlion. Condition (4.23) Icntls nt, oncc to<br />

he C~IIRI lo the "innt:r" lin~il 01 thr<br />

nntl no to the innrr solrltion<br />

.rr(t*) = A (1 - cxp (-- kt*)}. (4.25)<br />

'I'l~c snme form rnn be obt.ninrtl from Lllr ron~plclr soI11t icm fro111 rqn. (4.15) by r*x~~:~n(ling (It(.<br />

tirut t,rrni for small vnlws of I nnd rctni~~i~lg the GrnL tern1 only, Ihnt is by p~t,ling<br />

7'11~ t\vo iic!ution~, tlic onter so111tion from eqn. (4.17) nrid Ll~c inner ~olution from rqn (4.26).<br />

togct,l~er form the m!!iplcte solution on condition tlint cnrh is 118rtl ill its projwr I.III~~C of vnlidity.<br />

ht finite 1, cqu. (4.15) tends (c the outer solut~ion for nt + 0. whcrens at constant t* eqn. (4.15)<br />

tol~tl~ t,o the inner nolution. 'l'lle pnrtinl solut,io~is give I llc cornplrtc, cotnposit.~ nol~~t.ion which is<br />

vnlitl in the cnl,ire rnnge of vni~cs of t i)y ridding thrnl togrtl~rr, rcmemhrring that Ihr ronlmon<br />

tcr111 from eqn (4.23) ~nnst. he included only once, tlint, in sul~t,r:rclrrl from the R I nr.rorrling to<br />

tho prcsrription<br />

x(1) = ~"(1) + rt(t*) - Iim x: (l*) = TO (t) I rt(t*) -- lim xn(1). (4.27)<br />

I* -. m 1 -. tJ<br />

A graphical roprencntation of the complete .soIr~t,ion from eqn. (4.15) i~ nhown in Fig. 4.4<br />

for the cnse when A > 0. Curve (a) corresponds to t,l~e outer solution (4.17). Cnrvcs (I)), (r) nntl<br />

(d) represent solutions of the cotnplct,~ tlifirrntinl equation (4.13) \vitlt vr clrrrmsir~g from (h)<br />

to ((I).<br />

If wc now cor~ipnrc this rxamplo with thr Navier-St,okcs cq~mt,ions, we COIICIU~O<br />

l.liat. t.Iie<br />

r.o~nplctc cqrt:~t ion (4.13) is nn:~Iogonn 1.0 thr Nnvicr-Stokes cq11a1.ions for n vi~oonn Iluicl. wlwrms<br />

Ilw sirnpIiliv(1 tqwtt,io~~ (4.1(;), t!orrcs~~on~ls In lh~lcr's rquntiom for nu i(lral ll~tid. WIP i11iti:11<br />

Fig. 4.4. SOIIII~OIIS of thr viOr:itio~~ rq~~:iti(~n<br />

( t . I:!). (a) Sol111io11 of tl~e sin~plifitd rqn:~th~<br />

(s!. 14). 111 -- 0: (11). (c), ((I) rcprrsent so111tions<br />

of 111r vo111111rt(: tlil'li~rcnt in1 cquntion (4.13)<br />

\I it11 vnriol~s V:IIIIIY of i11. JVhcn irl is wry<br />

s~nnll. soI111io11 ((I) arq~~irrn I~nun(l:tr,y- layer<br />

141:1rnrtrr


conclil.ion (4.14) plays n part wl~ich ia ein~ilnr tn 1.11~ no-slip condit.ion of n red fl~~id. 'Chc latter<br />

cnn be saLislic4 by Ihc solutions of 1.11~ Nnvicr-Stokcs eq~~etions I~ut not by those of Euler'a<br />

cquntio~~s. 'I'lw slowly-varying solnt,ion is trnnlngrr~~s In) tile frictionlcsn solution (ptrntinl flow)<br />

whicl~ f:rils to satisfy the no-slip contlil.ion. 7'11~ f~rst-vnrying solntion rcprcscnts Lhe counlr?rpart<br />

of tho bonndnry-lnycr ~oIuLion whicl~ ia delcrn~incd by t.ho prcscnm of viscosit.y; it clin'cn fron~<br />

zero only in n narrow zone near tho wall (boundary Inyer). It is to bo nokd that the second<br />

bonndnry condition (no slip at tho wall) can only be sal,inficd if this bountlnry-layer solution is<br />

a.dclwl, t,l111s mnking tho whole sol~~bion phy~icnlly red.<br />

This simple rxarnplc cxl~ibit,s thc sarnc matbcmstical Aaturcs M t.l~osc ch?usscd in 1,110<br />

prcrcding cl~u.plcr. It is, nrrrnrly, not pcrn~iasil~lc si~n rly In onlit tl~c viscou~ tern18 ill tlw<br />

Nnvicr-Stokm equation, wlmn performing the process or going over to t.he limit Tor very small<br />

viscosit.y (vrry I;irge llcynolrln n~~rnbrr). This wn only bc: clonc: in tile intrgrnl solnl.ion itxlr.<br />

We sha.ll tlcnionstratc latm in grcatcr c1cl:iil tht if, is not t1cc:c:ssary to rctain lhc<br />

Cull Navirr-St.olrcs eqnnt,ions for the process of finding the limit for R -+m. For<br />

lhc salte of n~athrmatical simplification il will provc possible to omit certain t.rrni~<br />

in it, pnrticnlnrly certain small viscous tcrnls. It is, however, important to note that,<br />

not all viscous trrma can bc ncglrctrtl. ns this woril~l depress tllc ordrr of tho Navier-<br />

Stolrrs rqnntions<br />

[l] Ackcrct, J.: Ubcr cxnkte J5sungen dcr Stokes-Navi~r- Glcicl~ungen inkomprrmihler 1Pliiimigkciton<br />

bci vcriin~lcrbn (:rr~~r,l~c~li~~~rtngc?~~.<br />

%1\;\11' 3, 259--271 (1952).<br />

[In] Apeelt. C. ,i.: 'l'hc ~trnrly Ilrtiv of a viscous flnid pat n circulnr cylindcr at Reynolds numbers<br />

40 and 44. Ikitisl~ AltC ItM 3175 (IWil).<br />

(Lh] Allen, D.N. 1)c G., m~ci So~~t.hwcll, 1t.V.: ltclaxation methods npplicd to deternline the<br />

mot,ion, in t,wo di~nm~iona, of R viscons flnid pnat n Bxetl cylinder. Q~mrt. J. Mecb. Appl.<br />

MnLIl. 8, 12!)-145 (1!)55).<br />

[lo] Coutnnccau, M., nnd Uo~lnrd, R.: 15xpcrirncntnl dckr~ninnt.ion of t.lw main fcnt,nrrs of the<br />

vinrn~~n flow in ...~. tho wakn of R circular cvlinder in 11uifor111 tra~~slation. Par1 I. Stendy now.<br />

~<br />

JFM 78, 231 -256 (1977j.<br />

[Id] (huta~~cenu. M., ~1r1 Ih~nrd, It.: RxprritnrnLal detcnnination of thc mnin fcnCuren of thc<br />

visco~~s flr~w in tbe wake of R circulilr cylinder in uniform trnnslation. Part 2. Unsbndy flow.<br />

.11W 79, 257- 272 (15377).<br />

[2] Ihmnis, S.C.K.. and GRII-ZII Chang: Nn~ncrical soI~~t,it)ns for stcarly flo~ past x circ~~lnr<br />

cylintlcr nt, I


84<br />

V. Exact. solul.ions of t.he Nnvirr-Stokrs equn1,ions<br />

1. Parallel flow tltrough a straight channel nnd Col~eltc flow. A very simple<br />

solut,ion of eqnat,ion (5.2) is obtained for the case of stm~tly flow ir~ ;I channel with<br />

t,wo parallel flat walls, Vig. 5.1. 1,et. t,hc tlist.ancc bctwcen the :valls be denoted by 2 h,<br />

so t.liat cqtl. (5.2) can Iw writ9tcn<br />

Vig. 5. I . i'nrellnl flow with p:~rnholir<br />

vclocit.y disl.ril~~~t.i~tl<br />

Another simple solution of eqn (5.3) is obtained for tho so-mlled Couette<br />

flow 1)ctween two pnrnllcl flat walls, one of which is at rest, the other moving in<br />

its own plan? wit11 ;I velocity rJ, Fig. 6 2 With the boundary conditions<br />

we obt.n.in the solution<br />

y=O: u=O; y=h: u=U<br />

\vhic-11 is shown in Fig. 5.2. Tn parLicular for a vanishing pressure gratlicrlt we have<br />

'I'his p:l.rt.inllar case is known ns simple Couct,tc flow, or si~nplc? sllcar Ilow. The<br />

gcrlrral casc of (:ouct,tc flow is i supcrposit,io~~ of this simple casc over the flow<br />

between two fht, wn.IIs. 'I'l~c sllapc of t.I~c vclocit.y~profilc is tlctcm~incd by t,hc dirnoltsionlrss<br />

pressure p~.:~tlicr~t, I<br />

For 7' > 0, i. e., for n prrssurc tlccreasing in t01c tiircctior~ of mot,ion, the velocity<br />

is posit.ivc over the whole witll,ll of tl~o channel. For ncget.ive values of P the velocity<br />

over a porkion of the cl~:~nncl width can I,ccomc ncgntivo, t,l~at is, back-//OW may occur<br />

near the wall wllich is at rest, and it is seen from Fig. 6.2 that t,his Irappens ~llcn<br />

I' < - 1. Tn this case the dragging act.ion of the fast,cr layers exertetl on fluitl lmrt,iclcs<br />

in the ncigl~bourl~ootl of the wall is insufficient to ovcrcomc thr, influence of<br />

t,hc adverse pressure gradient. This type of Coucttc flow with a Iwcssurc gratlicnt<br />

has some importance in the hgtlrodynamic theory of luhricatio~t. 'J'hc flow in tltc<br />

narrow clcnrar~ce bctwcen journal and l~enrirlg is, by a.nd large, identical with Couct,tc<br />

flow with a pressure gradient (c/. Scc. VTc).<br />

2. The IIngen-Poiseuille theory or flow tl~rorrgh a pipe. Tl~e flow t.llrougl~ a<br />

stmight, tl~bc of ciroular nross-scc:l.ion is the casc with rol.:~t~ionn.l sylnlnct.ry wllic*h<br />

rorr(~+~)onds to tho prcc:otli~~g casc: of lawn-tli~~lcnsior~:~l flow t.llrol~gl~ :I oll:~.r~r~t!l. 1,~t.<br />

tho z-axis be solcct.c:tl along thn axis oL' t,l~n pipc, Pig. 1.2, :md Ict, y t1onot.o 1,llo I.IL,I~:LI<br />

eoortlinate mcasurcd from the axis outwards. The vclocit,y componcnt.~ in t.ltc<br />

tnr~gt?nl,inI and radial directions arc zero; the velocity component pnrallcl to the<br />

axis, denoted by 11, depcntls on y alone, a,nd the pressure is const#ant in every crosssection.<br />

Of the thrcc Navicr-Stolres equations in cylint1ricn.l coordinates, cqns. (3.:16),<br />

only the one for the axial tlircct,ion remains, nntl it, simplifies to<br />

tlw boundary condition being u = 0 for y = R. The solution of cqn. (5.6) gives the<br />

velocity distribution<br />

1 dp<br />

IL (y) = - - - - - (R2-- y2)<br />

411 dz


86 V. 1':xact solul ions of tlir N:ivirr-Shkm rqnn.l.ir~~is n. l':irn1Ic~~ flow 87<br />

where - -tlp/tlz : - (p, pa)/l! = CWSL is the pressure gr:dic~rt,, t,o be rognrclctl as<br />

given. Solut,ion (5.7), which was obtdincd hcre as an oxact solution of thc Navicr-<br />

Stokns equations, agrees with thc solution in cqn. (1.10) whiclr was oht,;~iricd in on<br />

c-l(:~ncnt,ary w:~y. 'l'lic vchcity ovor tlic cross-section is tlist,rihutctl in the form of a<br />

pnr:tI~oloicl of rovolut.ion. 'I'llc mnxirnurn ~c:loc:il.~ on t.hn axis is<br />

1 lie nirali vch.il.y 17. -- v,,, that is,<br />

r .<br />

:~ncl t.ho vol~r~nc. mtc of flow I~ccorncs<br />

'I'ho larninar flow elc~scribcrtl 11y tho al~ovc? solution occurs in practice only ; l long ~ as<br />

t.he Itcynolcls nurnhcr R .-- .li d/v ((1 =- pip cliamc?tc:r) has a vnhc which is less than<br />

t.hc so-callccl critic:d Jtcynoltls number, in spite of the f:~ct that t h above formulae<br />

coristitutc :m cx:tnt solution of thc Nnvic:r-Stokes equations for arbitrary values of<br />

ctp/cln:, R, :~rrtl p, or llcnc:c, of IT, R, and fr. Acsorcling Lo cxpcrirncnk<br />

('p) = Rcri, = 2300<br />

Cril<br />

approximatdy. For R > R,,,, the flow pnttcrn is entirely tliPFcrenl, and bccomca lur-<br />

hulc~tt. Wc shall disc~~ss<br />

this type of flow in greater detail in Chap. XX.<br />

'I'hc rcl:rtion bchwecn thc pressure graclicnt and thc mean velocity of flow is<br />

~~or~nally rcI~roscntcd in cnginccring applicat,ions by introducing a resistanc~ coe//icient<br />

o/ pipr /low, l. 'l'his coc:fticicnt is tlofincd by setting tho prcwlrc gr:ulicnt proportional<br />

t,o the clyn:~.rnic Iicatl, i. n., 1.0 tlic square of thc moan vcloc:itsy of flow, aocorcling to tho<br />

lr~trotlr~cing the cxprcssion for dp/dz from cqn. (5.9) we ol)tain<br />

with<br />

- - -<br />

t This qndrntic Iaw which nnmrnra dp/dz - 12' fitn t.urbulcnt flow vcry well. It is rebind<br />

fin Irmminnr flow, although in Lhnt rnngo dp/dz - 12. Thus lor Innliner flow A was to bo<br />

a mnnbnt.<br />

Fig. 5.3. Immitinr flqw t,l~rongh pip;<br />

resi~t.nnrc cocfficicnt, A, plottcd ngninst<br />

Itcynold~ number (rncasured by Hngcn),<br />

from Prnntltl-l'ictjrns<br />

R = (id<br />

1'<br />

Jlcro R tlcnotes Lhc Roynolds numlm calculated for thc pipe dinmcbr and moan<br />

vclocity of flow. The laminar equation for prewuro loss in pipcs, cqn. (5.1 I), is<br />

in cxcellcnt ~grccmcrlt with experimental rcsvlts for thc laminar range, as SCCII<br />

from Fig. 6.3 which rcj~rotfuccs cxpcrimentnl pinh moas~~rcd by (2. 1I:i.gc:n [I()].<br />

From this it is possible to infer that the Ilagcn-I'oiscuillc parabolic vclocity<br />

distribution represents a solution of the Navicr-Stokes equations which is in agrcemcnt<br />

with expcrimental results [22]. It is also possiblc to indicatc an exact solution<br />

of the Navier-Stokes equations for thc case of a pipe with a circular annular crosssection<br />

1201. The problem of laminar and turbulent flow through pipcs with cxcentric<br />

annular crow-scctions was discusscd theoretically in ref. [38] which also contains<br />

experimental results.<br />

3. The flow between two concentric rotating cylinders. A f~~rtlicr cxamplc wliieli<br />

leads to a simple exact solution of the Navier-Stokes equations is affortlcd by the<br />

flow between two concentric rotating cylinders, both of which move at tlifTvrcnt<br />

but steady rotational spccds. Wc shall dcnotc thc inner and outcr radii by r,, and r2<br />

rrspcctivcly, and similarly, the two angular velocities by w,, and w,. Thc Navicr-<br />

Stokes equations (3.36) for plane polar coordinates redwe to<br />

with dcnobing the circi~nrfcrcntial<br />

velocity. The lmundary contlit,ions arc: u - rl r11~<br />

for r = rl and u = r, (0, for r = r2. The solution of (5.14) which satisfies tticsc rr-<br />

quirements is


88 V. Rxnct uolutions of tltc Nnvinr-Stokcs rqr~ntions n. Pnrallrl flow H!)<br />

x 1-1.2<br />

(1) A,-.--- (~nner rotntinp, outcr at ITS^). (5.lGn)<br />

11, I -x2 x<br />

TI is ~tol.t.worIhy IItnt, t,ltr vclocit.,y vnrirs strtmgl~r wil.l~ t,hc rnt,io x - rl/rz of t,hc I~WO<br />

radii ill Cnsr I, whrrras for (hsr I1 it is almost intlcprnclc~~t of' it. MThcn x = rl/rz + 1 ,<br />

Iwt.l~ c~tscvi tclttl t,o the linrar vrloeity tlistril)l~t.ion of (!oucstt.(, flo~, as it, ocrurrcd<br />

1)cI.wc~vn l,wo flat plat,cs in thr rase rrprc~srntccl in Pig. 1.1 . The cc~nnt~ion of' Cnsr J<br />

yicltls tho satrtr linlif fiw r1 -- 0, i. C. fnv x = O \vhcn 110 in~ier rylintlcl is prrsc~lt. In<br />

(.Itis c,nsr, IJIt(~ Il~~itl 1~)(;11t>s insitlt: IIIC out,cr eylintlrr as n rigit1 I)otiy. Ilcncc il. is seen<br />

lIln.1 ('nso I1 yicsltls n lineal vcloril~y tlislril)~~t,iotl POI. llir t,\\~ sy111pI.ot.i~ C~SCS x -- 0<br />

n11t1 x -- 1. 'l'ltis I)rhnvio~ ~rtaltcs it rn.sy to ~intirrst,e.rltl why t,hc vclocit,y tlist.ribut8ions<br />

for lhr. ot.lter, inl.crmrtliatc valurs of x tlilTc,r so liklc from n stmight line.<br />

- x' - - r-r,<br />

5 - 5<br />

Fig. 5.4. Vclorily dist~ributinl~ it1 thr nnn~~lr~n l)c~t\r.c~r~~<br />

I:tlrtl with tl~c i~itl of cqtm (5.l5n, b).<br />

n) Cnsr I: irinrr cyli~ltler rot.nt.ing; orct,rr cylitlticr at, rcst, ro2 - 0<br />

h) (he I I : inner cylitlclrr at rcst, tol = 0; o~tt,rr cylitlclrr rotati~l~<br />

r, - r;uIius or i1111l.r 1.~1i11dcr. r, = r:uIim oI'o1111,r cyliwlpr<br />

t,\\.o.c-o~lc.c.~ltri~.. ~.ot;tti~~~ ~~Jlill~l~~rs<br />

>In ~~;lll~ll-<br />

r<br />

?J, = --.I. .<br />

2nr<br />

It, is sccn, therefore, t,ll,zt, t,he case of fric:l.iot~lrss flow ill t,hc r~eiglll)o~~rhootl of a<br />

vort,cx line constitput.cs a. solut,iorl of t.hc Navirr-Stokes cquntior~s (c/. Scc. IVb).<br />

In t,llis connexion it may be instn~ctive t,o n~cnt,iotl a11 cxnrnple of an cxnct nmslendy<br />

solut.ion of the Navier-Stokcs cclunt,iotls, rlnmcly that which tlescribcs the<br />

process of t1cca.y of n vortex t,hrough bhc acthl of viscosity. The distribr~t~ioll of t.l~e<br />

t,angct~t~ial vrlority component 7~ wit,lr respect to t.l~e radial tlista~lce r and tirnc t<br />

is give11 by<br />

Pig. 5.5. Vclocit.y distribution at varying<br />

times in tho ncigltbo~~rhood of n vortex<br />

filament cnl~setl by tho action of viscosity<br />

1; - circulnlinn or llw vortox nnrncttl nt 11 nio 1 =. 0<br />

w1:c.n vircoslly Iwylnr lo ncl: ti.- I;/? n r.


90<br />

V. ICxnct sol~ttion~ of tho Nnvior-StOkcs cqi~:~liot~~ a. Parallcl flow 9 I<br />

as derived by C. W. Osecn [21] and G. 1Ia1nel [I]]. This velocity distribution is<br />

represented graphically in Pig. 5.5 Here 16 dcnotcs t,he circulation of the vortex<br />

filamolt, at time 1 =1 0, i. c. at tho moment whcn viscosity is nssumed to bcgit~ it*<br />

actiol~. An cxperimenLal investigation of this procoss was ~~ntlcrt~nlta~~ 11y A. Tirnmo<br />

[40]. K. Kirdc 1171 mndc an nnnlytio study of the caso when the velocity distribution<br />

in t,ho vortcx tlilTcr~ from I.hnt irnposctl hy pot,cnt,inl theory.<br />

4. The suddenly necelernted plane wall; Stokes's first problem. We now procccd<br />

to calcuhtc somo non-steady par;rllcl flows. Since the convcctivc acceleration terms<br />

vanish itlcr~tic:aIly, the frict.ior~ forcos intrmct with tho local ncce1crnt.ion. Tho si~nplcst<br />

flows of this clam occur when motion is stnrtcd irnpr~lsival~ from rest. We sl~all<br />

begin with the c,wc of thc flow near a flat plntc which is s~tldcr~ly acce1cr:~tcd from<br />

rest and n~ovcs in it,s own plane with a constant vclocitty [lo. This is onc of the pro-<br />

I~lcms which wcro solvctl by (2. Stokes in his colcbr:rtccl memoir on per~tl~~lurr~s<br />

[3ri]t. Selecting tho z-axis along the wall in the dirnction of U,, we obtain the<br />

simplifiotl Navicr-SOnlccs oqmt.ion<br />

'rho prrssuro in tho wh01o space is constant, and Lhe bol~nclirry conclit,iol~s are:<br />

The cliIT(:rcnt.ial equation (5.17) is icIcnt.ical with the equation of hest conduction<br />

which clcscribcs the propngatrinrl of Itoat, in tho space y > 0, whcn at time 1 = 0 the<br />

wall y = 0 is sudtlcnly hcatcd to a t,cmpcr;~t,nre which oxccecls that in the surroundings.<br />

'l'lle pnrl,i:~l tliffcrcntial oquation (5.17) can be retlucctl t.o an ortlinary diTcrt:ntial<br />

cqu:~t.ior~ 11s tho sul)st.il,nt.ion<br />

Y<br />

(5.19) " --3' 2 1/<br />

If wn, further, n.ssumc<br />

x = Uoj(r]), (5.20)<br />

wc o11I.air1 the followi~~g ordinary tliITorcntial equation for / (q):<br />

t.hc complemenhry error /um%ion, erfc q, 11.w been tabulatedt. The velocity distribution<br />

is rcpresontcd in Pig. 6.0, and it may bo notctl that tho vclocity profiles for<br />

varying tinies arc 'similar', i. e., they can bc rctl~lccd to the same curve by changing t,hc<br />

scalc ttlong the axis of ordinates. Thc cornplcmcntary error f~~nctior~ whicl~ appcnrs<br />

iu eqn. (5.22) has a valuo of about 0.01 at 7 -- 2.0. %.king into accor~r~t tho tlcfir~ition<br />

of t,l~c: t~hic:ltnoss of the: I~ot~ntl~try Inyor, 0, wc: ol)t.r~ir~<br />

6=2qaJZx4 JZ. (5.23)<br />

It is seen to be proportionnl to the sqnnrc root of tho protll~ot, of kir~ornnLio visc:osiOy<br />

silt1 time.<br />

This problem was gcncralized by E. J?ccker [3] to ir~clr~dc: more genrml rat.rs<br />

of nccclnratio~~ as well as the cqses involving suctior~ or blowing or tho cfict of<br />

compressil)ility.<br />

Fig. 5.6. Vclocity dishibution<br />

above a snddenly accelerated wall<br />

5. Flow forn~ntion in Cmuette motion. The s~~bstiLuI.ion (5.10) which Imds to eqn. (5.21)<br />

dm not, in general, lend to a sol~ttion of 1.hc so-cnllcd lwnt conduction cquntion (5.17) ir morc<br />

complicntod boundnry contlilions aro itn~~osctl, Sincc cqn. (6.17) i~ linear, solution^ (i)r il, OILII<br />

be obtained by the use or the 1,nplncc t,mnsfor~nation nnd by tnoro direct nlcl.hods dcvclopc:tl<br />

in conncxion with tho study of the conduction of hcnt in solids. Mnny rc~~lkt obtni~~ctl, c. g.,<br />

for the tcmperaturc vnriation in nn infinite or semi-infinite solid, cnn be tlircctly transposed<br />

and uacd for the ~oIut,ion of problems in viscons flow. Thw the prcccding problem in which the<br />

formation of tho boundary layer noar a suddenly accclcrakl wall has bwn invwtigntrcf can<br />

also be nolvcd for tlw CDSC when the wall movur in a direction parallel to ar~otl~or flat w:dl at.<br />

n ~ and t at a distantx, h from it. This is the problcm of flow forn~ation in Couettc motion, i. c.,<br />

t Soe c. g. Shoppard. "The Probability Tnbgrnl", Rritish Atwoe. Adv. Sci.: Math. Tsblea<br />

vol. vii (3039) and Works Project Administration "Tables of the Probability Function", New<br />

York, 1041.


the of how the velocity profilc varion with tirne tcnding nsyn~ptotically to the linear<br />

diutribtrtion nlrown in Fig. 1.1. The diITcrcntinl cqriation is the same en before, cqn. (5.17),<br />

lmt with modified I)o~~r~clary conditions which now are:<br />

'rllr solutio~~ of eqn. (5.17) which sntinficn tho bor~ndary :d initial ro~~ditior~s ran Iw<br />

oht.:~inrd in t.l~c form of a ucrio~ of con~plcn~c~~tnry error fun~l~ions<br />

7x1<br />

11 'y'<br />

- = x erfc r2 n 4- 711 - x crfc [2 (71 -1 I) ?I# - ?I]<br />

('0 ,,-I, , -.I3<br />

rrfc - rrfc (2 q1 - tl) -1- crfc (2 -1- 71) - rrfc (4 11, - - 11) 1- rrfc (4 71, .1- 71) - . . . 4- . . .<br />

wllerc 71, := h,/2 1/ F i (lot~~t.cn<br />

(5.24)<br />

the cli~nenniol~lcsn tlistancc between t,l~c two wnlllr. 'Tho solut,ion<br />

is represellted in Iiig. 6.7. 'rlw corly profiles nre &ill aplwoxi~nntely similar and rc~nain so, an<br />

long nn t,llr bolllldary layer l~ns not sprcad to the stationary wall. The s~lcceeding vcloc:ity r)rofilcn<br />

:).re no lo~~grr "similer" a~~tl tc~~cl nsynptotirnlly to t,lre linrar distrihrrt~ion of tile skndy st&?.<br />

Exact solrtt,ions for non-stratly Coric.l.t,c flow werc rlcrivcd I)g .I. St.rinl~c~irr (331<br />

for 1I1r (xsr WIII~II OIW ol' 1,110 wdls is ILI, ITS^, in ;I, shn(ly flow II,II(~ is 111v11 SII(I(I~II~.S<br />

wc:r~lv~.at,c:cl to R givc.11, c:onstnut, vcloc:it,,y. 'l'o (lo t,his, il, is Iicbvc:ssal,y 1.0 solve! ['(lit.<br />

(5.17), whirli is itlcnt,ical with tho one-dirnrnsior~nl Iicat conrluci.ion cqtlat,ion, l)y<br />

lncnrls of n l~otiric~r. srrirs. A spccic'll CR,SC it, t.llis class of soluf.iotls is t.hd whrn t'l1~<br />

moving wnll is sutltlrnly st.oppctl so t,l~al, it rcprrscnt,s tho decay of (h~ot,t,c flo~.<br />

a. I';L~IIVI flow n:!<br />

lnyor ncnr tho wall. 'The influonce of vi~cosity rcnrhcs the pipe ccnf.rr only in the 1:rt.c.r st,:~grn<br />

of motion, antl tho velocity profile tonds asy~npLoLically to tho pt~roldic tlistribt~l.io~~ for ste:rtly<br />

flow. The corresponding solut,ion for an nnn~tlar circul~rr cross-section was given 113. W. Murller 1201.<br />

,, 1 IIC nccrlcr~~th of 11 I111id ovrr ~,IIc wl~nlc ICII~I,II of pipe di~c~~sst%(l 11~re IIIIIH~,<br />

din~ir~g~~inl~ctl from t.lic acrcIornt.io~~ of n fluid in tl~c illlet j~ortio~~a or<br />

,.41rcsrlllly<br />

a pipe in ~IJ*:L~I,~ IIOW. 'I&<br />

rechngnlar ve1ocit.y profile whicl~ exists in the entrance ucct.iol~ is grncl~lnlly transfor~~~ed as<br />

t.he fluid progresses through the pipe with x increasing, antl tends, ~~ndcr the influence of viscosity,<br />

to nssnine the Hngen-Poiscnillc parabolic diaI.ribntion. Since I~c?rc a@z :t 0 tho flo\rs is not<br />

onc-rli~nensiond, nncl the vdocity depends on x, nu \vrll ns on t.ho rndi~rs. Thin proh~n wak<br />

rlisrusricd by 11. Srl~lichl.ing [DO), who gave t,l~o solrlliolr for L\vo-tlin~c~~sio~~nl Ilo~ tl1ro11~11<br />

n st.r:~igl~t. rhannel, antl by I,. Srhiller 1291, ;~nd B. 1'1111nin 1241 for nxinlly symrr~rt.rir,nl Ilow (rirc~~lar<br />

pipr): srr nlno Sew. IX i nnd X 111.<br />

Fig. 5.8. Vclocit,y profilc in n rircrrlnr pipe d~~ri~~g<br />

ncc~rlrration,<br />

art given by 1'. Szgtnnnski [87]; T .- v //I12


94<br />

V. Exnct sohltiono ol' tho Nnvicr-Slnltcq oqr~nt,ions<br />

Tho velocity profile u (!y,t) thus has thc form of a damped harmonic oscillaLion, thc<br />

amplitude of which is I/, c w i ? ; , in which a fluid layer at s distance y has a phase<br />

lag y l/;t% with respect to the motion of the wall. Fig. 5.9 rcprcscnts - this -. motion<br />

for scvcral instants of time. Two fluid layers, a clistanco 2 n/k = 2 n d2 v/n apart,<br />

oscillate in pli~c. This distancc can be regarded as a kind of wave length of the<br />

motion: it is somctimcs called the depth o/ penetration of tho viscous wave. The<br />

layer which is carried by tho wall has a thidrncss of t11c order d - Jq and dccrcasos<br />

for decreasing kinematic viscosity and increasing frequcncyt.<br />

8. A rlnm of non-steady solutions. A general c1:rss of no11-stcntly sol111ions of the<br />

Nnvinr-Stnltw ,scq~latio~ls which possran bor~ndnry-lcycr o11arnctr:r is ol~tainrd in the sr)ccinl mm<br />

when tho velocity componcnta arc indopcndcnt of Lho longitudin:~l coordinnl,c, a. 'rhc systcn~ of<br />

rrlr~nt.ions (8.02). writlnw for plnno flow. nasun)cs 1.11~ form<br />

----. .-<br />

t Tltc ROIIIL~OII in cqn. (5.2(in) roprcscr~t.s also t,l~c tcmporat~~rn c1intril)ution in Lhc rarth which is<br />

muwd by t.hc pcricxlio Iluc*t.r~at.ion of I.ho k~npcraturc on tho surfncc, my, from clay 14) d:ly or over<br />

t,hc scnfu~ns in a yc::w.<br />

b. Other oxnct solulionn 95<br />

If we now prescribe a cnnutRnt vclocity v, < 0 at thc wall (suction), wo notice that cqn. (5.27~)<br />

is satisfied in~mediately hy a flow for whicl~ o = v, and that the prc.wuro p bcaorncs indcpnndcnt,<br />

of uirnultrmco~~sly. Accordingly, we put - (l/e) (+/ax) = tI(J/cll,, whom 11(t) donotes bile frwstrrnm<br />

vrlocity nt jr very largc dishnc:~ from t.1~ w:rll, nncl I~cncc obtain 1l1c followir~g clilTc.rcl~l.itrl<br />

cqtmtion for u(y, 1):<br />

au b 3t 1<br />

dU azu<br />

l,,, -. ..-- 1<br />

ag dl ay2 ' (5.28)<br />

According to .I. 'r. Stuart m2] thorecxista an oxnct soluI,ion ofccln. (5.28) for tllo arld,r:rry oxkrr~al<br />

vclocity<br />

'lll~is so1116ion is<br />

whcro<br />

Sllh~tituLing thc I.wt thrw cqu~tions ink cqn. (529, we am led ID n psrtinl diffcrrntial oq11st.ion<br />

for the unknown function g(!/. 1) = g(7. 1); thin hnn 1110 forrn<br />

Tllc following non-di~ncnsionnl varinhlcs hnvo been irltrodud in the prccocling:<br />

I'ie. 5.9. Vrlocit,y rlistrihution in<br />

the neighbourhood of an oscillating<br />

wall (Stokes's second problem) Solutions of (5.32) hnve hccn ohtaincd by J. Wnhn (411 who crnploycri Lnplaoo transformations<br />

and who restricted hirnuclf to severnl apecinl forms of the functior~ /(1). (:cncrally<br />

speaking, the following cxternnl flows, U(1). hnve been incIudw1:<br />

a) dnrnped nnrl undampcd oscillations,<br />

h) stop-likc chnngc from one vnluo of vclocif.y to xnot.lwr,<br />

c) linear incre.nuc from ono vnltlc to anoll~cr.<br />

In the upncial c.wc whcn the cxlcrnnl flow is indcpcnclcnt, of time, /(t) - 0, cq~~ation (5.32)<br />

I-~ds to the uirnple solution '(7, 7') = 0. This CDIIRP* v01oi~il.y prolilo from oqn. (5.30) to<br />

I~oromc iclont.ic:rrl wiI.11 Llw nuyrnptoLic s11c1io11 prolilo givcw IILIAW ill WIII. (14.l;).<br />

The preccding examples on one-tlimcnsional flows were very simplc, I)cca~~se tho<br />

convective acceleration which renders thc equations non-linear vnnishcd idontically<br />

everywhere. WG shall now proceed to examine sorno exact solutions in which thcsc<br />

terms are retained, so that non-linear equations will havo to t)o considcrcd. We shall,<br />

however, restrict oursclves to steady flows.<br />

9. Stagnation in plane flow (Hiemenz flow). Tho first simple examplc of this<br />

t,ype of flow, represented in Fig. 6.10, is that lending lo a shgnc~tion point in plane,


whcrc n tlcnoks :L cot~st,nnl. This is an cxa.~nplc of a. plane polcnt,ial flow wl~ich arrives<br />

from thc !/-axis and impinges on a flat wall placed at y = 0, dividrs into two<br />

streams on the wall and Lenvcs in bot,h directions. The visco~~s flow mwt adhere lo<br />

t,he wall, wl~crcas tho potential flow slides along it. In pot.entia.1 flow the pressure is<br />

given by Rcrnoulli's cqr~nt.ion. Tf pa, dcnotcs the stagnat,ior~ pressure, and p is t.11~<br />

prcss~~rc nt. a.n arbitrary point., wc have in pot,cnt.inl flow<br />

For visco~~s Ilow, wc: now ninkc t,hc nss~lmpt~ion~<br />

?I = x /' (71) ; ?I = - 1 (?I) ,<br />

Po - p =<br />

Q (L ":r2 -1- F (y) 1 .<br />

111 this way t,hc cquat,ion of cont,inuit,y (4.4~) is snt,isfietl idcnt,icnlly, :~nd thc t.wo<br />

Navicr-Slnltcs cqr~at.ions of plane flow (4.4n,l)) n.re snfliciont to dctmminc ll~c f~~nclions<br />

i(y) and F(y) Substituting cqns. (5.34) an(\ (5.35) i1it.o eqtl. (4.4a.,b) wc 01)tain<br />

t,wo ordin9.r~ tlifTercnt.inl eqantions for / and F:<br />

aqtl<br />

i'z - i y' cf,2 1- 3, j"' (5.36)<br />

/ /' =< I (,Z F' - 1, /" . (5.37)<br />

1). 0t.lwr exact volr~tio~~n 97<br />

'I'hc lm~nrlary eonclit~ions for / and F arc obt,i~ined from 11 -2 v -- 0 at. tl~e wall, wl~rrc.<br />

?/ =-. 0, n.nd 2) : po :tt the stagnation point, as wrll as froin 11. == (J = n. x at a Inrgt:<br />

tlisl,ancv: Sroni t,ho wall. '~'IIIIS<br />

'I'hc solution of' the? diITerrntial cquntion (5.3!)) w:ts first givcn in a thcsis I)y I


Table 5.1. Functions occrtrring in thr .solution of plnnc nnd axinlly ~ymmct.rionI flow with<br />

atngnntion point. Plnne cam from L. Hownrth 1141; nxinlly symmetrical cnnc from<br />

plnnc<br />

nxinlly uyrnmot,rical<br />

ITence again, as Idore, thc laycr which is influencr.d by viscosity is small at low<br />

kinematic visrositics and proportional to 6 l'hc pressure gradient ap/ay becomes<br />

proportional to Q n i ia and is also very small for small kinematic viscosities.<br />

It is, furthcr, wort.11 noting that tho dimcnsionlcns velocity distribution u/fJ<br />

and thc bo~~nclar~-la~cr thicltncss fron~ cqn. (5.40) arc indepcntlent of x, i. e., they<br />

do not vary along tho wnll.<br />

I<br />

'rho t,yp of flow under consideration does nbt occur near a plane wall only, but<br />

also in two-climcnsional flow prst any cylincirical I)ocly, provided that it has a blunt<br />

noso near tho stagnabion point. In SIICII cnsrs tho solution is valid for a mall neigh-<br />

bourliootf of tho stsgnntion point, if portion of the curved surface can hc replaccd<br />

by it4 tangcr~t planc war t1w sL:~gn:Aion point.<br />

Tho nnn-steady flow pattern which results qwu tho sl~pcrposit.ion of :rn nrbitrary,<br />

timc-dependent transverso motion of thc pl:~nc was st~ldicd by .l. W:~kotl 1.121<br />

'Chc spcrial cam of a harmonic tran~vrrsc niotior~ was solved carlicr by M. 1%. (:l:rt~rrt<br />

(1143 in Cllap. XV).<br />

9.. Two-dimensional noo-steady ntngnation flow. The cnm of non-stnndy, t3wo-tlinlrnsionnl<br />

flow sturlicd by N. ltott 128.1 conut.itutm n gcncrnli~atiot~ of Lho prcrcdit~g cnnc:. W


10. Stagststinn in thx-dimensional flow. In :I similar way it is possible to ol~tain<br />

an cx:~c:t, sol~~t.ion of the Navicr-Stoltcs cqnations for the three-clirncnsiorlal case<br />

of flow with st,a.gnat,ion, i. c., for the axisy~nmct~rical casc. A fluid stream irr~l)i~lges<br />

011 a wall at, right, nnglcs t,o it and flows away mdially in all directions. Such :I casc<br />

occrirs in t.11~ ~lri~l~l)orlrl~oo(l of a st.agn:~t.ion l,oi~il. of a 1)otly of rcvo111t.ion in :I flow<br />

I)arallrI to it,s :ixis.<br />

7'0 solve the problem we shall use cylindrical coordinates r, 4, z, and we shall<br />

assume tlrat, the wall is at z = 0, the stagnatiorl point is at the origin and that the<br />

flow is in the direct,ion of the negative z-axis. We shall denote the radial and axial<br />

components in frictionless flow by IJ and 11' respectively, whereas those in viscous<br />

flow will be tlcnc~ted by u :.= v(r,z), and w = w(r,z). In accordance wit11 eqn. (3.36)<br />

t,hc N:~virr-St,okcs rqrrntion for rotnt,ional symmetry can be written as<br />

111 1.h~ r:wc of viwor~s flow we assllmc t . 1 ~ following for111 of t.11c. sol~~t~io~~~ Sor (.IlP<br />

vrloc.i(.,v and prcssllrc clist~ril)ut.ions<br />

It, can be easily verifird that :L solution of Lhc form (5.4:1) s:itisfic~s the: cq~~atio~~ of<br />

fi,llowing t\ro<br />

c-ontinuity idcnticnlly, wl~crcas the cqr~ations of niot,ion Iv:~rl 1.0 t.l~n<br />

cy~~ations for /(z) ant1 F(z):<br />

p- 2jJ" = .2+ "Jl1l1 (5.45)<br />

2jJ' = ) a 2 P f - "J". (5.46)<br />

As I)cd'nrr, t.lw first of the t,\vo equations for / awl F c:ln l)o frc:ctl ol' Ill(- c:o~~st.;r~~t.s<br />

rr"<br />

and 11 l).v a sirnilarit,y transforrnat.ion, wl~irll is idrr~tical \!,it11 tl~:~t. i r ~ t,hr III:III~. ,.;IS(',<br />

t hns


11. Flow taenr n rotnting disk. A furlhor cx:~tnl)lo or :tn cxact soluLion of the<br />

Navicr-St,okcs cqu:~t,ions is furnishctl I)y t.11c: flow around a flat clisl; which rotates<br />

at~out an axis pcrpcntlicrtlnr to it,s planc: with n nnik,rm :tng~~lar vclocit.y, cr), in a fluid<br />

ot.hcrwise at, rest. Thc layer near the disk is carried by it througll friction and is<br />

thrown outwa.rds owing to tllc :xction of ccntrif~~gnl forces. This is comprnsnkd by<br />

part,iclcs w11it:h flow in an axial direction towarrls tho disk to be in turn carried<br />

and c:joetrcl centrifugally. 'I'hus tho east: is seen to bo ono of f111ly three-dimcnsionsl<br />

flow, i. c., tl~cre exist volocit,y components in the racli:d dircction, r, the ciro~rm-<br />

[rrrtrtial clircct,ion, 4, and the axial direction, z, which we shall denotc rcspcctively<br />

1)s 7s. v, and tt,. An axonornctric: rcprcsent.:~t.ion nT this flow ficld is shown in I'ig. A. 12.<br />

At. first. t .1~ cnlcnl:xt,ion will bc pcrlomed for thc case of :MI infinite rot.atir~~ pla~~c.<br />

11, will t,11e11 I)c easy to cxtcnd tl~c~rcs~tlt to inc:lndc :L disk or finito cli:trnct.cr I1 -- 2 11,<br />

on contlition that the edge rlTcc:t is ncglcctctl.<br />

'raking int,o acco~lnt rotational symmetry as wcll :m t.hc not.at,ion for i.ho prol)lcnl<br />

wr car1 write down the Navicr-Stokes cq~~ations (3.36) as:<br />

Fig. 5.12. Flow in I,ho nnighbo~rrhod<br />

of s disk rotating in s fluid<br />

st rest<br />

Velocity compon~nk: u-radial, s-rircllrnlerwilinl,<br />

ro-axial. A lngar nf fluid in rarricd<br />

hy the disk nwing Lo the ncliun of<br />

viscnua lorcrs. Tho eenlrilupal lorccs in 1hC<br />

thin layer givs ria. to ~cconrlnry flow wllicll<br />

is dircelcd rndinlly oatw*rrl<br />

., I ho no-slip condition at the wall gives the following bountlary conditions:<br />

z=O: u=O , u=rw, w=O,<br />

z=w: w=o, v-0. 1 (6.49)<br />

We shall bcgin by cst.im:~tirtg tho ttlic:knc:ss, A, or tho In.ycr of fluitl 'c::l.rric:tl' l)y t.llo<br />

disk 1,231. It, is clear that Lhc t11icknt:ss of the Iaycr of fluid which rot;dras wit11 thc<br />

disk owing to friction tlncrcmrs with th: viscosity r~nd this view is c:onfirtrtrtl wht:t~<br />

c:om pared with the msnlb of the prccoding cxamplcs. l'ttc ecrl tri fugnl li)rc:c per 11 ",it<br />

volumo which neb on a fluid p:~rticlc in tho rolatirlg Inyor at a tlisf.ancc r lon~ (.It(:<br />

axis is cqu:~l to p r (3. lrencc for a volumc of :ma clr . tls ant1 I~right, (1, the rrntri-<br />

fugnl forcc I)ccomr,s: p r cuz 6 tlr c1.v. The same olcrnc:r~t of fluid is nctctl upon I)y :I<br />

sl1c:tring stress t,, pointing in thc dircction in which the fluitl is slipping, and forming<br />

an angle, say 0, with the circumfcrcnt.ial velocity. The radial comportent of the<br />

sl~carirtg stress must now IN cqual to thc centrifugal forco, ant1 hrncc<br />

or<br />

T~ sin 0 dr (1s = p r co2 6 dr (1s<br />

T, sin 0 -- e r (oZ fi .<br />

On the other hand tho circumfemrttial componcnt of the sltcarir~g stress must I)c<br />

prop~rt~ional to thc vclocit,y gradicnt or tho circumfcrcntial vc1ocit.y at thc wall. This<br />

condition givos<br />

T, eos 0 N (14 r co/O .<br />

Rliminating tw from these two equations we obtain<br />

a2- I)<br />

m tan 0.<br />

If it is assumed that thc dircction of slip in the flow near tllc wall is indcpenclent of<br />

thc mdius, tho thickness of thc layer carried by the disk bccomcs<br />

which is idcnticiil with tho rrsult obtziinctl in the case of tho oscillating wall on 1). 94.<br />

Ihrther, we ran write for the sharing stros.9 at the wall<br />

-<br />

t,-eru~~d-erw fvw.<br />

'rho lmquc, which is cqual to thc prcnlucl of shcaring strcss at tllc ~1111, arva :LIIO<br />

arm 1)ccomcs<br />

R denoting the rnclius of the disk.<br />

In order to integrate the system of equntions (5.48) it is convcnicnt to introtluco<br />

a dimensionlrm distance from the wall, 5 - z/d, thus putting<br />

I


104 V. Jq:.tacL solutions oi tlrc Navirr-Stdtrs rqrtations b. Othrr rxnct, solutions I05<br />

I'rrrtl~er, the follo\viy assun~ptions arc ~nntle for t,l~r vrlocity romporrents nntl prcs-<br />

Inserting tllcse cq~laLior~s into eqns. (5.48) we obtnir~ n syst,rln of four sin~nllanrous<br />

ordinary diflerrntial eq~lat~ions for the funotions F, G, 11, ant1 P:<br />

'I'he boundary rontlitions can be calculat,rtl from cqn. (5.49) and are:<br />

r 7<br />

1 Ilr first solution of t,hc syste~n of eqns. (5.53) by an approxi~nnt~c methotl was given<br />

I)y a method of numerical intcgmtiont. They are plotted in Fig. 5.13. The starting<br />

values of the solut,ion indicated in Table 5.2 were given by E. RZ. Sparrow and<br />

J. 1, Gregg 1321.<br />

Fig. 5.13. VolociLy tlinlril)~~lion<br />

nvar n disk rot.nt,ing in n fluid at rrsl,<br />

TII t,he cnsc nntlnr discussion, just ns in td\c exn.mple involvir~g R stlagtlatrion<br />

[)oinl,, t,lle vclocit,y Geld is the first, t,o I)o cvnluatcd from the cqnnt.iol~ of corlt,inr~it~y<br />

ant1 the ccpat,ions of motion parallel to the wnll. 'J2fc prcssurc distribution is form1<br />

s~~l)seqwmt.ly from the equat.ion of motion perpendicular to the wall.<br />

. -<br />

t '1.his ~olut,ion wns ohhind in tho form of n power series near 1 = 0 and nn anymplotic uories<br />

for largo values of C which were then joined togehher for moderato values of 1.<br />

Table 5.2. Vnloos of t8he functions nerdetl for the drsc*ription or thr flow of n clisk rotntirlg in a<br />

Iluict nt rest, cnlrulatrrl at. the wnll antl nt n Inrge rlistn~~rc froru Ilrr wnll, 11s rnlc~~ln(ctl IIJ' 15. A].<br />

Slmrroa nnd .I. I,. Grcgg 1321<br />

It is sccn I'rom Fig. 6.13 tht tho tli~tnnc:n lion^ thn w:ill ovcr wl~irl~ t.11~ 11rrip11rr:rl<br />

wlocit.y is rctlucecl t.o half the disk vclocity is do., = d&/~ . It is to I)c r~ot-cd I'IXIIII<br />

the solution that when h = Jv/ij is sm:lll, t-he velocit,y components 11, antl v l~nvc<br />

;~.pprecint)lc values only in a t,hin layer of f,hi(:kncs~ l/;/0) . 'J'h v~locit~~ compot~(:t~t W,<br />

normti1 t.o t.he tlislc is, nl. :it~y ral,r, srnnll a1111 or the or(1cr 1/1~ ,I). '1'11~ ~ I I ( ! ~ ~ I I I L ~ . ~ ~ I I<br />

of I h rdat.ivc st.re;rmlincs Ilc:lr the wnll \rrit.ll rcspcct tto Lhc circutnlcrc~~t.i:\l clirc.c:(.iott,<br />

if the wall is imagined :it rest. nntl the hid is tnlten t,o rot,nt.c at, a I:lr~c tlist:~t~c,c:<br />

frotn t,hs wall, becomes<br />

Alt.l~o~tpl~ the calculation is, strictly spcalcing, applic.able t.o an infi nitc disk or~ly,<br />

we may utilize t,hc same rcsults fbr a finit.e disk, provitled that, its ratfius R is largo<br />

cotnparcd wit.l~ the thiclrness tY of t,hc layer carried with ttlc disk. We shall now<br />

evnlnnlo t,llc turning moment of such a disk. The cont.ribnt.ior1 of an annular disk<br />

clcmrnt. of widt,h dr on mdius r is dM = - 2 n r tlr r t,+, and hcncc the moment<br />

for a dislr wetked on one side becon~es<br />

llcrr tr+ p(av/az), tlcnotes the rircumfercntial comporlrt~t of tl~n shqarir~g stress<br />

Iirom rcln (5 52) we obtain<br />

11. is cust,omnry to ir~trotlucc the following tlil~lc~~~sio~~lt~ss ~non~t:~it; cocfficicr~t.,<br />

Ch, -- - - .<br />

2 1)l<br />

- . .<br />

: e wZ Rr '<br />

(5.55)


106 V. JCxact solutions of the Navicr-Stokm cq~~ntiona b. Othrr exact, solutions 107<br />

This gives<br />

or, tlcfining a Reynolds number based on thc radius and tip vclocity,<br />

R'o<br />

R = - -<br />

and int.ro~lttcing thc nnmerical vnll~c - 2 zG'(0) = 3.87, wc obtain finally<br />

Fig. 6.14 shows n plot of this equation, curve (I), and compares it with mcasuremcnta<br />

1391. For RcYnolcls numbcrs up to about R = 3 x LOS there is cxcellcnt<br />

agreement hnt,vecn tltoory nnd exporimcnt. At highor Raynolds numbers the flow<br />

bccorncs turbulent, an11 tho respective case is considered in Chap. XXI.<br />

Curves (2) and (1) in Fig. 6.14 arc ohtainnl from thc turbulent flow thcory. Oldor<br />

mcasuremcnts, carried out hy G. Kernpf [lG] and W. Schmidb [31], show tolerable<br />

ugrrwnrnt with throrotiral resalts. Prior tn Lrsr aol~t~ions, I). Riahoachinsky [2Gj.<br />

1271 estaldiahcd cmpiricnl fonnulac for the turning mon~cet of rotating disks wllich<br />

werc hmcd on vcry carcful mcasurrments. Those formulae showed very good<br />

sorrcmcnt with the thcorctical equations discovcred suhscqucntly.<br />

-0- -<br />

The quantity of liquid which is pumpcd outwards N a result of thc centrifuging<br />

nctdon on tho one sidc of a disk of radins R is<br />

o NACA Report No. 7g.3<br />

v 0.48 lo 1.69<br />

Kernpf<br />

0 NSchmidt Fig. 5.14. Turning mo-<br />

ment on a rohting dink;<br />

crlrvc (1) from eqn.<br />

(LM), hmimr; eurvea<br />

(2) and (3) from eqns.<br />

(21.30) and (21.33). tw-<br />

bulenl<br />

Calculation shows t,hnt<br />

Q = 0-885 n R2 (11 = 0.885 n Rn (1, R-lI2 . (5.67)<br />

,I I he q~tanf.ity of fluid flowing towards thc disk in the axial dircct,iorl is of cqrlsl<br />

~napnitutlc. Jt is, filrther, wortlly or no(,c tht tJtc pressure tlini:rrt~cc ovcr t,hn 1:~yrr<br />

carried by the (lislr is of tho orrior e r1 a), i. c., vcry small for s~unll vi~co~it~ics. TIIC<br />

prcssnm (Iist,ril~ntion tlcpcntls only on tho tlist,nrlc:o from th(1 wall, rinrl (.II(w is r~o<br />

riuli:r,l ~~rcss~trc grntlicwt,.<br />

A generalisctl fnrnl of tl~e prccetling problem has becn stutlictl 11y M. G, Itogers<br />

and G. N. Lance [28] who assumed that the hid moves with an nnnllIar Vl,IO(*i(,V<br />

antl thc sccond boilntlnry contlition for tho function G(() mttat, Ito rrplncwl t)y<br />

C(m) = s . In this conncxion a comparison should hc mndo with thr caso ofrotating<br />

flow ovrr n fixrd disk given in Scc. XTn. Nnmcrical ~olutions for rotatio~~ ilk tl\c<br />

s:nnc srnsc (s > 0) can be found in [20]. Whcn the rotations arc in opposite scnsps<br />

(s < 0). physically meaningful solutions can bc obtained for s < - 0 2 only iTunifc)rrn<br />

suction :it right, :i~~gIrs to the dislr is n(lniittc(1.<br />

The prol~lem of a rotating dislr in a housing is discussed in Chap. XXl.<br />

It, is particularly tiotcwor(hy that the solutior~ for tlrc rotating disk as wcll as<br />

1.llc solutions obtained for the flow with stagnation are, in the first place, exact<br />

solutions of the Nnvicr-Stokes cquntions anti, in the sccond, that thcy are of a<br />

houi~drcry-la?/rr<br />

(me of vcry small viscosity t,hese solntions show that tho influence of viscosit.y<br />

rxl.rntls over a vcry small lnycr in tllc ~~cighl~ot~rl~ootl of. the solid wnll, ~ 1 1 c ~ t . c : : ~ ~<br />

ill 1,llc wl~olo of 1.l1c rcmnining region t.hc flow is, j)rnct,ic;llly spcalring, i(lrnt.i(~:ll<br />

\vit,l~ (.he corrcspontling itlcal (potcnti:~l) cnsc. '~hcsc cxamplcs show Surthor l.l~;~t<br />

the b~~nnilary hyer has a thickness of the order iv . The one-dimensional examples<br />

of flow discussed previonsly display tho snmc bonntlnry-layer character. In this<br />

conr~cx-ior~ the rcatlcr may wish to conwit a pnpcr by G. I


The periphcrnl vclocit,y vanishes evcrywhcrc. Int,rodnring (his form into the Navier-St,oltes<br />

cqllnLiolls writ.lnl~ ill I~oln,r rc~nrtlinnlcs, cqn. (:l.:l(i), nntl rlin~in;~l.i~~g prmsllrc from t.hc cql~nt,iollu<br />

ill t,llo r nlltl $ clircrtions, we obtain t.hc following ordinary tlilhrrnl.i:ll cq11a1.io11 for I('(4):<br />

'I'lle co~~st,:rnt, I( clrnotrs the radinl prrssurc gr:~.clic.nt, ;tl, 1.11~ ~~alls, Ii =- --(I/@) (i)l~/ar) (r"v2),<br />

where \ve llave 17 0 fore - n anti+ - -a. ns wc:ll as E" - 0 ford) -7 0. The so111lio11 ofrq11. (5.58)<br />

,,.as givrn by (;. lIalncl [ll],'l'l~c f11nrtion 1.' ran be cxprrssrtl rxplicit.ly ns an ellil)l.ic fnnction of$.<br />

\Vc sllnll now briefly sltrt,ch t.l~c ch:~rnrt.cr, of the solution refrailling from cliscussi11g the<br />

(let,nils of t.lre derivation. The grqh in Fig. 5.15 shows n family of vclocit,y profiles for a tollvcrgc~~t,<br />

and a clivrrgcnt chnnnrl for diITerent. IZ.cynoltls nnn~bers plot,tcd on the I)asis of the<br />

Il~~r~lerinaI raIor~l:itionn pcrrorrncd by I


cnu bo npplirtl nt mont, nn fnr RS 1.l1r point, of nrpnrnthn ot~ly. F~~rt.hormore, t.hc now t.hcory Rw-<br />

ccodn in nome canen evrn \vil,h t,hc cvnIunt.ion of tho cotnplox flow pntterns which exist. in the<br />

region of hnck-flow behind t.lm point, of sqmrntion ng woll RR t,l~nt in the rrgion of re-ntl.arl~~netlt.<br />

111 Al,rnn~owitz, M.: 011 Iinrkflo\v of n visrn~~n ll~~itl in n tlivrrgi~~g chnnrl. .J. M:IIII. I'hyn. 28,<br />

152 (~!i~o).<br />

141 I!orker, It.: IntCgrntion tlcs i%pmtionn ~ I ~nouvcrnent<br />

I<br />

(1'1111 fluidc V~S~IICIIX i~~co~~~prrssihl~.<br />

(,ontribution to: Hnndbuch dcr Physik (8. I'liiggc, ed.) 1'11//2, 1-384, Rcrlin, 1D63.<br />

[51 . . Rlaniuu, 11. : I,nrni~lnro St.riimr~nji in K~l.nA\en wecl~nclnrler Ihile. Z. Mnth. 11. I'l~ysili 68,<br />

226 (1!)10).<br />

(61 (:nt,l~ernII, I)., nntl hltinglrr, l


CHAPTER VI<br />

Very slow motion<br />

a. The clifirential equntiono for the case of very elow motion<br />

lIl {,lliq 1~~1~111~,,~~ jvl. llr,l~ll~~p 10 1Iisv11ss somv :1~1proxit11:11.(? sol~~l.ions oft,hr xavierril~,lta~~<br />

OI~IIILI,IOIIH WIII~III t~rt, vttliti 111 IJII, Ii~~~ll.lng (:IISO \~IICII 1.111, viscous furccs :we<br />

consiclerably grcatcr tlmn the incrtia forws. Since tltc incrt,ia forces arc proportional<br />

to tho square of the velocity whercas thc viscous forces are only proportional to its<br />

first power, it is easy to appreciat,e that a flow for which viscor~s forcrs arc dominant.<br />

is obtained when t,l~c vclocit.y is very small, or, sl~rnlring morr gcncndl~~, WIIPII trhtr<br />

Reyr~olds number is very small. Whcn t,hc inertia terms are simply omitted from the<br />

equations of motion the resulting solut,ions are valid approximately for R 6 1. This<br />

fact can also be deduced from the dimensionless form of t.11~ Navier-Stokes equations,<br />

eqns. (4.2). whcrc the inertia terms arc secn to be multiplied by a factor R = e V 1/p<br />

compared with the viscous terms. In t,liis connexion we may remark that in each<br />

particular case it is necessary to examine in detail the quantities with which this<br />

Reynolds number is to be formed. However, apart from some special cases, motions<br />

at very low Reynolds nllmbers, sometimes also called oeepittg mntiotl,.~, (lo not<br />

occur too often in practical applicationsi<br />

It is seen from eqns. (3 34) that when the inert,ia terms are ncglrrtctl the incom-<br />

pressible Navirr-St,oltrs equations assume the form<br />

or, in cxtnntlrd form<br />

div 111 = 0 , (6.2)<br />

az I<br />

t In tho canc oC a ~pltcre<br />

when t.11~ dinlnetet d - 0.04 in (: 0.00333 ft.) and t8he velocity V = 0.048 ft/sec.<br />

falling in air (v 1- 160 x 10 ft2/soc) wc obtain C. g. R = lid/v -- 1,<br />

This systern of equations must be supplemcntcd with the same boundary cotltlit,io,ls<br />

:IS the fill1 Navier-Stokes equations, namely those expressing the ~bscr~cc of slip i r ~<br />

the fluid at the walls, i. e. the vanishing of tlw normal and tangent,iaI con~poncnt,~<br />

of velocity :<br />

ll,, = 0 , ?!, = -- 0 :I t< \v:1 I Is . (6.5)<br />

An irnportnnt c:l~n.ractcristic of creeping motion can bc obtair~ctl at once fro111 ~:(III.<br />

(6.1), when the divergence of both sidcs is formed and when it is ~~ot~icctl t,lrat t,lle<br />

oper:tt8ions tliv and V2 011 the rigI~t-l~n.rd side may 1~ pc:rforr~irtl in the rcvt5rso ortl(%t;.<br />

,. I bus, wit,Ir cqn. (0.2) we have<br />

'I'l~c pressure fioltl in crccping motion s:~tisfics the potcnt,ial cquatior~ :tr~tl the Iwcssurc<br />

p(x,?/,z) is a poLent.ia1 function.<br />

The equations for lwo-dimensioned crceping motion become parl,ic~~ln.rly sirnljlc in<br />

form urit,ll the introtlnction of the stream f~~nction 71) tlnfirictl Ity ?L =+/if!/ at111<br />

?I = - ay~/r3x. As cxplainctl in Cl1n.p. I V, :tnd as sccn from cqns. ((i.:%), wllcr~ I,rt,ssllt.c:<br />

is t:Iiminl~ImI l'ron~ l,l~t? first, I,IVO ctp~t~ioll~, stret~~n<br />

III,IS(, s:~l.isl:~ (.It(!<br />

t h<br />

J'IIIIC~.~~II<br />

rquation<br />

V",l =1 0 .<br />

., I he strcam funct,ion of plane creeping mot.ion is t,hus a bipot,rnt.inl (Ijil~nrnlollic,)<br />

function.<br />

In t,lic remaining scct,ions of this eltapt,er we propose t,o discuss tllrcc ex:~tn~)lcs<br />

of creeping motion: 1. Parallel flow past a sphere; 2. The l~ydrotlynnmic theory of<br />

I~tt~rirnt,ion; 3. Thc Iiele-Shaw flow.<br />

b. I'arnllel flow past a sphere<br />

- - - - . - -.<br />

'I'hc oltlcst known solrlLion for a creeping nrotion was given by (:. (:.<br />

who in~csl~igatctl<br />

St.olrcs<br />

t,hc rcsnlt of his calrlllations witlmlt going into the ~n:~lhcrnat~icnI tlct,:~.ils 01' t.lto<br />

tl1cor.y. Wc shall Imc our tlcscription nn thnt given Ijy 1,. 1'rrtntlt.l (121. '1'11t. sol~~t.ion<br />

Lhc? case of pamllol flow past, a splrcre [17]. Wc shall IIOW tl(~sc-ril)t~<br />

incitlcs with tltc origin, ant1 w11icl1 is 11l:~cctl in a pamllcl<br />

I/,, Fig. 6.1, along the 3:-axis can t)c rcprcsrntctl by t,hc<br />

pressttre arlcl vcloc:it,y componcnl,s:<br />

3 11 Urn Rz<br />

p - p,= --<br />

2 r3


114 VI. Vcry slow motion<br />

where r2 = z2 + y2 4- z2 has been introdneed for the sake of brevit,y. Tt, is easy to<br />

verify that these expressions satisfy eqns. (6.3) and (6.4) and that t.ho velocity va-<br />

ninhes at all pointa on the surfnco of t,ho sphere. The pressure on t,he surfnre becomes<br />

'rho rnnximllm ant1 n~inimurn of prrssllrc occurs nt points P, and I'2, respectively,<br />

thrir valnrs bring<br />

3 11 uw<br />

1)1.2- pcn - -1- --ji -<br />

(G 7 1))<br />

Tile prcssnrc distribr~t,ion along a 1ncridia.11 of t,hr sphere as well as alor~g the axis<br />

of al)scissar, r, is shown in Fig. 6.1. '1'11~ shrnring-stress distribution over the sphere<br />

can also be cnln~libtctl from the n.lmvo formulae. If, is found that the shearing st,ress<br />

has it,s largoat value nt poirll /I whcro t = ij ,IL fJ,/I1 :m(I is r~(11al to the pressllre<br />

riso nt PI or prrssurc tlccrrase nt /',. Tntrgmting tho pressure distribut.ion ant1 the<br />

shrnring sl,rrss over the surfacr of tho sphrre we obt,nin t,ho t,ot,nl tlrng<br />

'This is f,ltc vcry wcll known ,Wko.~ cr/udion for thc: tlrag of a spl~rrc. It, can I1v shown<br />

t,l~at. ol~c t.llirtl of ihc t1r:t.g is tlrro t,o the prossure ,list,ril)~ition n ~ ~.II:L~, ~ d tho ron~ni~~ir~g<br />

t.wo t,l~irtls nrr t111o t.o tho cxistctico of shcar. It is fr~rlhar rcrnark:~l)lc t,h:lt t,hc ctr:~g<br />

is ~xo~)~rt,io~~nl to the first, powcr of vclocity. If a t1ra.g coefficient is fornled hy<br />

rc.l;.rrillg f,llc tlr;la 1.0 t,hc tlyu:~mic hc:r.rl a Q 11,2,nntl t.he rrontd arca., :IS is dotlc:<br />

in tllc c.:rsct of highrr Ib~~noI(Is r~n~nlwrs, or if we p~t.<br />

b. Parallel flow pnst 8 spl~rrc 116<br />

A coniparisot~ het,ween Stolzcs's equation nnd rxpcritnont was givan in Vig. 1.6<br />

from which it is seen that is applies only to rases when R < 1. The pnt,tern of<br />

strcamlinos in front of and behind the sphere must be the same, as by rcvvrsing<br />

t,he direction of free flow, i. e., by changing the sign of vclocity con~ponents in cqns.<br />

(6.3) and (6.4) t.he syston~ is transformed into it,self. The st,reamlincs in viscons<br />

flow past. a sphcro are sl~own in Fig. 0.2. Thy were tlrnwn ns they woultl nl)pear<br />

to an observer in front of whom the sphere is dragged with n constnnt, vclocity U,.<br />

The sltrt,ch contains also velocit,y prolilcs at scvcral cross-s~ct~ions. It is scon f,l~nt<br />

tho sphere drags with it a vrry witlr layer of flnitl wl~id~ rxtr~~tls over :iI~out, one<br />

tliitrnclor on I)oth sitlns. At, vory high Itryrtoltls nurnl)ors tl~is I~o~ln~liiry li~y~r<br />

I)ccornes very thin.<br />

Ipig. 6.2. Sl.rcnnilincs nnd vrloci1.y di.st.ri-<br />

brttinr~ in Stokm' snlut.ior1 for n spllcrr ill<br />

pa r;dlrl flow<br />

[Pig. 6.3. S1.rc;itnlirlr.s in llir flow<br />

ORCVII'.~ improvcrnt~~~t: An ~ITI~)~~VI!ITI(-II~, of' St,ok~s's srv is', 11' nntl 711' nrr t,l~o pcrl,url):l (.ion f.cwns, : rr~tl :IS SIIV~I, stn;r ll wit 11 ~.c~sl~~~,,<br />

t.0<br />

(.he f'rcr st,rca~n vclocity (1,. It is to noted, I~owevcr, that, this is r~ot, tr~r ill 1,11c<br />

irnnlrrliatr neighl~onrhootl of t,hc spherr. With tho ns~nnl~~i~iot~ (0.1 I ) 1.111- illrrt.ia<br />

t.crms it) t,hr Na,vier-Stdokt,s rqns. (3.32) arc tlrcv~nl)osed in two ,pro~~l)s, r. g. :<br />

allr av'<br />

(loo , U, --<br />

ax<br />

, . . . and<br />

a ~ ' , avr<br />

"Iaz , IL ax<br />

--, . . .


116 VI. Vrry slow motion<br />

, 3 I 11c sccontl group is ~lrglnctrtl as it, is small ot' the sccontl ortlrr rotnparell wit.ll the<br />

first group. Thus we obt,nin tho following cqllat.ions of rnot,ion from the Nxvier-<br />

St~oltcs cquat.ions :<br />

P 1<br />

I he pat,t,rrn of sl,rr:wnlir~rs is now no lo11gc:r t.11~ sanlcx ill front, ol' :LII(~ 11ehi11ll<br />

t,hr sphere. 'I'his can be recognizcd if' rcfcrerlcc is tnatle to eqns. ((i.12), I)rrn.ust: if wr<br />

(:11:1ngc 1.11~ sign of t,llr vclorit.ios and of thc: pressure, t,hc cq~~nt,ions do not t,mnsforn~<br />

i111,o thclnsclves, wl~crcas tl~c Shlics cqu:~t.ions (6.3) tlitl. 'l'hc st.rc:a.mlitlt:s ol'<br />

t.11~ Osrcn cquat,ions arc plot,tcd in Fig. 6.3, and t,lle observer is again assunlctl to<br />

I)c a,t rrst wit,ll respect. t,o Che flow at a large disttance frorn t,he sphere; it is itnagi~~rtl<br />

tO~at, f,l~c sphere is dra.ggctl wiLh a constant, vclocit,y 11,. 'rhc Row in front of thct<br />

spltrrc. is vcry similar t,o that given by Shkcs, but, behind the sphere the st.rearnli~~rs<br />

arc closer tqq?t,llcr which mc:lns that tho vclocit,y is larger f,han in t.he forrncr case.<br />

I'ttrt.ltcrrnorr, 1)ohintl t,l~c sphere some pnrticlcs follow it.s mot.ion as is, in Ikvl.,<br />

ol)srrvc:tl rxprrimrntally at, large T


1 I8 VT. Very slow motion r. 'l'l~o Ilytlrorlynn~~~in tllmry of I~~brivntirm I I!)<br />

The tliffrrcnt,ial cq~lntinns of crrrping motmion, cqns. (6.1), can be fitrLhrr simplifier1<br />

for the case ulltlcr consitlcration. T11c cqu:~tion for tllc y-tlirechn can be ornittctl<br />

altogether bccnusc the component v is very small with respect to u. lhrthcr, in tl~c<br />

cqnnt.io11 l'nr 1,110 x-(lirrct.ion i)21c/ih:2 ca.n I)c ncglcct,ctl with rcspocl, 1.0 a21~/r?y2, be+<br />

calrsc the forrnrr is sn~allcr t.Il;l.n the lnt,t,cr by n hetor ol the ortlcr (h/1)2. '1'he prcssnrc<br />

tlist,ribution must, snl.isfy 1,llc contlition t,hnt p .r= p,, at bot.ll entls of tho slipper.<br />

Comp:trrrl wit.lt 1,hc rase or flow bct,weon pnmllcl slitlin~ walls, thc pressurc grwlienlf<br />

in I,llc tlirrc1,ion of ~nol~ion, ap/ax, is no longer constant, but the very small prcssurc<br />

grntlic-nt, in 1.11~ ?/-direction can I)c nrglrrt.rt1. With 1.11csc sitnplificntions the tliffrrrnt,inl<br />

rq~tal~ions (6.3) rt:tlucc to<br />

nntl i,hc eqn:~t.inn of cont.innii.y in tliffcrrnt~ial form can bc rcplnccd by the contlith~<br />

that t.11~ voln~nc of flow in evcry scct,ion must be constnnt:<br />

The sol~ltion of rqn (6.15) whirh satisfirs the bountlnry conditions (6.17) is<br />

similnr 1.0 Pqn. (5 5), namrly<br />

or, solving Cot. 71':<br />

'I'IIIIS tho mass flow is known wl~cn t.11~ shpo of the wctlgc is given as t.llo f~lnrl.iol~ It (:t:).<br />

Eqn. (0.19) gives tlle prcssnrc gmdient., ant1 eqn. (6.20) ives the prcssurc tlist,ril~~lt,iol~<br />

ovrr tllc slipper.<br />

wllit:11 n.ppcar in cqn. (0.20) tlcpcntl only on t,llc gcornct,ricnl sl~al)c of' the gt1.1) Iwl.\vr~t~<br />

t,ltc slitlrr nntl I'Iln plane. 'l'llrir rn.t,io<br />

c (2) = hl (x)/b2 (x) (6.23)<br />

wllicl~ Ilns t,lm tlimcnsiorl of n 1cngl.lr plays nn imporl,a~~t, pnrt in lhc bllrory of<br />

Iubricnt,ion; it.8 value for the wholc cl~ntrncl,<br />

is somctimcs callctl the clw~rrrclerislic Ihicknes.3. 1Vit.h it.% ni(l, the crluatiot~ of' c w -<br />

tinuity (0.21) cnn Iw contractccl to<br />

q =; UlI, (6.25)<br />

from wllich it,s pllysirnl int,crprct.i~t,ion is cvitlcnt. Tlre pressure can now be n.ri1.t.cn<br />

and the pressarc gradient. 1)ecomcs<br />

It (z) > II for 0 < z < x,,, implyilll: 2)' > 0<br />

h(r)


120<br />

VI. Vcry ulow motion<br />

and for the pressure distribution<br />

2 (I-z)<br />

p(x) = po + 6pU-----. h2(2 a-1)<br />

(6.29)<br />

The relations hecome somewhat simpler if the shape of the channel is described<br />

by t,he gap widths hl and h, at inlet and exit, respect,ively, see Fig. 6.4. 'The c1lnr:lc-<br />

t,erist,ic witlt,h now becomes equal to the harmonic mean<br />

and the condition for positive pressure excess, eqn. (6.28), now requires that t,he<br />

channel should be convergent. In this notation, the pressure tlistribution is given by<br />

and the result.ant of the pressure forces can be con~putecl by int,egration, when we<br />

obtain<br />

with k .= h,/h,. The resr~lt~ant of the shezring stresses can be calc~~latctl in a similar<br />

manner:<br />

1<br />

It is interesting to note [el that the resultant pressure force possesses a maximum<br />

for k = 2.2 approximately, when its value is<br />

and whcn<br />

Tl~c corfficicnt of frict,ion F/P is propor16onal to hz/Z and can be made very small.<br />

The coordi~~ates of the centre of pressure, x,, can be shown t,o be equal to<br />

For small angles of inclinat.ion between block and . h c (k w I), tile pressure distri-<br />

hution from cqn. (6.29) is nearly parabolic, the charact,erist.ic thicltness and cent,re<br />

of prcsssnre being very nearly at z = 1 t. Pni,t,ing hm = h(4 1) we cnn find that the<br />

pressure tli[l:ronce 1)ccomcs<br />

If we compare t,his rcs~llt with t.hat for crccping nlotion past, n sphcro in cqn. (6.71)),<br />

we not,ice that in the case of t.he slipper the pressure tlifTcrrnec is grcalrr I I n ~ f:rct,or<br />

(lll~,,,)~. Since Ilh,,, is of the order of 500 t.o 1000 (1 = 4, A,, =x 0.004 to 0.00s ill).<br />

t,he prevailing prcssurcs are seen to assume vcry large val~~es-1. 'l'hc occll~~c?t~c~: of<br />

sucl~ high pressures in slow viscous motion is a pocwlinr proprrt,y of 1.11~ (,,yp(: of flow<br />

(~nrot~t~t~~~rotl<br />

ill I~~lriwdon. At, l h tmmo tirn~: itf is tw!op~iz~!(l I II:I~, I,IIc :III~CI~~ li~~.ttt


122 VI. Very rrlow motion<br />

ext.endcd to include the case of bearings with finite width [I, $1, when it. was found<br />

that the decrease in t,llrust supported by swh a hearing is very considernble due to<br />

the sidewise decrease in t,he pressure. Most theoretical calculations have been conduct,cd<br />

under t,hc xssumpt,ion of constant viscosity. Tn reality heat is evolved tshroogh<br />

friction and the temperature of t,hc luhricating oil is increased. Since the viscosiLy<br />

of oil dccrcascs rapitlly with incrri~sing t,c:tnpcrat,ure (Tahlc 1.2), the t,hrust also<br />

drcrmsrs grc:nt,ly. 111 rnorr rcwnt. t,in~cs 1'. Nahme [I01 extcntlcrl t,hc I~~drotlynarnic<br />

throry of' lubrication to inclutfe t,hc cffrct, of t.hc varintion of viscosit,y wit,ll t,?rnperaturc<br />

(cf. Chap. XI1).<br />

d. The Hrle-Shnw flow 123<br />

Here R, and Uc donote, respectively, the rndit~s and the peripheral relocit,y of the concentric<br />

journal (e = 0) and d ia the width of the gap.<br />

After the onset of inatnbility, the flow in tho gnp developn rrgulnrly spaced, ccll~rlnr vortices<br />

which n.ltcrnntcrly rotate in opposite dirertionrr. 'l'l~e nxcs of t,hesc vortireu coincide \vitl~ the<br />

circumferential direction, ns shown achemnt.irnlly in Pigu. 17.32 nnd in the photogrnpl~ of Fig.<br />

17.30. In n certain rnnge of Taylor nrnnbers, the flow in the Tnylor vortice~ remainn Iaminnr.<br />

l'rnnuition t,o turbulent flow ocrnrs nt vnlue~ of the Taylor nuntbcr which c,onrriderahly oxrcrcl<br />

the limit of ~t,ahility. Tho tho rcgi~ncw of (low (ns will be rrprnl.rrl in See. XVIIf nnil in I'ig.<br />

17.04) nre chnracterized as follows:<br />

T < 41.3 Inrninnr Cor~ot,to flow;<br />

41.3 < T < 400 Inininnr Ilow with cell~~lnr 'l'nylor vort.irm;<br />

T > 400 tmrb~~lcnl Ilow.<br />

\Vllcn the flow becomea nnat,nblc, the torqne nrting On tho rot,nt.ing cylinder inrrrancu sI.rrply,<br />

t~rcn~tsc? the kinetic energy nhrerl in tlw uccontlnry flow ~trt~st he c.on~pen~nt.etl by work.<br />

The snnie flow phenomena, generally speaking, occur when tlw henring is londed nnd 1,l1e<br />

gap witlt,h vnrie~ circumferentinlly, bnt, t .1~ dct.nila of t .1~ flow bcro~nc more romplrx. At,ten~pts<br />

hnvc lwon rnndc t,o cnlct~lnta tho tttrb~~lcnt llow in n gnp of n bonring with t.hr rritl of 1'rn11tIt,I'~<br />

mixing length [Chap. XIX, eqn. (19.7)1. The set of these problems hnu at,t.mcked n wide circle of<br />

invr,stigntorn, utrch a8 I). P. Wilroek [19]. V. N. Con~l~nntineu~n 12, 3, 41. E. A. Snit)el nntl N. A.<br />

hlnckrn 114. 151 have writton two gcncrnl a.cror~nte t,hnt ront.nin ntlrnwotls litcrnt,ttrr rrfrrcnrr~.<br />

d. The Ilcle-Shnw flow<br />

At~ot~hcr remnrkn.l)lc sol~ttion of tho tfl~rcc-tli~ncnsio~~nl cilunl,ions of crrrping<br />

mol.ion, eqns. (0.3) and (6.4), can bc obt,ninctl for the case of flow botr\vcc~~ two<br />

parnllrl flat walls separated by a small tlistance 2h. If a cylindrical body of n.rbitx:~ry<br />

cross-section is inserted brtwccn the two plates at rightf nnglcs so that it conlplclcly<br />

fills tllc space bctwecn tlwn, the resulting pilttcrn of stm:~~nlines is idcnticnl wit811<br />

1,ltnt in potential flow about t,he anme sl~apo. 11. S. Jlclo-Shnw [7] nscd this tncthoil<br />

to obtain expcrimcntnl pnttcrns of strenn~lincs in potential flow about. :~rl~it,rary<br />

botlies. It is easy to provc that the solut,ion for crccping motion from O~~IIS. (6.3)<br />

nntl (6.4) possosscs the same st,rm.mlincs n.s the corrt:spording pot.crttial flow.


124 VI. Very slow motion<br />

of tho t,wo-tli~nc~~~sionnl potential flow past the givrn body. Tl111s ?I,, v, and p, satisfy<br />

tho equations<br />

J'irst wr nol,ioc all O~CO from 1.11~ soIut,ion (6.39) that 1.11~ cqr~at~ion of continuity and<br />

the cquntion of motion in the z-tlirection are satsisfietf. The fact, that the equations of<br />

motion in the z- and y-directions are also satisfied follows frorn thc potential character<br />

of ?I,, and v,,. Tho functions ?I,, and v, satisfy the condition of irrotationality<br />

so that the pot.cntin1 equations V2 71, = 0 and V2 v, = 0, where V2 = a2/i3z2 +<br />

iI2/B?p2, are sal,isfied.<br />

The first t\vo rqnnt.ions (6.3) reduce lo ap/az - /L a2u/az2 and ap/a?j = /L a2v/az2;<br />

t.11r.y nrc, howcvcr, uat,isfied, as seen from C~IIS. (0.39). Thus eqns. (0.39) rcprcsent<br />

a solt~t.ion of t.hn equations for creoping mol.ion. On tho othcr Irantl Ll~e flow rcprcsentctl<br />

by rqns (6.39) has the same streamlines as potential flow al)out the botly, n.nd the<br />

st.rcamlines for all parnllcl layers z = const arc congruent. The condition of no<br />

slip at tho pla.1.c~ z = f h is seen t,o be satisfied by eqn. (6.39), but the condition<br />

of no slip at the surfacc: of the body is not sat,isfied.<br />

'rhr ml.io of incrt,i:~ t,o viscous forces in JTele-Shaw motion, just as in the casc<br />

of i,l~c mot.ion of Irll)ricat,ing oil, is givc:~~ 1)y t.11~ reduced Itnynolds number<br />

whc-rr 1, tlcnoks a n11amat.cxistit: lincar tlimc.nsion of l.hc botly in the R., ?/-plane.<br />

If R* c:scwtls unit,y the inertia tmms Iwco~ne considrmlllc nntl the motion tlcvin1.r~<br />

from 1.11~ sin~plc sol~~l~ion (6.39).<br />

'1'11~ solt~t.ion given by oqn. (6.30) can bc improvotl in the same mannor as<br />

Stolcc~s's solu1,ion for a sphcro or t.hc solution for very slow flow. The inertia t,crms arc<br />

cnlcnl:~.l.otl from t11c first approsimni.ion and introd~lce;l into the cq~tat,ions ns<br />

c!xt,rrn:rl forws, :~ntl an improvcd solution results. This was carricd out I)y F. Riegels<br />

1181 for t-he casc of Tfclc-Shnw flow past, a circular rylindsr.<br />

For R* > 1 fl~c st.rt:nmlinos in t.11~ various layers pnrallcl to the ~valls cease<br />

to l)o congn~cnl.. Tho slow p;~rt,icles near t,ho t~vo plates are tlefleclcd more by<br />

t,l~o 1)rcsmc:r of (.he hotly t11n.n i,hc fast,rr particlcfi near tho ccnt.rc. This causes t'hc<br />

st,rcan~li~~rs t.o n.pprn.r somcwhnt blurrrtl a.rd i,hc phcnomcnon is more pronounced<br />

at, tJtc rcnr of lhc botly than in fronl, of it,, Fig. G.6.<br />

Solutiol~s in thr case of cwcping motion are inherently restricted to very small<br />

Rrynoltls n1tni1)rrs 111 prineiplr it is possiblr to extend tho ficltl of applicat,ion<br />

to I:~rger Reynolds numbers by successive approximnt,ion, as mentioned prcvionsly.<br />

IIowevcr, in all cases the calculations become so complicated that it is not practicable<br />

to carry out more than one step in the approximation. For this reason it is not<br />

possilh to reach t11o region of motlcrntc Rcynolds numbors frorn this tlircctiol~.<br />

, .lo , all intmts and purposes the region of moderate Re~nolds numher~ in which<br />

1,110 in(:rh tincl viwo~~s forc~s nrn of ~~oIII~~I~~:LI~Ic m~~~~t~ilwlo<br />

I~II~OII~IIOIII~ IJIC lia>l~l<br />

of flow 11a.s not been cxtcnsivcly investigntcd by analytic means.<br />

It is, therefore, the more useful to have the possibility of intograting thc<br />

Navicr-Stokes cq~~ation for t,he othcr limiting casc of very large Rcynolds numbers. ,<br />

'I'hns we arc lctl to the boundary-layer theory which will form the subjcc.1 of tho<br />

lollowing chapters.<br />

Fig. 6.6. IJcle-Shew flo~v<br />

past circulnr cylinder nt<br />

R* - 4, shr Iticpln [I:$]<br />

Referencer<br />

[I] Bauer, K.: Einfluss der endlichen Breite des Gleitlngcrs nuf Trngfiihigkeit uncl IIeibr~ng.<br />

Forschg. 1ng.-Wes. 14, 48-02 (1943).<br />

121 Constnntinescu, V.N.: Analynis of bearings oprmting in turl)ulrnt rcgin~e. 'l'rn~~s. i\SI\lE,<br />

Serb D, J. Ilnsic Eng. 84, 130-151 (l!)(i2).<br />

[3] Constnntinescu, V.N.: On the influence of inertin forces in tnrbulent and Inminnr selfacting<br />

films. Trans. ASME, Series F, J. 1,llbricntion Technolo~y 92, 47:1--481 (1970).<br />

[4] Constantinescu, V.N.: On gun lubrication in turbulent regin~e. Trans. ASMI':, Series 11,<br />

J. Basic Eng. 86, 475-482 (1964).<br />

[R] Frossel, W.: lteibl~ngs~viderntnl~d unrl Trngkrnft cin~s Gleitnch1111cs endlichrr Brrile. Po~.scIlg.<br />

1ng.-Wcs. 13, 65--75 (1042).<br />

[GI Giimbel, L., and Everling, 13.: Ileibung und Schn~ierung in1 Mnscl~incnbnu. 13crli11, 1025.<br />

[7] Hole-Shnw, H.S.: Inve.st,igntio~~ of thc nnturc of surfncc renist.nncc of wntar nntl of st,ron~n<br />

motion nndcr ccrtnin ox~icrin~cntnl conditions. T~OIIA. Innt. Nnv. Arch. XI, 25 (IA!)H); ~ co<br />

nlso Nnture 58, 34 (1898) tint1 Proc. Roy. Innl. 16. 40 (1899).<br />

(81 Knhlert, W.: Dcr Einllusx cler l'rlgheit.~ltrlfk bei der Irydrotly~~a~~~iscl~etl Schtniertnittolthcorie.<br />

Uius. Brnunschweig 1947; 1ng.-Arrh. 16, 321 -342 (1948).<br />

[9] Michell, A.G.M.: Z. Mnth. 11. Phys. 52, S. 123 (1905); mealso Ostwald's IClnssiker No. 218.<br />

(101 Nnhtne, F.: Beitrrigc zur l~ydrodynnn~incl~e~~ l'hcorio der 1,agcrrcibung. 1ng.-Arch. 11,<br />

191 -200 - (1040). \-<br />

[I I] Oseen, C. W.: Uber die Stokcs'sche Forrnel und iiher einc verwnndte Aufgnbc in der Hydrodynamik.<br />

Ark. f. Math. Astron. och Fys. 6, No. 29 (1!110).<br />

[I21 Pmndtl, I,.: The mechnnics of viscous fluids. In W. F. Ihrand: Aerodynnn~ic <strong>Theory</strong> Ill,<br />

34-208 (1035).<br />

[I31 R,iegels, F.: Zur Kritik des Hele-Shnw-Vcrsucl~es. Diss. Gnttingen 1038; ZAMM 18, 05- 106<br />

(1933).<br />

1141 $nib&, E.A., and Mncken, N.A.: The fluid mechanics of Inbricntion. Annual Review of<br />

Fluid Mech. (M. Van Dyke, ed.) 5, 185-212 (1973).<br />

[IR] Snibel, E.A., nnd Mnoken. N.A.: Non-lnmirmr bchnvior in bcnrings. Critic-nl review of the<br />

li(.rrnt,urr. l'mnx. ASMIC, Scric~ F, .I. I,~lliricntion 'I'ccl~nolo~y 96, 174---I81 (1974).


126<br />

VT. \'cry slow rnot.ion<br />

Part B. Laminar boundary layers<br />

<strong>Boundary</strong>-layer equations for two-dimensio~~d incon~l~rcssil,le<br />

flow; boundary layer on a plate<br />

iVc rww ]wot:t:rtl Lo c:x:~~nir~c 1.11~ sccontl 1irnit.ing cnsr, tr:~rncly t.l1:1I, of very srnnll<br />

visc:osil.y or very large Iteynoltls nrlm1)cr. An iml)orln.nt corrt~ril)ut~ion to (.Ire scit:ncc:<br />

of ll~ritl motion was mndc by I,. 1'mrrtlt.l [21] in 1904 wl~cr~ Irc clarifitxl t,l~t: cssrrlhl<br />

i~illr~r~~w of vis~osit~y in fIo\v~ i1.L Irigh Ibc~rnoltls 1111n11wrs nr~tl sl~owrtl I~ow tlrr<br />

Nnvicr-St,oltrs cqrrn(iorrs coulcl bo simplifictl 1.0 yinltl npproxirnnt,r sol~~t,inns for<br />

(Iris rnsc. \Ye shall cxplnin thrsc sirnplilicat.ions wit,h t,ho nit1 of an :crgnnlcnt wl~irlr<br />

[wrsrrves tlrc: physical pict,urc of the pl~rnorncrron, nntl it, will be rccnllctl t,l~:~t ill<br />

Ilrc 1)11Ilt of t.lw fluid ir~cxtia forrrs prctlorriitr:~t.r, tlrn i~ifl~lr~~t:o of viseo~~s forws being<br />

vn ~~isl~i~i~ly srnall.<br />

Il'or I,II(: S;II


128 VII. Ihr~nclary-layer rq~lnt,ions for t\vo.ditnrnuiotd flow; ho~~ndary lnyer on n plate<br />

layer, t.hc so-cnllctl bounclary layer. In this manncr there are two regions to consitlcr,<br />

rvrn if t,l~o tlivision t~et,wrcn t,hcm is not very sharp:<br />

1. A vcry thin lnyrr in the immct1i:~tc ncighbourl~ood of the body in which thc<br />

vrlocit,y grn.tlicnt normal to t.hc wall, a?~/r?y, is very largc (hnimrlrr~y hjer).<br />

111 t.l~is rrgiolr t,ho vrry small viscosiLy ,u of Ihc flr~itl cxcr1,s :rn rssc:nt,i:~l infl~rnnc.~<br />

ill so f:~.r :LS 1.11~ sl~caring sI.rcss t -7 l~(i)~/i)y) tn:~y :ISSIIIIIO Inrgt: V:L~IICH.<br />

In gcncml it, is possible to st,at.c l.hat the Ll~icltncss of thc bonndary layer intmvtscs<br />

wit.11 viseosit,y, or, more generally, Lhat, it decreases as the Reynolds numbcr<br />

incrensrs. It. W:LS SCC~ from scvcrnl cx:lct solutions of t,he Navicr-Stolzcs cqrtntiorls<br />

I)rrser~tcd in C11n.p. V that t,ltc bonntlary-lnycr thickncss is prop~rt~ional to the sqliarc<br />

rool, ol' Izinc:m:tl,ic visoosit,y :<br />

6-fi.<br />

\\'llcrr malci~~g t.lrc si~nplific:~Lions t,o I)c inl.roducrd into I.he Nnvicr-St.ol;ns eqnnt.ior~s<br />

it, is nssr~lnrcl t.l~at, this thickncss is vvry small cornpnretl with a still ~~nspeciliotl<br />

linrnr tlimc?nsiot~, T,, of thc hly:<br />

0 < 1, .<br />

\Va shall now proccctl to discuss the simplification of the Navicr-Stokes<br />

rq~tnt,ions, awl in ortlcr t.o achieve it, we shall make an estimate of the order of<br />

rn:~gnit,ntlc of c:~,cl~ tnrn~. 111 the two-dimensional problem shown in Fig. 7.1 we<br />

sl~:l.li Itcgin I)y RSSI~III~~I~ Lhc wall tio be flat :~nd coinciding with tho x-dircctrion, t h<br />

1,-:txis being I~crl)cndic~llar to it. Wo now rcwritc the Navier-Stokcs equations ill<br />

tli~r~r~lsionlrss I;)r.m by rehrring dl .;clonit,ies to tl~c free-st.rcnm vclocit,y, V, and<br />

I)jr rcfrrring all lilwtr tlimnnsions 1.0 a rhar:~etcrist.ic Icrrgt,h, L, of t h I)otly, wltioh<br />

is so srlccl,cd ns t.o rnsnrc that the tlimcnsionlcss ricri~at~ive, au/i)z, clocs not, cxcocd<br />

rrt~it,~~ in tlrr rrgiot~ r~ntlcr consitlcmt,ion. 'rl~c pressrlre is made dirncnsinnlnss with<br />

p 1f2, nntl I irnr is rrfcrrctl to r,/ If. lPurt,I~cr, the cxprcssiorl<br />

With the :~ssnmpI~iotrs mndo ~~rwiously t.llc: tlirnrtrsionlrss l)o~~t~~l:~ry-l:~~<br />

t,hiclzncss, dll,, for which \vc slra.ll retain t,hc syml)ol (\, is very small wit,ll rrsprct.<br />

1,o ~tnity, (0 < I).<br />

\\.'c sl~all, further, assume that the nolr-stcndy :~ccclcr:~t,ion i)~/al is of the! sn.tnct<br />

ordcr n.s (.he convective term 11. aupr which mcnns t.llat vory s~ttltlcn nccolcrnt.iotrs,<br />

s~lcl~ as occur in vcry lnrgc prcssnrc waves, arc cxclr~ctctl. Zn accort1:~rlcc wit,ll orlr<br />

previous n.rgtlrncnt sornc of the viscous terms must be of thr samc ordcr of rnngnit,ntlr<br />

:IS t.hc incr1,i:t t,crms, at lcnst in t,lrc immctlintc ncighl)ourl~ood of the wall, nntl ill<br />

spi1.c of t,lw srn:~llt~css of (,he fact,or 1/R. JIcncc sornc of t,hc second deriv:it.ivcs of<br />

vrloci1,y must t~ccornr vcry Ixrgo nnar tJtc wall. In nt:cortl:tncc with what w:~s wit1<br />

Iwforc: this can only :~pply to a27r./ay2 ant1 i)2~~/ay2. Since t.ho component of vc:loci~,~<br />

p:~,rallrl t80 tl~c w:dl increases from zero :tt. t,ltc wall 10 t,ltt: vnluc: I in t211(. frwsl.rc::~rn<br />

arross 1.l1r 1:Lycr of t,hic:lrncsn (?, we 11;tvc:<br />

wl~c~rens i)v/if?j ,- 016 - I ant1 iPv/if?~~ - l/d. If tltcsc v:drtes :~ro inscrLctl ittt.o c:qirs.<br />

(7.2) at~d (7.3), it. follows from the first cq~~nt,ion of molion Il~at the viscous f'orrrs ill<br />

t,lrc honlltl:wy layer can bccomc of t.hc samc ortlcr of rnngl~ihtlc :ts thr inrrt,i:t ii)rc.c:s<br />

only if tho Itrynoltls nurnl)cr is of the ortlcr 1/02:<br />

.<br />

ll~c . first, cquat,ion, tlt:~t. of cont,inuit,y, rcrnnins unnltcretl for vcry lnrgc Ilcynoltls<br />

ntlmbcrs. The srcontl cquathm can now be sirnj)lifirtl Ily ttcgl(:ct.it~g iPi~/r?.c.2<br />

wit,h respect to a2i~/ay2. From t,he t,hirtl eqnation wc may infrr t,hnt i)p/al/ iu of t,Ire<br />

ordcr d. The pressure incrcnse ncross the bonndnry Inycr wl~icl~ woultl he ot~t,:r,ined<br />

I)y int.cgrn,t,iny!<br />

'l'lt~ls 1.11~ I)I.~.SSIII.~\<br />

l.lw third tqnirt,ion, is of 1.11c otdrr 02, i. V. very st~~n.ll.


130 VII. Boundnry-layor cquntionzl for two-dimensional flow: bormtlnry lnyer on a plnte<br />

in a diroct,ion normal to t,he boundnry layer is pra.ct,ically con~t~ant.; it mo.y he assumed<br />

equal t,o Lhat at the ontm tdge of the 1)oundary layer whore its value is determined<br />

by Lire frict,ionlcss flow. 'Vho pressure is anid t,o be "impressed" on the boundary layer<br />

by the out.er flow. It, may, therefore, be regarded as a lrnown futlction as far as<br />

houndary-layer flow is concerned, and it depends only on the coordinate z, and on<br />

time t.<br />

At the outm ctlge of the bountlary layer the parallel component 7r becomes<br />

ccl~~a.l lo that in t,lre outer flow, U(x,t). Sinco there is no large velocity gradient<br />

hnrc, the viscous t.rrms in eqn. (7.2) vanish for largo vn.luca of R, and ronscrlnent,ly,<br />

for the o~rt~rr flow we obtain<br />

whore again tho symbols denote dimensional quant,ities.<br />

In the case of stently flow the equation is simplifictl still f~~rlhcr it1 thnl the<br />

pressure dopentis only on s. We shall rmphasize this cirrumstnnrc by writing ttir<br />

tlrrivntivc ns dp/tl~, so that<br />

This rnny also he writ,t.cn in tl~c usllnl form of TZrrnor~lli's cyw~tion<br />

1, -t 4 p 1J2 = eonst, . (7.6)<br />

r 3<br />

I IIC hoi~ttcl:u.y oontlil.ions for t.11~ cxt.rrnnl flow :Ire nrnrly tho snnic :w. for frict.ionlcss<br />

flow. 'l'ho I~onntlnry-lnycr t.hicIzncss is vcry stnnll :tntl t.hr trr~nsvrrsc velocif,y component<br />

v is very smnll at, the edge of t,hc boirntlary hyer (a/ I' - cT/L). 'i'1111s potcnthl<br />

non-viscous flow ahont Lhc hdy nndcr considerntion in wl~ich the prrpcntlicular<br />

vrlocit,y component, is vanishingly smnll nrnr the wall offers n very good npproxin~nt~ion<br />

1.0 tho nct,nnl cxtcrnnl flow. The pressure gmdicnt, in t.he 2-tlireet,ion in the boundnry<br />

k~ycr can I)c oht.ninod by simply npplying t,ho Bcrnor~lli erjl~at.iorr (7.5%) to the st,rcnniline<br />

at t,l~c wall in t.hc known po(.ent,inl flow.<br />

witslt tho I~onntlnry condit,ion.s<br />

1). The ucparaLiotl of n hor~ndnry lnyer 131<br />

!/-=0: u--0, a - - . O ; ?I:-m: 71:-(J(:r). (7.121<br />

11, is necessary t,o prescribe, in ntltiit.ion, n vclocit.y prolilo nt the init.ial sc,cl.iot~,<br />

1 : J,, say, by intlicnting t,he fi~nct~ion ?r(a,,,y). Tho problcrrl is t,I~lts scbrtl t,o ~.t~tll~c-r<br />

it,sclf tto the cn1t:ulstion of tho furtller change of a given vc1ocil.y profile wit.11 n ~ ivc,~~<br />

pot~cntial motion.<br />

:<br />

. 1 , Ile mathemnt,ical simplificntion acllievcd on the prccctling i)n,Aos is col~sitl~:v:~l,lc<br />

it, is (,rue t,lint,, as distinct from the rase of orcoping inot,ior~, tho tro11-lit1car c:l~nmrtrr<br />

of t,ho Nnvirr-Stolrcs oqu~tion 11n.s been prrscwetl, hut of thc t.11rre origir~nl c~tl~rnt~io~ls<br />

for 11, I,, nntl p of t.11~ lwo-tlirnensioniLI Ilow proble~rr, ono, I h cqurlt,iot~ of rnot,iott<br />

normal Lo tho wall, has been clroppcd con~plct,ely. Thus the number of 11rllinc)wrrs<br />

has 1)rrn rrd~~cctl Ijy one. Tl~crr rcrnnins n s?jst,cni of t.wo si~rt~tll~:~.~~col~s t.cll~:~.l.io~~s<br />

Sor tjl~(* LWO II~I~IIOWIIS I& a,n(l 11. '1'11~ pr(:ssllro cc:~sctl lo IN- :III IIII~


Fig. 7.2. Sepnration of tlin 11ot111dnry layer.<br />

;I) I'low past :i body wit11 sopamtion (S = point<br />

of soparation). b) Shape of st.rrnnllines near<br />

r 7<br />

I l~r. ~inint of sc.lt:~r:~.tio~~ i:; tlofit~ctl :IS 1,I1r limit I)et,wccn forwar(l and rcvcrsc llow in<br />

thc. I:I yvr in tht. immctli:lt.o ncigh1)ourhootl of t,he wall, or<br />

1<br />

In order t.o nnswcr the question of whether and where scpnrat,ion _~~ru_rg,~ it<br />

is nc~ccssn.iy, in gc~lcr;d, first to intcgratc tho boundary-lnycr eqrtntions: Chcmlly<br />

spc:tlting, the I)orlntl;~ry-lxyrr equations are only valid as far as t11c point of scpnrnt.ion.<br />

A short (list,:~ncc tlownst,renrn from thc poinl, of scpnmtion lhc bountlnry-l:lyrr bec:otnvs<br />

so t,l~ic:lc th:lt, I,hc nss~~rnpt,io~~s whic:lt wrrc tn:~tlc in t.I~t! clt:riv:l.l,ion of t,h 1)01111tlary-ln.ynr<br />

rqu:lt,ions no longer apply. 111 tJ~c c?sc of Lotlies with blunt. stcrns_t,ho<br />

sopnr;~.(.etl I)or~ntl:~ry Ia.yor displaces t,hc potcr~t~ial How from t h body by an npprccin1)lr<br />

tlist,;~ric:o xntl t h prrssnro disteribnt,ion in~pressctl on thc bountlary lnycr nus st<br />

I)c tlrt,crmi~~ctl I)y cxpcrimcnt,, I~eoarrsc the cxt,crnn.l flow tlcprntls on tho phcnomcn:~<br />

cwttncc:t.c:tl with scp:lrntion.<br />

'I'hc fact t,l~nt, sepnmt,ion in stcntly flow occnrs orly in tlccclcratcd flow (tlp/tl.~: > 0)<br />

can I)(? rnsily inft:rrctl from a. consitlcmthn of the relation t~et~wecn the prcssurc<br />

gr:ltlicmt, tlp/tl.r and lfhc vclocil,y tlisl.ril)nl,ion II.(?J) with tllc aid of the boundary-layer<br />

t 'I'll~ velonit,y profilc n.t, the point, of urpnrnt,ion is seen to I~ave a perpendicrllnr t.nngent at the<br />

wall. 'Cho ve1ocit.y profiles clownutrennl from tho point of ~eparation will sl~ow regions of reversotl<br />

llow near tho wall, Vig. 7.2~.<br />

c. A remark on the inBgrat.ion of the boundary-layer equntions 183<br />

rquations From eqn. (7 11) wit.11 the bounclnry contlitiorls 71 T v =- 0 wc 11;lvr at<br />

?/ = 0<br />

In the irumediat,e ncighbourhood of the wall the cnrvatnre of t,he volocit,y profile<br />

depends only on the pressure gradient, and t.he curvature of the ve1ocit.y profile<br />

at the wnll changes its sign with the prcssure gradient. Por flow with dccrcnsing<br />

prcssure (accelerated flow, dpldx < 0) we have from eqn. (7.15) that (a2u/ay2),,,, T: 0<br />

and, therefore, a2u/ay2 < 0 over the whole width of the 1)oundary layer, Fig. 7.3.<br />

Jn the region of pressure incroase (dccelcrntctl flow, dp/dx > 0) we fi nd (a2u/ay2) 1 0.<br />

Since, however, in any case a2u./ay2 < 0 at, a largc distance from the wall, Lherc<br />

must exist a point for which a2~~/ay2 = 0. This is a point of inflexiont of the v~locit~y<br />

profile in the bollntlnry Inycr, Fig. 7.4.<br />

Fig. 7.0. Velocity distribut,ion in a borrndnry Fig. 7.4. Vclocil,y dislribution in a borlt~dar~<br />

layer \vit,h pressure derrease layer with pressurc increase; 1'1 - point, of<br />

inflexion<br />

c. A remark on the integration of the bnundnry-lnyer rquntinns<br />

In order to integr:lto t.11~ boundary-layer eq~mtions, whethr in thc non-st.oady case, cqns.<br />

(7.7) and (7.8), or in the shady case, cqna. (7.10) and (7.11), it is ofkn convenirnl to int,rotl~lcr<br />

n stream function yt(x, y, 1) defined by<br />

U= av .=-a~<br />

ay ' ax '<br />

(7.17)<br />

t Tho exisknce of a poi111 of inllcxion in tho vclocil,y profiln in tllr boundiiry Ixyer i4 inlport.ant<br />

Tor its stability (trnrleitiot~<br />

from laminar to turhtllent. flow), ueo Chnp. XVI.


'1. Skin friction<br />

\VlIat1 t.11~ I)ollntl;lry-Iayw rqust,ions arc int~grnt~ctl, t.hc ~rloc:il.~ tlislribut.ion<br />

(:an I)c tledr~ood, ant1 t,lrr position of the point of srpnmt.ion can be dctcrrninotl. 'I'lris,<br />

in t,urn, perrnit,s us t.o m.lculxt,c lhc visrous tlrng (skin frirt.ion) nrorlrltl t,llo surface<br />

I,y a silnplc process of int,carnl,ing tho sllmring st,rrss nt t.hc wnll over thr surface<br />

of t.lio 1)otly. 'I'l~c sllraring stmss at, t.hc \v:lll is<br />

I<br />

L), = 1) to cos 4 ds ,<br />

1-0<br />

r. The boundary lnyrr along a flnt plnte<br />

e. Tlw bowldnry layer nlong n flnt plnte<br />

il. was cliscussetl hy 11. Bli~si~ts<br />

[2] ill his doclor's t,l~csis at, (hct.t.ingrn. llrt 1.11~<br />

lending edge of the plate L)c at x -= 0, the plate being parnllcl to the r-nxis and<br />

infinit.cly long tlownstmam, Fig. 7.6. Wc shall considor sleatly flow wit,h ;I frcc-<br />

sLroa.m volocitty, [I,, whiclr is pnmllrl to the x-axis. Tlrc vclooity of potmlinl flow<br />

is corlst,xnt in this case, and, thcrdorc, dp/& z 0. Tho boundary-lnper oqnntiorls<br />

(7.10) t,o (7.1 2) I~cco~nc<br />

3 36


136 VII. lloundnry-layer equations for two-dimensionnl flow; boundary laycr on n plnte e. The houndnry layrr along a flat, p1at.e 137<br />

ces x can be made identiral by selectling suitable scale factors for u and yt. The<br />

scale fact,ors for u and y appear quite naturally as the free-stream velocity, U,<br />

ant1 the bountlary-layer thickness, S(x), rcspcctivcly. It will be noted that the latter<br />

increases with tho current distance x. Ilcnce the principle of similarity of velocity<br />

profilrs in the boundary layer can be written as u/lJw = 4(?//6), where the func-<br />

tion 6) must be thc same at all clistanccs x from the lcatling rtlgc.<br />

We can now estimatc the thickncss of the boundary layer. From the exact<br />

solut,ions of tho Navier-Stokes equations considered previously (Chap. V) it was<br />

found, c. g. in t,hc case of a suddenly accelerated plat2c, that (1 - I/yE , where t<br />

clcnotctl tho time from the start of the motion. In relation to the problem under<br />

consideration wc may sub~t~itute for 1 the time which a fluid particle consumes while<br />

travelling from the Icading edge to the point x. For a parbiclc outeide the boundary<br />

layer this is t - x/lJ,, so that we may put S - 1/ v x/lJ, . We now introduce the<br />

new tlimcnsionless coordinate 77 - y/S so that<br />

'I'hc equation of continuity, as already tliscusscd in S~L. VIId, can be integrated<br />

by introducing a stream function y~ (x, y). We put<br />

v = I/VZ~/(T), (7.25)<br />

where J(7) tlcnotcs<br />

poncnLs become :<br />

the dimensionless stream function. Thus the velocity corn-<br />

.,‘=" = 3!?!=Um~~(,,), (7.26)<br />

ay a! ay<br />

the primc denoting differentiation with respect to q. Similarly, the transverse<br />

vclocitv com t~onent is<br />

Writing down t.hc further tcrms of eqn. (7.22), and inserting, wc have<br />

Afkr simplification, the following ordinary differential equation is obtained:<br />

J J" + 2 /"' = 0 (Blaaius's equation). (7.28)<br />

As seen from eqns. (7.23), as well ns (7.26) and (7,.27), the boundary conditions are:<br />

71-0: /=O, /'=O; T=W: /'==I. (7.29)<br />

t Tho prohlem of a//inity or similarity of velocity proflr~ will be considered from n more general<br />

po~nt of view in Chnp. VJII. The more exnct theory shows that the region immediately behind<br />

tho lending eclgo miwt bo excluded; ROC p. 141.<br />

In this cxamplc both partial clifferential equations (7.21) and (7.22) have bccn<br />

transformed into an ordinary different,ial cquation for thc stream fnnclrion by the<br />

~imilarit~y transformation, eqns. (7.24) and (7.25). The resulting diffcrcnLial equation<br />

is non-lincar and of the third ordcr. Thc Llrrce 1)orrnd:wy conditions (7.29) arc,<br />

thcrcforc, sufficient to ~let~crminc the so111tion complctdy.<br />

'I'ht? nnalyl,ic: cvrdlr:kl,ion of Iho sol:rl,iort of lho tlifi:ro~lLinl c!tllrr~l,ior~ (7.28) is<br />

quite t,cdious. 11. Ulssius obtained this solution in thc form OK a series expansion<br />

:wound 71 = 0 and an asymptotic expansion for 71 very large, the two forms being<br />

matchcd at a suitablc valuc of 7. The resulting proccdurc was described in detail,<br />

1)y 1,. Prandtl [22]. Subscqucnt to t,hal,, I,. Bairstow [I] and S. Coldstcin I131 solvcd<br />

thc sanlc cquation but with the aid of a slightly modified procedure. Somewhat,<br />

rarlicr, C. Tocpfer [27] solvcd the Rlasius equation (7.28) numerically by thc<br />

:ipplic:ation of thr mcthod of Runge and I


138 VII. no~~ndnry-layer cqnntions for two-dirncnaionnl flow; houndary layer on a pink<br />

This means that at the outcr edge there is a flow outward which is due to the fact<br />

that the increasing boundary-layer thickness causes tho fluid to be displaced from<br />

the wnll as it flows along it. There is no boundary-layer separation in tho present<br />

case, as t,he pressure grndient is equal to zero.<br />

J. St,cinhcuer [25] pr~hlisllctl a systctnatic rcvicw of t,hc solut.ions fro TJln.sius's<br />

equation. 111 part,ic:ulnr, hc providcd a tli~n~~ssion of t~llr chnrnct.cr of the sol~rtions ill<br />

the intcgrntion rnngc where r] < 0 in the presence of a varict,y of bountlnry conditions.<br />

It turns out. that t,llcrc exist, three set* of solr~tions which differ from each other by<br />

their nsyrnpt.otio ldmvior atf 7 + -m. Apart from t01r larninnr hountlnry layer on<br />

a flat platme, the solutions which can I I givcn ~ a physically mcaningrul intcrprctnt,ion<br />

include Inminar flow between t,wo parallel streams of which the two-dimensional<br />

hnlf-jet. is a special ca.se (scc See. IXII), larninnr flow with suction or blowing nt right<br />

angles (see Src. XIVb), as well ns tho laminar bonntla.ry Iaycr formed over a wn.ll<br />

moving parallel to thc stream in the same or in the opposite direction.<br />

Skin friction: Thcskin friction can be easily clctertninrtl from the precotling tlnta.<br />

From qn. (7.19) we obtain for one side of the plate<br />

wllcrr h is t h width and 1 is the Iengt,h of the plate. Now tho hlcal shearing stress<br />

at the wall is given by<br />

wiLh /" (0) -- a - 0.332 from Table 7.1. llence the ditncnsio~~lrss shearing st,rcss<br />

1)ccornra :<br />

Co~~sccjrmttly, from cqn. (7.30), t,lw ski11 friction of one sitlc I)ct:olnt.s<br />

nntl for a. plnt,r wrttrd on I)of.h sitlrs:<br />

1<br />

It, is rrtn:l~kn.l)lr tI1:tt. fhn ski11 l'ric+iotl is 1rroport.ionnl t.o t 1 1 ~ powrr # of vclocit,y<br />

whcrcns in rrcx?l)ing rnot.io~l t.hcrc was ~)roport,ionali(.y t,o the first, Imwrr of vclocit,y.<br />

I~i~rt~l~rr, f,llr: t1m.g incrca.sos wil,h I.llo sclrtwc roof, of t,hc Icngt.l~ of the 1,la.t~. This<br />

(.:I.II l)c i~~t.c~rprotc-tl :IS showing t,ha.t. t h (lownst.re:~rrl ~<br />

1)ort.ions of the pI:~t.(: cont.ril)~~Le<br />

11rol)ort.io11:1t.c-ly Irss to t.ho t,ot,nI tlr:lp t0wn t.hc portio~ls nra.r t.11~ Irntling rtlgr,<br />

c. The bountlnry laycr along n flnt, plah 1 3!)<br />

Tahle 7.1. The function /(v) for tho boundary layer along a flnt plate at zero incidence, after<br />

L. Mowarth 1101


140 VJ1. Bounclnry-layrr rquat.inns for t,~rn-tli~iic.~ixio~~nl flow; I~oundnry layer o~i n plnte e. Thc boundary lnyer dong n flat, plate 141<br />

because they lie in the region where thc boundary laycr is thicker and where, consequently,<br />

the shearing stmss at thc wall is smnllcr. Introtlurinp, as usual, a dimensionless<br />

tlrng coefficient by the definiCion<br />

2 1)<br />

C r-la;lu,F,<br />

--<br />

whrrr A = 2 1) 1 clsnolcs thc wcttcd surface aroa, we obtain from cqn. (7.33) thc<br />

formula :<br />

I<br />

Ircrc R, = 11, I/v denotes thc RcynoItIs number forrnctl with the Icngth of the<br />

platc: and the frcc-strcnm velocity. This law of friction on a plate first dcdnccd by<br />

IT. Blasius, is valid only in the region of laminar flow, i. e. for R, = IJ, l/v < 5 x 10"<br />

to I06. It is rcprcscntctl in Fig. 21.2 as cwvc (I). 111 t,lw region of t.urbulcrit, motion,<br />

R, > loG, the drag bccomcs considerably grcatcr than ti,i~t givcn in cqrt. (7.34).<br />

Rou~dnry-lnyer thickncss: 11, is impossible to int1ic:~t.c a hor~ntlary-layer l.l~ic:lzncss<br />

it1 an ~lnamhiguous way, because tlic influence of vi~cosit~y in the bonndary laycr<br />

clccrcascs asymptot,ically out,wards. 7'110 parallel component,, u, tends asymptotically<br />

to the valuc [Im of thc potcnLiaI flow (thc function /'(?I) tends asymptotically to 1).<br />

If it is tlcsircd to define thc boundary-layer thickness as that distance for which<br />

IL --- 0.99 [I,, thcn, as scon from l'ahlc 7.1, q 5.0. ITcnec t01c bonnt1:~ry-laycr<br />

t,lliclrness, as tlcfinctl Ilcrc, becomes<br />

A physically meaningful nrcnsurc for t.hc 1)ound:wy layer t.hiclcness is tJro rlisplnrxmnt<br />

lhickmxs (TI, whit:li was dreatly i~~trotlucntl in eqn. (2.0), JGg. 2.3. 'l'llc tlisplaccnlcnt<br />

thickncss is that distance by which thc external pohntial field of flow<br />

is displaced ouLwards as a conscquencc of thc decrease in vclocily in tho 1)ountlxry<br />

m<br />

layer. Tlic dccrcasc in volumc flow due to tlie influence or fricl.ion is j ((I,,<br />

- 0<br />

so t,hnt for 0, wc havc thc definition<br />

--I&) cly,<br />

Wilh 1r./17, from cqn. (7.26) we obtain<br />

where q, denotes a point outside the boundary layer. Using tlic value f(q) from<br />

Tablc 7.1 we obhin q, - / (Q) = 1-7208 and hencc<br />

. lltc . clislnncc y =; dl is sl~own in Kg. 7.7. '1'11is is t11c distnncc by wlucl~ tl~c strcarnlines<br />

of the external potential flow are displaced owing to the effect of friction near<br />

the wall. The boundary-layer thickness, 6, givcn in eqn. (7.36), over which the<br />

potential velocity is attained to within 1 pcr ccnt. is, in round figures, three times '<br />

larger than the displacement thickness.<br />

Wc may at this point cvaluate the momcitli~m thicknms a2 which will be used<br />

latcr. The loss of morncntum in the boundary layer, as comparcd wilh potential flow,<br />

m<br />

is givcn by ,g J IL(TJ, - u) dy, so that a new thickness can be defined by<br />

0<br />

m<br />

e ~ ~ ~ b , = ~ ~ u ( ~ ~ - - ~ ) d y ,<br />

u-0<br />

aZ =I & (1 - &) dy.<br />

Numerical evaluation for the plate at zero incidence gives:<br />

Y-0<br />

-<br />

4 = 0 . 6 1 ~ / (momentum ~ thickncss). (7.39)<br />

It is necessary to remark hcre that near the leading edge of the plnte tbc boundmy-hycr<br />

theory acascs to apply, sincc thcrc thc assumption 1 a2u/8x2 1 < I a2u/8y2 /<br />

is not satisfied. Tho boundary-laycr theory applics only from a ccrlain valuo of<br />

the Rrynolcls numbcr R = lJ, x/v onwards. Thc rclntionship near tho Icatli~rg<br />

edge can only be found from the full Navier-Stokes equations becnusc it involves<br />

a singularity at the leading edge itself. An attempt to carry out such a calculation<br />

was made by G. F. Carrier and C. C. Lin [5] as well as by B. A. Bolcy and M. B.<br />

Fricdman [3].<br />

Experimental inveatigationa: Measuremenk to test the theory given on the<br />

preceding pagcs were carried out first by J. M. Burgers [4] and B. G. van dcr lleggc<br />

Zijnen [16], and subsequently by M. Hamen [14]. Particularly carcful and com-<br />

prehensive measurements were reported later by J. Nikuradse [20]. It was found<br />

that the formation of the boundary layer is greatly influenccd by thc shape of tho<br />

leading edgc na well as by thc very small prcssure gradient which may exist in tho


142 VII. Hor~nclnry-lnyrr rq~~ntii~t~s for t\vo-di~i~rr~nio~l~~l Ilow; I)o~~nilr~r,y Inyrr on n plelo<br />

Fig. 7.9. Vclocity rlist.ril)~~lion in tho Inn~i~inr hounrlnry lnyrr on n IlnL plntr nt, xrrn i~~rirlrncr.<br />

nn ~ncasr~rcd by Nikr~rndso [20]<br />

I:ij!. 7.10. Lord rocffiricnt<br />

nf 6Izi11 frirtion 011 a flnt,<br />

])l:iln at ZPITJ iriridr~lco in<br />

0.001<br />

i~~con~prcssi blo fln\v, dclcrminc~l<br />

from tlirocl. tncnnnrc-<br />

0 0005<br />

twnt of shearing strcss by 0.0067<br />

O hd~recl skm fiiclioon measurement<br />

fmm velonfy profile<br />

D/recl skin frctlin measuremen/, x - 28 6 cm<br />

0 t r ,x-56cm<br />

- ! I l l l l l l l I 1 I<br />

,.<br />

I ltc laminar law of friclion on :L flat phtc was also subjectctl to careful expcrirncntal<br />

verification. The local shearing stress at the wall can be determined<br />

intiirecthj from the slope of the velocit,y profilc at the wall together with eqn. (7.31).<br />

In rccrnt t,imcs IT. W. Liepmann and S. Dhawan [18] measured the shearing stdress<br />

tlirocI.ly from the forco acting on a small porl,ion of t,ho plnto which wns nrrnngctl<br />

so t,l~at it could move slightly with respccl to the main plate. The results of tl~eir<br />

wry careful measurements arc seen reprotluccd in Fig. 7.10, which shows a plot<br />

of the local coefficient of skin friction cf' -- to/k Q 1Jm2, against, thc R.cynolds<br />

number R, = 11, z/v. In the range of R, = 2 x 10"o 6 x 10"both laminar and<br />

t,urbrrlcnt, flows arc possible. It can be sccn that direct and indircct mcas~~rcmcrtt~s<br />

nrc in cxcrllont agrrorncnt, with each ol,l~or. Mcns~~rcrnonl,~ in tho lnn~innr rnnga give<br />

a strilcing (!o11fit311:kt,io11 of 1Hwius's oqn. (7.X) frm~ which cff .?: 04Wi/d~~. 111<br />

the turl~r~lcnf~ range there is al~o goo(1 ngrecmcnl with I'rntdt.1'~ thcorctif:nl forrnr~l:~<br />

which will bc deduced in Chap. XXI, cqn. (21.12).<br />

r 7<br />

Jllc conlplctc ngrccmcnt bctflwcen t~hrorcticnl and expcrin~cntd rcsr~lt.~ wlliol~<br />

cxist,s for the velocity distribut.ion nncl t,hc shcnring stxcss in a 1aniinn.r honndn.ry<br />

lnyer on s flat plate at zero incidence that, has hcen hrougl~t inta evidcncr in Figs.<br />

7.9 antl 7.10 for the rmge R, > lo5 nnequivocally dcmonstratcs thc valitlity of t,he<br />

bountlnry-ln.yer n.pproximntions from the physicnl point, of vicw. TII spit.(! t,I~is,


144 VTI. Bonndary lnycr equations for two-dimensional flow; boundary layer on a plate f. Ronndary layer of higher order 146<br />

cartrain matl~emnticjnns have axpenclod much effort to create R. "mnthemnf,icel proof"<br />

for t,ho validity of theso simplifications; in thiw connexion consult the work of<br />

11. Schmidt and I


146 VII. I~o~~ntlnr~ Inyrr cq~~ntions for t~vo-tli~~~r~isio~~nl<br />

flow; bo~~ndnr? lngrr on n pink<br />

'rllrsr are rxnctlg I'rnt~cltl's bo~tridnry-Inye1 rcl~~ntions, rrlris (7 10) nnrl (7 11) trn~lsformcd to<br />

coordinntrn x, N. In ntldition p1(1) - I'I(J. 0).<br />

'rhr nnlt~tion 7cr (T, A') nllons us to cotnptte the rlinplncctnetlt tl~irknc~ is!, drfitirtl as<br />

'Shr rcl~~ntions of first ordrr, rqns (7.4!)), do not rontnin lhr Ht*ynolcl~ 11111i1l)rr explic.itly. It<br />

folhvn 111111 uI (.r, 8) nnd cl(.r, ,V) nit~st nlso I)(! indq)en(lrnt of lhc I~C~IIO~~R<br />

n~~n~lrrr. 'I'his<br />

prvvrs thnt t hr 1ot.nt ion oft IIP point of lnminnr sepnrnt.ion is inrlependcnt oft hr Ilrynolrls nrl~nher.<br />

wit 11 t hr Iminrhry rond~tions<br />

N = 0: 1(2 -- 0.19 T 0,<br />

AT -+ m: 1 , ~ = llz(r. 0) - 1i lrl(3, 0) N,<br />

112 = I'z(T. 0) 4 1i IJ; ( ~ ~ A'. 0 )<br />

'Shr o11t.rr I)o~~ntInry ronrlitionn (i. r. for h' -+ m) of tlir inner solutionn nn u.cll ns the inner houndnry<br />

c~onditio~~s of the outer sol~~~iorln (c. g. rqn. (7.45) for l'~(r, 0)) follo\v fro111 t.he matrlril~g of<br />

t.hc inner nnd orlt.nr solntions; ner nlso 171.<br />

'I'hr systc~ii of rqr~ntions (7.52). (7.53) for ll~r! ~erond-nrdrr 1)01111dnry Iny(-r loo doru not,<br />

ronl,nin t.l~c: Iltyolcls IIIII~IO~T t*~pli(*illy. I10wrvvr. it (:onlninu solntio~~s of lil.st, orb nrd is nlorv<br />

t~~tr11~iVr Ihn I.!Ic Iirsb-order nynIt.ni. but it w~~sistn of linrnr di~li!rcnIinl (.tltllltioll~. 1'01. Illis<br />

ronson, it. is ~~ossible, in t,~~rn, In wpnrntc the n.l~olr so111tion into n sum of pnrtinl solutions. 11.<br />

has l~rco~iir r11s101nnry 1.0 split tihe soll~t,ion illto rr r~~rvnt,ure t.crn~ nnd into n tliuplnre~nent term,<br />

IIIII wt. shrill nol, IIII~RII~ this rlinn~~~sion any f~~rther I~ere.<br />

Uur tn t.l~c In(-t t,l~nt tho 011rvnt,11re of t.1~ wall is nrro~~ntcd for in t,lic sroond-order theory,<br />

thrrr nppcnrs n prrssurc grntlicnl in Ihc dirrrtion normal lo Il~r wnll. For this rrnson, the prmsurr<br />

nl. Il~r \~IIII I~txwnwn cliktw~t fro111 t,lrnt. whirl^ is i~~~~~rrssrtl 011 t.11~ 1)011ndnry I~iyrr Ily tlie outrr<br />

flow. Inlrgr~~ting ncrnss Ih


148 VTI. Boundnry lnycr eqnations for two-dimensionnl flow; boundary lnyer on n plate<br />

Fig. 7.1 1. Skin-friction coefficicnt,<br />

of n flat, plat^ of finite<br />

length at zero incitlcnco<br />

(I) 'f'llrory aftrr 11. Illnsius,oqn.(7.34)<br />

(2) l'l~cnry nncr A. 1'. Mrlrsitrr I 1RI)I.<br />

rqn. (7.00)<br />

A Tlirnry nrter Ih~lain (nolullor% of<br />

Nnvier-Stnkrs cqoaLio~~a)<br />

Here, the trailing edge has been ncco~rnted for, bnt not the displacerncnt effect.<br />

The dingrnrn in trig. 7.11, rcprotlnccd from the work of It. E. Melnik nnd It. Chow [18a],<br />

shows t,l~at t h vnlucs of c, computed with t h aid of eqn. (7.60) ngrec very well with tlie results<br />

obtained frorn the complck: Navicr-Stokes equntions as well as with those of ~nensnrements down<br />

to RI = 10. At Rl = 40 eqn. (7.60) leads to c, = 0.316 which is less than 2% in excess of the exact<br />

vnlnc cl = 0.31 1.<br />

Sertion 1Xj will ret.urn to the discnssion of exact soltltions of houndnry-layer equations of<br />

srcoritl order.<br />

References<br />

111 13airntow, I,.: Skin friction. J. ltoy. Acro. Soc. 19, 3 (1025).<br />

121 I%lnsius, M.: Grenzuchichtct~ in Fliimigkeiten mit kleiner JEcibnng. Z. Mnlh. J'hyn. .SF, 1-37<br />

(1008). Engl. transl. in NACA TM 1256.<br />

131 Bolcy, U.A., and Friedman, M.U.: On the viscons flow aro~rnd the lcading edge of a flat<br />

plntc. JASS 26, 453-454 (1059).<br />

141 Ihrgcrs, J.M.: The motion of n fluid in the borlndnry lnyer along a plane smooth surface.<br />

l'roc. First Intcrn. Congr. of Appl. Meell., Delft 1924 (C.B. Biezeno and J. M. Burgers, ed.)<br />

Delft, 1925, pp. 113-128.<br />

[R] Carrier, G. I?., and I,in, C.C.: On t,tie nnturc of t,ll& bonndnry layer near t,lic leading edge<br />

of a flnt plate. Qnnrt. Appl. Mnth. VI, 63-68 (lp48).<br />

[ti] I)linwnn, S.: Direct n~crcqurcmenta of skin friction. NACA Rep. 1121 (1953).<br />

[7] Van Dyke, M.: Higher npproxi~nntiona in boundnry layer theory. Pnrt 1: General analysis.<br />

JI'M I4, lti1- 177 (1962). I'nrt 2: Application tm lending edges. JFM 14, 481-495 (1!)62).<br />

I'nrt 3: l'nrrrboln in uniform streani. JI'M 1.7, 145-IR!) (1964).<br />

[R] Van Dyke, M.: I'crtnrbntion rnct,hodu in fluid mechanicu. Acnde~nic Pre-%,New York, 1964.<br />

I91 Van 1)ykc. M.: Higher-order boundary Inyer theory. Annonl Iteview of F'luicl Mech. I,<br />

2tiR 2!)2 (I!)(;!)).<br />

[lo] Geraten, K.: Grenzschichteflkkte hiiherer Ordnung. Anniversnry volume com~ncmoratit~g<br />

Professor H. Schlichting's 05th anniveranry (Sept. 30, 1972). lbp. 7215 Inst. f. Stromungumech.<br />

Techn. Univ. at Brnunschweig, 29--53 (1972).<br />

1111 Gersten, I


CIIAFTER VIII<br />

Gencral propertiee of the boundary-layer equatione<br />

12cforc: passing to t.lw ca.lcr~l:ll~ion of furtl~cr cxarnplcs of bountlary-layer llow<br />

in t.ha next, chnpt,rr, we prol)os': first, t.o tlisc~lss some grncral propertics of the bound-<br />

:~ry-l:rycr t:quatiorls. 111 tloing so wo shall ronfinc our atttlention to steady, twotlimension:tl,<br />

ant1 ir~c-o~r~~)rt~ssiI)l(~ l)o~~n(lar~ I:ly~rs.<br />

Alt,hougl~ t.Iw ~)o~~ntl;trj--l:i.yt~r rcl~~:ttions have hen simplified to a great axtmt.,<br />

as coml)arctl \vit.l~ t,hr Navir~.-St.oltcs rclr~at,ions. thoy arc still so tlifficult from t'he<br />

matJrrn~at.ical point of vicw tht. not vdry marly gcncml ~t~atcn~rnts :rbout tlicrn<br />

ran I,c matle. 'I'o I~c:gin wit.ll, it. is import-antf to not.ice that t,he Navier-Slolrcs<br />

aqlla.t,iotls :trc or t,I~t? rllipt.ic. typa wit,h rrspcct to tllc c:oordin:~l,cs, whcrms Pranrltl's<br />

l~o~~t~tI:~.ry-l;t~~t~r cq~~:~,I~iot~s :tro p:ir;th~lic, It, is :L cowo~~~~t~rwr or lhc sin~plifying<br />

nss~rrnpt~iol~s in Imuntl:rry-layer t,hcory that tho prcssuro can be assumeti constant<br />

in R clirrction n.t right :~nglcs to the hountlwy Inycr, whereas along tho wall the<br />

1wess11rc can be rcprdetl as bcing "imprcsscd" I)g the external flow so that it bccwncs<br />

a givrn f~lnc:I.ion. The rcsr~lt~ing omission of t,hc arlnntion of motion porpcntlicul:ir<br />

t.o the tlirccliott of flow can be i~~tcrprctctl physically I)y stat,ing that a fluitl<br />

~);trt.ic.la in tha l)our~tl:~ry Iaycr has zcro mass, and sulTcrs no frictional drag, as far<br />

;rs it,s motlion in t.11r t.mnsvcrsc ttirecLion is conccrnrcl. It is, tl~crcforc, clear t,ha.t8<br />

with sr~t:lr f~lnrl;trnrt~t,al cl~angcs introtl~~ccd int,o the cqtlat,ions of n~ot~ion we mnsb<br />

nnt.ic.ipatc t.ll:~t, tllrir solut,ions will exhibit certain rn:ltI~cmatical singnlarities,<br />

nn(1 t.ll:lt, :tgrrrrnrnt I,c:t,wrcr~ ol)scrved :t11(1 ~illt:ulat,ed phrrlon~ona cannot always<br />

'I'ho assu~npt~ions which warc rnatlc irt tho tlcrivation of t,hc tmuritlary-layer<br />

rq~tntions are s:~tisfictl with an increasing tlcgrce of accuracy as the Itaynolds number<br />

ir~c:rrnses.<br />

,,<br />

l hils hountl:~ry-layer thcory can bc regardcd as a process of nsymplolic<br />

i~itrgmtiol~ of t,llr Nn.vicr-Bt,olrrs rqnn.t,ions at wry In.rgc Itcynoltls nurnl~c~~s*. 'rhis<br />

sl.:~trmrnt, Irntls 11s now to R tlisc~ission of the yclnt,iortship bet.wcen t(11c Itcynoltls<br />

nirmhcr and t.he chn.rnctt~ris(.ics of a t~~indary 1h.yer on our individrlal body-under<br />

consitlcrat,ion. It, will 1)a reanllctl t,hat in thctlcrivat~ion of the boundary-layer equations<br />

--- - - - - --<br />

t C/. Set-R. Vllf nncl IXj.<br />

* 'I'llo srg,~n~rnt, t~ont,ninctl in tl~in nwtion wan nlronrly tlinc~ls.st?d in Sec. Vllf on high-order<br />

II~)~~~OX~III:~~~OIIR.<br />

'I'IIv itll~l~lilir~~tio~~ is givm I~c.rr for t.lw mltc of Iwl.l.rr ~l~~tlrrnt~it~tlil~g.<br />

a. Drpel~denrc of the rhnmcteristicn of n. boundary lnyer on the llry1101dn IIIIOIIIPT 151<br />

tlinler~sionlcss quantities were used; all velocities were referred to the free-stream<br />

velocity IT,,, all lengths having been retfuced with thr aid of n cl~aractcristic length<br />

of thr botly, 11. 1)cnoting all tlirnensionless magnitutfes I I a ~ prime, thus v/fJm, =u',<br />

. . . , x/L = z', . . . , wc obtain the following equations for the steady, two-tlimrnsionnl<br />

CRSR :<br />

scc nlso cqs. (7.10) t,o (7.12). Itere R dcl~otcs t.lro ltcynolds nurnbrr for~ntyl wit.11 t,)lc<br />

nit1 of 1.11~ rcfcrencc qunntitics<br />

It is seen from eqns. (8.1) and (8.2) that, the boundary-layer solution dcpcnds on<br />

ow parameter, the Iteynolds number R, if the shape of the botly, and, hcnc:c, t,hc<br />

potential motion U1(x') are given. By the use of a further transformation it is<br />

possible to clirninnt.~ the? Rcynoltls number also from cqns. (8.1) nnd (8.2). If wt: p111.<br />

eqns. (8.1) and (8.2) transform into:<br />

with the boundary conditions: v' = O and v" =O at y" -0 and 71' .= U' at y" =a.<br />

, J , hese equations do not now contain the R.rynolrls numl)cr, so that the solutions<br />

of this system, i. e. the functions u1(z', y") and v" (sf, y"), are also independent of the<br />

Reynolds number. A variation in the Reynolds numbcr cnnscs an nffinc t,rnns-<br />

formation of tho boundary lnynr during which tho ordinn.t,o nntl the vclonily in 1,11(.<br />

transverse dircction arc mult,iplictl by R-'I2. In othcr words, for n given botly tho<br />

tlimcn~ionless velocity components M/U, ant1 (v/U,) . (U, L/V)'/~ n.ro fur~cl.ions<br />

of the dimensionless coortlinates z/L and (?//I,) . ((I, I,/V)'~~; the functions, marc,.<br />

over, do not depend on the Reynolds nun~bcr any longer.<br />

The practical importance of this principle o/ nim.ilat.il?y wifl~ resp-1 lo Ilrynold.~<br />

nirmher consists in thc fact that for a given body shape it suffir:cs to find the solrtt,iot~<br />

to the l~oundary-layer problem only once in terms of the above tlimcnsionless varia1)lcs.


162 VIII. General properties of the boundary-layer equations b. 'Sin~ilnr' solutions or the boundnry-lnycr cquntions<br />

Such a solution is valid for any Reynolds number, provided that the boundary<br />

layer is laminar. In particular, it follows further that the position of the point of<br />

separation is independent of the Reynolds number. The angle wl~ich is formed between<br />

the streamline through the point of separation and the body, Fig. 7.2, simply decreases<br />

in the ratio 1/R1I2 as t,he Reynolds number increases.<br />

Morrovrr, tl~c far!, lht, srpar:ll ion tlors ldtc phcr is prcsrrvrtl wl~c*n tlic- proccss<br />

of passing to the limit R + co is carried out. Tl~us, in the case of body shapes which<br />

cxhibit separation, the boundary-layer theory presents a totally different picture<br />

of the flow pattern than the frictionlcss potential theory, even in the limit of R 400.<br />

This argument confirms the conclusion which was already emphatically stressed<br />

in Chap TV, namely that the proccss of passing to the limit of frictionlcss flow must<br />

not be performed in the differential equations themselves; it may only be undertalren<br />

in the integral solution, if physically meaningful rcsults are to be obtained.<br />

11. 'Similnr* soletions of the boundary-lnyer equations<br />

A sccond, and very important, question arising out of the sol~~t~ion of boundarylayer<br />

equations, is the investigation of the conditions untlcr which two solutions<br />

arc 'similar'. We shall define here 'similar' ~olut~ions as those for which the component<br />

u of the velocity has the propcrty that two velocity profiles u(z, y) locat.ed<br />

at different coordinates x differ only by a scale factor in u and y. Therefore, in the<br />

rase of such 'similar' solutions the velocity profiles u(x, y) at all values of x can<br />

be madr congrnent if they are plotted in coordinates which have been made dimensionless<br />

with reference to the scale factors. Such velocity profiles will also sometimes<br />

be e:llled mifine. The local potential velocity U(x) at section x is an obvious scale<br />

factor for u, because the dimensionless u(x) varies with y from zero to unity at all<br />

sect*ions. The scalc factor for y denoted by g(x), must be made proportional to the<br />

local boundary-layer tl~ickncss. The requirement of 'similarity' is seen to reduce<br />

itself to the requirement that for two arbitrary sections, x, and x,, the components<br />

~(x, y) must satisfy the following equation<br />

't'hc boundary layer along a flat platc at zero incidence considered in the preceding<br />

rl~apter possessed this property of 'similarity'. The free-streani velocity U, was<br />

the scalc factor for u, and the scale factor Sol y was equal to the quantity g = 1/ v x/U,<br />

which was propor(,ionnl to the boundary-layer thickness. All velocity profiles became<br />

- -<br />

it1ent.ica.l in a ~lot of u/IJ,, against y/g = y )/ U,/v x = T] , IFig. 7.7. Similarly,<br />

the rases of t,wo- and threc-clirnerisiorlal stagnation flow, Chap. V, afforded examples<br />

of solutions w11id1 proved to be 'similar' in the present sense.<br />

r 3<br />

I he quest, for 'similar' sol~lt~ions is particulyly imporbant with respect to<br />

t.he mnthomnticnl cl~trrnctnr of the solut.iorl. In cnses when 'similar' soldions exist<br />

it. is pwsiblr, 11s we sl~nll sre in ~norc? drtnil later, to reducc the system of partial<br />

dilt'rrent.in1 equations to onc involving ordinary differential equations, which, evidcntly,<br />

cot-~stit.ntcs a considerable mathematical simplification of the problem.<br />

'i'he ho~~nclary layer along a flat platc can serve as an example in this respect also.<br />

-- --<br />

It will be recallad that with the similarity transformdon T] = y 1 / -/v ~ r,cqn.<br />

(7.24), we ohtained an ordinary differential cquation, eqn. (7.28), for tho strcan~<br />

function /(q), instead of the original partial diKercntial equatior~s.<br />

We shall now concern ourselves with the ty~~os of potential flows for<br />

wl~ich .such 'similar' sol~~l.ions exist. l'11is pro1)lom WILH (IIN(:IIHH(:CI it1 ~ron(, tI(,(.l~.il<br />

fir~l~ by S. (h~ltl~l,oi~~ 1.4j, m t l I I L ~ : by ~ W. Mangler [!)J. ,'1'11~ point or d(:pt~r!,~~rt> is<br />

to consider the boundary-layer equations for plane stdady flow, cqns. (7.10) and<br />

(7.11) together with eqn. (7.5a), which can be written as<br />

au av I<br />

& -t -=o,<br />

ay<br />

the boundary conditions bcirig ?r. =-7 a -- O for y = 0, : ~ r d u - I/ for ?/ --. oo. 'l'ho<br />

cqu:ltion of c:ontinuit1y is it~tc:gratctl by 1,110 introc1uc:tion of the tilrc:r~n func:Ition<br />

y(x, y) wibh<br />

Thus the equation of motion bccon~cs<br />

with the boundary conditions ay/az = 0 and appy = 0 for y = 0, and aypy = IJ<br />

for y = oo. In order to discuss the question of 'similarity', dimensionless quantities<br />

are introduced, as was done in See. VIIIa. All lengths are reduced with the aid<br />

of a suitable reference length, L, and all velocities arc made dimcnsionlcss with<br />

rdference to a suitable velocity, I/,. As a result the Reynolds number<br />

appears in the equation. Simultaneo~~sly the y-coordinate is reforred to the climonsionles~<br />

scale factor q(x), so that we put<br />

proposed by F. Schultz-Grunow [Gn, 15a], ninkes it poasiblc to rcduce uevcrnl problems involving<br />

self-similar solutions to that of bl~e flnt plate at zero incidence. If A = 612 R is chosen<br />

as the curvature parametor, the trnnaformntions can be npplicd to flows nlong longitudinnlly<br />

curved walls with blunt or shnrp lending edges as well ns wit,h blowing or suction (Chnpt. XIV).<br />

The preceding trnnsfnrrnation is exnct to second ordcr in curvnt,urc which mcnns tbnt all t,crms<br />

of the ordcr A hnvr been inclded.<br />

163


164 VIII. Ccnernl propertic8 of Lhe boundary-layer equntiotis b. 'similar' solution of the boundary-hycr equntioris<br />

The fact,or I/~-for the ordinabe already appcarod in cqn. (8.4). The stream fnnct,ion<br />

is mde di~ncrisionloss by t.ho suhst,it,~ltkm<br />

where the prime in /' clcnot.cs difircnt,iat,ion wit,ll respect, to 71, and wit,h rf:spc?ot,<br />

to z in g'. It. is now seen directly from cqn. (8.12) tlhat the vclocit.y profile-s ~s(x, 11)<br />

nre similar in t.lro previonsly tlcfincd scnso, when t,hc st,rc:lm firnc:l.ion / tlel)t:ntls only<br />

on the one vnri:tblc 7, eqn. (8.10), so t,I~:it, tho clcpct~tlcnc:c of j on [ i~ c.anccllctl.<br />

Iri tlri~ (:we, moreover, the p:~rti:tl t1iffcrenli:~l equ:lt,ion For tllc st,ream Functioir,<br />

eqn. (s.!)), must retlrlce itsclf 1.0 nrr orc1in:wy tliffcrcr~li:rl equation for j(?). If we now<br />

proceed to investigate the conrljtions untlcr which this retluction~oi eqn. (8.9) takes<br />

placr, we sllidl obtlain the condition w1iic;h must be sat,isfictl 1)y the potential flow<br />

IJ (2) for such 'similar' solut,iot~s to exist..<br />

If we intmducc now t.hc tlimcnsionless variables from eqris. (8.10) and (8.1 1)<br />

inl,o cqn. (8.9), we obt,n.in the following tliffcrenlial cquation for /((, q):<br />

'Sitni1:tr' soIt~t.ions t.~isl only IVIIO~I / :in(l /' (lo not, (lc:pw~(l on 6, i. c. when tl~v<br />

right,-l~:~nrl ~itlv of ocln. (8.13) vanisl~cs. Sitr~~rll,:~.ttro~~sIy 1 1 cocffi~ic?nt,s<br />

~<br />

a ant1 P<br />

01; t.hc Irft,-ltnncl side of cyn (4.13) rn~tst* IIV itrtlo~,cntlcn~ of x, i. c., lhcy must, IN:<br />

~~~tistmit.. This l:ilicr co~~tlit,ion, rotnbit~d with cqn. (8.14), furnishes l,wo qu:~t,ions<br />

for Ilic polcnl,i:l,l vc~lovil.~. I:(R-) ant1 t,l~c scnlo f:tc:t,or q(z) for 1.110 ortlinal.r, so thl,<br />

they wn INS I~\*:LIII:~I,c~I. ilcncx:, il' silnihr soIut,io~~s or 1~o11n~I:~ry-l:~ycr flow arc lo<br />

(,xis1 , t IIV st.r(~~ni f~tncl~ion /(?I) rn~tst,<br />

This cquat,iorl was first given by V. M. Falkner and S. W. Sknr~ [2], and its solutions<br />

were latm studied in detail by I). R. 1l:trtroe 101. We sllall revert to this poi11t; i r ~<br />

the surceeding chapt~r.<br />

10 remains now t,o dctermino from nqn. (8.14) Clw nondit.iorls for lJ(z) and<br />

~(z).<br />

From (8.14) we olhin first<br />

1"urthc.r from (8.14) we llavc<br />

ant1 Itn~~cc<br />

so t,llnt upon integration<br />

a-Dr. L 99' u<br />

where I< is a constant. The elimination of g from cqnc (8.17) and (8.18) yic+ls t.he<br />

velority distribution of the potential flow<br />

As srcn from cqn. (8.14) the result, is intlrpentlrnt of any comnloll f:lct,or of<br />

a nntl p, ns it ran I)c ittcludcd in g. Therefore ns long as a + 0 it is perrnissiblc t,o<br />

pnt a =- -1- 1 wit.llout, loss of gcneralit,y. It is, furthcrrnorc, c.onvrnient t,o int.rot1t1c.c<br />

:I. now c.ot~st.:~.nt~ 111 t.o roplacc p l)y puI,t.ing<br />

s:~l,isfy t,llc following or(lin:try (lilTcrcnt~i:~l :IS it) l,ltis wt1.y lho plty&:~.l TII(::LII~II~ 01' 1 I I ~<br />

sol~l iott will I)(~(:oIII~<br />

155<br />

&x:~r(tr. I Ic~ttc.(-<br />

so t11:1l., wiI.11 a = 1, the vc1orit.y clisf.rilnlt~ion of t.llc% ~)otc,t~l.inl flow :~nrl t.11~: sc::~ltr<br />

Iac:bor !/ for t.llc ordinnt,c Iwcomc


VI11. Gcncrnl propertties of the boundary-layer cquations<br />

and tho tmnsformation rcluntion (8.10) for the ordinatc is<br />

It is thus concludccl l.h:rt, siniilw solul.ior~s of Lhc bou~ttlary-layer cquat.ions arc<br />

ol)taincd when thc vclocit,y tiistributior~ of thc potcnt.ial flow is proportional to a<br />

power of thc lcngth of arc, rncnsurcd along 1.11~ wall from the stagnation point.<br />

Such pot.cntial flows occur, in fact, in the ncighbourhood of thc stagnation point<br />

of a wedge whose inclutfcd anglc is cqnal to n /?, as shown in Fig. 8.1. It is easy to<br />

verify with thc aid of potcr~tial theory tht we havc hcrc<br />

whcrc C is a constant. The rclntionship k)rtwccn t,hc wedge angle factor /? and thc<br />

cxponrrit, m is cxactly that givcn in cqn. (8.21).<br />

Fig. 8.1. Flow pas1 a \vcdge. In the neighhour-<br />

I~r~orl of tho leading cdgc Ilm pobnlid vrlocit,y<br />

rli~l.ribul.ion is lJ(z) - Crm Particular case8 for n =: I: (a) For =- I we have n = I, ant1 cqn. (8.22) hccorncs<br />

U(z) = rc 2. 'l'his is thc case of two-din~rnsional strqn.al~:on /loin, which was considered<br />

irl Snc. Vh 9, and which locl t,o an exact, solut.ion of thc: Navier-Sl.oltcs cqu:rt,ior~s.<br />

Wilh a -- I, nncl /? =-: I, the di&:rcnt,ial equation (8.15) transforms irlt,o cqri (539)<br />

which was already considcrcd carlicr. 'l'hc transformat,iori equation for the ordinate,<br />

ccln. (8.24). hccorncs identical with thc alrcaciy familiar oquation (5.38), if we put,<br />

IJ/z -- a.<br />

(b) For /? =- 0 wc havc nh -- 0, hwcc IJ(z) is const,ant and equal to U,. This is<br />

t.licc:ascof :~/kcl plde d zero incirhnce. ltfollowsfrop cqn. (8.24) that r] = y 1/ U,/2 v z.<br />

'I'his value tlifli:rs only by a faclor 1/2 from that idtmduccd in cqn. (7.24). Correspondingly<br />

Lhc clifTc:rcntial cq~~xtion /"' $-//" =0 which follows from cqn. (8.15) differs by<br />

a fidm 2 in Ohc soconcl term from rqn. (7.28) which was solved cerlier. The two<br />

equaLions hrcomo idcnlical whrn tsransformcd to identical definitions of r].<br />

Solut,ion for diiTcrer~t, valuos of m will be corisiclercd latcr in Chap. IX.<br />

cl. Trnnsformation of the boundary-layer equations into the hcat-conduction equntion 157<br />

The case a = 0: The case a = 0 which has, so far, bcen left out of account,<br />

leads, as is easily inferred from eqn. (8.19), to potentinl flows U(z) which arc proportional<br />

to l/z for a11 values of /?. Depending on the sign of U this is the case of<br />

a two-climensional sink or source, and can also be intarprctcd ns flow in a divcrgrnt,<br />

or convorgcnt dlanncl with flat walls. This type of flow will also be con~itlcretl in<br />

grratcr tlctiiil in Chap. 1X.<br />

Thc second casc excluded earlier, namely that when 2 a - /? -. 0, leads to<br />

'similar' solutions with U(x) pr~port~ional to ep2, where p is a positivc or negativc<br />

constant.. We shall, howcver, rcfrain from discussing this casc.<br />

, Lhc . problem of the cxistcncc of similar solutions i~lvolving non-stcatly bountlary<br />

layers was discusscd hy 11. Schuh [l!j]; thc same problcm in rclation to con~prcssil~lo<br />

boundary layers will I)c tliscusscd in Scc. XIIId.<br />

d. Transformation of the boundary-layer cquations into the heat-conduction equation<br />

It. von Miscs [lo] published in 1927 a rcmarkat~lc transfornation of t.hc<br />

boundary-layer cquations. This transformation cxhibita thc mathematical chnract.cr<br />

of the equations even more clcarly than the original form. Inslcad of tho C:~rtasi:rn<br />

coordinates z and y, von Miscs introduced the stream function y~, together with the<br />

lcngth coordinate z as indcpcntlcnt variables. Substituting<br />

into eqns. (7.10) and (7.11), as wcll as introducing the ricw coordinatcs [ = x and<br />

r] = tp instcad of z and y, we obtain<br />

J-Ience, from eqn. (7.10), it follows thnt<br />

Introducing, Furthcr, the 'total head'<br />

wherc the small quantity 4 p v2 can bc ncglcctcd, wc obtain, reverting to Lhc syml~ol<br />

z for l:<br />

We may also put


158<br />

VIII. General ppropcrtics of the boundary-layer eqr~nLions<br />

l'lcluation (8.27) is a tliffrrent,ial equation for tho totd prrssuro g(x, vi), and its<br />

I)outrtlary rontlit.ions arc<br />

g = p(x) for rl, = 0 and g = .p (2) -1-<br />

Q U2 -- const for )I) = GO .<br />

2<br />

JSq~mtion (8.27) is relat,ed to t,hc hcat,-conduction equation. Tile differcnt~id<br />

rqnn.t.ion for t,he one-dimct~sional case, e. g. for a bar, is given by<br />

whrrc 7' tlcnot,cs the t.cmpernl.t~re, t tlcnoLcs 1.11~ t,in~c, n.nd rc is t,he t,l~rrmal tliKusivily,<br />

scc Chap. XII. Jlowevcr, the transformed 1)oundary-layer cqnation, unlike eqn. (8.28),<br />

is non-linear, ~CCSIIS~ tho thermal tliffusivity is rrplaced by v .u, which tlopentls on<br />

the indepentlent variable x, as well as on the tlepcndet~t~<br />

variable g.<br />

At the wall, VJ = 0, 14 = 0, q -- I), eqn. (8.27) exhibits an unpleasant singularit.y.<br />

Thr Irft.-hn.ntl side becomes ag/ax = dp/dx + 0. On thc right,-hand side we have<br />

16 = 0, and, therefore, @g/avi2 = oo. This circumst,xnce is dist.tlrbing whrn numerical<br />

methods are used, and is intimately conncct,ctl with the singular belraviour of the<br />

velocity profilc near the wall. A detailed tliseussiorr of eqn. (8.27) was given by I,.<br />

I'mndtJ [I I], who had dctlnccd the tmnsfornration a long time before t,he paper by<br />

It. von Misen appcnmd, wit.hout,, however, publishing it?, cI. [I, 12, 161.<br />

11. ,J. 1,11oltcrt [8] applied eqn. (8.27) to tlre example of t.lw boundary laycr<br />

on a flat plat>e in order to test its pm~ticnbilit~y. 1,. Rosenhead and H. Simpson [I31<br />

ga.vc a. rrit.icnl cliscnssion of the preceding pul)lirntion.<br />

e. Tl~c niomcnttlm and energy-integral eqrrntions for the boundary layer<br />

A complete calculation ol the houndary layer for a given body with the aid<br />

of the differ~rit~ial equations is, in many cases, as will 60 seen in more detail in the<br />

next chapter, so cumhersome and time-consuming that it can only be carried out<br />

with t.he n.id of an elcct,ronic computer (sec also See. 1X i). It is, tlicreforc, desirable<br />

1.0 possess nt Im,st approxi~natc methotls of solution, to be applied in cases when an<br />

exact so111I.ion of t,hc bo~lndnry-hycr cqr~at.ions cannot be obtained with a rcasormble<br />

an~oltnt, of work, cvctl if thoir :iccumcy is only limited. Such approximate ~nethotls<br />

can he tlevisctl if we do not insist on satisfying t.he tlifferential equations for every<br />

fluid part.icle. Irtst~catl, t.1~ boundary-layer eqr~ation is ~at~isfietl in a st,ratnm near the<br />

wall nntl nmr t h region of transitior~ t.0 the external flow by satisfying the boundary<br />

rordit.ions, togct.l~er with cert,ain compat.ibilit,y ~ontlit~ions. In t.ho remaining rqion<br />

of flrtitl in the boundary layer only a mean over the tliffcrcrrlial ~quat~iotr is satisfietl,<br />

tlie wcnn heing hken over the whole tlliclrncss of the boundary layer. Such :I mean<br />

vnl~re is oht.ai~red from t,he momentum equation wltich is, in tmrn, tlerivetl from t,he<br />

rr111:ition of niol.iorr I)jr it~t~cgmt~ion over tlrc bor~ndary-1:~ycr t.hicknc:ss. Sinw 1.lris<br />

c-tl~t:~,tiott will Ipc oll,c.rr 11wt1 itr t.110 ~~~)proxitrr~il.(: ~trt~~.l~o~I~, to I)(> ~I~H(:IINS(~~ litt~~r. \v(.<br />

slr~II ~IC~UCC it now, writing it down in it,s motlcrtr Irm. Thc oqrt:ition is know~l :LS t,Ir(:<br />

nlo~ttentunt-integwl equation of boundary-laycr theory, or as von Kiirm;in's irrtcyr:il<br />

cqnntion (7 J<br />

\\'c sltnll rcsl,rict ourselves 1.0 t,lrc cnsc of slcwly, t.\vo-tlitnct~sit~tti~l, :wtl irlcv)tn-<br />

~)ressiblc flow, i. c., we shall refer to cqns. (7.10) tso (7.12). Upon intcgr:ttit~g t,lle<br />

rqu:it.ion of motion (7.10) with rcspert to y, from y = 0 (wall) t,o ?I =- 11, wl~crc<br />

the layer ?/ 1- IL is c?verywhLrc out,sitle t.lrc bo~~ntlnry Iayrr, we obtain:<br />

h<br />

'rhr shenring stress at tho wall, T,, 118s l~rcn substituted for p(au/ay),, so tht<br />

rqrr (8 21)) is sern to br valid both for laminar and turb~~lent flows, on condition<br />

that, in the latter case u and 7~ deuotr the time averages of the respechive velocity<br />

romponents. The normal velocity ron~ponrnt,, v, can be rcplacrd by v -. - J (iIu/r?z)d y,<br />

as sren from the equnt.ion of continuity, and, conscqncttt.ly, we have<br />

1nt.rgrxting hy part,s, we obt,ain for the second t,erm<br />

so that<br />

j~W-wY<br />

0 0<br />

h<br />

1- (Ir' & J(u -U)CIY -= zn e .<br />

(8 mi)<br />

Sincr in both int,rgmls the irrtegmnd vanishes outsitle 1,hc boundary Inyrr, it is<br />

prrmissiblc to put h + oo .<br />

We now introduce the displacement thicknrss, a, and the momcrrtr~nl tlrirl~tr~ss,<br />

d,, which have nlrcady bren liwd in Chap. VIJ. They arc dc4ncd I)y<br />

Y


160 VITT. General propertirs of the boundary-layer equations d. The rnolncnti~rn and energy-inkgrnl equations for the bounclary layer<br />

and<br />

m<br />

6, U = 1 (U-~)dy (displacement thickness) , (8.30)<br />

y=o<br />

a,<br />

6, U2 = u(U-U) dy (morncntum thickness) . (8.3 1)<br />

It will be not& that in the first tcrm of the eqn. (8.29a), differentiation with respect<br />

to x, and integration with respect to y, may bo interchanged as the upper limit h<br />

is independcnt of z. IIence<br />

This is t,hc momenlum-integml eq&ion lor two-dimemional, incompressible boundary<br />

lmyers. As long m no statement is madc concerning T ~, eqn. (8.32) applies to laminar<br />

and turbulent boundary layers nlike. This form of the momentum int,egral equation<br />

was first given by 11. Gruschwita [5]. It finds its application in the approximate<br />

thcories for laminar and turbulent boundary layers (Chaps. X, XI and XXII).<br />

Using a sirnilnr approach, K. Wicghnrtlt [17] dcduced an energy-inlcgral eqdion<br />

for laminar boundary layers. This cquation is obtained by multiplying the equation<br />

of motion by u and then inkgrating from y = 0 to y = h > a(%). Substituting,<br />

again, v from thc equation of continuity we obtain<br />

The second term can bc trarlsformcd by integrating by parts:<br />

whercas by combining the first with the third tcrm we haw<br />

0<br />

Finally, upon integrating thc right-hand side by pnrts, we obtain<br />

'l'hc upper h it, of irltegrat,ion could here, too, be rcplaced by y = 00, becausc the<br />

intcgrantls become cqual to zero outaide the boundary layer. The quantity p (&I*)'<br />

represent8 the energy, per unit volumc and time, which is transformed into heat<br />

by friction (dissipation, cf. Chap. XTI). Tho term & e (U2-u2) on the 1~"-l~ad<br />

h<br />

1<br />

sidc rcpresenta the loss in mechanical encrgy (kinetic and pressure encrgy) taking<br />

place in the boundary layer as compared with the potential flow. IIcnce the tcrm<br />

m<br />

4 p / u(U2 -u2) dy T C ~ O S C ~ ~ ~<br />

161<br />

the flux of clissipntcd cncrgy, ant1 tho Icfl.-l~r~~ltl side<br />

n<br />

rrprescnts the rate of chnngc of the flux of rlissipatctl cnrrgy prr unit, lc:ngt.11 ill I.h(.<br />

x-direction.<br />

If, in addition to the displacement, and momentum thickncss from eqns. (8.30)<br />

and (8.31) ~wpxtivcly, we introduce the r1issip.ation-energy thickness, d,, from the<br />

definition<br />

m<br />

U3 a3 = [ u(U2-u2) dy (cncrgy thickness), (8.34)<br />

0<br />

we can rewrite thc crtcrgy-inbgral equation (8.33) in the following sirnplifictl form:<br />

which rcpresents the energy-integral eqmtion for two-dimnsionnl, lnminnr boundary<br />

lu yers in ineom.pre.wible flmu t.<br />

In onlcr to visualize thc displacement thickness, the momentum thickness,<br />

and the cncrgy-dissipation thickness, it is convenient to calculate thcm for thc<br />

simplc case of linear velocity distribution, as shown in Fig. 8.2. In this casc we find:<br />

displacement thickness dl = ) 6<br />

momentum thickness 6,=+d<br />

cncrgy thickncss d, -= 1 d.<br />

The extension of the preceding approximatc method to axially symmetrical<br />

boundary layers will be discussed in Chap. XI. Approximate mot hod^ for thermal<br />

boundary layers are trcatcd in Sec. XIIg; those for compressible and non-steady<br />

boundary Iaycrs will bc given in SCC. XIIId and Chap. XV, rcspcctivcly.<br />

Fig. 8.2. <strong>Boundary</strong> layer with lineor vclo-<br />

city distribution<br />

d - boanrlary-lnycr thickness<br />

6, - clisplaccment thickness<br />

d, - momentsm thickness<br />

4. - Energy lhicknesa<br />

t In the ease of turbulont flowtr, the energy-inbgral equation wsurnes tho form


VIII. General propertien of the boundary-layer equations<br />

Hct,z, A. : Zur Bcrccl~nung des Uhcrgnnges Intninnrer ~renzschichtm in die Auxsen~trijmrrng.<br />

Ii'ifty yorrs of boundnry-lnyer rcscarch (CV. Tolltnicn and 11. Giirtler, ed.). Brnunscl~wcig,<br />

1955, 03-70.<br />

Fnlkncr, V.M., and Skan, S.W.: Some npproxitnntc solutiono of the houndnry Inyer equntiono.<br />

I'hil. Mag. 12, 865-896 (1031); AltC RM. 1314 (11130).<br />

(his, Th.: Kl~n~icho Crenzscl~ichten an Jtot.etio~~nlriirporn. Fifty years of bountlnry lnyer<br />

resenrcl~ (W. Tolln~icn nnd II. Cvrtler, cd.), Urnunschweig. 1955, 294-303.<br />

Goldstcin, S.: A note on the boundnry - lnyer cquntions. Yroc. Cnrnlr. Phil. Soc. 35, 338-340<br />

~<br />

(1039).<br />

Grusohwit,z, I


1 64 IX. Exact solutions of the shady-state boundary-layer equations a. Flow past n wedge 165<br />

a. Flow paat a wedge<br />

Thc: 'sirnilar' solutions discussed in Chap. VlIl consLit.utc a particularly sirnplo<br />

class of solutions u(x, y) which have the property that the velocity profiles at different<br />

distnnccs, x, can be made congruent with suitablc scale factors for u and y. The systcr.~<br />

of p;mt,ial differential equations (9.1) and (9.2) is now rednced to onc ordinary<br />

rliffcrcntial cquation. It was proved in Chap. VlIl that such similar solutions exist<br />

when the velocity of t,hc potential flow is proportional to a power of tho length<br />

coordinate, 2, rneasurcd from the stagnetiot~ point,, i. e. for<br />

Jrrorn cqn. (8.24) it rollows that thc transformat.ion of thc int1ol)endcnt. v;l.riablc ?I,<br />

which lends to an ordinary tlifl'crcnt,inl equation, is:<br />

'J'hr r~uation of ~ontinuit~y is intrgratcd by the introduction of a stream function,<br />

as S(~PII from cqns. (8.1 I) ant1 (8.23). 'l'hus the vrlocity romponel~ts become<br />

u = u1 2" /'(r]) = u / '(r]), 1<br />

1 nt.rotluc:ing t,l~osc vnluos into tt~c<br />

nnrl put,t,ing, as in cqn. (8.21),<br />

we ol)Inin the following differential equallion for /(I))<br />

/"' -t / /" -1- p (1 - 1'2) = 0<br />

equation of motion (9.l), dividing by ni. IL~<br />

zZ"'--I,<br />

It. will IN: roc::tllrtl t.li:tt it, was ;drcady given as eilrl. (8.15), antl that its I)OIIII(IR~Y<br />

f<br />

contlil ions a.re<br />

Y] 7 0 : / = 0 , 1' --= 0 ; /l=1.<br />

the velocity profiles have no point of inflexion, whereas in tho case of decolcrat.rti<br />

flow (m < 0, p < 0) they exhibit a point of inflexion. Sepxrat,ion occurs for<br />

= - 0.199, i. e. for nt = - 0.091. This result sl~ows tht the laminar horl~\tlnry<br />

layer is able t.o support only a very small dccelcration witl~o~lt separat,iorl occurir~n.<br />

by IJxrtmr. The additional solution leads to a velocity profile with baclz-flow (cl.<br />

Chap. Xf).<br />

Tl~c potential flow given by U(Z) = 1 ~ xm , exists in thc ricigllbourllootl of the<br />

stagnation poil~t on a wedge, Fig. 8.1, whosc included anglc 8, is given by eqn.<br />

(0.7). Two-dimensional stagnation flow, as well as thc boundary layer on n llat.<br />

plate at zero incidencc, constitut,~ particular cases of the present solutions, the former<br />

for p = 1 and in = 1, the latter for = 0 antl m = 0.<br />

Fig. 9. I. Velocit.y distri-<br />

bution in the 1:~tninar<br />

boundary layer in tile<br />

flow past a wedge given<br />

by U (x) = a, zm. Tllc<br />

exponent m and the<br />

wedge anglc P (Fig. 8.1)<br />

arc connecbd tlirongll<br />

cqn. (9.7)<br />

,, lhc o:~.sc fl :- &, m 2- .j is worL11y of att.c~nI.io~r. 111 I,llis cnac I.llo tlillrc!t~l,i:~l<br />

equation for /(q) hccomcs: /"' .I- / /" 1- 4 (1 = 0; it, t,rnnsforn~s irlt,o ~.II(*<br />

tlifi:rcnt.inl c!qunt.ion ofroL:~(.iordIy symrnct.ric~~l flow with slngn:~l.io~t poit~l,, ocltl. (5.47),<br />

i. e., 4"' -1- 2 4 4" + 1 - 4" = 0 for $(C), if we put r] = 5 1/2 and d//dsj = d+/d


'I'his c.quat,ion Lmnsforms into t1in.L for n flat plat^, cqn. (7.28), in (.he special case<br />

whcn m = 0. The solut.ions of t,hc Falltncr-Slran eclun.tion (9.8) have been discussed<br />

in tleta.il in 1611.<br />

According t,o J. Sl~cinllcr~cr [631, nn interesting cxtensiot~ of 6hr solr~t.int~ of t,llr r 'nlltner-Sltnn<br />

eq~lntion (9.8) which in vnlid for ret.nrded flows (P < 0) in cases when velocity dintrihtct.ions possest+<br />

ing n velocity cxccns (I'(i1) > 1) with n~naxin~utn near the wall arc ndrnittcd. In RIIC~I cnscs, the<br />

limit /'('I) = 1 for 11 -+ 00 is nttnincd nsympLot,icnlly "from abovr" rnthcr thnn "from hclow",<br />

as was t,lle cnw RO far. SIICII uo1uI.ions can he interpreted pl~ysirnlly as corrrspo~lding to a laminar<br />

wall-jet prod~~cctl in nn oxtnrnal strcnrn wit.11 n positive pressu~e grndient,. dplda: > 0. Ileferenro<br />

[G3] drrnonnt,rntn~ t,hnt t.lw limiting cnne of ll~mo uolut,ions, oI)tnin~d W ~ I I,IIc I tnnxirnun~ velocity<br />

cxccns tend^ 10 in fin it,^, trnnnforms illlo tllr wr-ll-known dl-sitnilnr nolttl.ion of n plro wnll-jet in<br />

t,lm absence of nn cxtrrnnl vclociLy -- n cnnc trcr~tccl hy RI. 11. (:lartt:rl (ucc 1401 in (Illr~p. XI)-~when<br />

we put, p = -2.<br />

A pnrtirulnrly drt,niletl n~onogrnpll on exnrt., self-nirnilnr solt~t.ions for lnminnr Imlndary<br />

lnyeru in two-din~cnsional nnd rot,ntionnlly symmetric nrrangemcnt,~, inrl~lsive of the nssocintrtl<br />

thcrinnl boundnry lnycrn (am Chnp. XTl),wns prlhlinl~cd hyC. 1'. J>cwey nntl J. F. Grosn [141.<br />

Their consitlcrnt.ionn inclntlc t,lle elTt:ct.s of con~presaibilit~ (nee Chnp. XIJI) wil.11 and mitl~out, hcn,t<br />

tmnnfer, relate Lo vnryitlg vnlnes of t.he Prar~tlt,l number, and incJ~tde some rases of suction and<br />

blowing.<br />

K. 1(. Clien nnd P. A. Libby 191 cnrried out nn cxtx?nsivc invcst,ignlion of bo~~~~rlnry lnycrs<br />

which are el~ornctorizcd by ~mnll clcpnrtnrcs from t.11~ nelf-ui~nilnr \vctlge-flow boutltlnry lnycrs<br />

of tho I'nlknrr-Sltan type. Rvidcnt,ly, RII~II 1)ounrlnry Inyerrr nre no longer nolf-~in1iln.r.<br />

b. Flow in n convergent channel<br />

The case of potmt,ial flow given by thc eqlrnthn<br />

U(s) = -2L<br />

x<br />

is related to flows pt~t a wedge, and also leads to 'similar' solutions. With > 0<br />

it rcprcscnt,s two-dimengional mot,ion in n convergent ohnnncl with flat, walls (sink).<br />

The volume of flow for a frill opening angle 2n and for a strnt,~~nl of ttnit<br />

I~cight is ($ = 2 n ?I,, (Fig. 9.2). Int,rodncing t.he simi1nrit.y t,ransformat.ioti<br />

Fig. 9.2. 1 % ~ in n ronvrrgrnt rhnnnrl<br />

, I . ltr I)~IIIII~*L~.~ ~on~li1,ion~ rollow Prom c(ln. (V.3) nl~tl nrc?: /' : 0 nl. o, 0, I / I<br />

1tt1(1 /" = 0 a(* 17 == w . 'I'lris is nlso :I j)nrl,icrrlar caso of I,llo clasa of 'similar' sol~lt~i~tt~<br />

consitlcred in Chap. V111. ISquntiot~ (9.12) is obtnincd from 1.11~ more gcncral tlifli~rc~tltial<br />

equation (8.15) for the case of 'similar' boundary layers, if we put a - 0, ntld .-.<br />

4- 1. The example under consideration is one of the rare cases whcn the sol~ttior~ of'<br />

tllc botrndary-layer equation can be 01)tdncd analytically in closcd form.<br />

First,, upon ~nult~iplying cqn. (9.12) by 1" and integrating ol~ce, \vc? I1:1vc<br />

where n is a ronstnnt of intrgmtiou. 1t.s value is zero, as /' .- 1 ant1 /" -- 0 lor<br />

7<br />

v;<br />

f 00. '1'1111s<br />

-- - -- --<br />

T = (,I - 112 (I* + 2)<br />

d 71<br />

whrre the additive constmit of intrgration is seen to bc cq~lnl to zero in virw of<br />

tile Im~ndary condition /' = I at 17 = oo . The int,egral ran be rxprcssctl ill closrtl<br />

form as follows:<br />

or, solving for 1' = w/11:<br />

/' = = 3 t8anh2


168<br />

IX. Exnot, soI~rt,ionn of tho ntrady-~t~atc boundary-layer equations<br />

Fig. 9.3. V~lority distribution in t h~<br />

laminar Iio~~ndnry Inyrr of tho flow ill a<br />

convcrgcrlt cllanncl<br />

The prrcetling solution was first obtained by I


170 TX. 1Sxact uolutions of t.ho steady-state boudary-layer eqrrntionu<br />

cirnts nnd Lhus obt,ain n ~ystc~n of ortlinnry di~crenl~inl equat,ions for t.he funct,ions<br />

/3, . . . . The first two equntions turn out to be<br />

JII t,Iipse, ~lill'(;rc:~il~inl~ior~ wil,l~ rrs~)ccl, l,o r1 is ~lrt~ol.r~l hy pritnrs. '1'11~ ~~.ssoci~~t,ccl<br />

bountlnry contlit.ions are<br />

All difTercntinl cquatsions for the functionnl coefficients are of the third orrlcr, nnd<br />

only the first, one, t,haI, for fr, is non-linear; it is itlct~tical with the equation for twodimensional<br />

stagnnt,ion flow, eqn. (5.39), discussed in Chap. V. All rcmnining equntions<br />

arc linenr and their cocfficientps nrc expressed in t,erms of the f'unct~ions associat,etl<br />

wil)h the preceding t,crms. The frtnctions and hnvc been ralculatctl already<br />

by I


172<br />

1X. Exact m111ti0118 of tlw st.rady-state 1)oundnry-layer equations<br />

If. tJle power wcrc t,erminated at ~ 9 t1he , point of separat,ion would tllrn ollt LO<br />

be at, +s .-= Iog.oo. Iktt,er accuracy can nowadays bc obtainetl with numerical<br />

mct.l~ods, sco Sccs. JXi antl Xc3.<br />

'rhc nccllracy of t,his r.ale~~lnt.ion I)nsod on 11 powcr scrirs can I)n t,cst,od for spced<br />

of convcrgcncc of t,hc omit,t,ctl Imrtlion of t,hc serics by invoking t,hc co?adilions o/<br />

com.pnbiOility at, the wall. I\ccortling 1.0 ctln. (7.15), wc ~nt~st, Ilnvc:<br />

Fig. 0.7. Verification of Ihe first coni-<br />

pntibility condition from eqn. (9.21)<br />

for the laminar boundary layer on a<br />

circular cylintlcr from Pig. 9.5. Thn<br />

first compatibility condition is satis-<br />

fied approximately as far as some point<br />

beyond separation<br />

FigIlrc 9.7 compares t,l~c curvat,urc of the velocit,y profiles mcasuretl at. t,he wall wit.l~<br />

its exact value rcprescnt,ed by UcllJ/tlx. 'I%c agrrcrnent is good for a distance fi'<br />

lIryond t,llc point of seprat,ion. We may, Lherrforc, conrlutlc that t,l~t, Ulxsius series<br />

terminat,ing at t11c t,ertn ~ 1satisfies 1 t,l~c compatibilit,y conclit,ion on a circular cylindcr<br />

up t,o a point. which lies bryod 1.l~ point of scp~rat~ion. It does not,, howover,<br />

~~ccessnriljr (allow t,hat. 1,lrc: Ir11ncnlrtl srrics rrprrsc~lt.~ t.11~ velocity profile with good<br />

nc,rltrnc*y.<br />

As nlrently mcntionetl, in t.hc cnsc of more slender body-sllnp~s cor~siclernbly<br />

morc t.rrrns of the J3lasius serics are roquircd, if it is tlcsirctl t,o obtain t,hc velonit,y<br />

profiles as fa.r as the point of scparatior~. Ilowcver, t,he evalunt.ion of furl,l~cr fnnc~iond<br />

coefficients is hinclcrctl by considerable difficult.ies. These are tluc not orily to t,lw<br />

f.:~ct that for every atltlit,ional t,crrn in t,he series the numbcr of cliffercnt,inl equations<br />

lo I)& solvetl incrcnscs, but also, antl even morc forcibly, the difficult,ics are tlnc t,o<br />

t,lw nerd to r.va.lnnt,e t,l\e funct-ions for the lower power ternls with ever increasing<br />

nrcurary, if 1.11~ funct,ions for the higher power terms are to be sufficicl~t~ly n.ccnrat,e.<br />

1,. IlowartJ~ 1401 rxtentlrtl t.lic prrscnt nuet,l~od tn inclrldc the asymmet,~.ical<br />

casts, l)nt t.hc t~a.ltulnt~ion of t,l~c fi~nct.ional coefficients was not carried bcyo~lcl those<br />

c.orrcspontlina t,o the powcr z2. N. lhessli~lg (231 carrictl out an estension of this<br />

rnc:t,liotl h the rot.at,ionally sym~nrtricnl cnsc which will be considered in Chap. XI.<br />

illrnsnrc~nrnt~s of t.11~ prcssnrc dist.ril)~~tion nronntl a circular cylind?r wcrr<br />

rcport,rd I)y I


174<br />

TX. Exnct ~olut,ionu of tho stondy-state boundnry-lnyrr eq~latioris e. Flow in tho wake of flat plxtc nt zero incidoicc 175<br />

in r* for the ~trcnm fitortion in n mnnncr ~irnilnr to thc enao of the cylinder, Scc. TXr, the cocfficirnta<br />

being functions of y:<br />

1I~ncc the vrlocit,y of flow becomes<br />

Tnl.rothring t,I~rse vnlnes inh t.hr rqunt.ions of motlion (9.2) and comparing coefficients we obtain<br />

a ~yutcni 01 ordinary dilTcrontia1 equ:tt.ionu for t.ilo FIIIIC~~OIIR fg(rl), lI(11), . . . . Tho first tho<br />

of Ll~cuc are:<br />

lof" -1- I 1 " - 0 ,<br />

0 0<br />

/['" -1- 1, - 2 lo' -k 3 /,>" = - 1 ,<br />

fz"' -1- 1, 12" - 4 1,' 1,' -1- 5 1,' 1, = - 4 + 2 1,'" 3 I, I,",<br />

Only tho first cqnnt,io~~ is non-linmr, nntl it in idcnt.ical wit.11 tlint for n flat plats nt zero incidence:.<br />

All rornnining equations are lincnr nnrl contain only t,he function f, in the homogeneotls<br />

portion, wherons t,he non-liomogeneous brnw arc for~nrd wit,lt t,Iie nid of the remaining funct~ions<br />

1. I,. flowarlh solved trho first. scven tliKcrcntinl eqnations (up tO and including I,), and calctllatod<br />

t,zblcs for Llicm.<br />

'rim ucricn (9.25) converges wrll with t.hcso valnrs of I,, in t.he rnngr - 0.1 _< x* 5 -1- 0.1.<br />

Jn tllc casc of decclorntctl flow (x* > 0) t,l~c point. of scpration is at z* = 0.12 npproxi~nntrly,<br />

I)ut for thc sliglit.ly cxhndetl rangc of valnns t.ho convcrgor1r:o of the scries (9.25) is no longer<br />

wsured. 111 ordor to roach t.lrc pinL of separnt.ion,-I,. 1Iownrlh used a nninericnl proccdum for<br />

tho ronl.innnt.ior~ of the no111t.ion. V~1~rit.y profilrs for sevcrnl vn111cs of r* for hot,h ac~~lerntrd<br />

t r . J ho in&ycntlrnt varin1)lo in Lhr nhovc rqunths difkrs from that in Chap. VIT by R factor 1.<br />

and tlorolcrnt~ed flow are uenn plot8t~cd in Fig. 9.8. 11. ~htmld be noted t,Iint. nll profih in tlccclcrntcd<br />

flow have n, point of inRexion. D. It. IInrtroo [38] repcntcd tl~cso caloulntior~s nrid obtninctl good<br />

ngrcemc~lt, wit11 L. Hownrth. The case for a/iJ, - 0.125 wns rnloolnted more ncc~tvnt.cly by<br />

1). C. F. Ileigll 1441 who ~ 8 nn ~ clecl.ronic d digit.al computer for t,hc purpose nnd who pnitl ~l~ccial<br />

nL,tentio~~ to tlic region of scpnrntion. TIIC valuo of the form fnctor at l.110 point of sepnrat,ion il.srlf<br />

wns founrl t,o ho x* = 0.1198.<br />

, llic . nictliod ornploycd by L. JIownrtl~ was cxkt~tlnrl by I. 'l'ntli 1001 t.o ir~cluclc I.lw caws<br />

corrcspontling to n 2 1 (with a > 0). tiowcvcr, I. 'l'nni did uot publisl~ nny t.nbles of the furw-<br />

Lionnl roeflicicnts but confined liitnsclf to reporling lho lid rosnIL for n = 2. 4 nnd 8. 111 Iiis<br />

cnsc, (no, MIC poor ronvcrgcnro of tlic ~crics did not pcr~nit him 1.0 dotcr~ni~ic the poiut of sqi:wit-<br />

tion wil,l~ unfficic:nf, ncrurncy and 110 formrl himnrli rowpell~cl Lo IIUC I,. Il(~wnrl.l~'s IIIIWT~V:~ ,<br />

fw~~li~~~~tilion RCIIWII~~.<br />

e. Flow in the wakc of flat plate nt zero iucidence<br />

The application of the boundary-layer equations is not rcstrictml to rcgions<br />

nmr a solid wall. They can also he applied when a stratum in which thc infltwncc<br />

of frict,ion is rlominating cxists in the interior of a fluid. Such a case occurs, among<br />

ot.l~crs, whcn two laycrs of fluid with tliffcrcnt vclocitics mcct, for instnncc, iri tho<br />

wake bcliind a body, or whcn a fluid is tlischarged through an orifice. We shall<br />

consider three examplcs of t,his typo in the prcsent ant1 in the succccding scctions,<br />

and wc sl~all return to them whcn considcririg turbulent flow.<br />

As our first examplc we shall discuss the case of flow in the wake of a flat plate<br />

at zero incidence, Fig. 9.9. Behind the trailing edge the two vclocity profiles coalesce<br />

int,o one profilc in the wake. Its widt,h increases with increasing distancc, and its<br />

mean velocity decreases. Tlie magnitude of the dcprcssion in the vclocity curvc is<br />

dircctly conncct,cd with tho drag on tAc bocty. On thc wholc, howcvcr, a.s wc shall<br />

see later, the velocity profile in the wake, at a large distancc from thc body, is<br />

intlrpenrlent of thc shape of the body, cxccpt for a scale factor. On the other hand<br />

thc vclocity profile very closc to thc body is, evidently, detcrmiricct by the boundary<br />

layer on tho hody, and its shape dcpct~ds on whcther or not thc flow has separated.<br />

The momcntum equation can be used to c.alculatc thc drag from the vclocity<br />

~wofilc in t.hc wnlro. For this jn~rl~osc wc draw a rcrtarigr~lar control snrfacc AA, 13113,<br />

Fig. 9.9. ~\pplirnt.ion of the niomcn-<br />

tun1 equation in tho calculation of the<br />

drag on a flat plak nt zero incidence<br />

from thc velocit,y profilo in the wake


176<br />

IX, Nxnrt ~oi~~liot~s of ~IIC ~~cndy-state boundary-Inyer rqrmtiona<br />

as shown in Fig. 9.9. The bonndary AIBl, parallel to the plate, is placed at such<br />

e distancc from the body that it lies ovcrywhere in the region of undisturbed velocity,<br />

I/,. Purthorrnorc, t,hc pressnrc is constant over the whole of t,he control surface,<br />

so t01at j~rcssurc forces (lo not contribute to the mornenturn. When calc~lat~ing<br />

the flux of momontunl across the contml surfacc it is necessary to remcmber that,<br />

owing to ront,innity, fluid nu st loxvc t,l~rongh tho hountlary AIBl; tho q~lantit~y of<br />

fluid leaving Ll~rongl~ A1lll is cqu;rl t.o tho tliffcrent:c I)clwccn tht ontcring Lhro~rglt<br />

AIA and loaving through BIR. 'rho boundary AT3 contribntcs no term to t.hc<br />

nom men tam in the x-diraction becanso, owing to symmetry, the transverse velocity<br />

vanishes along it,. The momentnm balancc is given in tabular form on the next page,<br />

and in it the convc~ltion is followed t.11:bt inflowing masscs are considcrcd positive,<br />

and ontgoing masscs arc taken t,o bc negative. The width of the plate is denoted<br />

by b. 'l'hc tot,al flux or morncntnm is cqnal to the drag D on a flat plate wetted on<br />

orlo sitlc. 'l'hus we have<br />

03<br />

D =be/u(~,-u)dy.<br />

v-0<br />

Intrgration may bo prrformctl from y = 0 to y = oo instcad of to 2/ = It, because<br />

for ?/ > h thc intcgrantl in eqn. (9.26) vanishes Ilrnce thc drag on a plate wetted<br />

on both sides bcromrs<br />

+<br />

2 D = b e / u(u,-u) dy . (9 27)<br />

- m<br />

This cqnat,ion applies to any symrnet,rical cylintlrical body ant1 not only to a flat<br />

plat,o. Tt is t,o bo rcrncmbcrctl that in the more general case thc intcgral over the<br />

profile in t,he wake must be t,aken at a sufficiently distant sect.ion, and one across<br />

whirh t,ho st.at.ic pressure has it.s undisturbed value. Since near a plate there are<br />

no pressure tlill'crrnccs cit,hcr in t,l~e longit~ldinal or in the transverse direction,<br />

ccln. (9.27) npplins t,o any tlist.ancc brhintl the platc. Furthermore, eqn. (9.27) may<br />

11c: nppltc(i t.n any section x of tlhc I)o~lntlary layer, when it gives the drag on the<br />

portion of t-l~c plate between the leading ctlgc and tlltat sect,ion. The physical meaning<br />

of tho ir~t~cgml in eqn. (9.20) or (9.27) is that it rcprcscnts tho loss of momentum<br />

due to frict,ion. It is itlcntical with the intcgral in eqn. (8.31) which dcfir~ed the<br />

mome?ltum thickness a, so that eqn. (9.26) can he givcn tllc alternative fbrm<br />

Wc shall now proccrd to calculate tthc velocity profile in the waltc, in particular,<br />

9.1, a. large dist.ance x t)ehintl the trailing edge of the flat plate. The calculation must<br />

bn p(:rformcd in t,wo sLcps: 1. Through an expansion in thc downstream direction<br />

from I.he Irntling t.o t,hr tmiling ctlgr, i. c. I)y n ~:~lculation which inv?lvc:s thc cont.inu:~.t.ion<br />

of tJ~o Illilsius profile on thc plalo near d.hc tmiling cclgo, antl 2. Through an<br />

expansion in t,hc nl)st,rrarn direction. 'fhe lattw'is a kind of asymptot,ic'int,egration<br />

for x Inrgc tlistancc behind thr plate and is valid irrespective of the shpe of the<br />

1)orlp. It. will 1)c nrrrssnry hrrc 1.0 n~nkc lhc nssrrmpt,ion t,llat t.he vc1orit.y difference<br />

in t.11~ wn kc<br />

711 (", !/) ' U, - - u(z, y)<br />

(0.29)<br />

e. Flow ill ll~e wake of flnt plntc at mro incitlrncc 177<br />

Croswxxtion I Rnte of flow I Dlonient~~ni in dircclion r<br />

C -- Control srlrfnrc 2 Rnte of flow = 0 ::Mornctit~~m flus -= Drng<br />

is stnall rotnparctl wit.11 Urn, so thnt q~~n.tlrn,t ic nntl highrr t~crtns in 711 IIIIIY hr 11t~gltv~t.rt1.<br />

, ,<br />

I l~c ~~occ~luw mnltrs 11xc of n nict,l~otl ol' c:o~~l,inuir~g n. Iznown solul.ioii. 'l'ltc~ (:ILI(:u-<br />

Int,ion st,arts with t.11~ p~viile at the t.miling ctlge, calculnt.ct1 with 1.11~ aid ol' Jllnsius's<br />

~ncthotl, and we sha.11 refrain from furthrr disrussing it hrre. 'I'hc asympt,ot,ic cxpmsion<br />

in t.he upst,rraln direction was calcnlatcd by W. Tollrnicm 1091. Sinrt: it, is<br />

t,ypical for problems oF flow in t,hc wake, antl since we shall mdte nse of it in t,hc more<br />

ilnport,nnt, tmbulcnt case, we propose to devot,c some t,itnc t,o an account, of it.<br />

As thr prrssnre trrm is rqr~al to zero, the bonntlary-layrr cynntiot~ (9 2)rombinetl<br />

wit11 rqn (9 29) gives<br />

'I'he partial tlilli:rr~~t.inl cqunt,ion call, here 1.00, be tmnsformctl into an or(li11iir.y<br />

tliffcrcnlinl ecpat,ion by n snit,a,blc? t,mnsrormnt,ion. Sirl~ilnrly to 1.11~ assuml)tion (7.24)<br />

in 13lasirrs's mct.l~od for t,hc 11x1 plate wr put.<br />

antl, in adtlit.iot~, wr assnme t.hxt( u, is of' the forin<br />

tl1 = U-c (-;)-kg(,]),<br />

whew 1 is the lrngt,ll of thr platc, Fig. 9.9.<br />

Tho power -- .j for 1: in eqn. (9.31) is just.ifict1 on the ground that the ~no~nent.urn<br />

int,cgrnl whicll givrs t,hc drag on tho plnt,c ill oqn. (!1.27) I~IIS~, I)r intlrpondrnk of r.


178<br />

IX, Exact solutions of tlrc steady-statc bonndary-layer equations<br />

Hence, omit,t.ing quadm.t.io terms in 15, the drag on a platc wetted on ht,h sidca,<br />

as givrn in eqn. (9.27), is transformed t.o<br />

+m<br />

2n=beCJ,/u,dy.<br />

lnt,rodurir~g, fttrt.llcr, t . 1 ~ assumpt,ion (9.31) into (9.30), ant1 dividing t,hrough by<br />

C (I,2 . (x/l)--lIz z-1, we obt,ain the following tliffcrenti:tl cquation for g(t1):<br />

with the lmnntlnry conditlions<br />

Integrating onre, we have<br />

y--m<br />

JI" 1- 4 71 JI' -1- h q =7 0 (0.33)<br />

0' = 0 at 11 = 0 and JI -- 0 at 71 = co .<br />

0' I :: 71g --0,<br />

\<br />

whoro flrc rorlstnnt of integration vanrshes on account of tho tw~ndnry condition<br />

at q = 0. Rcpcatcd integration gives the solution<br />

g = exp (- '1 ?12). (9.34)<br />

llerc the constn.nt of int.cgrat,ion n.ppcaw in Lllc form of a cocffcicnt and can be<br />

ma& cqr~nl to unit,y without loss of generalit,y, as the velocity distxibution function u,<br />

from eqn. (9.31) st.ill contains n free coefficient G. This constant C is determined<br />

from the condition t.hat thc drag calculated from the loss of morncr~t~um, eqn. (9.32),<br />

,. (7.33).<br />

011 t.11r: ot.llnr I~nntl, from cqn. (7.33) we cnn whc tlown tho skin fric+t,ion on n. plntc<br />

I<br />

wct,t,otl on I)oll~ sitlcs in the form:<br />

difference in tl~c wakc of a flat platc at zero incidonrr becomes<br />

, I . Ito volocit.y clist.ril)~tt.ion given Iby this n.syrnplotio cclllnLion is rr:prrsc:nt,otl itt I'ig. !I. 10.<br />

It is remnrkablr that the vclocitty distxil)nt.ion is identical with (::~uss'.s c:rror-tlistribntion<br />

function. As assumed at the boginning, cqn. (0.35) is valitl only at grcnt,<br />

distances from the platc. W. Tollmicn verified that. it may bo nscd at about z -- 1.<br />

]pig. 9.1 1 corlt,nins n plot, from wllirh tho wliolr vc:locit,y.lit*ltl rnn IN! ittliv.r.t~tl.<br />

Thc: flow in tllc \dto of n platc as wc-ll as in tl~at bc:l~intl any othrr body is,<br />

in most cases, turbulent J5ven in the case of small Itcynoltls nnn~hrrs, say R, < 106,<br />

w11en the bountlnry laycr rcrnains laminar as far as tho tmiling cdgc, the flow iri<br />

t,Ile waltc still bccomes furb~~lcnt, because the vclocity prolilcs in the wnltr, all of<br />

which posscss a point of inflexion, arc c~t~rcmcly ~~nstnI)lc. In othrr wortls, cvcn<br />

with c~mparat~ively small Rcynolds numbers tho wakc 1)ecomes turbulent.. 'l'ur\)ulent<br />

wakes will be discussed in Chap. XXIV.<br />

f. The two-dirnensionnl larnir~nr jet<br />

The efflux of a jot from nn orifice affords a furtllrr oxample of motion in tho<br />

abscnco of solid boundaries to wliich it is possible to apply the boundary-layer<br />

theory. We proposc to discuss the two-dimensional problem so that we shall assume<br />

Fig. 9.10. Anyn1pLot.i~ vclocitydistribrttion<br />

in tho laminar wake bohind s flat plate,<br />

from erp. (9.35)<br />

Fig. 9.11. Velorily distribution in tl~c<br />

la- t<br />

minar wake l)cl~intl a flat platc at zcro<br />

innidenco


180 IX. Exact solrltions of tllc stcntly-stato boundary-layer equations<br />

that t,l~e jet cmcrgcs from a long, narrow slit and mixes with the surrounding fluid.<br />

This 1rol)lom was solved by 11. Scl~lichl.ing [60] and W. Biclrley [3]. In practicn,<br />

in this case, ns in the previous ones, tho flow becomes tl~rbulent,. We slinll, howevcr,<br />

discuss hero the laminar c:we in some tlet,nil, since the turbulent jet, wlticll will be<br />

oonsidcretl later, can be analyzed mntllcmaLically in an identical way.<br />

Thc emerging jet carries with iL some of the surroutttlit~g Iluitl whicli wns<br />

originally at rest becauso of the fridion developed on its periphery. The resulting<br />

patt.ern of strcarnlines is shown in Fig. 9.12. We shall adopt a system of coordinates<br />

wit.11 i1.s origin in Lhe slit and wit,l~ ita axis of abscissae coinciding with the jet axis.<br />

The jet spreads outwa.rtls in t.hc tlowr~stmam diroct.ion owing t,o the influence of<br />

frict,ion, whcrc:w its vc?locit,y in t,l~e cetrtm decrcascs in the same direction. For the<br />

saltc of simplicit.y we sllall assume that the slit is infinitely small, but in order to<br />

rt!t.:lin a finite volnrnc of flow as well as a finite motno~tum, it is necessary to nssumo<br />

an infir~itc fluitl vel6oit.y in tl~c slit. 'l'l~c prcssurc gratlicnt tlpltlx in ~JIC direction<br />

can Iicrc, as in t.he previous cxan~plc, be neglected, bwnose the constartt pressure<br />

in 1.11~ surrounding fluid irnprcsscs itsclfon the jet Consequel~tly, the total nioment~~m<br />

in t.he r-tlirrct,iou, clcnot,c:tl I)y J, must, remain const8ant arid intlcpo~~dnnl of 1,he<br />

distance r from tho orifice. Ilcnco<br />

11, is ~)ossil)lc t,o tnnlzc a snit.;~l)lc assumption regnr(ling blic velocity distribution if<br />

if, is ror~sitlcrctl t11:tL the velocity profilcs ~i(r,y), jnst :IS in the oasc of a flat plate<br />

at ZWO inci(lcnce, arc most prol)al)ly sinli1a.r. 1)ecnuse the problem as a wltole possesses<br />

IIO ch:~mct,nrist,ic! li~~enr tlimcr~sion. \Yo shall ass~!mc:, t,hercfore, that tho velocity u<br />

is a fi~nntiot~ of ylh, where h is the \vitlt,li of t,he jet, suitably defined. We shall also<br />

nssumc t,l~:tt. h is proportional 1.0 x*. Aacortlingly we can write the strcam fut~ction<br />

it1 t,hr lorm<br />

I. 'Chc flux of tnon~cnt,t~r~~ in fhc z-tlirwt,io~l is i~ltlop~tlcnt, of r, at:c.orcli~~g to rqu.<br />

(936).<br />

2. HI^ :~ccclrrnl,iot~ t~(~rttis :IIIII LIIC I.rivl,iott Ltvm in CIIII. (U.2) nrt: of' 1,111: WIIIII* 0r111.r<br />

01' n~:~gnitu(lc.<br />

(:or~sr:cl~~c~~t.ly, the assumptions for the iritlrpcr~tlcr~t~ vari:ll)lt: at~tl for the st,rcntn<br />

func.t,ion can be writtcri as<br />

if s~~it;tblc c:onstxtlt fa,c:tors arc it~t:lu~lr~l. 'I'l~rrrlnrc., t,lt(. vc,l1)c.it.3r t~om~~o~~t~r~ts<br />

arr<br />

given I)y 1,llc f'ollowing expressions:<br />

I<br />

whcrc OI is n lice constant,, l,o be clot~crmittctl Inter. 'l'hus t01c a.lmvc cq~~:~t.iot~ 1,r:lnsfolms


and t,llc? clnsh now clet~otos tlilTrrcntia.tion with rcspcct, to (. Thc boundary contlitions<br />

art?<br />

( ~ 0 F=O; : t=oo: r=O (0.41)<br />

whcro t.1~ consl;~rtl~ of inl.rgr:it,iotr was m:itle cqunl to I. 'l'llis li)llows if we p t<br />

Ff(0) - 1, wlticlt is prrnlissihlo wil.ltottt losx ol'gc~lcrnlil,y Imnnsc of I,llo frcc cotlst.:inl.<br />

a in t,l~c rrlat.icin Iictwoen f ~ n P. d 1Cq11atio11 (9.42) is n clill:rrnt.ial cqn:tt,ion of 1tic:t::~t.i'~<br />

typc ancl can Iir int.rgrat.ctl in closctl t,rrms. \Ye oli1.ni11<br />

I 11vr1 t ing this rqnnt ion wr obtain<br />

Since, furt,llcr, tlP/tlE - I - 1:in11~<br />

qn. (9.37) and is<br />

F<br />

1 - exp(-BE)<br />

I. =t,anh E= - - -<br />

1 4- cxp ( 3s) '<br />

E, the vc1ocit.y (li~lril~~tl~ion (:all I I tloclucctl ~ from<br />

1 - r (I t.an11~ 6) . (9.44)<br />

.I<br />

1.he vrlorily tlisl.rilwtiorl from cqn. (9.37) is soon plott.ctl in Pig. !).Is.<br />

1L now rcn1:tins t,o dc(.crtninc. t81rc const:tn(. a, :LWI this ciln be (lone wit.11 the<br />

aid of condition (!).:3R) wl~ich shtcs that t,l~c rnomcnl,um in 1.11~ x-tlirrcl ion is ronst,nnt..<br />

(hnbining rqns. (9.44) :111(1 (0.36) we obhin<br />

we shall assume that tho flux of momontum, J, for thc jet is given. It is proportional<br />

to Lhr excess in pressure with which the jet leaves the slit. lrrtrodricing the kinematic<br />

mo~nenlmt .I/@ = K, we have from eqn. (9.45)<br />

Fig. 9.13. ,VrIcirit,y dist,ril~ulio~~ in x t,\\o-rJimrt~.<br />

sion111 nn(J cire~ll~w frcc jcL fro111 cqns. (9.44)<br />

:md (11.16) icspect~ivcly. For tho two-tlirner~.<br />

xionnl jct [ = 0.275 KIP y/(v~)~/~, and for the<br />

circnlar jct. C - 0.244 y/vz. I< and K'<br />

t1twot.c: Ilir kincrnat.ic monwnt.um J/e<br />

and, hencc, for tlio volocit,y distribution<br />

K. Pnrnllcl &reams in hminar flow<br />

r 7<br />

Ihc transvcrsc: vclooil,y at thc bountlnry of Iht. jet is<br />

-1 00<br />

ant1 the volume-mtc of discltxrgc per unit height of slit bocorncs Q = e J v (I!/, or<br />

- m<br />

Q = 3.3010 (I< VX)"~.<br />

(!).48)<br />

Tlic volumc-rate of tlisclmrgo increases in the tlownstrcam direction, bccai~sc: flnid<br />

particles are carried away with the jet owing Lo friction on its boundnrics. It also<br />

increases with increasing momcnt~um.<br />

The corre,sponcling rotationally symmct.rica1 casc in which the jet cmcrgcs from<br />

n small circ~~lar orificc will be tliscussed in Chap. XI. The problem of t,hc twodirne~~sional<br />

laminar compressible jet cmcrging from narrow slit was solvctl Iiy<br />

S. 1. P.zi [4!)] nntl M. Z. JZrzywo1)locki [42].<br />

Moasurcmrnts performed I)y TI:. N. Antlrntlo [I] for tho t,wo-tli~ncnsiot~:~I 1n.rnina.r<br />

jct confirm t.he preceding thcorct~icd argurncnt vory well. 'l'llo jct rcn~ail~s laminar<br />

np t,o R - 30 appro~irnat~rly, where the Ibynoltls number is rcfcrrctl to thc cfflrrx<br />

vclority and to the widL11 ol' tho slit. Tho casc of a Lwo-tlinlensional ant1 t.llat of .z<br />

circular trtrl~ulent jct is discusscd in Chap. XXIV. A comprchensivc review of all<br />

probloms involving jets can be found in S. I. Pai's book [49].<br />

g. Pnrnllel streoms in laminnr h w<br />

Wo shall now 1)rirfly cxnminc the laycr 1)ctwccn two pnrallcl, Inminnr sl,rcnms<br />

which move at tlifTercnt vclocitics, xntl so provitlc a htrtl~cr cxnrnplc of the npplicability<br />

of the bountlnry-laycr equations. Thc forrn~~liition of thc problctn is scot1<br />

il111sLraLctl in Fig. !).14: Two it~il~ially scp:ir:~Lc(l, ut~disO~~rI~~xl, prnllcl HL~~!ILIIIS whith<br />

move with the vclocit.ics TJ1 nncl (I,, rcspcctivcly, l~cgin tm intcrc& thro11g11 frit:l.iorr.<br />

It is possi1)lo Lo assurnc thnt the transition from the vclociLy U, to vclocity (I, talccs<br />

in n narrow zone of mixing and that the transvcrsc vcl&ty component, v, is<br />

everywhere smalc oomp,zrcd with the longitudinal velocity, 11. Consequently, the<br />

boundnry-layer equation (9.1) can be usctl to describe the flow in thc zoncs I and 11,<br />

and the pressure t1crm may be omitted.<br />

In n manner analogous to that employed for thc boundary layer on a flnt platme<br />

(Scc. VIIe), it is possible to obtain the ordinary tliffcrentinl equation


184 IX. Exact solutions of the steady-skate boundary-layer equations<br />

by int'roduring t,hc dimensionless transverse coordinat,e 9 = y 1/ lJl/v z and tlte<br />

stream fur~ct.ios y~ = 1/ v V1 z /. Assuming t,l~nt IL/U = /I, we are led to t,Iic boundnry<br />

contlit ions<br />

IICCXIISC Y) =- 0 t,l~cre. The sol~lt~ion of the dilTerential equation (9.49) subject to the<br />

boundary contlitior~s (9.50) and (9.51) cannot be obtained in closed form, and a<br />

numerical mcthd nimt be employed. It is possible to obtain exact numerical solut<br />

h s I)y the IISC of asymptotic expansions for 77 + - co and 17 -+ -1- cro togetfher<br />

wit.11 a series expansion about r] = 0; several such solutions were provid~d by R. C.<br />

1,oc:Iz 1451. 'f'hc prthlcrn was first, solved by n~lmerical integration by M. 1,essen [44a]<br />

st,art.ing with an nsymptot.ic expansion for r] -+ -00.<br />

. Jlw . tlia.gr:~rn in Pig. 9.14 prc.scnt,s volo~il~y profiles for I = U,/U1 = 0 and 0.5.<br />

An irnprovcd ~~umerical solution was p~~hlishctl by W. J. Christian [lo]. This special<br />

cnsc of the int.eract,ion l~et~ween n wide, l~olnogericous jet ancl an adjoining mass of<br />

quiescent, air is oftm tlescribcd by tho term "plane half-jet".<br />

Fig. 9.14. Velocity distrihut,ion in tl~c<br />

zone hetrvecn two int,crnct.ing parallel<br />

streams, after R. C. Lock [45]<br />

11. Flow in the irlet lengt.h of n strnigl~t chnn~~rl 185<br />

R. C. J.oclr [45l studied, in atltlit.ion, the case wl1e11 t,hr t.wo half-jets differ in<br />

their clensit.ics ancl viscosit,ies, and riot only in tllcir velocities. An exanlplc of stlch :I<br />

case is t,lrc flow of air over a wnt,cr srlrf:~.cc. The solution now tlrpcntls on t,l~c p:lr:Ltnctcr<br />

x -- I,, p2/p1 p1 in atltlit.ion t.o I. Lock provided sevcrnl cxnct solut.iotls ns wcll<br />

as solutions which were l)ascd 011 the rnoment.um int.cgral rquat~ion. An approsim;~lc<br />

mc.t.llotl was also conccivc.tl 1)y 0. I


1 86<br />

10<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

-0.6<br />

- 0.8<br />

- 1.0<br />

IX. Exact, aolrtt,ionn of the nt.rnnuntlary lnycr rlcvrlops in the same way as on a flat plate at zero<br />

inritlrnce it1 unnccrlcratad Ilow, so that from cqn. (7.37) we Iiavo<br />

is tllr cl~nriirlrri~tir dinirnsin~~lrs~ inlct Icng111. 1':qnntion (9.53) ran dso be written as<br />

Y<br />

uo<br />

U(x) = V, {I + Ir', a + I


\\+ere j = 0 (plane flow) or j = 1 (flow with axial symmetry). The boundary condit,ions<br />

arc 16 -- I) = 0 at y = 0 n.ntl 11. =- 11 (n.) at ?/ - 0. For turbulent flows u-and v<br />

a.rc t.he n~pprop~.ink lnrnn vclocit,ics n,tltl ~1 rrprescnt.~ a suitably defined cdtly viscosit,y,<br />

scc for inst,nncc A. M. 0. Smit.11 n.nd 'l'. Cc1)coi [Dl]. I'or Inminer flows €1 .= 0.<br />

7'11~ l,rnl~sft,~.r~~al,iot~ of rqt~s. (9.50) ancl (9.57) to din~en~iot~l~s~ vnria1)Ies incorporaLes<br />

11otJ1 t11(, l$ln.sir~s ant1 lhc Mn~lglrr l.rnnsfot~tnn.titr~~ st^ nlso II. (:orrl.lcr I:13, 341) nntl<br />

is tldined n.s ft)llows :<br />

Tllc cont.it1ui1.y equn.t.io~~ is sat.isfictl I)y the st,rcarn function<br />

nntl E, is t,llc rdtly visvosit,y from ecln. (39.2). The s~~l)script,s tlrnotx- part.inl ctifkrctit.ia.Iion,<br />

anrl the qunnt,it,y<br />

5<br />

77~0; /=O; / =On.r~tlq=cm; I,-- I. (9.63)<br />

Fi~~it~e-tlifl'c?rcncc: cqnnt,ions of sccontl order can I>(: SOIVC~ (by mnt,rix inversion<br />

ront.inrs) rn11r11 nlorc cfficiont.ly trllan t.llirtl (or higher) ordcr equations. It is of intcr-<br />

?st,. t,hct~eforo, t,o rrclurc equations (9.01) to sccond ordcr. To this end the variable<br />

I;' -= /, is int,~ducrtl and eqn. (9.01) is rewritken as<br />

INF'v],l I /FII --F~)-T-~((FE'~--~~F',~]. (9.64)<br />

'J'llis rqua(iot~ now conlains two unknown functions, f and 1'1, hut tllrse ale related<br />

by thr sirnplr rxprcwion<br />

In the absence of srlctior~ or t)lowing the boundnry eonditions nrr<br />

This strip is completely covered by a grid with lines drawn parallel to t,he ( and<br />

coordinates as illustro.t,ctl in Fig. 9.16. Tho stq sizr A[ rcl)rcsc~~t.s t.11~ tlist,nnrc.<br />

bet,wcer~ t,wo snr.crssivc grid lincs 5 = const,a~~t; it is prost~~nctl i.o I)c stn:~ll IIII~, is<br />

ot,hcrwise rrnspccifictl. 'I'hc corresponding step sizes in t.hc q-tlirrctiou nrr spc:c.ilictt<br />

t,o vary in geometric progression. The rnl,io Octwecn t,wo s~~ccrssive grid lincs, TI,<br />

and qn+l, is denoted by I< = I -1 k where 1 kJ varies from 0 t,n 0.05 in l.ypical cases.<br />

Each notlal point is itlcntified by a dou1)lc intlcx m, ?L which tlclinrs it.s posit,ion<br />

Fin, 7, according tso<br />

111 writing t>he Anitc-tlilTerence quol.icnt,s it is corivcnlent t,o int.rocluce t,he moan of<br />

two successive Aq-values<br />

In the step-by-step calculations the solution is considcretl known at 5,n ancl ell<br />

preceding grid lines, and the variables F nntl / are sougl~t at. [,,,, 1.<br />

Fig. 9.16. \'ari.zble stcp size finit.c-rliffrronce grid<br />

for th rnlcr~lnt,ion of laminnr and turbuletlt'<br />

Iiounrlnry Inycrs<br />

x knon.~~ vnlucs,<br />

O r~nknnwn rnll~rs


ccnt,rred nt, (m -1- 1, n). 1'110 two t,xptwsions are t.hertwpon cornt)ined in such a way<br />

thnt ternls of ortlcr Aq2 are elitnina1.rtl. The corrcsponclir~g difference qnot,icnks can<br />

I,c given the, form (index we 1 I omitted) :<br />

a',, 1<br />

{ I I I 2 T I I 1 7 I] I 0 ( A . 1 ) (9 69)<br />

il,l 2 /I 11,'<br />

where<br />

p1 - 1<br />

l2 (I -+- K), rPz - L ~,<br />

.-- 2 r1 J'~, I>,, -= I .<br />

Eq~tn.tions (9.69) nncl (9.70) rcrlr~cc t.o t,hc st.nntlartl form for cent,ral difl'crenccs when<br />

K = I.<br />

For the (-tlcrivnt,ivrs in cqnnt.inn (9.64) a simple bnclrwnrtl tlini.rrner formule is<br />

used<br />

y - Fsr 11. n -- Fnr, n<br />

E -<br />

-I om. (9.7 I )<br />

At --<br />

The 1nrgc.r I,rtlnc.at,ion error which appcn.t,s here is balancctl by t,hc it.crat.ivc scltclne<br />

proposc(1 for solving thr tlilkrcncc c-qt~at,ion. 'l'llc non-lincn.r t,ernis in r(lnnt,ion (9.04)<br />

Imvc to be rcplaced by lincarizccl diflkrencc quoticnt.s. Tho tcrlns fFIl and FFg may<br />

serve as exntnples and thcy are writ,t,cn as<br />

l'hc lincnrizrtl Iini1,r-clifl'ercnw qnotionts given nhove are su11st~it.ut~erl into the<br />

tlifl'crentinl ty~tnt.ion (9.G4) nnd Lhe result is multiplied througlt by A E to give n<br />

tlilYcrcnce equa.t,iotl. 'J'his is writden ns follows<br />

i. The n~ctl~otl of finite dilTwcnces 191<br />

111 cqun1,ions (9.75), 6 and 0 nre cvnlunlctl nt (111. 1- I), mtl ot~ly the vn.rir~l,lcx wit.11<br />

sttp(wcripll i ntt 11~1cInlc~1 through st~cccssivt: it,crntions. To s~~xxl-III) t,Itv il~r~~:t,l,ion<br />

proces.s t,he tcrrns (/S)t can be licJ)t constnrlt. (equnl to t . 1 ~ &luc nt t.hc prrvious<br />

shtion) unt,il initial convergence is nchicved.<br />

Method of nolution: Equations (9.74) rcprc~ont~ n ~ oof t N-1 si~ntlll.nncwus r~.lgc:-<br />

I~rnic equntionrr for the unlrnown k;ntl,n (n = 2, 3, . . ., N). At, cnch levcl IL t.l~rcc<br />

unknown quantities nppenr, namely Fnajl, .-I, Fm.kl,n and Fniit, ,,+I, but sincc<br />

F,+I,~ and Fm+l,~ nre known from the bonndnry conilitions, 1.11~ totnl nurnbcr of<br />

cquntions equals the nunlber of unlrnowns. The set of nlgclmic cqunt,ions rnn be<br />

writt.cn in so-callod tllrcc-tlingonnl matrix form. MnLriccs of Illis ttypcwhcro oK-tlir~go~tnl<br />

elements vnnish outdc the three-tlingonal band can bc inverted bg n sirnplc: and<br />

direct nlothod well suit.cd for digital con~putcrs.l'o end tlriseqna.tion (0.74) is rcwrit,toll<br />

in "stantlard form" (subscripts (m -1 I) ornittcd)<br />

Thc botlnclary conditions arc<br />

F1 = 0 nntl PN = 1, (9.70)<br />

wllere IL = I tlenotcs tbc wall and ?t = N thc edge of the bountlary Inycr. J1, is asst~tn-<br />

etl now t,llat a solution existst in tllc form<br />

The boundary condit,ion F1 = 0 nnd t,he rcyuirernent t,llnt rquation (9.77) sl~ould<br />

rcrnnin valid indcpcntlcnt,ly of the sl,cp size /Iq leads to<br />

A direct, colisrquencc of rqnntion (9.77) is that<br />

When the preceding expressions are substitutml int20 oqn. (!).741,), 1.11~ following<br />

relohion is obt.aincd<br />

By tncnns of equalion (9.81) and the condition (9.78), it becomes possil~lc t.o cotnpot,~


192<br />

JX. 1Cxact sol~tLion~ of tho stmdy-state l~ountlary-layer equat,iona i. Tho method of finite diffcfcrrnoes 103<br />

R, and G',, for sucoessive values of n startling wit,h ?z = 2 for all grid point,s between<br />

the wall and the edge of the 1)onndary layer.<br />

Sinco 17,,.,l for 12 = N-1 is known from rqnat,ion (!).70), it lmx~mcs possible to<br />

evaluate all nnlznowns F, by means of equation (9.77) whilc t,mversing td~o boundary<br />

layer from t,ho edge t,o t,he wall tJlrongll (Icrreasing va111cs of n, i. c. for 17. -- N-l ,<br />

N--2, . . ., 2. '1'11is cornplr1,rs lhr cdc1lln1,ion of Il',, (7.- F,, ll.n) in ono it.c~.nl,ion. On(:(:<br />

I{',,,, 1111s I)c~w tlr~r~~nii~~r(l. thr cot.~.c.sj)ondi~ig solntion for /0141,n ca.n be found by<br />

rlireot. nun~wirnl inhcgrxt,ion of equat'ion (9.05). The t,rapezoidal rule snfficcs for t,his<br />

purpose.<br />

The calculat.et1 vniues P7n4.1,n a.nd /,,+l,. are used t,o dntmnline new and improved<br />

,.<br />

valrtcs of t,he coc,fficients A,,, I?,,, C,, which in t,urn leads t,o new and improved values<br />

of F,+I,,, antl f,, , I,,. 111~ ~WOCCSS is t.~rmin:~tcd when t,hc rcsnlt,~ of two s~~cccssivc<br />

it,rrnt,ions ngrco t,o within a specified tdcrancc, typically of order 10-5. 'l'ho convergrnce<br />

is nsnallp rapid, t01ree t,o four iterations being adequate in most cases with<br />

st,rp sizrs A.r in l,he range 0.01 t,o 0.05.<br />

In crrt,t~in pro11lc:nis it, I~ecomrs n~ccssnr~ t,o nllow for bonnda.ry-li~y(~ growt,l~<br />

1)y inrrc,asing N (or ve) as t,hr calcnlatrions proceed tlownst,reant. The houndarylayer<br />

edge is rlcfinctl by thr rcquircmcnt t,hat tho difference FN-Fnr~l should be<br />

Iws t,lian a sprrificd value, t,.vpically of ordrr 10-4. 7'hc growth, in t,crrns of the presrnt<br />

variablcs, is usually very modest even for cases involving separation.<br />

A vnrial~lc of primary intcrcst. in the calcnlat,ion is the s1.rrs.s at t,hc wall; it,s<br />

vnluo can bc tl~t~erminetl with good accuracy from the five point formula<br />

Iuirinl vnlr~cs: \Vlic~n using hnl111lrr1.c.tl similar solrrl.ions as s1,arling vdrlcs, ext,c:nsivc<br />

int~c~t,j)olat,ioti is rcclnirecl whrncver variable step sizes Ay,, are nsctl. It is<br />

rnorcx convcnirnt, antl efficient also t,tr gcnerate t,hc sin~ilarit~y solut.ion by finite<br />

tlifi~rr-rcs t.hroupl1 surcrssivc iterat,ions. The equat,ion t>o be solved is oht,aincd from<br />

cclna,li~m (!).64). and can I)c writtam in 1inoar.ized form as<br />

guessing a so la ti or^ which salisfics the boundary condit,ions), whereas those wit,ll<br />

index i arc to be found in the 1:-th or cnrrcnt itcmt,ion. 'L'lte tlifTcrc:nc:c quol,irnf,s<br />

(9.69) and (0.70) are now snl)stitut,cd ink) equa0ion (!).84). 'I'hc rrsult. is a tlilli~~~~ncc<br />

equat,ion which can be writt,en in the standard form of eqnat,ion (9.74), with coeffi -<br />

A linear variation in F suffices as an initid guess, Fo, and the corrcspontling value<br />

off is detmmincd from equation (9.86). The coefficients A,, /I,,, C,, and I),, nro (XIoulntcd<br />

next, and tltc corresponcling vnlncs of /?,, and (r,, arc tlct~errninctl ~~eross thtbonntlary<br />

layer. The recurrence rclnlion (9.77) and t,he bountlnrg contlit,iorls (!).78)<br />

are then used to determine the new it,crat.e, FI, across thr bounclnry lager. 'Yhr<br />

process is repeated until the difference bct,wcen successive it,eratrs becomes smaller<br />

than the specified t,olerance. The number of it.emtions required is typically of order<br />

8 to 12. The method is simpler t,llan t,he usl~al W~ooting'' ~ncthod used for two-point<br />

lmnntlary-vnlnc problem$ arid it converges in many rases WIICIT t,lrc In,t.ter mct,l~otl<br />

fails, for inst,ance for very large blowing mt.cs.<br />

Applications: The finite-difference method prescnt.ctl hrrc is in1,cntlctl as n prnctical<br />

engineering t,ool. Great,rr accuracy cnn be achicvcrl with a more clalwrntr procedure,<br />

1,111, t,his in turn leads t,o greater cotnplexit,y in fornlnlat,ion mtl progrnmrning<br />

and to an increased demnlid for computm t,ime and cnpacit.y. The conipnting time<br />

nnd accnmey tlrpcnd for all tlifTcrcncc ntet,lrotls on the skp sizr nsrtl in thr rnlrw<br />

Iations. It, is of int.crest, to exa,mine the accuracy of the present, mct,hotl in a few<br />

cases for which very accurat3e solut,ions are known. The cases considrretl are 11owa1~t.h'~<br />

linrnrly retarded flow (cf. Scc. IXd) a,nd the circular cylinder with a pressure clistrihut.ion<br />

ncrortling 1,o pot.cnt,inl 1.hrory and nccotding t,o t.hc cspcriments of I[ic.n~r~lz<br />

(c/. See. X c). '1'11~ rrsult,s for n "normnl" step sizc and a "srnnll" step size arc tabnlntcd<br />

11clow. lhtn t.11~ C:IICIII:L~~ rcs1111~s only the locat.ion of the scl~n.rt~.l.ion 11oin1s IIII!<br />

sl~own.<br />

Case ('o~kIerrd 1 Present redts 1Sxnct<br />

1,inenrly set.artlrtl Ilow<br />

Circular ryli~~tlcr<br />

(l'okntinl flow)<br />

-.<br />

Circular cylit)tlrr<br />

(Ilic~ncne prms. tlntn)<br />

I<br />

(1) x,' = 0.1227<br />

(2) x,* = 0.1210<br />

(1) 4, = 106.13"<br />

(2) 4, = 105.01 O<br />

r8* = 0.1 I!)!) (Ilownrtli)<br />

or r,* = 0.1 198 (l,eig11)[44]<br />

I or T,* - 0.1203 (Sc4~ortinr~~)<br />

4a - 104.5' (Srl~ocnni~er)<br />

(rf. Scc. Xc)<br />

--<br />

(I) $, = 80.98"<br />

(2) 4, = 80.08"<br />

#. -= 80WC (.lnlli: nnd Stnitl1)(.42/<br />

(interl)olntrd)<br />

.-


194<br />

IX. Jqxnct eolutions of thc stcdy-ntnto I)or~ntio.ry-layer cqr~ationn<br />

The computing time with t.11~ "normnl" strep sizc is tyltically Ci to 10 scconds on<br />

t.hc UNIVAC 1108 compntcr.'l'he accuracy wit,l~ the smnll step sizc is seen to Ire bet,tcr<br />

11ut at t.he expense of a twcnt,y-fold incrcww in comtrut,c.r time. For engirlenring calcn-<br />

Iations Lhe conlwr grid shoultl suflicc; il, rc(luires running times of t,hc ortlcr 10<br />

sccor~tlrr in cr~sc of pr:~otinnl int.cw-st suclt as Ll~c In.tnir~nr lmr~ntlnry Inyrr ol' nn ncrofoil.<br />

11nlm)vcd econotny cnn bc nc:hiovc:tl Iiy vnrying the step size ns Lhc cnlculntion<br />

proccetls, tht is wing thC fine mrsh only in the critical region near separation.<br />

A summary account of nurncricnl methods in fluid mechanics is give11 in thc<br />

lecture notes of Smoldc,ren [G5].<br />

j. Uoui~dnry layer of second order?<br />

The secontl-orclrr rquntions, cqns. (7 52) nnd (7.53) for flow in n hountlary layer<br />

were dcrivd in Ser. Vllf. This system of linear partial differential equations ran be<br />

solvcd if the first-order solutiorls ul (z, N) nnti vl (x, N) are known, and if the func-<br />

tions K(T), IJz(x, 0) nntl I'z(x, 0) nre suitably prescribed.<br />

It follows that the calculation of n second-order bounclary hyer on a given body<br />

in a strcnm requires that the following steps should be taken:<br />

(a) Cnlculation of the potential flow (external flow of first order) about the body<br />

with the boundary conditions IT1 (~,0)<br />

= 0. The solution yields Ul(s, 0).<br />

(b) C~lculat~ion of the first-order boundary layer for given Ul(x, 0), that is, determination<br />

of the solution of the oystem of cquations (7.49). In pn.rticular, from the<br />

uolution irl(r, N), vl(~, N) we calculate the function Vz(x, 0) with the aid of equ.<br />

(7.45).<br />

(c) Calculation of the second-order external flow for the boundary conditions Vz(x, 0)<br />

and zero velocity at large diotance from the body in accordance with eqn. (7.45). The<br />

solution provides us with Uz(x, 0) and Pz(x, 0).<br />

In what follows, we shall assume that t.hese steps have already been taken. We<br />

shall concentrate on more detailed second-order calculation for several particular cases.<br />

Symmetric atngnation flow: This type of flow wau analyzed in detail by M. Van<br />

Dyke (see also Chap. VII, [7]). It is assumed that. the expressions for the external<br />

flow of first antl second ordrr on a convex wall at the stagllation point (K = 1 at<br />

x = 0) have bcen found and yield<br />

U(2, 0) = Ull x -t F UZ1 2 + 0 (c2),<br />

(9.87)<br />

whrrc IJu nntl TIzl nrr conslsnts which dqwntl on thr shnpc of the lmdy. According<br />

to eqn. (7 48), wc make the following assumption for the inner solution:<br />

t I ~III i~idnhtrd t,o Profc~sor I


l!Ni IX. Ihnrt solutions of thc .stt*n(ly-stntr 1)onndnry-layer equntioll~ j. 15oundnry layer of second orclcr 1!)7<br />

Pnrnl~nln in n ~ymmetric strclnm: 'r'h sccond-o~dcr l)out~tlary layer on a parabola<br />

in n ~yrnrnrl.rit: st.rrn.111 was rnlcnlnt,cstl I)y M. Van I)yltc (see c~luo ('lhal). VII, 171). 111<br />

t.110 ~~cigl~l)o~~~.l~ootl of st,n.gn:~t,ion, wr II:LVC<br />

111 t.hc rnsr of the pnrnl~ola wc haw nt onr tlisposid a r1111ncricn.l solut,ion of t,hc co111pbt<br />

r Nn.vit:r-Stokrs cc]llnt,ions drrc to It. '1'. I):Lv~s I I I I nnd c:Ln use it. for a tlirc!ck<br />

cval~lnl ion of thr irnpr.ovc:n~rnt mntlr by t.hc sccontl-order t,l~oory. Pignre 0.17 sl~ows<br />

a plot. of the skin-fricl.ior1 cocfficicnt from (9.!)7) at a st,ngnat,ion point, of a parabola.<br />

in t,rrrns of 1.11~ Reynolds nurnhcr forlnrtl wit.11 the radius of cnrvature nt, thc vertex.<br />

It follows I'ron~ cqn. .(9.!)7) Lhat<br />

Cnrvc 2 in Fig. 9.17 is a plot, of this relation, wl~crcas Curve 1 dcpictss the first-order<br />

solut,ion. Curve 3 hi14 IJCCII plo1,tctl with t.hc rcsult.~ of It. 'I?. I)nvis's n~~mcrical solution.<br />

'l'11r ronsiclcrablc i~nlwovcrncnt~ cflkct~ctl by the sccontl-order tl~cory in the lower<br />

rango of Jtcynolds n~lmlms is clcnrly visible. In wtltlition, t,he dingrams give an unslnl)ignous<br />

intlicnt,ion that t,he sccontl-ordrr t.htory allows us to itlent.if.v the range<br />

of vnlitlity of first,-order lhcory. Jf an c~~or of up to 2% is to be tolcmtcd, it follows<br />

tl~at first-ortlcr thcory applies at J


O~l:cr ehnpw: Second-order cITcetls fi~r hdf-borlics havo Ixrn invrstigntetl 1)y<br />

Id. Devan 11 21. 'I'hc rcsultrs nrc similar to thosc for t.hc parnholn.. 'l'hc cocffi cimk for<br />

cqns. (9.!)7) and (9.98) arc<br />

1JI1 :- 1.5; 1JZ1 =r--0.02.<br />

l~ut.l.l~rr sol~ll.iorw or t.l~c: I)onntlary-lnyrr cyun.l,iol~s (7.52) ant1 (7.53) of scco11t1 ortlcr<br />

arc availitblc, as rnigl~l, 11n.ve 1)cr.n cxl~ccl.c:tl, for oases which 1en.d Lo sclf-sin~ilitr solutions<br />

in first order, Sec. VIII b. In the case of flows whose first-order external flows<br />

arc of the forn~ IJl(x, 0) - zm tht: scc:ontl-ordcr thcwry n.lso Irarls to sdf-similar<br />

solnt.ions if<br />

K(x) - x(*n-l)lz; U2(:x, 0) - xn. (9. 101;)<br />

l~urtl~cr tlchils conccrl~ing lhc cfrefr.ot*s of srcontl ortlrr can bo Sountl in CIhnlx Vl I n.s<br />

well as in V1lI [Gal, [IFia]. Tflc htlter cor~t,nin indi~nt~ions about second-ordcr effects<br />

in t4he prcscncc of suction, blowing, hcnt. tmnsfer and compressibility. Secot~cl-order<br />

clfccts ncqniro increasing impori.ance for high Mach nnrnl)crs antl in the presencc of<br />

blowing. In this connexion consult [24, 25,47,48,59].<br />

[I] An(lrado, 15.N.: 'I'hc vnlocit.y dist.ribnt.ion in :I liqr~itl-i~~to-liq~~i~l jet. The plnnr jet. Proc.<br />

Phys. Soc. 1,nndo11 51. 784 - 7!)3 (I!):!9).<br />

121 Ihxtcr, I).(>., nrd I'liiggc-1,ot.z. I.: 'l'hr sol~ltinn of romprc~ssihlc laminar bo~~ndnry layer<br />

prd~lcnin by a finitr: tlilkrcncc rnrtd~otl. h r 11: ~ l~nrkl~er dist:nssion of the rr~ct,l~od and<br />

con~pnt;lt.inti of exnwplcs. Tcchn. Jl.cp. 110, IXv. 15ng. hfec:h. Stanford Univ. (l!)57); short8<br />

version: ZAh11' gh, 81 !IT, (1!)5X).<br />

[3] 13icklcy, Mr.: 'J'lw pl~tno jrt.. I'hil. Mag. Scr. 7, 26. 727731 (1939).<br />

141 I!Ianius. 11.:. (:r(~~~zst-l~i(:l~(r~l in 1~liissigkcit.cn n~it ltlcincr Itcibnng. Z. Mnt.11. u. T'hys. 56,<br />

I ~-37 (1!)08); I311gl. t,rnnsI. in NACA 'I'M 1256.<br />

I5J I3lott~rcr. F. (:. : I"initc difli:rcncc n~rthoda of solntioli of t.hr bor~l~dnry-lnyrr cqnalions.<br />

AlAA ,I. 8, 193 - 205 (1970).<br />

[f,:l] 13lott,ner, I?. ( 2.: 1nvent~igat.ion of some 1init.t: rlifircn~:~ tcclrniq~~cs for solving the houndnry<br />

1nyt.r w{~~:~tinns. (!OIII~. ill:tl,l~. Ajq11. MI!(:II. l4:11g. 6. I -- 30 (1075).<br />

161 (k+cri, 'I'., and Sn~ith, 11.M.0.: A Iinitc dilTcrc~~cc 1nct.l1011 for vnlr~~lating ronipressihle<br />

Iarnin:~r nnd t.r~rh~llcnl bonndnry Iayrru. 'l'r;ins. ASM 15, ,I. Ihsic I':t~g. 92, 52:)--535 (1970).<br />

171 Chnpn~nn, 11. It.: Imr~innr nixing of n wn~prcssil~lc llnid. NACA TN 1800 (1949).<br />

181 Ch:~l~~i~an, J). It..: 'I'h~!orrt.ic:rl :in:ilysis of hen(. 1.rnnsfcr in regions of scparat,cd flow. NACA<br />

TX 37\12 (1!l!it;).<br />

[!)I Chcn, I


200 1X. Ixxnrt nolntiona of t.lin ntmtly-nt-ah bounrlnry-lnyor equations<br />

1441 Leigh, I).(!. IT.: 'I'Iw 111111innr honnclxry layer equation: A lnetl~orl of solnt,ion hy tnnnnn of<br />

an nuton~ntic con~ptor. l'ron. Cnmbr. I'hil. Son. ,51, 320-332 (1956).<br />

r44nl 1,rsnen. M. : 011 t.11r &tl)ilit.y of t,he Inwir~:tr frcc bnunhry layer hrt.wt!en pnm.llcl ntrcnrnn.<br />

NA(:I\ Jkp. !)7!t (I!t50); SCC :dso Sc. I), 'I'l~nsin, MIT (l!M8).<br />

[46] I.ork, I


202 X. Approximate rncl.hoda for steady cqrlntionu n. Applicnth~ of the morncntrlm rqr~ntion to Lho flow pnut n flnt plnLo at zcro incidcr~cc 203<br />

the c:ont.rol s~lrfacc, consitlcrrd fixrd in spacr, is cq~lal to the skin friction on the<br />

plate D(s) from the leading cclge (s =0) to the current section at x. The application<br />

of thc momentum equation to this particular case has already been cliscussecl in<br />

See. IXt It was then found, cqn. (9.26), that the drag of a plate wetted on one<br />

side is given by<br />

m<br />

D(4 =be/ u(u,--u)dy, (10.1)<br />

u-0<br />

where the integral is to he taken at scrtion s. On tho other hantl tho tlmg mn bo<br />

expresscd as an intrgral of the shearing stpress to nt thr wall, lnltrn nlong tl~c plntr:<br />

X<br />

1) (s) = b 1 r0 (x) dx .<br />

Upon comparing eqns. (10.1) and (10.2) we obtain<br />

0<br />

This equation cnn bc also dcclucccl in n purrly formal way from t,hc 11onntlnr.y-layer<br />

equntion (7.22) by first integrating the equation of motion in the x-direction with<br />

respect to y from y ---- 0 to y = m. Equation (10.3) is, finally, obtained without difficulty<br />

if the vclocit,y component v is eliminated with the aid of the equalion of<br />

continuity, and if it is noticed t.hat p(au/a~),,,~ =to.<br />

&'Iu:$<br />

mtmI surlace<br />

Fig. 10.1. Application of tho momcntun~ equa-<br />

-5 u @.Y) tion to the flow pmt n ant plnto nt zero incidencc<br />

-x<br />

Introdncing thc morncnturn thiclir~css, a,, defined by rqn. (8.31), wc have<br />

Tllc momcntom cqmtion in ils form (10.4) rcprosrnb n particular cnso of the gcncrnl<br />

momentum eqnntion 01' bountlary-laycr Lhcory as given in eqn. (8.32), heing valid<br />

for the cnse of n llat plntc nt zcro ir~ciclcncc. 1t.s phpical meaning expresses thc fact<br />

thats Iht! shearing stmss at the wall is cqunl to thc lhss of momentum in tho bonntlary<br />

I:lycr, because in tho cxarnple under consiclcrnlion t,hcre is no conl.ril~ution from t,llc<br />

prcssure gmtliont.<br />

'So far rqn. (10.4) int,roclucncl no ntlclit.iona1 :~ssnmpLions, as will be the case<br />

wit,l~ the ajq)roximntc method, bul, 1)c:forr tliscussing this matter it might be nscful<br />

to nolc x ~cI:LI.~oII I~CLWCCI~ to nnd S2, WII~CII is obtaincti from cqn. (10.4) by int,rotlucing<br />

the exact value for to from eqn. (7.32). Putling tu/p Urnz =a iy/urn2 with a =0.332,<br />

we have<br />

E .-<br />

'<br />

With rcfc:rcncc to qn. (10.3) or (10.4) wc con now porfortn nn npproximnto<br />

calcnlnt.ion of the l~ountlnry laycr nlong n Il:bt, plnlo at zcro incitlcncc. '1'11t: CRWIICO<br />

of the npproximatc method consists in assuming a suitable exprrssion for the vclo~it~y<br />

tlist,ribution u (y) in the boundary laycr, taking cnrc thnt it sntisfics the importnnt~<br />

boundary conditions for u(y), and that it contains, in addition, one free parameter,<br />

such ns a ~nitddy choscn boundary-layer thicltncss which is finnlly dctcrmincd wit.11<br />

t,he aid of the momenlum equation (10.3).<br />

In the particular case of n flat plate at zero incidenco now being considered<br />

it is possible to t,ake advantage of the fact that the velocity profiles arc similar.<br />

IIencc we put<br />

where r] == 2/16 (s) is the dimensionless distance from the wall referred to the boundnrylayer<br />

thicltness. The sin~ilarity of velocity profilcs is here acconnt.ed for by assu~ning<br />

that /(?I) is a function of 7 only, and contains no additional free parameter. The<br />

function / must vanish at the wall (7 = 0) and tend to the value 1 for large values<br />

of 17, in view of the boundary conditions for u. When using the approximate method,<br />

it is expedient to plnce the point. at which this transition occurs at a finite distance<br />

from the wall, or in olher words, to assume a finitc boundary-layer thickness 6(x),<br />

in spit.c of the fact that all cxnct solutions of t.hc houndnry-layer equations t.cntl<br />

asympt~otically to the ptential flow associated with the particular problcnl 'l'hc<br />

boundary-lnyer t.llislrncss has no physical significance in this conncxion, being only<br />

a quant.ity wl~ich it is convenient to use in thc computation.<br />

Having assrimcd tl~c vclocity profilc in cqn. (10.0), we c:~n now proceed to<br />

rvnl~~atc tho momentum intcgml (10 3), arid we obtain<br />

for short,, we have<br />

ru(uW- u) dy=um2~2 = a, 8 urn2,<br />

v-0<br />

or d, = a, 0 .


204 X. ApproximnLc rnetl~ods lor steady equations<br />

'I'hc value of the displacement thickness O1 from cqn. (8.30) will now also be calcn-<br />

laktl as it will be required later. Putting<br />

wc: oltt,n.in<br />

1<br />

a2 = J (1 - l) dtl,<br />

0<br />

(10.10)<br />

0, --a, d . (10.1 1)<br />

I?'l~rt,hrrniorr, thc visrous shearing stress at the wall is given by<br />

Introtlllcing thcsc valnrs into the niomcntum equation (10.4), wc obt,ain<br />

Int.cgrat,ion from 0 0 at z -= 0 givrs t.hc first, result. for tho approximato thcory<br />

in t.11~ form<br />

ITrnc~ tllo shearing strrss at the wall from cqn. (10.12) beronics<br />

Finally, the l.otd drag on a plato wrttetl on both sides mri be written as<br />

I<br />

2 I1 -- 2 h J to<br />

0<br />

tlx, i. c.<br />

:1n(1 fro111 r(lns. (10.1 1) and (10.14) we obtain the tlisplaccmerit t,hicknrss<br />

A comparison of t.11~ approximaf,c oxpressions for the Itonndary-laycr thickrwss,<br />

li)r the shraring st.ross at tho wall, ant1 for drag with thc respcctivc formulae of<br />

t.11~ :lrc:ur:~t,c throry, rqns. (7.37), (7.31) ntd (7.:13), shows that Lhc use of tho iritcgr:d<br />

rnorner~l~um cqui~tion lcatls in all cn.ses to a peufcctly correct fornlulation of the<br />

cqmtions. In other words, the dcpcnrlcnccof tliese'quantitics on the current length, x,<br />

the frcc-stmxm vclocit,y, Urn, antl the coeffioiont of kinematic viscosity, v, is correctly<br />

tlctll~twl. li'urt,I~crniore, the rclation 0ct.wecn momentum thickness and shearing<br />

strrss nt, ttw wall givrn by rqn. (10 5) ran also be dcducrd from the approximate<br />

rnlrulation, as is rnsily vcrifird. The still-unknown coefficients a,, a, and P, can only<br />

o. Application of tlir mo~nrnt~~rn rqr~ation to Lllr flow past a flat plr~lr at mro incidrnrr 205<br />

hc calculated if a specific assumption regarding the vclocit,y profilc is matlr, i. r.<br />

if t,lte function I(??) from eqn. (10.6) i~ given explicitly.<br />

Whcn writ.ing down an expression for f (q), it is ncrrssary 1.0 sat,isljr cc.14nin<br />

boundary condit,ions for z~(y), i. c. for /(?I). At lcast the no-slip t:onclit.io~~ IL -- 0<br />

:~t y -- 0 antl tho condit.ion of continuity whorl passing frorn t,ltc hottnd:tr~y-laycr<br />

l)rolilo l,o I.hc ~ml,(:~)l.i~rl vl:loc*il.y, TI . (1 III, - , 0, tnr~sl~ lw s~~lisli(vl. I~III~IIVI~ VOII.<br />

(litlions might inclutlc t.hc continuity of thc tangent ant1 curvalurc :IL tl~o 11oirlL,<br />

wlicrc t,lic twr~ solutions aro joined. Tn othrr words, wc may scrlr to satisfy tha con-<br />

ditions a~l./i)?l =: 0 and 321~/a?/~<br />

= 0 at y = 8. In tho case of :L plate tho cot~tlit~io~t ,<br />

that a2u/tJy2 = 0 at y = 0 is also of importancr, and it ran I)o scon frorn rqn. (7.15)<br />

tl1a.t it is satisfied by tho exact solution.<br />

Numerical cxamplcs :<br />

Wc now propose to test the usefulness of the prccctling approxirnak mct.hotl<br />

wiLh the nit1 ofscvrrnl rxnmplcs. Tho q~~alit:y of thc rcsnlt tlcpcntls to a grcat cxI.cn1,<br />

OII t,hc assurnpI,ion which is matlc for thc volocity f~lndion (10.6). 111 ally c::~sv,<br />

as already mcnt,ionecl, the funct,ion /(q) must vanish at 17 = 0 in view of the noslip<br />

condit,ion at the wall. Moroovcr, for large values of 17 we tilust havc /('/) = 1.<br />

Tf only a rough approximation is tlcsirccl, the transition to the valuc /(q) = 1 may<br />

occur with a discontinuous first, tlcrivativc. For a bettcr approximation, corrLinnit,y<br />

in dj/dfl may bc postjulatcd. lndcpcntlcnt~ly of the pnrticular assumyt,ion for l(q)<br />

the cruant,itks<br />

must Itc pnrc numI)crs. Thry can bc easily calculated from cqns. (10.8) to (10.17)<br />

Fig. 10.2. Vclocity tlislrilmhn in t.hc boundary<br />

layer on n flat plntr nt xrro i~icitlanrc!<br />

(1) Lincrr aplrroxirnntion<br />

(2) Cubic npl~rrrxirnntiou Irom Tablr 10.1<br />

Tablo 10.1 contains results of scvcral calcrtlations wil.11 a.lt,crnativc veloc:it,ydistribution<br />

functions. Tho first two fun~t~ions nrc illuslr:l.tod with tlrc aid of I'ig. 10.2.<br />

'I'hc linear funct,ion sat,isfics only the conditions f(0) -- 0 antl /(I) -= I, wllcrcas tho<br />

cubic function satisfies in addition tho conditions /'(I) - 0 :~nd /"(0) :x 0; finally,<br />

a fonrth tlcgrcc polj~nornial can be made to satisfy the atldjtional contlition /" (1) =-- 0.<br />

Thc sinc function satisfies the same I~oundary conditions as the polynomial of<br />

folirtli dtgrcc, except for /"(I) = 0. The polynoniials of third antl fourth tlrgree<br />

and the sine-function lead to values of shearing slrcss at Iho wall which arc in<br />

error by loss than 3 per cent and may bc considrrcd ent,ircly atlcquatc. 'The valnrs<br />

of the djsplaccmerit thickncss 6, show acccptablc agrecmont wiLh thc corrcsponditlg<br />

cxect values.


206 X. Approxitnnte rnct.l~otls for steady equations<br />

Table 10.1. Rrsultn of the calcrllation of the bolnltlary layer for a flat plate at zero incidence<br />

baaed on approximab thcory<br />

Vclonity<br />

dint,ribtrtion<br />

ll/U = f (11) i<br />

It is seen that t.hc npprosinmtc mct.liocl Icacls to sa.t,isfnctory rcsult,~ in the case<br />

of a flat plate at zero inciclcncc, and the extraordinary simp1icit.y of the calcnl:~tior~<br />

is cluite remarkable, compared with the complcxit,y of thc exact solution.<br />

We now propose to clcvelop thc approximate method of thc preceding section<br />

so t,llnt it can l)c applied to t.hc general problrm of a two-tlirncr~sional hotrntlnry<br />

layer with prcssurc gradient. The tnct,l~od in its original for~n was first intlicatctl I)y<br />

1C. l'ohlhar~scn [Is]. The succeccling tlcscriptiotl of thc method is based on iLs mnrc<br />

motlcrn form as developcrl by tT. TIolstcin and T. 13011len [GI. \Vc now choose, as<br />

before, a system of coortlinat.cs in which x c1enot.c~ t,hc n.ro mcasured along the wcttetl<br />

wall and whcrc y tlcnotos the tlisLancc fronl t,hc wall. 'rhc hsic crlnat,ion of thc monrent,nm<br />

theory is ol)t,ninctl by intcgrnthg the eqr~:~l,ior~ of motion wit#h rcspcct tm y<br />

from t.hn wall atf ?/ -=- 0 t.0 a ccrt8i~.in tlistanca h(x) which is a~sntn(:d to be outside<br />

t.11~ I)o~tndary layer for all val~ros of x. With this r~otat~ior~ the momentum cqttat.ior~<br />

'<br />

11a.s the form nlrcntly givcri in (8.32), namely<br />

This eq~~ationgives an ordinary diffrrrni ial rqnation for the ho~~t~tlnry-la~pr thiclrncss,<br />

as was tire rase with thc flat plntc in lJic prccctling scc.lion, provitlccl that a<br />

I<br />

b. The approxirnnto nirthod duo to TIN. von Jchrnlhn and K. Polllha~~ncn<br />

form is assumed for the vclocitty profile. This allows us to calculate the momentum<br />

tl~ickncss, the displacement thickness, and the shearing stress at thc wall. In choosing<br />

a suitablc velocity fi~riction it is necessary to talrc into account the same considerat,ions<br />

ns beforc, nnmnly thosc regarding the no-slip condition at t,hc wall, as wcll as thc<br />

reqi~ircment,~ of cont.inclit,y at, the point whcrc this sol~tt,ion is joinctl to tho poLcnti:d<br />

soIut,ion. I~t~rI.l~t~rn~orr,<br />

i11 I,hc prcsonco of IL pr(-ssuro grmlic~tt~ tho f~~nc:I,ion n~~tst<br />

atln~it the cxisbc~icc of profilcs with and without a point of inllcxion corrcspontling<br />

t.o t,hcir occnrrencc in regions of nsg,zt,ive or positive pressure gradients. In ortlcr<br />

to kc in a posit,ion to cn.lcr~latc tho point of scpamtion with tho aid of thc npproxin~at~c<br />

n~etl~otl thc existence of a profile with zero gratlicnt at thc ~ ~ (au/ay),-,=0 1 1 must<br />

also be possible. On t,hc ot.hcr l~ancl functions postulating similarity of vclocity<br />

profiles for various valws of x may no lorigcr be prcscribctl. Following I


208<br />

where<br />

X. Approximate methods for steady equations<br />

It is easily recognized that thc velocit,y profiles cxprcssed in terms of g = y/b(z)<br />

constitute a onc-paran~ctcr family of curves, the tlirnensior~less quarlt,it,y A being<br />

a shape factor. The tlin~cnsio~iless qu:lnt,it,y A which may also IIC written as<br />

. PdU dv 6<br />

ran be intrrprcted pllysically as thr ratio of prrssuro forces to viscous forces. In<br />

order to obtain a quantity to whirh real physical significance can be ascribed, it<br />

would be nerrssary to replnce 6 in the above definition by a linear quantity which<br />

itself posscsscs pl~ysical significance, such as the momentrim thickness. This will<br />

be done Ialcr in this section.<br />

Fig. 10.3. Tho functions F(91) and G(77) for<br />

the velociLy rli~t~ribntion ill Lhe boundary<br />

layer from rqns. (10.22) and (10.23)<br />

'1'11e two ~IIIIC~~~OIIS F(77) and (:(q)<br />

Fig. 10.4. Tho ot~c-parntncter family of vclocity<br />

profiles from eqn. (10.22)<br />

tlcfinctl by nqrr. (1'0.23), which togt.l,hcr compose<br />

tthc vc1ocil.y-rlist,riI)r~t~ior~ function givnn in cqn. (10.22), a.rc serrl ploltcd in Fig. 10.3.<br />

Vrloc:it.y profilrs for v:lrions vnluns of A arc shown in J'ig. 10.4. The profile which<br />

crmcspontls t.n A -: 0 is ol)f.ainc?rl whcn tllJ/tlx'= 0, i. r. for ihc bourrda.ry Iilycr<br />

wil.l~ no prrssltrc gr:~tlirnt (Iht, glnt,e nt zero i~vcitlrncc), or for a point whrre the<br />

vrlocity or t,hc pot.rrrtinl flow pnssrs thlongl~ ~nilrim~~~n or a ~nn,xinln~n. In this case<br />

lhc: vclorit.y profilo l~cconws itlenticnl with the fourth-drgrcc polynon~ixl uscd for thn<br />

IlnL plate in t,ho prcrrtling snct.ion. 7'11c prolilo at separation wit.l~ (itu/?i/),, -- 0,<br />

i. e. nib11 (1 =- 0, occnrs for A == - 12. It will he shown later that 1.11~ profile :LL<br />

tlhr st~agnat.ion point corresl~ol~ds t,o A - 7.062. For A > 12 vnlnrs ?r/U > 1 occrlr<br />

b. The approximate rnethocl dl~o to Th. von Kkrnldn ant1 K. Pohll~nnsen 209<br />

in the bolrntlary layer, but this must be exrlntled in stcady flow. Since behind the<br />

point of separation thr, present cxlculalion bxsrd, xs it is, on the boundary-layer<br />

concept,, loses significance, the shape fnctor is secn to be rcstrictrtl to thr rangr<br />

- 12 1 A -k 12 , src Pig 10.4.<br />

J3cforc proceeding to cnlculat,c the bountlary-layer thiclrncss S(x) from the<br />

mon~cnl,~lnl I.llrorcm~, it, is now cnnvrnicnt, 1.0 (:ILIIYII~LI,O t h ~IOIIIO~I~.~IIII ll~idcllrss,<br />

S2, the tlisplaccment thickness, dl, nntl the viscous sliearing strcss aL llrc wall, t,,,<br />

with thc aid of the approximate velocity profile in the same way as was done for<br />

the flat platc at zero incidence in the preceding section. 'J'hus we obtain froin cqns. .<br />

(8.83) and (8.31), t,oget,her with eqn. (10.22),<br />

Computing the definite integrals with the air1 of the values of F(q) and (:(I/) from<br />

eqn. (10.23), we havc<br />

Silnilarly, tho viscous stress at the wall, to = !~(il~~/ay),_,, is given by<br />

In ortlvr t.o tlct.rrmii~r the s(.ill-unknown s11n.p~ factor A (z) and, hrncc, t11c fun(:tion<br />

O(x) from cqn. (10.21), it. is now necessary t,o rcfrr to the momcnlum cqunt.ion (10.18).<br />

h111lt.il)lying by d,/v IJ we can rcprcwnt it in t,hc following tlitnc~lsionlcss form:


210 X. Approximate mcthod~ for shady rqi~etions<br />

which is connortctl with thc momentum thickness in thc samc way as t.lle first<br />

shape factor, A, was connected with t,hc boundary-layer t,hickness, 0, in cqn. (10.21).<br />

Tn atltlit,ion wc sldl put<br />

= %"<br />

v ' (10.28)<br />

so that<br />

It is wrn from crjns. (10.21), (10.27) nntl (10.24) that (.hc slmpc fa.ctors ,,I anti li<br />

satisfy Lhe universal relation<br />

for thc saltc of brcvity, mtl suI)st,ituti~lg, I< ant1 Z from eqns. (10.27) and (10.28)<br />

rcspecl,ively, togothor wil,l~ fl (K) ard /,(I() from eqns. (10.31) and (10.32), we<br />

obtain, furthcr, from Lhr momcntum cqu:~t,io~l (10.20) togcthcr with a2 6,'/v = 4 ~IX/tlx,<br />

thc rrl;~t,iotl<br />

2 /2(1


212 X. Approximntr 11iet11odg for stc~rly cquntions<br />

'bhlr 10.2. 1211xili:iry fr~nrtio~in for the npproximntr rnlr~~letiorl of lnlliitier boundary I:~yera,<br />

b. The npproxitnste mct,hod clue to 'rh. von Kbrmhn nntl I


214 X. Approximato mothotls for shady equations<br />

or, u~ing the ~lumerical values for a and b given earlier:<br />

I'hus the solution of eqn. (10.36) is secn to reduce lo a simple quadrature. An analogous<br />

quadrature will br uscd in C!hnp. XXIl for thr ~olution of thc cquntions of<br />

turbulent. flow.<br />

-0 R -am -OM -am m 602 o am onc m om<br />

K<br />

Fig. 10.6. Tho auxilinry funchn F(K) for the col-<br />

culstion of lnminnr boundnry lnyer by thc method<br />

of JIolntcin and Bohlen [5]<br />

(1) train* eqn. (10.35):<br />

(2) lincar nlrproximntioll F(R) -- 0-470 - 6 K;<br />

S = ahgnntion point:<br />

lf -- vclori1.y milximum<br />

c. Con~pnri~on between the npproximntc nnd cxnct solutions<br />

I. Flat plnte at zero incidence. It is easy to see from cqn. (10.22) that the<br />

Pohl11a11ncn i~pproximation becomes cquivalcnt tjo 1Sxn.mplc 3 in 'Ihblc 10.1 for the<br />

case of a fI:~l. piat,c at zero incidence. l'his ease can also t;c obtainctl directly from<br />

eqn. (10.36), whcre U(z) = U, U' = 0 and hence R = A = 0, so tlmt ejn. (10.36)<br />

givcs dZ/tlz = F(O)/U, = 0.4698/U,. Taking into account t,hat Z = 0 at s = 0<br />

it follows that R =0.4098 z/fJ,, or a, - 04XH3 I/l.&/ii, in ngrccmcnt wi0h Tal)lc<br />

10.1. Table 10.1 contains cx.zct and approxi~nat~c values of the boundary-laycr pnrarnct.crs<br />

for tho purpose of comparison. Tt is sccn tb'nt agreement is very satrisfactory.<br />

2. Two-clin~cn~io~~al stngnntion flow. The cxart solntion of 1,he problem of<br />

I wo~dimrnsional stagnation flow for wllirll U (r) = U' . r, was given irl Sec. V 9.<br />

r 7<br />

Ihe exart vnlnrs of displacrmcnt ll~iclzness, momentum thickness and shcnring<br />

strrss at tho wall, calrulalcd with the aid of that theory, arc given ill 'I'aljlc 10 3.<br />

c. Compnrison lwtwccn tho upproximutc and oxnct uolrlth~ 215<br />

Tablo 10 3. Compnri~on of exnrt nnd npproximnto vnlr~rs of Lhr honndury-lnyer pnrurnctors for<br />

tho caso of tim-dimen~ionnl stngnntion /lout<br />

oxnct, solul.iori<br />

In tho approxi~nnt~c mcthotl wc havc Z0 = R,/U1, and from cqn. (103) it follows<br />

- -. -<br />

that t11r momentum tl~ickness is given by (T2 iVfi = dif; = i0.0770 = 0.278 .<br />

It is seen from cqn. (10 81) that the displacement thickness is approximatctl by<br />

6, JiF/v = /,(~i,,) 1/ii, = 0.641 anti cqn. (10.32)gives t0/p u - 47~' = /z(Ko)liR, -<br />

0 332/0.278 = 1.1!) for tllc sllcnring slrcss at the wall. 'L'h ngrccnlcr~l bclwccn<br />

the approxirnnte ant1 exact values is here also complet,cly satisfactory.<br />

3. Flow past n circulnr cylinder. A comparison of the result of the approximate<br />

calculation for a circular cylindcr with the mlution due to Ilicmcnz (See. IXc)<br />

was given by I


216 X. Approximato n~ethods for steady eqllations d. Further examplcs 217<br />

well as in the shearing stress are concerned, and predict an earlier point of separation.<br />

W. Schocnauer found that thc separation angle is at$a = 1045Oas = 109TP'<br />

ol~t.ainat1 with t11c nit1 of the l'ohll~auscn approximation and $s = 108.8O suggested by<br />

tllc series cxp:ansion cont,inuctl up to the term z". A comparison between t,hc vclocity<br />

tli~t~ribut~ions, IGg. 10.8, leads to the conclusion t,l~at there cxist,s almost perfect<br />

agrwmrnt. hrf,wcrn t,Im exn.ct solut.ion and the npproxiniation in t.hc m.ngc of angles<br />

0 < 4 < !)On, t,lrat. is in t,l~c range of acc:clcrat,ctl c*xt.crnal flow. I 12 (K > O.O!IR), because the plot of X against A !.urns at, this poit~l<br />

(Table 10.2) and cantlot, tl~rmlore, be contirlucd 1)oyond K -- 0.0!15. Moreovor. for A > 12<br />

the vrloriby prnfilns l~rco~no r~nnrrcpt,al)le as t.liry rontnir~ point,^ for \vl~irl~ ti/II -.- I (Fig. 10.4).<br />

'I'l~rar cliffioid!.ira arc obviatcd wl~cr~ cqli. (10.37) is IIRC~.


218 X. Approximntn met,hods for shndy equntions d. Further oxnrnplea 219<br />

-4 f~~rther example is shown in Fig. 10.12 which contains results for a symmetrical<br />

Zhukovskii nerofoil at zero incidence. The point of minimum pressure is at x/l' =<br />

= 0.141 which is very far forward on the aerofoil. The pressure rise at the rear is<br />

very gradual so that the point of srpamt,ion lies very far downstream of the point<br />

of minimum pressure, i. e. zll' = 0.470. Since the Zhukovskii aerofoil has a cusped<br />

trailing edge t,hc potential velocity at tho trailing edge is djffcrent from zero. For<br />

details of additional systcmntic boundary-layer calculations concerning nn extensive<br />

serics of Zhukovskii aerofoils with different thickness and camber ratios and at<br />

cliffrrcnt angles of incitlcnre, refcrcnce may he made to a piper by K. nussmnnn<br />

and A. Ulrich [2].<br />

Pig. 10.0. Potcntinl velocity<br />

distribution function on ellip-<br />

tical cylinders of slenderness<br />

o/h = 1, 2, 4, 8, tlic direction<br />

of the stream being parallel to<br />

tho major axis<br />

R ;-; position or point of srpnrrtion<br />

Fig. 10.10. Ilrsulls of Lhc? cnIculnt,ion of hor~ndnry In.yers on ollipt,icd cylinders of ~lcndorncss<br />

n/b t 1, 2, 4, 8, Jcig. 10.9. n) displnrernnnt~ t,liickrirsa of the boundary layer, h) shape factor<br />

r) chraring st.rrw nt the? ~d. 2 1' -- rircllllifcrr~~~~c of blic rllipsc; n/b -. 1 rirct~lnr cylintlcr; n/b = m<br />

flnt plate<br />

A review of the very numerous approxi~nate methods which have been proposed<br />

so far is contained in the collective book entil.lod "Laminar <strong>Boundary</strong> Layers"<br />

1181 - . nnd edited by 1,. Rosenhcad.<br />

In an effort to improve t,he accuracy of the calculation of laminar boundary<br />

layers, many authors replaced the preceding single-pnrameter methods by oric employing<br />

tim pramelers. This is acl~icvcd whon t,hc encrgy intcgrnl cquntion is sntisfed<br />

in addition to the momentum intcgrnl equation (ace e. g. I


220<br />

X. Approximate n~etlrods for steady equations e. Laminar flow wii.lr ndveruc presnure gmtlient; sepnrclt.ion 22 1<br />

e. I,nmit~nr flow with nclverse pressure gradient ; sepnrntion<br />

Flows with :dvcrso pressure gr:itlicni.s (rrtmdrd Ilows) arc of great practical inrportancc.<br />

111 I.l~in connoxion it is always desired to nvoid ncpcr.m/ion from t,lw wall, hccanse thin phcnomenon<br />

in associatccl with large energy IO~RCS. '1111~ flow al~wt an nrrofoil in a case in point,. Owing b<br />

t.hc hct that on the nucLion side the pressure must, increase to it# free-stream val~~c at the txailing<br />

edge, the flow is always likely 1.0 sc:parxtc. 'l'l~c flow in a divrrgcnt channcl (din'~~scr) nfTords<br />

anollrcr cxan~plc. 'l'l~c objcd in using this sl~n.pc: of cl~nnncl is lo convcrt. kincl.ic cnrrgy i11t.o<br />

prr:ssurc rncrgy, and if Lire angle of tlivcrgrnco is ~nndc t,oo large, srpamt,ion mrry oocnr.<br />

l'hcoret~icd i~~vrst.igat.ions on the l)cl~nvio~~r of the I)ountlary Ia.ycr in the vieini1.y of I h<br />

point of nrparntion hvr been carried out, hy S. Goldsbir~ pi] and 13. S. Strni.ford 121 :rl. C/. talm<br />

rcvirw I)y S. N. Ibown a ~ 1C. d Stfiuvrrtnon I I).<br />

Ol~scrvat.ions slrow thnt a Inlninnr 1)ounelnry Inyor whirlr separates from a wall frcqr~ent,ly<br />

I)reolnes rmt.t.:drc~d lo it, having first hrron~c. t.~~rl)r~lcni.. Thin Irads t,o tho crent,ion of a laminar<br />

separ:~t,ion bnbl)le. Fig. 10.13b, wl~iclr pl:~ccn it.sclf bet,\rrerr the separation point S ~hnd 1,110 rcaLt,nchtnent<br />

~~oint, R. 'l'h flr~itl in the bul)l)le 1)erfornrs a rircrllntory motion. According t,o 1%.<br />

10.1:h, the prrssure tlistrib~lt.ion nlong the wall can be represrrrtctl, in ~iml)lified fashion, by fi<br />

ronstant, vnlne brtwcen thr point of separation S and point I' of largest thickncns followed by a<br />

litrcnr inrroasc from I' t.o the point of reattachment n. Phenomena of this kind have been denrrilml<br />

in tlchil l)g I. 'rani [2:3]. More recent experimental investigations into tl~e nnturc of<br />

I;uninnr scpnrat.ion I~nhhIrs I I R V ~ I)rcn pcrfort~~rtl by A. 1). Young rL nl. [2R] as well an hy hf.<br />

Gnstar 1481 and J. L. Van Ingen [GI. For theoret,ical contribr~tions see [Zb, 3a, 5~1.3.<br />

It, will now bn shown wil,l~ the aid of srvrr:d cxntnplrs that, a laminar flow can only support<br />

vrry sn~:~ll arlvrrsc: prcssorr gradin~~t.~ wiI.lro~~t srp:lrnt.ion. Adverse pressure gradients wlriclr exist<br />

in practiral npplicxtions wonld, tlrorcrorc, nlmont nln.ays Ictul Lo separation if the flow were<br />

laminar. 'l'hc: circ~~msl.ancc that real flows c:~n support consitlcr:~l)le rates of pressure increase<br />

in n large nr~tnl)cr of rnsrs without scpnr:~t,ion is duo t.o the fact that the flow is mostly turbulent.<br />

It will hc srrn later t.l~a.t. t.w+ulcnL flows arc r:~pal,le of overc~otning n~uclr larger adverse pressure<br />

gr:~rlicnts \vil.l)out scpral.ion. 'l'lrc Iwst known rx:~mplcs inclutlc the cases of flow past circular<br />

c~yIindrrs and s~II(.I-os, WIIOII srpnrat,ion ocr:urs ~nnc:lr f~~rt.lrcr r~psLrcam in laminar than in tur-<br />

1)11lrnt. flow. In pri~cti(:t> wl~en a~lv~rsc prcss~~rc gr:dicnf.s exist, the flow is aln~ost always turbulent<br />

l)rcn~~sc, in atlclilion, fl~o cxistcncr: of an nrlvorsc prrssure gradient favours the transition from<br />

laminar 1.0 L11rh111c:nt. llow. 1 t is, ~~cvcrtlrcl~~~s, 11sef111 to clarify some of t,he f~mdamcntal relations<br />

:wso~~i:~lcd o.it.11 tho provo~tlio~~ of srp;;rntin~~ on fl~c cxarnplc of I:m~itrnr flow, in particular,<br />

0cw11sr I:IIII~II:I~ l10ns i~rc 11111~11 Inore rrarlily :I~II~II:II)IC 1.0 n~atlrcmai,icnl treatment than is tho<br />

wsc wit11 I ~~rhlrnt, Ilnws.<br />

'I'l~vrr arc. svvrr:tl ~nrt.l~ocls of prcvcnt,ing scpr:tl.ion. The simplcst of t,lrenr consists in<br />

:rrr:~ngi~~g for IIIV ;~~lvrrsv 1)rrss11r(: gri~dir~~i.~ lo rrn~i~in hrlow the limit for wlrirl~ ncpnrat,i~n<br />

I'j<br />

s V R -- 5<br />

I<br />

Fig. 10.13. Scpar:~t,ion bul)l)le in a laminar bountlsry<br />

li~yor nfiar I. 'l'nni 123). a) Shape of bubble (nchcnratir):<br />

b) l'rcssl~ro distrib~~tion in hnbhle along tl~e wall (w!w<br />

matic). 'l'hc nrc'snurc hetwoen S and V in tlro I)r~hhlo<br />

docs occnr. 12 numcricnl example will serve to make thin idra clonr. Another possibility consisln<br />

in ontrolling the bountlnry Iayer, e. g. by suction or by injecting fluid into it, or by addition<br />

of -11 arrofoil at a poit~t where ils presence favoural)ly afictn t.lrc I~oundary Iayer in critical<br />

regions. Thrsc mct,lrods will l)c discrlsscd rnorc fnlly in Chap. XI\'.<br />

I'olloaing 1,. 1'randt.l [I61 we sllall show how it is possil)lo 1.0 cni.imaLc t.lw pcrn~issil,lc<br />

rl~ngnilntlc of the :~dversc prcssure grn.dicnt for wl~irlr scjmrat.ion is jnst. prcvcnt.crl. 'l'llc arg~~mrnt<br />

will he I):~.srd OII ~,III? von I ~&~~II~~II-I'~IIIII;LII~~II a~~~~roxi~~~:~tiot~<br />

disc~~ssrd inSco. XI). 11, will hc:~w~~nir~l<br />

ll~:it. tl~r I ~ o I I I I liiy~~<br />

~ : ~ ~ in iwlwl 1111nt1 I1.y t.11~: 111~.xwrc: didril~ution (Irt(.r~ni~~c.(l I),y t110 11.(~.51 ~I.:IIII<br />

poLr111i:rI flow 111) 1.0 :h point, which lirs wry clclsr in t,lie point, of scp:wation, sue11 as point8 0 in<br />

Fig. 10.14. St:rr.Ling with this point, it will I)c assumed that i.hc pressure gratlicnt is srtoh that t.110<br />

s11:1pc of IIIC vnlnrit,,y profiln TOIII:I~IIR IIIICIIRII~(~ ~)rocrc~ling (I~WIIR~~~:LIII, or trIu~t,, in oI,11rr \v~rds,<br />

tho filq": C:~f:lor A rc:mainn ronst:~nt.; fiincc aL sc:lr:~ral.ion A .- - 12 a valnc of A -7 - 10 will<br />

be cl~osrn. As seen from 'I':tl)le 10.2 this lcadn t.o a definite value for the second slrnpr factor,<br />

narncly I( = - O.l:169, so L11:lt Il'(K) = 1.Tr23. Using tl~cse valurs it is sccn from rqns. (10.28)<br />

and (10.29) that prevention of separation i~nplies the following relationsliip between the vclocity<br />

U(z) of potential flow and the momentum thickness d,(x):<br />

It follows that dZ/dz = 0,1369 U"/U'2, or<br />

8,' 0.1369<br />

- =z= -<br />

v - V(x) .<br />

Fig. 10.14. Devclopnrent of boundary Fig. 10.15. I'otcntial velocity fi~nction<br />

I:~yer in thr! case when laminar separation for n laminar boundary layer with and<br />

is prevented without separation<br />

On the otlw hand the succeeding vclocity proflcn are given by tho ~non~entutn rquation (10.36)<br />

for 3. =. 0, or<br />

(le<br />

U --- = F(I


222 X. Approximate methods for steady eqnations<br />

Qnalitnt.ivcly it is at once possil)lc to mnkc the following nt~atcmcnt regarding the shape<br />

of [,he potential velocity function U(x) which Icatls to no xcpnrntion. In viow of cqn. (10.41)<br />

U" > 0<br />

is a nrccnmry condition for n rctnrtlrd flow (IJ' < 0) to xrlhcro t,o the wall. In other words, t.11~<br />

~nn.gnitude of the advcrsr pressure grntlicnt, n~r~st tlccrrnsr in t,lie flow direction. Ii'ig. 10.15.<br />

, %<br />

J hns scpnrntion will nlwiiys occllr il' the f~~r~t:l,ion I/(%) iu cx~rvctl tlownwnrtln 1)chinrl its mnxi~nnm<br />

(11" < 0). In the opposit.e rase, whim tho vc1ocit.y function ci~rvrs i~pwnrds (U" > O), srjmration<br />

tnny he ol>viatetl. 15vcn the limiting c,we of IJ" = 0,i. e. the rase of a velocity which tlccreanea<br />

lir~carly with the length of arc, always Icatls to separation. Thin latter remark agrees with the<br />

rmitlt fonnd in Src. IXd; it was conccrnrd with the boundary lnyer aaaoriatcd with a potentinl<br />

flow vc1ocit.y which dccrcnwd linearly, and the solution of thc tlil~rret~tial cquntiona wm quokd<br />

from a pnpcr by I,. Ilowarth. The su//icient condition for the absence of aepnration iu givcn by<br />

Wo RIIRII now procrcd to cnlcnlntc tho potential flow and the varintion of hountlnry-lnycr<br />

thickncus which are wnorinktl wiLh t,I~r 1imit.ing cane of o - I I, whrn tho bonntlnry lnycr re~nninu<br />

on t,ho verge of sepraLiot~. Ikwr cqn. (10.41) we Imvo<br />

. U" . .. - U'<br />

u, -- I1 x -<br />

or, npon intrgrathg: In U' -. 1 I In 11 -I- In (- C,'), i. r. IJ'/CJ1I = - C,', whero 6,' denotes<br />

tho constant of integrat.ion. ltcpcntccl intagrnth~ ~ivcs<br />

u<br />

- 1<br />

U-lo = C,' z + C, .<br />

For z - 0 wo uhould hnve lJ(r) .- IJ,. no that C, = $6Nn-'O. Putting furthcr C,' UOl0 = C,,<br />

we obtnin from cqn. (10.41)<br />

w.<br />

Eqnat,ion (10.43) reprcsrn1.s the pot.cnlia1 vslocit,y for wl~ich cloparation can jnst be nvoidwl.<br />

Thr constm~t C, can IIC tlctnrminccl from the vnlnc of the bountlnry-layer I.hickness do at the<br />

origin z = 0. We hnvc A - U' P/v = - 10 or d - 1/10 ;q/(--D7). From eqn. (10.43) we ohtain<br />

and hrnrc<br />

From 6 - r!, nt x = 0 we hxvr C, - 10 rl/lJ, doZ, which gives the final solution for thr potcntinl<br />

flow nntl thr vnrinl,ion of bo~~ntlnry-lnyrr thirknrsu<br />

It, in srrn that, t.hc n,ngnil.~~tlr of I.hr prrmissil)lr dcrrlornt.ion (tlcrrmsc in vclorit,~) is very small,<br />

Irring ~)roporlion:il to .I: (1 1. Its vnl~~c is vrry nearly rcnlizctl for t,hc cnsc of constant vc1ocit.y<br />

nlr~na tho IInh p1:ilr at. zrro iwitlr~~rr. Jn the prcsrnt. cnnr the incrrnsc in hound:wy-lnyrr thirltncsn,<br />

0, is ~~roporlionnl to 3:I'.5" :his vnlnc also tli1h.m hnt lit,t,lc from lhe rase of n fln.1. plate nt zrro<br />

in~~i~lr~~~~t-<br />

I'cw whi~,Ii<br />

0 - 2+5.<br />

lly way of n further cxam~)le of retarded flow we shall ronnider the flow t.hrorrgh a<br />

divergent chnnncl whose walls nro straight. This ca.w in corollary to the cum of the houndn.ry<br />

layer in a divcrgmt chnnnol trentcd in Sec. IX b. The flow is nccn sketched in Fig. 10.16, where<br />

x tlcnotrs tIw rndial tlislnncc frorn t.11~ nourrc a1 0. The wall is nsann~ctl to Iqin nt, x .- n \vhcrc<br />

the entrnncc vcloril,y of the potrntinl strrarn is put cqnnl to U,. The poknlinl flow in givcn by<br />

Computing thc vnhc of the qnantity a from cqn. (10.41), which is decisive for separation, we<br />

obtnin here o = 2. Applying the criterion given in eqn. (10.4111) we cor~clude thnt, scpnration<br />

occurs in :ill cnscn irrrnpcctivc of the megnit~~de of t.ho nnglo of divrrgence. This oxnmplc RIIOWR<br />

very clrnrly thnt c lnminnr nt.rm~n has only n vcry limitctl cnpncity for nnppwting nn ntfvrrsn<br />

prcrrsnrc grntlirnt without ncpration.<br />

Acrording t,o a c:alculation pcrforrnctl hy K. Pohlhnuscn [In] tho point of ~cpnrnt.ion occurs<br />

nt xr/rl = 1.21 nntl is sccn to be indcpentlcnt of tho anglc of divcrgence.<br />

Fig. 10.16. J,nniinnr honnclnry layer in n tlivrrgent<br />

chnnnc4. SrpnmLion occnrs at r,/n = 1.21 intlcpen-<br />

dcnt,ly of the nnglc of tlivcrgence<br />

-x :<br />

p-- ,-, -I<br />

rc----,ys ):<br />

The prcrrding concl~~sions npply only n.s long as t,he displaccnwnt clTect of the Iioimdary<br />

lu,yrr n~ny be nrglcrlccl. Ilo\vevcr, this is not the cnsc uhcn the angle of divcrgcnco in small.<br />

Whcn thin nnglc is small, the boundary laycrs fill the whole channel cross-scction aflcr a certain<br />

inlet length (r/. Scc. XI i) and the flow gorn over nsytnptoticnlly to that discussed in Scc. V 12<br />

undrr the heatling of channel flow. When the included angle does not excced u certain valnc<br />

which drprnds o~? the Reynolds number, there is no separation.<br />

Ilcccntlg, S. N. l3rown nnd I(. Stewnrtnon [I] ~)~~l,linhrtl n nuninlnry rrvirw on nrpnrntior~ in<br />

whirh the rnathematical qucst.ion renbrcd on thr ning~~larity which occllrn in 1.hr tlifl'~:r.rlll.ial<br />

eqmt.ionn at tho critical point has been ernphnnized. Sccilso tho work of S. (:oldstein 141. 11 Inore<br />

physicnlly inspircd review of thin ]~rob~cln nrm h ; rccc~~lly ~ been puh)inhrd by J. C. \villi:lln.<br />

11 1 (291, n.nd by P. IC. Chang [2c].<br />

45-72 (1969).<br />

121 I3ussn1ann, I


224<br />

S. appro xi mat,^ III~I.IIO~R for alcady equation4<br />

14111 C:~slr:r, hl.: 'l'llc sIr~rct.~~rn :ind I~el~a~iour of Inn~innr srl):lration I~ul)l~lrs. A(:,\l


220 XI. Axinlly symniobricnl nnd thren-di~~~el~sionnl boundnry lnyers<br />

dist>ance from the wall are in equilibrium under the influence of the centrifugal<br />

force which is balanced by a radial pressure gradient. The peripheral vclocity of<br />

the particles near the wall is reduced, thus decreasing materially the centrifugal<br />

force, whereas the radial pressure grndicnt directed towards the axis remains the<br />

samc. This set of circumstances causes the pnrkiclcs ncar the wall to flow radially<br />

inwards, and for rcasons of cont,inuity that motion must he oompcnsntcd 11y an<br />

axial flow upwards, as shown in Fig. 11 . I. A supcrimposctl firld of flow of this nature<br />

which occurs in the boundary layer and whose direction deviates from that in<br />

the external flow is quite generally referred to as a secondary flow. It was first discovered<br />

by E. Grusc11wit.z 1451 whrn he nnnlyzcd the flow in a curved cl~nnnel, scc<br />

also E. Becker [R].<br />

Fig. 11.1. Itotnt.ion of llow near<br />

the ground<br />

Velocity component^: u - radial;<br />

a - tan~ential: 10 - axial. Owlng to<br />

rrlctlon. the tangentid velocity sulTera<br />

deceloratlon in tho ncfghbourhood of the<br />

dlak at rest. Thls glves rise to a aceon-<br />

dary Pow which la directed radlslly In-<br />

wards<br />

The secondary flow which accompanies rotation near a solid wall and which<br />

hna bcen described it1 the preceding paragraph can bo elearly observed in a teacup:<br />

after the rotation has bcen generated by vigorous stirring and again after the flow<br />

has been left to itself for a short while, the radial inward flow field near the bottom<br />

will he formed. Its existence can be inferred from the fact that tea leaves settle in a little<br />

heap near the centre at the bottom.<br />

In order to formulat,e the mathematical problem, we shall assume cylindrical<br />

polar coordinates r, +, z, the stationary wall being at z = 0, see Fig. 11.1. The fluid<br />

at a large distance from the wall will be assumed to rotate like a rigid body, with a<br />

constnnt angular vclocity w. We shall denote the velocity componenh in the radial<br />

direction by u, that in the tangential direction by v, the axial component being<br />

derloted by W. For reasons of axial symmetry the derivatives with respect to 4 may be<br />

dropped from thc Navicr-Stokcs cquntions. The solution which we are about to find<br />

will be an exact solution of thc Navier-Stokes equations, just as wae that for the<br />

a. Exnct solr~tion~ for nxinlly syrnmntrical borlndnry lnyers 227<br />

rotating disk, bccause the terms which are neglectcd in thc bo~~ndary-laycr cquntions<br />

vanish here on their own accord. 13y eqn. (3.86) we can write down the Navier-Stokcs<br />

equations as<br />

The boundary cor~ditions arc<br />

It is convcnicnt to introtlucc thc dimensionless coordinate<br />

in place of z, as in tile case of the rotating disk (Sec. V 11). Wc assume that the<br />

vclocity components havc t,he form<br />

Thc radial prcswre grnclicnt can bc con~pntctl for t.lia frictionless llow al a large<br />

distancc from tho wall from tho conditiorl: (I/@) . (aplar) = V2/r, or, with V = r CO,<br />

In the framework of the boundary-layer theory it is assumed that the same pressure<br />

gradient acta in the viseoua layor ncar the wall. lntroclucing cqns. (1 1.4) and (1 1.5)<br />

into eqns. (ll.la, b, d), we obtain a system of ordinary dilrcrcntial equations which<br />

is analogous to that in Sec. V 11 :<br />

with the boundary conditions


228 XI. Axially symrnrlrir:d rind Il~rrc.dimrn~ionaI bountlary lnyer~<br />

l'nhlc 11 1. 'l'hr funct.inns for thr velocity distribution for the cxsc of rotation nvpr x<br />

slxtiot~xry w:t11, nftcr J . E. Nytlahl [81a]<br />

><br />

a. Exact solutions for axially symmetrical houndary layorn<br />

Fig. 11.3. Rotation near a uolid mall,<br />

after Boedewadt. Vector representation<br />

oC the horizontal velocity component<br />

4<br />

Fig. 11.2. Rotatior1 near a solid walh<br />

aftrr Soedewadt [Dl. Velocity rlistribn-<br />

tion in thc bounctnry layer from<br />

eqn. (I 1.4); RCO a180 Table 1 I .I<br />

difference, i. e. that between the ground and that at ( --= 4.63, is 58". It is further<br />

remarkable that tllc axial velocity component w does not depend on the dist,nnce r<br />

from t.llo axis bltt only on the distance from the grountl. Tllc motion at all l>oir~t,s is<br />

llpwartls with la > 0. As alrcatly mcntiorlctl, this is ca~lsctl by the inwnrtl Ilow near<br />

the ground, consequent upon tho tlecrcase in the rcntrifrigal forces. In any anse, as<br />

seen from Pig. 1 1.2, this is compensated by n mdial flow o~ltward~ at, n groat,or I~eight~,<br />

1)1it or1 t,lic wl~ole, i.11~ rntliiil flow inwr~rtls 1)rt:(lo1ilir1t~t,cs. 'I'IIc 1.ot.11I VOIIIIII(> IIowi~~g<br />

towartls (.he a.xis taken over a cylinder of radius R around the z-axis is<br />

Tnscrtiug thc numerical value of II(m) from Table 11.1 we obtain<br />

Q = - 1.387 ~ r R2 , in) 11 .<br />

(1 1.8)<br />

Tile volume of flow in t,he positive z-direction is of ~-. equal mngnitudc. The 1:lrgcst<br />

II~)w:I~(~ motlion oc(wrs at [ == 3.1, wl~~rc III = 1.85 $0) 1) . 1 t. is nlso wort,l~ not,it~g tht,


230<br />

XI. Axinlly symmctricnl and three-dinicnsionnl bonndnry layers<br />

the boundary layrr cxtends considorably higher than in the example with the disk<br />

rotating in a fluid at rest (Scc. Vb). If thc boi~&r?/-hyer thickness 8 is defined as the<br />

height for which thr drviation of thc pcriphrral vclocity is cq~~al to 2 prr ccnt , wc<br />

for the stationary fluid.<br />

shall obtain 8 = 8 1/ v/w as against 8 = 4 d q<br />

The cxa~njtlc of t,11c mot.ion of a vor1.c~ sourcc hl.wccr~ t,wo pzrallcl walls consiclcretl<br />

by U. Vogclpohl [I201 is rel:it,ctl 10 somo cxtcnt to thc prcscnt cam. For<br />

very small ltcynolds numbers thc velocity distribution deviates little from the<br />

parabolic curve of Poisc~~illc flow. For large Rcynoltls numhcm thc velocity profile<br />

approachcs a rectangular tlistribntion, and a boundary laycr is sccn to bc forming.<br />

The corrcsponding case of turl)ulcnt flow was discussed by C. I'fleidercr [%I. In this<br />

conncxion t,hc papcr hy R. Bccker [F1 may also be consulted.<br />

Similnr phnno~ncnn cnn bc found in swirling flow through n conical funncl-like channel<br />

investigated by I


232<br />

XI. Axially synimet.rica1 and thrcc-dimensional boundary laycrs<br />

Jnscrting these values int,o cqn. (11.10a), we obtn.in the following equation for the<br />

strcam function<br />

FF' F.' FF" - 3- (F,, - :)<br />

tlz tl tl dtl<br />

wIric41 can be int,egratetl once to give<br />

FF' =F1- qF". (11.13)<br />

Thc I)onn(Iary condit,jons arc IL = IL,,, and v - 0 for y = 0. It follows that F' = 0 and<br />

F = 0 for "1 = 0. Sincc TL is an even funct,ion of r], F'lr] must be even, F' odd and E'<br />

evcn. I3ccausc of F(O) =. 0 the constant tcrrn in the expansion of Fin powers of 17 must<br />

vanish, which tletmmincs ono constant of intcgrat,ion. The sccond constant of inte-<br />

grat.ion,whicl~ will be dcnot,erl by y, can bc evaluated as follows: If F(r]) is a solution<br />

of eqn. (11.13), t11cn F(y v) = F(() is also a solution. A particular solnt,ion of the<br />

tlill'crcnt,inl cq~mt.ion<br />

dF dF dZF<br />

F . - = - - -<br />

dt dt d ~ '<br />

which sat,isfics tl~c hountlnry condiLion ( - 0: F -1 0, F' -= 0, is givcn by<br />

F 5'<br />

1+:t2.<br />

(11.14)<br />

Ilcncc wc obtain from aqn. (11.12)<br />

JJere [ = y y/x, and the constant of inlegmtion y can now be determined from the<br />

givm value of momcntum.<br />

From cqn. (1 1.9) we obtain for t11c momenttlm of tl~c jet<br />

l'inally, t.11~; at)i,vc rcst~lts can bc cxprcssctl in n. form t.o chtain only the 1ti11cmnt.ic<br />

viscosit.y, v, ant1 the kin.ematic momentu.m, Ii' == Jlq. 'l'l~ns<br />

n. Exact .sohttionn for nxinlly ~ylntnrt,rical botnldary layers 233<br />

Figurc 11.5 rcprescnts a streamline pattcrn calculated from thc prccccling equations.<br />

The longitntlinal velocity IL is shown plottctl togcthcr with t.l~~t ror,t,llc? two-tlirncnsionr11<br />

jcl, in Fig. 9.13.<br />

m<br />

r 7<br />

1110 volumc of flow Q = 272 / u y tly (volnmc per sccontl), which incrcasrs<br />

n<br />

with the tlist~ancc from the orificc owing to t,ltc flow from the surro~~ntlings, is rcprcscntetl<br />

by the simplc cqunlion<br />

Q=8nvx. (11.18)<br />

Fig. 11.5. Strranlline pattern for a circulnr<br />

laminar jct<br />

This equat,ion should be comparccl with eqn. (0.48) for thc two-dimensional jct,. It is<br />

secn t.hn.t,, nncxpcctrtlly, the volume of flow at a givcn tlist.ancc from tllc orificc is<br />

intlcpcn(lcnt of thc morncnturn of the jot,, i. e., inclepcntlcnl, oT t,l~c csccss of prcssurc<br />

undcr wl~icll the jet leaves tlrc orificc. A jet wl~icl\ lcnvcs under a large prcssure<br />

tliffcrcnce (large velocit,y) rcrnrtins narrower t,han onc leaving wit,lt a smnllcr prcssurc<br />

difference (small veloci6y). The latter carries with it comparatively more st,ationary<br />

fluid, namely in a manner to make the volume of flow at a givcn distancc from the<br />

orifi cc equal to that, in a faster jet, provided tlrat t,hc kincn~:~,tic viscosit,y is t,llc same<br />

in lmt.11 cnsrs.<br />

The corresponding cnsc of a cornprcssiblc circular 1:mirmr jet was cvalu:~t.cd 1)y<br />

M. Z. JCrzywoblocki 1611 arid U. C. Pack 1831. In the subsonic rcgimc, tllc tlcnsit,y<br />

on the axis of thc jet is larger, and the tempcraturc is smnllcr tltan on its 1)ountlary.<br />

These differences arc inversely proporti~nal to the square of the distance from tl~e


23.1- XI. Axially uynimet.rira1 nncl three-dimrnuionnl honnrlnrg laycrs n. Exnct solution4 for nxially symmctricnl boundary layers 236<br />

orifice. According to 11. Goertler [4317 the case when a wcak swirl is superimposed<br />

on the jet can also bc trcated mathematically, and the effrct of the swirling motion<br />

present in tho orifirc can bo tmcrd in the downstream direction. Jt turns out that t h<br />

swirl decreases fastcr wit,l~ the dist,ancc from the orifice th:m the jet velocity on the<br />

axis.<br />

3. The axinlly symmrtric wake. 'rhc flow in an axially syn~mctric wakc, s~ch<br />

as occurs downstream of an axially symmetric body ~laccd in a stream parallcl to<br />

its axis, can also be tlcscribctl with tho air1 of the system of equations (ll.IQa, b).<br />

Tho solution is quite analogons to that for the two-tlimcnsionnl case whicl~ was tlcscribed<br />

in dctail in Sec. IXf. Let U, denote the oncoming vclocity and let ~ (r, y)<br />

be the flow vclocity in the woke. We assume, as was done in eqn. (9.20), that, the<br />

vclocity differcncc in the wake,<br />

U,(X,Y) = urn - ~ (x,Y)<br />

(11.19)<br />

is very small compared with U, far downstream. Consequently, we shall neglect<br />

quadratic terms in u,. With this simplification it is possible to deduce from eqns.<br />

(11.10a) and (11.19) the following differcntinl equation for 11,:<br />

Thc analytic form to be assumed for the dependence of the velocity differcncc<br />

ul(x, y) on thc axial coordinato, x, and on thc radial coordinat.e, y, can be discovered<br />

from the condition that the drag evaluated from the momentum of the wake must<br />

become independent of z at large distances downstream of the body. This leads to<br />

the relation<br />

03<br />

D = 2 n~ U, / u, . y dy = const, (11.21)<br />

which is satisfied by the form<br />

where<br />

1 (rl)<br />

U, = ClJ, --<br />

Z '<br />

This form is analogous to that in cqn. (9.31) for the two-dimensional problem.<br />

Substituting eqns. (1 1.22) and (11.23) into eqn. (1 1.20), we obtain a differential<br />

equation for /(q). This is<br />

(?I/')' -1- 2 q2 i' -1- 4 q / = 0 , (11.24)<br />

and tho boirndary conditions arc<br />

I Jfi<br />

4 i,<br />

It is easy to vrrify that thc solnt,ion of eqn. (11.24) has the form of an exponential,<br />

/(7) = exp (- $1 9 (1 1 .25)<br />

this form, too, being analogons to that in eqn. (9.34) for tllc two-dimrnsional case.<br />

IIcnce, thc velocity difference turns out to be<br />

The value of thc ronstnnt C must be tletermincd<br />

rqn. (11.21); its value is<br />

from thc drag with the aid of<br />

wl~rro c, tlcnotcs the drag cocficicnL rcforrrtl 1.0 tho frontal arra of t.11~ botly, ant1<br />

R = 11, d/v . IIcncc we obtain<br />

The plot of the velocity difference from eqn. (11.26) is the same as that in Fig<br />

9.10. Experimcnt.al data can be found in F. R. 1Inmn's work [4An].<br />

4. <strong>Boundary</strong> layer on a body of revolution. The flow of a viscous fluid past<br />

a body of revolut,ion when the stream is parallel to its axis is of grrat practical importance.<br />

The bounrlary-layer equations have I~ecn adaptcd to this case by E. Boltzc<br />

[lo]. Assuming a curvilinear system of coordinates (Fig. 11.0), we dcnotc by z the<br />

current length measured along a meridian from the stagnatron point, y denoting the<br />

roorrlinate at right angles to the surface. The contour of the body of revolution will<br />

bc specified by the radii r (x) of the sections takcn at right angles to tl~c axis. We<br />

assume that there are no sharp corners so that d2r/dx2 does not assume extrcmcly<br />

large values. The velocity components parallel and normal t,o the wall will be denoted<br />

by u and v, respectively, and the potent.ial flow will be given by U(x). According<br />

to Uolt,ze t,he boundary-layer equations will I hen assume the form :<br />

with thc boundary conditions :<br />

Fig. 11.6. Ilounrlnry lnyrr nrnr a body<br />

of revolntio~~. Syatcrn of coordinates<br />

y=0: u=v=O; y=w: u=U(a,t).


236<br />

XI. Axially symmetrical and three-dimensional boundary layera<br />

The cq~~ation of motion in the x-direction is seen to remain unchanged compared<br />

with two-tlimcnsional flow. An order-of-magnitude estimate of terms in the equation<br />

of motion in the y-direction shows that the pressure gradient normal to tho well<br />

ap& - u2/r - 1. Con~equent~ly the pressure difference across the bounda.ry layer<br />

is of t01c ortlcr of the boundary layer tJ~ickncss S, and it is again possible to assume<br />

t,llnt, t,l~r ~~rcss~ire gr:dicnt of the potential stream, ap/ax, is imprcsscd on thc bounciary<br />

hycr.<br />

Wc shall limit the consitlemtions of this chaptcr to the case of steady flow.<br />

111 order to intrgratc cqns. (11.27a, b) for the axially symmctricd casc it is oncc<br />

rnorc possible to introduce a stream function y(x,y) given by:<br />

This tmnsforms eqn. (1 I.27a) into<br />

with the boundary conditions<br />

Wc now procced to give a brief account of the methods used to calculate the<br />

bountlary layer on a body of rcvolut,ion. A tnore det,ailecl account can be found in an<br />

earlier ctlition of this book [loll. The numerical results for a sphere, however, will<br />

be discossctl in more complete detail. The t~orrntlary layer on a bod!/ of revolulion of<br />

nrbitrrtr?/ .. ~hape - can be determined by the same method as that. used in See. [X c for<br />

the caso of a cylinder of arbitrary cross-section (two-dimensional problem). The<br />

velocity of the potential flow, U(z), is expanded into a power series in z and the<br />

st,reatn-fut~ction,~~, is assumed to be represented by a similar series in N, with coefficienta<br />

depending on the wnll distance (Blasius series). Following N. Froessling [29]<br />

it, is found that here also the coefficient-functions of y can be so arranged as to become<br />

independent of t,he parameters of any particular problem. In this manner the functions<br />

can bc calculated once and applied universnlly.<br />

-<br />

t The equation of continuity can also ba snlisfied by an'alternative stream function @, such that<br />

'Tliix form of bhc st.rcnrn function was 11scd by E. Boltzo when he calculated non-steady<br />

axinlly symnictricnl bonndary layem, as tlnscribcxl in Scc. XVb2.<br />

a. Exact solutions for axially symmotrical boundary layers<br />

The body contour is given by the series<br />

the potential flow being defined by the series<br />

The diatenco from thc wnll is rcprcucntetl hy 1.110 tlirncnsionlra~ coorclinnlo<br />

and in analogy with eqn. (11.32), the stream-function is represented by the Blasius<br />

series<br />

Substituting eqns. (11.31), (11.32) and (11.35) with (11.36) into eqn. (11.30) and<br />

comparing terms, we obtain a set of differential equations for the f~rnct~ions /3, . . . .<br />

The first equation is<br />

where differentiation with respect to 77 is denoted by primea. The boundary conditions<br />

are :<br />

The first equation of the set is non-linear and identical with that for three-<br />

dimensional stagnation flow which was considered in See. VlOt. A plot of /; is<br />

shown in Fig. 5.10, where /; = #'. The equations for the terms in 13 and z5 havc been<br />

solved by N. Froessling [29]. The succeeding ten functions of the term 27 havc been<br />

evaluated by F. W. Scholkemeyer [102].<br />

Example : Sphere.<br />

In a manner analogous to that employcd for a circular cylinder in Scc. IXo, wc<br />

can use the preceding scheme to solvc the casc of the sphcrc. Thc cnrrcnt, rntlius for<br />

a sphere of radius R is given by<br />

r (N) = I1 sin x/R , (1 1.37)<br />

and the velocity distribution at the surface of the sphere we have<br />

3 3<br />

U(x) = - Urn sin x/R = - U, sin $,<br />

2 2<br />

(1 1.38)<br />

where $ denotes the central angle measurccl from the sta.gnation point,. Comparing


the two wries expnnsicws for sin (%In) in eqns. (11.37) antl (1 1.38), we det,ermille t,he<br />

cocfficicnt~s of cqn. (1 1.3) as follows<br />

Tlie resulting vclocit,y dist.rit)rtt,ions for various val~rcs of the n.nglc $ nre seen<br />

in IGg. 11.7; for t,l~eso graphs t,hc vclonity ?L has been con~prlted up to t,l~e term 27.<br />

Tho vclocitfy profiles for > 90° exhil)it a point of inflexion bcrausc they are associated<br />

with the rnnge of prcssnrc incrcnsc:.<br />

In connexion wit,h t,hc prot~lcrn at hand, we can repeat our previous rernarlrs<br />

concerning the gcnrral pract.icahilitay of applying n Blasit~s series. 'J'l~c cnlc~rlnt.iol~ of<br />

the fundnment,al cocffiaicnt.~ beyond t,lrc t,t:t.rn r7 involves an unaccept>able arnogrnt<br />

of con~put,ntion, md furt,hertnorc, the calculation of slender bodics rcqr~ires consid~rd)ly<br />

more t,c:rms. All t.11is pr~t.s n very severe 1irnit.ntinn on this method. For frrrther<br />

resnlts concerning spl~cres, r~fercnce sl10111d b0 rna.tle t,o the succcctling section.<br />

Trnusverse curvnlure. We hnvc! statrd rcprnlcdly t.llxt the rqunt,ion of nlotion (11.27n)<br />

of an nsinlly syn~tnrt,ric: flow 11ns t.hc snrnc for111 as tliat for t.110 t,wo-di~~~r:~~~io~~:iI mse o~ily 011<br />

condition t,lr:d bl~c l)oun~lnr,y-ln.ytrr tl~irknms is cvcrywl~r!rc much stnnllcr t11nn 1 . l rntli~w ~ of tl~o<br />

conl.our of tlir I~ody (R< r). '('his contlilion is nol. ~ ~hi~fi~d in t.11~ case of n long but thin cylintlcr<br />

or, for thnt ~nnttm, in t.he c:m of nny long and slcnder hly of rcvolul~ion. 'I'l~c bor~nrlnry Inycr<br />

on surlt R I)otly grow (IOWII~L~P~III and iLq I,~I~~II~I~ss ~ C ~ J I Icornp&nl)lc I C ~ wit11 tl~c rrltli~~s cvc~lt.unlly.<br />

'l'ltis I~rings intn rvi~lw~co tho rsnc:nl.i:~ll.v I.l~rco-tli~~~c~lnio~~nl nntnro r)f ISllo I)o~~~ltl:lry Inyrr<br />

on n I)otly of rovolr~I.ion \rrl~iedl rrs111I8 from t h con~~~:rrnt,ivcly large cr~rvnb~rrc of (he surfnro<br />

ol tho body in tho transvrrsc direction.<br />

R,. A. Srhnn ~ntl R. Jk)ntl [95] t,rmt,rtl I.lir mso of n nlcntlcr rylinrlcr, of rnrli~m r, -- a = ronst,<br />

plnccd in a nrriforrn axial stIrc:t~n. . 1l1c . RRIIIO J)~OI)ICIII was st~~dird Oy 11. 11. Kelly [Go] ~ h o<br />

introtlncetl ccrtain nnn~cricnl rorrrrtions. M. D. G1:iurrt nnd M. J. LigI~Lhill [41] ol~tninrrl<br />

~0111Lionq hy tl~c npplication of J'ohlliausrn's approxl~nnta n~cthod (scc See. Xlh) antl of nn<br />

cwyt~ipt~ntic ueries axpnn~ion. Tho flow dong the generators of o cylinder of arbitrary cross-srction<br />

anr, worked out hy .J. C. Caoko [IR] wllo employed a Blnsius seriw nn well ns I'ol~lhnusen'n npproxitnnle<br />

procedure.<br />

The nlnrc gc~~crnl msc of n con~prmsil,lr, nsinlly syn~n~rI.ric I~o~tnclnry I;~yar on ;I I~ody<br />

of rcvolr~tio~~ whosc ronto~~r is a f~lnction or t.l~c lonp,ilr~rlit~nl c:oortlinnlc, a:, ill ~~wlir:~l:ar,<br />

tlm cnsos of n circulnr cylintlrr nntl n spllcrc, wcro sl.otliccl by It. I". I'robstcin nnrl I). 1Slliot. [RR].<br />

I1 turnrtl ont t,l~nt thc trnnsvcrsc curvnturc has the S~IIIO cni\ct on RIICII Ilo~s wit11 n. prcssurc<br />

grnelicnl 11s n ~II~I~I~~IIII:I~~~~~,<br />

fiivonr:ibIo prrssttrt! gn~dirnt. As 11 r~wtlt,, 1110 sl~wring dr~w is<br />

inrrtvwrcl C I I sc:l~rrrnl,ion<br />

~ is tlclayctl.<br />

b. Apprnxirnnte solutin~~s for nxially crytnmc~ric bo~a~~tlnry lnycrs


240<br />

XI. Axially symmetrical and three-dimensional boundary lnyera<br />

The significance of r(x) may be inferred from Fig. 11.6. Retracing the steps of<br />

Sec. X b we obtain the following differential equation for the quantity Z = cJ,~/v:<br />

'l'he quantitirs Ii, fl(R), f2(K) have the same moaning as in tho two-dimensional<br />

case, eqns. (10.27), (10.31) nnd (10.32). Introducing F(K) as before, cqn. (10.34),<br />

we have<br />

1 dr U<br />

F(K)-2K--,I; K=ZUt. (1 1.40)<br />

dz U r dz U<br />

It is casy to see that the substitution<br />

g=r2Z<br />

transforms the prcrcding equation to the form<br />

This form is preferable to that in cqn. (11.40) because it does not contain the<br />

derivative drldx.<br />

The point of separation is again at A = - 12, i. e. at Ii = - 04567, but<br />

at the stagnation point the values of tfhe shape factors A and K are now different.<br />

If the body of revolution has a blunt nose, we have at x = 0, i. e. at the upstreanl<br />

stagnation point,<br />

With this value the terms in the bracket in cqn. (11.40) reduce to F(K) - 2 Ii.<br />

By following the same argnment as in tho two-dimensional case it is found that the<br />

initial valw of Ii at the stagnation point is determined by the condition F(Ii) - 2 R =<br />

-- 0 , or, explicitly<br />

A, = -t 4.716 ; R, = 0.05708 .<br />

Ilrnrr thr initial valurs of thc intcgml rurvc (11.40) at thc stagnation point l)cromc<br />

K 0.05708<br />

7 - -.!. -1<br />

'0 - ur,, u', I<br />

The initrial slope is zero for a body of revol~t~ion, because for reasons of symmetry<br />

we must have (I,,'' = 0 at t.hc st:~grrat,ion pojnt. 'l'hc mcthotl of tlircct integration<br />

tlrscribetl in Scc. X b can hc cxtendcd t,o the case of axially symnictrical bodies,<br />

as shown by N. ltott and 1,. F. Crabtree [931. Equation (10.37) for the momcntuln<br />

~t.hiclrness is now rcplacctl by<br />

Some nunleriral examples have been calrulatrd by F. W. Sc!loll~emcier [I021<br />

7--.- -8- ..<br />

in llis pr;scrlkcd - - -.-- --<br />

t-o tlij T-E"-----'--


242 XI. Axially nymmct.riral and tl~rrr-tli~r~rt~siot~al 1)onn~l:~ry Inyrra b. Approximate aolutiona for axinlly apmmctric boundary lnyer~ 243<br />

Fig. 11.8. Velocity distribr~bion in thc inlct port.ion of n pipe for the lnn~inar ca.se; mennurements<br />

perfornicrl by Nikuradac and quotrd from Pranc1t.l-Tiet.jen vol. TI. <strong>Theory</strong> dl10 to<br />

Scliillrr (901<br />

ltns prarf irally tlrcayctl al, :I clistancc of 40 pipe radii whcn thc Rcy~rol& nuntber<br />

has a value of R = 10:' This is in good agreement with experimental results.<br />

3. Rour~clnry layrra on rotating bodies of revolution. The simplest cxarnplc of<br />

e bounclary laycr on a rotaling hotly is tIi:~t considerod in See. Vb 11, namely the<br />

problem of a disk rotating in a fluid at, rest,. The fluid prticlcs which rotate with the<br />

boundmy laycr arc thrown outwards owing to the existence of ccntrifugal forces<br />

('centrifuging') anti are rcplaccd by part,icles flowing towards the boundary layer<br />

in an axial direction. Tlic casc of a disk of mtlius I< rot.nting with an angular vclocity<br />

o in an axi:~l sl.rc:~m of velocity U, :~lTords a simplc cxtcnsion of the previous<br />

problem. In thc lat,t.cr case the flow is govcrnctl by two parameters: thc Rcynoltls<br />

number and the rot,af ion pammetcr, U,/Rw, which is given by the ratio of frecst.rcam<br />

to tip vclocity. An cxact solution to the problem under consiclcration was<br />

given 11y Mi* D. M. Ilannah [46]t and A. N. Tiffortl 1.1 131 for tho case of laminar<br />

flow; IT. Sal~licl~ting and R. Truckcnbrotlt [98] providcd an approximate solution.<br />

E. Truclrcnbrotlt 11 191 investigated the case of turbulent flow. .Figure 11.9 cont,ains<br />

a plot of the torqnc coefficient,, C, = ilf/g e (2 R" in terms of the Reynolds<br />

numbcr and rotation parameter, U,/ll(u, obtained from such calculations. Here M<br />

clrnotcs the t,orque on thc leading side of the dislz only. When the disk rotatcs we<br />

may stmill assumc Ifhat separation occurs at the edge of the disk. 'l'he 'stn.gnant,'<br />

fluid Itchintl the clislr part,ly rot,n.tcs will1 thc,clislz and contributrs lit,l,le to the<br />

torcpc. Any such contribution has been lcft nt of account in (7, in Fig. 11.9.<br />

It is seen that Llie torque increases rapidly wi P 11 U, at constant angular velocity.<br />

t Arl.~tnlly rrf. 1381 solvm n rrl:rlr~l pro1,lrrn in wltirh the! cxtcrnal ficltl in t.l~:ct, rluc to '& source<br />

at infinity.<br />

Pig. 11.9.<br />

Morncnt cocllicient on<br />

a rotating disk in axial<br />

flow, aftor Gchlichting<br />

and Truckenbrotlt<br />

[98, 1 191<br />

Cnr - Mlf Q w' R';<br />

bf - torque on lcnrling sidc<br />

or dirk<br />

W4 2 4 6 WS 2 4 6 106 2 4 6 lo7<br />

Reynolds number R =g$<br />

Thc flow in a circular box provided with a rotating lid shows a markcd rcscmblance<br />

to that between two rotating dislts mentioned in Scc. V b 11. 7'11~ cnse<br />

of the flow inside the box was investigated in deLail by 1). Grohne [44] who discovered<br />

two peculiar features in it: First, the flow in the friction-free core in tlie<br />

interior of the box can only be determined by taking into account the inllncnrc of<br />

tlie boundary layers which form on the wall, in contrast to normal cascs whcn onc<br />

naturally nssymes that t,hc influence of tho flow in a bountlary layer resu1t.s at, most<br />

in a d.isplaccment. Secondly, the boundary laycrs arc unusual in that they join car11<br />

other. Siniilarly, in the arrangement oonsis1.ing of R rota1,ing channrl irivc?stligat,etl<br />

by IT. 1,udwieg [68], it is possiblc to discern two regions of flow when the spcxd of<br />

robation is sufficic?nt.ly high, ttamcly a fricd.ionlcss corc and bottndnry layrrs which<br />

form on the side walls and which givc risc t.o a secondary flow. 'l'hc t.hcory lcads<br />

to a large increasc of thc drag cocfficicnt which is dnc to rotation, ant1 this fact has<br />

been confirmed by experiment.<br />

Blunt bodies, sncli as o. a. a sphere or a slcrdcr body of revolution, placctl in<br />

axial streams, show a marked influcncc of rotation on dmg, as cvitlrncwl I)y tho<br />

measurements performed by C. Wicsclsbergcr 11231, ant1 S. 1~1t.h:~ndcr and<br />

A. Rydberg [69]. Fig. 11.10 contains a plot of thc drag cocfficicnt of n rotating<br />

sphcre in terms of the Rcynolds numbcr. It is secn that Lhc critical Rcynoltls<br />

number, for which the drag coefficient dcrrcascs abrnpt,ly, depends strongly on tlie<br />

rot,at.ion paramcler U,/Rw, and the same is true of the position of tltc point, of snp:~ration.<br />

The effect, of rotary motion on bl~c posilhn of the linc of 1aniirtn.r sc.pnr:~l.io~~ on<br />

a spltcrr is (l(;s(~il~cd by lhc grc~pli in ltig. I I .I I ; 1,Itc (IILIJL ror it IIILVO INWI ~ X ) I I I ~ ~ I I I ~ I ~ I I<br />

by N. E. lloskin [50]. When the rotatmion para.mctcr 11:~s nl,tdinrtl t,hc vn111c:<br />

Q = w R/[J, = 5, the line of sepnm.t,ion will have moved by about lo0 in 1,hc upst,rean~<br />

direction, as compared with a sphere at rcst. 'l.'hc physicnl ren.son for this<br />

bef~aviour is connected with the centrifugal forces &ding on t,hc fluit1 parLiclcs rolat,ing<br />

wit,]i the body in its bour;tlary layer. Thc crt~trifngal forces have tlic sn,mc rni~t n.s an<br />

atltlit.ionnl pressure gratlirnt dircctd towards t,hc plnne of I,ltc erlun.t,or.


244 XI. Axially symmrtrical nnd tl~rcc-dirnertsionnl boundary lnyers<br />

Fig. 11.10. Ihg coefficirntr,<br />

oi n rotnt.ing spl~crr in axinl<br />

flow in trww of tl~c ltcJrnolds<br />

number R and rotntion<br />

Imramrtrr .Q - ioR/lI,<br />

h t.l~corct.iwl cxpl;~nntiou of t,hc vrry cwnplcx thrrc-dimrnsionnl cll'ccb in the boundary<br />

Iayrrof rotating I~odics of rcvolut.ion in axid flow is contained in the papers by H. Schlichting [00],<br />

IC. 'I'rnckrnhrotll~ [I181 antl 0. I'arr 1841; thcse authors onployed the approximato method<br />

!:xplainod earlior. It is t.rne that the boundary layer of a rotating body of revolution<br />

In axial flow still rctains it^ axial syn~mctry, hnt owing to the rotation there appears a peripheral<br />

vc1ocit.y cotnponent in addition to that in the mcridional direction. For this reason, the calculation<br />

for such a I)o~lntlsr,y layor must int,roduce a ~norncntom eqnat.ion in the circumferential direction<br />

(11-direr:t,ion) in atlclit.ion Lo that in tho n~crirlional direction (x-direction). Assuming that the<br />

a~~gulnr vclocit,y of t.11~ I~ody is io, antl ilcnoting t,he coordinate at right angles to the wall by y,<br />

wr ran writ.(: 1.11~ 1.~0 erluat.ions of n~otn~nl~un~ in tho form<br />

r.<br />

I hr component,^ or the shearing stress at thc wall are then given by<br />

~ig. 11.11. Position of line of laminar<br />

separation on a spl~ero rotating in axinl<br />

stream, after N. IF. Hosltin [SO]<br />

c. Iblation hel:ween axially ~y~ntnetrical and t\\o-cli~~~c~~aio~~;rl I,onntl;rry I;ryr~s 245<br />

and tho displacement and momentum thicknesses arc defined as<br />

m m<br />

In the procctling equations, the local pcriphernl velocity w, - r u) hm been cl~onen ,w n rofcmnrx:<br />

veloc~ity for the a7.imutal con~poncnt, w,(x, 2). 'I'ho preceding equations ~nnke it possi1)lo Lo pcrforrn<br />

cnlculntions for Inminar as well as for turbulent flows, it being necessary to introduce difircnt<br />

expression8 for the shearing stress at the wall in the latter cme (see ref. [R4] and Sec. XXllc).<br />

In some of the cases, it proved possible to evaluate the drag coefficient in addiLion to t,he t,nrning<br />

tnonwnt,, the former decreasing as the parameter mR/Um is increased. In this connexion, the papers<br />

I)y C. It. Illir~gwortl~ [54] and S. T. Clru and A. N. TilTbrcl [13] may nlso hc stdied. The approxilnate<br />

procedure conceived by H. Schlichting [98] was extenrlcd to compressible flows by .I. Y;rnlnga<br />

[125]. The preceding investigntions have bcen extcnded for laminar as well ns for t.nrl)ulent.<br />

tlows by theoretical and experin~ental investigation^ described in ucveral papers by ,Japanese<br />

authors [29n, 10, 01, 79, 801.<br />

l'rohlcn~s connected with laminar flow nbout a uphere rotating in a flnid at, resL IIGVO IICCII<br />

discussed by I.. Ilowarth [51] and S. I). Nigam [All. An extension to the case involving ellipsoids<br />

of revolut.ion wns provided by B. S. Fadnis p6]. Near tho poles, the flow is the same as<br />

on a rotating disk and near the equator it is like the one on a rotatin cylinder. The aecornpanyi~~g<br />

secondnry st re an^ causes fluid particles to flow into tho boundary yaycr near the poles, nntl out.<br />

of it at the equator. The rate of this secondary flow increases with increasing slenderness, the<br />

cquabrial area and peed of rotation remaining constant. However, the phenomena in the<br />

plnne of tho equator where the two boundary layers impinge on each other and are thrown<br />

outwards can no longer be analyzed with the aid of boundary-lnyer theory, el. W. 11. If. Banks [5a].<br />

Further theoretical and experimental investigations of t.his problem have been later under-<br />

taken by 0. Sawatzki [94] and by P. Dumsrgue et al. [21a]. Reference [94] describes n~edsure-<br />

rnenls d the torque exerted on a rotating sphere in the rango of Ibynolds number 2.105 < R <<br />

1.5 x 106 which goes far beyond the laminar regime. Tho invwtigntion of Ref. [21 a] included<br />

the vi~unlizntion of the spiral strenmlines near the wnll on n sphere nnd on cones of various in-<br />

cluded angles as they occur'in laminar flow.<br />

It has been observed that in axial turbomachines there may, under certain circumstances,<br />

appear an extended zone of dead fluid in tho whirl behind the row of stationary blades antl<br />

ncnr the hub. This phenomenon was described in great detnil by K. J3antmert and H. Klaeukens<br />

[5]. The origin of this dead-water area is conneckd wiLh the radial increase in prcssurr in Iho<br />

ontwnrtl direction which i~ due to the whirl. Owing to tho whirl the axinl pressure inerrme nrnr<br />

lhe huh in the bladelorn annulus behind the guides is much greater than at the outer wall. The<br />

influence of tho houndory layer is here only ciecontlnry. ALLonLion rn!ly, further, ho drawn Lo<br />

an invesbigotion duo Lo I


in cross-flow, tlrprntls only on lhn potat~l,i:d vclo~it~y tlistril)ution. IJ(z). By ront.r:~st,,<br />

whcn an axially symmctrical I)oundary laycr is stutlictl, for rxamplc that on a<br />

rotating 1)ody of rcvolntion, it is found that the contour r(a) of the body entcrs<br />

explicitly into thc corresponding rquations. Tile prcsont scction is clcvotctl lo x<br />

more tlotailctl invcst,ignt,io~~ inl,o thc rolntion 1)ctwc~cn two-tli~nr~~sit)t~:iI nlicl axi:illy<br />

symmntric l~our~rlary Inycrs.<br />

In st,~n.tly flow the Oountlary-layor rqr~:rt.ions for Lwo-tlitncnsiond flow :~ntl fnr<br />

axially symmot~rical flow are given I)y cqns. (7. lo), (7.1 I) ant1 ( I 1.278, h), rospectivrly.<br />

l'hc Int,tcr rcfcr to a curvilincnr systc~n of c:oortlin:~.l.c:s with z tlcnot,ing t,l~r cttrrrnl,<br />

arc: Icr~gt~h nntl y tlrnot,ing {,l~o tlist,nncc from t,hr wall in :L tlirrt-tion normal t,u if..<br />

The rcspcctivc vc1ocit.y components n.rc tlcnotwl I)y IL nntl v, and IJw mn.gnit,ntlcs<br />

wit.11 a bar rcfrr t,o tho two-tlinicnsiond cnsr. Wit.11 these syml)ols, wo Itavo for<br />

tho two-tlinirnsional msc:<br />

for t.hc axially symn~ct~ricnl vnsr<br />

Ilrre ~(z) dcnot.cs tJto (list,ancc of a point, on t11c wa.ll from 1.11~ axis of symmntq.<br />

Thr first eqnnfions of l)ot,l~ systems nro iclrnt.icn1, the tliffrrrncr Ixing onl,y in t.llc<br />

npprnrnncy of t,hr rntlirls ~(n.) in t.11~ rqun.l,ion of conI,innit,g.<br />

It, sc~ms 1.1111s rcasnnnl)lc to inqnire wlteLllrr it, is possil)lo 1.0 intlic.at.c a transformal,ion<br />

wl~icll woultl permitf t.hc nsn of t,l~n solt~t.ions of Lltc two-tlirnrnsionnl cnsc<br />

1.0 tlrrivc solr~f,ions of t,l~c n.xinlly syn~rnrt,ricnl cnsr. Such n gvncml rc1at,ionsI1il)<br />

bctwocn t,wo-dimcnsiond nntl n.xially symmctrical I~ounrlary laycrs Itas bccn cliscovcrctl<br />

by ITT. RTn.nglrr [72]. It rr~lrlccs tho calcnlation of thc hminn.r 11ountla.ry Inyor<br />

for am n.xially s.ymmct,ric.:~l botly t,o tl~nf, on a cylintlricnl I)otly. 'l'he givcn body of<br />

rrvolut,ion is nssocin.18rtl wit.11 n.n itlcnl pot,cnt,inl vclocit.y dist,ril)ntion for n rylint1ric:ll<br />

body, the f~lncl~ior~ Lcing rnsily calcnlatfctl from the conhur ant1 the potcnt,inl vcloci1.y<br />

tlist.ril)tlt,int~ or t.ho botly of rovol~tkn. Mnnglrr's tfmnsl;mnation is also valid for<br />

comprcssil)lt: Imtlntlnry In.ycrs, n.s well ns for tllcrmnl boundnry 1:iycrs in In.tnil~:ir<br />

flow. Wr sh:1.11, I~owcvrr, consitlcr il, here only in rclat,ion to incomprrssi1)lo flow.<br />

According to Manglrr, l.hc cqrin.t.ions whic:l~ t.m.nsform tJle coortlin:~.t.es ant1 111~<br />

velocit.ics of t.hc xxinlly symmct.ricnl pro1)lcm to t,hosc of t.he eqiiivalcnt two-tlimcns-<br />

ional problrm n.rc as follows:<br />

Z<br />

w11orr 1, (Icnotrs a const~arit Iw~gth. Itcn~cnibcring that<br />

it, is rasy to verify tht thc syst,rm of c.q~t:itions (1 1.60) l,mnsforms intm oqns. (1 1 .4!))<br />

by t,hn wc: of LIto sul~sl~itulions (Il .GI).<br />

WIC hountla,ry layer on a 1)otly of revolution r(z) having tho itlml pol,rnt.ial<br />

vclocit.y tlisI,ril~clf.ion IJ(z) nnn l)c cv:dt~al.c:tl by con~pnting t h t,\vo-(litllr~~sio~~:~I<br />

I,ot~n(l:~,ry l:tycr for tt, vcloc:it,.y tli~l,rih~rI,ion o(:?), wltc:ro /J r-: ~ I NZ I ti~~l :I: tire rcl~iI3wl ,<br />

I)y oqns. (1 I .GI). Il:~vi~tg c~alcrtli~t,rxl I.hc voloc.il.,y oornpot~ol~l.~ ii, nntl 6 for l.11~ l.wotlimctl~iottal<br />

I)ortntl:~ry Inycr it is possible tlo tlctcrrnine tho con~poncntn I* nntl IT or<br />

tho n.xinlly symmct.rical bountlnry laycr $1 ith tho nit1 of thc t,mnsforlnnt,ion rquations<br />

(11.51).<br />

Iloncc, from rqn. (11.51), we Itavo<br />

l'hc pol.rnt.ial flow of tllc associatd two-tlimct~sional flow bccornrs<br />

J - ---<br />

U(2) = u, 113 L2 2,<br />

so that 0 ( ~ = ) C 5' , wllcrc (: dcnotc~ a constant. 'rhc associat.~d two-tlitncnsio~la.l<br />

flow bclongs to thc class of w~tlgc flows disoussotl in Sce. 1Xa ant1 is givcn<br />

by I1 = C an', with m = + for the present example. l'rom cqn. (9.7) wc find the<br />

wc~lgc nnglp P = 2 m/(m -1-1) = 4. Thc associntctl two-tlimcnsiond flow is t.ltat<br />

past a wcdgc wit,h an anglc n P .= n/2. '1'11~ fact that nxinlly symmct.rical stagnn,l.ion<br />

flow ran be rcduced to the case of flow past, a wcdgc whosc angle is n/2 wa.s st,nt,etl<br />

in Scc. 1Xa and is now confirmed.<br />

11. Three-clin~ensio~~nl Lountlnry lnyers<br />

IJtttil now wc have restricted o~~rsrlvcs nln~ost cxc:l~lsivcly Lo the consitlcrat,ion<br />

of two-tlimrnsionnI :mi axially sylnmnt.rical prol~lcrns. 1'rol)lcms of t.wo-tlinlct~siot~al<br />

nncl of nsinlly syrntncI,ricnl flow havo this in common l.ltat t,ho prcscril)otl 1)oI,cnt.in.l<br />

flow tlrprntls ot~ly on onr sp~cr: coortlil~:il.o, :l.ntl tho l,wo vc:loc:it,y con~l)c~~ottls ill Ih(:<br />

I~o~tntlnry I:~ycr tlc:pcntl on t8wo space roordin:~tcs<br />

sional 1)orrntl:iry lnycr thc cxhcrnal potcnt.ial llow clcpcntls on two coortlin:~.l.cs in<br />

thc w:~ll srlrfaco and t.ltc llow willtin tllc Imuntlnry laycr posscsscs all tl~rcc vcloci1.y<br />

componrnts which, moreover, tlcpcnd on all three spxco coort1in;~tcs in thc gcncr:~l<br />

cmc. 'l'hc flow abont a disk rot,nl,ing in a fluid at rest (Scc. Vb) and rotntion in thc<br />

nc~ig11l)ourllootl of a fixed wall (Scc. Xla) const,it3utr cxarnl)lrs of t,l~rcn-tlimcnsionnl<br />

I)ol~ntl:~ry I:~yors, rrpnrt from Ijcing cxnol sol~~l~ions of tllc Nlbvior-Stokes cqttn.t,io~~s.<br />

(\:LCII. [II I,IIc cnsc ol' n t ,I~t~(~(:-tli~~~t:t~--


248<br />

XI. Axially symmetrical and three-dimensional boundary layers<br />

If the streamlines of the potential motion are straight lines which either converge or<br />

diverge then, essentially, the flow differs from a two-dimensional pattern only in that<br />

there is a change in the boundary-layer thickness. On the other hand, if the potential<br />

motion is curved the pressure gradient across the streamlines of the potential flow<br />

impressing itself upon the boundary layer gives rise to additional influences, such as<br />

secondary flow: out,sidc the boundary layer the transverse pressure gradient is<br />

baln.nced with t,he centrifugal force, but within it the centrifugal forces are clccrcasccl<br />

because of the decreased velocities and, consequer~tly, the pressure gradicnt causes<br />

mn.ss to flow inwards, i. e. towards the concave side of the potential streamlines.<br />

The rotation of air over a fixed wall affords an example of this belmviour antl illustrates<br />

the existence of a flow inwards.<br />

A further example of sccondary flow is affordcd by the mot.ion on the sidewall<br />

of the channel formed by t,urbino or compressor blades or by a deflector. The bound-<br />

ary laycr which forms on the wall dcvclops a sccondary flow from the pressure<br />

side of one blade to thc suction side of the next one owing to the curvature of the<br />

streamlines in the external flow ficld. The secondary flow caused by the sidewall<br />

is further affected by the boundary laycr on the blades themselves causing the flow<br />

pat,tcrn through a turbine or compressor stage to become vcry complex. This prcsent.~<br />

a vcry difficult problem to 1)ourldary-layer theory bccausc the three-dimensional<br />

nature of Lhe llow is essential to it. For a long time problems of this kind hat1 been<br />

stutlicd by cxpcritncnt,al means only [471.<br />

1. The <strong>Boundary</strong> layer on a yawed cylinder. Another important case of a three-<br />

clirnensional boundary laycr is that of an aeroplane wing, whose leading edge<br />

is not pcrpcntlicular to thc stream, as in the case of swept-back wings and ynwccl<br />

wings. It is lrnown from cxpericncc that on the suction side considerable quantities<br />

of the fluid move t,owartls t,hc recctling end, the phenomenon having a very tlet,riment.al<br />

elfcct. on t.hc aerodynamic behaviour of the wing.<br />

111 two-tlirncnsionnl motion t,ltrough a 1)ountlary laycr, the geometrical shape<br />

of t,hc I)otly inlluenrcs the ficltl of flow only ir~lirect~ly, i. e. through the vclocil,y<br />

dist.l.il)ut.ion of t.he potcnhl flow which alone ent.crs the cnlculation. By cont.rast,,<br />

1,ltrro-tli1nensio11nl t~ountlary layers arc affcctctl by both: by the extcrnal vclorit,y<br />

tlist.ril~ution ant1 by t,hc gcornct,rirnl shapc directly. For example, in the case of<br />

a I~otly of rcvolulion t,lrc variat,ion of the ratlius with distance cxpressctl by tho<br />

funct.ion n(r) nl'pcars explicitly in tJtc dilTcrent,ial equations, see eqn. (11.27 11).<br />

For tJtc purpose of rst.al)lislling the I~ourltlary-hyer equations we shall confino<br />

o~~rsrlvc~ 1.n l.11~ simplrst, rase of a plane w:dl or t,o a curvccl wall which is tlrvrlol~:tl~ln<br />

into :I pln.nc (Pig. 11.12). T,ct 3: and z drnot,e t,hc coortlinat,cs in the wall surface,<br />

1, (Irnoting (:IS p~~cviousl~) 1,110 coor(1in:~t.t: which is pcrl>endicular to t,he wall. 'l'hr,<br />

vrloc~il,y vrc!t.or of pot,cnt.i:ll llow 1' will be assumetl lo hnve the cmnponcnts 11 (x,t)<br />

nntl II'(r.z), so 1.11:lt in thc st.catly-st,al.c msc t,l~c pr??surc di~tribut~ion in t.he potcnlinl<br />

If wr now prrfortn lhr snrno cst,iniat,ion, untlcr the assumpt.ion of vcry large Iteynolds<br />

n~~ml)c~rs, rvlalivc; t,o 1.11~ t.ltrcc-tlimrnsional Navicr-St,okr.s cqttnt,ior~s (:1.32), as<br />

?xphinctl it, tlol,:~il in Soc. VII a in rclat,ion to the two-tlimcrrsiona~ casc:, wc sirall reach<br />

the corlclusion t,lln(, in bllc frictional terms of the equat,ions for the z- and z-tlircctior~s,<br />

re~pcct~ively, it is possible to ncglect'thc tlcrivat,ivcs with respect to the coordinaLes<br />

which are parallel to the wall as against the derivative with rcsprct to t,he coortlinat.r<br />

at right nnglcs to it,. Itcgartling the equation in the y-tlirecliorr wc again obl,nin t.lrc<br />

result t,liat ap/i)?y is very small and may be neglected. Thus the lmxsure is secn to<br />

depend on x and z alone, and is impresscd on the borrnda.ry Iaycr hy the pot.ct~t,i:ll<br />

flow. 'll~o rst.irnr~.l.iot~ furIJ~rr sl~ows that,, gcx~crnlly spc~~king, nom: 01. t.11~ ( ~ ~ I I v ~ ivv Y . ~<br />

terms may be ornitLetl. 'l'lle trllrec-tlilnensio~~aI liountlary-layer cqunt.iotls arc, t,ltrn, as<br />

follows:<br />

with the following boundary conditions:<br />

Fig. 11.12. Sy~tem of coordinates for<br />

n t,l~ree-clinirnsiond boundnry layer<br />

7'he pressure gradicnt,~ i)p/ax and aplilz arc known from the potmtial flow in accordance<br />

with eqn. (1 1.52). 'l'llis is a system of t-hrec equations for qi,, v, and lo. For 1Y 0<br />

and lo - 0 t,he system transforms int,o the familiar systcm of equations (7.10) a~ltl<br />

(7.1 1) for two-tlimcnsionnl boundary-layer flow.<br />

Up to the prcscnt time no exact ~olut~ions of this gcncml systcm of cqnatiotts for<br />

t,hrec-tlimcnsiond floiv have brcn found, apart from tho cxamplcs wl~icl~ \vc 11:lvc<br />

mcnt,ionctl prcviorrsly. 7'11. Gcis [33, 341 invcstigatcd tho spcrid class of flows whirl^<br />

lead to similar solutions. In analogy with wedge flows, the velocity profiles arc now<br />

similar in the direction of each of the two axes of coonlin:~tes,\and this :~llows us<br />

to transform the systcm (11.53) into a set of ordinary diKcrenti/l equations.<br />

A prticular case of three-dimensional boundary-layer flow wjlicll is consitlrr:~l,ly<br />

more amenable to numerical calculation is that where the potcnthl flow depends on n:<br />

but not on z, i. e. when<br />

U=U(x); W=W(x). (1 1.55)<br />

These conditions apply in bile case of a yawed cylinder and npproxirnatcly, in<br />

trhc case of a yawctl wing at zero lift,. 'L'hc systmn of ccluntrions (1 1.5:1a, I), c) is simpli-


250 XI. Axinlly nyrnmet,rirnl nntl t,liree-dirnenaiorid honnrlnr.~ lnynrrr<br />

fied in that, t.hrre is no clepc~ntlcncc on z. With W = IV, = const and taking into<br />

account thnt - (I/@). (ap/ax) = U . (dU/dx), we obtain<br />

with tho same boundary condit.ions as 1)efore. In this partic~~lar case the system is<br />

rcduciblc in t,he sense that it is possible to cnlculate IL and v from tho firsL and last<br />

cquntion, the solution bring iclcr~t~ical wiLh that for a two-clirnensional case, and subscq~~enl,ly,<br />

to cotnpl.ctc lhc c:~.lcitlnl.ion of 111 from the secontl equation, which is,<br />

moreover, linear in lo. This rendors such cases really simple. Tncider~tally, it, might be<br />

not,ctl that the equation for the velocity component u) is identical with t,hat for<br />

the tmipcratnre distribution in a two-c\itncr~sional boundary Inyer when the I'mntltsl<br />

nmnber is cqc~n.l to unitmy (soe Chap. XTJ).<br />

Specializing tho syst,crn (1 1.66) still further for the case when TJ(z) = IJ, =<br />

ronst, we obtain the example ofthc flat plaLc in yaw hut at zero incitlcnce. 111 Lhis case<br />

tho pressure term in the first, cqnnt,ion vanishes, and t,hc secorltl oquat.ion becomes<br />

itlcnt,ical wit,li the first when lo is rcplncctl hy u. Thus t,he solutions ~ (x, y) and ~ ( z y) ,<br />

brcome proport,ional, w(x, y) = const. . 71 (x, y), or<br />

Tltis means that in t,hc cnsc of n yawrtl flat plate t.hc ~ ~ R I I I ~ of I I L Lhc vcIocit,y<br />

in t,hc bo~~nclnry layer whic:lr is parallel to t.hc wall is also pnr:~llcl to thc poLential flow<br />

at :ill ~minta. 'l'l~o fact 1,liaI. trhe plate is ynwcd is seen to have no influor~no or1 Lhc<br />

f'ormat.ion of thc bountlrwy 1a.yer (intlcpcnrlcnce principle).<br />

Whrn t.\ic llow in the honntlnry Iiryor on a yawed flat plate I)ccomcs t~~rhvlott,<br />

the right,-hn~~tl sitlcs of t.ho first two cqu:~tions (1 1.56) must be sripplcmcntcd wit.11<br />

t*l~c~ I,crlns tluc t.o t,l~rl)ulcnt 1Lcynoltls ~t~rcssrs (C11;lp. XIX). 'I'llrn, t,hc two cqunt,ions<br />

can no longer be trnnsforrnctl into rn.rh ot.l~cr by the substit,ution of IL for w nntl vice<br />

vrrsn. Conscql~cntly, t,l~c st.rr:~ntlil~cs in 1hc boundnry Iiyer ccnsc to bo p:~r:~lIcI<br />

t,o 1,llc llow tlirct:l,ioti it: (,Ilc I'rcc sLrc-:~~n, :ln C:LII bt: vwifictl Og tlircclj c:xpt:t~irncnl, [Dl.<br />

111 :ttltlil.io~~, ref. [3J Jys rstnhlisllctl Ll1:~t. Iho tlisplnccrncnt thidtrlcss of' n Inrblllcnt,<br />

I)ountlnry lnger on n y+wc-(1 plnfc grows somcwhnt fn.st,cr in the tlowrlsl,rrn.m tlircct,io~l<br />

t.11n11 is I,hc c:~sc wit,I~ ~III IIIIJ~:IWC~~ plalc. This ag:tin tl(~mo~istrat.csc thc i~~:~~~~~licaI~ilil~y<br />

ol' IIIV intlrpantlcncc l)rincipla t,o t.nrl)~tlrl~l, I~o~~nthry Inyrrs.<br />

'I'l~c c:~I~~~l:it.ion of Iho I,I~rc~r-tlitnt~~tsio~l:~.l botintl;~.ry lnycr on :I, yawed cylintlcr,<br />

rqns. (11.5(i), ran I~crnrric~l olit, I)y n. ~nct,hotl simil:~r t.o thnt wrtl in t,ho cnsc of<br />

two-~tlimrr~sionnl llowlnl~out a cylit~tlw \vl~osc a.xis is n.t right nnplcs t,o 1.11~ sl,rmtn<br />

(Sco. TXe), i. c. I)y asbnming n scrios expansion with respcct to the lengt,h of arc, X,<br />

tncnsl~rcd from tlic .st.ngnn.t.ion point,. For n syrnnictricn.l cylintlcr we may put<br />

cl. Thrcc-dimensionnl boundary Inyers 25 1<br />

Tt is frtrt,hcr asslrmetl that the vclocity componct~t~s ~(z, y) and ~(z, y) of 1.his flow<br />

(in which the stagnation points lie on a dcfinito lim) may also be oxprossod wiLh tho<br />

nit1 of n scrics ill z with cocfficionta dcpcntling on y (13lasius ~crios), tho flow pntt,crn<br />

bcing i~ltlrpcv~tlont, of tho coordinntc z rncasr~rcd along tho gcncralrix of tho cylinc1t:r.<br />

'ilhns, putting<br />

(1 1.57)<br />

'J'hr fnnct.ions IL. 13, . . . satisfy the diRcrrnt,ial cqunt,ions (9.18). 'I'hc rornpnt,n.t.ion of<br />

the con~po~~c~it I& vras first given by Mr. R. Scars [IOB]. It was Inter consitlcrenbly ext.cndctl<br />

I)y 11. Coer(.lrr [42]. The funrt,ions go, gz, . . . snt.isf.y the differential cclunt,ions<br />

wl~osc botintlary corditions are<br />

As intliralrtl by L. Prandtl [861 the equa(ion for go can bc solvccl by dircct inte-<br />

gmtion, the result bring<br />

J!'{ exp (- f j,dv)j dv<br />

go ( v) = OZ - - -- O - - (I I 60)<br />

j - j'~,d~)) dl<br />

0 0<br />

Fig. I I. 13. 1,nniinnr honndary Inyer on n ynwcd<br />

rglintlrr. The functions ge nnd gz for the vclority<br />

ron~porirnt. 111 nlorig t 11e axis of the rylindcr, cqn.<br />

(11.58~). At the ntngnntion lilw wc have w/ll',<br />

= go (11).


252 XI. .\xi:rlly ~yrnrnctriral and t,llrce-ditncnsiot~al bonntlnry layer3<br />

Approxi~~lntr ~rtrtl~ntl. 1,. l'r:~.t~rlt.l 1721 laic1 tlowtr a. progr:~~r~tnc: for ot)t,airlillg<br />

so111lio11s wilh I,IIc nifl of IIIV tnonrct~tum I~I~wr(~rn, i. r. ill a wajr which<br />

:I.II~II,~X~III:I~(*<br />

is siniihr 1.0 I hat. r~scvl ill Sro. X'1 11. In l)art,icular, t-hc set of rqunt,ions (1 1 .45) to (1 1.48)<br />

tr:~nsli)rtns illto lh;~,, Iiw :L y:~wcttl cylintlcr when it. is assurnccl formally that - const<br />

:111tl when t,llc a.zitnr~ll~:ll IIIOI~~II~~IIIII thiclctlcss rj~?.~ is rrprrscntcd 11.v t)l~c formula.<br />

=7<br />

A siti1il:tr :tpl)roxil~lat~(~ rncthod was usrtl by J. M. Wild 11241 for the solution of<br />

thc prol)l(trn of the ynwocl cylirdcr. Figure 11 .I4 reprcscnt.~ the pn.t.tern of st.rcamlines<br />

for :I y:~wctl rllij)t.ic cylirdrr of slrndcrnrss ratio 6 : 1, placed at, an angle of incitlcnce<br />

to the sI.mnm. 'i'hc lift corfficirnt has a valuc of 0.47. The arrows shown ill the sketch,<br />

intlic:at.c~ the ~lirrct~io~i of flow of thn vclocity conlponent pan.llcl to the wall in its<br />

immctlint~c ~lcighl~or~rllootl, i. e. thc value<br />

A<br />

Il'ig. 11.14. Ihnd:~~y-l:~yrr flow abor~L a<br />

y:rwrd rlliptical ryli~drr with hfL, altar<br />

.I. M. Wild ( 1241<br />

Vig. ,I 1.15. JSxplnnation of origin of crous-<br />

flow, on a yawcd wing at an angle of inci-<br />

dcnce. Curves of constant pressure (isobars)<br />

on the ~nction side of the wing. Near the<br />

leading edge on the uppcr snrface of the wing<br />

there is a harp pressure gradient at right<br />

angles to the main stream and towards the<br />

receding end causing cross-flow<br />

d. Three-dimensional boundary laycrs 253<br />

The respective streamline is shown as a broken line, and the potential streamline<br />

is seen plotted for comparison It is noticeable that thc flow dircction in the boundary<br />

layer is turned by a large angle towards the rrrecling end of tho cylinder. This rirrum-<br />

stanre is very important when flow patterns on yawed wings are obscrvcd with the<br />

aid of tufts<br />

Swept wings. The cxistencc of cross-flow which occurs in the boundary laycr of<br />

a yawed cylinder is important for the aerodynamic properties of swept wings. When<br />

yawed or swept-back wings operate at higher lift values the pressure on the suctiot~<br />

side near theleading edge shows a considerable gradient towards the receding tip,<br />

the effect being due to the rearward shift of the acrofoil sections of the wing. This<br />

phenomenon can be inferrcd from Fig. 11.15 which shows the isobars on the suctibn side<br />

of a yawcd wing. The fluid particles which become dc~clcrat~cd in the boundary layer<br />

have a tendency to travel in the direction of this gradient, and s cross-flow in khe<br />

dircction of the rccctling tip results. As dc~nonsLr~~.tod by in011~11romotit.s p~rror~no(l<br />

by R. T. Jones [58] and W. Jacobs [55], thc boundary layer on t h receding portion<br />

thickens, the effect leading to prcmaturc scpnration. In aircraft cq~~ippcd with sweptback<br />

wings separation begins at the receding portion, i.e. ncar the ailerons, nntl causes<br />

the dreaded one-winged staU to occur. It is possible to avoid this kind of sepamt.ion,<br />

and hence to prevent one-winged stalling, by equipping the wing with a 'boundarylaycr<br />

fence' which consists of a sheet-metal wall placed on the suction sidc in the<br />

forward portion of the wing, thus prevent,ing cross-flow. An aircraft with swept-back<br />

wing.? and x boundary-layer fence on each half of the wing is shown in Fig. 11.16.<br />

W. Liebe [66] reported on the improvement in wing charactmistics which can be<br />

attained by these means. A paper by M. J. Queijo, B. M. Jaquet and W. 1). Wolhart<br />

[90] t1cscril)cs extensive mcnsurcment,s on models providctl with 'houridnry-layer<br />

fences'. The papers by ,J. Black [8] and I). ICucchemann (641 contain morc details<br />

Fig. 11.16. Jet fighter De ITavilland D. 11. 110 wil.ll rrwcpt-back wings and a I~wndnry-layer<br />

fence at cdge of each ailcron; from W. J,icl)c [66]


XI. Axinlly ~,vn~n~et.rir;~l nnrl Il~r~.e-cli~ne~~sior~nl I~o~r~~clnry Inyera 254<br />

Si~~rc: s11c.11 rx1~~rn:iI flows nrt. 1\01. irrul,:~licn~:~I. l11c vcIot:ilry in l.11~ l)ound:~ry I:~yrr ran Ircconlc<br />

Inrgrr III:LII I.lln1 in t.lw frw sl,rc;m. 'l'l~c cxc:css ill vclocity is rltrr? to the swo~rtlnry flow in I.lic<br />

I~nu~~tl:rry hyrr \vl~irl~ lr:~t~sli.rs inln) if, lluitl p:~rl.iclrs from rrgionn of higher energy. It. so~ncti~nrs<br />

also II:I~I)~IIS ~,II:L~, I.II(~ inili:tl veloril,y prolilw in 1 . l ~ l)ri~~cirnl llow dirrrtion slrow rcgiot~s of<br />

l);~d-Ilow which, ~~~~vcrll~rlcss, do not, signify scp;~r~ilio~~; they 11n11d1y tlis:~ppc:~r f~trl~lwr tlownsLrtw11.<br />

'l'l~is type of brh:lviour can also bc cxplni~~ctl an bcing due to a trar~sfer of rncrgy by<br />

t,llc srrontlnry flow. 'The rrndcr will recognize from the preceding exarnplc that t,lrc definition<br />

of sr~):~.rnI.ion is hcscl. \vit.h cliffic~rltics w11cn three-rlin~cnniorr:~l boundary layers arc being consitlrrrd.<br />

'l'his in d ~ 1.0 ~ the e fact I,lwL t.110 rclnl.ion brlween I~nclt-flow atd ~hcaring strrss has ceasctl<br />

trr hr :IS sitnplc nn in t.lw t.~r~o-tli~~~c~~sior~:~l<br />

rax [4!), 771. A scp:\rot.ion of tcrms itlcnt.icnl will1<br />

th: ow twro~~~~tc:rcti in cwnnt!xion wiLh 1.11~ free st~rcn~n (1c~cril)cd by cqn. (1 1.55) call bc srrcccssft~lly<br />

nrhit?vrtl, :~c.rortling 1.0 1,. 16. 1~og:~rly [24], mlwn considering an infiuitely 1o11g wing wl~iclr<br />

is III:I~C 10 rrrl,ale nl)ouL a vcrl.ical axis (I~cliropter rotor). It is found that, the rotary motion<br />

c1oc.s not nll'rct, ll~r cl~ortln.isc velocity co~n~~oncnt nntl so I.hc incitlencc of scparnt.ion rclnnitin<br />

~ln:l(li.c~trd. I101.:1lio11 ~nnrcly cntlscs 1.h~ nppr:lr:ulrc of slight r:idiaI vclocit,y roniponcntr4.<br />

A ft~rl,l~rr sprri:tI casr of I IN: gr11m11 ~iroI)lcr~~ r1cscriI)cd l)y cqtrs. (11.53) and (11.54) which is<br />

atnrtl:1I)I1' 111 r:~lw~lnl.int~ orwcrs B.II~II 1111: cxlcrnnl flow consisls of a tlvo-tlin~rnsionnl basic patlrr~~ OII nl~ii.l~ tl~rre- is SII~I~~III~~SI'~ n wr:tlz tlist,~~rl~nnce of 1.11~ kind tlrsrrihrtl I)y<br />

(1 (.r,z) = [l,,(x) I lJl (y.2) , Uc1 ,<br />

ll'(.r,z) = I\'# (r,:) , lrl < [lo .<br />

2. Ilow~cl:rry Iayrrs 011 d ~ c Idies. r 'I'l~rr~t!-tli~~~c~~~ion:~l<br />

l)~t~t~tl;~r~'-In.yrr flr)ws hcronrc even<br />

III~II,~ (.o~~~l)li,.:~lr~I ill r:is~s \VIWII Ih t!~I(~rn:~l flow 1::111110l, I)P r(:l~rt:siwl~~~~I xi~~~ply Ipy 01c s11l1t-r-<br />

~~tsilio~~ (PI' I.\CO VOIII~)OIIC.IIIS. '1'110 Iiil kr IYISI: orrrtrs, li)r ~:X:I.IIIII~T. 011 n y:~n.cvl I~r)(ly of ~r.vol~il.i


256 XI. Axially ~yn~motricnl and three-dimcneionnl boundary layers<br />

tho oxperi~nent,nl pnt,tnrr~ in Pic 11.17 b. It is, tllcreforo, not at all eaay to establish a critorion<br />

for scparat,ion in a thrco-clirnc~~siol~nl boundary layer, if proper weight is given to this type of<br />

bel~aviour. At this point, we wish to draw tho reader's ~t~tention to the investigations on yawed<br />

cmwn he to W. J. Itninbird, It. S. Crnbbe and L. S. Jurewicz [91].<br />

It, ap~)rars Lo bo possible to attempt, a theoret,ical analysis of t,hree-dimenaional boundary<br />

layers wilh t.ho aid of ir scheme snggcsted by L. Prandtl [RBI who proposed to introduce a<br />

cwrviiincnr systrrn of coordinatm in which the potential lines and streamlines of the free stream<br />

would play t.lm part of coordit~atos. This progmmme wns cnrrictl out by E. A. Eichelbrenner<br />

and A. Owlnrt [22] whon Lhcy calmllnlad tho laminar cmo ment,ioncd earlier. It hna already<br />

Iwrn mcnt.ioncd l.l~nt good qualit,ativc agreerncnt rrsultetl. as shown in Fig. 11.17c. See also<br />

It. 'I'imtnnu [I 141.<br />

'I'he mcthotl of c:nlculnt,ion proposed by L. I'randtl r86] was recently developed<br />

numerically by W. Gcisslcr 135, 36, 371. Figure 11.18 illnstrntes the result.s referring<br />

t,o tlrc t,hrcc-tlilnensional l~oundary layer on a yawed ellipsoid of revolution. In<br />

acldition t80 t1hc potmtial lines and st.reamlines of Llre external flow, Figure 11.18~<br />

shows the separation line A'; the latter has a course ~imilar to that in Fig. 11.17. Figures<br />

ll. 18 11 and 1 1.18 c represent t,he v~locit~y distribution in the boundary layer nt<br />

various st,alions on a particular potc,nt.ial line.<br />

The lamir~ar I~oundnry layer on a yawad rotating circular cone in a supersonic<br />

stream was earlier invcst,ignted by R. Sedncy 11041, whereas ,J. C. Martin 17.71<br />

irivrstigat.ecl the Mngrrns eKect8 on bodies of revol~tt~ion at, R, small angle of incidence.<br />

Fig. 11 .lR. \'rloc.il.y tli~trilmlion in t.11~ t,hrco-di~r~cnsio~~ai bor~ndary-layer on an ellipsoid of mvo-<br />

Iution ornxis mtio LII) - 4 nt an angle of inci~lcnco ? = is0, after W. Geisslcr 136, 871. a) SysLcm<br />

of potrnt,inl linrfi ~ ~nd st,rrn~nlinm in outer flow; S = sopaintion line. b) Primary flow velocity profilrs.<br />

~r/lJ,, in t,hr tlircvt.ion of the outer flow strcaniliue~. c) Secondary flow velocity proBles,iu/Um,<br />

nt ripht anplr~ to thr dircrtion of t,lw outer flom strcatnlines. 'rhc velocit,y profiles arc given for<br />

pot.rnt.inl line 1 - (13) nt, di(Torrnt st,ntions 111, wit.h a7,i~n~it,h nnplc 4 and st.nt,ion x as pcr table above<br />

(6 - 0'' - wir~dwarrl sytnn~rt,ry)<br />

Another irnport,ant, example of a t,hree-dimensional bountlary layer can 11e fount1<br />

in the corner formed by two mutually pcrprndicular planes in a slrcarn prallrl t,o<br />

their line of intersection. This flow config~rat~ion was invrst,igat,ed t.llrorrt~irnlly 1)y<br />

V~~sant,n 1dn.m 1921. 'I'lin est.rrnnl rcloc:it.y at, fnr t1ist.ntlc.c I1as hen nssunrc~l lo Iw of<br />

Ilnrt~.co's l,ypc, i. c!. givcn by<br />

It, is recalled from See. TXa that this type of external strrnln leads to sirnil:w vclocity<br />

pofilcs in the boundary layer. This feat,ure continues t,o hold in the case of flow in a<br />

corner. Some of [.he results of these studics arc givcn in Fig. 11.19; t,llis shows the<br />

vclooity distril)utions in the corner for three cliflkrcnt vnl~~cs of the prcssnrc parallletcr<br />

nt. A comparison between the distribulions for different values of ns demonstrates<br />

that the boundary layer in s corner thiclrc~~s apprrcia1)ly in t,hc prcsrnce of a<br />

pressure increase in the external flow.<br />

Expcrimcnt,al ol)scrvat.ions [82, 391 suggest that t,he flow in t,lle corncr s(:p.:~t,rs<br />

carlicr than th:~l on llic portions of t01e walls at a larger dislnncc from it, cvv11 in thc<br />

prcscncc of sn~nll ntlversc pressure grntlicnts. 'J'lris pliysic:nlly r~r~tlcrst~r~.~~tl~~~I~I~<br />

111011(:<br />

of I)clinvior is fnlly conlirrnetl by Lllesc thoorctionl r~sult~. 011 a flnt plr~l,c: H(-~):LI.:I(~<br />

occurs at m = -0.091 (see Fig. 9.1), separ:rtion in a right-nnglcd corncr occ~rs as<br />

cnrly ag for m = -0.05. At na = -0.08, Fig. 11.19, the flow in the nciglll)ou~.lrootl<br />

of t,he corner displays a separation region with revrrse flom (IL < 0). By oontrnsl, at<br />

a large distance no reverse flow occurs. M. Za.mir and A. 1). Young [120, 1271 carrid<br />

out extensive experiments on the laminar bomndary layer xlot~g a right,-anglctl corner<br />

a.t zero incidence. See also S. G. Rubin [93a].


258 XI. AxhIly syn~rnrtrirnl nncl tl~rrr-diri~msionr\i borlntlary layers<br />

AII rxI.(v~sinn of l'~~I11l1au~rn's nictl~od 1.0 rot11.ting hodieu \vns given by G. J~rngclaus [40];<br />

lie :~pplir(l it t.o the: invrsLignt.ion of rclnlivo ti~olion throng11 a curved chnnnel which is important<br />

in the Clrror,y of rrrilriftll~.nl 11111nps. 1.110 LI~rory Icnils 1.0 ~~rcdirl,ionu regarding scpamtion which<br />

nrr: in good :igrcrn~r:~~t, with n~ras~~renirnl..r.<br />

111 conrlr~sion, attention nlny I>r: drnwr~ to t.lir mlr~tl:~tion of t.lie 11o1111dnry layer on two<br />

~nnt~~~nlly 1)crl)rf1dic1llnr flnl. plalcs at. znro incitlt:ric:c pc:rforn~ctl hy (:. IT. Carrier 1121 and I


260<br />

XI. Axinlly syrnmrtrird nntl Il~rrr-tli~~~c~t~sio~~al bonndnry Inyrrs<br />

References<br />

[I] i\GARD Confcrcncc Proceedings No. 168 on "l'low Rcpnrntion" (1975) containing 42 contributions.<br />

[2] Andrndc, JLN., and Tsicn, TI. S.: Tl~c vclority distribution in a liq~titl-into-liquid jet. Proc.<br />

Pl~ys. SO(.. Imndon 49, 381-301 (1937).<br />

[3] '\shkcnns, 11.. and Itiddoll, F. R.: Invcstigntion of t11c tur1)nlent bonndnry lnyer on a<br />

yawcd flat plntc. NACA 'J'N 3383 (1!355).<br />

[4] 13nmrncrt, K., and Sohocn, ,J.: Die Strijmr~ng von Fliissigkcikn in rolicrcnde~~ Hohlwcllcn.<br />

Z. VllI 90, 81-87 (1948).<br />

[5] Bammcrt, K., and Kliiukcns, H.: Nabcntotwnuscr hinter Lcitriidcrn von axinlen Stro.<br />

rnungsmaechincn. 1ng.-Arch. 17, 367 -380 (1940).<br />

[Sa] Banks, W. H. H.: The boundnry lnyer on a rot,nting sphere. Qunrt. J. Mcch. Appl. MnLh.<br />

18, 443-454 (1965).<br />

[6] Bcckcr, R.: Bcrcchnnng dcr Reibungasclricl~tcn mit schwaclrcr Scl~undiirst~riim~~ng nach<br />

dcm I~npnlsvcrfnhrcn. ZFW 7, 163-175 (1!)50); EM) nlso: Mitt. Mn~-I'Inn~l~-l~~~~itut fiir<br />

SLrornungsforschung No. 13 (1956) nnd ZAMM-Sondcrhcft 3-8 (1956); Diss. Ciittingcn<br />

1954.<br />

[7] Binnic, A.M., and Hnrrin, D.P.: The application of bor~ndary lnycr thcory to swirling<br />

liquid flow through n nozzle. Qunrt. J. Mcch. Appl. Math. 3, 89-106 (1950).<br />

[8] Block, J.: A note on tlm vorbx pntterna in t.11~ boundary lnycr flow of n awcpt-bnck wing.<br />

J. by. Acro. Soc. 56, 279-285 (1952).<br />

[0] Biidcwndt,, U.T.: Die Drchstromnng iibcr frstem Grnnd. ZAMM 20, 241-253 (1940).<br />

[I01 Boltzc, IF.: Gron7~chichkn nn ItoL~tiolrslriirpcr~~. IXea. Giittingcn 1908.<br />

[Ill Burgcrs, J.M.: Somc considerations on thc dcvclopment of houndnry lnycr in the caee of<br />

flows having n rotationnl component. Kon. Aknd. van Wctenschnppen, Arnsterdnm 45,<br />

No. 1-5, 13-25 (1941).<br />

[I21 Cnrricr, C.F.: Tho bo~~ndnry lnycr in n corner. Quart. Appl. Math. 4, 367-370 (1946).<br />

[13] Chu, S.T., and Tifford, A.N.: Tho compressible laminar boundary laycr on n rotating body<br />

of rcvolution. JAS 21, 34-346 (1954).<br />

[I41 Collntz, I,., and Giirtlcr, H.: lbhratron~ung mit schwncl~cm Droll. ZAMP 5,95- 110 (1954).<br />

[I51 Cooke, J.C.: 7'110 horrndnry laycr of a chs of infinite yawcd cylinders. Proc. Cumbr. Phil.<br />

Soc. 46, 645-648 (1950).<br />

[IG] Cookc, J.C.: Pohlhauscn's method for three-dimcnsionnl laminar boundary layers. Aero.<br />

Quart.. 3, Pnrt 1, 51-60 (1951).<br />

[17] Cookc, .J.C.: On l'ohll~anncn's n~cthod with npplication to a swirl problem of Taylor.<br />

JAS 19, 486-4!N (1952).<br />

[I81 Cookc, J.C.: Tho flow of fluids nlong cylinders. Qrmrt. J. Mech. Appl. Mnth. 10, 312-331<br />

(1957).<br />

[ID] Cnokc, J.C., and IInll, M.G.: no~~ndnry layers in three dimensions. Progress in Acronautical<br />

Sciencea 2, 221-282, I'cgamon Press, London, 1962.<br />

[lDn] Crabtrrn, L. F., Kiichcn~nnn, D., nnd Sowcrby, L.: Three-dimcnaionnl boundary layers.<br />

Clrapbr in: L. Itoscnhcad (ed.): Lnminnr boundary lnycra. Clnrcndon Preea, Oxford, 1963,<br />

p. 409-491.<br />

[20] J)M, A.: Unkrs~~chungcn iihcr den Einflnea von Grenzachichtziiunen auf die aerodynamiachen<br />

Eigcnschnften von Pfcil- und Dcltafliigeln. Dim Braunschweig 1959; ZFW 7, 227-<br />

242 - .- Il9R!II. I-. .. ,-<br />

1211 I)irnrn~nnn. \Y.: Ihxhnung dm Wiirn~riil~ergnngca an Innrinnr umstrijmten Kiirpern mit<br />

konatnntrr nnd orlnvi-riintlerlicllrr Wanclten~l)rr~~tur. Ihs. I3raunschwcia - 1951 ; ZAhlhl<br />

33, 89-10!? (1953); we also JAS 18, 64-65 11951).<br />

[21a] Dnmnrquc, P., Lnghovikr, G., and Dagucnct., M.: DBtcrminntion drs lignea dc courant<br />

pari6talea sur un corps de ri.volution tournant nutour dc son axe dans un fluidc nu reps.<br />

ZAMI' 26, 325--336 (1975).<br />

[21h] I)wyer, JI. A.: Solntion of n thrm-dimensionnl boundary-layer flow with scparation.<br />

AIAA ,I., 6, 1336-1342 (1968).<br />

[22] 14;icl~clhren~~cr, E.A., and Oudnrt. A,: Mi.thode dc cslcul de la couche limite tridirncnuionrllc.<br />

Applicntion A nn corps fudh inclini: snr Ic vent. ONERA-Publication No. 76,<br />

C11nt.illon. 1955.<br />

References 261<br />

,/<br />

1231 Eichelhrcnner, E.A.: D6collement laminnire en troia dirncnsions aur un obstaclc firti.<br />

ONERA-Publication No. 89, Chatillon. 1957.<br />

[24] Eichelbrenner, E.A.: Three-dimensional boundary layers. Annunl Review of Fluid Mech.<br />

5, 339-360 (1973).<br />

[25] Eldcr, J. W.: Tho flow poet a flat pin& of finite width. JFM 9, 133-153 (IDGO).<br />

[26] Fadnia, B. S.: <strong>Boundary</strong> layer on rotating aphoroids. ZAMP V, 156-103 (1064).<br />

[27] Fagc, A.: Expcrimcnta on a sphere at critical Iteynolds-numbers. ARC 1tM 1760 (1036).<br />

[28] pgnrty, L. E.: The larninnr boundary layer on a rotating blade. JAS 18, 247-252 (1951).<br />

[29] triissling, N.: Verdunstung, Wiirn~ciibcrgang und Geacl~windigkcitavcrkiinng bci zweidimc~lsionalcr<br />

und rotationusymrnetrischer lnrninarer (2rcn7ficl1ichtnt.riimung. 1,nncln. Univ.<br />

Areakr. N. F. Avd. 2, 35, No. 4 (1940).<br />

[29n] Furuya, Y., and Nakarnura, I.: Velocity profiles in the skewed boundnry lnycrs on aome 7<br />

rotating bodies in axial flow. J. Appl. Mcch. 37, 17-24 (1970).<br />

[30] Furuya, Y., Nnkamurn, K., and Kawnchi, H.: The experiment on the skewed boundary<br />

layer on a rotating body. Bullet.in of JSME 9, 702-710 (1966).<br />

[31] Furuyn, Y., and Nnkemnra, I.: An cxpcrin~ontnl invcatigntion of the skowod bonndnry<br />

lsyor on n rotaling body (2nd Rcport). Bullotin of ,JSME 11, 107-246 (1!)08).<br />

[32] Garbscl~, Ii.: Ubcr dic Grenzschicht an dcr Wnnd cines Trichtars mit inncmr Wir1)cl- nnd<br />

Radialstriimung. Fifty ycnrs of boundnry-lnycr research (W. Tollmien and H. Giirtlcr. cd.),<br />

Brannschweig, 1955, 471 -486; six also: ZAMM-Sondcrhcft 11 - 17 (1956).<br />

[33] Ccis, TI).: Ahnlichc Crcn7~chichtcn nn Rotationskorpcrn. Fifty ycnrs of bonnilnry-lnycr<br />

rcscnrch, (W. Tollmicn, and H. Oortlcr, ed.), 13munschwcig, 1955, 204-303.<br />

1341 . - &is, Th.: ,,Khnlichc" drcidi~rre~~sionnle Grenzsclricl~ten. J. Rnt. Mcch. Annlysis 5, 643 ---<br />

686 (1056).<br />

[35] (:cisslcr, W.: Rcrcchnung dcr I'oknlinlstriimung unl rotntion~~yrnn~ctriscl~c Itiitnpfc,<br />

1Ungprofilc nnd '~ricbwcrkscinlii~~fc. ZFW 20. 457-462 (1072).<br />

[36] Geiealcr, W.: Uercchnung dcr drridimcnsionnlcn Inminarcn (:rr?nzechicht an nngwkllkn<br />

Rotntionskorpern mit Abloanng. AVA-Bericht 74 11 I0 (1074); Ing.-Arch. 43, 413-425<br />

(1974).<br />

[37] Ckiwler, W.: The throe-dirncnaior~nl Inminar boundary lnycr ovcr a body of rcvolution st incidence and with separation. AVA-Bcricht 74 A 08 (1974); AIAA .J. 12, 1743--1745<br />

(1974).<br />

[38] (:ersten, K.: Corncr interference cfich. r\GARD Rep. 290 (1959).<br />

[39] Ger~ten, K.: Die Crcnzsc11iclltatron1ung in cincr rccl~twinkligcr~ Eckc. Zi\MM 39,428--429<br />

(1 959).<br />

[40] Glnucrt, M.B.: The wall jet. JFM 1, 625-043 (1956).<br />

[41] Glnuert, M. B., and Lighthill, M. J.: TIIC nxisymrnctric bonnclnry Iaycr on n long tl~in<br />

cylinder. J'roc. Roy. Soc. London A 230, 188- 203 (1955).<br />

[42] (Xrtlcr, 11.: Dic laminnre Grcnzsrlricht nnl schicbcnclcn Zylincler. Arch. Math. d, Fwc. 3.<br />

21(i-231 (1952).<br />

1431 Giirtler, 11.: Dccny of swirl in nn axially symmetrical jet, far from the orificc. Itcvisla<br />

Mnth. Hisp.-A~ncr. 11'. Scr. 14, 14:)-178 (1054).<br />

[44] Grohnc, I).: Zur lnrninarcn Strvmung in cincr krciszylindrischen Dose mit rot~icrendcn~<br />

Ihckcl. ZAMM-Sondcrhcft 17-20 (1956).<br />

1451 (>ru~rl~witz, I(.: Turb~~lcnte Rcibungsschichte~~ mit Scknndiirstriimung. 1ng.-hclr. 6,<br />

355-365 (1935).<br />

Han~n, F. It., nnd Peterson, L. F.: AxisymmcLric laminar wnkc behind n slcndcr body of<br />

revolution. JFM 76, 1 - 15 (1976).<br />

Hannnlr, I1.M.: Forcrd flow agninsh n robling disc. AltC JtM 2772 (I!)52).<br />

1Iansrn. A. G.. Hcrzie. 1I.Z.. nnd Costello, G.R.: A visunlizalion stndy of sccond:iry flons<br />

in cnscddcs. NI\CA 'FI; 2947 (3953).<br />

Ilnnsrn . . . . . A C.. and Ijrrzie. 1I.Z.: Cross flows in lan~ioar incon~pressiblc boundary Inyrrs.<br />


. .<br />

lit 1 h1:lgt.r. '1.: 'l'l~idc I:IIII~II:I~ h~l~chry l:~yvr 1111iIer SINI(I(VI II(TIII~J):I~~OII. Il'ifl,y ~(.;II.s<br />

IIIIIIII(~~~ lilyrr rrs(~:~rvh (\I1. r~'O~~llli('ll :11111 11. (:iirl,l~:l.. (.(I.), I


264<br />

XI. Axially symmetrical and thrm-dimensional boundary layera<br />

[107] Steinhcucr, T.: Three-dimensional boundary layers on rotating bodies and in cornera.<br />

AOARlJograph No. 97, Part 2, 567-611 (1965).<br />

[I081 StewartRon, K., and Howarth, L.: On the flow past a quarter infinite plate using Oscen's<br />

equations. JFM 7, 1-21 (1960).<br />

[I091 Stewarteon, K.: Viscous flow pnst a qunrtcr infinite platc. .JAS 28. 1- 10 (1961).<br />

[I101 'J'nlbot, I,.: I~minar swirlinl?. pipe flow. J. Appl. Mcch. 21, 1 -7 (1954).<br />

[1]():r] 'Jh, S.: On lnminirr bo~mdary lnyer over a rotnt~ng blnrle. .JAS 20, 780 -781 (1953).<br />

11 I I j 'J'nylor, (:. 1.: 'J'ho 1)oundery laycr in the ronvcrging nozzle of n swirl ~rlornizvr. (2urtrt. -1.<br />

Mcch. Appl. MaLh. 3, 129- 139 (1950).<br />

11 121 Tetervin. N. : <strong>Boundary</strong>-layer momentum equations for three-dirncnsional flow. NACA<br />

><br />

. .<br />

TN 1479 (1!)47).<br />

11131 l'iiford. A.N.. and Chu, S.T.: On the flow around a rotnting disc in a uniform stream.<br />

L ,<br />

JAS 19. 284-285 (1952).<br />

[I 141 Timn~nn, R.: Tho theory of three-dimensional boundnry layers. J3oundary layer eiTecle in<br />

acrodynamirs. Proc. of a Sympouium held at Nl'l,, landon, 195.5.<br />

[I 151 'I'imman. It., and ZturL. J.A.: Eine Rcrhcnmet.hode fiir dreidin~ensior~alc laminare Grenzschichkn.<br />

IWtv vears of boundnry-layer - " research (W. 'l'ollmien and II. GBrl.ler, cd.),<br />

Ur~unschweig, 1655, 432-445.<br />

1, [I101 Tomotika, S.: Ihrninar bonndary layer on the surface of n sphcro in n uniform stream.<br />

ARC 1tM. I678 (1935).<br />

, [I171 I'oniotika, S., and Imai, I.: On the transition from laminar to turbulent flow in the<br />

bounclary lnycr of a sphere. Rep. Aero. Res. lnst. Tokyo Id, 389-423 (I9:SR); and Tomo-<br />

tika, S.: l'roc. Phya. Math. Soc. Japan 20 (1938).<br />

[I 181 l'ruckcnbrotlt., E.: ]$in Quadmturvcrfnhren zur Bcrcchnung der Reib~~ngsscl~icllt an axinl<br />

angestriin~kn rotiercndon I)rohkiirycrn. In&-Arch. 22. 21 -35 (1964).<br />

[II!)] Truckcnhrodt, E.: Die turbulente Striimung an eirier angeblancnen rotiercndcn Scheibe.<br />

ZAMM 34, 150-162 (1954).<br />

[I201 Vogelpohl, G.: Die Stromung dcr Wirbclquelle zwischen ebeuen Wiinden mit Reriicksichtigung<br />

dcr Wandreibung. ZAMM 24, 280-294 (1944).<br />

11211 Weher, 11. E.: The boundary lnycr inside a conical surface due to swirl. J. Appl. Mech. 23,<br />

587 --592 (1950).<br />

1' 11221 Wieghardt, I(.:- ISinigc Grcnzscl~icht~ilr~~s~~tigc~~ nn S


206 XIT. l'l~rr~nnl bo1111r11iry lnycra in Inminnr flow<br />

'1'111- t.vr111 tl lC7./tlt rc:prrsrnls n st~l)st.ar~t id tlcrivativc which consist,^ of a local ant1<br />

:I cwr~vc.c.l.ivr c.o~~l.ril)l~t.io~~.<br />

Ilrrrs lr I.l/n~ sc~ t l q l tlcr~ot,cs the 1h0r1n:~l (:o~~(l~~t:I.ivit,y of 1.11~ (Il~id. 'l'he rtcg:~l.ivc<br />

. .<br />

slgn s~g~~ifics ~,II:L(, thc hrnt Ilux is rccltol~cvl :IS positivr in the tliroc1,ion of the t,cmpc-<br />

r 3<br />

I Ilr rl~nt~gc ill t.l~r f.ot.nl rl~c~fiy. tllCT, (:on!iist,s of a chnngo tlE : p,,l l'tlt. in t.hc intcrn:d<br />

c~~crgy :tntl n c.l~:wgc in Iti~~rl.ic: oi~crgy by at1 ntnount, (1 { 6 0 LI I ' ( ~ L ~ 1- v2 4 w2)}, if<br />

I IIV ~ I : I I I ~ ill V tl~r l)oi~v~~tial cwrgy (Iuc to a displ:~ccrn~~~t it1 Ihc gr:~vit:~t,im:~l Iirhl<br />

is ~~rglrcl(~l. I lvncc<br />

Tho nrgst,ivc sign is a.tltletl in order to follow t,hc sign convcnt,ion of cqn. (1 2.1) accortling<br />

to wl~ich work adtlcd to tho fluid from t,l~r! oui,sitlc is rlcgativc. Thc tol.:d worlc<br />

j)erforlnrcl by t.hc normal :rnd shearing shrssrs prr unit! time rsrl now l)c writ.t,c:n :IS<br />

JIrrc a,, n,), . . . , s,, rlcuok tho rlorlnn.1 ant1 sl~rari~~g si.rcmt:s itit.rot111rrtl r:~rlivr ill<br />

eqns. (3.20) and (3.26). Substituting eqtls. (12.3), (1 2.4) ant1 (I 2.0) into cqn. (1 8.1 ),<br />

nntl pcrfnrming s numl)cr of obvious simplificst.ions, i~~cl~ltling those inI.rotl~lcrtl by<br />

cqn. (3.1 I), wc ol~t,ain, after some calculnt,ion, the: followi~~g oncrg.y o(j~~:~I.iot~s 01' 1.l1c<br />

flow:<br />

Jlcrr @ rrpresrnts the tlissipatiorl firnct,ion give11 I)y<br />

Rquat.ion (1 2.7) enjoys gcnrral valitlit,y, I)ut in most pr:1,c4ir:d rnsos it is possil~lc to sirnplify<br />

it still furt01cr. Jrl doing so, it, is ncccssnry carcfrtlly l.o(list,il~g~~isl~ 1)ctwcc11 l.hc rnsr<br />

of a pcrfcc:t, gas n.nd t.l~st of :LII incom~)rrssil~lc Iluitl. 'I'll(- f.l~c~r~notlyt~n~~~ic? proprrt,ic,s<br />

of t,l~c Int,t,rr do wol ronsl.itnt.e n 1irnit.ing m.sc of 1.11~ prnl)c.~.l irs of the f'orl~lrr.<br />

tJic va.riat,ion in iJ~o int,crn:d energy of :L prrfrc:t gas is clc I-- c,, ti'/', wllcrrns l,l1:11~ 01'<br />

it,s ontl~allly is tlh. c,,dT. Tlin corrcspo~~tling v:~r.iat.iot~s for nn inc-olr~prrssil)l(~ fl~litl<br />

:1ro (if? = c (17' a,ll(I dl& .r c (17' -1- (l/@)dp .<br />

M'itlr the nit1 of' Illis rqu:~t,io~t :III~~ of<br />

c, (IT - c,, d 7' 1 (1<br />

111 li~~t.,


268 XII. 'I'hcrrnal borrnrlary lnycrs in laminar flow b. Temperature incren.w through ndinbntic cornprcssion; stagnation tempcratme 269<br />

Here c,[d/kg (leg] represents the specific: heat at const,nnt, pressure per unit mass.<br />

In general, c, clepcnds on t,ctnpcmtnre. In the casc of a constant thrmal contluo-<br />

tivit,y, we obtain the simpler form<br />

In thc ca.se of an incomprcssil)lc fluid, wc havc tliv rct = 0, antl cqll. (12.7) togrthcr<br />

wit.11 dn .- c tb7' yields<br />

r 7<br />

I he tan~pnmtnre changes brought, about by thc dynamic: pressure variation in<br />

a comprc:ssil)le flow arc important for its heat bala~ice. In particular, it appears useful<br />

to compare t.11~ tc~nperaturc diffcrcnccs which result from the hcat due to friction<br />

wit,ll those cattsctl by comprcssion. For this reason wo shall first cvnluatc the tcrnpcra.t.trrc<br />

increaso due to compression in a frictionless fluid stream : 1 f the velocity<br />

varies along a st.rm.tnlitlc t,l~o tcmpcr:~t.urc must vary also. In order to simplify - thi: ..<br />

argumcnt it, is perrnissi1)lo to assumc that the process is adiabatic and rcvcrsiblc<br />

bccaltsc the small value of conductivit.~ and the high rate of change in the thcrmodynamic<br />

propcrtics of state will, in gcncral, prevctit, ally appreciablc cxchange of<br />

hmt with the surroundings. In particrtlar wc propose to calculate the temperature<br />

increase (AT),, - T, - 7', which occurs at the stagnation point of a body in a<br />

stream anti wltich is due t,o compression from p,, t>o p,, Fig. 12.2.<br />

l'ig. 12.2. Calc~~lation of bl~c tctnpcraturc incrmno<br />

at stagnation point due to adiabatic comprc3sion<br />

(A7'),,, = To - 7.m<br />

For the casc of zero hcat conduc%ion in frictionless flow the energy equation<br />

(12.11) givcs the following relation between temperature and pressure along a strcam-<br />

liric (coordinate s)<br />

I<br />

where w(s) dcnotcs the vclocity along a streamline. Dividing by euy and integr,zting<br />

along a strcamlinc we obtain<br />

"<br />

Mercury<br />

1,uhr.<br />

oil<br />

Air<br />

(ntrnooph.)<br />

Temperature<br />

6 T<br />

Table 12.1. Physical constants<br />

(1 d = 1 Nm; 1 IrJ/kg dcg - lo3 m2/sec2 dog)<br />

Specific<br />

hent<br />

Cv<br />

[lzJ/kg K]<br />

Thernrnl Ther~nnl<br />

condnrtivity difl~mivit.y<br />

k n x 10'<br />

[Jim noc K] [ni2/mc]<br />

Vincoaity<br />

/1 X lom<br />

[kg/~n ncc<br />

= r~ R]<br />

Kinernntir<br />

vinronity<br />

v x 108<br />

[rn2/uec]<br />

Prnndtl<br />

nurnber<br />

In an analogous manner, thc complete Navicr-Stokcs r(~na1ions (3 26) lead to the<br />

I%ernoalli equation when viscosity is neglected in them and whcn an intagrnl along a<br />

streamlinc is talren:<br />

so that the tcmpcrature increase<br />

1<br />

T - T, = -- (wW2 - w2), (12.14a)<br />

%<br />

antl, in particular, the temperature increase at the stngnat~ion point (w - 0) t111c to<br />

adiabatic contprcssion becomes<br />

Here w, dcnotes the free-stream vclocity (Fig. 12.2). The temperature T, assumrd 1)y<br />

the fluid when the velocity is reduccd to zcro is known as the slagnntio~t te~npernlurr,<br />

sometimes also referred to as the total lernperature. The difference (AT),, = To - l',<br />

brtween the stagnation and the free-stmam temperature will hcre be called the<br />

ndiabtrlic trmprralitre incrrosc<br />

P<br />

I-]


270 XIT. 'I'l~rrtnal boundary layers in leniinar flow<br />

Fig. 12.8. Atli:rl>nf ic tcnlp.-ratrlro<br />

inrrmwo at stngnntion<br />

point for air frorrl qn. (12.1411)<br />

(r,, = 0 24 l%t~~/ll)i Iot,os t,llr rorffi(:icn{, of I,llrr~n:~l cxpnnsiot~ nl. l.r~ml)c~r:r.l.~~~~c 'I'm, 1' is t,llc die<br />

"1' tJlc t,wo sprcific Iir:r.t,s, ant1 cm is t.hr s1)rrtl 01' sout~tl ol' 1I1v llilitl.<br />

r ><br />

I IlC Inst t.isrm (:an 1)c nrglrrt,ctl in flows wliirlr n1.c nfl'cv+c.(l by a~.n\rita.tio~~. 'I'l~is<br />

nlrnns, getlrl~ally sL)ral


272 XII. Tl~ern~al boundary layers in laminar flow<br />

In the general case of a compressible medium, eqns. (12.17) to (12.20) form a system<br />

of six sim~~ltmwous equations for the six variables: u, v, w, p, e, Tt. For incompressible<br />

media (liquids) the last equation as well as the tferms u ap/& etc. which represent,<br />

compression work vanish. In this case there are five equations for u, v, w, p, 1'.<br />

1t is noccsnnry to ernphnsizo t.l~nt tho sytnl)ol p does not donotc the sumo physical quontity<br />

in eqnu. (12.IR), (12.19) and (12.20). Whorens in tho lnut two cqunlionn p stnntls for tho thcrrnodynamic<br />

property, the symbol p in eqns. (12.18) represents the difference between the actual prcusure<br />

and the static pressnre of the mcdinm at rest when its density is em (cf. remark concerning<br />

fluid8 without free surfaces in Sec. IV a). In the cn.908 treated in detail in the litmature so far, tho<br />

pressnre term has been included either only in eqns. (12.18) - the case of free flows - or in the<br />

pnir of equations (12.10) and (12.20) for compressible flows.<br />

Before procceding to indicate solut,ions of the above equations, which we shall<br />

discuss in tho sl~ccccding sections, we propose, first, to examine them from the poir~t<br />

of view of the principle of similar it?^ [10B]. In this way we shall discover the dimension-<br />

less groups on which the solutions must depend. We begin by introducing dimension-<br />

less quantil,ies iuto eqns. (12.18) antl (12.19) in the same manner as in Sec. IVa,<br />

when Itcynolds's similariLy principle was deduced from the Navier-Stoltcs equations.<br />

All lengt,l~s will be referred t,o a representative length I, the velocities will he made<br />

dimcnsionlcss with rcfercnce to the free-stream velocity U, the density with respect<br />

to e,, antl the pressure will be rcferrctl to e, Urn2. The temperature in the energy<br />

equakion will be madc dimcnsionlcss with reference to ttpe tempcrat,ure dircrence<br />

(Al'), = T,,, -- TW between the wall and t01e fluid at a large distance from the body;<br />

thus O* -- (7' -- Tc,)/(A 7')". hnoting all climcnsionlcss quantities by a star we obtain<br />

from eqns. (12.18) anti (12.1 0) for the equation of motion in the x-direction and for<br />

the energy equation in the two-dimensional case with g, = -g* cos a:<br />

"<br />

ao * ao* av* a20*<br />

Q* (u* h* -i- V* ay*) - e,r, * 1- 1 -<br />

The tlimcnsionlem dissipalio~~ function is here givcn by<br />

. . . - . - .- . . . -<br />

t sine(? the viu~onity /I wn.8 aflsllnled constant the above system is valid only for moderatc changes<br />

in tcni rrnbure. In the rmc of large temperature tlilTerences in gnscs (over 50" C or 00" F),<br />

or mocfcmtn ones (over 10" C or 18' F) in liqnids, /I mu~t be hken to vary with tcmpcmtllre.<br />

In thin c:rse t.he equation of motion robins the form (3.29). The six equations under consideration<br />

mnst he snpplenwnbri by the empirical viscosity law /c (l'), eqn. (13.3), and, in all, we<br />

hnvo n syutrm of nevcn uirnnlt.nncoun cqnnl.ioncl for tho scvrn functions It, 11, tfl, p, e, 7'. 11.<br />

I<br />

c. <strong>Theory</strong> of sitnil:~rit,y in 11c:tt tranafrr 273<br />

It is recognized that the solutions of eqns. (12 21) nntl (12.22) tlcl)cnti on t h following<br />

five dimensionless groups:<br />

'l'hc /irst group is tl~c nlro:uly f:tmilinr Ilcynoltls nunlbcr. The fourlh nntl fifI11 groups<br />

differ only Ijy {,he factor R, so that, in all, tShcrc arc only /our inrlrpenrIe111 dintcit.?iol~lc~s<br />

qua,i~lilies. The second group call be rcprcscnlctl as<br />

This gives tl~c Grashof 1111m1)cr<br />

q /? 1:' (A<br />

G<br />

7')<br />

. .- -- --- 0-<br />

v2<br />

'i'hc third quantity m.n bo wriltcn as<br />

whcrc<br />

is the tl~erinul di//uaivity [m2/sec or fL2/soc] and<br />

is the dimensionless Prandtl number. It will be noted that it depends only on tho<br />

proprrtirs of the medium. For air P = 0.7 npproxirnatcly and for watcr at 20°C P = 7<br />

approximately, whereas for oils it is of the order of 1000t owing to thir large viscosity<br />

(see also Table 12.1). The Jourlh dimcnsior~lcss quantity leads directly to the tem-<br />

perature inrrease througli atliabatic compression as calculat.cd in cqn. (12.14b). We<br />

1 1 % ~ ~<br />

wl~cre E is Irnown as tllc dirncnsionlcss Eclrcrt number. Tl~c quantiLy E = lJm2/c1,(A71)0<br />

is sorncLirncs used. It in related to the Prandtl number by thr equation P, = P R<br />

l'hc ratio of thc two tempcrat~~rc dilTcrcncrs has, 80 far, not received a separnk nalne. l+dowing<br />

n snggcution by Professor E. Srhmidb it hnrr bern proposed in nn rarlinr edition to call it, after<br />

I'rofcu~or IF. It. C:. Eeltort,, antl to give il t.l~e namc of t.hc 1Srkrrt. nnmbrr, E.


can I)r rct.ni~rrvl in inrotnl~rrssil~lt~ flow :IISO. I)ut, the inf~cr~~rctnt~ion wit11 reference to<br />

atli:~l):~t.ic: t:omprcwion vcnsr>s l,o I)(: vnlitl. It is now possil)lc 1.0 conclutle that frictiot~al<br />

hc~11, nncl IICRI, (IIIC 1.0 (:ompr~~sion :Ire in~port~nnt. for the c:n.lcnlnt.iorr of the temperature<br />

fivltl whrn tltr I'rw-st,rrn.~n vc4oc:ity 11, is so lnrgc t.l~n(, t,lro ntlinhntic t,crnl,er;~ture<br />

int:rtx:~sr is ol' l,ltc S:IIII(~ orb nf m;~p~iI~t~lt~<br />

:IS I,lrc prt?srril)c~l I~~:~r~pt>rnt,~trc (lifT


276 XtI. Thermal boundary layers in laniinar flow<br />

Whrn sprcial solr~tions are consitlerctl thcn, in most cases, one or more of the<br />

tlimensionlrss groups will disappear as the problem will only seldom be of this most<br />

general nature. As srrn from eqn. (12 27) the temperature field and, hence, the<br />

coefficicnt of heat transfer tlcpcnd on the Eckert number only when the tcmperature<br />

cliKcrences arc large (50 to 100° C or 100 to 200° F) and whcn, simultaneously,<br />

the vclocitics arc very large and of the order of the velocity of sound. With moderate<br />

vclocitirs the ten~peraturc and vclocity fields depend on the Eckert number when<br />

temperaturc differences arc small (several degrees). Further, even with moderate<br />

vrlocitics, the buoyancy forccs in eqn. (12.21) caused by temperature differences<br />

arc small comparcd with the inertia and friction forces. In such cases the problem<br />

ceases to dcpend on thc Grashof number. Such flows are called forced flows. Iience,<br />

for forced wnvrdion<br />

N, = f (R, P) (forced convection) .<br />

The Gmshof nwnbcr becomes important only at very small velocities of flow,<br />

particularly if the motion is caused by buoyancy forces, such as in the stream<br />

which riscs along a heatcd vert.ica1 plate. Such flows are callctl natural, and we refer<br />

to thc prohlcrn as one in durn1 co?~vection. In wch cases thc flow becomes indepcntlrnt<br />

of the Rcynoltls numbcr, and<br />

N, = f (G, P) (natural convection) .<br />

Examples of problcms in forced flow are given in Sccs. c to g of the present chapter;<br />

cxan~ples of problems in natural convection are contained in Sec. h.<br />

(I. Exnct solr~tions for the problem of temperature clistributinn in a viscow flow<br />

We shall now proceed to solve several particular problems of temperature<br />

distribution. The examples to be discussed will be sclected from the Iarge number<br />

of possible cases on the ground of mathematical simplicity. We shall begin by dis-<br />

cussing several cases of exact solutions, as given by H. Schlichting [loll, just as we<br />

have begun with the discussion of examples of exact solutions of the equations of<br />

flow with friction in Chap. V. For the case of incompressible two-dimensional flow<br />

with constant properties the system of equations for the velocity and temperature<br />

distxibution in steady flow along a horizontal z, z-plane we obtain from eqns. (12.17)<br />

to (12.19):<br />

d. Exact aolutiona for the problenl of temperature distribution in a viscoua flow<br />

Fig. 12.4. Velocity and tcmpcraturo T-T,<br />

distribuLion in Couette flow. a) Velocity<br />

distribution. b) Temperature distribution<br />

with heat generated by<br />

friction when the temperatures of<br />

both walls arc equal. c) Tcmperatrlre<br />

distribaLion with hc~t gcncnted by<br />

Friction for tho cast when Lhc lower<br />

wall iu non-conducting<br />

where<br />

1. Coucttc flow. A particularly simple exact solution of t,llis systcm is obtained<br />

for Couette pow, i. e. for the case of flow between two parallel flat walls of which<br />

one is at rest, the othcr moving with a constant vclocity U1 in its own plnnc, l'ig. 12.4.<br />

The solution of the equations of motion in the absence of a prcssurc gratlic~~t in the<br />

x-direction is<br />

A very simple solution for the temperature distribution is obtained when it is pos-<br />

tulated that the temperature is constant dong the wall, the boundary conditions being<br />

277<br />

y=O: T=T,; y=h: l'=T,. (12.35a)<br />

In this case thc dissipation function reduces to the simplc expression @ = (a~/ay)~,<br />

and the equation for temperature distribution becomes consequently<br />

With thc boundary conditions (12.35a), thc above equation has a solution which is<br />

independent of x. Since, with v = 0, the term v aT/ay on thc Icft-hand sitlc also<br />

vanishes, all the convective terms on the left-hand side of eqn. (12.34) become cqual<br />

to zero. The resulting temperature distribution is, thercfore, due solely to the gencration<br />

of heat through friction and to conduction in the transverse direction. Prom<br />

eqn. (12.35b) we obtain<br />

d2T<br />

k-=-p dy2 (:)', (12.35~)<br />

and, substituting dultly, we have<br />

'UIC solution of this cquntion which sntisfics conditions (12.36n) is


if wc: pillf - - 'I1, - (A7'),. 11, is sccn t,llnt it cat1 1)o oxprcssctl it1 t,orms of 1.11~<br />

1'rnntll.l<br />

1111in1)t:r 1111(1 l.lw 16c:ltcrt. numt)cr from cqn. (1 2.28). In lhc cnso urlclcr consitlorntiot~,<br />

i. c. wlwn thrc is no convection of I~ei~t, the temperature distribution is seen to<br />

clrpond on the protluot P x E. If, finally, t,hc ilbbrevintion rl = ?//it is introtluced,<br />

tho followin,n wry sitnple equntion for temperature distribution is obtaincd:<br />

'l'l~is si111111v rx:11111llf\ shonx I,II:II. tilt, gwt~:tI ifw of' IIC:II, IIIIC lo r'rict~io11 rxcrts n 1:1rgc<br />

vl1i~c.t. 011 IItr ~)r.oc:rss of' rooling :tl~tl l,11:1.t. :I(, lliglt 1-rloc.il.irs t h w:trlncr wall Inny<br />

I)IYYIIIII% 11(~:1l(~l inslt':~tI 01' I)rin!: (:ooIr~I. 'l'llis t-lh't. is of (.IIII(I:UII~~III:II ill~porl,:lnc.c lor<br />

t IIV ro~~si~lt.t.;~t ion ol'c~ooli~~g :11. 11igl1 vt:loc.il iw. It. \viJI r.c:c-~r~. in t,ltc. ~)~.ol)lt>tns c~ol~tlc:ci,t.tl<br />

~villt t11t~1n:11 1~~11ntI:try I:tjrrrs :111tl will I)(, ~1isc11ssr~l I:~.t,c:r.<br />

d. Exact ~olutions for tho problem of tmnpornture di~t~ribrltion it1 a viscou~ flow 279<br />

Fig. 12.5. Telnpern1,rlre distribution in<br />

Couettc flow for vnrions temperaturea of<br />

both walls with Iteat generated by friction<br />

(7'" = tempcrnturc of the lower wall,<br />

l', - kmpcmlrlrc of t,he upper wall)<br />

0.8<br />

v 0.6<br />

Tltis tlistributior~ is seen plotted in Fig. 12.4b. Tlic Iligllrst tcni[)ernturc T',,, c:rrnt,ccl<br />

by frirt,ional hcat occurs in thc ccntrc ant1 Itas a va111e givcn by<br />

In the case of coinprcs.ribic! flow for wllicll tho al)ovc solutiot~ rcmains v:did provitltrtl<br />

that t,he vis~osit~y may I)o assumrtl to be intlcpcndcnt of tcrn~)cmturc, eqn. (12.38)<br />

cnn be put, in the following tlimcnsionless form<br />

cvhcro M =F [J,/C~ clcnol.cs the M:~ch nulnl)c~. :~ntl c,, is 1,110 vclocil,y of so~l~ltl :kt<br />

le~nl)cral~r~rc l',. It is rcrnarltal~lo t.llnt Lhc mnximum t.crnpcrat.r~ro docs not clcpcntl<br />

on the tlistanro bct,\vccll t,llo wn.lls. 'l'ho ql~:~ut.it.y of 11t::~t grnrrat,otl 11.v fric:l,ioll is<br />

disl~ril~uted cvcnly bctwcen t.hc st,at.ionary ant1 thc moving \v:~ll.<br />

Tlie tcmpcrnturc distrilmtion in t.11~ 1)rcsctlt c:xa~~l~l,lc is import,:lrll. for I.llc<br />

flow in the clearance bctwccn a journal and it,s bcnring a.ntl was tliscussctl itt t1ct;ril<br />

by G. Vogclpol~l [143]. The flow in thc clcnmncc is 1anlinn.r in vicw of t.hc s~nall<br />

tlitnonsions of the latter and of thc Iligll viswsit.y of t1I1c nil. '1'11~ t1rn~1)c.r:t.t.~rrc riso<br />

tluc t,o frict.ion becomes consitlcmblc cven :tt, nlotlrrat,c: vclocitics, as sllo\v11 by<br />

t,hc following cxanlplc: Viscosity of oil at, motlcmtc t,crnprrnt~t~rc (my ROO (1) from<br />

Table 12.1 : ,L = 0.4 I


280 X11. Thermal honndary layers in laminar flow<br />

conrlitions for tcm pcraturc bccomc :<br />

The solution of eqn. (12.34) with the above boundary conditions is<br />

it, is seen plotted in Fig. 12.312. Thus the temperature increase of the lower wall<br />

is given by<br />

T (0) - To = T, - !Po = ,u UI2/2 k . (12.41)<br />

The value T, is callctl the adiabatic wa.21 temperature as already mentioned; it is<br />

cqual to the reading on a thermometer in thc form of a flat plate. Upon comparing<br />

cqns. (12.41) and (12.38) it is seen that the highest temperature rise in the centre of<br />

the channel for the case of equal wall tcmpcratures is equal to one quarter of tho<br />

adiabatic wall temperature rise<br />

The criterion for cooling in the case of different wall tempcratnres given in eqn. (12.37)<br />

can be simplified if the adiabatic wall temperature T, is introduced. We then have<br />

11. M. de Groff [48] generalized the preceding solution for Couctte motion to<br />

incluclc the case when thc viscosity of the fluid depends on temperature. The further<br />

extension to a compressible fluid was given by C.R. Illingworth [68] and A. J.A.<br />

Morgan 1871.<br />

2. Poiseuille flow thror1~11 a channel wit11 flat walls. A furthcr and very simple<br />

cxnot solution for tempcralme tlistribution is obtained in the casc of two-dimensional<br />

flow through a channcl with parallel flat walls. Using thc symbols explaincd in<br />

Fig. 12.6 we notc with I'oisc~~iUc that the velocity distribution is parabolic:<br />

Fig. 12.6. Vc1ocit.y and tcrnpcra-<br />

turc distrihution in a channel with<br />

flat walls with frictional Ilmt. fx7.lwt1<br />

int,o anconnt<br />

d. IPsncb solrttio~in for thc problrtn of totnpcraturc tlisLrilmbion in a visoons flow 281<br />

Assuming, again, equal tmnpernt.urrs of the walls, i. c. 7' -- l',, for y = ,I h, we<br />

obtain from cqn. (12.35~)<br />

the sohition of which is<br />

The t,cmpcrat,uro distribution is reprcscntcd by a parabola of thc fourtd~ dcgree,<br />

Fig. 12.6, and t h mnximnm tcmpcraturc rise in Iho ccnl,rc of t h chi~nnrl is<br />

An extension of the solution to the case of tempcrat,~trc-clcpnnclcnt viscosity w:~s<br />

given by IT. liausenblas 1631. The corresponding solut,ion for a circular pipe was<br />

given by U. Grigull [47].<br />

A further exact solution for the thermal bounclary layer mn bc ol~txincd for<br />

the flow in a ronvergrnt and a divergent channrl alrcatly cortsitlrrrtl in Sro. V 12.<br />

The solution for the velocity field due to 0. Jeffery and 0. Iiamel quoted in that<br />

section was utilized by I(. Millsaps and K. Pohlhausen [86] in order to solvc thc<br />

thermal problem. The temperature distribution across the channcl is seen plotted<br />

in Fig. 12.7 for different Prandtl numbers. Owing to the dissipation of energy which<br />

is particularly large near the wall, the resulting temperature profiles acquire a<br />

pronounced "boundary-layer appearance". In fact, boundary-layer-like appearance<br />

becomes more pronounced as the Prandtl number increases. The velocity distribution<br />

u/us from Fig. 6.15 has been plotted in Fig. 12.7 to provide a comparison.<br />

Fig. 12.7. Tcmpcrnluro dis-<br />

tributions in a convergent<br />

channel of included angle<br />

2 a = 10" at varying Prandtl<br />

numben P, afhr I


Rotntirig rli~k: (:II:I~I. V, in pnrtkular Pigs. 5.12 and 5.13, ~ont~aitlrd a solrtt.ion<br />

1.0 t>lw flnw prol)lr~n nrountl an infinit.cly large disk rotat,ing in a fluid at rest. l'l~in<br />

wns n solnt,ion of' t.lw syst,cm of eqns. (5.88). In order to tletermine t,he t.ernpern,t,ure<br />

field in thc noiglrl)o~trlrt,otl of n hcni,cvl. rot,at,ing disk, it is necessary to expand the<br />

prwcvlirrg syst.vm of'rqr~xt.iotrs by inclrrding t3hc eqnat,ion for t,Ire t,emi)eratr~rc distribut.ion<br />

it.sc.lf (cwcsrgy c-clunt,ion). Sntah cn.lctt~ln.t.ions have I)ccn prrforrnctl by I


284<br />

XIJ. Thcrninl bormtiary layers in laminar flow<br />

In view of t,hc<br />

obtained estimation for the thickness of thc vclocity boundary<br />

layer 8, - l /l/~ , wc obtain<br />

It follow^ that the ratio of the thickncsses of the two boundary layers is independent<br />

of the lteynolds number. If energy dissipation through friction and the buoyancy<br />

forces are omitted, the ratio of the two boundary-layer thickncsses becomcsdcpende~~t.<br />

on a sin& characteristic number - the Prandtl numbcr. In this case it is possible<br />

to givc a vcry good physical interpretation of the Prandtl number, as will be shown<br />

in Sec. XI1 f 4 in more detail.<br />

Rstimnting the rrmnining tcnns in thc: cnrrgy rql~ation it is concl~rtlcd that,<br />

in the cxprcssion for tlrc tli~sipat~ion function only the tcrm (i?u/L~y)~ rcmains signifiranL,<br />

and<br />

l'hc hrat clnc to friction is sccn to be important only if<br />

Jn the case of gases thc hcat gcncmtcd I)y friction bccomcs important only if thc<br />

temperature risc due to adiabatic compression is of the same order of magnitude<br />

as the difference in tempcraturc bctwccn the body and the fluid. The same rcmark<br />

applies to the work of compression.<br />

Reverting to dimensional quantities and taking into account the dependence<br />

of viscosity on temperature, wc obtain tho following simplified equations for two-<br />

dimensional compressible fluid flow:<br />

Since in thc fr:rmcworlc of boundary-laycr theory thc pressurc may be rcgardctl<br />

ns a given, impressed force, we havc hare a system of five simultaneous equations<br />

for tho five unknowns e, IL, v, T, p.<br />

f. General properties of thermal boundary layer 285<br />

Regarding the differences in the significance of p in eqn. (12.50b) on the onc hand<br />

end in eqn. (12.GOd) n thc other, we rcfer the reader to thcremark made in Scc.<br />

XI1 c just after eqns. (12.17) to (12.20).<br />

For the incompressible case (Q = em = const) and for constant viscosity these<br />

equations reduce to<br />

giving three equations for u, v, and T.<br />

f. General properties of thermal boundary layers<br />

1. Forced and natural flows. Thc diffcrcntial equations for the velocity and<br />

thermal boundary layer, eqns. (12.51b) and (12.51c), are very similar in structure<br />

They differ only in the last two terms in the equation of motion and in the last<br />

term in the temperature equation. In the general case the velocity ficld and the<br />

temperature field mutually interact which means that tfho tcmperaturc distribution<br />

depends on the velocity distribution and, convcrscly, thc velocity distribution<br />

depends on the temperature distribution. In the special casc when buoyancy forces<br />

may be disrcgnrdccl, and when thc propcrtics of thc fluid may bc assumcd to be<br />

independent of tcmperaturc, mutual interaction ceascs, and the velocity ficlcl no longcr<br />

depends on the temperature ficld, although thc convcrsc depcndencc of the tcmperature<br />

field on the vclocity ficld still persists. This happcns at large vclocitics<br />

(large Reynolds numbers) and small tempcrature tliffcrcnccs, such flows being tcrmed<br />

forced (cf. p. 276). Thc process of heat transfcr in such flows is doscribcd as forced<br />

convection. Rows in which buoyancy forces are dominant are called natural, t,hc<br />

rcspcctivc heat transfcr bcing known as natwal convrction. 'l'his casc occurs at, vcry<br />

small vclocitics of motion in the prescncc of largc tcmpcrnLwc tlifrercnccs. 'l'ho sI,atc<br />

of motion which accompanics natural convection is evokctl by buoyancy forces<br />

in the gmvitational field of the earth, the latter bcing duc to tlcnsity dil'fcmt~ccs<br />

and gradicnt,~. For cxamplc, the ficld of motion which cxistsoiitsidc a vertical l~ot<br />

plate belongs to this class. Porcctf flows can be subdivided into t,l~osc with rnotlrr:tt.c<br />

and those with high vclocities depending on whcthcr thc hcat tluc to friction and<br />

comprcssiorr nccd or necd not bc taken into account. In bot.11 cascs thc tcmpcl-aturc:<br />

ficld depcnds on the ficld of flow. At modcratc vclocitics, wl~cn thc hcat cluc Co<br />

friction and comprcssion may be neglected, the depcndencc f the trmpcratrrrc ficld<br />

on the vclocit,y finld is govcrncd solely by thc Prantltl num1)cr. To rael~ ,~in!/le<br />

vclocit,y field thcrc corrcspontls a singly infinitc family of tonlprrntl~rtr tlisl.ril)~~l,io~ls<br />

with thc I'rantltl rruuibor as it8 paramct,cr. At lrigl~ vc1ot:ilics work duc I)ol,l~ to<br />

friction and comprcssion must be included. Whether this is ncccssary or not dcpcnds<br />

on tho Eclrcrt nurnher E - 2(A7'),,/(A7'),,, i.c. on wlrct,lrc-r it, is compn.r:ildo with


286 X11. 'IY~rrrr~al bo~~ndnry layers in laminar flow<br />

11ni1.y. Tn ot,her words, t .1~ \vorIz due to frict.ion and compression must he taken into<br />

accol~nt, when the t,crnpcrnf.ure increase drlc to friction nnd cornprcssion is comparable<br />

with f h tmnpcr:~t.urc tlilTcrcncc prcscri0ccl as a bourdary condition (tnmpcrature<br />

tliffrrenco I)ct,\r;rc:~~ I)otly and fluid). If t h prescribed tenlperatlire difference is of<br />

t.ho ortlcr of t.hc mmn at)solrrt2c t.rmpcral,nrc, t h work duo to frict,ion and cornprcssion<br />

1)rcorncs ilnlwrtallt, only if t,hc vrloc.il.y of llow is compnr:ll)lc wit,ll t.hat, of sol~ntl.<br />

2. Atlinlmtic wall. I~in:~lI,y it, is IICC~-SSRI.~ to mrnti~n t.l~i~t. the vi~rict~y of possiI)Ic<br />

sds of 1)ounclary contlitions is much grontcr for the ttcrnpcrat~~re field t,Ilan for<br />

t,hc: vrlocit,y fieltl. Tllc tcmpcmtnre on the surface of the body may bc constant<br />

or w~riable but., moreover, it is also possil)lo to encountm pro1)lcrns for wl~ich tho<br />

hrat flux is prescribetl. In view of eqn. (12.30), this means that t,lle t,crnperaturc<br />

gmtlirnt at the wall may appear as a boundary condit,ion. The so-callctl rtrlinbalic<br />

wr/l constiLutos a pnrticulnr rxn.nlplo of the Iatt.er class of cases, since it rnnst be<br />

post,ulat,cd thn.t there is no heat flux from the wall to the fluid, i. e., the borlr~clary<br />

t:ontlit.ion at, t,he wall is<br />

r 1<br />

1 his case c:Ln 1)c visrrnlizotl Ily imagini~lg 1,hat the wall of the body is perfectly<br />

it~sul.ztctl against I~cst, Row. 'I'lic heat generated l)y the fluid through friction serves<br />

1.0 l1cn.t 1,ho wall 11nt.il tho contlit,iorl (a7'/an),,. , = 0 is reachctl. Thus the t.crnperat~rrc<br />

of t.llt, wnll wl~ic:li we may :~lso call the rdirtbcclic unll tempernlure Imxmes higher<br />

t,l~:~.tl thaL of the lluitl at, some clist,nnco from it. Srtcll conditions are satisfied in<br />

pr:~ct,ic*c \vhrn a so-called plate t.hcrmornct,c:r is usctl, i. (:. when t.llc ternperabnre of<br />

:I, fll~itl st.rrnm is rnc~as~~rctl with t.hc aid of a flat plat,c which is placed parallel to<br />

t,lit. sl.rc~nm 1. 'l'hc PXC~SS l.wq)crats~~rc 011 1.110 plnt,r const~it,ut,c*s t.hc rrror of t.hc pink<br />

t.lwrmon~ct.c~r. 'I'llc error mns0 I)c tlrtl~~c:t.t-tl ill ortlrr t.o obtain t.hc 1,rnc t,empcrat.urc<br />

of t.Iit: tnovirl~ Il~~id. 'l'llis tlifkrcnc:c is somctimrs cnllctl the kinetic. lemperntwe.<br />

It, hns i)c~n showt~ ill Stw. VI 11 :I t.llnt nlk solni.ions of t.llcr two-tlirncnsional<br />

I)ol~ntlnry-l:tycr cq~~;l.t.iorts for an inron~prc~ssil)lc flnitl I~xvc the form<br />

If t.1~ work of compression as well :IS t,hc cvolut.ion of Ilo:~t. tltro~~gll tlissipat,ion<br />

c : be ~ neglect,etl, tile same reasoning shows that, rtll solut,ions of oqr~:~t.ions (12.51 P)<br />

wl~id~ tlcsrril~t: th: i,l~rrm;tl 1m1ntIa.r~~ l;~,yt:r, nii~st, I)(: of the form:<br />

Iloncc, the heat flux from rqn. (12.30) can I)(; writ,t.cn<br />

1


288<br />

and<br />

XII. Thrrn~al boundary layers in lnminar flow f. Gencrnl propcrI.ien or thcrmal bor~ntlnry lnyrr 289<br />

It follows immediately from the temperature equation that<br />

In analogy with eqn. (12.53), t!~e local Nussclt number formed with the coordinate<br />

z assumes the form<br />

where<br />

(11 5<br />

N,=-r = 1 /~,-F(~,P), (12.55)<br />

The function F(m, P) will be discussed in more detail in Sec. XI1 g 2 (see eqn. (12.87)<br />

and Fig. 12.14). Thus between the local skin-friction coefficient<br />

and thc Nusselt number there exists the relation<br />

The simplest type of flow, that on a flat plate at zero incidence, is characterized<br />

by the value m = 0 and by the fact that eqns. (12.51 b) and (12.51 c) for the velocity<br />

ficld and the temperature field, respectively, become completely analogous if the<br />

Prandtl number has the value of unity. In this c~ase, the solutions themselves acquire<br />

identical algebraic forms, and we have<br />

Consequently,<br />

and eqn. (12.56) simplifies to<br />

Z(0,l) = 1 ,<br />

N, = 4 cf,' R, (m = 01, P = 1) , (12.56 b)<br />

when applied to a flat plate. This is the simplest form of the Reynolds analogy;<br />

it was, as elready stated, first discovered by 0. Reynolds himself.<br />

The preceding argument is applicable, so far, only to laminar, incomprcssiblc<br />

flow^ at constant wall tcmpcratura and on condition that energy dissipation may<br />

be neglected. Nevertheless, thc preceding rcsnlts can bc cxt,o~tlctl t,o inclutlc other<br />

cases, RUC~ as that of a flat plnto with frictionnl heat (sect oqn. (12.81 ) ntd ioot.11o1.c on<br />

p. 2!)9) or that with compression work (sce Sec. Xlllc). It is p:rrtioulnrly nof.c?\vorthy<br />

that thc Itcynoltls analogy can bc rccovcrctl in turbulcn t flows whcrc it.plnys:u~ rsscv~,,i:~l<br />

part in the calculation of heat-transfcr rates (c/. Chap. XXI [I).<br />

4. Effect of I'randtl numher. The cor~sidcrationa of this c.haj)trr c~mvint~c 11s<br />

that thc J'randtl number conatitutcs that parameter wl~osc vnluc i~ dc.c*isivc Tor t h<br />

extent of the thermal boundary layer and, thcreforc, for thc rate at which hrat is ,<br />

transferred in forcctl or free convection. According to its tlrfinition<br />

thc Prandtl number is equal to the ratio of two quantities: one of t,l~ctn (viscosity)<br />

charactcrizcs the hid's transport propcrtics with rcspoct to IJIC tmnsport of rnorncntum,<br />

the other (thermal diKusivity) doing the same for the transport of hcat.. If<br />

the fluid possesses a particularly large viscosity, it can bc stated looscly that its<br />

ability to transport momcnLurn is Inrgc. Const:qucnt.ly, thc tln~t~ruction of ~notncf~t.~~n~<br />

introduced by the presence of a wall (no-slip condition) extends far into the fluid<br />

and the velocity boundary layer is comparatively large. Similar statcmcnts can bc:<br />

made with respect to thc thcrmal boundary layer. It is, thcrcforc, undcrstantlal~lc<br />

that the Prandtl number serves as a direct measure for the ratio of the thicltnesscs<br />

of the two layers in forced flow, as already demonstrated in eqn. (12.49). The special<br />

cwe when P = 1 (already discussed) corresponds to flows for which thc two boundary<br />

layers are approximately equal in extent; they are exactly equal along a flat plate<br />

at zero incidence whcn its temperature is uniform. In addition to this, thc two<br />

limiting cases whcn the Prandtl numbcr is either very large or very small arc also<br />

worthy of attention; they are representcd schematically in Fig. 12.8<br />

Very small Prandtl numbers: It is clear from Fig. 12.8 that in the case of very<br />

small Prnndtl numbers, such as occur in molten metals (for example in mercury), it<br />

8) P-U(l~uid metals) 6) P -01 liquids, oils)<br />

Fig. 12.8. Comparison between the tcmpcmture and velocity fields for bonnclnry lnyrrzl wit.11<br />

vrry amall and with very large valr~es of Prandtl number


290 XlI. Tl~rrnmal boundary layers in laminar flow<br />

is possil)lc to disregard the vc1ocit.y boundary layer in the calculation of the thermal<br />

bountlary layer. Conscqucntly, the velocitty components ?L(x, IJ) and v(x, y) can be<br />

replaced by U(x) and V(s, y) = - (dlJldr) IJ, respe~t~ively, the approximation for<br />

V stemming from the continuity cquat,ion applied at the wall. The energy equat,ion<br />

(12.51~) then assumes t.ho particnlarly simple form<br />

we can transform t,lw partial diffvrentinl cc(nn.tion for temperntr~rr, ~listribut~ion into<br />

an ordinary ow. 'L'l~is, in tarn, Icads to the following univcr~al expression for tile<br />

Nus.selt, nutn1)cr<br />

15qnations (12.59a) and (12.5!3b) are special cases of this general equation.<br />

In t,I~c<br />

7',,,, we obt,ain thf! satno tlini:rt!nt,inl cq~l:&t,ion a8 that encountered in anot,her corlnexion<br />

in (:hap. V, cqn. (5.17). Its solution is<br />

casc of a flat plate (II(3:) :.- [I, T. const) with a uniforrn wall ternpcrature<br />

Aecw-tling to rqn. (12 31). thr cormspontling Nussclt numbcr is<br />

In 111(, cast. of st~agr~nl.iorl-l~oi~tl. flnw (11 (3:) L-= u', r), it follows that,<br />

f. General proportics of tl~crmal bonnclnry Inycr 2!) 1<br />

Very large frandtl numbers: The second limiting casc when P + oo was solvccl<br />

for the first time many years ago by M.A. 1,evi:que 1701. Jlc inLrotlucotl t#he wry<br />

reasonnble assumpt,ion t,hat the wholc of the ttcrnperaturc field is confi net1 inside t,hat.<br />

zone of the velocit,y field where t,he longitudinal velocit,y wtnponent,, u, is st.ill pro-<br />

port.ional t,o the trnnsversc distance y. The samo circumstanc:cs can also oc:c.ur at<br />

int,errnccliat,c valucs of the I'rantlt.1 number in caws whrn t,ho tllcrninl 1)ound:try I:tycsr<br />

starts wibh a temperature jump at t,he wall at a: = To (cf. Vig. 12.17) irlsitlo n clcvc-l~pctf<br />

veloaitly bountlnry layer. Accordingly, in t,llc enrrgy cqnctl~ion, iyn. (12.51 t*). wt3 SIIIIposc<br />

that the velocit,y tlist,ribution in tile velocity bount1nr.y layer is rcprcsc-11t)ccl 1 ) ~<br />

11 = (to/p) IJ. It can then be verified t,l~at, in accordance u.it,h refs. [76J and I(iYa]<br />

(see also refs. (1 111 and [I 121). the substit~~bion<br />

tmnsforms t h<br />

cnrrgy cqnation into the following ordinary cliffervnt.inl tyn:~lion:<br />

Ilcrc 2, dcnntcs tl~a coordinate at whicll thc t.cm~~c?r;ttnrc ju~nl~ at. tlto w:~ll has<br />

bccn placed, il I)cirrg rcmembcrcd t,liat the cffcct of fr.rictiot~:~l Iwat has hen<br />

ncglcct.ct1. l'ho solution of this ortlinary differential cql~:ttion c:~n 1)c cxprcssetl in<br />

closed form in t,crms of t11o incomplete gamma functions. I'orfor~ning 1,111: rrql~irrtl<br />

calculation, we would obtain t,l~e Nussclt numbor<br />

It is shown in Fig. 12.14 Llmt t.11is cquat.ion rrpwscnfs n very gootl approsin~alion


292 XIT. Tl~er~nnl Imn~dary layers in laminar flow g. Thermal boundary layers in forced flow 293<br />

evcn in the case of moderately-valued Prandtl numbers. At the stagnation point,<br />

the corresponding cquation is<br />

N, = 0.661 P1I3 1/% (stagnation point, P -+ oo) . (12.6213)<br />

Analogous, simple asymptotic formulae can also be established for the case of frcc<br />

convect,ion on n verlical flat plate, [73], see also eqns. (12.118a) and (12.1181)).<br />

g. Thermnl bounilnry layers in forced Row<br />

In the present section we shall consider several examples of thermal boundary<br />

layors in forced flow. In solving thcso problems, uso will bo made of tho simplified<br />

thermal boundary-layer equations. Just as in the case of a velocity boundary layer,<br />

the general problem of evaluating tho thermal boundary layer for a body of arbitrary<br />

shape proves to be extremely difficult, so that we shall begin with the simpler<br />

example of the flat plate at zero incidence.<br />

1. Parallel Row paet a Bat platc at zero incidence. We shall assume that the<br />

x-axis is placed in the plane of the plate in the direction of flow, the y-axis being<br />

at right ar~glcs to it and to the flow, with the origin at the leading cdgc. The boundarylayer<br />

equations for incompressible flow and constant properties (i. e. independent<br />

of temperature) have been given in eqns. (12.61 a, b, c): assuming that the buoyancy<br />

forces are equal to zero as well as that dpldz = 0 [18, 941, we obtain<br />

'I'hc: 1)ountlary ronclitions arc:<br />

11 = 0 : u = v = 0 ; T == T,,, or aT/8g =O<br />

'I'he vrlocit8y ficld is it~tlcpcndrnt, of t,hc tcmprraturc firltl so that tlrc two Ilow<br />

equations (12.03a, b) can be solved first and the result can be employed to evaluatc<br />

the tscmpcmtnrc field. An important rclatior~ship between the velocity distribution<br />

and thc temperature distribution can bc obtained immediately from eqns. (12.63 b)<br />

:md (I 2.fR c). Jf lhc hcat of friction p may be neglected in eqn. (12.63~).<br />

the two rquat.ions, (12.03b) and (12.63c), become identical if T is rrplaced by 76 in<br />

the sccond cqr~at~ion a.id if, in addition, the properties of the fluid satisfy the equation<br />

If the frictional heat is neglected then a temperature field exists only if there is a<br />

difference in temperature between thc wall and the extcrnal flow, e.g., if Tw - T, > 0<br />

(cooling). Hence it follows that for a flat plate at zero incidence in psrallcl Row<br />

and at small velocities the temperature arid velocity distributions arc idcr~tical<br />

provided that the Prandtl number is equal to unity:<br />

Thi~ result corresponds to eqn. (12.52) which Icd us lo thc f~rrnulat~ion of Llw<br />

important Iteynolds analogy between heat transfer and skin friction.<br />

11. Blasius introduced new variables for thc solution of the flow rquat.ions,<br />

sce oqns. (7.24) and (7.26). (y) is 1110 slrcnm fnnclion):<br />

'rhe diffcrcntial cquation for /(q), cqn. (7.28) bccornos<br />

f f" + 21"' =0,<br />

with thc boundary conditions: rl = 0 : f = f' = 0 ; 11 =- cm : 1' L- I . 'I'l~e solution<br />

of these equations was given in Chap. VII, Table 7.1.<br />

Including the eflect of frictional hcat, as seon from eqn. (12.63c), the temperature<br />

distribution T(7) is given by the equation<br />

It is convenient to represent thc general solution of eqn. (12.65) by tho super-<br />

position of two solutions of the form:<br />

ITcrc O1(7) dcnotes the grncml solution of thc hornogcncous cqu:~tion and 02(t7)<br />

denotes a particular solution of the non-homogeneous equation. It is, further,<br />

convenient to choose the boundary conditions for 01(7) and O,(q) so as to rnakc<br />

01(7) the solution of the cooling problem with a prescribed temperature diKcrcnce<br />

betwecn the wall and thc external stream, T, - T, with 02(7) giving the solution<br />

for the adiabatic wall. Thus 01(7) and Oz(v) satisfy the following equations:<br />

with 0, -1 1 nt 7 -1 0 arid O1 -- 0 nt 11 == oc> , r ~ l


with 0,' -. () at, r] - 0 and 0, = 0 at q -= co . 'l'lic value 0,(0) pcrmit,s us<br />

t.o rvalnntc tJie constnnt C from cqn. (12.66) in n manncr to satisfy t.lie boontfnry<br />

nondition 1' - T,,, for 7 - 0 . This yidtls<br />

(hding prohlcnt: The solution of cqn. (12.67) was first given by 13. l'ohlhnnsen<br />

[94]. It rnn Iw writtcn as<br />

IIct~co for P = I : 0,(q) = 1 - /'(q) = 1 - u/U,, and for P = 1 the temperature<br />

dint.riltc~t,io~~ bccomcs itlont.icn1 with tJlc vclociLy tlistrib~~tion in accordn.nce with<br />

cqn. (12.64). The t.cmpcmt,ure grntlicnt at, t.hc w;dl, as calculated from eqn. (12.60),<br />

wil.11 /"(O) = 0.332, bccomcs:<br />

- ("'I) = a, (P) = (0.332)'<br />

dtl 0<br />

Tltr coristnnt rrI is scol t,o tlcpcntl solcly on thc PrantltJ numbcr, a, (P). Some valucs<br />

c:clct~l:~t.rd hy 1:. I'ol~ll~nr~srn nrc rcproclnccd in 'l'ablc 12.2. They can bc interpolated<br />

with goofl nrrltracy from t,hc formula<br />

For very sm:tll I'rantll,l numbcrs, cqn. (12.59~1) givcs<br />

rs, - 0.564 ;/-P (P -- 0) ,<br />

/Irlinhnfic ~twlb: '1'11~ so11tl.ion ol' w~n.<br />

'v:lri:lt,io~~ ol' t,lle 1)nrnrnrt.rr'. Itz is<br />

(12.(i8) cmi I)c ol)t.:einctl by t.hc mcthotl of<br />

g. Thcrrnnl bonntlary layrrs in forcrtl flow 2!15<br />

Table 12.2. Dinicnnionlcss coefficient of heat trensfcr, a,, nntl din~cnnionlcns ndi:hnt,ie wall<br />

ternpcmturc, b, for R flat plate nt zero incidence, from eqnn. (12.70) and (12.76)<br />

Fig. 12.9. Tempc.ratnre ~listril~ntiot~ on :I I~mtrtl flnt plate at zcro iw~tlrnrt~,<br />

plotted for various Prantltl nnn~hcrs P (frictional 1lr:it ~~rglrrtctl)<br />

I\ tt 11 sn1:i11 vrlo(.tty<br />

'I'llc t.cnil)crnt.urc wllicll is assumctl by t,llc w;111 owing to fri(:l.ionnl Ilml. 1.11~ rrrlirthrtlic<br />

~c~nll f~ntpern/?ur. 'l',, is thus, by cqns. (12.00) nntl (12.72):<br />

l'?,,,<br />

r l<br />

- = I - T,, -- Urn? b (P)<br />

rP<br />

(12.74)<br />

from cqn. (12.72). I'or a const.ant 1'rantll.l nnml)cr t,ho :~tli:~,l~nl.ic: \v:tll l,c-tril,rr:\.I,t~r(~ is<br />

prol)orI,ionnl to l,l~c n(lin~l)ntic t.ctnp(~r:~tnr~ I ~ 1!,v,2/2 C rl, \vltit;l~ W:I.S ~)lol,t.i~~l ill<br />

Icig. 12.3. Some n~lrnc.ric:al valucs of IJIC I;wI.or h(P) ;we givc.11 ill 'I':IIIIv 12.2; 1'01.<br />

motlrmt,c: Prnr~tlt~l ~iumbcrs them vn.lucs may 1~: int,cl.pol:rt,od wit,l~ sr~lIinionb ;I(:(;IIracy<br />

from thr. forniul:~, 11 - 1 /P. The valncs for Iargvr l'r:~t~tlt,l n111111)t\rs ~:III II(> inf'crrrd<br />

fronl l'ig. 12.10. In t.11~ bmit.ing msr, wc! I1:1vc (841


296<br />

XI. Thcrtnnl boundt~ry layrn in lnminnr flow<br />

It is remarliablc that for P = 1 wc havc cxactly b = 1. Thus, for a gas with P = 1<br />

flowing in a parallel ~t~rcam with velocity U, past a flat platme at zero incidence<br />

the ternperaturc rise due to frictional heat is equal to the adiabatic tempersture,<br />

i. e. to that which occurs from velocity U, to zero. The adiabatic wall temperature<br />

[16, 201 measured st various Reynolds numl)ers U, x/v is seen plottcd in Fig. 12.1 1.<br />

Thc agreement, is vcry good in thc laminar region. At the point of transition from<br />

laminar to turbulent flow in thc boundary layer the temperature increases suddenly.<br />

The temperature distribution for an adiabatic wall represented non-tlimcnsionally is<br />

and is seen plotted in Fig. 12.12 for various values of the Prandtl number. From<br />

eqns. (12.74) and (12.75), we obtain that the constant C from eqn. (12.68a) is<br />

c = (T, - T,) - (T, - T,) = T, - T, .<br />

The general solution for a pxcribcd tempcraturc difference between the wall and<br />

the free stream, T,#, - II',, eqn. (12.66), is thus<br />

uz<br />

T(7) - T, = [(T, - T,) - (T, - T,)] 01(7, P) + ---- 02(7, P) (12.76)<br />

cP<br />

with T, -- II', from eqn. (12.74). Thc dimensionless temperature distribution be-<br />

comes<br />

It is shown plotted in Fig. 12.13 for various values of the Eckert number<br />

E = Um2/c,(TW - T,), from eqn. (12.28). For b x E > 2 the boundary layer<br />

near the wall is warmer than the wall itself owing to the generation of frictional<br />

heat. In such cases the wall will not be cooled by the stream of air flowing past it.<br />

Heat transfer. As scon from eqn. (12.2) the 11c11.t flux from plate to fluid at,<br />

station x has the value q(x) = - k(t3T/ay)v-o or<br />

Thc rate of heat transfcr per unit time for both sides of a plate (length 1, width h) is<br />

1<br />

Q = 2b / q(x) dx, so that I<br />

a) Neqkding /rictioml heat : In this case T (q) - Tm = ( T, - T,) o1 (7) by eqn.<br />

(12.69) with (~ll'/dq)~ = - a, (T, -- T,). With nl from cqn. (12.71 a) we have<br />

I'ig. 13.10. Adiabatic<br />

wall tctnpcrnturc 7'" of<br />

a flat plate nt zero incidrnce<br />

with velocity Ua<br />

for v:irioun vnlur~ of tho<br />

I'rmrltl 1111ni1)cr; ahr<br />

1':. 15ckcrtanclO. llrcwitz<br />

[IB] as wcll RR D. Moksyn<br />

[84]. Vor large I'rnndtl<br />

n~ttnl)rrn, according to<br />

D. Meksyn [84], we<br />

havc 0 = 1-0 PI13<br />

Fig. 12.1 1. Measurenlcnt of ndiabatic<br />

wall ternpcrnturo on n flnt plate in n<br />

parallel air strenm at zero incidence in a<br />

lntnittar nntl trtrbnlcnt boundnry Iayor,<br />

nfter Eclzert and Weise [20]; theory for<br />

laminar flow and P = 0.7<br />

g. lrl~crtd bountinry lnycrs in rorcctl flow<br />

Fig. 12.12. Temperature excess in the laminar boundary laycr on n flirt plate at zero in-<br />

cidence in s parallel stream with high velocity in the absence 01 hrolinq for vnrions l'rnndtl<br />

numbcra (ndinbntic wnll)<br />

207


2!)H<br />

XI[. Thcrn~al bor~nrlnry Inyrrs in Inn~innr flow<br />

IGg. 12.13. 'rrn~l)cr:~t~lrc. elinlri~~ntion in a I:in~innr 1)ounrlary Iaycr on a Iicnbrl (E > 0) and<br />

cooled (E < 0) llat plntc: nL zcro incidcncc in a parallol stmnn~ for the case of a laminar hoi~tidnry<br />

layer and wil.l~ frict.ionnl IIC:I.L accorrntctl for nn calc~thbd frow rqn. (12.70). I'mntlt,l nntnber<br />

P 0.7 (air). 'l'llr lcn~pc!rat,nre of the wrdl is n~aint.air~ctl constnnt at y,. (hrvc: h x E = 0 for<br />

zrro rrict,ictn:~I Ilr-nt,; CII~VC h x E = 2 corrcspo~id~ to an ntliabalir wall; E = 1Jm2/c,,(7',, - 7>,);<br />

b .- 0.835. I'or h x E > 2 (.he hot wall ccb:tsrs I*, I?c cooled by t,hc strf:n~~i of coo1er air, RIII(.C<br />

tJ~o 'hral, c:nnliion' providctl I)y frichnal I~rnl. prc!vrtit.s cooling<br />

I~~[rotl~rcirrg tlitnr.nsionlcss coefficients in the form of thc Nlrssclt ~lurntxr from<br />

WIII. (12.31) instoatl of t,l~c? locnl and total Iicat flux, rcspcctively<br />

The cnsc of turbulcnt flow can bc approximatcd by lhc equations<br />

N, = 0.0296 'fi. R,O'~turbulcnt) , (12.79~)<br />

N, = 0.037 ;/F . R,O.R (turbulent) , (12.7!)d)<br />

which we quotc here for complctencss, but without proof. 'l'hc preceding forrnulim<br />

for the rate of Iicat transler arc in good ngrccmcnt with thc n~rasnrcmontn tho to<br />

1'. Elias [31], A. Rrlwarcls nrd B. N. I'urbor 1271 nntl .J. J(c:slin, ID. 1'. M~wclc*r ILIHI<br />

1%. E. Wang [66J.<br />

b) With frictional heal: In this case with T(q) from cqn. (12.76) we obtain<br />

wherc T, is the adiabatic wall temperature. It is identical with the wall tcmpcrature<br />

in the thermometer problem and follows from the equation<br />

T,-T,=b(P)<br />

Urn2 - Urn2<br />

- ----zip ---.<br />

(12.80)<br />

2 c, 2 c<br />

liere b(P) can be takcn from Table 12.2. Iritrotlucing the Mach number M = U,/cw<br />

from (12.27), T, may also bc taken from<br />

Thus we obhin the following expressions for the local and total heat flux from cqns.<br />

(12.77) and (12.78) respectively<br />

It now ceascs to bc useful to basc the cocfficicnt of hcat transfer a(x) on thc t.cmpc-<br />

raturc diffcrcncc (Tw - T,) from eqn. (12.29) or to clcfinc thc Nnssclt numl)trr :rx i ~ t<br />

eqn. (12.31) because the heat flux is no longcr proportional to that tcmpcmturc<br />

diffcrencet.<br />

t E. Eckcrt and W. Wcisc [17] hnvc, thcrcfore, ~t~ggrnLed to introclr~co a NIIRRC~~ nnrnl)cr N*<br />

based on the difference (T, - T,). Wc mighL tlicn cxpcct to obtain rrs a 8rnt approxiin a t.' Ion,<br />

even in compre~ible flow, the mmc forrnu1.w for N* a9 in eqn. (12.79a. b). If, on tho otllcr<br />

hand, wc retain the Nu~clt number basd on (T,- T,) thcn eqn. (12.81) Icnds to tlic following<br />

cxprcasions instead of (12.79a):


300<br />

XI1. Thrrrnnl borrndary layers in lan~inar flow<br />

The cooling action of a stream of fluitl on a wall is considcm1)ly rctluccrl because<br />

of t,hc hrat gencmtrd by friction. In thr nbsrncc of frirtionnl heat, heat will flow from<br />

the platc to thc fluid (q>0) as long as T, > II', but in actual fact,, if frictional<br />

hcat is prcsont, a flow of hcat persists only if T, > T,, eqn. (12.81). Taking into<br />

acronnt thc valuc tlcducctl for T,, we obtain the condition that heat flows from wall<br />

to fluitl (nplwr sign) or in tho reverse tlircction (lower sign), if<br />

A numcricnl cxamplc may serve to illust~mtc the signifirancc of cqn. (12.82): 111<br />

a stream of air flowing at TJm = 200 m/scc, P = 0.7, cp = 1.006 k.J/kg dcg wr<br />

obtain 1/ P 1JW2/2 c, = IF tlcg C. The wall will begin Lo be cooled whcn<br />

If tltc tenipcrat,urc difference bctwren wall and stream is snlallcr than this value<br />

the wall will pick up a port,ion of thc hcat generated by friction. In particular this<br />

is tho case whcn thc tcmpcraturc of the wall and stream arc equal.<br />

An equation for thc rate of hcat transferred from n flat platc at zcro incitIcnce<br />

but with variable material properties was derived by H. Schuh [110]. The tempe-<br />

rature field on a platc placed in a stream with a linear temperature distribution w54<br />

studicd in ref. [128].<br />

2. Additional sinlilar sol~~tions of the equations for thermal boundary laycrs.<br />

In the casc of a flat platc at zcro incidence, the velocity and the temperature profiles<br />

t~lrnctl out to bc similar among themselves. This means that the distributions at<br />

tliffcrcnt clistanccs z along thc platc coulcl hc mn.tlc congruent by a sniLahlc stretching<br />

in the y-direction. Since it is lcnown that there cxist velocity boundary layers other<br />

i.han those on a flat platc for which this is true (e. g. the wedge profiles discussed<br />

in Chap. IX), it, appcnrs useful to stucly the possibility of tho cxistcncc of additional<br />

similar solutions of the energy equation. This problem was investigated in detail<br />

in ref. 11351. At the prcscnt time, we sha,ll start with the class of velocity boundary<br />

leycrs on wedges and will awnme that t,hc cxtcrnal flow is of the form U(z) = tc1 x"'.<br />

111 an analogous manner, we stipulate that tho wall-tcmpcraturc distribution also<br />

x". Walls<br />

sa1,isfies n power law, say one of thc form T,(x) - Y', = = TI<br />

of constant t,rmpcrat,ure are inclutlctl as thc casc n == 0, and t11c valuc 12. = (1 --711,)/2<br />

corrr~ponds to :I, crn~stc~nl, hrat flux q. 1nt.rotlucing tlic sitnilarit,y variable<br />

wr ol~tnin tlic f'ami1i:ir rquations (0.8~1) for the bdocity u = iJ(.z) . /'(q), or<br />

g. Thcrmal boundary layers in forced flow<br />

ant1 thc solution must satisfy thc boundary contlitions<br />

17~0: a:=]; 17=03: O-:()<br />

lIcrc E =. 71,2/c,, '/I1 rrprcwnts the nppropriaLc form of 1I1r I':ckorl. t~ttrnl)cr li)r illc<br />

prol~lcm.<br />

It is clear from cqn. (12.84) that its right-ltantl sitlc vanisltcs in tltc al)scncc<br />

of frictional heat and that all solutions arc thcn of tlrc similar typc. IIowcvcr, if<br />

frictional hcat is includcd, similar solutions arc rcstrictctl to tltat combinatio~~ of<br />

pnramctms for which thc right-hand sido becomes intlcpcntlcnt of z. 'rl~is occ:urs<br />

whcn 2 ~n - 7t = 0 , tltat is, whcn thcrc cxists a firm cor~pling 1)ctwcon tltc vclocity<br />

distribution in thc cxtcrnal flow ant1 tho tcmperatarc tlistril~ution along t.110 w:ill.<br />

According to this result., thc casc of a co~~st~ant tcmpcmt~ure lratls to similar solut,ions<br />

only on a flat plate (1i1=1t =0). 011 thc olhcr hnntl, if tho contlil,ion 2 111, -- 11. - 0<br />

is satisfied, thcn for every pair of values of m and P thcrc cxists one tlcfinitc valur:<br />

E, for which there is no flow of ltcat (O'(0) = 0). Jn this rasc, the tcmpc:mt,~~rc<br />

distribution along the wa.11, once again lcnown as tfhc atliabalic wall-tcmparat,urc:<br />

distribution T,, is given by<br />

Numcricnl valucs for thc function b(m,P) havc bcnn romput,rtl by 1% A. llrun 171.<br />

In the particular case whcn m = 0, the numerical valucs of l'ablc 12.2 arc rccovcrcd.<br />

Wlicn thc cffcct of dissipative hcat is ncglcctcd, wc obtain the simpler cquation<br />

whose solutions for different valucs of thc parameters m, n, and P have bccn<br />

published by a number of authors [79, 121, 32, 33, 89, 1401. E.1E.G. Eclrcrt [I91<br />

has dcmonst,ratcd that for n = 0, the local Nusselt number is given by thc equation<br />

Eerc<br />

ax U (x) . 1:<br />

N =-=-<br />

% k v---y O' (0) = - id, 0' (0) . ( 12.88)<br />

The function F(m, P) is seen plotted in Fig. 12.14 on thc basis of the numcriral<br />

data provided by 11. 1,. Evans [33]. Jn addition, thc asymptotes for very small<br />

and vary large l'randtl numbers, cqns. (12.57) arid (12.01 n), rrspcctivrly, have also


302 XJI. Therninl boundary layers in laminar flow g. Tliernial bonndary Inycrs in forced flow 303<br />

F~R. 12.14. 1,ocnl Nu.sselt nwnher as a fnnction of tho Prandtl number and of the flow parameter<br />

m for flows wliosr fire-stroam velocity is distributed according to the law U(z) = u, zm =<br />

= v, zPl(2-0) (wwlge Ilow) hut for a constant wnll kmperature and in the absence of dissipation<br />

Asymphtic approximations for P -t 0<br />

I\riylilpt.r)tin approximations for P .+ ca and P + - 0,100 according to eqn. (12.61 a), and for<br />

P + u, and p = - O.I!)O:<br />

Approximation for inbrmcdinto PrnntitI nurnbcrs and /i' = 0, according to eqn. (12.71a).<br />

Fig. 12.15. Tornpcrntnre distributioli , along a<br />

lienkd wnll (T,,, > T,) in a right-angled corner<br />

in n laniinar boundary layer with a constant external<br />

velocity Urn (inclusive ofdi~sipntion), aftnr<br />

~n.qnnd Rani (1441.<br />

1,irictn of const.nrit bmper:~.tnrc: for P = 0.7 arid E = 2.4. The local temperature exceeds the wall<br />

t~rnlwraf.nre ( 7' ;- 'l',.) in the hntcl~r:d rcgion; conseqnent,ly, in that region heat flows fluid + wall<br />

in spite of the fncl, t,liat the wall tmnperatnm exceeds the free-stream t.aniporntnre. Tlie reason for<br />

t.I~in proccm lic~ in tlis~ipntion. Rckert nnnibcr E -- IJ&/r, (T,,, 7',)<br />

been indicated (see also [119]). For thc Rat plate (m =0) the earlier rclntions from<br />

eqns. (12.69a) and (12.62a) are, naturally, recovered. The caso of stagnation flow<br />

(m= 1) leads to eqns. (12.69b) and (12.02b). In tho special cnsc of a separation<br />

profile (m = - 0.091) it becomes necessary to adopt a different asymptotic<br />

approximation for P -t oo, as shown in 1321.<br />

The thermal boundary laycr associntcd with tho thrcc-dirnc:nsional vc:locity<br />

boundary layer on a rectangular corner at zero incidence is also of thc sclf-similar<br />

type when the external velocity distribution is of thc IIartrcc class given by U(r) --<br />

Cxm. The velocities as well as the temperature distributions for this case havc bccn<br />

worked out in a thesis by Vasanta Ram (ref. 1921 in Chap. XI). Figure 11 .I!) givcs<br />

an idea of thc vclocity distribution for dilTcrcnt vnlrics of tlic ~)rr..ssurc-grntlicnt paramctcr<br />

m. I'hc diagram in Fig. 12.16 supplcmcnk tlic procctling om in t,l~rtt, il, c:c~~~t.riitix<br />

an example of the associated temperature distribution. For a uniform cxtcrnal Ilow<br />

with U(x) = Um = const and in the case of a hotter (i. e. cooled) wall for which<br />

T, > Tm the solut,ion nevertheless exhibits a zone near the corner itsclf, shadcd in<br />

the figure, in which (T - Tm)/(Tw - Tm) > 0, that is in which T > T,,,. 'l'his zonc<br />

occurs when dissipation is included and corresponds to a condition where thc local<br />

fluid temperature exceeds the wall tempcraturc. Thus, locdly, the heat flux is reversed<br />

and proceeds from the fluid to the wall in spite of the fact that at a largc distancc<br />

from the wall the temperature of the fluid is lower than that of the wall, Tm < T,.<br />

The physical reason for this seemingly anomalous behavior is rootad in the increased<br />

local ratc of heating due to dissipation which occurs near thc corner. Phcnorncnn of<br />

this kind are important in the hypersonic flow rogimc. 'l'hc rcsulling Inrgc inc:rcnscs<br />

in temperature which occur in such cases can cause burning of the surface of the body<br />

in the stream (ci. Sec. XI11 e).<br />

3. Thetmal boundary layere on i~othermal bodies of nrbitrary shape. N. I' ' rocssling<br />

[39] carried out calculations on the tcmpcraturc distribution in thc laminar<br />

boundary layer about a body of arbitrary shapc for tlic two-climcnsionnl and axially<br />

symmetrical cases. In his calculations, in which friction and cornprcssion work wcrc<br />

neglectccl throughout, he assumed a powcr serics for the potential vclocity clistribution<br />

around the body expanded in terms of the length of arc (Blasius serics), similar to<br />

Sec. IXc, i. e. of the form:<br />

U = u, x 4- u, 2" -1- u, x"k . . . .<br />

The velocity distribution in the boundary laycr is ass~~mctl to have the form:<br />

Correspondingly, the assumption for thc tcmpcrature distributio~i was of tlic form :<br />

In a manner similar to that for the velocity boundary laycr in Scr. TX c it, is found that<br />

the functions TI (y), T3(y), . . . satisfy ordinary diffcrcntial cqnations which include<br />

thc functions fl, i,, . . . of the vclocity distribution. In this case, howcvcr, thc functions<br />

T,, T,, . . . also depend on the Prandtl number. The first auxiljary functions TI(?/)


304 X11. Tl~ortnal boundary Iaycra in laminar flow<br />

for t,hc two-tlitncnsional and axially syramotricnl case were evnluntcd numerically<br />

for n Prantltl number of 0.7. 'L'h met,hocl under consideration is somewhat cumber-<br />

some by its natnrc, ns was the case with the velocity boundary layer, particularly<br />

for slcntlrr htly forms when a large number of terms in the power expansion is<br />

rrqnirrd, as shown ill 1281.<br />

Nurnrrous solut,ions for self-similar thermal boundary layers inclusive of the<br />

elTwt,s of blowing and suction can be found in [34, 44, 134, 101.<br />

In t,lw sprcinl case when P = 1, antl when the heatf due to friction is neglected,<br />

the tfiKcrcnt.inl cquat,ion for the temperature distribution in the boundary layer<br />

around an xrbit,r:sry cylinder is itlcnt.ica1 with that for the transverse vclocity<br />

component (vdocity component in the direction of the generatrix of the yawed<br />

rylintler). This ran be seen upon comparing cqns. (12.63~) and (11.58). The relation,<br />

which has already t)ecn discusscd in Scc. XId, was ut,ilized by I,. Golancl [46] for<br />

t,ho eval~~nt~ion of the temperatlure distribution in the boundary layer around a<br />

aylintlcr of sprcinl form.<br />

In the ~~eigltl~ourhootl of a stagnation point, where the velocity distribution<br />

is r~~~rcsont~~d by IJ (z) == x with nz =.. /? = 1 , thc Nusselt number dcfincd in<br />

eqn. (12.87) a n be rcprescntad by thc cquation<br />

on contlition thatf oncrgy dissipation is neglected. The character of the function A (P)<br />

emerges from Fig. 12.14 and Table 12.3. In thc former, the curve for /? = 1 corrcsporlt1.s<br />

to tl~c function A. For .z circulnr cylinder we put U(z) = U, sin (x/R), so<br />

that. 91 I 4 fJ,/D. lrcncc<br />

The above rxprc.ssion agrcrs reasonably wcll with the measurements performed by<br />

R. St.llnliclt antl I


306 XII. Tllcrrnal hor~ndary layers in laminar flow<br />

I = U ( ) 2 -- 2 11"1- ?i4] == IJ (x) F(7) , (12.92~~)<br />

,.<br />

I htr vt:loc.it,y tlist,riln~t,ion st.il)~~lnl.ctl Ilcrc c:orrcspontls to t,lw I'ohlhauscn assumpti<br />

or^ in oqn. (10.23) :~.t~cl t,I~t: liwm of t.l~e t.cmpcr:~t.~~rc clistribt~tion func:tion is so<br />

srlrc:l.ctl as tm cnsurc: itltwl,ic::tl vclocity :m(l t(:n~~~~ra.l,urr (listril~~~tion~ for BT ---- 0,<br />

as rcrquircrtl 11.y t,hc Jtc~ynolcls analogy for n flnt pI:~t.c at P = I, cqn. (12.64). 011<br />

sul~stitat~ing cqns. (12.!)2:1, 1)) into cqn. (12.91), wo obhin<br />

Performing the intlicatcd integrations, we obtain<br />

2<br />

II(A)= -A-<br />

15<br />

? /In"+<br />

140 ' A4<br />

180<br />

for A < 1<br />

and<br />

3 3 1<br />

~I(A)= lo---+<br />

10 A<br />

2 1<br />

15 A2<br />

3 1 1 1 orA>,<br />

. +- - -- f<br />

140 A' 180 A6<br />

Some numerical valucs of the function [[(A), calculated by W. Dienemann[ll],<br />

havc been listed in Table 12.4.<br />

Tablo 12.4. Nurnoricnl vnlwa of tilo function H(A)<br />

The integration of cqn. (12.93) yields<br />

'I'lle vclority l~oundary-layer thickness (J can bc evaluated with thc aid of cqn. (10.37)<br />

wl~cw it is rcrncml~crt:cl from cqn. (10.24)t thnt ?~/d, = 316/37. Thus<br />

I<br />

I .<br />

t Iptw IIir ankv of~in~plidy tlic rdalci~lalion is ba.wd throughout on the flat-plate relations ( A = 0).<br />

I<br />

Upon dividing eqn. (12.95) by eqn. (12.96), we obtain<br />

U~~UII.(I~<br />

4 1 0<br />

A2. H(A) = i-4 - (12.97)<br />

z<br />

H JUQI x<br />

O<br />

Since H (A) is a known function, Table 12.4, the preceding equation can bc used<br />

to doterrnine A (x). The calculation is best perrornicd by uurccssivc npproximntio~w,<br />

starting with the initial assumption that A -= rot~sl~. Jltwrc wc oMain<br />

The resulting value of A is now int,rvtlucctl into thc 1t:ft.-11:~ntl sitlc of ac111. (12.!)7)<br />

thus leading to an improved value of A. In general, two steps in the itcration nrc<br />

found to be sufficient.<br />

The local rate of heat transfer becomes<br />

and hence the local Nusselt number referred to a characteristic length I is<br />

The steps to be taken to evaluate the thcrmnl boundary layer, and in partficular,<br />

to determine the variation of the Nusselt number along a body of preseribcd shape<br />

are thus the following ones:<br />

1. evaluate A (2) from eqns. (12.97) and (12.978)<br />

2. evaluate d (x) from eqn. (12.96)<br />

3. steps 1 and 2 give dT(x); finally, the local Nusselt number follows from<br />

eqn. (12.98).<br />

Flat plate at zero incidence: The preccding approximato method will now be<br />

compared with the exact solution in tthc case of a flnt plnto at zero incidcncc. Insert-<br />

ing U (z) = U, into eqn. (12.97), wc obtain<br />

The expression A = P-ID constitutes an approximation to the solntion of this equation<br />

which is in error by no more than 5 per ccnt. as compared with the exact solution.<br />

The boundary-layer thickness from cqn. (12.06) is<br />

I


308 X11. 'I'hrr~nnl hotrnclnry I:ryrrs in lnn~iunr flow g. Tl~cr~nal boundary layers in forcrtl flow 30!)<br />

w11rrrn.s t,l~c c\xa.rt sol~~l,io~~, cqn. (12.79a), showed the numerical coefficient to b~<br />

eq11:1l lo 0.:1:12.<br />

Alt.rrn:~l ivc :~pproxirnat,c proccdores for the calculation of-the tjhcrmalq!o~ndary<br />

1j1,ycr on 1)otlit:s of n.rl)itmry sl~apcs have baeq intlicnlc;i_Ly...E ..lj;ckert [l-)j and Gy<br />

JC. I~~C:I.~ worlc, b111 thir ancur:~ey is improved. 111 this connexion the<br />

p a l ~ I)y ~ s \V. I)ic~nrniann 11 I], 11. J. Merlc 1851, M.B. Skopek [I181 and A. G. Smit,ll<br />

n.1~1 1). 1%. Spnltlit~g 1.1 In] rnny I)? usrful t,o t h rcadcr. In ronf,ra.st. with 11. 13. Squit.~'s,<br />

t.l~c: I:~t.Ivr prorwl~~rrs rn:~.lco us(: of t.lw rcsulI,s of t,hc t,hcory of similar lhcrn~:il Iwur~tl:rry<br />

I:~.yrrs 011 l.liwt l in t.11~ prrnctling scc:tion. 'I'l~is improvcs the accuracy of the calculation.<br />

r<br />

I . hn v:irio~~s :~l)lrroxirnat,c nlct.l~otls have Imw examined crit.ically and comparctl with<br />

rxch ol hor in n pnprr hy 1). 13. Spnlding and W. M. Pun [I221 : their accumcy has been<br />

jutlgrtl I)y pc:rlimning c:ornpn.risons with the exact solut,ion for the circular cylintlcr<br />

proritlvtl Ily N. 1~rorssling. According t.o ~JICSI: studies, the methods due t,o IT. J. Mcrlc<br />

/85] nntl A.G. Sn1it.h and D. R. Spnlding [lln] t,ulm onl, to I)c rcht~ivcly t,hc most,<br />

~~cIII.:~I(: in spiIlc of l.l~rir simpli(:ily. 'I~IC Iattcr relerencc shows that at a PrantU1<br />

nurnl)cr of P :-= 0.7, t.hc similar wcdgc profiles satisfy with good accuracy thc relation<br />

'I'his c.ql~at.io~~ is rx:ic% for /3 - 0 (plnlr) :~ntl /3 -- 1 (stfaanat,ion point). If it is supposctl<br />

(I~nl rqn (12 100) vnjoys ~~r~ivrrs:d vnlitlily, it, is possil)lc immetlintcly to writ.? down<br />

I lrrc IT,, and I tlonok c.onsl,:~nt, rcfcrcltcc values. This equation corresponds to eqn.<br />

(10.37) which W:IS tl(vived I)y A. Wnlz for t,hc momcnt~nm thiclrncss. The local NussclL<br />

~~u~nl)cr is n.gait~ tlcl,cmni~~otl I)y cqn. (12.98). At, the st.ngnalion point we ol)t.:~it~<br />

,. ,<br />

-.<br />

i . ~,~~i~~j~l:,ij<br />


310<br />

XJI. 'I'hcrmnl boundnry layers in laminar flow<br />

In n simihr matrnrr. thr hrrit flux q(r) mn IIV ronlp~~trtl from thr known distribution<br />

~(~~rt,) = q* (r.rfl) (7's - 7'm)<br />

for lhr stnntlnrtl ~~rohlrlrl of PI^. 12.17. 111 this case<br />

0<br />

(12.105)<br />

Ilr*rr, P ~IIR. (12.101) nnd (I.L.lO5) cnntai~~ Sticll.jr*n inlrgrnln. When tho dintrihul,ions 7'.


312 SII. 'I'hrr~nnl I~ountlary laycrs in Inntinar flow<br />

pert prrforrncd measurements on circular cylintlers in a cross-flow of air covcring<br />

avcry witlcmngcof Itcynoltls numbers. ITigure 12.18co11tninsaplot ofthe mc:kn Nussclt<br />

numbcr N,,, tnlrcn for the wholc circumfcronce of the cylinder against the Itcynolds<br />

number R. 150th N,, and R arc based on the diameter of t,he cylintler. As n first<br />

crutlc a.pprnxiniation it can be a.ssumccl that N, is pr~port~ional t,o RU2 as confirmed<br />

by tl~c tllrorctird calculations for the f1:i.t plntc at zero incitlcncr, orp. (12.79a, b),<br />

and for t,he flow nonr a sbagnation point, eqn. (12.90), in laminar flow.<br />

The loral cocfficiolt of hcat transfer varies considerably over the surface of<br />

cylintlers nntl ot.hcr bodies; mrn.surcmrn1.s on circrllnr oylinrlcrs tlnc to R. Schmidt<br />

nntl I


314 X11. Thermal boundary laycrs in laminar flow h. Thermnl boundnry Inyrrn in nnbitral flow 315<br />

It iu rccognizcd that, there exiutr, a difficulty in providing nn rrnequivocal description of<br />

nucb Iloct.uetirig ntrenma. Since turbulence involvca atochnstic fluctuations, ntrictly epcnking,<br />

110 two turhttlctit utrcnrns can ever bc nimilnr. However, it is found by oxperinlent that certain<br />

nvcr:rgc propcrlicu of tho osrilhtiodu arc adequate to dmtcribe them. Tlirse nre: the intensity<br />

of titrl~uloncr, T, clcfinctl in Scc; XVI d 1, and I.ho ncnlc of b~trhulcticc, L, defined in See. XVIIltl.<br />

It, iu found, furtltcr, that in cnaca when ttic scale of turbulenm is small comparcd with the din~elinionn<br />

of 1.11~ I)orly. whinh occurs in most cmm in prnctice, ttic degree of turbirlence alone sr~fficca<br />

lo ~-l~artkrtd~rizc t.hc Ilow. It in, t.hcn:fore, b bc cx]xcted t.hnL lhc NIIRRC~~ number for gconlctrically<br />

uitnilar, inot~licrni:~l I~odicn wlticli arc placcd in fluct~unti~~g, parallel, isolhcrtnal streanis, depc~iclu<br />

on blir trtrlntl~:ncc intenniy, T, in addition to its clc~~cntlcncc on the l'randt,l and l


316<br />

XI1. Thermal boundary layers in laminar flow<br />

In the casc of a verlical hot plate, tho pressure in each horizontal plane is equal<br />

to the gravitational pressure and is thus const+ant. The only cause of motion is<br />

furnisl~etl by the differcncc? between weight and buoyancy in the gravitational field<br />

of thr earth. The cquntfion of motion is obtained from eqns. (12.61 a, b, c) with<br />

tlp/tlx ,: 0 ant1 = 1/11',. Nrglccting frirtional heat we have<br />

IJrre n 2 k / c, ~ i3 the thrrmal difTusivit,y and 0 -- (7'- T,)/(I', - Z',) is the dimt~t~sionlrss<br />

lorn1 tc.rnprmttrre In n thcorcticxl invcstigntion conecring the cxperiinrnidly<br />

drtrrrninrtl trmpcraturc and velocit,y fieltl of a casc involving natural<br />

convection on a vcrt~cal hot plate, due to E. Schmidt and W. Beckmann [104J,<br />

E. Pohll~ausen tlrrnorlstrntctl thaL if a strcani function is introduced by putting<br />

IL - &play ant1 v = -- atppr, then the resulting partial differential equation for y~ can<br />

be mtlucrcl to an ortlinnry diffcrent,inl rquation by the similarity transformation<br />

Fig. 12.28. 1'rmlirmt.nro rlistrit111t.ion in tho<br />

laminar bonnrlary hycr on a hot vcrtiral flat<br />

plate in natnrni convcolion. Tllroroticnl<br />

curves, for P - 0.73, nhr J':. I'ol~II~u~~cn<br />

[!MI and $. Ostrnrh I!)3]<br />

Fig. 12.24. Velocity distribution in tho I:m-<br />

inar boundary laycr on n hot vcrtirnl<br />

flat plate in nataral convection (RCO also<br />

Fig. 12.23)<br />

'rhe vc1ocit.y component,s now become<br />

U = ~ V X ' ~ ~ C V=VCZ-~~~(~C'--~~),<br />

~ ~ ' ;<br />

and the tc~tipernt~urc tlistribution is tlct,rrminccl by the function O(7). Equnt.ions<br />

(12.1 12), (12.1 13) a.ntl (12.1 14) lcatl to Lhc following clifiro~tial cqunt,ionn<br />

wit.h the bound:~ry contlit.ions 5 = 5' = 0 and 0 = 1 at 77 -- 0 and I;' =- 0, 0 = 0<br />

at q = 00. I'igures 12.23 and 12.24 illrrstratc the solr~tions of thsc cqunt.ions for<br />

various values of P. Figures 12.25 antl 12.26 conL:~in a c:omp:rrison I~t,wc:or~ t,I~t: t:dculatccl<br />

velocily and t.crnpcraturc dist.ribrrtion and those nicnsr~rctl by 11:. Srhmitlt.<br />

antl W. J3cckmann 1104].'l'he agreement is sccn to be very good. It, is sccn, fnrtl~cr,<br />

that the velocit,y and tJ1crma1 boundary-laycr thickness arc proporlional to r'lJ.<br />

Fig. 12.25. Tempcmturo dislribution<br />

in the laminar botlndnrj laycr<br />

on n hot vdicnl ht plntn in Imtnml<br />

convcction in air, mcasnrrtl<br />

by I


318 XIT. Tl~crnial bonndnry layers in laminar flow<br />

lcrigtli I anti wit1t.h 0 is Q == 0 / q (~) (Iz, and hence<br />

0<br />

1<br />

'rho mran Nnssrlt nnrnbrr tlcfinctl by Q -- h k Nm(T, - T,) thus l~ecomes N,, =<br />

= 0.677 c PI4, or, inserting the vnlue of c from cqn. (12.1 14):<br />

N,, = 0.478 (G)'14 , (12.110)<br />

is t,hc Grnsliof n~~tnhcr. Tt mn also hr writhn as G = g I"(T,-T,)/v2 in tho<br />

casc of liquitls.<br />

'l'lie tli:tgmm in Pig. 12.27 gives a comparison between tlieoreticnl resultR on<br />

free convcction wiLli measurements on heatad vertical cylinders and flat platcs<br />

pcrformcd by E. R. G. Eckert and T. W. Jackson [22]. When the product GP < 10R,<br />

1.11~ flow is laminar, and for GP > 101° the flow is turbulent. The agreement hetween<br />

theory and experiment is exccllcnt.<br />

E. Pohlhausen's ralculations have been extended by IT. Schuh [I091 to the case<br />

of Iwge I'mncttl numbers such as exist in oils.<br />

The casc of very small Prandtl numbers is treated in a paper by F. M. Sparrow<br />

ard .T. I,. Gregg 11261. The limiting cascn whcn P + 0 and P -zoo were exambled<br />

by E. .I. Lo Fcvre 1731, according to whom we may write<br />

Fig 12.27 Average Nimelt nom-<br />

brr for frre convcction on vertical<br />

plntes and cylinderti, aftcr E. R.<br />

G. 15cknrt and T. W. Jnrknon 1221<br />

f'urvc (I) lnniinnr .<br />

Nm - 0 556 (GP)'I'; GP < 10a<br />

VII~VQ (2) 111rl1111rnt.<br />

Nm - 0 0210 (GP)'l'; GP > 10'<br />

n P 4 ' m7 ma W' on mn w* mn<br />

GxP<br />

h. Thermal bornidary Iaycrs in nnturnl flow 3 1 $1<br />

Tnblo 12.6. Coefficients of heat transfer on a heatod vertical plate in nntnrnl convection (laminar),<br />

according to refs. [XI, 94, 109, 1201<br />

Some numerical values for intermediate Prandtl numbers are contained in Table 12.6.<br />

Calrulntions with n hmpemt~~rc-clcpcn(lctitt viscosity were performa11 1)y 'l'. Tllirn<br />

[50]. The olI'ccL of suction or blowing on tho rate of llrnt Lrnnshr from n vcr1,irnl<br />

plat,e in naturul cortvrction is tlcscribctf in refs. [29, 1241. Atltlitionnl rlassrs of similar<br />

solutions in natural {lows were discussed by I


320<br />

X11. Thrrn~nl bonnclnry layers in Inminsr now<br />

gradient at (.he surface, i. e. to the local coefficierlt of heat transfer. Figure 12.28 represents<br />

a Schlieren photogmph taken on n heated vertical flat plnto. The contour of<br />

the plate is shown by a broken white line. It is easy to recognize on the shadow that<br />

t,hc boundary-layer thickness increases as d4. The edge of the zone of light sllows<br />

(,It& the local roaflicicnt of heat bmnsfcr is proportional to z-'I? The picture in<br />

Fig. 12.2!) gives an intcrferogram for the samc type of bounclary layer; it was obtained<br />

hy E. R. G. Rckert antl E. Soehngen (13J.<br />

Fig. 12.29. Intcrferogra~n of a thermal boundnry layer<br />

or1 n vcrt,ical I~cnted flat platc, nftcr R. 1%. C. Iklzrrl<br />

nnd E. Soehngen [10]<br />

Otl~er ttlmpes: 'I'IIC mot,ion (111c to nat,rlral chnvcction sror~n(I a l~orizorlt.:~l IIC:LL(Y~<br />

circular ogli~~tlcr was t,rcn.t,cd in an n.na.logous way by R. Ilcrmann 1551. tic<br />

F~IIII~ for P := 0-7 a Inem 11cat tmnsfcr coefficient N,, = 0.372 G'I~, where G is<br />

I~asnd on t,l~o clinmcter. blcasc~rcmcnts in air performed by I


322 XII. Tl~or~nnl I)onndnry lnyers in lnminnr flow<br />

[22] I5ckrrt.. 15.11. (>., anel Jnckson. T.W.: ~\nnlysis of tnrbalent frec convection boundnry lnycr<br />

on n flnt. plate. XI\(:;\ I


Xll. 'I'l~crn~nl 1)onntlnry Inyrrs in Iarninar flow References 325<br />

1.e IPur, 13.: Convrction do In chnleur en r6gin1e laminnire dar~s le cas d'un grndient, de pression<br />

et, d'nnc ten~pi.rnLure tIe pnroi quckponques, Ic lluitle 6t.nnt A propriet6~ physiqurs<br />

constanteo. In(,. .l. Iqeat Mass 'I'rnnsfer I, G8-80 (10Ii0).<br />

Lcvi.qtrc, M. I\.: lacs lois do In t.rnn~nlission dc chnlel~r par convection. Ann. Mines 13.<br />

201 -- 2311 ( 1928).<br />

1,cvy. S.: Hrnt trnnsfer to const.nnt propert,y lnn~innr bonntinry Inyer flows \\it11 powerfunct.ion<br />

frro-strmtn vclocit.y and wall t~wpcrat~~trc vnriation. ,I,\S 19, 341 --348 (1952).<br />

Lieptnnt~n. H.\V.: A uin~ple derivation of l,ightl~ill'n Iwat trnnsfc~ form~~l:~ .Il:M 3, 357.-<br />

360 (1958).<br />

Lictzkc. A.F.: l'l~corct.icnl and ex]icrin~rntal invrstigntion of hmt. t,rnnsfrr lip Intninnr<br />

nntural convcr1.ion bct\r~cen parallel platcs. NAG\ Jlep. 122:) (IO55).<br />

I,igl~t.l~ill. M. J.: Ch~lribul.ion~ t,o the throry of hat trnnafrr t,llrougl~ n Ix~ninar houndary<br />

Inyrr. I'ror. Roy. Soc. London A 202, X!)-377 (1850).<br />

Lorenz. 11.11.: 1)ir \Viirineiibertrngung an einer ebetien sc~~lcrrchten Plntte nn 01 hei nnliirliclirr<br />

J


326<br />

X l I. 'l'l~crn~nl hounrlnry lnycrs in Inniinnr flow<br />

(12131 Spnrrow, 1C.M.. and (:re g, J L Ijent, trnnsfer from n rot,nting disk to fluids of any PrandlI<br />

nutnbcr. .J. Hd, l'ronskr 8i, i49-251 (l!)s!,).<br />

(1301 Sparrow, K.M., and Gregg, J.L.: Mnsa t,rnnrrfer, flow, and hent tmnsfer nhout. n rotnting<br />

disk. .I. Hoat. 'l'rnnsier 82, 21)4-302 (IOOO).<br />

[131] Squire. 11. 11.: Scct.iori of: Modern I~cvtrloptnmt~ in Fluids Dy~~nn~ics (S. C:old~tein, ctl.),<br />

Oxford, 11, li23- (727 (l!)RR).<br />

11921 Squire. 11. I{.: Ilrnt Lrnnsfrr cnlr~ilat~ior~ for ncrofoils. AIEC ItM 1986 (1942).<br />

(133) Squire, 11.11.: Notc. on the effect of variable wall ten~pcratr~re on Imnt trn~iefer. ARC lthl<br />

2753 (1!)53).<br />

[I341 Stewnrt., W. 15., niicl Proher, It.: Hcnt. trnnsfcr and dirnnion in wedge flows with rapid liinnn<br />

trnndcr. InL. J. llcnt, 'I'rniisfer


328 X I1 1. J,nn~i~~nr bo~~ntl:~ry Inyrrs in comprcusihle flow<br />

or1)itnl velocity of a satellite of w, = 8 lzmlsec, the temperature rise even in a real<br />

gas is still of t,l~c order of 10,000 tlcg C. Tho mngc of Mach numbers M, 1 6, in which<br />

thrrc cxisl, Inrgo cIiKcrrnncs bctwcon tho bchavionr of a real as opposed to a perfect<br />

,gas, is givrn t.Itt: tmme of hypersoltic flow. 'l'llc occtlrrence of chemical reactions<br />

(ioniznl.io~l, tlissocint.ion) wl~ich sc:t in behind a shock wave or in t.he Imundary layer<br />

OII :I. solitl Imly ill :I Itypt?rsonic sl.rt::~m by virt,no of tho cxistcncc: ol:t high f,c:tnj)c:r:~.t,trrc,<br />

c.otwitlcr;tl)ly c.otnldic:xtcs t,llc I.;~slr of annlyzing t,ho flow. For this reason, wc sl~i~ll<br />

rt,s(.rit:t, our consitlcrat.ions to that range of Mach numbers in which tho fluid can<br />

still 1)c :~ssl~mctl t.o obry 1.11~ perfect-gas law; ir~ air, this corrcspontls to a range<br />

of M.,, -r: 6. In motlcrn t~itncs ni11(:11 nttcnt.ion has I)ccn giver: t,o tllcstntly of l)onntJary-<br />

Inyrr Ilows at hyprrsonic vclocit.irs ant1 in 1,hc presence of c1iemic;tl reactions. For<br />

drtails, tllc rrntlrr is rcfcrrctl to t.he hole by 1%'. 11. J)ormnce [20].<br />

Fig. 13. I. Tcmpcrnt,uro rise in air in ternis<br />

ol thc flight velocit.y, w,, and t,lle Mach<br />

w,Rm/secJ<br />

n~~nil~cr, M,. 'Vhc curve Iabcllcd "l)erI'ect<br />

gas" mas calculst~d wit.11 the nit1 of eqns.<br />

(13.1) nntl (13.2). Thc velocity 111s = 7.0<br />

km/sec in that of nn nrtificinl satellite in<br />

orbit,, and lo,< = 11.2 km/scc roprcsenh<br />

the e-9cnpc ve~ocit~y of n satalIite from<br />

I<br />

0<br />

~<br />

6 I2<br />

I<br />

8<br />

I<br />

24<br />

I<br />

36<br />

I<br />

42<br />

, the earth ~<br />

Him<br />

Even in I.llc mngc of snpcrsonic Mach numbers ( M, < 6 in air), the t,cmperature<br />

rise irt thr gascww stream is high enough to force us to talrc int,o a.ccount the effect<br />

of t,cmpcrehrc: on the proportics of tJllc gas, in particular, on ils viscosity. The lrinematic<br />

viscosit,y of most gases, and of air wnong Lhem, incrcascs cor~sitlcrably as the<br />

t.ernl)craturc is incronsctl.<br />

In t,llc caso of air, as sltown I)y E. R. van Driest [30], it is possible to use an interpoI:~t.ion<br />

fbrmuln l):~.sctl on I). M. Sntdlcrland's theory of viscosi1,y. This can be written<br />

wllrrc /I,, clcnotcs the viscosity at the reference Lrnjperaturc To, and Sl is a constant<br />

whit:l~ for air assumes the value<br />

S1=llOK. '<br />

l'ltc lm?twli~tg rel:~t.ion I)ct~weon tlle viscosiby /I of air and the temperature, T, is<br />

scerl plottd a.s curve (I) in Fig. 13.2. Sinco t,hc relation (13.3) is still too complicated,<br />

it is c:nst.omnry l,o npproxirn:~.l,c i(( in thcorc~t.icnl calculat.ions by tho simpler power law<br />

where 1,llc constant h sc3rvcs to nchicve a better apl)rosim:tl,ion 1.0 thc more cx:~c%<br />

Sut,hrrIn.nd formt~la (13.3) in 1.h~ nciglll)onrl~ootl of a tlcsirotl l,rt~ll)c~r:l.l.lr~~c r:111p<br />

(cf. Scc. XIlTtl).<br />

Fig. 13.2. The dynamic vis-<br />

coaity, 11, of air in tcr~ns<br />

of the temperaturc T<br />

Curvc(1) ?dras~~rc~ncnls<br />

and inler-<br />

pnlalion forlaula (13.3) hased on<br />

Sntherlnntl's rquntlnn. Ourvcn (2).<br />

(3). rind (4) pow~r lacs. cqn.<br />

(13.0, wit11 difirnnt values of<br />

thc exponent ro


330 X[[1. lmninar bor~ndnry lnyers in compressible flow b. IEclation between the velocity and the temprratl~re firlcls<br />

The pllonomcna wielcr consitlcrat,ion hccome, naturally, very complicat,ctl<br />

becnuso of t.110 intcraction hetwccn thc velocity and the thxmal hountlary Inycm.<br />

Conrparccl wiLh incornprcssil~lc flow there are at least four atldit,ional quantit,ics<br />

which must I)o tdtcn into account, in tJie calculation of comprcssiblc boundary layers:<br />

1. thc Mach nilrnbcr<br />

2. th! l'r:tn(IlJ n~~mbcr<br />

3. tho viscosity function p (7')<br />

4. hountlary condition for tcmperatm-c clist,ribut.ion<br />

(hcal, tmnsfcr or aclia1)atic wall).<br />

It is clear that tho large numbcr of additional pnmmctms, compared with incomprcssiblc<br />

flow, causes the numbcr of csscs likely to occur in practice to becomc almost<br />

int.mctablo as a consequence.<br />

Comprchcnsivc roviows of tllc numcrous papers concerned with comprcssil)lc<br />

boundary laycrs were givcn by G. 1Zucrt.i 1571 and 8.11. Young [106]. Details of<br />

spccial m:~t.hcmat.iral mcthods cmployctl by various nuthors have hccn discussed<br />

by N. Curle [26) and I


332 XI I I. I,:trni~~:w l)o111111r1ry liiywx in co~nprrssiblr flow c. Thc flnt plntc? nt zero incidcnrc :$:%:I<br />

of tho heat flow is rlrt,erminctl by the gradient (dT/tlu,), at tho wall. In fact, wo ran<br />

tlednce from eqn. (13.13) that<br />

so that, for (tIZ'/tl~,), < 0 t.hrrc is a flow of hcat from tho wall to tho lluitl, :tnd (,on-<br />

versely, for (dT/tlu), > 0 hat flows from tho fluid to tho wall. In this ~nannor<br />

Ilwr 7', (a) (ICIIOI,I,S 1.11~ t~crnprm1.11rc :I.(* 1,llc: mtlw rtlgr of the I)onn(l:~.ry Inycr, :III(I<br />

1,hc- sol~~l.iol~ l)cw)111rs urnz<br />

T," - T, 3 - or<br />

2 C,<br />

ll\v - l', ,Y-1<br />

-<br />

7'-<br />

Irlt.rotl~~c*i~~g 1.11~ Rlacl~ n~lrul)cr M = U/c, whcrc cI2 = (y -- I) cp !ltl we ciu~ rcwrit.r<br />

r'lm (1 3.12%) in the form<br />

Heat flux wall ;'_ fluid, valid for P = 1<br />

Fig. 13.3. Rclationship bct,wcen vclocity and<br />

temperature clistribution for the compressible<br />

laminar boundary layer on a Rat plate including<br />

frictional heat,, from eqn. (13.13)<br />

Pmndt.l nt~mhrr P = I. TI,, = wall tcmpernlllrr;<br />

!Ir, = lrw.sLr?a~n t,rn~p~nIurr, lpnr<br />

$ (Y-1) Ms > (7',,>- Tm)/Tm<br />

wc h%vc (i?7'/i?!,),,,0,1 > 0, nltd l#wL Is trntt4errcd to the<br />

rnll owing Lo the inrpo qu:tntity or lwrt eenrrshvl hy<br />

c. The flat plntc nt zero incitlcl~ce<br />

2<br />

Mm2 :<br />

The boundary layer on a flat plate at zero incitlcnce has been studiccl cxl,er~sively<br />

in numerous publications, and we propose to begin with n more tlctailctl cliscussiotl<br />

of this case. First we shn.ll deduce the ralatio~l bctwccl~ tho vclocil,y and tclnpcral~~~ro<br />

tlist,ribution on a flat plate from the prccctling grnrrnl proposit.ion.<br />

Tn t,l~c case or an rcrlirhlic wtll (flat,-plat,c tl~ernlornclcr) wo s~tl)stitmt,c! -: '/I,.,<br />

nncl [J == (I*, i~tt,o cqn. (l3.12), SO t,h:tt t,ho t,crn~wr;~t,~~rc (lislxil)~~t,iot~ it1 I,IIO IIOIIIII~:I~.V<br />

layer on a llat pla,l,c bcconlcs<br />

and the ntlialmtio mall trmpcrat,nrc, rqrls. (13.128, I)), is<br />

wl~irh follows with M, = U,/c,, ant1 c,2 = (y - 1) I-,, l', . [t is worth noting<br />

that the t~mprrnt~urc of a wall in comprcssiblc flow give11 by eqn. (13.17) is itlcrlticnl


334 XIIT. Lnrninnr 1)oundary laycra in nompressihlc flow<br />

with that for an irlromprcssiblc fluitl from eqn. (12.80) provicled that in thc former<br />

rase P = I. IT. W. I'Gnmons and J. G. Brained [34) have shown t,hat, it1 the rasc<br />

of T'mntltl 11ntn11crs which differ from unity the deviations in wall tempcraturr<br />

caused by comprrssibility effects, as compared with the incon~pressihlc cqt~ation<br />

(12 SO), arc- only very slight2. TIIIIS Ihc atIinbat,ic-\vnll trmpcmtnre cqnatiorl<br />

remains vnlitl for rompressil~lo flows with a vrry gootl tlcgrrc of npproxirn:lfio~l<br />

For nir, with y -- 1.4 :mi P -- 0.7 1, wt. ol)t,nill<br />

Thv rrs~~lling tlrprntlrnce of thr ntlinbatic-wall trmpcraturc on thc Mar11 nun~ber has<br />

Iwrn rrl~rrsrr~trti gmpl~icwlly by tho plot in Pig. 13.4. For rxamplc, at, a Mnrli<br />

nl~nil)rr M,, -= I thr wall 1)ccornrs Ilc~atrtl by 4.5O C (or 80° F) in roirnrl fig~rrrs.<br />

A[. M,, - - 3, t llc tr~nprratl~rr inorc:rso brc~ornca ns l~igll as 400' C (or 720° P), ;i~ltl<br />

nl M,, = 5, it is as rnlrrll as 1200° C (or 2200° 1').<br />

c. Tllc flnt plntc at. zrro incitlrnct!<br />

The recovery /actor, r, then represcths tl~c ratio of the frictional lnmpcraturr inc.rcnsr<br />

of tllc plntc, (T, - T,), to that due to adiabat,ic con~prrssion,<br />

urnz<br />

AT, = -- - ><br />

2 c,,<br />

from cqn. (12.14). 011 cornprrirtg rqns. (13.lH) ant1 (13.19) il. is scwl l.I~:,t, t,l~o mcovc:r,y<br />

factor has the val~rc<br />

Ilcncc: for air<br />

:wi<br />

r = dF- (Inminnr) , (lXl!):~)<br />

r -- d0.71 = 0.84 (Inniinnr) . (l:!.I!)l))<br />

Fig. 13.5. Mrnunrrrl rrcovrry Z't 10 IZ<br />

factors, r, for laminar boundary<br />

layen on conra nt sqwsonic<br />

veloriticq lor difkrcnt<br />

Mnrh n11111brm nnd Ilrynoltln<br />

v %I0<br />

A 60'<br />

0 Boo<br />

br? TO 33<br />

019 to 25<br />

%I lo 18<br />

numbcra, al1r.r C. 11. I ~ rJ2]; Y r<br />

ronipnrison \\ it11 theorel icnl<br />

vnlncs lrotn rqn. (I 3.19%)<br />

'.rhc diagrams in Fig. 13.5 rcprcscnt the rcsults of ~nnn.suronirnls on t,llc rccovcry<br />

factor in the cast of laminar boundary layers on conos in supcrsonie strca.rns, porformed<br />

by G.R. Eber !32J. The numcrirnl valnc r = is swn to be ~onfi~~n~t:~I<br />

lly t,llcse men.surernents. Similar results follow from ~nc:~surcnlcr~l,s p(di)rtllt:~l on<br />

various cones and a paraboloid pcrformcd by B. dcs Clcrs ant1 J. St,ert~l~crg 1271 :d<br />

It. Scl~crrcr [89].<br />

Velneity nncl tctnpernturc distributions in thc nbnetlce nl lwnt trmslcr: 'I'wo<br />

ppt:rs by W. Ilant.zscht? ant1 11. Wcntlt. [44, 461 ant1 :L p:l.prr by 1,. (Irorxo 121 1<br />

coll(,nill cxplici(, formll]ac for the c:rlc~rln.l.ion or Ll~c vvle~cil~y :1,11tl I,c:ln~)c~l~:li.llt~t* tlish'i-<br />

~)llt,iorl ill Illlmbcr of spceific cnscs. J'ignrc 13.0 conI.:iilw 11lot,s of lSllt: vtdor.il,y rlisl.l.ihlt.ion<br />

in t,lle l~ol~ntlary 1;~ycr for sovcral M ;~I numlmrs. It, reprrst!~lt,s Cl-oc:c:o's c:~l(:i~-<br />

Intions for a boulldary hycr on an arlirrhcttic /kt plnlc on tho :~,ssnn~l)l ion of ;I. vise-11sil.y<br />

law = 1 and for P = 1. The distance, y, from the wall has 11cc11 rnntle (litncnsiolllcss<br />

\vit,ll rcfcrcnco 1.0 ~GTu, where 11, tlrnotcs 1,lle Itinrrn:rl,ic visc80sit,y in<br />

t,llo oxt,crrln,l flow. It is seen l,Il:~t for incrcasirlg I\l:rcl~ tl~tml)rw l,llc:ro is :I. c:r~l~sitl~:~.:~.l)le:<br />

t~lickcrlillg of tllo Ilollntln.ry laycr and tll;~I, for very ~:LI.~I: hl:11.11 n11t11111.t.s (.)I(: v~.lor,i(y<br />

clist,rihllt,ion is approximately lincar over ib W~IO~C thicloless.


,,<br />

Ilie t.c!rnprmtt~rc tlist,rib~~tion is also shown in Fig. 13.6, and it is seen that<br />

tlic fric:l.io~~nl ir~crcasc in thc tcmpcrature in tho boundary layer assi~mes large<br />

valurs for Iargc Mach nwnlms. 'Clic pnpcr by W. I~antzsc:l~e and JI. Wcnclt [44], quotccl<br />

cnrlicr, contnins calc~ilat,io~~s for P = 0.7 (air) for the case of a Iicat-conducting plat,e.<br />

It is SII~~VII t.l~:~t, the velocity tlist,ril)~~lion u/rJ, plot,tcd in tcrms of y 1/ U,/Z i,"<br />

drviatcs c:onsitlc:r:~l~ly Srom thnt for P -= 1 when 1.11~ Mnclr nurnlm- :i.ss~~nics largcr<br />

v:rlrlrs. The vchc.it.y . lwofilrs shown in Fig. 13.G can bc mstlc ncarlv t.o coincitlc<br />

A<br />

. . . . . .<br />

when thc dist,a~~cc from t h wall, y, is matlo tlinicnsionlcss with rrfcrcncc to l/a,,, z/cI,,<br />

Fig. 13.7, wl~c:rc v,, tltnotcs the Irinomat~ic viscosity of the air at the wall. This<br />

circn~nstancc dcnot,cs pl~psicnlly that t,llc incrcasc ill I~oundary-laycr tl~iclrncss with<br />

Rlach number (at constant Rcynoltls number) is mainly due to the increase in<br />

volnmc which is nssociated with thc incrcasc in tlrc temperature of the air ncar the<br />

wall. This fact was first noticcd by A. N. Tifford [98].<br />

Jiig. 13.6. Vvl~wit,,~ lind t~cn~prr:~t,~irc (Iistx-<br />

1r11tiori in (;o11111rc,%qil1lc:, 1a111iri:ir l)o~~ncl:~ry<br />

layrr on adinlrnlic flat plate, nfkr Crocco<br />

P1.1<br />

l'rx~idil I I I I I ~ P ~ - ~ I , m = i, y = 1.4. 1)istanr~<br />

rrwn wnll rrfcrrvd lo I-, ~111 I'<br />

In this method of plotling. lhc curvrs fcsr<br />

dillcrcnt Marh nunlbcrn hnvc lwcn rnrcle<br />

nearly lo coincide. It is possible to conclude<br />

from ll~in that tl~c Iargc incrcnsc in llw bovndary-layer<br />

tl~lcknclis will1 nlnch n~~wbcr is<br />

mainly duo to tl~c incrcnac in volomc shlrl~ is<br />

associnted with tho increase in tcmpcrat~~rc of<br />

tllc air ncar tllc wall<br />

7<br />

Jqig. 13.7. Vc-looit,y lint^ il~~~l~ion~ iu t l ~o<br />

lr~ininnr I~ounclnry layor on an acliabatic<br />

Rat plate at zero incidence; data<br />

identical with those in Fig. 13.6. The<br />

dist~nce from tho wall is referred to<br />

I/v,,, Z/U;. For w = 1 , we have<br />

1/ II~,,/V~ = T,/Tm<br />

Jiig. 13.8. (hllicient oldtin frictio~i on dia-<br />

Oolic flat plate with rornprcnniblc, Ian~innr<br />

i)ot~ncl;~ry<br />

ll:~nt~.sd~c :111ql \f1c!n~1ta [44]<br />

a. 'Lh: flat plnto nt nrro inriclci~cc: 337<br />

Fig. IX!). Corfficic~~t, olsliin lric,t,io~i for ediabrrlie<br />

11:1(. plaLc at zero inoiclrnrt: with coin-<br />

layer. P =. I, ), = 1.4 (air), nfl,cr prrssil~lr, laminar borlndnry 1:1yc.r, : ~ h r<br />

IHY]<br />

It111wsi11 1inc1 .1111111son<br />

Adinbntic coefficient of skin friction: 'I'llc rocSfic.ic:i~l, of skill f~.ic:t.ioi~ Sor :II~<br />

adiabatic wall, as cnlculnt.ct1 by W. Ilnntzschc nntl 11. \Vr~~tlt, 11as 1)crn plot.t,ctl in<br />

tcrms of tho Mach nnmbcr in Pig. 13.8. For co -.. 1 t,hc protluct c, R is intlcpr~ltlcnt<br />

of thc Mach number, but Sor tlifircnL val~~cs of rr) t-l~c c:ocKicicwt of slii~~ S~.ic.l.io~~<br />

decrcascs with increasing Mach nurnbcr, the ratc of ~Iccrtasc I~cing largcr for srn:dlcr<br />

va111es of o. Figurc 13.9 contains a comparison bctwccn Lhc valucs of tllc cocl'ficicnt<br />

of skin friction for an adiabatic flat plat,^ obtai~~ctl by scvcm.l aut,l~ors. i. e. for<br />

different valucs of t,hc Pmntltl numbcr, P, ant1 of the cxponcnt in t.1~ viscosity<br />

Fig. 13.10. Bfeasl~ren~mtrr of t,he<br />

velocity diatrihution in nnadiabulic,<br />

Inminnr I~oi~n~lriry<br />

Inyrr in nl1pc.r-<br />

sonic Llow, al'lcr 11. M. O'l)ont~olI<br />

[28]. Mach number Mm = 2.4.<br />

<strong>Theory</strong> from ref. [I31


338 XI I I. Im~linnr I>orirtclt~ry Inytm in con~prcnnil)lr flow<br />

funrtiot~ 'I'hr plot sltows t11:11 the I'rantlfl numbrr exert*^ a much smaller influcncr<br />

on the rorffic.ienlf of skin friction than the cxponcnt to.<br />

Vrlority nid trniprrnlr~rc tlistril~~~lianq in lhr prcsrnrr of lwnt 1rn1tnft.r: In ~ I I V<br />

grnrml ca:lqr, 1111th hrrrl trtr?i+r p~rsrnl, thr rrhtiort I)ctwcen tho vclocity and t,oml)cratt~rr<br />

tlist,ril)ution (mi I)r tlctlucrtl from rqn. (13 13a). Wl~eri P = 1, it can br<br />

wril t t.11<br />

whtw 'I1,, is givc.11 I)y rqn. (13.17). '1'11r prcccding rtluation can bc cxt.c~rltlctl 1,o<br />

I'r:~ntltl 1111n1l)t~rs tlifYrring froni 1111it~y I)y the int~rt~tlucl~ioti of trhc rcrovrry factor,<br />

whctl wc: ol)tn.in<br />

In 1.llis cq~rntion, thr acli:~.l)n.t,ic wn.11 tcniprmt,~~re, l',,, shoultl be ~%lcuhted from eqn.<br />

(13.18). 1)11t, il, ni~~st, IIC rr;clizrtl 1.l1n.t~ this is only an approximation. Thn direction<br />

in which 11(-:1.1, is tr:lnsft:rrcxl c:i.n I)c tlctlncotl from eqn. (13.21) n.nd written<br />

Since for tt) :- 1 1,111: corfficicnt of slzin fricfion is intlcpcntlcrlt of the Mach<br />

tlumlw.r (IG% 1:3.8), thc r:cl.c :el, which 11td is tr:~nsk~rrt:tl brcornrs equal t,o that in<br />

nil inc:omprcssil~lt: strmrn. cvlri. (12.81). A survry of lirnt.-l.r:lt~sfc-r cocffirirtlt,s ant1<br />

rct.ovc:ry Ij~t.tt~rs liw I:IIII~II:I,~ :1.11(1 t~ur1~11~11~ IIow :I.I. I~igl~ Mi1t41 IIIII~I~)(:I.S t:wt I)e (o1111(1<br />

ill :I ~mpr I)y .I. IC:tyo 1551. In t,l~is rpr~nc!xion rrf. (1051 may also I)(% mcrit,ionetl.<br />

Fig. 13.11. Vcloci1.y and tc?mpcroturc<br />

clistrihrtt.ion in oorn~)maqihlo Iiitninnr<br />

bountlnry lnyer on flat plate nL zcro<br />

incidence with hrnt tranrler, aftor<br />

IIantzaclre anti Wendt [44]<br />

Wall tempernlllrf! free rtrrrm letllpernt~ltre.<br />

T,. - T,: P - 0.7. = 1 ; y = 1-4<br />

Calculations conccrnjng compressible boundary layers on flat plntcs which are<br />

based on the momentturn-inhgml eqnat,ion (Chap. X) have been pcrfornictl by<br />

Th.. vorl ICBrmrin and 11. S. Tsie~l [S]; see also Pig. 13.9. Approxiniate solutions<br />

for the flat plate were also published by F. Ro~~niol and 15. A. Ric!l~cll)rrtlricr (71,<br />

1). Colrs [I 71, 1,. Crocco 1221 ant1 11. .I. Monngltrcn 1751. S~l~~tions for 1,110 tyu~lt.iow<br />

of lnmir~nr I)ountlary lrrycr~l with vnrialh pro1)crtiw WC~C givt:~~ l)y I,. I,. Moort: (77 1<br />

and G. B. W. Young and E. Janssen [1081.


340 XI 11. Iml~innr 1)oundnry Inycm in co~nprcwil>lo flow (1. noundxry layrr with non-zero prrRunrr grndirnt 3-1 1<br />

d. Ilor~ritlnry layer with no~~-zero pressure grnclient<br />

1. Exnrt solutions. The ralculaiions conccrning boundary layers with non-zrro<br />

pressure gratlicnt s are more difficult I Imn t hose concerning flat plates, owing to<br />

thr Iargr nrlmbrr of intlrprntlrnt variables 1,. Crorco [21] tlisrovered quite early<br />

a t~mnsformat.io~t which simldifics the task of int,egra.ting the equations for tl~e<br />

cases when rithrr (1) P = 1, ant1 t.hc viscosil,y function /A(?") is arbit,rary, or (2) whcn<br />

thn 1'mntll.l numlm has an arltitrary value but, p/T' = const (i.e. when w .I 1).<br />

111 1.11~ spcri:rl cases of ;MI atlinl~nt~ic wnll wi1.h P -- 1 and to = 1, I,. Ilowarth [481,<br />

C. It. Illingwort,h 1701 a.~~tl I


342 XI11. Tmninnr Imlndary layeru in rotilprenaiblc flow<br />

The viscous trrm in tho cquntion of motion can bc transforrncrl with thc aid<br />

of cqn. (13.4%) nntl 1,Itc pcrfect-gns law p == p, = p R T to yield<br />

or. by i~~lrotluning t h tli~ncrmsionless Lcmprrxtt~rc f~lrlction (rrlat,ivc: stngnal.iollcr~tl~nlpy<br />

diffcrcncc), tlcfincd by<br />

Jlt-rc IL tlwwtrs tlw local, ns tlistil~ot from thc stng~~nlion r~~t~llalpy. Introducing llmc<br />

This tmnsfort~~cd cquatior~ cliffc~cw from the corrcspondi~~g I~oundnry-hyrr equation<br />

of irmcornpressiblc flow merely by thc factor (I -1-8) wl~ich rnultiplics tlmc prcssuro<br />

trrnm.<br />

111 order to transform the energy equntion, we multiply rqn. (13 0) 11y ?L ard<br />

add ccp. (13.7) Rc~ncmbrring that tl~c Prandtl nun~bcr is<br />

As WXR clonc! for oqn. (13.28), we cxpross the pnrt,i:d tlorivativc:s with rrspcct to z<br />

cxprc&ot~ ill rqns. (14 XI), (I3 34). nt~d (13.36) into rqn. (13.0) imngincrl diviclrtl nnd 21 by tllosc wi+h res1)cet to j: nrmtl $, lmtc that .- h 11, p, p,/ptl p :&I makc<br />

use of the definitions (13.40) to obtain<br />

by Q, we tlcrivc :<br />

Ilrrr, M, -- II~/C, is tJ~c Mnrh nurnl)cr of t,lic cst,rrn;ml flow. Sitit:(:<br />

thc fact.or of (li)~~)~ in cqn. (13.46) can 11c put in fror~l, of Llle operator P/r??y2 in<br />

cqn. (13.44), so t,I~nt tltc trnrlsformcd cncrgy ccjlmt.io~~ :~c:qt~ircs t,Ile form :


344 X111. Imninnr bo1ttrr1:~ry Inyrrs ill comprcsrriblc flow<br />

Eqr~nt.ions (13.41) ant1 (13.47) t.ogcthcr with the continuity equation<br />

wlticl~ is n tlirwl, consrqncnao ofotjn. (I:!:lO), now (:ot~sI.il~~ll,o L11c IIOW ~otoFI~o~~ntlar~-<br />

I:lyc:r t:clr~:~l,iorts.<br />

The syst.cm of equations (13.6), (13.G), (13.7) was subject to the bountlary<br />

contli thns<br />

thc latt,cr dopentling on whothcr tho wall is adiabatic or isot,hcrmal, t.ogether with<br />

It is easy to sco that these 11011ntl:wy cor~tlit.ions t.mnsforrn as follows:<br />

I/irnilirtq crrsrs: If P := 1 Iltrn S - 0 is a spccid solut,ion of the cr1crg.y cquaI.ion<br />

(13.47). 'I'ogcl~l~rr wil,l~ rqn. (13.:%0), it. Ict~tls to t.lta rcl:~~tion between t,cmperat,l~ro and<br />

volorit,y for nn ntli:~li:~.l.ic \vall tlisrovcratl r:~rlirr as cqn. (13.12). In this case, cqn.<br />

(I 3.11 ) assumrs 1,hc "incotnprrssil)lc" form of rqn. (9. I) rnnctly.<br />

t.r:~t~sf(>r~~~nt,ior~ 11a.s l~r(~n<br />

usrtl t.o rlvrivc cs:wt, sol~tf.ions nntl l,o formulntc n I:~.rgc nntnl)cr of al~proxin~al,c<br />

proac~tlnrt~s. Srlf-sirniln.r solrttions piny an important, part, wit,l~in t>he class of exact,<br />

solnt~ions. 111 tlrc sonLrxL of incomprrssil)lc Ilows, we consitlerctl that n solntiot~ 1)nlongvtl<br />

to this group if I.lm vchcit.y 1)rolilrs 11 (R:, y) atf two clill'crcr~t st,at,ions n: cor~ltl IN:<br />

n~:~.tlc t~ongrncnl. by I.hr npplicat,ion of :t singlc scale l;l.t:t,or ritc:I~ for IL and y (Scc. VI 1 I 1)).<br />

It was t.11c.n sht)wn t.l~nt surh sin~ilnr solut,ions existrsd in t,l~~ prosrnco of a dcfinit.e<br />

gronp of t~slnrnnl Ilows II,(:I:). In cnscs of t,l~is Itir~tl. I,ltr pnrli:~l tliffrrant.inl orlr~ntion<br />

for t.Iw st rmtn frlttc~l~ion rrtl~trctl t.o nn ortlinary ililrrrrnt.i:ll aqrtnt.ion wlrich is consitlrr:~l~ly<br />

r:~sirr lo solve I,II:III 111s I'orn~rr.<br />

I<br />

Rl:~liillg IISC of :L 111ln11wr of sl.t~(lit~s, l'nr (:x:~tnl)lt: 148, 40, 50J, 'I.'. Y. I i nnct 11. 'l'.<br />

N~~:IIII:I(.SII [(XI. 611 (I~~IIIOIIS~.~;L~~~:(I in a n~tlnl~cr of pr:liscwort,l~y invrst,igntions t.l~at.<br />

S I I ~ I sin~il:rr sol~tl.ions rxist it1 1.11~ c-nsr of comprossiitlc bo~tntl:rry layrrs ns wcll.<br />

As liw as 1I1c vrlorit.y Ito~tr~tl;~ry hyrr is cor~ccrr~rcl, l~crc t.oo, ~irnilarit~y rsl.cntls t,o<br />

1.11~ longil.~ttlirt:~l vrlovily rotnponrnt~, 76: wi1.h rcsl~oct to the t,l~armal la.ycr, similarity<br />

1.2. Srlf-similnr SOI~I~~OIIU. 'I'ltt- Illi~~g~vtt~~tl~-Sl~t~~v:~rl~so~t<br />

Sin~iln.r solr~I.ions for comprnssil~lo I~onntl:r.ry l:~..yc:rs twnsl,it.~tlo rx:cct. sol~rl.ions<br />

of t31to sysI,t~trr 01' w~~t:r~I.ions w~tl :trc, l,I~t>t~~l'orc~, ittlxi~tsit~:rIl~y vt*r.y itrt~~orh~rl.. l'vrI~:ri)s<br />

cvcn ~norc itnport;lntIy, solutions of this Itintl art: cntployctl as t.011c41st.ont~s :~g:r.inst,<br />

whir11 t.hc n.ronmay of n.pproximal.c prorrtl~tras ran 11a j~itlgotl. For l.l~rsc: rrnsons.<br />

we 11ow proposo roughly to slteld~ the line of rcnsoning which It::uls l,o sin~ihr solut.iot~s<br />

starl.ing wit,l~ the lllingwortl~-SLc~vart~so~~ t,mnsforn~nt,im. We sh:tll ror~c:lutls t,l~i.s<br />

topic with n number of r~~lrncricnl results. Wc shall postulate tl~c valitlilsy of t.l~e<br />

viscosit,y Inw from eqn. (13.4n) so that ro = I ant1 P - I n.ro implic:tl. In t,l~o t::~sc of<br />

bountlary layers wilh herrt lrn?is/er, an nrl~ilr:~ry, 1,111, c:onst,:lnt, w:~ll I~:III~)(~~:I.~.III.~:,<br />

II',,, will be assnrncd, so that A', will 11ccornc a oonst:~nf,. In prol)lwns i~tvolving ;HI<br />

nrlirrbnlic wall, t,ltc stagnation ent,l~nlpy is given by cqn. (13.12):<br />

ant1 rentains cot~st,nnt over t.hc 1)ountlnry-lnycr t.l~ic~ltt~c~ss, itnplying S : 7 0 (c/. also<br />

end of preceding section). In this cnsc, the sirnila.ril,y of tho st,agl~:~(,iort-cr~tl~:~l~ty<br />

prof les assumes a trivial form.<br />

Employing the stream funct.ion 111, we rrwrik cclns. (13.41) iltttl (14.-t'i) in f,ltr<br />

form :<br />

Thr similarity vnriablr is int,rotluccd wit11 fl~c aid of IIIC following assttrnl~t,io~ts.<br />

where A, 11, r, s, t pl:~y the part,s of rtntlcl.rrrninotl COIIS~.:III~.S,<br />

stream funct,ion, ant1 S(q) is the tcrnpcr:tt,~trc S~lnct,ion tlclinctl in oqn. (13.35), now<br />

cor~ccivcd t,o be n functi& of 77 alone.<br />

1Squat.ions (13.50) and (13.51) arc now bmnsfomlcd to tlto coortlin:~tcs 2 an.ntl 17,<br />

and in the result.ing cxprcssiorls it is clcmantlctl that t,ltc terms in 3 must tlisapprar.<br />

In this manner we obtain ordinary tliffcrcnt.inl cqrinl,ions for t.110 fnncl.ions /(q) :r.nti<br />

S(17). Snch c:~lcnl:~t,ions 11:~vc 11ecn pcrforn~ncl by 'I'. Y. I,i :wcl 11. 'I'. N:~~irrnir.t.su JOOJ<br />

who found that there exist,ctl four clnsscs of solut,ions for 7i., (Z). I~ollowing this work,<br />

C. U. Colten [I61 dcmonst~rht,cd that t,hree of t.11csc classr,~ can be rcd~lcctl to thc<br />

/(?I) is an II~I~~IIOIVII


346<br />

XI 11. T,ntninar I~or~nrjary hycrn in cornpressihlo now<br />

(Ic' nntl VL arc c:onst,:~rlls). '1'111, fourth case<br />

?it 7-- I


XI 11. I,nrninnr bo~~ntl:~ry Inycrs in rornprrsnil~lc flow<br />

and wrik tlo\vn (IIP t.ransformcrl l)o~~ntlnry-layer rquations (13.50) and (13.51) in<br />

tlrr form of tl~r following two ordinary tliiTercntial eqr~at~ions:<br />

in wl~ich primrs tlrrrot,c tliKcrcnliat,ion with respect to 11. 'rhc pnratnetcr 8, in the samr<br />

way r7.s oarlicr in cqn. (9.7), is tlcfinctl by<br />

it, rlr:lr:~vIrrixt.s tl~r prrssltrc gmtlicnt of t,lrc cxtcrnal stream.<br />

we corrclr~clo wit,h tJrc aitl ofeqn. (13.60) tl~:~t J' constitntcs a tlimcrisionloss form of tlrr<br />

1ongit.11tlinal vrlorit,y component in t . 1 ~ bo~~ntl:~ry layer, because<br />

Sinrr ?/ -- 0, or ?/ --r oo implirs 71 = 0 arid 71 = ro, rrspect,ivcly, the boundary contlitions<br />

for t11t- systrm (13.til) rnr~st he wril,t,rn<br />

In the case of an crditrhrrtic loall, the srcond equation (10.01) is sn.t,isfictl itlcnticnll~~,<br />

:r~itl it. is ncrcssnry t,o solve t,he singlc c.qn;~t,ion<br />

/"' -1- //" = P(/'" 1) ,<br />

\\~11rn IIIC \vnll pcrrnits thr /rrrirn/pr o/ hccrl, it brcomcs necessary to solvr thr<br />

system of rquntions (13 01). Sincr thr wnll tcmperatnre, T,, can he prescribed in an<br />

arbitrary manner, it will be fol~ntl that thc solutions depcntl on the paratnrter<br />

in addition to their dcpcndcncc on P. Solutions for a largr nrmbcr of valws of thsc<br />

two par;~mrt,rrs have brcn workcd out by 'l'. Y. Ii tintl 11. '1'. Naf;nmatsrl [(ill ris well<br />

as by C. J3. C!ohen and E. Reslrotko [16n].<br />

Pig. 13.13. Vrlocity arid rntl~nlpy dislril~~~lions in<br />

ro~nprrssiblr, 1:trninar honntlnry lngrrn with prwsuro<br />

grndirnt, and hrnt tr:lnsl'rr, nftcr C. 13. Colrrrr and<br />

E. hshotko [lGn]. and in conforrr~ity with cqtls. (13.62)<br />

and (13.35)<br />

I'rn~~(l tl N111n1)cr: P -- 1 ; OI - 1 . rJ(x) = (z) tlcnolm<br />

t.111, vdor.il.,y of I.lm t:sl.cr~tr~l flow. n), I,), c) vc:locily<br />

distsil)ut,ions; tl), e) cnthlpy dint,rihrttions; n) IS,,, = 0;<br />

T,,, = 7'0; ntlinlmtic wnll; h), d) 8, = -0.8; T,, - 0.2<br />

7'" cooled wll; c), e) S,, 1.0; T,, = 2 TO; hcnt.ctl \vall


350 XIII. 1,mninnr honnclxry lnycrn in comprrrwihlo flow d. l%onnclsry lnycr with non-zero prrnwlro grndicnf. 35 1<br />

It is wort,hy of notc that the system (13.61) subject to thc boundary conrlitions<br />

(13.63) yirlcls t,wo pllysically sonsil)lc solutions wl~cn Jl < 0 (this is also lrue in the<br />

cnsc of an atli:lbnt,io wnll. c/. Sca. IXn). Aceorcling to the vicws expressccl by C. B.<br />

Cohen and 15. Itrshotlzo [lea], Lhc one ofthe two solutions which scls in in an expcriment<br />

is clctnrnlinrtl by t.llc initsid ~ondit~ions which cstnblish t,he prcssrrrc field acting<br />

1iig1trc.s l:%.l:~~l, c rvl~rwct~l, 1.11~<br />

,Y, in lht: 11o111t~l:~r.y I:~,yc:r<br />

ct~thlpy dis~d~~~~ior~,<br />

it1<br />

accorcJn.nc-o with cqn. (1:!.:!5) for '/I,, - 0.2 7',, nntl 7', 2 'I1,, rcspcc:t.ivcly. It is<br />

socn tllnt, t,hc: prrssuro gr:l,clicvlt, nxnrl~ n consit1or:~l~ly stronger infIrlc:nna on the vr1ociI.y<br />

prolilvs ~.II:I,II 011 lhc: (:t~l~I~:t.l~~y prolilvs.<br />

Tlw figures c:orll,:ai~l I)lols of /"(71) for clifli:rrnt val~rc:s of tllo pnramcltrrs fl and<br />

Whrn t,l~c cxt,c:rnn.l flow is nc:cclnrat.ecl (/I >O), thc lnrgest. shearing slrcss occurs at,<br />

tho wall iLsdf (1, - - 0); wlwn the flow is tlccclern.t,ctl (P (O), t,his rnaxim~rm niovcf<br />

away from the w:dl awl plnccs itself furlhcr from it ,as t,hc pressure rise is increased,<br />

tllnl, is for 1:wgc:r nl)solutc v:~lucs of the: ncgntivc val~ro of Jl. lr~trotlrlcing the k ~al<br />

skin-frirtion c:orffic:innt,<br />

C, =-<br />

b e,,, 16,<br />

lG6. 13.14. l)ixlvilml,iw~ of dwnri~~g nl~rrw~:n i11 ~ I I I I -<br />

prmsildo, I:tn~innr h~nclnry lnyorn wiLh prrnwrc<br />

gradient and heat tmnsfer, after C. 1%. (hhen nntl<br />

E. Rwhotko [IBa], and in conformity with eqns. (13.64)<br />

I'rn~tcll.l n~~lnl~crr P -- I : ro -- 1<br />

a: A', Y- 0; 'I*,,, 7 T,,; 1~1Ii1ilm1,io w~ll.<br />

b: S,


352<br />

X'I I I. I,:ur~i~~ar Imt~t~clary hyrrs in corr~p~r~riil~lr flow<br />

l h vn111c.s of/,,," lor tlifTornnt vn.lrlcs of A', are seen plol,tcd in t,crms of P in Fig. 13.15.<br />

It is rcvognizrtl t,llot n chnngo ill pmssrrrn grntlicnt cxcrt,s n n~uch sbronger it~flucncc<br />

on I,,,", nntl 11c:llc:c: on the sho:~ring stxoss n.t the w:~.ll, when t,l~e wall is I~cntocl (Xu, >0)<br />

1,11:111 WII~II t l ~c I:~l,l,c,r is aoolrtl (A', ( 0). In t,I~e mngo of ncgat,ive vnluos of P there<br />

vxisl, l,\vo v:~l~ir.s of r,,, fnr (YI(:II v:l.ltlo of /I. 'l'his is n consoqllonoo of t.ho rxistcnco of<br />

Lwo soI~~l,iot~s in l,l~is r;tngc, ns n~r~~l,ion(xI wrlivr. WIICII l,l~o w:tll is n,(li:~l)n,l,io (AS,,, ==O),<br />

I,II(: low(-r I )~;IIIC~I of' t,l~(: CII~VC yi(,ltls 11cp1,ivc V:I~II(~S of sltcnring s1,rcss wl~id~ j)oinLs<br />

t,o rtwcrsc Ilow. When t,hc wall is hcnt,cd (A',, > 0) il, is possible to find sufficient,ly small<br />

valrtc~s of p -- P,,,,,, for w11ic:h I)ot,l~ vxlncs of I," arc ncgnt,ivc, that is for wl~ioh the<br />

flow 11:~ rcvorsc~tl it,s dirccLion. 1 n the c:~so of :I coolctl wall (8, < O), 11oIh valrles of<br />

I,," ran Im positive, 1.11al. is 1)0(,11 can r~prcscnt~ non-separated flow patrlmns. It is<br />

swn, fin:~.lly, Ifhat, snp:~m.t.ior~ (I,,," =O) rnovcs in the tlirect,ion of smnllcr pressure<br />

risw :IS t11c l.cmprr:~.l,~~rn of 1,Iw wall is incrrn.sctl.<br />

III ortlvr t,o t,r:~nsform fro111 1,11o vn.ri:~l)lc 11 f,o the pl~ydoal t1isLnnc:c y, it is ncccssnry<br />

1.0 111 ili.xv vqns. (I :1.H), (1 3. IO), (1:1.24), (I R.25) nntl (13.62). It is then found tht<br />

Y'ho f:rct,or nl~oatl of t,hc ir~togml is comrrrlt,cd from cqn. (13.53), and the func1,ionnl<br />

rcl:tI.ion b(:t,woon z nntl 2 IIIIIS~, bc tdic11 from cqn. (13.5G). According to eqns. (13.46)<br />

:LII(~ (l3,(;2), I,IIc int,~gr:bncl is<br />

I


354 XI 11. 1,nminnr h~nrlnry 1:ryrm in rornprranil~lc flow<br />

we can rewrite t,hc nncrgy c-quation (13.7) in tho form:<br />

The borintlary contlit.ions arc<br />

a) with hcat t,c~r~sfw:<br />

h) for an aclinl)nt.ic w:dl<br />

cla<br />

Rtpiations (13.6), (IR.fi), (13.8) and (13.71) togclhcr with thc boundary conrlitions<br />

(13.72) constitute a systcrn of four equations for the variables u, v, e and A. The<br />

pressure p(z) is known from Bernoulli's cquation and is given by eqn. (13.9); it<br />

remains constant over the thickricss of thc bounilnry Iaycr, i. c. ap/atJ = 0. Since<br />

the prcssure remains constant across the layer, wc havc at every point<br />

where h,], TI, el tlcnotc tho vnlurs of cnthalpy, ternpcrature, and dcnsity, respectivcly,<br />

at tho orttcr ctlge of the boundary laycr.<br />

We now introduce a displaccmcnt thickness, a momentum thickness and an<br />

energy-dissipxtion t,hickness in the samc way .M in incompressible flow and sevcral<br />

adtlit.ional quantities clcfi nccl with thc aid of cnthalpy. In this connexion the formcr<br />

paranirtcrs arc so dcfincd as to reducc to the respective quantities for incomprcssiblc<br />

flow, cqns. (8.30). (8.31), arid (8.34), whcn p = const is sobstituted in the definitions.<br />

Ihioting Lhc bo~~nclnry-Iaycr thicknem of the velocity laycr by d, we int,rodiicc the<br />

dc:finitions :<br />

dl : J<br />

A<br />

- P-'! ) (ly (displnccment thiclrness) ,<br />

el (1<br />

0<br />

0 - - [ Yl (I - ) I (rnomontum tliickncss) ,<br />

6<br />

U<br />

(1. Tlountlnry lnycr wit,h non-acro prrssrtro grnclirnt 355<br />

(~elocit~y t,I~iclzncss) . (13.78)<br />

It is easy t.o vcrify from cqns (13.73), (I3.74), (13.77) a.ritl (13.78) t,l~nt t.hc paranvhrs<br />

nl, b,, ant1 d,, satisfy tlic rclntion<br />

lnkgr:1ling t,hc tnon~cnt,~~n~ c:q~~nIhi (13.0) ant1 tPhc cwcrgy tyitn.I.ie)n (13.71)<br />

ovcr y, in the snmc way ILR was (lono for in~o~nprcs~il)lc flow, wo t::~n oI~l.:~i~i l,ltc 1110-<br />

~nrnt.~rt~~-ititcgr;~l :mcl energy-integral eqr~:ktion for c:ouiprcssil~lc flow. 'J'aiti~~g int,o<br />

nccount. that<br />

I ~ (Ix ~ -u - dz ~ e . 8, ~ ( ~ + _ ~ iLv ~ w ~ ~ ) = (lxRO) ~ : ~ ~<br />

The equation for n~cc/mnicn.l encrqy is olI.airicc1 by first multiplying cqn. (1B.G) by t,hc<br />

vrlocity component TL ant1 then intcgrnting with respect to y. Making use of thc<br />

continuity cqi~ntion and performing a ni~nibcr of sirnplificnt,ions, we obtain<br />

On t.lic left-hand sidc of this cqi~ntiori wo tliscovcr t,lic mcc.l~anicnl work of t.hc flow,<br />

tho trrm on tho right-hand sitlc rcprescnt,ing the tlissip:~tion. 111 incornprc~~il~l~ flo~,<br />

the sccoricl term on thc Icft-liarid side vanishes bccaiisc then, with e r= const*, wc linrl<br />

that a,, = 0. As n residt, eqn. (13.81) tmnsforms irito cqn. (8.35).<br />

Thc cquation for thc increase in cnlhnlpy - Iia1)itnnlly lrrlown as tho energy<br />

equation for short - is obtninctl as a rcsult of tlic intcgr:~tion of eqn. (13 71) over y.<br />

Thus<br />

6<br />

d tl u<br />

(el hi U a,,) -/- el Uz-&-. 8,, - - - -- ----clz<br />

( ) - ( I . (13.82)<br />

Thc loft-h.zntl sidc of this cqunl~ion reprrscnt.~ the OIIRII~C in f,hc rnt.linll)y of tho<br />

strcnrn, whcrcas 1.11e tmms on t.l~c right,-hnntl sitlc clcscrilw it,s cll:~ngc-s tlt~t? In ~IIO<br />

tr:~nsl't:r ol' llt!at, :kt, Ihc w11,11 (sul~scrjpt, W) :~ntl Lo ilhv.gt-~~t:r:~l,io~~ 1Jtre111gh cIissi~j:~l,io~t.<br />

Noting that cqn. (13.81) describes the loss in meclixn~cnl energy, whereas cqn. (13.82)<br />

describes the gain in enthdpy, we cnn obtain an cq~lnt~ion which describe-a the incrcnsc<br />

in toCd etzlhnlp?l in the x-direction by forming t.heir difference. This yields<br />

0


it, vicw of cqn. (13.85). whcrc M = TJlc, tlcnotcs thc local Mach n~tnlbcr at the outer<br />

(:tlge sf t,hr hott~alnry layer. Taking inta accnant the relations (13.79). (13.81) md (13.86) we ol)t,nin t,hc final form of t,he energy-i?ztegrn,l eqlc.ntio?z:<br />

I


Fig.. l3.16. In 13.18. lain~innr honnclary layrr in co~nprrwihlc subsonic flow for the s~~ction<br />

nick? c,T t.llc NACA H4 10 nrrol'oil on I,lm nsnu~npt.ion of :in ncli;r\iat,ic wall. Angle of incirlcnre a - 0".<br />

h1:1~11 11111nlwr M,., -- Il.rr/~,.,; I'r:\ncll.l nl~nilwr P -- 0.725. Chlwliltpion b:wcd on the approxi-<br />

e. Intcractioa between shock wave and bountlary layer<br />

Wlicn a solid hotly is placcrl in a stream whose velocity is high, or when it flies<br />

through air with a high velocity, local rcgions of supersonic velocity can be<br />

forri~ctl in il,s nc~iglil~ourliootl. The transition from snpcrsonic velocity to subsonic<br />

vclocit.y against, the adjoinir~g adverse pr~wn~re gradient will u~nally take place<br />

I hrough :L s110ck WRVC. 011 crossing the very thin shock wave, the pressure, density,<br />

:rntl t.rm~)or:~l.urc of L11c Iluid chnngc at cxt,rcrnely high mt.os. l'lio rates of changc<br />

arc so high t,liat, thc t.ransit,ion can hc rcgdcd as heing discontinuous, except for<br />

the irnmetliat,~ ncighbourhood of the wall. The existence of shock waves is of functarn.cnt,al<br />

itnport,ancc for the drag of the body ,as they often cause the boundary<br />

I:~ycr 1.0 scp:lrnt,e. 'l'ho t,licomtical calcalatio~~ of shock waves and associated flow<br />

lit-lais is wry tlil'lin~rlt,, n.nd wc do not propose to discuss this topic here. Experiments<br />

sliow tl~nt, the processes of shook and boundary-layer formation intteract strongly<br />

Fig. 13.18. n) Velocity distributions and<br />

b) temperature distrib~~tions in tho boundary<br />

lnycr nt dilTcrant Mar11 numlmm<br />

e. Inl~rnolion lwtwccn sl~ock wave and I~OIIII~II~~ lnycr :m<br />

6,<br />

with each othcr. This leads to plienotncna of great cornplcxity I)cca~isc tlhc I)chavio~~r<br />

of the 1)orrndary layer clcpentls mainly on the Reynolds nurnhcr, whereas t,hc conditiorrs<br />

in a wavo arc primarily tlcpendor~t on t,hc I\Iac:Il numI)rr. I'hr c.arIicst. syst(xmatic<br />

investigations in which tlicsc two influences urcrc clcarly scparatrtl Iin.vr been<br />

putt to hand a long t,irnc ago. .I. Acltcwt.. IF. Fcltlnin~it~ alltl N. 1tot.t [I], 11. \,V. Lir11-<br />

mann 16x1, G.R. Qndtl, W. lloltlcr and J. I). Rcg:~.n<br />

l38] varictl ill t.llcir cslwitncnki<br />

t.he Reynolds and Mach numbers inrlcpendcntly of cach other ard so s~tcc:ccdcd in<br />

providing some clarification of this complex interaction. The most import,ant rcs111&q<br />

obtninotl in t.hc ahovc t.tircc invcstignt.ions nrc tlr:xc:ril)c.tl in t.llis wc:t.ion. \Vc IIIIIS~,,<br />

however, add that a cornplctc ~~ntlcrstantling of tthcsc complcx l)hc:nonirn:~ 11:~s 1411tlctl<br />

us to this clay.<br />

The pressure incmasc along the l~ounclary laycr must ultin~:~tcly l)c t,hc same<br />

as that in the cxLcrnal flow because the streamline which sepamt?es tho two rrgions<br />

must, 1)c:oomc pnr:cllol to tho c:oritn)ur of tfho body :~f't,c.r I,llo shoc:k. 111 1,111: I~otrrttl:wy<br />

hycr, by its n:bturc, lhe parliclcs rlcnr the wall rnovc with subsol~ic vc1oc:itics 1)ut.<br />

shock waves can only occur in supersonic stmarns. It is, thcrcforc, clear t,l~at a shock<br />

wavc which origirratcs in thc extcrrlal st,rcarn cannot rcach right 111) to the wall,<br />

and it follows that tho pmssurc gmtlicnt. prnllcl to t.1~: wnll musk On much rnorc:<br />

grwl~rd in the ~lcigIil)ourl~ood of lhc wall thn in tho cxt,crrl:~l sl,ro:~n~. N~ir 1.110 ~toirtt<br />

whcrc the shock wavc reaches t,owards the wall, the rahq of changc of al~laz and


360<br />

XIII. Laminar bonndory Inyers in compressible flow<br />

l'tg. 1:1.1!). Srl~licren photogrnpl~ of shock wave; direction of flow front left to right, aftcr<br />

Adtrrrt, Ifrldtnnnn nnd Ilott [I]: rr) 1:lrninnr bonntlery layer; tnult.iplo I-sliock, M = 1.92.<br />

R,r, - :!!)(I; I)) turl)ulrnt 1)011ndwy lnyrr; normal ul~ork, M - 128, Rn, - 1159<br />

I'ig. 18.20. lsohars in a shock re-<br />

gion in Intninnr flow (I-sl~ock),<br />

i~flrr Arkc-rrt. Iprldrnnn~~ and<br />

I(ot,t I I ]<br />

au& t)econie of the same order of magnitude, and tmnsvrrsc prrssurc grntlirrlts ciLn<br />

also occur tllcrc. Both conditions rcntler tho well-known nss~~mptions of hnrttltl:uylayer<br />

theory invalid.<br />

The a,ppenrancc of tho shock wave is funtlamcrltnlly tliFfcrctlt tlrl)c.t~tlillg 011<br />

whrthcr the boutttlary lnycr is laminar or t,url)rtlcnt,, Fig. 133.19. A sllor(, tlist:~iic-p<br />

allcntl of tltc point wltcrc the csscnt,ially pcrpctdicrtl:~r sltovlc wave itnpit~gcs "11 :I<br />

laminar boundary layer, there nppea.rs a short Icg forming a so-cnllcct I-s~Io&.<br />

Fig. 13.19n.. Tn gcncml, wllcn the boundary lnyer is turbulcnt,, the rtor~nnl sltoc:li tloc.~<br />

not split and no I-shocks a.rc formed, Fig. 13.19b. An obliv~ce shock wlticlt ilnpit~gek<br />

on a laminar boundary laycr from the outside becomcs rcllectcd from it in t,llc for111<br />

of n fan of expansion waves, Fig. 13.30a. Ilowever, whcn t.he bountlary lnyrr is<br />

trurbnlcnt, the rcflcxion nppmrs in the form of n mow concc?ntmt,cd cspnt~aiotl wn.vcx<br />

(Fig. 13.30b).<br />

The plot of isobaric curves in Fig. 13.20 ant1 the prrssrtrc curvcs in lcig. 1:j.21<br />

how t,hat t.lw rat,c of prcssnrc incrcnsc along a Iaminnr or :I tnrl)~rlcnL Im~titl:~r~.<br />

lnycr is more gratlnal than in tltc cxtcrnal strcam. 'l'his llrtttcnirlg ol' Lltc prcssltrc<br />

gradient in the boundary layer is described by stating t,llat the prcssurc dist.ribrrtion<br />

"diffuses" near the wall. It is observed that diflusion is much lnorc prono~tncctl<br />

for a laminar tphan for a turbulent boundary Iaycr. The tlifkrcncc bcLwccn 1nniinn.r<br />

and turbulent shock diffusions can also be recognized from Fig. 13.22 which roprcscr~t,~<br />

tho pressure variation along n flat platc placed parallcl to n supersonic st.rmtn. 'L'hc<br />

mcasnrcmcnts were pcrforrnctl by 11. MT. Ilicpmnnn, A. lto~ltl~o attd S. I)h:r\viw<br />

[64]. The pressurc plob llavc been tnlren mar thc point on tllc platc whcrc t,hc<br />

oblique shock produced by a wedge interacts with thc boundary laycr. Tltc prcssurc<br />

gradient is co~;sitlcrnbly stccper for the turbulcnt t,hnn for the 1:rrninnr I)oltntlary<br />

Iaycr. The witltl~ of diffusion is cqunl to about 100 d in t,hc case of int.nr:wfiotl with<br />

Fig. 18.22. Prrsqnro tlistrihution along n<br />

flat plate at supersonic velocity in the<br />

016<br />

ncigl~bonrl~ood of the region of reflcxion<br />

of n shock wave from laminar and tur-<br />

8 7<br />

hrllcrtt borrntlnry layers, xftrr Lirpmann,<br />

008


a Intninn.r l)out~rlary I:~.ycr, but; rlccrcasrs to about 10 0 for n turh~llent hountlary<br />

Iayor; t,l~r! syn~l)ol 8 tlcne>lcs hrrc t,l~c: I)o~tntlary-layer t,lliolrness in i,hc si~oolr region.<br />

The liigliar tlcgrcc of tliffusior~ wl~icli is cli:tmcte:rislic of laminar bouticI:~ry layers<br />

can IN untltrsi,ootl if it, is not,ctl that tllc subsonic mgion of flow extm~ds furfhr<br />

away from the wall in a laminar than in a trirbulcnt boundary layer.<br />

Irrrspcclivc of wl~ntllcr sepxmt,ior~ elocs or clocs not occur, the bountlary-layer<br />

t.l~ic:kncss incrtascs alicatl of the poinl, of :~rrival of the shock wave. The pressure<br />

increme at Lhc out,cr ctlgc: ol the Iiountl:iry I:~yer, ant1 hcncc also insitlc the I~ountlnry<br />

layer, corrcspondn to the c~lrvrtl st~rcan~linc wllic:h is convex in the direction of<br />

t.11~ wall ant1 which scp:~,mtc~s the: exl,t:r~~:il from the I)oirntlary-hycr flow. lhwn in<br />

the clomain of influcncc or i,l~c cxpnnsion waves which appear in the rcflcxion of<br />

an ol)liquc shock wave, the sligl~t, tlccrc:asc in pressure in the bountlary hycr, l'ig 13.22,<br />

corresponds to the fact that the curvature of the dividing streamline is concave<br />

lowards tho wall. A laminar boundary layer which has not sepsratetl can support<br />

only very small pressure rises because tlw external flow imprcsscs on it the prcssurc<br />

cxclasively through viscous forces. A non-sepnmt,ecl tnrl)rllcr~t ho~tndnry<br />

layer can take up much larger pressure padicnts because now the turbulent mixing<br />

motion aids the process. Both laminar and tirrbulent boundary layers nre in a position<br />

to snpport the large pressure increasaq of strong shocks if they separate. Tn particular.<br />

Fig. 13.23. Ilrllrsion oi n sl~ock wnvc from a f.nrldoril bonndnry lnyor on a flat wall, after<br />

S. M. Ih)grlot~oll' nntl C. IF. I


364<br />

XIII. Laminar boundary lnyrrs in comprcssihle flow<br />

butions along thc wall arc shown plotted in Fig. 13.23~ for different deflexion angles<br />

(and hence ctiffcrcnt shock strengths). Separation occurs for O > go. The pressure<br />

rise which lratls to scpzmtion is independent of the deflexion angle and has a value<br />

of ahont p /p, = 2.<br />

The incidence of transition and srparation in the nciglhourhood of an impinging<br />

shock wave are governed principally by the Reynolds number of the boundary<br />

layrr and by the Mach numbcr of the extcrnal stream. When the shock is weak<br />

and the lteynoltls nnmbcr is very small, thc boundary layer remains laminar thronghout.<br />

Tncrrasing the Reynolds numbcr at a fixed,.'small Mach number, causes transition<br />

towccur at tbc point of impingement,. When thc shock is strong (largo Mach number)<br />

and thc Itc.ynolds number is small, tho laminar boundary layer will scparatc<br />

ahratl of thr shock front owing to prcssnrc diffusion; it may also undergo transition<br />

ahrad of the shock front.. When the lteynolds numbor is large enough, transition<br />

in thc t)onr~tlary lnyrr occurs ahcad of the shock, w!~cther tho boundary layer has<br />

Fig. 13.26. Schlieren phot,ograph of the flow past an acrofoil. Shock-wave and boundnry-layer<br />

interaction. Cnm (4): <strong>Boundary</strong> layer trlrbulent ahead of shock, no uepnration. M = 0.85,<br />

R = 1.69 X 10" after Ii~prnann 1631<br />

separated or not. According to observations made by A. Fage and R. Sargcnt [RBI,<br />

turbulent boundary layers do not separate when the pressure ratio pJpl is smaller<br />

than 1-8, which corresponds to a Mach number M, < 1.3 for a normal shock wave.<br />

Thtl~cr cxperimcnt.al rcw~lts on t h it~l.c:racIio~l I~c!l.wcr?n sl~oc:lc wirves itr~tl I~oilnclrl.r.y<br />

lagcrs car1 bc fonnd in the pu1,licntions by W. A. Mair [G9], N. Il. .Johanncscn 1521,<br />

0. Itartisley and W. A. Mair [R], and .J. Lulcasicwicz and J. I


1 I Itc vnriolts c4Twl.s ol'sl~oclts impinging on a 1)ortndary In.yrr will now be illustmkt1<br />

\vit,l~ roSct.rnce to Schlicrcn pl~ol,ograplis. As point.rtl out by A. TI. Young 1. IOB I,<br />

it is possil~lc lo tlisI.itlgnish tl~c following mscs:<br />

(2) 'I'lic nppronc:l~ing I)o~trltl:rry lager is laminar, but scpamtcs n.head of the shock<br />

Iwmlsc of 1.h~ ntlvcrsc pressure gratliont antl lhon retnrns to the surface in<br />

c:il.hnr a Ianlinar or lt~rlntlcnt stmate, Fig. 13.24t.<br />

(3) 'I'lic nppro:whing I)outitl:lry lnycr is Iaminnr, srpwatcs cornl)lol.rly from the<br />

s~irf:rnc: RIIC:L(I of I,hc sho(4z, and (10~s not, r(:-attacli itr9rIf to the surface, Fig. 13.25;<br />

t,lw shorlc is normal arttl sprorrt.~ a A-limb.<br />

(4) 'i'llo :tppronc.hing Imtntlnry layer is I~trl)~~lrnl. and clocs not sepnmto from the<br />

s~~rf:wc, I'ig. 13.26.<br />

,. L llr c.o~~sitlt~t.:~l,iot~s vonwrning 1.11~ Ix~havioltr of' I,ol~n(l:~ry Iayrrs on acrofoils in<br />

Ill( I1.;111sonir ~.~~gini(: t.l1:1,1. follow ~vScr (wrnt.ially t,t) t,nrl~ttlrnt, 0011ndnry Iajwrs whic.li<br />

\\ill I)(. sttttlictl 1n.tc.r in (%:~ps. XSll nnd XX11I. Sinrc, Iiowcvrr. t,tmlsit,ion pl:l.ys<br />

:I 11art in IIIw(~ ])t~o~:c~ssrs, wc: shn.ll it1st.14 I.lt(w1 II(w. P\.PII t.l~o~tgll t,hc trn~nsil~ion<br />

pru(.tw itsc~lf' will also I)(, tlisc:ltsst~tl l:~.I.t:r. nn~noly in (bps. XVl nntl XVI I.<br />

t 'I'~I:III~


308 XIII. Laminnr boundary layer8 in compressible flow c. Inkroction bctwccn sllock wnvo nnd 1)ounclnry lnycr<br />

1 . 2 Scldicren plrotogmph of the flow past nn aerofoil. Sllock-wave and boundary-layer<br />

interaction. Case (5): Turbrllcnt boundary layer with atrong separation behind shock. M = 0.90,<br />

R - 1.75 x 10'. after Liep~nann [W]<br />

the inll~loncc of Ilcynoltls nnnlhcr on tdlc I)onr~tlnry layer - and hence also on the<br />

shook wave as well as on the associated point of se,paration - is quite considerable<br />

ill transonic flow. As a result,, tho value of t,hc Reynolds number has a much great,er<br />

cll;v:t, OII all acw)tlynnrnir. cllar:tct,crist,ics of an aerofoil in the tra~~sonic range o/ Mach<br />

nu~n.hrrs f,han cit,llcr in subsonic or in tho purcly supersonic rrgime. For this reason<br />

it is ncccwary t.o exercise ntmost c:ultion when tcst results fronl wind tunnels in<br />

t.Iw t,r:~nmnic t.:&ngc7 arc uectl to predict, I)cl~nvionr in flight. Further experimental<br />

rcw~lln on Ihis t.ol)ic:


370 XIIJ. I~tminar boundary layers in compressible flow<br />

Yet nnot.hcr important problem of interaction between boundary layer and shock<br />

wave occurs in h?ypemonic corner /lou~ at zero incidence. 'rhe flow is accompanied by<br />

int,cn?ie 11mt.ing in thc cornrr cnt~xccl by l h very m~ich lnrgcr mt.c ol'clis..ipat~iorr in the<br />

corner compnrctl t.o t,hc clissipation in the ncighbouring two-dimensional flow. A hint<br />

in that direction is visible in Fig. 12.16. It was sliown there that even in incompressible<br />

flow along a rectangular corner with the wall being at a temperature exceeding that<br />

of the free st,rcam there exists a heat flux transferring hat from the fluid to the wall.<br />

By contmst, at a large distance from the corner, t,he flow of heat takes place in t,he<br />

reverse direction.<br />

Snirnt,ist.s lwcnmc: aware of t.hc almvc prohlrm only rcccnt.ly, nnmcly in con-<br />

nexion wit,li t.hc flight t.csts in the range of hlnch numbers M - 3 to 6 on the American<br />

experimental aeroplane X-15. Reports on this phenomenon were puk~lislicd by R. I).<br />

Neumann [82, !In]. Figure 13.28 reminds t,he reader that such corner confignrations<br />

exist at t.he root of the wing, at the side fins, at the engine pods or at thc air inlet in<br />

air-brcnt,liing engines.<br />

More rcccnt. expcrimcrltnl invest,igat.ions on hyj)crsonic corner flows wcrc pcrforn~rtl<br />

hy I


XTII. I.nntinnr l)o~~rldnry 1:iyrrs in romprmsihlr flow<br />

'J'lrc sul)sc.ript wp rcfrrs to the point of srp:~mtion, thr subscri1)l 0 ~~~~~~~ibrs the<br />

shte upstream of the sl1oc4c wavc, and subscript 1 clenotes the state at the edge<br />

of thr I)ou~itlary Inycr.<br />

'I'lrc pressure coeffirirnt at separat,ion turns out to 11,zve the form<br />

whcrc R lT a./v, ant1 TI,,, Mtr do~~ot.o tho pressure and Mach numbor, respect-ivcly,<br />

~tpst,rr:r~n of 1.11~ shodc w:~vc.<br />

Numerical solut.ions which contain tl~e zone of interaction between n separated<br />

laminar bountlary lnycr and n frictionless suprrsonic &ream were perforrned by V. N.<br />

Vaka arlcl S. I). Rrrtke [I 011, as well xs by 0. R. Burggraf [9J, G. S. SetdJes, S. M.<br />

12ogtlot1olT and 1. E. Vns 193a.J.<br />

111 Ackcrct,, J., I~cldnrnnn, F., and Rott, N.: IJr~tcrs~~chrlngcn an Verdichk~ngsstiissen nnd<br />

~~~II~.~CII~~III.~II<br />

in nc:l~ncll hcwcgtcn Cnsen. Itcport No. 10 of L~IC Inst. of Aerotlynamics<br />

I:'IxII Ziirich 1!)4(i: nee also NACA '1'M 11 13 (1!)47).<br />

121 Applrt,on, .I. I'., uncl I)nvics, fl. J.: A note on tho intcmot.ion of n nortnal slroclc wavc with n<br />

tl~crtnnl hotr~~tlnry Inycr. JAS 25, 722---723 (1958).<br />

[:$I J


\'all I)rirst., 15.11..: 'l'hr prol~lenr of nnrocly~rnn~ir Irmting. t\ero. 1h~. R.cvicw 15, 2fiL 41<br />

(1!15(i).<br />

I4:l,rr. (:. I


376<br />

XI 11. Jfiminnr ho~~~tdnry 1:rycrs in compressible flow<br />

[Bla] Murphy, .I.]).: A critical evnh~ntion of analylhl mcthods for predicting laminnr boundary<br />

Inyer, ahock-wave internction. NASA TN 1)-7044 (1871).<br />

I81111 Murphy, ,I. I).. l'rcsley, LL., and Roue, W.C.: On the calculation of supcraonic scparnting<br />

and rrntt~aolti~tg flows. ACAltl) Cortf. I'roc. Flow Sepnrntion, No. 168, 22-1 to 22-12<br />

(1975).<br />

I821 Neumnnn, R.I).: Special topics in hypersonic flow. AGARD I~cture Series No. 42, 1, 7-1<br />

to 7- 64 (1972).<br />

[831 I'ni, S. I., al1t1 Sl~cn, S. IF.: Hypersonic viucoun flow over an inclined wedge with heat trnnsfcr.<br />

Fift.y ycnrs of bout~dnry-layer rcsenrch (W. Tollmien and H. Gortler, ed.), Branttscl~weig,<br />

1955, 112- 121.<br />

1841 Prarccy, 11. ll., OnImr~tc, .I., n~td llninr~, A.I%.: The interaclion between local rtTccta at the<br />

shock and rcnr scy~nrnbio~~ - rr uotlrcc of sigt~ificant soale clkcb in wintlt~l~~t~el tent8 on airfoils<br />

n ~ wings. d A(:AItI) Conf. lJroc. No. 35, I I -- I to I 1-23 (1968).<br />

1851 l'ooln, (:.: A noluLion of the comprcsaihlc ln~ninnr hou~~dnry lnycr cq~intionrr wit,h Iloat<br />

Lrn.nsfrr nntl :idversc prcmwrc gradient. Quart. J. Mech. Appl. Math. 13, 67-84 (1860).<br />

[HC,] Itcd~ot.ko, I


CIIAPTER XIV<br />

<strong>Boundary</strong>-layer control in laminar flow t<br />

a. Mntliod~ of boundnry-layer control<br />

,.<br />

l iicrc art. in existence several ineLliods which have been devcloped for the<br />

purpose of nrt.iGcinlly conbrolling the Imliaviour of the bonntlary layer. The: piirposc<br />

of fhcsc mctliods is to affect the wliolc flow in a clcsircd dircction by infl~rcricing<br />

the strtrctmrc of the boundary layer. As early as in his first paper published in 1904,<br />

1,. I'rantltl rlrscril~cd sevrrnl cxperirnents in which tlie borl~ldary layer was cont,rolled.<br />

Ire: inl,cndctl to prove t h validity of his funtfamonta.l ideas by suitahly designed<br />

ex~)crilncnt,s n.nd arliicvctl quite: rcmarltn.l)lc rcsr~lts in this WRY. Fiprc 14.1 shows the<br />

flow p;mt n c:ircr~l:\r c:ylititlor witli s~ict,ion :~pplit:d on one sitlc of it t,hrotrgh a srnall<br />

slit.. 011 t.hc s~~ct,ion sitlo tho llow ndhnrrs t.o I.lic cylintlcr over a consitlcrably larger<br />

~,ort.ion of its srirf;lce: nntl scpnr:rt.ion is nvoitlctl; 1.11~ tlrng is rcduoctl npprcci:~ldy,<br />

anti si~nnlt~niiconsly n Inrgc cross-force: is intlt~cctl owing to the lack of syrnnictry<br />

in the flow pnt,tcrii.<br />

1 I'roft~swr I),.. \IT. \VIWS(, t~sxixl~~l ill l,lw lm~1x1r:tI.itm<br />

b'illll IC11ilio11 of I h i ~ lmk<br />

of t,Ilt: ~ ~tw vorsitm of lhi8 rIlnplt*r for l h<br />

in nct,r~al npplio:~tioris it is oftcri norcssary to prevcrit scp:~ml.io~i in ortlor to rc-clnc:t:<br />

tlr:ig ant1 t.o athin high lift. Several niethods of cont,rolling the botrntlnry lnyor<br />

I~nvc \)con clcvclol~cc~ expcriniontnlly, nnrl nlso on the h ~ix of I,lioorotic::~l norrsidc:rntioiis<br />

16, 76, 701. Tlicsc can t~c t:lnssifictl as follows:<br />

hlot.ion of tlie solitl wall<br />

Accclcrat,ion of the boundary hycr (blowing)<br />

Suct.ion<br />

1njac:l.iori of :I. cliffcrerit gas (biriiwy Imnndary Inyc:r~)<br />

I'rovt:nt.ior~ or t,rnnsit,iori to L~~rlmlonl flow I)y t11t: provi.siori of utliL:~I~It!<br />

(I:i.minnr :~t~ohiIs)<br />

('ooli~ig or Llio wrdl.<br />

NII:L~;(:H<br />

Mrthotls 1 to 4 will be discussetl in (.his chnptrr. Methods 5 antl fi will be<br />

tlcscri1)rtl in (:II:L~. SVII in conriexion with tho rorisitlrration of I.lw t.liwry of<br />

t rnnsil ion from I:ui~in;w to ti~rl)tiIriit~ flow.<br />

r<br />

I . lio t.rcat.isc: e~it.it,lt:cI "Bo11ncl:wy-1,i~ycr antl I'low (hl.rol" 1441 Ily (:. V. I,;L~:IImann<br />

~ont.:~ins a summary of the sirl~jcct of boi1nd;~ry-layer control accorcti~ip to<br />

the state of rcscnrcli at t.lic time; compare also I.'. I


380 X IV. llorlntlnry-layrr control<br />

placed in a strcam nt right anglcs to its axis. On thc upper side, where the flow<br />

and t,he cylinder move in tlic snmc direction, separation is completely eliminated.<br />

I~ttrt,llcrmorc, on tho lowcr sitlc wl~cre the tlircotion of Hr~itl motion is opposite to<br />

t,llnL of t.hc solitl wall, scpnration is clcvclopcd only incotnpletcly. 011 the whole,<br />

t,lw flow pnt.t.ern wllich exists in this case npproxinintcs vcry closely the pnt,t,ern of<br />

frit:l.ionlt:ss Ilow psi, x circular cylintlor with oircnla.tion. 'rhc: sl,rram exerts n consitlcmbl(:<br />

force on t,hc cylintlcr at right :~nglcs t,o the mean flow tlircction, ;lncl t,liis<br />

is somctimcs referred to ns t,he Magnus clTcct,. This effect can be seen, o. g., when a.<br />

tennis 11dl is 'sliced' in 1,I;~y. Attctnpts wcrc also mntlc to ~lt~ilizc the occilrrcncc of<br />

lift, on rotating cylintlcrs for the prol)l~lsion of ships (I'lettner's rotor 111). With<br />

the cxcept.ion of rotating cylinders, tho itlc:l of moving thc solid wall wit,l~ the stronm<br />

can I)(: realized only at tho cost, of vcry grcat complic:~tions as far as sl~apcs<br />

othrr t.l~nn ryli~~tlrionl are conoornccl, ant1 conscqt~ently, this nictl~otl has not fonntl<br />

mnalr practical application. Nevorthc:loss, A. Ihvre (261 mntle a thorougl~ experimc%nt.nl<br />

invest.ignt.ion of the inll~~cncc of a moving bountlary on an nerofoil. A port,ion<br />

of l.I~t~ upper sttrfacc of the norofoil was limnetl into an c:ntllcss Idt which n~ovatl<br />

ovvr two rollcrs so t,li:~t tltc: rcLttrn tnol,ion occurred in the interior of tlic motlcl.<br />

'J'lie arrangcrncnt, proved vcry cffcctivc for the avoidance of separakion, nntl yicltlcd<br />

vcry high maximum lift, cocfficicnt,~ (C,,,,,, = 3.5) at high angles of incitlcnce<br />

(a. z 55'). The Inrninar boundary laycr for a flat plat,c moving in its rear part with<br />

t.hc shmn 11n.s I~ccn c:rlculatctl by ]I:. 'I'rncltcnhrotlt. [IOO].<br />

2. Accclcrnhn olthc bnu~~tlnr~ layer (blowing). An nllnrna.t,ive tnc~t.ltotl of l)rcvc:nt.il~g<br />

scp:~.rat.ion consists in supplying atltlit.ional energy to the part,iclcs of fluid wl~irh<br />

arc bring rct.nrtlrd in the boundary laycr. This result can be at-hicvetl by tliscl~arging<br />

fluill from t,hc itlt,c?rior of t,l~c I~ocly with the aicl of n special blower (I'ig. 14.:ln), or<br />

by tlrriving t.hc tcquirctl energy directly from the main sham. This Iathx effect.<br />

pa11 IIP protlricctl by connect.ing the rctmdect rcgion t.o a rcgion of l~iglier pressure<br />

t.l~rot~gh n slot in the wing (slottcd wing, Pig. 14.3b). In citl~cr ca.sc atltlit.ionnl<br />

crirrgy is intp:~rkd 1.0 the pnrticles of lluitl in tho boundary layer .near the wall.<br />

When fluitl is tlischnrgcd, say in the manner shown in IGg. 14.3a. it is mnntlntory<br />

t,o pay mrcfitl at,tcnt.ion to the sllnpc of t,hc slit in order to prevent the jet from<br />

dimc,lving into at 8 short* distnncc behind the exit section. 1,atcr expcri-<br />

~ncnt,s pc~rli)rmc~tl in France [04] Iinvc rnatlc it, vcry ntI.racl.ivt: t,o n.pply blowing :I.{,<br />

t,hc (,railing ctlge of n.rl acrofoil in ortlcr to incrcnsc its mnximum lift. Att,cnipt.s<br />

consid(.ra.l)ly to incrmsc the masimum lift of a Rnp wing tl~rongh blowing in the<br />

slot. Imve dso mrt with success (c/. Sec. X l l b 6).<br />

111 1.11~ c.;~sr of t .1~ slottctl wing [7], shown in Ipig. 14.311, the cfict is prot1uc:ctl<br />

:IS follows: 'l'l~c I)o~tntl:~ry laycr formed on the forward slnL A - 13 is c:arrictl inlo the<br />

tn:tit~ sl.rc-n.tn brfore sepnml,ion occurs, :&ntl from point (: OIIWR~~S a t~ew bot~ll(la.~.y<br />

I:~yt-r is liwnc.tl. IJnJcr favourablc contlitions this new boundary layer will rcnclt<br />

1.11t: t.miling rtlgc 1) without. sc?pamtion. In this way it is possiblc to relegate ~rparnt~ioti<br />

t,o consitlem.bly larger a.nglcs nf incidnnce, nrtd to achieve much larger lifts. Fig. 14.4<br />

shows n polar tlia.grnni (lift, cocfficicnt~ plotted against drag ~oeffi'licirnt~) for a wir~g<br />

~(dion \vit,l~ and wil~l~ot~t, forwnr


5. J'rrvrntion of trauaitinn by the proviriwt oC a~~itnl~lr almpcs. Ln~r~inar nerofoiln.<br />

'I'riinsit.ion l'ronr hmint~r to tnrl)lllc~rt, Row car1 also 1)o tlt>lnyctl l).v 1.11~ nsa of suitably<br />

sl~:~p~l 11otlic.s. 'l'llo ol)jct:t,. :LS in t.hc cnso of suc:l.ion, is 1.0 rctlncc frictionn.l tlrng Ity<br />

c.:~~lsing tho point of t.r:l.nsil,ior~ 1.0 movo tlowrrst,rcnni. It, hns bccn es1,nI)lislrc:tl IhaL<br />

thr, loc.:rt.ion of t,lw point or t,rn.nsit.ion in tho bonntln.ry layor is st*rongly inlltrrnrct1<br />

by the I)rossurc: gr:~tliorrt in Lllc cxt.crnal strewn. With a decrease in pressure, t.mnsition<br />

oc:c:tirs at, much I~igI~cr ItcynoItIs rllrrnl~crs tllnn with prossure increase. A decrease<br />

in prc~ssurc 11n.s R Itiglrly st,nl~ilizing cfic:t. on tho borrrlclary layer, and tho oppositt:<br />

is t.1.11t: of' an incrc:~.sc in prcssuro nlollg tire stream. 'l'llis circumstn,ncc is nt~ilizt~tl<br />

in niotlcrrl low-tlrag ncrofoils. 'l'hc dcsirctl mst~lt. is acliicvrtl by displacing the sectpion<br />

of n~:~xirnnn~ t.l1ic4crwss far rc:~rwnrtls. In this manner a largo porLion of the ncrofoil<br />

rcvn:~ins tlntlrr t.11~ inflncnor of' n prcssurc: wllit41 tlecreasos tlowrist,rcam nntl a Inniinar<br />

I)o~rntl:~ry Iaytv is mnint:~inctl. We sll:~ll rovcrt to t,tlis q~~cst,ion in (:hap. XVII.<br />

,<br />

I<br />

,<br />

Ilc rnol.llotl of 1)oundary-layer nont,rol Ijy suct,ion, togctl~cr with the prevention<br />

of t.r:lrisil,ion on I:l.minn.r acrofoils, Imvc the grc::~tcsl pmc:t.io:d iniport:~.rlac :Lrnong all<br />

t h rrlc:tl~otls tlis(:nsscd prcviot~sly. For this rcason vnrions ~~iat,l~crnnf.it:nl ~ncllrods<br />

for ti~t: c~:~l~:uI:~l.ion of t,hc inllnorcc of surtion on bonr~tl:~ry-hycr llow have been<br />

tlcvolo~~ctl, i~nt1 wc now propose to mvicw Llrom lwiclly.<br />

b. Doundnry-layer suction<br />

1.1. Fundamental equations. It is sirn~~lcst to Iqin tl~c rn:~l~l~r~nnt~ic:nl stntly<br />

of the laminar bounc1ar.y laycr with s11cLio11 by first co~~sitlcri~lg t,ht: case wifh (:ontin~tol~s<br />

suntion which may be irna,ginctl rc.nlizcd with ishc :tit1 of a 1)oro~s ~:l.lJ. 'l7he<br />

usual system of coordinatcs will bc atloptetl, the z-axis I~oing along tlrc wall, ant1<br />

tho y-axis Iicing at right angles to it., Fig. 14.5. S~~c:t.iot~ will Ijc ac:c:or~r~l~t:tl li)r b,vT<br />

pmsnribing n non-mro normal vclocit.y compo~tcr~t v,(z) :I.(, t.I~c wnll; in tho msc: of<br />

sut:fhl SJIRII put v,, < 0, making v,, > 0 for discl~argo. It, will IIC assr~n~ctl tlrnt,<br />

the rjrlanlily of fluid rernovcd from tho strcam is so sn~nll tht only fluitl p:trt.icl(:s<br />

in the immediate neiglrl~ourhootl of the well arc? suolrctl away. This is ctlt~ivaI(:rlt<br />

to saying tht. I,trc rat,io of suction vclocity v,(z) to frce-slfro:~tn vcloc:ity IT,,, is vt~y<br />

small, say n,,/lJ,, -- 0.0001 to 0.01 t. 'I'llr oontlitior~ of no slip nL tl~o ~1.11 is rc~l.:~i~rrcl<br />

with suct,iorr prescnt, as wc:ll as the cxprrssioli to = 11 (au,/&~),~ for thn shc:~r-il~g stross<br />

at, t h wall. 'l'l~t: q~~nr~tit,y of fluid rctnovotl, (J, will bc cxprcssccl l.llro1rg11 a tli~l~rtrsionlcss<br />

volume corfficicrit by pnt,t,ing<br />

~ ---- -.<br />

t Jn orclrr t,t> cns~~rc<br />

that z flow wit,l~ s11ctio11, or bIo\ving, nt l,l~c wtll snt.isfivs t,llt\ sin~l~lif~itty,<br />

cotdit.io~rn wliinh for111 the Imsin of bo~~ndary-):byor t.l~cory, iL is noc.e.ss:try tx) li111it l,I~c: \~c.Iot:itY<br />

no at, Lhc wnll to n ~naguitutlc of Lhc ortlcr of I/,, R-112, wllt~rr: R -. (I,,, 1/18 atltl 1 c1c~t~1t.c.s :\<br />

clmrantrrist.ic dinrc~lsion of 1.I1c: solid 1)otly pl:~rt-tl in I.IIo Ilo\tr. At. R loR this c.o~~clil.io~~ t:iyc.s<br />

v, - 0.Ol)l 11,. Ll'l~ot~ 1.110 s~lnI.icm vcloc:il.y is of HWII n m1:tII orclt*r 01' ~~~:~.pt~il.~t~lc~,<br />

ill is 11ossiltlc.<br />

to IIP~IWL the Icms of rnoss or c'~i~~k-cI~t!f:L" 011 1110 rxlrr~i~tl 11ol~wlid 110\~. 111 ol.11c:r \101.114,<br />

the potcnt,inl flow 111ny be :tasulncd to rcnlair~ unnrfc:ctcd by scd~ I~lotving or srtolion al~plicvl<br />

at Lhc nurfacc of Llw solid body.


384<br />

XIV. <strong>Boundary</strong>-layer control<br />

Assunring incompressible two-dimensional flow we have the following differential<br />

ccinnt,ions<br />

with the 1)otindary conditions<br />

lSvitlcnt,ly, the integration of the above system of equations for the gcncral case<br />

of arl~it~mry body shape, implying an arbitrary velocity function U(z), present-s<br />

no frwcr clifficulties thnn does the case with no suction.<br />

Nrvcrtltrless, the qnalitative effert of sr~ction on separation can bc rstimated<br />

with the :lid of t,lrr preceding equations cvcn without, intrgration. Along the stream-<br />

lirtr at thr wall (?/ -0). eqnnt.iotis (14.3) antl (144) yield<br />

It is seen that in a rcgion of adverse prossure gmdient (dpldx > O), the superpositiori<br />

of sunhion (vo < 0) rctluccs the curvature of the velocit,y profile at the wall. According<br />

t,o the :irgumcnt,s adva~iccd in Chap. V11, this signifies that the point of scpnratiot~<br />

is tlisplaced rearwards. Now, in accordance with t,he theory which will be giver1 in<br />

Chap. XVIT, t.l~is has the additional effect of stabilizing the laminar houndary<br />

layer. 'rhcse t,wo clTcct.q produced by suction, namely avoitlance of separation and<br />

t,he relrgat.ion of t,hc point of Iami~~ar-t~~rb~rlcnt transit.ion to higher Reynolds ~rurnbcrs,<br />

hn.w bcen c:onfirmctl hy thc results of experiments.<br />

A snmmary of mcthocls used fvr the: c:~lct~lat.ion of Imnntlary layers with sncLiorl<br />

\\':is pnl)lishc~I I)y \V. Wl~cst [108].<br />

1.2. Exnct ~nlu~inns. 'I'IIc mct.11otl of l~sing n power-soric.s cxpi~.trxion in t.rrrns of<br />

t,lrc! longt,II of arc for t.ltc: I,ot.cr~tinl vclocity (Illasins series) dcscribctl in Scc. IXc<br />

(::In, in principla, l ~c al)plictl in this case as well. IIowevcr, just as in the case wi~hout<br />

snct,ion, the result.ing comput,ations become very laborious [75]. Reasonable sirnplc<br />

sol~tt,i~ns can bc ot)t,aincd only in t,hc case of a flnt at zero incidence.<br />

FInt A snrprisingIy sitnPIe soInt,ion C:HI IN 0bhi110d in the case of a JEnt<br />

7,!,11c tr( zo.0 itlc:it/e,tcr. wit,lr 7tu,i/o~.m, ~wlio,~, Fig. 14.5. '1'11~ systcm oT tlilfcrcnt.ial<br />

rquat.iorls now rctl~rccs to I<br />

with the boundary conditions: u = 0, v = v, = const < 0 for = 0, and ZL = U,<br />

for y =- co. It can be secn at once that t,llis system posscssrs a part.ic&r solu(,ion<br />

for which the vclority is intlcpcntlcnt of t h ci~rrctrt IctlgL,I~ x [52, 781. l'nl,t,it~g<br />

aup~ zs 0 we sec from the equation of conLiriuity that v(z,?l) = vo = eotrst. Ilcnce<br />

witA thc solntion<br />

the cquation of motion bccorncs v, au/ay =. v a27~/r??yz,<br />

7r(y) = U, [I - exp (voy/v)] ; v(x,?y) - vn < 0 . (14.6)<br />

It is wort.ll noting that this sirnplc solut,ion is cvcn an cxnct solution of tho coml~lctc ,<br />

Navicr-St.oltcs cc~rrat.iorrs. 'I'l~c tlisplaccmctrt thic:l~t~css antl t.hc ~nomcntntn tI~it:l~~lrss<br />

arc<br />

and the sl~earirig strcss at tl~c wall T, 7 p (a@y), bccornrs simply<br />

and is indcperirlenb of viscosity. The vclocit,y clistribution is seen plottnd in Fig. I.t.(i,<br />

cwvc 1. Curve 11, dmwn for the pilrposc of comparison, rcprcscntn the I5lasins<br />

velocity distribution witllout suction. It slroultl be noted that the suction profile<br />

is fuller. The solution thus discovered can be realizcd on n flnt plat.e at zcro ir~cidcncc<br />

with uniform suction only at some distance from the loading ctlge, even if suct,ion<br />

is applied from the lcatling ctlge onwartls. 'rho bount1:~ry I:l.ycr, cviclont,ly, I~c-~it~s<br />

to grow from zero tl~icltness nt the lcading cdgc and conLinucs downsham t.rntlit~g<br />

asymptotically to the valuc given in eqn. (14.7). The vclocit,y profile attai~is thc<br />

simple form given by cqn. (14.6) only asymptotically, i. c. from tlw practical point,<br />

of view after a ccrt,ain initial length. For thcsc reasons the preceding particular<br />

solut~ion may bc regarded as the asymptotic suction pl-ojile.<br />

Fig. 14.6. Velocity distrihut.ion in the boun-<br />

dary layrr on a flat plntc at, zcro incidence<br />

A more tlctailetl investigatiorr irkto the flow in the initin1 kngth, i. e., brforc<br />

the asymptotic stmate has I~een reachcd, was carried out by R. Iglisch [40] who<br />

has shown that the asymptotic state is reached after a IcngtJl of about<br />

'The vclocity profiles in the inilial length are not similar among tlienisrlvcs 'rhey<br />

arc practically itlrntical will1 thosc for Cho cnso with no surl.ior~ nt shorl dist:~nwa


frorii th; 1c;ulitig rxlge! (l3l:wi11s profile:, Wg. 7.7). 'l'hc: ~~a~l~tcrti or st,rcnn~lit~c~s in t,hc<br />

it~il,i:~l Icngt,ll is UC~II tlr:lwn in Vig. 13.7, :LII~~ the: vc:locilfy ~)rolilcs arc scon ple)tAc~l<br />

in IGg. 14.8. 'l'lie way in which tho I,outicl:~ry-layer tliick~icss incrcsscs from<br />

n.t, the Icnding lctlgc? to it8 asym~)tot,ic value given in oqri. (14.7) is clo~cribotl hy<br />

tdic values in 'I'nblc 14.1 which have bcon taken from It. Jgliscli's pepcr.<br />

1'artic.ular int,crrst, is st.t:wlirtl to thr nnvi*g in drug ceusc.d by preserving<br />

I:imit~ar flow with fhr aid of si1c4ion, an(l, thcrrforc, to the Inw of frirtiorl for the<br />

'r:t1,l1: 14.1. I)iti~rttsio~ilrsq ~,ol~llc~:rr~-~:r~~~r<br />

Ll~irlz~irss :rnd sh:rpo fnofnr R,/d, for t,hc vdorit.y profilc-s<br />

ill t.lir* itlil,i:~l lc~t~~t.li 011 n I1:rt. plirl~ :kt, mro i~rciqlc~i(:e? \viCh rtttili~rtn ~ucl.iott, idler It. Iglisd~ [40J<br />

ht -- ~lis~~lt~~~rtti~~trt.<br />

t.liirlzt~css;<br />

v ,?, - rnotiictil.it~~~ t.liinknr,sn<br />

Fig. 14.8. Flnt plate wit,h<br />

~l~iifortn liuctio~i ; velocity<br />

profilcn ovcr init,inl length,<br />

aftw lgliscli [40]<br />

Tllr rurve 6 - a, corrrspowls 10<br />

llw 'ruy~nplnlir s~tcllnn pronle' of<br />

rqn (14.0)<br />

,. I hin is the* (1~1.c clt~c to siukit~g, i.c. thf) (1r:~g oxlivrir~~cwl l~y ,I. II~IIJ lvlti(+ is ~I:I~,I>,! it1 :L 1.1.ic..<br />

tionlrss st.ro:~tn of vrlociLy lJm ntid whirl^ 's~nllown' :I. q~tnnl.il.y (2 oI' IIt~icl. 'l'lrv :rl~~\~c. VY~I~(.X.<br />

aioti call bc: tletl~toctl vcry nit~iply by 1.11~ npplie:ation of I.ho I~IOIII~~I~.IIIII 1.l1~ort.111 (TI. I'r:tt~~lt~l-<br />

'I'ieljor~n, Ilyclro- 11. Aerorncchnnik, vol. I I, l!):lI, p. 140, Ihgl. t.rnllul. 1,~' .I. 1'. tlct~ l ln.rl,og, 1934.


388 XIV. 13ountl:~r,y-laycr control<br />

r,<br />

l he tlritg c:ocilit.icnt, is Inrgor for small Ileynoltls ~,u~tnl~crs, becn.r~se the shearing<br />

stress is groa1,t.r t)vt:r the front portion of thc plate, i. c. lhat which falls within<br />

I.hc ittitiill rcgiol~ rwtl whoro the 1)ountlnry l:~yor is thinner than furLhcr tlownst.rcam.<br />

The tlr:~g on ;L plate with a turbulent boundary layer with no sucbion is<br />

shown plotted in l'ip. 14.9 for the purpose of comparison. It will be tliscussetl more<br />

f~~lly in Chap. X X I. 'I'llc s:~.vi~~g in drag can be dcdnc:ed from this diagmm only if the<br />

v:rlue of the stn:~ll~:st voll~ntc: cocflicicnt ofsut:tion whit:h is capable ofcnsuring Iarnini~r<br />

conditions in the bor1ntlar.y layer at large Reynolds numbers is Itnown. This prohlcm<br />

will I)c invcst.ignl.c:tl in Clln,p.'XVIT, togcrthor with thc phcnorncnon of transil,ion. It will then I)(: shown t,lt:~t thcrc exists a curve of 'most favoum1)lc suction'; il can be<br />

sc:c:rt plottctl in Fig. 17.10. It will be noticctl that the rctluction in drag through srrction<br />

is vcry consitlcral)lc antl t,l~at the required intensity of suction is very small, as it<br />

cwrrospontls to values of the order cQ = 10-% A soll~tion for the flat plate with nniforni<br />

swt,ion in a c:ornprc~ssit)lc st,rcam was fonnd l)y 11. G. Lew antl .J. B. Fanuoci [47]; the<br />

s:mc prol)lt:nl for cylindrical lmdit:~ of arldxary cross-scction was solved by<br />

W. WIIOSL [107].<br />

J.M. Kay [41a] undcrtoolt to verify thcse theoretical results for the flat plate<br />

at zero incit1cnc:c with t h aitl of cxpcrimcnts. The assnn~ption that uniform snction<br />

btyjns at the leading ctlgc, which formed thc basis of Iglisch's theoretical calculations,<br />

was not satisfied in the Ccst platc. The latter, moreover, had a portion near the<br />

lcatlir~g edge complctcly devoid of suction. Fignre 14.10 shows a comparison betweell<br />

the measured and calculated displacement thickness and momentum t.hicltness<br />

rcspnctively. The asymptotic valucs from eqns. (14.7) ard (14.8) are seen t-o have<br />

been confirmctl by tho measnremc.nts. Fignro 14.1 1 shows a comparison bctween<br />

tl~oory and mcasurerncnt for various values of (; the mensl~remcnts havc been<br />

performed by M. It. Ilcad [%I. Again, the agreement is very sat.isfactory. Measuremonfs<br />

pcrforrncd by P. A. Iitjby, I,. 1Canf:nann and It. P. 1I:~rrington [48] confirm,<br />

in adtlition, tho strong stal)ilizing ellixt cansed by suction (increase in the<br />

nrit.ion.l Ileynoltls number), as will be reported more fully in Sec. XVITc. The<br />

large decrease in l,hc skin friction which results from the preservation of laminar<br />

flow when suction is applictl, and which is shown in Fig. 14.9, was confirmed by<br />

nicnsun:mcnts performed by M. ,Jones antl M. R. Ileatl [41], and A. Raspct [70].<br />

Fig. 14.10. Laminar bortntlary I:~ycr on<br />

a flat plate at zrro inciclrncc with<br />

uniform suct,ion. Displaccmcr~t thickness<br />

6, anil motncntnn~ thicknws (7, havc been<br />

meeured by J. M. Kay [41 a]. Theoretical<br />

curves afkr R. Iglisch 1401, 'hblo 14.1<br />

a = necLion at which suclion begins<br />

Pig. 14.11. Velocity distribution in the laminar 1wund:lry layrr on an acrofoil with srtct.ir)n<br />

applied t.llrough its porous surface. Mea.wccn~cmb pcrforrnccl by M. It. Ilcacl [XI: ccrrnpnrison<br />

with the theory due Lo It. Iglisch [40]<br />

<strong>Boundary</strong> layer with pressure gradient1 Acltlitional czncl solutiona of 1.11~ bot~r~tlary-l:lyc!rcq~~n.<br />

tions (14.3) and (14.4) are known only for flow patterns which can bo nwociaLt?cl'wit.l~ sintilar<br />

velocit,y profiles. The class of similar sol~rtions discussed in Clr:lp. VIlI can be cxknclrnl 10 inclutlc<br />

boundary layers with suction and blowing. When the vclocity in the external strcxn~ can bc tlcscribed<br />

by the function IT(%) = 76, zm and whcn the sr~ction vclocity v,,(a) is proportinnnl to<br />

z(ll3(~~~-l), werecover from the boundary-layer equations the already fa~uiliarortlinary clilti:rt~r~i.i:rl<br />

equation for the ~Lrcam function /(11), hst clrrivecl hy Fnlkncr and SIZ:~, narnrly tho r;l~nili:tr<br />

equation (!).8) :<br />

in which 71 has been clcfincd in eqn. (9.8). That this is so can \I(: infcrrctl by inspection frnnt rqn.<br />

(9.b. In t.lw present case, t.he slrcanl functio~~ /('I) 11.25 a VLLIIIR w11icI1 is dill'twnt fro111 mr11 :LL<br />

tl~c wall WIIRII 11 :-- 0. This value is positive in the tasc of snol.ion and ncpll.ivc Tor I~lo\\.i~~g.<br />

Tlw part,irular case for 111 =: 0 wluch corresponds to a flaL with a nucf.ion vrlot:it.y<br />

--<br />

6 > 0 : s~~ction<br />

z (' < 0 : blowing<br />

was invcstignkd by II. Sol~licht~ing and K. 1111ssn1;~nn [7!), 801. The rcs~~ltitlp vc!locily prt,liilc.s<br />

for scvrrnl values of the vol~~ntc cocrficicnt I~nvc I)ccn ploLt,ctl in Fig. 14.12. 11, is worth not.i~~g<br />

thnl all relocil.y profilcrr for the c..zsc: of tlisclt:~r~c hrlvo poin1.n of inllvxion 1r.il.11 i)2i~/i'!y:! -- 0.<br />

'I'l~is fnrt is important for the sl.udy of tmnsit.ion (Chap. XV1). Sintil:tr vrlorit.y prolilc.s nrc. also<br />

obtninrd in the case of I.\\-o-di~~~c~tsio~~al stngt~ation flow with a vc:locit.y fi~nc*t.ion O(x) -: 71, r<br />

wiClt suc1.io11, provided that 11" - consh. This caw urns also inv(vd,ig:it~d in 1.110 p:lll(:r IIY I I. S(:ltli,.l~ting<br />

: ~ t d I


390 XIV. Ilo~~n~lnry-lnycr contml<br />

Fig. 14.12. Vr1orit.y ~listrilwt~ion in t.hr 11ouncl:rry 1:ryl.r on n hl. plnkr nt. 7.0ro inritlrnrc with snetion<br />

and t1lsrh:rrgc nc:cordinp 1.0 t,l~c I:rw a,(z) - 1/1/ i from cqn. (14.1 I), :rflcr Jl. Scl11icht.ingnncI<br />

I 0 dcnotm s~~ct~ion, I(0) .: 0<br />

clcwh~n I~lowing, and<br />

n) K. D. P. Sinhnr [86] stutlietl the ewe of nn infinitely long, ynwccl cylinclnr with surt.ion. Tho<br />

velocity distribution n.long tho strcnn~ wns nsaun~od lo lm proporlionnl to zm. 'l'he inv(~n(igntion<br />

lmu ROIIW I*onring on t010 cvnt,rol of tho 00~1dnry lnycr on R W C wingu. ~ ~ ~<br />

IJ) When t.hc Lc:rnpc:rnt~iro of Lhc fluid being 1,lown out, is diKerenL froln t,l~nL in CIIC cxtcrnrrl<br />

flow, tho bonndary layer will develop o tcmpcrnturc profile; Lhc rwnlt.ing thorn~nl I)ountlnry<br />

layer was cniclllntcd in refs. 1551 and [Ill]. 'rhc knowledge of the tcn~peral~lrc distrihrltion<br />

in t h bonnclnry layer is of particnlnr importance for the ~)robletn of cooling. It tnrnn ont<br />

that cooling by means of Ihwing tho coolant, through a porons wall, so-cnlletl t.rannl~ir:rtion<br />

cooling, is much more eKcctivc than cooling tho wall on tl~c insiclo. Jn this connc?xion the<br />

pnprs by I). Jhown [I 1, 121, p.1,. I)ono~lghe and .J. N. B. Iivingoocl [I!)] nnd W. WII(:S(~ I 10!)(<br />

nrny I)o conn~iltntl.<br />

C) 'I'hc cooling prol)leni I~ccon~cs wry itnportntit nl, high vel~~cit.i~:n of flow. (:. hl. ls)w 151 1 forr;~cl<br />

uoIut.iot!s for ( 1 rnsc ~ of r.~rnprc~~i\~le (low ewer nn isot.l~rrn~:~l IIIL~~ IIIR~; RCO nlm 145, 1101.<br />

. ><br />

*3. "<br />

cly<br />

p " -- ' -<br />

cly '" dy ( I' -&j j .<br />

tlu -<br />

-.<br />

71 - (Irn /L<br />

(14.12)<br />

1 1 1 ~ p~wwli~ig rrl:l.l.iotts :ire valicl for :LII :~rl)il.r:~ry V:I.~III~ of' I.Iw I'I~:IIIIII,I 11111111~1..<br />

I I,(: sl~c*:tring sl.r~,ss :,I. I.IIc w:ill is now<br />

7 ,<br />

T,, =-


392 XJV. I%outldnry-layer control<br />

(P .- 1; adiabatic wall). When thc flow is incompressible, we have T, = T, , and<br />

cqn. (14.18) rrc111ccs to cqn. (14.6).<br />

1.3. Approximate noltikiona. In t11c general case of an arbit,mry body shapc<br />

and ILII nrl~itmry law of ~uction we must resort to approximate methods based<br />

on t.110 morncntum cqt~atiotl ; tJlcy wcro clcsc:ribetl in Chap. X. The momcntom ocluat.ion<br />

for (.he case with s~~(:tion is ol)t,ninccl in ex:~c:Lly tho snrnc wny as bcfore, cxccpt that<br />

it is now ncccssary to take into account the fact that the normal component of the<br />

velocity at the wall tlilTcrs from zero. I'crforming t.he same calculation as in Scc.<br />

VI IT c, we firttl that, the equation for the normal component of velocit,y at a distance<br />

y = h from the wnll now becomes<br />

Vh = lJO -- j<br />

-- 8% ( I . ~<br />

ijz<br />

0<br />

'She ralct11ati011 is ~:onl,inucd in exactly thc same way as in Sec. VTTTe, and leads<br />

finnlly to the following rnornrntt~m rqit:~tion for thc bouttdary I:tycr with suction<br />

the- rnrrgy-intcgral rqtml ion, areording to I


. - v, (x) =cons/<br />

Fig. 14.14. 1,antinar l)ou~lcl:try<br />

layer on n ~yt~~~ncLrie:~l Zltukovskii<br />

norofoil with uttiforttt s~~cl,iott;<br />

II,,(x) -- COIIRI~, t~ngle or it~c:idc~~w<br />

a - 0, ns cnlct~lah:d I)y I':.'l'ruckc~tbrodt<br />

[loll<br />

II'ltrr~ srtc.t,iort is :~pplirtl t,o n wing, it is ncccssary to discern two distinct problcn~s<br />

whir11 ntipltt~ : I I : ~<br />

1. 11. ~rl;ly I)(% (l(:sirrrI t.o incrcnsc t11c maximum lift hy dolaying scparnth~.<br />

2. 11, nlny I)o (lnsil;rblo t,o m:~inl.nin 1:rminar flow and to avoid tmnsition in order<br />

lo 1.(~t1~~(~(~ sl


XIV. <strong>Boundary</strong>-lnycr control b. <strong>Boundary</strong>-lnyer suction 397<br />

Fig. 14.16. Incrrascin thr ~nnxitnnrn<br />

lift, of n swept-I~n~~I~ wing<br />

by s~~ctio~~.Cornpariso~~ brtwern<br />

rontinuous suction and suction<br />

applied tl~rough slib, ns Inca-<br />

uured 11y 15. D. Popplct,on 1661<br />

Ileynolds nurnbcr R =. 1-3 x 10';<br />

rrlrlivc width ol slila rll = 0-004<br />

:~c:rolhils. Sint-t: :11. high a.nglvs of inc:itlonc:c: thin acrofoils tlcvciop n s11:~rp ncg;~.I.ivc.prcss~~rc<br />

p(dc nc::~r I,hc IIOSV on t11c 11p1)t:r sitlt:, it, is nw~:ss:~.ry 1,o :~pply S I I ~ I ~ l,l~crt-.<br />

~ I I<br />

In this t:onncxion it is important tlo know whctl~cr to apply suction t,hrough a porous<br />

wall (~~nifnrm surt.ion) or t.hrough a systcrn of slits. The diagram in Fig. 14.16 shows<br />

;I, comprison l~t:l,wccn t,he results of cont,inuous suction and suction applied through<br />

slits on n swr,pf,-hack wing as measured by E. 1). Poppleton [66]; see also ref. [38].<br />

11, is dc:w that the snmc incmasc in tho lift coefficient can be ohtaincd with n much<br />

rccl~~cod mass flow when c:onl.inuous suc:tion is usctl. l'hc diagram in Fig. 14.17<br />

c~on1,:iins informnl.ion on the most favonral~lc position of t,he suction zone at the<br />

nos(:. 'l'hc mcasummcnt.s carriccl out on an 8% thick symmet,rical aerofoil seem<br />

t.o intlio:~.t,c th:~.t continuous suction is most cfTcctivc when it is confined t.o the npper<br />

sitlt: or t,hc wing and when it cxtcnds over a region of 0.15 1 approximat,ely. 'I'he<br />

tni~~irn~~rn mass flow rtyuirrtl t,o avoid scpnrntion depends on the position antl thc<br />

I'ig. 14.17. MTcct, on in-<br />

c:rmsc ill lift, coefficient of<br />

c11:uiging tho position of the<br />

porons si~ction snrfacc for<br />

nn S :(, thick acrofoil at. an<br />

nnglc of incitlcncc ofa - 15"<br />

extent of the porous surface and, even more significantly, on the Ileynolds nunher.<br />

This, of course, is a very important consideration when results of model experiments<br />

are applied to full-scale arrangements. Some data on thc depentlcncc of t1he mass<br />

flow on the Reynolds number are shown in Fig. 14.18. 'J'hcy arc based on mensurcmcnts<br />

performed by N. Crcgory and W. S. Walker [32] on a thin symmetrical<br />

arrofoil. 'l'hc graph shows thc minimum volumc flow of suction rcqnirotl to avoid<br />

separation for a f xed anglc of incidence or a = 14O plotted in terms of tl~c Rcynoltis<br />

number. Several curves of cQ 0 = const, whicll were obtained from the theory<br />

of purely laminar flow, have also been plot,tcd for comparison.<br />

2.2. Decrease in dmg. An exprrimcntal proof of the fact that it is possible to<br />

maintain lnrninar eontlitions in the bonntlary lnycr with the aid of sn(+or~ wns<br />

firsl, givcn by 11. Ilolst,cin [37], and shortly afterwards by .J. Acltcrct, M. ltas<br />

Fig. 14.18. Minimum suction volume<br />

required for the prevention<br />

of sc*pnrnt,ion ns n fnncbion of ll~o<br />

Reynolds 1111m1)er for an angle of<br />

incidence of u = 14", after Gregory<br />

antl Walltrr [32]<br />

and \IT. Pfenninger [3]. W. I'fenninger [el] cardcd out oxtensivc cxperimcnts on<br />

the problem of reducing dmg by the application of suc:t,ion tllrough which 1nn1in:~r<br />

Ilow is maintained. Figure 14.19 reproclnccs some of his results, ol)l.ninctl with a thin<br />

:wrofoil which was provitld with a largo n~~mbcr of sliction slit,s. 'I'hc gr:~1)11 in Vig.<br />

14.19a sllows thc optimum vnlucs or Lhc skin-fricljion c:ooflicic:nt plothl ill I.c:r~ns ol<br />

tl~c Ilcynolds number. It is sccn that t.hcrc is a largo saving in tlr:rg, cvcn if the<br />

power consumption of the suction pump is debited against it. 'l'hc graph shows,<br />

I'urtl~cr, that, at moderatc values of the lift cocfficicnl,, cvcn at largc Itr~n01~Is<br />

~~u~nl)c:rs, the values of the skin-friction coefficient arc not muc:h l~ighcr t.l~n~~ I.llosc<br />

for a flat ~)lat.c at zero incitlcncc. Moreover, Fig. 14.1!11) ticmonsl,rnl~cs t11:~t thcsc<br />

low vnlurs persist, over a ~onsi(lcr:~1)1c rangc of vnl~cs of t11c lift (:n(:fli(:ic~li,, c,,.<br />

J'III~IIC~, the expcrimc:nl.s tlo~~~o~rsi,r:~l.c:tl 1.11:~t l.I~t: tlcc:rc::rsc ill l,l~c tltxg t~fT~:ctc.tl I)y<br />

~~~:lirlt:~ining a Iatni~~nr I)ol~ntl:~ry I:~,yc:r wiLh thc :~.itl of sucl,ion tlcpc~~tls I:trgrly on<br />

n rnrrfnl shaping of slits. If this proc:~nt,ion is not t,al


invc?st.igai.ctl. In this msc too, sltl~st~:~.nti:rl rcc1uc:tiorm in tlrn,g were achicvccl, allowing<br />

for lhc mnclrnriic::t,l work roqrtirctl to maintain it.<br />

W11(?tt an n.t.t,cmpt is matlc t,o prcscrve a laminar I~olinclary laycr citllcr by<br />

suction, or, as already rncnt,ionctl, merely by proper slln.ping, it is vcry important,<br />

t,o have a gootl Irnowlctlgc of bllc potcntti:d velocitcy clistrib~~tion. In cither case it<br />

is ncccssn.r.y tt.o arrangc for t,Ilc prcssltrr 1.0 t1c:crcnsc ovcr as Iargr. a portmion of the<br />

section as possible. Very oxt.cllsivc cxpcrimcrrts on this sul)ject were carried out,<br />

by S. C;loltlst,cin 1311 n.ntl Iiis coll:tl)or:tl,ors. 'I%(: cnlc:ulxtions lccl to the tlct.crnlinat,ion<br />

of the* sl~n.pc of I.llc? scc:l,ion of t,lto :~.c:rofoil which wo~~lcl procltlcc: n ~)rcsc:rilml pot.cnl.inl<br />

vvloc.it.y clislril,ttl.io~~. III ortlvr to ol)t.:r.itl :tc~roli)ils which nlnintnitl n. Inminar 1)ountl:l.ry<br />

l:~.yc:r :IS hr :IS lilt- tr:lilillg c~ljy: it. W:I.S s~tgg(~st.ecI 1.0 ltsn slinpcs sliowing a<br />

dcerc;:lsc: ill prcwttrc: (:it1 itlcw:lsc: in vchc-il.,y) ovvr l.11~ wholo Iotiglh, n.nd otrly<br />

(lisl)l:~.yi~~g :IWI :I.IwII~~, prwsltrc in(wxsc :~t, on(: posiI,ion, n.s sl~own in Vig. 14.20.<br />

If t.Iw slils arc nrr:~.t~grtl nt. 1.11~ ~)oint~ of prcssltro jump, n.s snggcst,ctl by (:riflil,li 1731,<br />

it is possible t,o secure a laminar bonndn.ry Iaycr otl thick nerofids as far as the<br />

lit and separat,ion is prevcntctl 1)chirid it. B. Itcgcnscllcit 171, 721, and B. 'l'l~wait.os<br />

[Mj proposcd Lo 'regulate' tho lift on vrry t,lliclc norofoils by varying the<br />

intcnsit,y of sl~ctdon ant1 so to obtain a lift which is intlcpcntfcnt of the angle of<br />

incitlrncc. In morc recent times there were many proposals to use tho air srtclretl<br />

aurn.y from the bountlnry laycr for the purpose of irlcreasirtg the thrust of :t jat<br />

a.ircraft [87].<br />

'1'11~ papers 1j.y F.X. Wortmnnn [I051 and W. I'frnningrr 102, (31 rrport, on more<br />

rc~c-nt~ r~s~tlt,~ (:onc:orning tlic design of latninar acrofoils and of the tlcl:ty of t,r:tnsit.io11<br />

o~t xwc:pt-l):tcrlc wings.<br />

,, I ho ~WO~:CSS 01' t.rn.risition frorn hninnr to trrrl)~~l~:i~l~ Ilow in tho Im~~rcli~ry<br />

layer witl~ s~i(:t.ion will 1)r. stltdicd in (lrt.:til in Sc:n. XVl l c:.<br />

1. Theore~ical results.<br />

U<br />

.-<br />

urn<br />

c. Injcctinn of a diflcrent gns (Ihnry boendnry layers)<br />

1.1. The fundamental equations. Whrn R sp,zco-vn11ic:lo robr~r~~s to the tlcnaor layers of the<br />

nt~nospl~rro, t.lw ~l,zjinnt.ion cfTccct whir11 is protl~~ortl nt t.l~c? t~ose or in 1,110 I ~ o I I I I ~ Inycrs : ~ ~ ~ along<br />

1,110 wdls givc8 risc l,o vcry high t.c!t~~l~er~il,~~rt*.q.<br />

111 ortlvr Lo rcx111w 1.11~ q~~:inLit,y of 11c1at Lr:u~sfwwd<br />

to tile vchicle to s~~tell proportions, it is possil~lc t,o i~~jcct, n light. g:ts or a fluid tl~ror~glr a porous<br />

well. l'hc light gns or thr v:rponrizing fluid thus rrcnls n thin filw nlong tho wdls. A si~nil~r ctl'rct<br />

ran :also IN: procl~~nc~l il 1.1~: rnn1nri:al of t.lw will (r.g. grnphitn. gl:wn, or n ~ynthct.ic ~l~:al~.rinl)<br />

i~ nllowctl Co sublit~wtc thtm rrdl~cing it8 tl~ick~lcss (n.blat.ion). III :dl S I I ~ onnrs, I I~o~rnd:iry Inycrs arc<br />

for~ncd in which two or morc gases mix with one anot.lrcr by din'~minr~.


400 XIV. <strong>Boundary</strong>-layer control<br />

Owing to the definilion of w, we must have Ze, Wc = 0, and for each component i we may<br />

write 6hc law of maus conservation in the form<br />

div (er wi) = div (e{ (W -t W{)] = 0.<br />

(14.24)<br />

Upon summing ovcr all components, we obtain the continuity equation<br />

which has the faruilar form of eqn. (3.1).<br />

tliv (e W) = 0<br />

111 tho rrbsonco of nxbrnnl ficlds, tho clifiuuivo flow is drivcn, cssenLially, by conccntration<br />

grndicnta as well as by tl~crmal difiusion which prorlucea n flow of musses in the presence of n<br />

tenipcrntr~re gratliont. In tho case of a binary mixture, we may write the law of tliffusion in the form<br />

c, W, - - Dl, (gmd c, -t kT grad In T) , (14.26)<br />

whcrr I),, clonotes the cocfficient of biuary difiusion, kT is the thermal diffusion ratio, and c, = el/e<br />

is tho masq conccntration of lhe first gas, assnmod to be the one which emerges from the wall.<br />

'J'hc c:orflicinnt of binary tlifiusion dcpends only litllc on concentration and is affected by temperntnrc<br />

in tho uamo way as the kincmntic viscosity. Thc thermal difiuaion ratio, kT, depends essentinily<br />

on concont.rntion and is frequonlly npproxirnabd hy the rathcr crude relation<br />

kT = me, (I -c,)<br />

(14.27)<br />

duc to Onsagcr, Furry and Jones. Here, thc cocfficient of thermal diffusion, a, is assurncd to be<br />

a constnnt for wcry specific cornbinntion of gases.<br />

Inserting cqn. (14.26) into thc law of mass conservalion, eqn. (14.24), written for the first<br />

component, and taking inlo account cqn. (14.25), we obtain<br />

Wr may now introdwe the normal honndary-layer simplificatiolls into the right-hand side of this<br />

rqnnt.ion tl~ns t~rglrrtin~ krms in a/& with respect to those in a/&~. In this manner we obtain<br />

1 he ro71rrnlmlion rpolzon<br />

A corrcspontling oqunlion is valid for tl~c scxoncl component,; I~owcver, this second equation<br />

brcon~cs txivinl wlmn (,hc niotlificd form of cqn. (14.28) is uscd because c, 4- c, = 1. For this<br />

rrnson. t.11~ S~:COII~ (:q~l:ition is ropl:lc.crl by thc continuity equntior~ (14.25).<br />

Tho ~non~rnt.rttn cq~~nlions<br />

wril.tn~~<br />

for :I, gas rnixluro :rre identicnl with those for a sirlgle gss antl are<br />

a7' =0, (1 4.30)<br />

a!/<br />

wl~rro now Q nnd p clrpcntl 011 roncrntr:lt,ion in addition t.o their familiar dcpc~~dcnce on tetnpc.<br />

rat.urr. . I<br />

,<br />

IIC rncrgy cqnat,ion for a gaseons mixt,nre must bk formulated with due rcgzrd being peid<br />

tm Ihc r~ormal tl~orn~nl oo*~~lnction, to the transfor of h6at by diffusion, and to that by thermal<br />

~~~I'IIS~OII. Itc~t~riclillfi our ~0114i~lcriltiolls 10 pcrfcrt plscs, w 1111rod11~o ~hc mixhrc ct~tl~alpy<br />

h = cI ha -{- C, h, .<br />

(14.31)<br />

Sincv: tho tloriv:rl.icul is Irngl.l~y, wc rncmly qnot.c thc rrsult. in which the boundary-layer approxirnnt.ion8<br />

hnvc nlrcntly I~ecn introtl~~cod:<br />

Ilrrn R sI:intls for 1.l~: ~mivrrwl gns onnsln~~t~. If lll~rr~n~1I (~~~I'IIR~oII is ~~rglw:t.rd, ~.II(! nntl(-rIii~(.(l<br />

trrn~s nrc: tlclotod. III the tlcrivaLion of this cqualiol~ IIRC 1111s lw(:n ~nnd(! of OIIHI~~(!~'H pri~wiplo<br />

arrortling lo wl~ich tho corfficirnt of Wlo oonccntmLion grnrlicr~t in UIC brat-flux vrctor in tho<br />

samr :IS thnt of thc trn~pcrat~ure gradient in tho mass flux.<br />

and in view of oqn. (14.20). wc olhin tl~c conrlit.io11 t,l~:rl<br />

(grad el -I- kT grad 111 7')<br />

I


402 XIV. Dounclery-layer control<br />

1.2. Exact solntions. In order to solve the coupled pnrtinl difFcrct~tinl cquntious of the parabolic<br />

typo we Iinvo, nt. prencnt, nt our disposal n variety of riumerical methods [97, 421 as well es<br />

fast rleot,ronic comptitcro. With tho aid of thcoo, it. ~ RCOI~RR po~~ibh to obtain ahnost nrhitmrily<br />

close npproxinint,ionn to the cxnct solutions wit.11 n tolernhlc expenditure of Lime. The properties<br />

of the Iluid can be conccivcd as qunnt,ities thnt vary with position, nnd nrbitmry boundary<br />

ror~ditionn cnu IIC 1)rencriberl. It is posnihle t,o obtain similnr solutions if the external velocity, the<br />

blowing velocit,y, n.s well RR tho temprnturc on t11c wall, arc prescribed in n dcfinitr: manner. In<br />

ouch oases, the sy~lmn of 1mrLiaI diffwc~itittl oql~:ttion~ rednccs to n ~y~t.c~n of ordinnry clilTcrcntinl<br />

equntionn, nnd tho Inlhr can 110 inhgratccl nun~cricnlly. T11t:ro exist such nunioricnI rcnulb for<br />

incomprenniblo wedge-llows (inclusive of shgrintioii flow [102,29]), comprrmihle flow over a flat<br />

plntc nL zero incidcnm, nntl oupr~onic boundnry Inycrs on wcdgeo and cones [IlO]. 'l'lw diagram<br />

in Fig. 14.21 illuotdr:s, by wny of cxnmple,th Inminar vclocit.y, tempcrnt,urc, nntl conc~iit~rntion<br />

boundnry layor on n cone with l~clirrm injection.<br />

A tnct.liocl tlcoigncd to cnlculnte Inminnr, hyporsonir, hinn.ry-mixt,ure hountlnry layers wns<br />

givnn by ,I. SLei~~bcuer 101 J who npplicd it to t.he exan~ple of cooling by ablation with tho mid of<br />

pyrdizing tollon.<br />

All of tbo numcricd ralorilnt,ions montioncd RO far neglect the brnms which stern from thermal<br />

diffusion, that is t.hc terms which hnvc bccn undcrlinctl in eqn. (14.32). Sucb n simplification is<br />

aonwtimcs pwmi~siblo RR far nu tho compuhtion of nkin frictiou and hcnt-trnnnfcr rnto in rouccrncd.<br />

Expc?ritncutn show that LIIC eqnilihrirrm ternpcrnt,c~ro on an ndinbntio w~rll docs not clnnronrro ill<br />

the prrscnce of thcr~rral diffusion, but ~:ilcuIntions bnncd 011 thin nin~plificd ~(:IIOIIIC nlwny~ predict<br />

ouch n tlcrrrasc.<br />

I':xact, (::rI~:~~I:i.t.ion~ on t,~~-suhnt,nnr.r. ho~tndnry layers wbi(:b occ11r ill flows with ovnpornt,ion<br />

or ~11llli111ntio11 ~)rcsrnt. 11s wit,h wm~idrr:thlr diffi(:~~lt.ic~.'l'I~cclist.ril~~~tio~~<br />

of vclority oFt,hccvsjtornt.illg<br />

nl~l)nLnn~:c (i. o. of t.11~ velocity of blowing) :tnd 01 IonipwnLurc ttt tbc phnnc houlidnry in L11c<br />

flow clirootioii c:nn no longar hc prrncrihctl ;wbit.rerily. I111lh di~t~ribut~io~is :brine s~)011tn11C011~~y nl<br />

n r=qult of thn coupled bent, nnd Inwa Lmt~sfcr and ncit,hcr is known n priori. In this clolnain,<br />

W. sl~lctkton~nrr [00] calculntcd n large number of solutions in wbich tbeevnporation rateas well<br />

:m t,l~o lodly snlinfirtl energy hnlnnce Imvc I~mn evnl~~ntctl on tile basis of' eqn. (14.53).<br />

F. 1':iofcld 1211 lmblinl~crl solrit~ions for flow of binnry inixt,weo tht n.risc in the prcne~~cc of<br />

t.hc nclinl):tt.ic: c~n~~~r~rtion of n lilm of c:trbon tlioxitlc wit.11 n specinl n~st.hemnt,icnI form nssumccl<br />

for t.he law of ovnpornt.ion. 111 thin work, he dincovcrrtl t.Imt t.he proccm of ntlinhntir. cvn.pornt.ion<br />

of n plnrw film lc;uls to self-similar solutions,~/. (hp. VIII. 111 snc11 cnnrs, it t.~lrns outl t.l~nt t.11~<br />

locnl rtrte of cvnporntio~ niurt follow n l/~z-typc Inw. Thin in tho tlintrihntion of Lbo normnl<br />

vc+n.it.y ill owt~i~n or blowing on R h t . plii.t(: id m:ro inri(lr~~(:c h t Irndn to wlF-similnr soI11tionn,<br />

nn il111slrnt.ccl in Vig. 14.12. :I'lw t,~n~~icritt~~~rc 1111d wn~~~~tr:tt.ion nt. 1J1c snrfn.cc of 1.I1o lilm turns<br />

out, to he uniForm.<br />

1.3. Approrimate mlutions. Jt in possible tn simplify t h problrm hy nsquming I.hnt thc<br />

rrntdt,l numhrr, P. rrwl Lbn Srhtniclt, nt~mhrr. S, -- v/l),, nrr oq~d to u11it.y :d Lhnt the viscosity<br />

i~ n linenr funot.ion of tr:mpor:th~rc. With t,l~cno nnnntnl)t,ions, C. It. k'anldcm 1251 onlculnhd the<br />

sbrnring ~ tmw nL Lbc wnll wl~cn n light gw is injcctcd: lie co~~ni~lcred C ~ C R of vnryi~~g motcculnr<br />

nmw ratio wilh rrspr.ot, tn) t.lto II:L.C g.1~. More grncrnl rnncs 01 oxtcrnnl-velocity n d it~jecl~io~lvr1orit.y<br />

clist.ribut.icmn ran IIC nn:tlyzrd with 1.11~ aid of the integral cquntions [log].<br />

Rrfcrrncea 403<br />

[I] ~Ickerrt, d.: Ihs Rotorsrhiffund sritic physiknlisch~ (Irnncllngcn. Vn~~drr~l~ot.ck 1111tl 1{11y.<br />

precht. Got tinnrn, l!)25.<br />

[GI htro~;, .I.R., and Scot.t, P.E.: Some rnnns t,mnsfcr rcs1111~ \vit,I~ exter~inl ~Io\v II~~RRII~C<br />

gradientan. JASS 27, 025 --ti26 (1 9W).<br />

171 lktz, A.: 1)ic IVirkungnwaiae von ~mt.crtoill~en I'liigclprofilc~~. Ilcric:l~t.r IIIIC~ I\I)II. Winn.<br />

Gencllnrhnft f. Lnft.fnhrt, No. O (1922); NACA 'I'M 100 (1!Y!2).<br />

[a] Uet.z, 8.: 13eeinflurwung dcr Itciburig~scl~icht und ihre prnkt.iclcl~c \'crwcr(,~~~~g. Svhrift.ct~ tlt.<br />

Akad. f. Luftfnlirtforscl~nng No. 49 (1939).<br />

[!I] BeLz, A.: J1intor.y of bonndnry lnyrr contd rescnrch in (:c:rmn~~y. 111: I%o~ctl&ry I;~~vr rrlltl<br />

flow cont.rol ((:. V. Lnclirr~nnn, cdj, 1. 1--20. Imnhn 1001.<br />

[I01 Ilrnnlow. A. I. .. I111rrown. I). I,., 'l'ol.(:rvi~~, N., ILII~I Vin(:o~~I.i. I?.: I ~x~II.~~III~II~.~I.~<br />

IIII,~ t.l~(:ot.t:(i(:~~I<br />

stritlic~ of nrm sriction for the cont.rol of the laminar bountlnry laycrr. NACA JLcp. 102.5 ( I!)51).<br />

(1 11 I3rown. 15.: Exnot solr~tionu of the In~ninnr bountlnry lnycr cquntionn for n ~~oronn 111rr1c wit.11<br />

variahlr fluid ]~rol)erties nnd a. prrssurc grarliont in 6110 rnniu utren~n. Proc. I'irnt US Nut.<br />

Congr. Appl. Mcch., 843-852 (1951 ).<br />

[I 21 Ilrown, Mr. 11.. nncl J)or~oughe, 1'. L.: 'J'nblo of cxnct ltiminnr I~ountlnry lnycr uol~~t.iona when<br />

the well in porouu and flttid properties are vnrinblc. NACA '.L'N 2479 (1!)5I).<br />

[12n] Cliang, P.K.: Control of flow scparntion. IIernispliere I'ublisbing Corpornt,ion, \V:~nl~ingto~~<br />

1)C (1976).<br />

fhrri&o, 1':. and Eirhclbrct~ncr, E.A. : <strong>Theory</strong> of flow rm.l.trrchrr~ent. by n tnngc~~t.inl jrt, dinclinrging<br />

ngninst n ~t.rong adverse prcns~~rc gradient. 111: Jhdtrry 1:rycr 1tnt1 Ilow (:ontrol<br />

(G.V. I~ncbmann, ed.), 1, 200-231, London, INil.<br />

Clnrkc, J.Ii., Xlenlres, H.R., and Idbl)y, I'.A.: A provinionnl nnnlynis of turhulcnt. ho~indnry<br />

layers with injection. JAS 22. 245-200 (1955).<br />

Curle, N.: The catirnetion of laminar skin friction including clTcctn of tlistrih~~tcd nuct,ion.<br />

Aero. Quart. 11, 1-21 (1900).<br />

[10] Culick, F.E.C.: Integrnl n~cthotl for c:tlculnting hcnt and mnnn Lrndrr in Itiminnr ho~~nclnry<br />

layers. AIAA J. I , 783-703 (llK1).<br />

[I71 Dn~menhorg, It. E., nr~d Wciberg, J . A. : ISlTcct of t,ype of porons s~~rf:tc:o nntl suct.inr~ ve1onit.y<br />

d~stribution on the chnracteristics of n 10.5 per cent tl~iok airfoil wit,h area sl~ct,ion. NACA<br />

TN 3093 (1953).<br />

[la] von l)oenhoff, A. E., and Jmftin, LIL: PrescnL stntns of 1rscnrc.11 on bormtlnry lnyrr rontrol.<br />

JAS 16, 729-740 (1049).<br />

[In] I)ot~ooglw, P.L., and Livingnod, J.N.R.: Exact aol~itionn nf lntrriinw boi~ntlnry Inycr rqmtions<br />

with constant ~ropertv . - " values for porous wall with varinblr kmnrrnt.urr. NACA llcn.<br />

I229 (1955).<br />

[20] I)orrancc, W. H., arid .Dore, F. J.: Tl~e clTcct of maw t.mnnfcr on t.l~c romprcsniblr t,nrhulent,<br />

boundnry lnyer skin friction nnd hcnt tmnsfcr. JAS 21. 404---410 ( 1954).<br />

[20n] Rckcrt, JC.12. (:.: 'J'hcrt~~otly~~n~)iiscI~c I


404 XIV. 13oundnry-laycr control References 405<br />

1251 Ihnldrrs, C.R.: A notc on 1;irninar Inyrr skin friction under the influence of foreign gnn<br />

. .<br />

injnction. .JASS 28, I(i6 - 167 (I!WI).<br />

1261 Ihvrc, A,: (:ot~t,ril~~~t,io~~ h I'6tude expi:ritnent;rle des mouvetnentn I~~drod~narni~uesbdcux<br />

elitncnsie~ns. 'lXhesis Univcrsit,~ of Paris 1!1:38, I-- 192.<br />

[27J I~lnt.1, .I.: 'I'hn I~isLory of boundary Iqycr contxol rcsearch in the United Stah of America.<br />

In: Honntl:iry I:ivcr and flow control (G. V. I,achm:um, cd.), 1, 122-143, London, 1961.<br />

1281 l?liiecl. (:.: l~r~e:l~nissn BUR dem Sl,ri~~nl~l~g~itlstiL~~t dcr 'I'eeltni~~l~nn 1~0chschnl~ T)anzig. .Jb.<br />

' ~ch~ff1;arrtcc:h;;. (:csellsr:ll:ift 31, 87 -- I l:f (l!)RO).<br />

[2!)] Fox, H., and I,ihby, P.A.: Ilcliu~n injection into the boundary layer at an axi~~mtnetric<br />

stagnation point.. JASS 29, 921 (1962).<br />

12!ta] (:C~RI.CII, I


Ni\('A 'rM !I74 (1!)41).<br />

1861 Sinlinr. I


CHAPTER XV<br />

Non-steady boundary layers t<br />

a. Gencrnl remarks nn the cnlculntiott of non-wteady boundary layers<br />

The oxamplos of solut,ions of the boundary-layer equations which havc been<br />

considarcti until now rcfcrrctl to stcady motion. 't'hcy arc by far the most important<br />

cases cncountcrctl in pmctic:al applications. Ncvcrtl~elcss, in this chapter we propose<br />

to consitlnr scvcrnl examples of motions which tlcpcnd on time, i. c. of non-steady<br />

1)ountIary Iaynrs.<br />

The most comnlon oxnntplcs of non-stcatly bountlary layers occur whcn the<br />

motion is slnrted /rom rest or whcn it is periodic. When motion is started from rest<br />

both the body antl the fluid havc zero velocities up to a certain instant of time.<br />

The motion begins at that instant and we can consider either that the body is<br />

tlraggcd through the fluid at rcst or that the hods is at rcst and that the external<br />

fluid motion varies with time. In this lattcr cam an initially very thin boundary<br />

layer is formed near the body, and the transition from the vclocity of the body to<br />

that in the extcrni~l flow takes place across it. Immediatcly after the start of the<br />

motion t.hc flow in the whole fluid space is irrotstional antl potential with the exception<br />

of a very thin Inyor ncar the body. Tho thickness of the boundary layer increases<br />

with time, and it is important to investigate at which instant soparation (reverse<br />

flow) first, occurs as tho I)ountlary hycr cont,in~~cs to build up. One such example<br />

was ;rlrcatly consitlorccl in Src:. V 4; it was the exact solut,ion of the Navier-Stokes<br />

equations for the flow noar a wall which is accclcmted impi~lsively from rest and<br />

rnovcs in a clircct,ior~ p:~rallcl t.o itself. Also, the start of the flow in a pipe (See. V 6)<br />

I)clongs to thc sanlc category.<br />

1'11rthrr cxnn~ltlrs of non-stjcady I~ourtctary layers occur when eithcr the body<br />

performs a poriotlir motion in a fluid at, rrst, or whcn the body is at rest and the<br />

fluid rxoc:ut.rs a pcrioclic motion. The motion of a fluid ncar a wall which oscillates<br />

in its own plnnc: (Srr. V 7) :~ffords an example of this type of problcm.<br />

1. Ilnundnry-lnycr cquntinns. The funtlan~cnt~al equations for non-steady boundary<br />

layers have already Occn tlcducetl in Scc. Vlla. In t11e general case when the flow is<br />

c:omprcssil)lc and iron-stmtly I)ut two-tlimcnsional, ,we must resort to the following<br />

cq~~a.tions for the vclorit.y n.ncl t.rmpcmturc ficltls (cf. eqns. (12.50a to e)):<br />

.~ - --<br />

1. I nlll illtlrl,l.rcl l.o I'roScssor I


110 XV. Non-~teldy bortndnry layers n. General rcmarka on tho calcolntion of non-st.cady boutlclary layrrs 41 1<br />

Srorn cqns. (13.80) nntl (13.82). Whnn the: flow is incomprcssiblc, these relations<br />

simplify t.o:<br />

i I a ad air<br />

1 jJ2 ;,/ ('J2(12) I (1 I 3 (rR 53. ==<br />

-- - -- 1 P (;;jZ (I!,<br />

0<br />

2. Tlln 111cr11nd or n~~ccmsivr npproximntinnr. 'l%e int,cgr:~t.ion of t.ltc norl-stec:atly<br />

I~oun11n~r-y 1ny1.r oq~t:~t~ions (15.1) t80 (15.3) (:an l)c (wried outt in IIIOS~~ onscs 11y :I,<br />

procrss oS s~twwsivt: ~~~)~)roxit~~:~~t~i~~tts.<br />

1,111: 111~4l1otl 1)cing l):rs(:tl on tJtc r~)Ilo\ving<br />

p11ysic:~I rc:~soning: In 1,Itc first. inst,anl,, :rll.c:r 1.llc tnoI.ion I I : ~ startotl from rest., the<br />

bountln.ry layor is vcry thin nncl 1.11~ viscorts term ~(i?~it~/r3?/2) in cqn. (15.2) is very<br />

In.rgc, n.llerrn.s t.11~ ronvcct,ivc t,crms rct.ain 1,lwir normal valuns. The viscons t.rrni is<br />

t11rn I)nlnncotl l )j~ (.lie notl-shtly arcclcml,ion r31s/i# 1,ogctltrr wit,l~ the pressure (.win<br />

in wlrich, :[I, lirsl.. t,ltc. cont.ril)ut.ion of alJ/ill is of major i~nport~ancc. Selnct.ing a syst,eln<br />

of roortlinnl,rs \vl~ic.l~ is al, rrst, with rcspc>c:b t.o 1,Itc Imly ant1 assuming t.I~at thr ll~titl<br />

niovrs willt rcy)c~c.I, t,o 1 .11~ I)orly at mst-, \vv WII III:I~~ 1.l1r. assl~mplion th:~t. I,he vrlocit,y<br />

is c.ontlws~~(I of' 1.1~0 1.rrtns<br />

ITttclw lsl~rsc c*ontlit.it>ns 1.hr first, n.~)~)rositrt:lt.io~~, it,,, snt.islics t.lte 1incn.r tlifTorcnt.inl<br />

(v111:t ti011<br />

whore<br />

nntl


412<br />

XV. Non strarly Imnndnry hycrs<br />

'J'ltc c~sontial .simplification of the theory consists in retaining only the throc underlinetl<br />

tnrrns in cqn. (16.22), which is thereby linearized and reduces to<br />

Ry rstimnting ordcls of magnitntlc it can be shown that the preceding approximation<br />

is a valitl ont? if the r:~tio of the so-callcd "ac" boundary-layer thickness,<br />

formrtl with the frequency n of the oscillation, is small compared with the steady-<br />

state 1)oundary-layer thickness 0 which would exist if IJ(x, 1) were equal to TJ(s).<br />

JIcncc, for the approximation to bc valid we must have<br />

wltiol~, in ~r;lc!l.icc, restricts the t,hcory to vcry high frcqucncics. It will be recalled that,<br />

the quantity a, cqn. (15.24), occnrcd in the solution to the problem of an oscillating<br />

plate which has hen considered in Scc. Va 7.<br />

Equation (15.23) which is linear and related to the so-called heat-contluctio~i<br />

oqu:~t.ion (6.17) describes the oscillating component ul of the boundary-layer profile<br />

and can he solvccl in terms of the given oscillating component U1 of the potential<br />

flow alone, bcoa~~sc t,lic process of linearization has made it independent of thc mcan<br />

mot.ion. Thc normal componcnk of the flow can be calculated from the equation of<br />

cont.inuit.y (15.1 ) ivliich can be split into an average part<br />

Ilaving solvotl for the oscillation ~ ~ ( y, z l), , n,(x, y, 1) we can rctnrn to eqn. (15.21)<br />

nncl c:~lculate tlic function F(a, y) which appears in eqn. (15.20). Tho lattcr now<br />

dcscrihcs tho mean motion d(z, ?I).<br />

It should he notctl that t h cquation for the mean flow, cqn. (15.20). has a<br />

form wl~icli is identical with the steatly-state version of the boundary-layer equation.<br />

I'hc only tliiroronco consist.^ in the a.ppearance of the acl(litiona1 term F(x, y); t,his<br />

now plays tJic same part, as tht: term If . tlV/dz which originates in the pressure graclicrit,.<br />

Both tt?rm.s mprcscnt, known f~lnct,ions in the diffemntial equation. The only<br />

tIifirrnc:c consists in the fact tliat, t~ic mean pfcssure gratiient 17 . dIf/dx is "irnpressed"<br />

on tho hor~nclary layer and is intfepentlcnt of the trsnsvcrse coordinate 11,<br />

whcrcas the :~tldit.ional term F(z, y) dcpcnds on it.<br />

Owing t,o the existence of oscillatory compont:nt&, the average flow is tliffcrcnt,<br />

from l.hnt. which wonlrl be ol,t,aincd if Llie potential velocity Il(z, 1) were averageti<br />

a. General remarks on the calculation of non-steady boundary laye 413<br />

from the outaet. The difference is clearly brought into evidence by tlte appcaranep<br />

of the function F(x, y) ; it has its origin in the non-linearity of the differcnCial equation.<br />

It will be stated later in Chaps. XVIII and XIX that the essential charaoteristic<br />

of a steady turbulent stream consists in the faet that on the mean velocity<br />

of flow there is superimposed a random, three-dimensional, quasi-periodic oscillat,ion.<br />

Cbnsequently, problems involving turbulent frce slrcnms cxl~ibit tho same featnrcs<br />

as those being discussed now; they involve changes in dire~t~ion as well as in the<br />

magnitude of the free-stream velocity IJ. Tn most cases it is cust,ornsry t,o tlcglcct,<br />

the free-stream oscillation and to calculate as if the flow wore stcady and :LR if the<br />

potential velocity were given by 0 (x) instead of lJ (x, t). 'l'his is cquivalcnt to omitting<br />

the additional term F(x, y) in eqn. (15.20) and necessarily leads to an average velocity<br />

profile which isdiffercnt from ti (XJ) Tho preceding remarks show clearly t.11:~t~ tltc order<br />

in which the two operations, averaging and solving the c:cjn:~l.ions, arc pt:rSortr~cd is<br />

not immaterial and aKccts the final msult.<br />

4. Expan~ion inlo a series when a steady stream is per~urbed rligldy. Very oftr:n, pr.c~l~lcn~s<br />

in non-steady bonndary l~iycrs involve nn c:snenl.ially nfencly flow crll \vlric:h 1,lrt.n: is ~~~lwrirt~l,c~srtl<br />

a small non-stcndy pcrlurbntion. If il in 1~~sumct1 lhal 1110 prL1rr1mLi011 is ~rn:dl t:nn11):irc(l wiL11<br />

the steady basic flow, it is porisiblc In split the eqnalions into a non-linGw bounclnry-layer equation<br />

for the steady pcrturbetion. A well-known exatnple is that for wlrich t.bc cxternnl st,rr:un 11n.s tllo<br />

form<br />

U(z,t) = d(z) -1 s U,(z,t) + . . . , (15.28)<br />

whcrc E denoh a very small nntnbcr. Tl~c rnosl itnporhnt ~poc:i;d cilst: ~IICII the estrt.n:d pt:rtarbation<br />

is purely harn~onic wx.s studied e ~lta~~~li~~ly by M. .I. I~igl~t.l~ill<br />

of<br />

linrarizalion can be c111ployecI when the i~n~pcrnlure et Lhe wall is rr~~rosc:r~lntl 1)~. l.1~ c:xprcssio~r<br />

127). 'I'll(: S:HII(\ t,y~)~<br />

lTw (z,t) = pw (z) + E TTw, (z,t) (15.29)<br />

or when the wall ikelf performu smell, norr-steady. pcrt.t~rl>ing rnot.ions (oscill:~ting 1)oclics).<br />

In such cases we start with the assnmplion t.l~;rl tl~c sol~~l.ion.q for 1.l~ (Iyn:~n~it. :LR \~~cll as<br />

for the thermal boundary layer nrc of the following forn~s:<br />

'J'lie postulated forms from eqns. (15.30) arc introdnced into eqns. (16.1) to (15.3) and Lho losnlting<br />

terms are ordcrcd with respect to the powers of E. From the rcquirctncnt that, the tlini?rcntial<br />

expreaaions which mult,iply enell power of s muut vanish singly, we obtain a msc:rtlo nf cliffcn.ntinl<br />

equations. We list them for t.he cmc when Q = const, wlicn th external llow is of 1.11(. (i)rn~ of<br />

eqn. (15.28), and when the wall temperature is given by eqn. (15.29):<br />

Equations for zeroth order (steady bmic How):


414 XV. Non-st.cncly hour~tlnry Inycru<br />

with tho I)o1111(1nry contlit,itms<br />

,J - 0 : 16, -. a, -- 0 ; 7'" = T'," (,) ,<br />

1, - m: U" = (7 (z) ; T', = T', .<br />

ISq~~ntionn of fir& ortlor (purely non-stcndy):<br />

-<br />

au, au, au"<br />

1<br />

a~<br />

,<br />

I . Iw cy~~:~tir)~~rr of 11igl1c.r ttrtlrrs I~nvc: corrrapo~~~linp nl.r~lrt~l~rrn. 'rho prccoding nyst.c~nn ofrqr~nt~ionn<br />

IYIII I)(* rolvrd one. :I l'lcr l.11~ ol,lwr, it, IIC~II~ 11ol.w1 LI~rrt trll, oxccpt tl~onc of zc.rcrt 11 ortlnr. nro litwrr.<br />

Il oq~~:llions (15.1) to (15.3) wrrc t,o psscss rsnvt solutionn of t.he postul.zktl lorn1 (l5.:10) I I Lo ~<br />

orilrr P, t.I~rn, g(!ncr:tIIy slwdting, tho solutiolm nrrivctl nt by t,llc prccrtling scl~c~nn worlld tlill'er<br />

l'ro~n t.lw C*SILI% solut,ion I I ler1118<br />

~ of or(1cr 141 I I.<br />

=<br />

h. llorlntlnry Inyrr for~nnt,ion nltrr impr~lsivc utnrt of nlotion 415<br />

5. Sinlilnr mid ~emi-similnr solutions. When we stuclictl t,he throry of' st.rntly,<br />

two-dimensionel boundary layers (see Sec. VIIIb), wc clcscri\)otl as similar that,<br />

class of solutions for which the depcntlenco on t#hc two vnriablcs 3: :~nd y c-oi~ltl I,(:<br />

rcdl~cctl to that on n singlc variable 71 hy the npplicat,ion of a st~iL:~l)lo simil:~rity<br />

tran~format~ion. In s.11 analogous manner, we say that a solution of a non-steady<br />

two-dimensional problem 1)elongs to the class of similar solutions whnn thc three<br />

independent variables x, y, 1 can be reduced ton single variable TI. 11. Scli~~lt 1461 and<br />

Th. Geis 1101 have intlicatxd all such solutions for which a rctluct.ion ton single v~rinhlc<br />

is possiMc, t.liat; is, si~ch as arc of tho form<br />

For example, cxtmnal flows of the form IJ (z, 1) = mx/L and the cascs when IJ (x, 1) .- (=tn<br />

mentioned in See. XVc belong to this class. The similar solutions for ctn cxtfrrnnl<br />

stream of tho form 1J (2, I) -- x/(n -1 Id), whcrc a and b are consta~~ts, wcrc : i~i:~ly~~l<br />

by K. T. Yang 1711.<br />

If a transformation can he found whiol~ reduces Lhc IJlrcc indopcndcnt, vn.rial)lcs<br />

x, y, 1 to t.uro, we say that the resulting solution is scmi-similar [21]. In particnl:~r,<br />

when the vnriablcs are rctl~~ced to y and x/t, the solutions arc also called pseutlostmcly<br />

(r/. 171). A soll~tion of thi~ t,ypc was tliscovorctl by 1. Tani I.561 for the (::tsc<br />

wltcn the cxtcrnal flow is given by U (2, 1) = (lo - x/('Z' --I), with 11" and rl' tlonoting<br />

constar1t.s. A wider class of semi-similar solutions W:LS consitlcretl by If. A. Ilnssan<br />

[In]; scc also rcf. 1211.


416 XV. Non-steady boundary layers<br />

where TJ(x) tfcrrotcs the potential flow about the body in the steady state. In this<br />

particular casc we have aUpl = 0, and equation (15.12) of the first approximation<br />

hccornc.~ simply<br />

- va2L1, =(,<br />

(15.37)<br />

at av1<br />

with 11,~ 0 hr -~= 0, ;I.IUI M,) = (J(x) for ?J -= m. This cqu;~tion is itIcntic:~l wit,l~<br />

t.llat, for one-din~ot~siorrd ltcat contluctior~. It was solved irr Sec. V 4 for the casc<br />

of a plnt,v st.;irt,ctl in~p~rlsivcly in its own plirnc, while tho fluid was at rest at a large<br />

tlist.;~ncc: frotn it. It was tl~crr possiblc to introtlucc a new tlimcnsionlcss varin.blc<br />

(sl:in.iltr~il~y Imn,s/orn~wlion.) :<br />

!I<br />

'l=21/;i. (15.38)<br />

In t.lris m;rnnor wc ol)t,ain the solution in thc form<br />

IL,(Z, y, 1) = U (x) x Cljt(q) = U (z) erf q .<br />

(15.39)<br />

'I'his is l,hc first, ;~pproxirnntion botjh for the two-dimensional and for the axi-sym-<br />

~nct.rirnl case. I'nrt.lrcr, if the pot,cnt~ial volocit.y is inclopenclcnt of z, i. c. if TJ =<br />

: (1, :- const (II;rt plate ;I.!, zero incitloltc:c:), oqn. (15.39) constitr~tcs the exact solution<br />

of cqn. (16.2). since thc: c:onvot:tivc trrms in eqn. (15.13) vanish together with the<br />

prrssurc torm so that TI, E 0. I Iowcvcr, the solution arrived at in this way does not<br />

c:onst.it.t~t.c t,he complctc solubion to the prol)lc~n and applies only sufficiently far downst,rcmn<br />

whcrc thc influonce of the ctlge is negligible and where the flow behaves as if<br />

th(: plate wcrc infinitely long. Strictly spraking, the complete solution must also<br />

satisfy the condibion that ~(0, ?J, 1) = 0 for all values of I/ and 1. The complct,e solution<br />

is givcll in ref. 1541.<br />

111 the gonrrn,l casc, wl~c:n Llrc external flow U(x, 1) tlcpends on the space coortlinatn,<br />

it is nwcssary to make a distincti~~~ between the two-dimensional and the<br />

I. Two-climenuionnl cnue. Wc shall begin by considrring the two-climrnsiot~d<br />

c.:tsc. 19,r this rmo wc assume a power series in t,imc for the stream function ~tipulating<br />

th:rt, it, has tl~t, form<br />

~rrs;d,irtg thrsr cxprc-ssions into cqn. (15.12) we obtain the ~IiKcrer~t~ial equatiol: of<br />

b. <strong>Boundary</strong>-layer formation after irnp~tlsivc ntnrt or nrotior~ 417<br />

with the boundary conditions 5, = 5,' = 0 at 17 = 0, anrl to' = 1 at ?I =- oo.<br />

Equation (15.42) is identical with eqn. (5.21) and the solution for C,' is intliratctl in<br />

eqn. (15.39). The function 5,' is shown plotted in Fig. 15.1.<br />

Combining eqn. (15.13) with (15.40) we obtain the differential equation for the<br />

second approximat,ion C1 (91) in the form :<br />

C,"' -1- 2 q el" - 4 el' = 4(5.,'2 - ~ O ~ O - " 1) ,<br />

wit11 the bounclary contliLions C1 = 5,' = 0 at 11 -= 0 ant1 [,' = 0 at 11 -- m. 'I'ho<br />

solrrt,ion tlcrivctl hy XI. 13l;~sius is:<br />

Fig. 15.1. 'l'hc fw~ctions t;l nut1 =<br />

and tib For t.1~ velocity distribution in tho<br />

11011st,cndy horlr~dnry Inycr, cqns. (15.41)<br />

;u~tl (15.50). for itnpulsive tno(.ion<br />

The function (1' is shown plotted (as funct,ion (I,') in Fig. 15.1. 'I'hc initial sl01)cs<br />

of the two functions, required for the calculation, of sci)nratior~ arc givcn 11.y<br />

An exact expression for the next term of the expansion of tlrc stream funohu<br />

it1 t,nrms of time was obtxinctl by S. (:oltlst.cin ant1 1,. 1Losonhr:cd 1141. I


418 XV. Non-slmrly l~orrnclnry Inyrr~<br />

I5 x a 111 1) 1 t- . Ci~c~tltrr r!/litctla~<br />

I'or tJto rircwlar cylintlcr of ratlitis 11 in n strcntn of vrlocity I/,, we obtth:<br />

as swtt from rrp. (15.45). 'l'llc tlist.nnco covrrctl uut,il sapration begins is R, = 1, I/,,<br />

st, t.Ir:~t,<br />

b. Bo~lnclnry-lnyrr forinntion nhrr inipnlnivc dart of niotio~~<br />

Inserting tho vnlucn from cqns. (15.47) intorrp. (I5.46), wr find that I.l~c tin~r cln11s~tl IIIII~I t,lie<br />

onset of ucpnrntion is<br />

I'ig. 15.2. I)int,:~nce 8<br />

t.ravrrsccl by rlliptic cylinelrr<br />

r~nt.il thc: onset elf<br />

scpnrntion in t.hc vnuo<br />

of i~npnlsivc? :~.ctdt.r:~t,ion<br />

fro111 red,<br />

4<br />

y, = 0 for Px < ---<br />

3 '<br />

For k = I cqn. (16.48) t,r~~nnfortn~ inlo cqn. (16.4f;) for 1110 cirex11:ir e:yIit~tlvr. Ibgit~t~i~~g with<br />

tlh vnlr~o the ti~nn L, for tho onsct of sc[)nrnl.ion clccrcn~as will1 i~~e:rc::tninl: k -7 h/w. IIII~I 1.11~.<br />

position of tho point of nepnrntion move8 Crom the end of &xis rx f,ow~lrtls LIic cntl of nxia b. 111<br />

the limit D/n -+ m, i.e. br a plate at right angles to tlw tlirrc~fion of motion, wc 11:tvr I ,<br />

and !I, - 11. Iirnce the onsct of srparation is i~n~nctlint*? for t.Itc c.:~st: of n fl:lt pl:lfn ~wrpc*ntlit.~~inT<br />

10 t.hr rlirrction of rnot,ioti, n.ntl it tnkes plrmc nt ths ctlgc.


t.11rsis I,rrsc~nl,rtl in 1924. 111 t,his cnsc sop:~ml,ion is s~~ppresscd on that side of t,ltc<br />

t:ylintlcv wltcrv (.It(: tnnpt~t~t.i:al vrlorit,y has tl~c same direction as the velocity of flow.<br />

'I'11r process of n(:ccI~r:at,ion for an clli1)tic cylindcr at an angle of incidence has<br />

\)ern trcnt.t:tl in a paper by 11.J. 1,ugt 128al. In it,, the aut,hor succeetletl in calculating<br />

t.11~ rortnat,ion of t,ht: st.art,ing vort.iccs at. Reynolds nnml)crs in the range R - Vd/v =<br />

IT, to 200. Wo wisl~ to rcfw 1.11(? rcntlcr also to n pnpt:r by I). I)umit,rcsc:~~ and M.D.<br />

Cnzacu lOnl whic:h discusses t,llc same problem but for a flat plate at an angle of<br />

incitlcncc. Scc also Via. 4.2 for (.he plat.(: at right angles to tthe stream.<br />

2. Axinlly sy~t~tl~ctricnl prtrl,lcrn. '1'11~ process of bountlnry-l;~yc-r fortn:at.ion<br />

a.l)o~~t, :an xial ally syn~n~cl,rica.l I)orly accclcr:~tcd imp~~lsively wa.s iiivcstigatetl by<br />

15. lMt,zt: I!)] it1 ltis (hcttingcn thosis. We consitlcr the 1)onntlary Ia.ycr on n htly<br />

of rc.volut,ior~ whose s11:~pe is tlcfinccl by r (x), Fig. 11.6, and which is set in motion<br />

at, t - 0. '1'110 accclcrat,ion is impulsive, anrl the cylintler moves in the tlirection<br />

ofi1.s :tsis. '1'11~ rc~lcvnnt nqrt:~~l.iorts an: now cqns. (15.2) antl (1 1.27b), antl the sol~ition<br />

t::111 :,pin IK: rc~)rrsc:~~t,ctl RS :a slltn of n first, :~pproximat,ion, u,,, antl :I. sccontl approxirn:t.t,iotl.<br />

7, tlt-lirlc:tl by cvlns. (If,. 12) anti (IR.13) rcspc(:t.ivcIy. in view of the (:hanged<br />

Torn1 c,l t.lto cwnl,itl~~it,y cvlu:at~iotl we it~t.rotlrwc x tlifli~rcnt, sLrc:arn f~~nctio~~, nnn~cly<br />

:~ntl wr nssnmr it. to Itc or tht: form<br />

,<br />

I . hc. variable 17 has t.hc sarne tnca~~ing as in the two-di~ncnsional problem, eqn. (15.38).<br />

l'lw rlilFrrrnt,i:al cquatiot~ for [, resulting from cqn. (15.12) is identical with equatiolt<br />

(15.42) for thc two-dimensional problem, as alre:ady mentioned. For the sccor~d approxirnat,iort<br />

in t,Ile expansion in terms of time we now obtain from eqn. (15.13) tmllc:<br />

following tIiiTercntin1 equations, defining C,, nnd i,,:<br />

Thi: cq~~ntion for CIS is itlcntical with that for of the two-dimensional problem,<br />

and the equation for


422 XV. Non-st,cndy hoixnd~ry Inycrs<br />

'1'11~ process 01' t IIP form:~t,ion 01' it I~o~~ntlnr~y I:i,yt,r on n rol.nting tlisli was stntliccl<br />

I)y I


424 XV. Non-atearly boundary layers d. Experimental investigation of the starting procem 125<br />

[Jpon comparing with cqn. (l5.45), it in seen that for equal values of dU/dz separation occurs<br />

rarlirr whrn thr nlot.ion is startrd impulsively than whrn the acceleration is uniform.<br />

ll. Illasius mlrtrlnt~rl t.wo fnrthcr t(.rrns of thr vxpansion, and with their aid the equation<br />

for 1, is ohtninrd in Ihr following ~notlified form:<br />

For t.ho c.:isc. of :i cylindrr whir11 is 111:iocxl symtnd.rically with respect Lo the direction of flow the<br />

last tnrm v:~~~ishrs :I(. Ihc. clownsl rcwn sl.ngnnLion point, and we obtain<br />

U(T, 1) = 1 ~(r) -- 2 6 1 sin<br />

R '<br />

wl~rrr? h clcnolcn 1.11~ c:ot~st:int :ircrlrration. I-lcnce<br />

z dw 2b z<br />

1 ) - - 2 b sin - ; -<br />

R dz R-R'<br />

'I'ho pint :I& \vhi(:Ii s


420 XV. Non-nl,mdy<br />

Fig. 15.58<br />

Fig. 15.5b<br />

Pig. 15.5d<br />

d. Exprimcnt,nl invcstigntion of tho ~tnrting process<br />

[9b, c]; t,he preceding two pnpers cover t,hc stendy as well na thc nonstcndy case.<br />

Reference [9c] estnblishes the limits of tJre Rcynolds numlwr mngo in which thr<br />

"twin" vortices, shown in Figs. 16.6tl cmtl 16.50, cnn cxisC nntl ntlhcrc 1.0 t.l~cs I)otly.<br />

Separation: Thc process of scpnrntion is much morc difficult, to clescrihe in thc<br />

case of non-steady lnrninnr boundary layers nntl in the cnsc of moving walls than for<br />

steady flows along n solid, stationary wnll. In the lnttrr casc, srpnrntion is tlctcr~ninrtl<br />

by the simple condition that the shenring stress at the wall must vanis11: to =<br />

,u(au/ay)o = 0. It was shown in a paper by W. Srarz~ and T1.P. l'rlionis [47n], ns<br />

~Irrdy intimnted in earlirr papcrs by P. JC. Moorc [33] nnd N. Rott [38), thnt in non-'<br />

steady flows scparntion occurs when the shearing stress at an internal stagnation<br />

point vanishes. Thus, for sepration<br />

u = 0 and au/ay = 0 in the interior.<br />

This condition is known as the Moore-Roll-~S'ears criterion. l%ysicnlIy, this condition<br />

describes a blow-up of the laminar bonntlary Inycr. Such n ~opnrnt~ing, non-st.c:ntl,y,<br />

two-dimcnsionnl houn(I~~~r.y lr~ycr cxhihil,~, to 11. ~ ~ L I L CX~II,,<br />

~ I I 1,111, HILIIIU cIII~,Iw(~~I. 11<br />

threc-climcnsionnl bountlnry lnycr li)rtr~ccl in the: nnglc 1)c:lwc:cn n flat, plr~tc:<br />

body mountcd on it. In this casc, shown in Pigs. 11.20 and 11.21, L11c Ilow t'ornrs n<br />

separation surface; see nlso refs. [47 b, c).<br />

An extensive review on the unsteady flow around blunt bodics with many cxcellent<br />

flow pictures has been given by S. Taneda [66n].<br />

In conclusion, it may be worth mentioning that thcsc separntion proccsscs<br />

occur on a much reduced scalc in the casc of slcndcr bodics, such ns c. g. slendcr<br />

elliptical cylinders, wl~osc longcr axcs arc p:wnllcl to Lhc direction of Ilow, or or<br />

acrofoils, Consequently, the cxpcrimcntd pressurc distribution around such bodies<br />

agrees, " in most cnms, vrry closcl~ wit-11 that given by potcntinl theory (sco also<br />

Fig. 1.11).<br />

Fig. 15.6. Prcssl~rr tl~st,rilmlion Incnsrrrcd<br />

nronnd a cirrulnr rylintlcr tl~trirlg<br />

thr ~tnrting procrw, :hffn.r M. Srhwnbc<br />

[47]<br />

P-f 0<br />

ied<br />

1<br />

0<br />

427<br />

rirtrl 11 H~~IIJL(.


XV. Non-skdy borlntlnry layers c. I'criodic boundary-lnycr flows<br />

e. Periodic houndnry-layer flows<br />

1. Oscillnting cylialder in fluid at rest. In orrlcr to give an cxamplr of a prriotlio<br />

I,or~ntlary-layer flow we now propose t,o calcr~lat~e t h bo~~ndary layer on a body<br />

which pcrforr~~s a rcaiproc:rt,ing, harmonic oscillatiorl of smnll amplit~~dc in n fluid<br />

:I{, rvst. This is :in (:xI,cnsion of t h proltlnn~ of the I)ol~ndary layer on a Il:~b p1nt.o<br />

prrforming h:irmonic os~ill:~t,iorls in i1,s 1)I:inc wl~idi wi1.s :tlrcxdy tliscrrssod ill Soc!. V 7.<br />

Tt will be shown in this scotion l,hatt small osrill:~t,ions of a body in a fl~lid at<br />

rcsL indnce chnmct.crist.ic scconclary llows whosc n:lturc is such that a stcndy<br />

rnotion is impartfed to the wllolc fluid in spite of the fact that the motion of the<br />

body is purely EKcct,s of this kind occur, c. g., when dust pattcrrls arc<br />

c-rtrat,ctl in a Knntlt tube arid arc of somc importance in acoustics.<br />

Snppose that the p~t,(-ntiaI v~IociI~y tlist,ribution for the cylindrical body wlkh<br />

wc sl~:l.ll now consitlcr is givon by fJ,,(x). 'I'hc potfcnl.ial flow in the case of periodic:<br />

osc:ill:~l,ions wil,l~ n c*ircrll:ar frrclucnc.~ 11. is t.l~cn given I,y<br />

\Vc. shall rtow :wstrrnc :a sys(~cm of roortlinnt,es linltetl with (,he solid body. 'l'hus<br />

V~IIS. (15.1) and (15.3) may be :ipplictl. 1.110 prcss~~rc ~listriI~ut,ion being given I)y<br />

cqn. (16.0). 'I'ho 1)ountl:lry conditions arc: 7~ = 0 for 9 -;. 0 and 7~ = IJ for ?j = 00.<br />

It is possil)lc to :~tt.ctnpt to solvo t.his problem by the method which was used<br />

irl t,lw cttsr: of :~ccalcrat,ion from rest, i. e. 1)s calc~~latir~g sr~cccssivc? approximations<br />

lor 1,hc v~~l~~t:il,y-~lisl,ril~~~t~i~~~~<br />

function :is cldintxl in cqn. (15.1 I) :ind \vit,I~ t,hc tiid<br />

of wjtts. (15.12) an(1 (15.13).<br />

'I'his rnct.l~otl appc:ars to 1)c ntlmissihlc if<br />

Now 11 i)(I/an: - 1Jm2/rl wliorc tb t1~11ot.c~ a linc:~r tlimcnsion ol t h 1,ocly (e. g. thc:<br />

tlintnc.t,c:r of 1.11(: o,ylinclor). On tho other hancl aU/at - (I,,, x ?r, where (I,, dcnotc~<br />

thr ~nnxitn~~rn vt:lonil,y of the body. 'l'h~rs we have<br />

* 81 7Id '<br />

ao /a; - urp1<br />

'I'hr III:L~~IIIII~I vrlorit,y (I,, is proport.ior~al to n x s, where s is the amplitude, so that<br />

with the convention that only the real parts of thc complrx quantities in cjuestior~<br />

hctve physiral meaning attarhcd to them. lntrotluring n dimrnsionlrss roordinnt,~<br />

tlcfind by<br />

:d assuming that tjhc firsf, approximation to bha stream fr~nctio~~, y,,,, is of t,l~r fornl<br />

=v+ -<br />

s (x, y.t) u0(4 io(n) eln1 ,<br />

and henre<br />

\\it41 the bountlary roditions to - (,,' - O at 11 -- 0 atd to' = I :it 11<br />

sol111 ion is<br />

m. '1'11~<br />

Cot = 1 -rxp{-(1 -i)77/J2).<br />

Itrvrrting to the real notationt we obtain the functio~l<br />

llo(., y,t) = lJo(x) [em (nt) - c-sp (-- ,1/p'5) cos (nl - - ,,/1/2) 1 (I 5 62)<br />

n.hic.l~ rcprcsent.~ the first approximation to the ~clocit~~-tlisl~riI,~~~io~~<br />

i't~nct~ior~. 'l'lbis<br />

is t h s:bmc ~ ~olnt~ion as t.hat for the oscillatir~g fl:tt. p1nt.c in oqn. (5.26:~)<br />

If tho second s~ppr~xiniat~ion icl(x, y, 1) is now cnl(:~~l:tt.cd from rclrl. (15.133), it,<br />

is scrn (.hat the convective terms on the right.-h:intl sitlc ofthe cclni~t.ion will c~ot~t,ril)~~t.o<br />

l.vrrns with cos2 7t 1. Thcsc, in turn, can be rctlr~cctl 1.0 tcrmx with cos 2 71 t, sin 2 71 1<br />

nntl stcndy-sl,at.c, i. c. t,ime-intlcpcndcnt t.orms. 'L'&king into ILCCOIIII~ t11csc cir(:~lrl~ill<br />

t,l~r<br />

st.anrc3s we can express the stream frlnctior~ of t,hc src:ol~d :rpproxi~nat~ion<br />

:.<br />

420<br />

fhrn~


XV. Non-utcncly boouclary lnyers<br />

whrrr tltc bar ovcr tltc symhls tlcnotrs the rcspect,ive conjugate complex quantit.ies.<br />

'I'hc nortnnl and t,sngcnt.ial componrnt,s of the prriotlic cor~t.ril)ut.ion must vanish<br />

at. t,lto w:~ll, whercns :~t :L large tlistnncc! from it only the tangential component<br />

vnnislws. l~utting 11' -- r/l/2 we ot)t.:~in<br />

ltrgardirtg t>he steady-state cont.riht~tion it is found that only the bounclary<br />

rontlikions at the wall can bc satisfied, and that at a large distance from it is possible<br />

t,o n~:tkc the tnngcntial component, finit.(: but not zero. Thus<br />

3 1<br />

Slb' = - ;t + -- exp ( - 2 77') 4- 2 sin 71' cxp (- 17') -k<br />

4<br />

'I'hr srrontl approximatht is seen to rontnin a strady-st,ab tvrm wliich does not<br />

vattislt nb a Iargc tlisLntice from thr body, i, c. oukide tho boundary layer. Its magnit.utlr<br />

is given by<br />

3 dU,<br />

u2 (2, 00) = --- (I5 68)<br />

4n '0 dz .<br />

,.<br />

I itc precetling nrgunlcnt has thus Ircl its t,o the remarkable result that a potentrial<br />

flow whioh is periodic with respect to time induces a steady, secondary ('strenmirtg')<br />

mot,iori at a Inrgc distance from the wnll as a result of viscous forces. Tt,s magnitude,<br />

givrn hy rqn. (I5.63), is inrlrpcntlcnt of the viscosit,y. The steady-state c~mponcnt~<br />

of t.11~ vc+wit,y is ,such t,lml tl~tiil pnrt.ic1r.a arc seen to flow in the direction of decreaqing<br />

nniplit.rttlc of that component of the potential velocity which is parallel to t h wall.<br />

An c~xntnplt: of s~tch a niot,ion, viz. the pntkrrn of streamlines of t.l~c stcatly<br />

flow al)out a riroular cylinder which oscillntes in a Lluitl at rest, is shown in Fig. 15.7.<br />

I'igt~rc- 15.8 cont.:~it,s a of the flow pnttcrn al~out a cylinder which performs<br />

an osci1lnt.or.y mot,ion in a tank filled with watrr. 'I'hc camera with which the photograph<br />

was t.nltrn nlovctl with t . 1 cylintlcr ~ nnd the surfmx of t,he water was covcrcd<br />

with fine ~nct.n.llic pnrt,iclrs which rnntlcrctl the m~tiorl visible. Thc particlcs show<br />

up as witlc I)nntis in the pict,ltre owing to the Ivng exposure time antl to their<br />

rcciprocat.ing mot.ion. 'l'l~e fluid partic:lcs flow t,ouwds bhe cylinder from above and<br />

from hrlow, and move away in both tlircrt.ions pnrallcl tm the reciprocat.ing motion<br />

of t.lic cylintlrr. 'l'l~is is in good agrccn~rnt wit11 t,hc Ihcorct,ical pattmn of streamlines<br />

show'ti in Fig. 15.7. Siniil:~r phdtogrnpI~s wrrc also I,lll,lisl~cd hy 15. N. Antlradc [I],<br />

who it\rlrirc.tl st.:~n(lit~g so1111t1 W:LVCS~~OI~~. ;I circulat nylintlcr and rcndcrctl Lhercsulting<br />

secondary flow visible I)y tlic injection of smokc.<br />

Fig. 15.7. l'n1,tmn of utmnrt~linru<br />

of the fitcnily uccontlnry tnolio~l in<br />

the n~ighl~onrhood of no osrillnting<br />

rirculnr t~ylind~r<br />

e. I'eriodic ho~~ntlnry-lnyer flown 43 1<br />

l'ig. 15.3. Scconclary flow in tho n~.i~lil,owllootl<br />

of n.11 oac:illnI.ing circ~~ler c:yli~~clcr. l'hc<br />

cnmorn niovcs wiL11 tl~c cylilidor. 'l'hr ~rict.n.llic<br />

pnrticltxn which wrvc to rcl~tlrr f,l~o flow viuihlc<br />

sl~ow 111, n.s wide bands owitla tn t,llc<br />

long exposure tilllo nncl to thir rccipror.;~ting<br />

motion, nftcr Scl~licl~l.itlg (441<br />

Tt is importmt to notticc hare that tllo first npproximat,iot~, 11, itt ccp. (16.62),<br />

shows t,lti~t, t,ltc tliffcrcnt layers in the fluid oscillab with clilTcrcnt phase shifts<br />

compnretl with tltc forcing oscillations, and that their amplitudes dccrmsc ont.warcls<br />

from the wnll. 'I'hc sn.tnc f~at~~~rcs were nxhil)it.cd hy tit(: solutions tlisi:~~rtsivl in<br />

Cltnp. V. 'rhc first approximntion, u,, as wcll as the so111t.ions in Chap. V wim 01)t,ninctl<br />

from c1ilh:rcntial eqttntions which (lid not, contain the convcctivc tnrms<br />

It. mn, t,hcrcforc, I)c stated tltnt y-dcpcntlcnt. phase s11ilt.s :rnd amplitirtles tlrc.aging<br />

with distance from the wall are caused cxclrtsivcly by the nct,ion of viscosit,y. On<br />

t,hc other hand, in tho second npproxirnatioll, ul, there appears a tmm which is not,<br />

periodic antl whiclt rcprcser~t.~ stcntlg stmamiug supcrirnpos~l on the oscilln.t~ory<br />

motion. Ilcncc, it can also be st&cd t,l~at sccontfary flow has its origin in t,l~e convcctive<br />

tmms and is due to tlte intcraction bct,ween inertia and viscosit.y. TL slto~llrl<br />

be borne in mind that simplifications in wlticlt the convcctivc tcrms 'tavc I)ccn on~it.t.c~l<br />

le;d 1.0 solutions which arc frw from streaming and may, thcrcforc, give a rnislcailir~g<br />

representation of the flow. Streaming docs, in general, appear only wlicn the? solut.ion<br />

is carried to at least the second-order approximation.<br />

'I'hc phenomena under consideration offcr a sirnplc explanat.ion of I


432 XV. Non-ntcndy boundary layers<br />

a Iargr rlistanrc from the wall tAc vrlocity must, evidently, change sign to satisfy<br />

tho rontinrriLy rcquircmcnt,. 'I'his intlurcs 'streaming' effects, tl~c sl~ifting of thr<br />

part irlrs of c111st, ancl causes thm to form littlc heaps at tho nodes.<br />

lt is clcar frorn the prcc:ctling t1csc:ription tha.t the quantity of dust used to<br />

protlucc IZ~~ntlt patterns is of grcat importance. A large quantity of dust will become<br />

n.git,atotl ;~ntl m;ry rc::~c:ll the rrgion of innor flow when vil)mtiorls of the tube arc<br />

cxc~il,crl. (~onsc:q~~rrltly it may not, be possil)lc to cause the tl~~st to move away from<br />

(,IIC points of ni;~xim~~m amplitwlc. If, howcvcr, only a small quantity of it is taken,<br />

t.l~c: infl~tenc:c: of the flow m:Lr the wall mill t~c strongcr a.nd t h points of maximum<br />

nrn~di1.11c~c: will soon Itoconro I'rc:o of dusl.. I'rolhns c:ont~eclatl with st,cacIy 11101,ion<br />

whic:h :wconlparl.v os(:illatio~~s havc I~ccn t,rcntrctl in grcatm tlotail in publications on<br />

:~.c:o~~stic:s, c/. 1081.<br />

An an:~logor~s invcstign.tior~ of thc flow al~out an axi:dly symmetric ellipsoid<br />

w11ic:h ost:ill:~t,c:s almut its axis of symmct,ry in a fltlicl at rcst was carried out by<br />

A. Goslr 1171; c/. also I). Iboy 1-40, 411.<br />

2. C. C. I~II'S tlienry of horn~onic oscillntio~is. 111 1.111: pw:c:tling soction wc:<br />

h:~.vo c:orlsitlrrrtl Lypic:;d ox:~~nplcs ol' osc~ill:i.lrions involving fluitis at rest. I'rol~lcms<br />

in wllic.l~ lhc: osc*ill;~t,iot~ is snl~critnposctl on :L s1,rr:l.m are much more irnport.:'nt in<br />

:~pplicn.t,ions, IJII~. n.lso 1n11c:h more clif'lic:~~lO t,o analyst. A certain insight into this<br />

t.ypc: of proc:rss c.:rtl I)(: ol)l,:rinctl with 1.ltc :tit1 of (!. C. 1,in's theory 1281 tlcscril)etl<br />

ill Soc:. XVa.<br />

(J (:I:, t) :~= (J) -1- lJl (2:) sin w, t , ( 15.64)<br />

e. I'criotlic botlnt1:wy -l;iyrr Ilo~ s 433<br />

A cliagram of this ftinct.ion is seen plotlctl in Fig. 15.10. 'l'l~c c~xprrssiolt (1 5.6fi) sl~ows<br />

t,hat tlcviat,ions bct.wecn the true mean vclocity p.ofilo 77 ancl tht: quasi-st,c.ntlS vr1oc.il.y<br />

profile 7~, which would cxist if we were to assumo F(J, 11) = 0, tlrlwnd cssnn(.i:llly 011<br />

t.11~ an~plit~tdc CI, (z) of t,hc oscillation i~nd 011 i1.s vi~rint.io11 tllIl/tl:r: :~.lot~g t,l~r Ilo\v. 111<br />

p:~,rt,ioul:rr, oven a I;~rgc amplitntlc of oscillation will ~)rorluc.c: 1111 c:ll:al)gc: ill 0I1r vc.lot-if..<<br />

profilc if it rcrnains constant along t,ltc flow, i. c. il' I/, - c:o~~st.. Icroln t.hc tli:1gr:1rri<br />

in l'ig. 16.10 iL cn.n bc tlctlucccl t,l~at tllc I:~rgost rrlnl,ivc rnotliIical.ion of 1,111: vc~loc-il.s<br />

profilc occurs near the wall, bccausc F(y/d,) has Lhc Inrjit.s(. V:LIII(: F(0) -- 1 thrrr.<br />

Sincc t,I~c fluid partielas nearest to the wall niovc r~nclrr rrl:~t.ivrlv s~n;dl ;~cc:clr~.;~t ions.<br />

1,llc ntltlil,ionnl 1)rrsstlrc gr:~tlit:nt will ~rrotluc:c: 1.111: g~~t:r~trst, I , ~ I : I . I I I~ I ~ ~ ~ ; I l11(: ~ 1v:111.<br />

Fig. 15.10. PloL of the funot.ion<br />

F(y/6,,) from cqn. (15.67) for n<br />

single, lisrmonic component in -11.5<br />

tl~c cstcrnsl strcam<br />

If tl~crc were a spectrum of harmonics of frrqucncics kn. (k = 1, 2, . . .), i. c.<br />

for a frcr-stream velocity<br />

wc would obtain simply<br />

U (x,t) = u(z) + C Ulk (x) sin (knt) , (15.(iH)<br />

k<br />

F (z, y) = C 4<br />

k<br />

o, =


434 XV. Non-stcxcly boundary layers<br />

From what has I~ecn snit1 hefore it is clear t,I~at the position of the point of<br />

laminar scparat.io~ is aKcct,ctl by the cxt,ernal osciliat.iona nnd t,hnt the point of<br />

separation must osrillat,~ it,sclf. Finally, C. (1. ],in's mcClrotl lends to t,he valr~able<br />

conrlt~sion t,li;~t t,lw f~rncl;uncnI,nI oscill;tt.io~~ iirtlrlcrs 11iglrr.r harmonics in thc boundarylayrr<br />

o~rillnt~ion.<br />

3. Extrrnnl llnw with etnnll, l~nrlnonic prrturLntins. The c ~ when c t.hc extcrnnl flow<br />

perfor~nn small, hnrn~onic oucillnt~ions hnn bcrn tronbed in n nutnher of publications. The method<br />

employcd was lhnt of a scrirs rxpnnsiori in t,ho pcrturbntion pnran~etcr described in Sco. XVn 3.<br />

We nnswne that the extcrnnl flow is of t,l~e form<br />

IJ (x, 1) = Tf (XI -I- rr, (x) ~'"l , (15.70)<br />

and note t.l~nt,, for it, nod, investigntions rest,rict t,l~en~selves to the cnlculnt.ion of t,hc first<br />

approxin~nlion, that. i ~, of thc fnnctions n,,ol, and l', from eqn. (15.30). M. J. I,ighthill [27]<br />

for~nnlntrd an npproxin~nt.c n~etllotl for tlrc solution of cqn. (15.32) for arbitrary forms of tho<br />

fttnc:t.ion o(s) nnd iJ,(s). The particular cnse when both functions cnn be represented in tho<br />

form of power series ltnn been ronsirlcrcd by 1';. Hori [24], whereas N. Ibott and M. I,. Itoscnxwrig<br />

[3!)1 o~nn~inocl t.110 CXRIII~IO W I I the ~ t.wo Ftn~ct.ions #(x) nnrl #,(z) nro ui111p1e powers<br />

or r. 'l'llc c?xrltll~)~o of ~t.;ignat,ion flow st.lldiccl by kt. I$. (:lnllcrt 1131 nlld N. /Lot.t [:!)I nR wc?II<br />

as tlrc Ilow along n Il:lt, plate nt 7,cro inciclcrlrc dincnssccl by A. Gosh (171 nncl S. (:il~bc:l:rLo [I 1, 121<br />

oons1it.ut.c n111)-c:nsw of t.11~ 1nt.tc.r. Finally, A. (:tmll 1171 nncl 1'. (:. Hill ant1 A. 11. Strnning 12.71<br />

pcrforn~cd exporitncnt~nl ~nc:murcmclltR on non-sleady ho~~t~clnry layers.<br />

If the oxtcrnnl flow is of the form<br />

U (r,t) - csm (I + E einl) = if (I + E ci1I1)<br />

(15.71)<br />

thrn rqns. (15.31) Itwl 1x1 Iho familiar d1(rrrrntia1 rqt~ntions for uiniilnr sohltions, C(1119. (9.8) and<br />

(!).Rn), nntnc.ly,<br />

with<br />

Asnutning in cqns. (1G.32) that<br />

u, = E ei"' V @, (6, 11) ,<br />

wo arc? Ircl 1.0 t.hc ftlllowing tlilTcrenl.inl cqnntic~nn for t.lw rwxilinry functions @(E, 7) and O (E, 7):<br />

nt + 1 ln -1- 1<br />

-- -<br />

fDq.t'l<br />

/ (D,," - (€ t 2 m/')@, -1- 1'' @ - ( I - in) 1' E @,,E 4-<br />

1 2<br />

2<br />

+ (1 - m)/"€@t + [ .I- 2m = 0 , (15.76)<br />

with t,hc bonndnry conditions<br />

r. Periodic boundary-Inyrr flows 435<br />

The precwling clilTcrmt.ixl cqnntions arc, normnlly, ROIV~~ in t.hc form of srrics expnn.siorls. first.<br />

for smnll vnlucs of F and lhcn for Iargc vnlucu of F. Assuming thnt<br />

for small vnlucs of t, we arc lerl to ordinnry dilTcrcntinl eqnntions for tho fnnctions dik(l,) nntl<br />

Ok(7). The derivnlivc~<br />

loenl Nnssclt nnmtmr. In this mnnnor we: rnn clwivo ll~nt,<br />

and that<br />

at q = 0 mrvc to cnlculnb tho slrenring ulrcnn nt t.ho wnll IIR wt!II IIH OIC<br />

I<br />

Arrortling Lo 1'. K. Moore 1.711 (am nlno A. ( h l [I71 ~ nntl S. (>il,l)c~lntn 112]), 1 1 r:rsr ~ of t.lw<br />

flat plntc at zero incidence is reprcacntcd by thc cxpreasion:<br />

nntl<br />

SubstiLuting n = 0, wo rewvcr tho uasi steady solution, which signifies thnt nt every inst,ant<br />

the solution behnvw like the shady Jutio; for tho instantnncous cxternal vcIooity The a penrnnco<br />

of an imaginary term nt n =!= 0 moans that the boundary layer aull'ers n phase shift wit( respect<br />

to the cxternal flow, the shift being diflercut for velocity nnd blnpcrntr~rc. Wl~ereas the rnxxirna<br />

in shearing st,rcsa lend thc tnnxima in the cxternnl Ilow (in the limit n x/IJm -+ CT 1.11~ pllnse<br />

ar~gle tmda to 459, the mnximn in lnmpcrnturo Ing hchintl t.l~rrn (in the limit, ?l,:r/!~,., -t m~<br />

lhc pltmc nnglo tendn to '30"). 111 ntldition, iL turns ont t.l~trt nt lnrgt! VIIIIIOR of n ~/ll~., t . 1 nn~pli-<br />

~<br />

tudc of thc ahenring-strrxw oncillntion incrcnaca withont bound, wl~crens t,l~nL or I.l~c? I~nnt, llnx<br />

slowly decays tm zero na n %/Urn is mndc Lo incrcnac.<br />

When thc solution of the system of eqttntions (15.33) is corrictl to second ordor, it is hnd thnt tho functions u,(z.y,t), v,(z,y,l), and l',(z,!/,l) cont,nin n Irnrmonic pnrt of donldt: f'rotp~cncy<br />

and n ~upplemnntnry, abndy pnrl which in inclopontlt\nl, or 1.itno. 'l'l~c~ Inl.lr.r tnotlific~~ I.ltc\ 1111sic:<br />

flow and cnn I)o intcrprcbtl na a secondnry flow in cot~~plnhr 11111tlogy wi1.11 1.1111t, t.~t(~t~I(~r(~cI<br />

ill<br />

the solutions of tho pwccding seelion.<br />

For shgnalion flow, wc hnvc Ul(a) = consl, anel it in fo~td<br />

t.lmt t.hnrl u,, o, and all<br />

higher-order term vanish, as demonstrated by M. R. Glnuert [13]. Conneqnently, the basic


436 XV. Non.stmdy borlndnry lnycra e. Periodic boundary-lnycr floe.s 437<br />

flo\\- nt~g~~rntwl I)y t.l~c: t.rr111s tl1 :1.11(1 vI rol~slit~utrs nn exart ROIIIL~OII, one, ~nor~ovrr, ~l~irl~ is<br />

:~lso c-s:tr,l for lhc; vo~~~p~(~Lv Nlivirr-Stokrs cqllntions ('/. also rvf. [67]). I$y :t ~llit~I110 1XR114fi~rtti:iIiot~<br />

of v:iri:~l)lrs, t h 11rtwdi11g r:isc c:i~t bv III:L~C tn yield l,Ito solt1l~ion8 for st~agt~aliot~<br />

IIo\r OII MI osc.ill:lti~~~ \wll first. Rivcl; in rrfs. 113. 67, 21. A solution for tho caso of nn ililinite<br />

ll:it pI;itv with suc~t.iol~ tui


438 XV. Non-atcndy boundnry inyer~<br />

fig. 15.11. Velocity dintri5rtt.ion in<br />

oacillrd,ing pipe flow not ditTerent ins-<br />

tnnta of one period, after S. Urhitlo<br />

[G3].<br />

If the distance from the wall y = R - r is small compared with the pipe mdius R,<br />

the ratio R/r can be rcplacctl by unity. Thus, introducing thc tlirncnsionlcss dist,nnce<br />

- -<br />

from the wall q = (R -r) 1/i/2 Y = y 1/42 Y , we have<br />

K212 P(!/) n2 = 1 - 2 cos q cxp (- - 7) -t cxp (- 2 '1) . (I5 80)<br />

'I'hr vnrintion of tl~is mean is seen plot,tc~l against, in Fig. 15.12. '1'11e maxirnuni<br />

valur dnrs not roinci(1c with the axis of the pipe (large distance), but occurs near<br />

tho wall at I/ - 1, )/it12 11 r- 2.28. 'I'ltis vnl~ic a.grccs very well with rnc?asurcrnent<br />

(E. G. I~icl~arclson's 137). "nnnular nKct:t"). In this connoxion the reatlcr is also<br />

refcrrctl to M. Z. J


440 XV. Non-st.cncly bortntlrrry lnycrs f. Non-steady, cornprrwsiblo bourttlnry Inyorn J,l l<br />

whir11 rr1)l:irrs tl~r original, three varinblrs z, IJ, t. Assuming that thc stream function<br />

is of tl~v form<br />

edge<br />

-. -1,-U, I .<br />

shock wave<br />

6.~~6<br />

- . - -- - - -<br />

(15.93)<br />

--$<br />

Fig. 15.13. I'ortnntiort of n I)orlr~clnry I:ryrr<br />

Iwhintl n ~iortnal nl~ork wnvr lnoving will1<br />

7;77;<br />

boundary layer<br />

;r vrlocil.y /Is<br />

S~tl)slihtt.ion of tltc irhovn fortn for tltt: stmatn fi~nc:tion togcther with tho corrcslmt~tling<br />

form<br />

T - TmO(i~) (15.95)<br />

for 1.11~ l~m~wr:~I.~~rc tlistril~~~l~io~i intlo cqrts. (15.1) to (15.5) allows us to (lorive the<br />

folIowinx, ortlinnry tlifTcrant.i:rl rqrrnt,ions for tlrc functions /(q) and 0(7]). 'I'11r.se arc:<br />

TII~; soltttio~~s for II/IJ,., --: /'(rl) rrtm (YIII. (l5.!)(;) irt; S C ~ I plnlttcd in Fig. 15.14%.<br />

'I'ltt. p:tr:inirf,vr Ir,.,//l, fnr t.l~c Iiimily of cwrvos cKar:~ct.crizt:s t,l~c st,rcngtfi of the<br />

sltot-li \v:L\.r. 'I'IIO I~igl~cs(. ~,ossil,lc vn111c: for ~J,,./u, is (iJ,,/fJ,),,, = 2/(y t I ) ant1<br />

rtit~t-sl~~~~rcls I,o :tt~ it11inil.c.ly sl,rong sltnr:lc ; with = 1.4, t,his yicltls (fJ,,/lIs)t,,,z = 0-83.<br />

Nvg:~.ti\.t- V:I,~III,S of I~,.,/IJS (.orrt:s110t1(1 1,o li(:I.il.io~~s, non-st,rady, cont,iriuo~~s cxpansiott<br />

I':IIIS. wt.11 irt~:~git~t*tI I~oIII-(*III,KLI,~~~I in n singk front.. In the p:~rt~iculnr case when<br />

I . / - \v(. arc. Ictl t.o thn so-c:allrtl 1t:cylt:igh prol~lom (Stokes's first problem,<br />

n)<br />

Urn 1,) (.)<br />

Fig. 15.14. Vt*Itwil,y JLII~I I~twr~:rrnl,~trt* ~lisl~ril:~~l.it~~~u<br />

~IYIIII ~Y~IIS,<br />

Inrninnr 1)orrncllrry liryrr Imhincl n ~ior~r~trl uliodc wrrvc of ~OIIRIILI:~~ vdwily, nf1.1.r 11. hlirc+i<br />

of 1.11~ WRVC<br />

The p:~ran~ctcr /Im/(ls cltnrnctcrizcn the ~lrc~rjil.l~<br />

(15,!),l) 1111tl (l!;.lOli) i t)<br />

Sec. Vn 4) which tlenls with tilo impulsive sLart of n flat wi~ll. 1 tf is sccn front Pig. 15. I.In<br />

that the tlticltncss of a boundary lnycr behind n normal sltoclr cxcortls th:rt, li)r tltc<br />

so-cnllctl IZnylcigh prolhn. This mcn.ns t11at. II~OII t.11~ I:L~)SC of n wrt.ni~~ l,in~(* 1 .r/ ITs<br />

after thc p:~ss:~gt: of t.11~ sl~oclr wave, the boundary 1:iycr :LL n givc~i posil,iot~ 11:~s<br />

grown thiclrcr than on an impulsively stwt3ctl p1at.c aftm t.hc s:tmc pc:riotl of t.irnc:<br />

has lapsctl from start. The opposite is t.rnc for csp:~nsiot~ w:~vos.<br />

,, 1 he soltttio~~s for t h lincr~r tliffrrcnt.inI rcln:ition (1 5.97) for 0(?1) r:~n Iw rrprcsrr~( -<br />

cd in the form of a linear cwmbination of t,wo basic solut.ions, tlrfir~r(l :IS follous<br />

Thc functions r(q) and s(q) arc solutions of the following ordinary dini.rc~nt,ial<br />

equation :<br />

together with the boundary conc1it.ions


442 XV. Norl-st,aady boundary Isycrs<br />

'I'hc solut.ions for P -= 0.72 have hrr~ plottctl in Figs. 16.14b and a. The nunlericnl<br />

vnlnr r(0) is x mm.surc of t,l~e rccovory t.empcraturc, TI,, th:rt is, of the temperat.rrre<br />

a.t.t.11c: s~~rfnnc of nn ntlinl):btic w:~ll. 111 t,l~is CRSC, we havo O'(0) = 0, anti hct~ces(?~) = 0.<br />

It, follows from cqn. (1 6.W) tJiat t,he adinhatic w;dl temperature is<br />

\Z'hrn P -r I, wr have r(0) - I, antl thc adiabatic wall t.cmperatVnre Iwcomcs identical<br />

with the stagn:~tion tcn~prrnturr Ic/. rqn (13 17)] Wlicn the Prandtl number<br />

of thr gas difrrrs little from unity, it is possible, according to H Mirels 1291, to<br />

rmploy thr npproxirnnt ion that<br />

with<br />

r(0) = P" ,<br />

a-039- - 0'02 for urn :-- 0 (comprcsaion waves) (15.104)<br />

I -- (U,./Vs) (1.9<br />

0.13 Urn<br />

a: 0.50 -- - for < 0 (cxpnsion waves)<br />

I - j u,<br />

,.<br />

I hns, finally, thr t,cmprmt,~lrc distril)ution becomes,<br />

For the skin-frict.ion rorfficirnt,<br />

Onrr ngnin. ncw~~eling to 11. Mirrls [29l, whrn t11r Prnntltl numl)cr is near to unity,<br />

it, is possiblr to rrsort to Lhc following approximations:<br />

where for compression waves (11411, >0)<br />

antl for cxpnnsion waves (1I,/1JS < 0)<br />

The I~o~indary-hycr thickness exccccSs tho so-nnllctl Itnyloigli val~ic wl~cn the<br />

wave is cornprcssivc; this en11sc.4 1 h sh~~ritt~ ahrrus, the ~kit~.rri(:tio~~ (:ot:l'fi(:i(-t~t, 11ttcI<br />

tho Nt1ssc11, n~t~~tlwr 1.0 II~:(YXIIII XIIIILIII:~ ~ott~l)~~re!cI wit.l~ I.11oir ICnyIt:iKI~ v~~lttt*~. 'I'l~t,<br />

opposita is trlio for cxpnsion W:LVCR. In t11c spnci:~l c;rsc when P - - I, t.ttt: Ilt::rt.transfer<br />

formulae rct111cc to Chc simplc Itcynolds aldogy<br />

known to the render as oqn. (12.55).<br />

r.<br />

1110 precrtling problom which cliscussctl the hounc1:rry layer brl~irrd n shock<br />

wave of constxmt velocity co~~stit,~tbs an idcnlizccl special c:rsc in thaL iL call bv<br />

mduccd to a stoatly problcm 1)y the fr1iciI.011~ choi~c of :L coordinate syst,rm in wllic11<br />

the shock wave is at, rest. More gcnrrxl sol~rt.ions of t h same problem have boon<br />

trmtctl in the works of R. 13ccltcr 13, 4, 0, 71 ant1 11. Mircls and .J. Ilammnn [301.<br />

2. Flnt plnte nt zero incicler~cc with vnriable free-strenrn vrlocity nrd mrfncc<br />

temperature. In our scmmtl osaniplc wc col~xitlcv tho cotnpressil)lc I)or~nrl:~r,y Inycr<br />

on a flat platc whcn thr frcc-sbrcnm vcloc:ity, 11,(1), as wcll as tho tcmpcmt,urc at<br />

the surfacr, T,(t), vary in t2hc corlrsc ol't,imc. 'l'hc strc:brn rt~nction y) rrom cqn. ( 16.90).<br />

and the t~rml)crnt.urc clistribution<br />

in which the pmss~lrc-grntlicnt tcrrn lixs I~ocn dclotctl. 'rho variablc has I)rcn ele-firwd<br />

in cqn. (15.9l), :tnd (I,, anti 7', tlvnolo the tlcriv:rtivos of fr~o-strc::~~~~ vclo,'il,.y<br />

RII~I swface t,rmpcri~t.urc yith rcspcct. to kinrc, rc~spo~t,ive;ly.<br />

solutions, thc following series cxpn~tsions arc postulal.ctl :<br />

111 orclcr t,o :rrrivcx :if.


444 XV. Non-st,mdy I~oundnry Inyora<br />

Urn2<br />

r] = --<br />

22 voo<br />

tit,finrs a II~\V, tlirnt~nsiot~lrss coordinntc, ant1 the following al)brcviatfior~s have been<br />

mi ployrd :<br />

r 7<br />

I hr lwct:c(ling fortns arc snl~stit~~tntl into the difkrcntial cqrtations for the bountlary<br />

Inycr ;~ntl it, is li~ttrd that, thc futlctiotis F(q), /O(tj) , . . . satisfy ordinary diITcrentia1<br />

ctlttnt.ions. Solrrtions for thcm wlron P .-. 0.72 11avc been given in refs. [35, 491.<br />

'I'lre functiorts F(,,), O,,(T]) ant1 A'(71) arc idrntical with the solutior~s for the steady<br />

prol~lt-1x1 witlr CI,., in(.rrprc:t,cxl as the insl.ar~tanoor~s vrlocil,y (quasi-steady flow).<br />

,<br />

I . hc rcrn:iining t.c:rt~~s tlcst:rilm t.hc? clop:~rt~tros from tho q~~:~si-st~twJy s~l~ttion.<br />

(:orrc~sl~)~~tlirtgIy, IJIV mlio of hcv~h fir~xrs :it, tltc wall for P = 0.72 (c/. 1501) is<br />

drscrilwtl Ily<br />

I<br />

+,#<br />

--- .<br />

-- I",<br />

, -,,--k...<br />

I ,<br />

The theory of laminar, non-steady boundary layers has been dcveloprtl cons~tle~ -<br />

ably in the last years Information on this phnac can 1~ fortntl in thrrc vol~ttnrs of<br />

confcrcnrc pro~w-tlings. '1'11~ fitst, rtlilrtl Ity 15 A 15icl1rll)rrnttrr, rc%l)orls (111 1 1 1 ~<br />

IU'I'AM Symposium "ltcrent Research on Unstcady I3ountlary Layers", Qrwl~rc 1072<br />

[74]. The second, edited by R R. Kinn~y [76], concerns a symposirtm on "IJnstcndy<br />

Aerodynamics" held in I975 at the University of Arizona,. l'hc third is tlcvotcd lo nn<br />

AGARTI mecting lrcltl in 1077 [7BJ. A rcvicw pnpcr by N ltilry may also tnct it comparison<br />

[37a].<br />

[I] Andratlc, E.N.: On tho airculnt.ion musod by tho vibr1lt.ion of :rir in 11 I.IIIII.. I'rov. 1111y. Stw.<br />

A 134, 447-470 (1931).<br />

12) Arduini, C.: Strnto limite incomprcnail~ilc Inrninnro ncll'int.orno do1 pnnt,o tli rist.ngt~o tli 1111<br />

ciliuclro intlofinito oac:illanlo. I,'Aorolcc:nii:l~ .I/, 34 1 34lL (l!)lil).<br />

[:)I I)ct*kor, I?:.: 1)m AIIW:LC~IUC~ dcr C~OII~.H(:II~(:II~~ in IIII~I 11iut.t:r (:illor I ~ ~ x ~ I I L I I H ~ ~ I I I H ~ v IIIU..<br />

~ ~ I I ~ ~ .<br />

Arch. 25, 155.- 103 (1957).<br />

[4] Reckor, E. : lnahtioniirc Crcnzscl~icl~tcn l~intor Varrlicl~tr~~~gsst.iinn(!~~ II~I~I I':xl~n~~sio~~~\v(~l<br />

ZPW 7, 61-73 (1959).<br />

[5J Bccker, E.: Dic lnminnre inkomprcasible Grcr~zscl~irl~t nn rinrr tlural~ I:rufrntlc \Vrllcu<br />

deformierten ebenen Wnnd. ZFW 8, 308-310 (1960).<br />

[fi] Bccker, E.: Instationnre Grenzschicl~ten hintrr Vcrclict~t~~ngsst,iiase~~ unrl Ex~~nnsio~~sa~c~IIe<br />

Progress in Aero. Sci. I (A. Ferry, D. Kiichc~nnnn, nnd L. I


440 XV. Non-st,rndy ho~~nclnry layers<br />

/I61 Oiirth, 11.: (:rct~nsc~hioI~tc~~tat~:l~~lng nn Zylindern hei Anfiahrt nus (lor Ituhe. Arch. (I.<br />

Math. I. 1:IX--- 147 (1!)4H).<br />

1171 (:osl~. A,: (7ont.ril1ul.io11 A I'6b11clo dc In cor~rl~e linlih lnrninnire inst,nt.ion~~nirc. I~t~l~lirnt.ions<br />

Scientifiq~trs PI '1'ccl1niq11cs (111 MkxistArc de l'Air No. 381 (1961).<br />

[IS] (hibhrn, It. .I. : 'Tilo Intninnr I~or~ntl:~ry lnyer on n hob cylinder fixed in n flr~ct,r~nt,ing stmnm.<br />

J. Appl. Mr.rh. 28, :%:l!) -- 340 (l!Mil).<br />

[I!)/ Ilnsnnn, II.i\.: 011 11ns1cndy Intniniir ho~n~tlnry lnycrs. .ll'lM I). :100 --304 (I!)(iO): scr nlso<br />

JASS 27, 474 --476 (I!)fiO).<br />

[201 Jl:~ynsi, N.: On situilnr sn111tio11s of the IIIISIC:I~~~ q~~:~qi-t\vo.(li~~~c~~si


448 XV. Xon-stcady boundary layers<br />

[GI] Trimpi, It. I,., nntl Cohen, N.B.: An intcgral solution to the flat plate laminar boundary<br />

I:lyrr flow cxinting insidc and aftcr cxpan~ion wavcs moving into quicucent fluid part1cu1n.r<br />

npplicnt,ion t.o the coinplete shock tube flow. NACA TN 3044 (1057).<br />

1621 . - Ikuji, W.: Not,c on the solution of the unsteady laminar boundary layer equations. JAS 20,<br />

z:)r,-znn (ma).<br />

1631 Urhitln, S.: 'l'h pImt.ing viscous flow superposed on the steady laminar motion of intwnl~r~vwil,lo<br />

1l11itl in n t:ir&~lnr pip. ZAM1' 7, 403---422 (I!)RO).<br />

[ti41 Wnrlh\vn, Y. I).: Ilonndnry hycr growt.11 on n u~)inning body; accclcrntc:tl n~otion. Phil.<br />

Mag. 3 (8). 152-- 158 (19.58).<br />

[(is] Wntmn, 11:. J.: Rountlary Iaycr growth. Proc. Ito~. Soc. A 231, 104-1 I6 (1955).<br />

i(i61 Wnt.son, .l.: A mlution of the Nnvicr-St,okes-equations, illnst,rat.ing tho recrpo118c of n<br />

Isminnr 1,onntlnrv lnvrr t,o a aivon chnngc in thc cxtornal strcarn velocit,y. Quart. J. Mcch.<br />

nljld hhtll 11, '305-326 (1658)<br />

1671 W:~t.son, .l. : l'lw two tlitnc~~sionxl lanii~~ar flow ncar the stagnation point of a cylinder which<br />

11m an nrh~trnry trnnsvcrsc motion. Quart. .I. Mcch. Appl. Math. 12, 175-190 (1959).<br />

1681 . . \Vcntrrvclt, P.J: The theory of steady rotational flow generated by n sound field. J. Arouat.<br />

Soo. Amcr. 25. GO-- 67 (10%i).<br />

I691 \Irnrst. W.: (:rrni..uchicht,cn nn eylindriscl~cn Itiirpcm nlit nichkt,ationiircr Qtrerbowcg~~tlg.<br />

~. ~<br />

17 11 Yane. 1


450<br />

XVI. Origin of tnrhulence I<br />

pying trnnsil.ion from I:~niinn,r 1.o h~rh~rlcrit flow is ol' fctntlamc?nl~a.l iniport,anc:c<br />

for I.hc whole snirncc of flnid ~ncchnnics. 'rho iricidcnrc of t,url)ulcnc:c was first, rocngnizcd<br />

in rclt~tion to flows tl~rorrglr strn.iglit pipes n.ncl elrn.ti~iols. In n flow at vcry<br />

low ltcynoltls rinrnlwr t.l~rongh n straight pip(: of uniform cross-sccttion ant1 smoot.11<br />

wn.lls, every llnitl p:irf.icln tnovrs wit,lt :I uniform vrlo~it~.~ long a straight path.<br />

Viscous forces slow down the p:~rl.iclrs nwr t.11~ w:d1 in relation to tliosn in t,l~c cxtcrnnl<br />

core. 'l'lic flow is wcllortlcrctl and pnrtic:las tmvcl alo~lg noighboirring lnycrs (1n.niiriar<br />

llow), Pig. 2.22a. Ilowcvcr, obscrvation shows t,l~at this onlorly pttcrn of Ilow<br />

(:oases to cxisL nt higher Itcynoltls r~ntnl~crs, Vig. 2.22b, :d t11:i.t sl,rong mixing<br />

of all l.lic pnrtiolcs occurs. 'l'liis rnising ~)rot:oss can ho mn.tlc visil)lc in a flow t,hrongh<br />

a pipc, as first shown hy 0. ItcynoI~I~ (711, hy feeding into it R thin thrci~cl of li(\uid<br />

dye. As long as the Ilow is 1arninn.r the tlrrcatl maint~ins sharply drfincd Im~n~lnrics<br />

all nlong tho sl,ro:i,~n. As soon a.7 the flow 1)ccomes turl)ulont the tfl~rcacl diffuses into<br />

bhc stream ancl thc flnict appcnrs uniformly colonrctl at, a short tlistnnce clownstmatn.<br />

In this ease thcrc is supcrimposctl on thc main motion in thc cliroct,ion of the axis<br />

of t,hc pipo a snt)sitliary motion at, right nnglcs to it wl~inh clli?c:l,s mixing. 'l'hc pattc.rn<br />

of strcnmlincs at a fixed point bccomcs snl)jcotccl to continnorts fluctuations ant1 thc<br />

sul)sidiary motion causcs an exchnngc of momcntnm in a tmnsvcrse direction beeausc<br />

each particlc su1)stantinlly robins its forward momcnt,tim while mixing is taldng<br />

placc. As a conscqiicncc, the vclocity tlistrihntion ovcr the cross-section is considcrably<br />

morc uniform in turbulcnt than in laminar flow. The mc~urcd velocity distribution<br />

for these two types of flow is shown in Fig. 16.1, where the mass flow is the<br />

samc for both cases. 111 laminar flow, according to the Hagen-Poiseuille solution<br />

given in Chap. I, the velocity tlist,ribut.ion ovcr the cross-section is parabolic (see<br />

also Fig. 1.2), bnt in turbulcnt, Ilow, owing to thc transfer of momcntnm in tho tmnsverse<br />

direction, it becomes considcrnbly more uniform. On closer investigntion it<br />

appears that thc most, essential fcature of a turbulcnt flow is the fact that at a given<br />

point in it, thc vclocity and tlic pressure arc not constant in time but exhibit very<br />

irregnlar, high-frcqucncy flnctuations, Fig. 16.17. The velocity at a given point<br />

can only be consitlcrcd constant on the average and ovcr a longer ~eriod of timc<br />

(q~~asi-steady flow).<br />

Thc first syst,cmatio investigation into thcsc two f~~ndan~cntnlly tliffcr~rit~ patkerns<br />

of flow wcre conducted by 0, Rcynolds [71]. 0. Rcyr~olds was also the first to<br />

investigate in greater tlctail thc circnmstn.r~cos of the transition from laminar to<br />

tnrbnIrnt flow. l'hc provionsly mcntionctl tlyc oxperimcnt was nscd by him in t,his<br />

coru~cxion, antl he discoverctl the law of similarity which now bears his name, and<br />

which states that, trnnsition from laminar to turbulent flow nlways occurs at nearly<br />

tho samc Reynolds nnniher 171 dlv, wlierc t3 = (;)/A is thc mean flow-velocity<br />

(Q -1 volrlme m1.c of Ilow, A = cross-sectional area). 'rhc numerical value of tho<br />

R.c~ynoltls n~inibcr at, which t,rn.nsition occurs (critical ltcynoltls number) was<br />

Fig. 16.1. Vrlority di~t,rihtll.ion it1 pipc; n) Inminnr: h) turhulrnt<br />

a. Some ~xperin~rnl.al rrrrtrltn otl transit ion from lnrninar to turl~r~lrnt flow 45 1<br />

~stablishcd as bring approximately<br />

Accortlingly, flows for which thc Itcyrioltls nnm1)cr R < R,,,,, arc snppost~l t.o he<br />

laminar, nncl flows Ihr which R > R , nrn cxl)cctctl t,o IIC tt~rhrrl~~t~t~. 'l'li(: t~i~tii(~i(d<br />

value of the criCical Itcynolds nurnt)cr tlc~~cnt1s vcry st,rongly on th: vo~~tlit~iotin<br />

which prevail in Ihc inil.inl pipe lcrigtl~ ns wrll as in t,lic n.l~l)roac-h to il.. 1':vc~n It~~~t~oltls<br />

tlionght that the cril.ionl ltcynoltls ri~~ttil~cr inc:rn:~w.s as thc tlisI,itrl~:~nc:vs ill t.Iit:<br />

flow bcforc thc pipe arc tlccreasctl. 'l'liis fact was confirmed csprrimc~ltally I)y<br />

11. T. 12arnes and 15. G. Colcer [I b], antl latcr by L. Schillcr 1801 who rc-nrhctl<br />

critical vn.lurs of the Itcynoltls numl)cr of up to 20,000. V. W. 1Slrman [24] succ~:ctlcd<br />

in mai~it~nir~ing laminar flow up to a critical Itcynoltls nun~bcr of 40,000 by providing<br />

an irilct which was mnclc cxeept~ionnlly frcc from tliat urh:~nccs. 'I%(: 111)pt:r<br />

limit to which tho critical lteynoltls nl~mhnr can IK: tlrivcn if cxtrcmc: cnro is !,:II


ITig. 10.2. Variation of flow vclority in a pipc in thc tranuition range at dihrent distances r<br />

from pilw axis, as 111cas11rrt1<br />

by .J. I n d ~ k nurn0~r A = ii.d/v = 2550; axial tlistnn~e z/d = 322; E x 4.27 m/scc (P 14.0 ltlsec); vclocitien given<br />

in nrlsrr. .rhr.rr vclorily plols, oblninnl with tho mid ol n Iwt-wire nncmomatrr, rle~nonstrate the i~~termitlont naluro<br />

vf llm Ilow in fltxl pcrindr nl Inrninnr nnd lurhu~lrnl flow aurcerrl crch othrr In time<br />

d<br />

Fig. 16.3. Intermittct~cy factor<br />

y for pipe flow in the transition<br />

range in ternls of the<br />

axial distance z for different<br />

Itrylrolds nurnbers R, as rneasr~rpd<br />

by J. Rotta [75]<br />

Ilrrc y = i dcnotcs rnnlinllnll~ly tllr-<br />

IHIIPIIL, IIII~ y = 0 1-onti1iunil5~y larnlrlnr<br />

Bnw<br />

rango frorn R 1 2300 t,o 2600 ovcr which transitpion is completctl. At Rcynolds<br />

rtllrnhtw rlcar l,l~c lowcr limit, the process of tmnsit,ion to f~lly dcvclopcd turbulent<br />

Hr)li(:J1 1,l1(, (lo,,r pS~,t:tl(lS ~ V ( T very I ~gc tIist,anccs mcasurctl in thousa~ids of tlialnctcrs.<br />

Mc~asrlrc:tnt~nt.s ol. i,llis kind have been reccntly amplified by J. Meseth [GO].<br />

a. Some exprrinicnlnl results on transition from laminar 1.0 L~~rl~ulrnt<br />

flow 453<br />

important ones being the prcssure distribution in tllr rxternal flow, tthr rl:lfurc- or<br />

tlir wall (ronghr~rss) and the nature of thr disturbanrrs in t,hc frro flow (ir~irtisiIj~<br />

of turbulcncc).<br />

Blimt Ilodies: A pnrticularly rcvn:wkal)lo phenomrnorl c:onrlrnt,rtl wit,l~ i,rt~nsil it111<br />

in thc hour~tlary laycr occurs with blunt bodies, for cxnl~~plc spl~cros or (:irc:~tl:ir<br />

cyIintl(:rs. It is seen frorn Figs. 1.4 :~nd 1.5 that thc r1r:i.g c:ocflicic~rlt or a sj)l~c:rr: or<br />

cylindcr tlccrcascs :~l)r~~pi,Iy at Itcyr~oltls rn~mbcrs R :-: IrI)/v of al)orlt :1 x lo5.<br />

, .I I his almpt drop in thc tlr:~~ corfficicnt, noticctl lid 11y 0. 12ifli.l [231 in rcsl;rt ion<br />

to sphc:rc?s, is a conscc~~~cnc:c of Lr:lrlsiUor~ it1 the I ~ I I I I ~ 1:iyc:r. I : ~ ~ '1'r:l.tlsil.iotl t.;tttsi*x<br />

tltc jminl. of scp:lr:lt.ion to move clowt~st.rcar~~ wllicll consitlrr:~l)ly tlt:crc~:~sos i,l~(:<br />

width of the walrc. 'l'hc truth of this cxpl:in:~tion was tlc1nonsi.r:il,nt1 i)y I,. I'r:r11111.1<br />

1411 wl~o nlor~ntctl n thin wire hoop sotncwl~:~t .-llrntl of tht: cquator of a si~llorc:. 'l'liis<br />

causes artificinlly the b0undar.y layer to 1)ccomc turbrllcnt at a lowcr Ilcynol~ls<br />

numhrr antl protluccs the same drop in drag as occurs w11t:n I,lic Itoyt~oltls IIIIIIIIIW<br />

is nmtla to incrrasc. 'l'hc stnolrc photogrii~)l~s in l'ig. 2.2.1- nntl 2.26 S I I ~ ) +:~rIj~<br />

~ ~ ~<br />

thr cxtcnt of t,hc waltc on a sphcrc: it1 thc sub-critic:~l Ilow rcgirnc t,llc \v:~ltc is uitlt.<br />

arid the drag is large, antl in t-bc supcr-crit,icnl regime it is narrow nntl thc clrag is stnall.<br />

The lattrr flow rcgimc was here crcatctl witll-the a.itl of L'rantltl's 't,ripping wire'.<br />

These experiments show coriclusively that the jump in the drag curve of a sphrrc<br />

is due to n boundary-layer cKect and is caused by tmr~sitio~~.<br />

Flat plate: Thc procrss of transition on a flat plate at zrro incitloncc is sonrrwhat.<br />

simplcr to understand than that on a blunt hotly. Thc prorcss of t.r:rnsit.ion in t.11~<br />

bountlary layer on a flat plate was first stntlictl by ,J. nl. nrwgrrs 161. 13. (:. van<br />

der IIcggc Zijncn 1411 antl Iat.er by M. ITanscn antl, it1 grca1.c.r clrt,ail. I1.y 11. I,.<br />

1)ryclrn 116: 17, 181. According t,o Cl~:lp. VlT, t,llc bo~~ntlnt~y-layer t.l~ivlztlrss on :i flat<br />

plntc incrcases in proportion to j/z, whcrc s tlcrmtlcs tl~c tlistancc from thc Ic:atling<br />

edge. Near the lending edge the bountlary Iaycr is always Iamit~art, l~cnorning i,urbulent<br />

further downstream. On a pl;~tc with a sharp lratling edge ant1 in a. tlormal<br />

air stream (i. c. of int,crisit,y of turbulcncc T = 0.6 %) t,mnsit.ior~ t.:il~s p l ; at, ~ ~ :I<br />

distance z from it, as detcrminecl hy<br />

On a Axt plaLe, in thc same way as in a pip, the c:rit,ic:il Itcyt~oltls n11~11)c.r ran 1)r<br />

incrcasctl by provitlitig for a dist,urbancc-frcc cxt.orna1 flow (vc.rp low ir~t.c*~lsil,y or<br />

tllrl)ulcncr), c/. Scc. XI1 tl 2.<br />

'I'r:~rtsit,ion is casirst to pcrrrivo Oy a s111tly of t.lw vrloc~i1.y tlisl.t~il~i~iiot~ ill (11t-<br />

1)oun~Iary la,ycr. As SCCII from Fig. 2.23, t~r:insit,io~~ is shown ~)rnt~ti~~(-~~I,l~y<br />

1j.y :I, sit~ltlt:~~<br />

incrrase In the boundary-layer tliick~lcss. 111 a lalninar l)ou~iclarv Iavor tlrc tli~ncq~ion-<br />

. .<br />

-. . .. ..<br />

less I~ountlary-1;~ycr trhickricss, d /i v :,;/Urn , rcrnnins rorlst,:~nt ant1 rtl11;11, :I l)pro,yimatcly,<br />

to 5. 'I'he dimcnsiortlcss boutidary-layrr t01icknrss is scct~ plot,t.c~tl :~z:~ir~st.<br />

thc length Rcynolds numbcr R, =-: U, z/v in l'ig. 2.2:) nlrmtly mc!~lt~iot~rtl: :I(,<br />

R, >. 3.2 x 105 n sutltlcn incrcaso ill 1.llo I)o~~t~tl:~~r~-l:~~~~r<br />

I.l~i(.l


XVT. Origin of turbulcncc I n. Some rxprrirnrntd reuulte on t,rn~~sitiott iron^ lnmir~nr to turb~~lcnl flow<br />

Fig. 16.4. Vcloc:it,y profilcs in n<br />

boundary lnycr or1 n flat plate in<br />

the trar~sit~ion rcgion, ns nic:buurrd<br />

by Srhuba~~cr nnd Klcbunoff<br />

[83]<br />

(1) laminar, I$la~iua pronle; (2) lerba~lcnl.<br />

I/,-lh pwcr law, d = 17 lnln<br />

(= 1.30 in), ext.orna1 vclocil,p ti, =<br />

27nl/scc (89 ltfscc); t~~rln~lcnce inlensily<br />

T = 0.03%<br />

tlistril,~~tion curve. 'l'l~c changes in the velocity profiles in the transit.ion region have<br />

becn plottctl in Fig. 16.4. They arc based on ~noasurcmcnts pcrformctl by C. R. Schubauer<br />

and 1'. S. Klcbanoff [$3] in a stream of very low turbulence intensity and<br />

it is seen that in this case the transition rcgion extends over a range of Reynolds<br />

numlwrs from about R, = 3 x 10Vto 4 x 10" In this mngc, the boundary-layer<br />

profile cl~angcs from that of fully tlcvclopccl laminar flow, as calculatecl by Rlnsius,<br />

to fully tlcvclopctl turl)uloit flow (see Chap. XXI). The process of transition involves<br />

a large tlccrcnsc in the shape factor lIlz .-.. d,/d,, as seen from Fig. 16.5; here dl clenotcs<br />

tlie clisplnmmont thickness anti cSz is the momentum thickness. In the case of a<br />

flat plxta, the shape factor tlecrcxscs from IIlz w 2.6 in the laminar regime to Illz w 1.4<br />

in t,lio f.~trl~~~lt?rit, rcgirnc.<br />

'I'his change in the velocit,y di~tribut~ion in tho transition region can be utilized<br />

for the convcnierit tlctcrminntion of the point of transition, or, rather, of the tmnsition<br />

region. The principle is explained with the aid of Fig. 16.6. A tmtal-hen11<br />

t,ul,c or a I'itot tube is moved parallel to the wall at a distance which correspontls<br />

t,o the maximurn tlifirc~noe bctwccn tho velocities in the laminar and turl~ulcnt<br />

rrgirncs. On I,cit;g rnovctl clownstrca~n across the t,ransition region, the tubo sl~ows<br />

a fairly sudtlcn it~c:rcasc in the total or tlynamic pressure.<br />

'I'mnsitiorl on n flat plate also involves n large change in tile rcsistanrc to flow,<br />

in this rnsr in t.11~ skin friction. In laminar llow the skin friction is proportiorid<br />

to I 111. I .5 pnwt~ of vrlocity. cyn. (7.33), wlir~-as in t ~~rl~~lrnt, llow the powrr inrrrnsrs<br />

to :~l)oul, 1.85, as shown a long time ago by W. I'rordc (2!)1 who prrforrnc~l towing<br />

~xprrimenta wit11 platcs at very high Itrynolds rininbers In this conncxion the<br />

I<br />

reader may also wish to consult Fig. 21.2.<br />

Morcrcrcnt cxpcrimrnb performed by 11. W. Etnmons [25], and G. 73. Scl~~tbaucr<br />

and 1;. 8. Itlrbanoff [83] have ~hown that in the case of a flat phlc tfhe process<br />

of tr:~nsit,ion is also intrr~nitt~ent and ronsists of an irrrgular scqncriro of Inminar<br />

ant1 t,11rI1111rnt. rrgions. As cxplnin~cl in Fig. 16.7, at. n given point in the boundary<br />

laycr there occurs sudtlcnly a small t.~~rhnlcnt area ('turbulent spot'), irregular<br />

Fig. 16.5. CIIRIIR~ in L11c s11nj)c inctor<br />

Illz = 0116~ of t,l~e hol~ndnry Inycr for n<br />

flat plnte in the t,rnnnition rcgion nu men-<br />

28<br />

L6<br />

uttrctl by Schuba~~cr nnd Klcbnnofi [R3]<br />

qltot.otl from [ti51<br />

14<br />

1. / 1. 1 I<br />

Fig. 16.6. Erplnnntion ofthe rnrtl~ocl oiclclrrrnining the<br />

poiition nf thr point of trnrmit.ion with tho nid oin totd-<br />

I--l--<br />

'F JW rW 600 1<br />

hend tube or n Pitot tube I- bminar A- trawhbn 4- turbulent --<br />

in shape, whicl~ then travels downstream in a wedge-shaped region, as shown. Such<br />

turbulent spots appear at irregular intervals of time and at different, mntlomly<br />

distribulad points on tho plntc. In the inlmior of the wodgc-like tlo~nain tho llow<br />

is prctlo~ninantly ttnrl)ulentt, wht?rcns in the adjoining regions if, nltcrnirt,os co~~t,it~r~oirsly<br />

het,wecn being laminar and turbulent.. In this conncxior~ sco also rcf. I I:)]. A 1)a.pr.r<br />

by M.E. McCormick [57n] deals with l.hc problem of thc origin of sr1c:11 tturl,r~lt3~~t<br />

spots. St turns out tht an artificially created turbulent spot docs not persist w11r11<br />

the Rcynolds number has a value lower than Ril = GOO; Ibis is consist.ct~l~ wil.11 t,ltc:<br />

value of the criticnl Itcynolds nu~nl~cr cnlc~~lntctl with 1hc nid of I.hc li~~tsnr #I.nl~ilit,y<br />

t,heory, cqn. (16.22). Vcrg dctnilcd cxpcrimcnt,ml invrstigntions t,t~rl,ril~trt, sl,ot.s,<br />

and in particular of the velocity distril~t~t.in~~ in them, havc been cnrricd out by<br />

J. Wygnanski et al. [lo$].


I+. lli.7. (:rc)wtlt (11' :LII :~rtili(hl ~II~~IIICIII,<br />

:rt zc\r.o i~~~icltwrr :IS ~t~c~ns~~rrtl<br />

spot, in a h11i11:~r boutld:lr,y 1:iyor on a flat pht~?<br />

by (:. H. Scsl~~~l~:r~~rr tuid 1'. S. I


458 XVI. Origin of turbulence I b. Prinriplr~ of the throry of stnhility of l~i~nir~nr flows 459<br />

to thc approprial.~ rlilTrrrntinl cqr~ntions. 'rliis is tlic mrlhod of small dislur6nnces.<br />

This scroritl nirtliotl has led to complctr success and will, for this rcason, be described<br />

with somr tlrtail.<br />

Wc s1i:ill now considor a two-tlimonsional incornprcssiblc mean flow and an<br />

cq~~aliy hwo-tlimcnsiond distnrl)anco. 'L'hc rcsulting motion, clcscribcd by eqns.<br />

(16.2) a.ntl (16.3). sat.isfios tlio two-tlirucnsion:~l form of thc Navicr-Stokes equations<br />

a,. givcn in rqris. (4.4a, b, c). Wc shall further simplify the problem by stipulating<br />

that tlrc mean vclocit,y TJ dcpcntls only on y, i. c., IJ = U(y), whcreas the remaining<br />

two componct~i~ n.rc supposed to be xoro cvcrywhorc, or V W z Of. Wc havc<br />

cr~c:ount~crctl s~~oli flows cnrlicr, tlcscril~ing thcrn :IS pwdlel &OWR. In thc casc of :L<br />

chnnncl with parallel walls or a pipe, such a flow is reproduced with great accuracy<br />

at a sufficient dishncc from tho inlet section. The flow in the bountlary layer can<br />

also he reg.anlcd ns k good approximation to parallel flow because the dependence<br />

of tlic velocity U in the main flow on the x-coordinate is very much ~matlcr than<br />

that on y. As far as thc prcssurc in the main flow is conccrncd, it is obviously nccessnry<br />

to assume a dcpcntlcncc on x as well as on y, i. e., P(x,y), becausc the prcssurc gradient<br />

i)P/ax maintains the Ilow. Thus we assume a mean flow with<br />

Upon the mcan flow wc nssnmc snperimposcd a two-tlirnensional disturbance which<br />

is a function of time and space. Its velocity componcnts and pressure arc, rcspec-<br />

tivcly,<br />

?~'(x,y,t) , vl(x,y,t) , pl(%yJ) . (16.6)<br />

IIenco tlio rcsnltant motion, according fn eqns. (16.2) and (16.3), is described by<br />

It is assumctl that t,lic nmLn flow, cqn. (16.4), is a solution of thc Navicr-Stokes<br />

equations, and it is required that thc resultnnt motion, eqn. (16.6), must also satisfy<br />

tho Navicr-Stokes equations. The supcrimposerl fluctuating vclocities from eqn.<br />

(16.5) arc takwi t,o 11e "small" in thc scnsc that all quadratic tcrrns in the fluctuating<br />

cornponcnts may be ncglccted with respcct to thc lincar terms. The succcctling<br />

section will cont,ain a morc dct,ailctl tlcscription of the form of the clistarbance.<br />

Now, tho task of tho stability t,hcory consists in clcbrmining whether the tlisturhancc<br />

is amplified or whotlicr it clccays for a givcn mean motion; the flow is cynsitlrrctl<br />

nnst.:~l~lc or stahlo tlcpcnding on wlicther the former or the latter is the case.<br />

Substituting cqns. (1 6 6) into tlic Navicr-Stokcs equations for a two-dimensional,<br />

incomprcssiblc, non-steady flow, cqns. (4.4a, b, c), and nrglcrting quadratic terms<br />

in the tlisturbance velocity components, wc obhin<br />

'J'hcw arc rramns In nopponr, a4 sl~n~vri hy (:. 1%. Scli~rba~~~r nntl P. S. IClcbsnofT [831, that<br />

t,l~mc t:or~~pot~c~rl~ nrt: ~I\V:LYR prtwmIr in rcnl IIOWR, particularly in flow^ pmt flat plnte~. I'hcir<br />

r~~ngnit.r~tlo is rwgligil~lc for tno~L lwrl)oscs, l ~ thcy t mern Lo play n part, not yct fully clucidatecl.<br />

ill thc proocas of trnn~ition; RCO nl~n foo1.1iotc on p. 468.<br />

wherc V2 dcnotes thc Laplacinn opcrator a2/i)22 + a2/&/2.<br />

If it is considcrctl that the mrnn flow it,sclf sntisfics the Navicr-Stokcs qua-<br />

tions, the above equations can bc simplified to<br />

Wc havc ol~tainotl throe cqn:~i,ions for IL', 11' and pl. 'l'11c I)o~~ntl~~ry contlitio~~s spwify<br />

that the turbulent velocity components IL' aid v' vanish on thc wtills (no-sli11 coridition).<br />

The pressure p' can be easily climinatcd from the two equations, (10.7) ant1<br />

(1F.8), so that together with thc cqi~nt~ion of continuil.y IJicro arc t\vo cqn:~i,ions for<br />

u' and v'. It is possilh to criticize the a.ssnrnrtl form of tl~c: rnctLn Ilow, ccp. (I(i..l), or1<br />

tlic ground that the variation of thc coniporicnt lI of t.hc vclocity with x as wdl :I,S<br />

the normal component V havc hccn ncglccbtl. Jn this conncxion, howcvcr, .l. I'rctsch<br />

[44] proved that the rcsult.ing terms in the eqnations arc unimportant for the<br />

stability of a boundary layer (see also S. J. Cheng 171).<br />

3. The Orr-Sommerfeld equation. The mean laminar flow in the 2-direction<br />

with a velocity U (y) is assnmcd to be influenced by a disturbance which is composetl<br />

of a number of discretc psrtlial fluctuations, cnch of which is said to consist of n wave<br />

which is propagated in tho x-direction. As it, has already bccn assrirnctl i,li:tt tlic<br />

perturbation is two-dimensional, it is possible to introduce a stream function yi(z, y,t)<br />

thus integrating the equation of contin11it.y (10.9). Thc stream function reprcscnting<br />

a single oscillation of the distnrbance is assumcd to bc of the form<br />

Any arbitrary two-dimensional disturhancc is assumctl cxpantlcd in a I'ouricr<br />

scries; cach of its terms represent8 such a partial osc:illation. In cqn. (16.10) a is n real<br />

quantity and A = 2 x/a is the wavelcngth of t.lrc clis1urb;uicc. The q~iant,ity is<br />

complex,<br />

P = P, I- i PI ,<br />

where p, is the circular frequency of the pnrt.inl oscillation, wlicrcas P, (amplification<br />

factor) determines tho clcgrec of amplificnt.ion or damping. The t1isturl)anc.n~ arc<br />

tlanipocl if P, < 0 ant1 tslic laminar mcan flow is st,al)lc, wlicmas for PI :. 0 i~~st,:~l~ilii.y<br />

~cts in. Apart from a a.nd it is convcnicnl to introtlucc tlic4r ratio<br />

t Tho convenient coniplc?r noLrrt.ion in 11ort1 Iwr. l'hysivnl mr~u~ing is nt.trwl~t.tl only to I.hc rral<br />

part or the ~tmani unction, tlwn


4GO XVI. Origin of turbulence 1 1). Principles of the theory or stnbility of Inrninnr flows 4G1<br />

JIerc c, t1cnot.c~ the vclocit,y of propaption of t,hc wave in the z-dircction (phase<br />

vclooity) wl~crcas c, again dcLertnincs t,ho tlcgrce of damping, or nmplificntion, ticpending<br />

011 it,s sign. I'hc arnplit,~~tle function, 4, of the flnct,tlation is ass~~~nccl to tlcpcntl<br />

on y only ~C(:ILIISC the mcm Ilow tlcpcnds on y alone. I'roni cqn. (16.10) it is possible<br />

to ol)t,ain 1.11r c:ornponcnlss of thr: pcrt,rrrl)nt.ion vcloc:it,y<br />

11,' -<br />

t)l/,<br />

-<br />

i)y<br />

: ,#,'(?/) (.""' PI' , (10.12)<br />

1) -=<br />

Ry1 --<br />

ax<br />

i u +(?I) &my PI) .<br />

Irlt.rotl~tc:ir~g I,l~c:sc- valnrs inh rqns. (16.7) and (10.8), we obtain, after the elirninat.io11<br />

of prrssnrc, l11c following, ordinary, fourth-order, differential cquation for the<br />

n.tnl)litwlc 4(y) :<br />

I<br />

When the mean flow IJ (11) is specified, eqn. (IF. 14) contains four pamrnnt.rrs, n :~n~cl~ a,<br />

R, c, anti c,. Of t.hcse the rtcynoltls nrlml)or of the moau flow is liltcwiso spccill(:d<br />

and, f~~rthcr, the ~avcl~ngth i = 2 n/a of the disturb:m(:c is to bc consitlcrctl given.<br />

In t.his rase the differentid equation (IF.l4), togcthrr with thc Imlntlary c:ontlitiorrs<br />

(16.15), f\rrnish one oigrnf'uncLion +(?I) and one complex cigcnv:~ll~r: c == c, 1 i ci<br />

for (wh pir ol' v:~l~tt.s a, R. I Ivrc cr rt:~~rcsw~l~s I,IIc ~)II:LSC v(hwiI,.y 01- 1.11~ l~rw(:ril~t:~l<br />

t1isturbnncc wltcrcas thc sign of c, tlcLcrnlit~cs wllctllrr bho wave is amptilictl (ci :.O)<br />

or tla.tnpctl (ci < O )t. For c, < 0 the correspontling flow (IJ, R) is stnth for lllc ~ivcn<br />

valur of a, wllcrrns c, > 0 tl~notcs il~stabilit~y. Thc limiling case c, - 0 corrrsponds<br />

1.0 nrnLml (indiKcrmt) dist~rrl~ancrs.<br />

11nm1)cr is the critical Reytrolds nuinher or limit<br />

of Ian~inar flow untlcr cot~sitlcrxLion.<br />

Fig. 16.8. Curves of neutral stabi1it.y for<br />

two-di~nensionnl borlntlary layer wi(.tr<br />

two-dimensional disltlrbrmccs<br />

(a) "non-visrolls" inslal,ilily; in thc rnsc nC vclocity<br />

~~rnillrs or 1yp :t wilh pin1 *d i~~flrxion<br />

PI, thr rllrrc or 1w111rnl slnbility is or typc :,<br />

(1,) "visrow" Instahllity; in I11e raw or vriorit,)<br />

proIllrr nl type 8 uilhotrt poi111 of lnflrxion, llw<br />

rurve ol erutml shbilily is or lypc b<br />

Tl~n nryrnglotm Tor ll~n rrlrvc or rwulral stnbility<br />

a al. R --+ r, arc ohlxincd rroln llw "rrirlionlrar"<br />

slal~ilit?. rrlllalio~i (16.16)<br />

r ,<br />

I he rxprritnrntd rvi(Irncr eonwrnit~g t,ransit,iot~ fro111 l:~n~in:t,r 1-0 I,II~I~~III~II~,<br />

flow rcfrrrrtl 1.0 ~)roviorlsly I(.nds 11s t,o cs~~rcl, that, ;LI, SIII:LII Ib(~,y~~oI~ls I I I I I I I I ~ for ~ ~<br />

wl1ic.11 I:~minar llow is ol~servrtl. all \v:rvrl~ngt.l~s wo~lltl l)rorluc*v ot~lg sl.:rl)lr tlist.llrl):~l~c~s,<br />

wl~rrrn.s :lip I:~r.gt-r ltc!g~~oltls rtlln~l)rrs, li~r wllic~l~ I.II~IIIII~:III, IIow is 011svr\~1~1,<br />

ul~st,:~l)lc tlist~lirbarlccs o~tght, t,o corrcs~~ontl to at, I(ywt, sonto \v:Lv~I~II~~.IIs. IIo\r.(:v(~,<br />

it is nwrssnry t,o rcn~nrk at tallis poitlt t.l~:rt~ t.11~ vrit,ic:n.l I


462<br />

XVI. Origin of tnrb~rlmcc 1<br />

numl)er obscrvctl :~t the point of l,ransition. If athnt.ion is fixed on t,hc Ilnw in the<br />

honntlary hyrr along a wall, then t,llc tllc:orctical critical Itcynoltls nnml)cr indicates<br />

the point. on t,111. wall at. wllirlm :~niplific:ntion of somc individual tlisturbances begins<br />

ant1 prorreds rlownstroam of it. The transformatkm of sucli ;~mplificd disturbances<br />

i11t.o t.nrlnllrnw t,altrs I I somr ~ timc, and tho nnstal~lc tlist,ltrl)nncc: has had a chancc:<br />

to t.r:tvel somc tlistn.nrc in the tlownstrcsm direction. It must, therefore, bc cxpcct-cd<br />

that, t.hc o1)scrvctl posit,ion of thc point of transil,ion will be tlownstream of the<br />

calculat~ctl, thcorctica.l limit of stability, or, in othr words, that the experimental<br />

critical Reynolds number cxcccds itFl thcorctical value. This remark, cvidcntly,<br />

applies to Rcynolds n~~mbcrs 1)asctl on tlmc curmnt lcngth as well ns to those bsscd<br />

on the bourdary-layer thickness. In order to distinguish bctwcen these two values<br />

it is usual to call the thcorctical critical Reynolds number (limit of stability) the<br />

pint o/ l:nstabilit?y whcrcas the experimental critical Reynolds number is called<br />

the point o/ trnn~itiont.<br />

Thc st,nbiiitg problem, briefly described in t,hc preceding paragraphs, leads to<br />

cxtremcly difficult mat,llcmntical consitlcmtions. Owing to tllcse, succcss in the<br />

calculation of thc critical Jtcynolrls nnmbcr eluJccl the workers in this field for<br />

several cleoatlcs, in spite of the greatest efforts clircctcd towards this goal. Consequrntly,<br />

in what follows we shall he unable tx, provide a complete presentation of<br />

tl~e stdility t.hrory nnd will be forccd ta restrict ourselves to giving an account of<br />

the most important rcsul th? only.<br />

5. Genernl properties of the Orr-Sommerfeld equntion. Sincc from experimental<br />

cviclcnce thc limit of stability c, =O is cxpectcd to occur for large<br />

valucs of tlmc Itcynolcls number, it is n:~tural to simplify thc eqnation by omitting<br />

the viscous bmms on t.he right-hand side of it, as comparctl with the incrtia tcrms,<br />

beca~~se of t,lmc smallness of the coefficient 1/R. The result.ing differential equation<br />

is known as t.110 /rictionlr.~s .~lnhilily ~q7mlion, or Ru?~lri~~A's equntinn:<br />

(IJ ---c) (4" - a24) -- I/"$ = 0 . (16.16)<br />

It, is imporhrmt. 1.0 note Ilcw that of t h four bountlary contli(.ions (16.15) of t h<br />

cornplctn equation it is now possiblc to satisfy only two, bccausc the fricl ionlcss<br />

stability cqu:~t.ion is of tltc sccon(l ortlcr. 'Umc rcmai~mirmg boundary condition to bc<br />

sat.isficd is t,l~c vanishing of t.hc normal componrnt,s of vclocity near thc wall of<br />

a CII~~IIIICI, or, in l)o~~r~(I:~.r.v-l:~y(:r flow, tlwir vanisl~ing al, I,lmc wall nn(l at infinity,<br />

,.<br />

I bus, in the I:~l.l.cr case, wc 11avc<br />

y=O: +=O; y=m: +=O. (16.17)<br />

,I<br />

Lllc onmission of the viscous tcrms constitutes a tlra,st,ic simplifirat.ion, hccmse the<br />

ortlcr of t,lmo cqnn.t,ion is roclurctl from four to Lwo, and t,llis may result in a loss<br />

of imporl,:mO prol~c!rl.irs of tho gnnom.1 soluI.ion of thc complctc cqnat.ion, as comparctl<br />

wil,ll its simplilictl v(:rsion. Ilnrc we n1n.y rc~pcn.l.'tlmo rom:~.rks nol.c:cl provio~~sly in<br />

C11n.p. IV in conncxion with the transition froi? the Navicr-St,okcs equations of<br />

a viscous IIrritl Lo those for a frictionlcss fluitl.<br />

- ~-<br />

t nlrrruly cxplnirtrrl in Src. XVIn, rocnnt, expcritnrntnl rcsulL~ (11. \\I. ICrnrnons 1251, and<br />

hdl~~l)n~tor RINI J


d(i.4 XVT. Origin of hrbulcnce I<br />

of wavol~:ngblts; ill t.l~c tlircction of (lcwmsing Itoynoltls numbers, this rangc is<br />

scpnmtctl fron~ tl~c stal)lo rnngo by tho anrvo of nc:utral stability.<br />

tn contrnst, with t.11~ l~rccctling C:LSC, IJ~SC~LS inatahilily is associatcd with a curvc<br />

or ncnl,r:~l st:l.i~ilil,y of sl1n.p b, also sl~own in Fig. 10.8, and with 1)ountlary-laycr<br />

prolilrs pnsscssi~~g no point of i~tflcsion. At Itey1101~1s nwnl)crs tending to infinity,<br />

I,hr r:~.t~gc of t~nsl,:~.l)lc w:~.vrlrngl~l~s is rnnl.r:~cl~~~l to a point, anql (1om:tins or ~~nst,:~l~Ic<br />

osc:ill;~l.iot~s :IIV swt~ 1.0 oxisl, otlly for fi~~il,o Ilnyrioltls t~nrnl)ors. (~cncrally spr:~.Iting,<br />

t,ho n.tno~tnt, of :~.rnplificnt.ion is m11c11 largcr in t,hc casc of frictionless in~tabilit~y than<br />

in tho c:~sc: of visc:ous it~sl.:~.l~ilit,y.<br />

, ,<br />

I llc vsislrncSc: of visco~ls insl.:~l)ilily (XII bc tlisc:ovr~~ctl only in c:onncsion wil,ll<br />

a discussion of the fitll Orr-Sommcrli4(1 equatior~; it const.itut,cs, tl~croforc, t,hc<br />

moro tliffirrrlt, nn:~l~t,icnl c:tsc. 'l'hc simplcst case of flow, nan~cly t,hat along a flat<br />

plal,c: with zero Iwrssurc gmclicnt belongs l,o the kind for which only viscous inst,abilit,y<br />

tlocs occur; it, W:IS s~~cc:rssl'r~lly taclilctl only comparatively recently.<br />

TI1 corc. rn I I : Tllc sccontl impor1,:lnt goncr:~l theorem sl,atxs that tsho vrlocit,y<br />

of 1~011nptio11 of nnutrnl tlis1mrl):anccs (c, = 0) in n I~ountlary I:~ycr is srnnllcr tll:~n<br />

the m:urtnlrnl vrloci1.y of 1.11~ mcnn flow, i. o. tht, c, < (I,,,.<br />

'I'his t,l~c:orwn was :rlso first provctl by J,ortl IXnylcigll [70J, albcit itnclcr somc<br />

~.(~sfli(*t.iv(* :~s~r~mpl~ions; if, was ~I.OVC(I ngnin by 14'. 'Yollmien [I001 for more gcneral<br />

conclit,ions. It, :lsscrt.s th:tt in t,hc intcrior of the flow there cxist-R a layer wllcrc<br />

IJ - c = O for nc~ltral tlist.r~rl~anccs. 'I'l~is fact,, too, is of funtlanlental importance<br />

in t,hc t.llcor,y of st.:~.l)ilit,y. 'I'l~o Ia.ycr for which 11 - c = 0 rorrcspontls, namely,<br />

to a singttlar point, of t,lto frictionless st.n.l)ilit,y cqrration (16.16). Att this point #"<br />

I~ccwncs ir~fittit~c! il 11" tlocs not v:~t~isll 1,ltcrn simttltnncor~sly. Tllc (1isl~:tnt:c =<br />

wltorc: 11 -~. c is c::i.ll(~l t,11(: crilicctl. Inyrr or 1.110 mr:an flow. If [I," 4: 0, thxl 4" tends<br />

to infinil,.~ :w<br />

' ' 1 1<br />

. - ..<br />

(I,/,. !/ ---y/<<br />

in 1.11~: ~lc:iglll)o~lt.l~oo(l of 1.11(* c:rit,ic::d 1:tyc.r wllrrc it, is pcrtnissil)lc t,o pnt IJ - c =<br />

--- 1Jlfr(?y - yJi) :~.[~l)roxit~~:~l.cl.y; (:onsrq~~~~nt,ly IJIC x-ootn~mncnt of lhc vclocil~y can<br />

br writ.t,rr~ :r.s<br />

'I'hrts, a.ncortling t,o Ihc frictionloss stability cquation, the component, IL' of the<br />

vrlooi1,y wl~idt is p:~rallcl to t,llc wall l)cc:otnos infinite if the curvature of the velocity<br />

profile at, the critical layer tlocs not vatdsli simnltnnconslg. This mn.thmatical<br />

sing~tI:~.ril,y in t.ho fric:Lionloss sl.a.bilit,y ccl~l:~l~ion poin1.s l,o the f:i.c:t tll:~t t.11~ cff'rcl<br />

of viscosil.y on (.Ire c(111:~I.ion of motion tnttst noL be ncglcct,ctl in Ihc ncighbor~rhootl<br />

of t,hc oriticxl I:~ycr. 'J'llc irlnl~~sion of t,hc effcct of viscosity removes this physica.lly<br />

a11~11rd sing111:1rity of 1.11~ frictionlrss st,:~l)ilif.y ccl~lat,ion. 'l'hc n.na.lysis of the cfial,<br />

of (,his so-c:rllotl viscous corroct.ion on 1.h~ soluticfn of the st,abilit.y cquation plays<br />

a fut~tlnmcnl.n.l part in tltc tliscussion of st.nbility.<br />

'J'l~c two tllnorcms tluc to Lord Raylcigh sl~ow that tho curvature of thc vclocity<br />

profile n.ni.ct,s st~al)ility in nfi~ntlatncnt.:~l w:~y. Sini~~ltar~cously it has hen dcmonstmtcd<br />

t11:lt the c~:rlaul:ttion of vrlocit,y profilcs in laminar bountlary layers must proceed<br />

with vrry high accnraoy for the investigation of stddity to bc possible: it is not<br />

enongh t,o cvsluato U (y) wit11 sllfficicnt dcgrcc of accnrnry Imt. i(,s srconcI (~rrivativc<br />

d2Ultly2 must also bc nccurotely hown.<br />

c. Itcsultn of tl~c theory of stnbility us tltry upply to the bo~r~~tlr~ry Iayr nn XI flut pl;~tc<br />

at zero ir~citlcncc<br />

Velocity U<br />

ffm


466<br />

XVi. Origin of t.r~rhr~lrncc 1<br />

whereas concave corners. Figs. IC,.!)r, (I, nIw:~.ys Ivad t,o ins1.nl)ilif.y. This invcst.igat.ion<br />

matle it plausil)lc t,o s~~pl)osc t11;~t volocit,y profiles wit,lt points of ittflcxion, 14'ig.<br />

lO.9g, arennstablc. The tr~tt,li of this supposition was later dcmonstratctl by W. Tollmicn<br />

[loo], a.s aIrra(Iy stat,cd in See. XVI I), Theorem I.<br />

In ortlvr l,o ol)t.ait~ :I lin~it~ of stal)ilit,y oxprvssctl ill t,crnis of a ltcynoltls number<br />

for nnst.:rl~lc: volooit,y profilrs (I'ijis. lC,.!)c :rnd tl), tho largest, visro~ts terms appearing<br />

in t,l~c c.on~pl(~tc st,nhiiit.y cqn:it.ior~ ( 1 (i. 14) wrrc hkrn in1.o acco~~nt., nntl it was crxpoct,ocl<br />

tht, thry will promolr tlnn~ping. 'I'l~c: i~r(lncncr of viscosit,y on Lho tlist.~~rl):~.nccs<br />

rxl.rntlctl hrrc only ovrr a vrry small rvgion of (,II(: whole vc,locit,y profilo, being<br />

loc:ilrti in Lhr i~nmt~~li:rl~c~ ~lc~igl~l)o~trhc,otl ol' Lhc wall, in ortlcr 1.0 sat.isf.y 1.11~ no-slilt<br />

contlit.ion. 'I'ho c.alr~tl:~t.ions ~)crlormctl I),y 0. l'iel,jrns let1 to t,l~c vcry uncxpcc1,ccl<br />

result, 1.l1:tt t.11~ introtl~trliot~ of a smnll vnluo of viscosiby inLo tjl~c! cxluat,ions tlitl nol,<br />

protlurc damping but amplificat.ion for all ltcynnltls numbcrs, antl for all wave-<br />

Irngth of tho tlisturl)ancrs. Morrovcr, this rosult was ol)tainctl not, only for 11nstahlc<br />

velocity profilrs (JFip. lC,.!)c:, tl) 1,111. nlso for tho prolilcs of typc: a antl 1) in Fig. 16.9,<br />

which have l)ocn shown to be Slnl)lc whc:~~ viscosit.y was noglcct.ctl.<br />

An interim revicw tlcscril)ing lwogrrss achieved betwccn the years 1920 and 1930<br />

was given by I,. PrantltJ [67a] on t,he occasion of the annual GAMM mecting (German<br />

Society for Appliccl Mntl~rmat~ics and. Mcollanics) in lZad Elster, 1931.<br />

2. Cnlc~~lation of the curve of neutral stnbility. A sa.tisfactory explanation of the<br />

above pnrntlox wn.s supplird by \V. 'I'olltnicn l99l in the year 1929. 11c demonst~rntd<br />

t,ltat. tlw inflnrncc of viscosit,y on tlist~urbnnccs rn~~st I)e taken into acco~tnt not<br />

only in the itnmrdiat.c nrighl~ourhood of t,he wall, as supposed by 0. Tiet,jrns, but<br />

t,hat,;in atldit.ion, it mrtst be ncrountcd for also in t,he ncighbonrhood of t,hc crit,icnl<br />

layer, where the vcloc:it,y of wavc prol~ngat,ion of t,he tlist,url)anccs becom~s equal<br />

to the velocity of t,hc mn.in flow ant1 w11c1.c. as shown in Sec. XVI b 5, t,he component<br />

u' hecomes infinitn: according to the simplified, frictionless theory, the curvature<br />

of the profile bring tlilTcrrnt. from zero. 'l'hr rxistcncc of viscosity rauses large changes<br />

in t.his criticnl lny~r, while it is also cvitlrnt. t,l~at in rca1it.y u' remains finitc thcre.<br />

IIowcver, the inflltrncr of viscosit,y lwwncs cvitlent. only if the curvat,urr of the<br />

velocity profile is not Icft out, of account. Tl~cse considerations demon~t~ratcd that<br />

it. was necessary Lo st.~ttIy t.he 1~eh:~viour of sn1aI1 dist.urbances with respect to curved<br />

velocil~,y profilrs ((121J/t1?/2 f O), and wit.11 visco~it~y takcn into account bot,l~ in t>he<br />

r~eiplthor~rl~ootl of t.hr wdl and in the cril.ical layer. This programme was carried<br />

out. by W. 'l'olltnien in t,hr palwr q~tot,ctl rarlicr, and ns n res~~lt,, htr was able to find<br />

a limit of st.:ll)ilit.y ((:rit.ical Iteynoltls n~~ml)cr) for the cxamplc of the flow in the<br />

bonntlary Itcyc-r on a f1n.t pIn,te at. zero incidence which agreed well with experiments.<br />

Generally spcnlring, for net~t~ral oscillat.ions we find 1,ltat.<br />

and, consequent.ly, $1 and $2 represent the slowly varying solul.iot~s, wllc:rens $3<br />

and $4 become the fast varying solut,ions. The pair of solutions +I, #2 satisfies both<br />

the frictionless disturbance equation (Raylcigh's equation) anti the V~SC~IIR. Orr-<br />

Sommerfcld equation, eqns. (16.16) and (16.14), as y + oo. By contrast, thr pair of<br />

solut,ions $3, q5.4 satisfies only tho viscous dislurbar~cc cquntion. For Ihis rc-ason $ ,,<br />

95:! are rcfcrrctl to ns the fri~t~ionlcss solutions, wl~crcns #3, #4 nrc r:cllctl ~.II(- viscvris<br />

so111 Lions.<br />

with the boundary condition that $ = 9' = 0 at y = O.The non-viscoussolution<br />

does not satisfy the no-slip condition at the wall (y = 0) because $1' + 0 there.<br />

Furthermore, at the critical layer given by U - c = 0 we discover that 41' + ca, as<br />

explninect earlier. It follows that the contribution frorn frict.ion becomes particularly<br />

large at those two locat.ions, and t,hat t,he rcquired particular solution &(y), as well<br />

as the general solution #(y), vary with at a fast rate there. As a conaeqncncc, it.<br />

becomes vcry tedious t,o calculat,e the characteristic function $(y) and the eigenvalue<br />

c = c, + i ci, whether analytically or numerically, for a given pair of values of n a.nd<br />

R. When numerical methods are used, the special diflicult~icsste~n from the fact that<br />

the highest derivative in t,he Orr-Sommcrfeld equation, $"", is multiplied by t.he<br />

very small factor 1/R. Mat,hematically spcaking, t.hc lnrge diFTerence bct,wccn the<br />

course of thc funct,ion $(y) at the wall and at the critical lnycr as dcpicted by the<br />

frictionlew (Rayleigh) equation and the equation containing friction (Orr-Sommerfdd)<br />

stems from !.he fact that the order of the di~crentinl equation is rcd~~octl frorn<br />

four to two when the viscous terms arc deleted in it.<br />

An attempt to calculat,e numerically the characteristic functions 4(y) of the<br />

Orr-Sommcrfeld equation (16.14) for a large set of prescribed pairs of vnlucs of the<br />

reciprocal wavelength, ar, and Itcynolds number, R, puts enormous detnands on the<br />

capacity of a computer. This explains why 0. Tietjcns [9R] and W. ITcisenbcrg 1421,<br />

who ntkncltcd this problem in t,ltc twcntics, failed to achicvc success. 111 t.hc c.nd of<br />

t,hc t.wcnties, Tollmien rcvcrtcd t,o this problcrn antl forind no other way but I,o f:dl<br />

back on a very tedious nnalytic procedure. Nevertheless, these time-consuming ana-<br />

lytic methods proved eminently successfult. Det,ails of these calcdlations can be<br />

found in the original papers of W. Tollmien (99, 100, 1011 and D. Grohne [38]. There<br />

is no need to summnrize this work herc, because t,he calculations have been rendered


468<br />

As :I. srcl~trl<br />

XVI. Origin of tnrbulrnce I<br />

1.0 rcf. 1.471, t,llc cfi:c.f. of' a slighf, st,rc:amwise change in 1.he 1)asic<br />

flow \vns sf~~cli(vl a. nun1l)rr of 1.imcs 12. 4n., 31, 4fi:1., H4a., 1061. As alrrn.11~ point.ctl<br />

ottf. I)y .I. I'~.c~f.sc:l~ [6!)1. Illis c*lT(~t. is stn:~.ll.<br />

.. -. .<br />

'1'11~ VXIIWI~(I ~ O III I 01' I I I O~~.S~IIIIIII(~~~~~I(I<br />

~<br />

w111:tli1111<br />

i~l~rc,d~rc.cvl 11s Ill(. I:wh ol p:~rnllrlisni in Illo hsir IIow r:tn I~rr fot~~id<br />

:IIII/ ,\. II. Kit)l;.l~ (8.4i~J. 'I1111~r0 nrc six :t~l~lilion:~l kr~ns.<br />

~ I : I I I ~ it) ~ % IIN: ,r-~li~wl im 01th~ :~n~plit~~dc oft IIC (lisl~~rl):~nre, t,wo ~ C~IIIS<br />

~IYW twlnl~o~lrnt 01 I I I ~<br />

(lli.14) \!hid) f~o11lai11s I,llr :~~lclilic~n:~l ~ITIILS<br />

in :i IxLpcr I I \\'.S. ~ Saric<br />

'l'\vo trr111s arc: i~~t.~.o(ltcr,rtl hy thr<br />

arc :~~lclod t~y 111:: t,rnns.<br />

velocily ill llw Imsir Ilow, onr Inorr trrnl is d ~ t.o ~ llw c rl):lngc ill t,l~c<br />

uxvc.lrl~gtl~ of Ill(: elistt~rI)nn(~r in tl~c ~:-dirrt4io11 nnd. finnlly, the sixth terln rorrc~sponds to<br />

I~~pl~~~r-nr~l~~r<br />

I~WIIS ill I)or~ntl;~rg-kiycr I Iirory (srr (!I~:ip. jX). 'l'lw presence of s~~rtiori or blowi~~g<br />

~ I V W risc lo I'11rl11rr IWIIIS. An invrstig:ttio~l of tl~r 11111nvrir;il sol~~t~ions of LIIC so nodi if id Orr-<br />

Son~~~~rrl'rlcl IY~II:I~ ion lor v:eriyus vc*loril,v ~~rolilrs of I IIC I":~llrnrr-Siinl~ scvks, 12. 31, IO(i], lniletl<br />

10 ~ I I ~ I I I ( I$111 C ~ :l(l(liIion:~l lwms in IIIOS~ I~:ISVS. For I.llis rc:~son il is ~Iil'liv~~ll to 111:1lie :i ro~np:~risnn<br />

IWI\IIWI s1n.11 so111Iio11s its \wII :IS II~~\\(Y~II 111(v11 :~nd 01r SO~II~~IIIIS 01 Ilw "19in1l)lilir~l" Orr-<br />

Son~~~~rr(i.l~l (~~e~:llion. Ilo~wvrr, in IIIIISI (YISVS 1111. ~I:IIIKV ill IIIV limit (~I'sl:~l~ilily (IIID lo li~rk<br />

nf ~~:w:~llrlis~ll III~IIS 0111 lo I~r~~nall. Il'~~nw~.ir;ll ~ J I I I ~ P I ~ I);~vr<br />

R IIWII givrn 1)y F. C. T. S11en ct.nl.<br />

~85ll~.<br />

The result,s of st.a.1)ilit.y r:slcul:tt~ions porforrnrtl in :~c:c:ortI:rncv wi(.l~ (.In. nrc~f.llotl<br />

tlesc:rilwtl in 1.11~ prccrtling scct,ion arc sllown in Pigs. 16. IO :l.ntl I(i.1 l as wc.ll :IS 'l':~.l)le,<br />

16.1. The st~nl.rl)oinfs along l.llc? cr~rvcs II~c~nlsc~lvc~s 1~*prrsr111. ~IPIII.I.:I.I II~SI~III.II:IIII.I~S; t,I~i:<br />

rcgioti rrnl)rac~d lty the ~ r v cor~~es~)on(ls<br />

c<br />

to nnst~:~.l)lc ~lisl.~~t~l):~t~c~t~s,<br />

:III(I fI1:11, onfsi~lc<br />

it, contains sf.:~l~lc: point,s. ?'hc two l)ranc:I~(~s of the (:II~v~ of nctlt.ra.l st.:ll~ilif.,y f.c.ntl<br />

to\vartls zero a.t, very I;~rgc Itc~y~wlels lu~tnbc~s. 'l'hl: sn~:~llvsl. I


470 XVI. Origin of h~rlwlcnce T<br />

I<br />

R,,,, '5.0<br />

Fig. IB.11<br />

Fig. 16.10. Chrvrs of nc~ltrnl skd)ility for t h tiint.rtrbnncc freqllency /?, and thc wnve velocity c,<br />

n*i n fnnclion of llnynoltls ~nrtnbcr for t.hc hnundnry layer on n flnt plnb nt zero incidence (Blmius<br />

prolilr). 'J'11ror.y ncxwding tn W. 'l'olltnicn (991: nrrlncricnl cnlc~llntions by R. Jordinson [47]; see<br />

nlm 'l'nl~lr 16.1<br />

Fig. 16.1 I. Cnrveu of nerrtrnl nt.nhilit,y for t.lw tlist.~lrhnncc wnvelrngtll n 61 nn n f~rnction of Rayndds<br />

ni1nt1wr for 1.11~ 1~ound:1ry Inyor on n 1hl. plntc at zero inciticncc (Biwills prolilc). 'l'llcory nccording<br />

to W. 'l'olllnicm [W]; nnn~rric:nI mIccllnt,ionn by 1%. Jordin~on 1471; see also Tnblc 16.1. The<br />

nrnplitm~lc? tlist.ribrition for dist.nrlmnc:cn 1 nnrl I I in given in Fig. 16.20<br />

r 7<br />

I Itis is t11c ~wint. (11- inst:~l)ility (iw t .1~ 1~or111tl:i.ry I:~.~cr on n Hat, plxtr.. 11, is wtnnrkal~lc<br />

t.hn.1. only n c~orrly~:l.r:~l~ivc:ly n:Irrow mngo or'wnvclcngtl~s n.ntl Sreq~tencirs is "dnngcrow"<br />

li~r t.110 I:~.rninnr I)o~rncl:wy layer. 011 t,hc one Ilnntl, t.lwrc is n lower limit. for<br />

the Itcytol(ls numl)cr, on t,ho otllcr, thcre is an uppw limit for t h cl~nrnct.erist~ic<br />

mn.gnilwles of t,llc: tlist~urhnccs. Once the Iat,tc:r arc cxcceclcd no inst,nbiLit.y is cnusctl.<br />

The nuinrricnl v:~Iucs :we:<br />

A tlctxilcd c:ompn.rison bot,wccn the precctling thcorctid results and experiment<br />

will be given in the next section. Hcre we shall only remark tlmt the position where<br />

the boundary layer bccon~cs first unstd~le according to theory (point of instabilit,y)<br />

must. always be oxpect~~l tm lit: ~~pst~rcnm of the experimentally observed point of<br />

tmnsition I)ocn.~~sc nctunl tmh~~lencc is created along the path from the point of<br />

itlst~hiiit~y to the poink of ltran~il,ion owing t,o thr nn~plifirntion of thr rrnslable<br />

disturbanrcs. 'rhis condition is satisfied in 1.11~ cnsc untlcr consitlcmtion. \\'(a 11:~ve<br />

rr:l<br />

= 960 (point. of tr:wsil.io~~) ,<br />

. I , he clist,nncc bctrwccn tilo point of ins1,:~l)ilit:y nntl lhn point. of 1m11sil.io11 tlclw~~tl.r<br />

on t h d~grec! of n.mpli/irnlio~, and IJIC kid of tlist8url)nr~ccs 11rcscnt in th(: cxternnl<br />

stream in tens it.^ of turbulence), lmt. t11c R ~IIRI n~ccl~nnism of :1.11111lilicnt,io11 ~:III IN:<br />

ol)t,ninctl from t,he sLdy of the ~nngnit~tlcs of tho ~~nr:trnctr!rs in the inlr:rior of l.l~r:<br />

ctrrvc of ncutml std)ility, P, > 0. (~nlc~~lnt,ions or this Itin(l wc:rc: first, ~)e:rli~rrrlc:tl<br />

hy 11. Scl1Iicl11,ing 1761 l'or 1,110 fhl, 1)111l,c; I,ltcy IIILV~: I)c(:II rq~v~~.I,(;cl l),y S. I*'. SIICII<br />

185 1.<br />

In order to g~in n clenrcr insight intn the mcc:Itnnics or Lltc oscillnLit~g rnot,ion,<br />

JI. Scl~licl~tirlg [77] dctcrmincd the cigcnfi~nct,ions $(?I) for scvcrnl ncutml tlistturhances.<br />

This enabled him to draw the pn.t,tcrn of strc:rmlincs of the tlis1,url)ctl motiotl<br />

for neut1ral oscillnt.ions. An exnmplc of such n pnt.t.crn can he foun(1 in Fig. I(i.14.<br />

7 7<br />

I he tlin.grntn in Fig. 10.12 illr~sI.t.:~l.cs tho nn~j)lilic:nl.ic~n of IIIINI.ILI)I(~<br />

in the bounclary layer on n flat, plah. 'l'h tlingrnm, based on n recent, cnlculnt.ion<br />

performed by 11. G.Onibmwski ct nl. [GR], extcnds ovcr n wide rnngc of R.cynoltls<br />

nurnbrrs. It turns out t.hnt the rnaximrttn nrnplificntion rntc does not pl:~co it.sc4l' at<br />

very higl~ Reynolds n~~mbcr (R -+ m) 11nt is locntntl in the motlorntc rango of R =- 10"<br />

to 10". ?'Itis is due to the fnot, t.llnt. t,lw rrtrvc of nc~lt,rn.l sl.nl~i1it.y fcrr n !In( pln.tr is of<br />

Fig. 16.12. Curves of cot~st~nnt, temporal<br />

amplification for the bonndnry lnyer on a<br />

fiat plnte nt zero incidcncc ovcr n wide<br />

"I 0.25 -<br />

(list.l~t.lt:il~(:(~~


111 1:1tvr I.imos. ,I .'l'. Sh1n14 19, !)(I] ;~ntl I). Gt.oI1nc 1341 ~n:~tle nn at.l,c~npt, to tlot.ert~~inr<br />

the (:ot~rst, 01' I,II(\ :~,t~~~IiIi(;a,t,ior~<br />

01' 11ns1~n~l)It~ ~Iist~urh~~ccs taking into a~rcnntit, t,he<br />

cII'ec.1, of thr ?fo?f-livrnr t,c!rms in 1.11~: c:clnn.l,ions. In t.his conncxion it is irnport.n~tlt fro<br />

~x~aliz(~ III:I.I 1,110 an~p~iIic:~l~ion or l h ttnsI.i~l~lc<br />

~ t~isi~~~~~mnrvs<br />

(%IIS(\S lh: 111?:k11 fIt)\v h(:O11trc~vt,<br />

(111ik (~t111si(lt~r;1,111~1. 'l'l~is. in I ~1.11. ~YIIISOS a rhangc in lht: t~rn~~srrrnf cnvrgy from<br />

I IIP III:I.~II n101 ion Lo the osril lal.i~~g inol,ion. sincr it, is propo~~I,ionnl t,o rI71/11?/. The tn:~,in<br />

csll'~.ct of t.l~is is l.l~:it, :it n Int.t:r stngc 1.11~ nt~st.n.l)lc tlist,r~rl)n.nccs no longvr amplify in<br />

IU.~~IIW~~~)II<br />

I,o cs~) (Pi r) I~rlt, tcntl 1.0 a li1)it.c vnlnc: which is intlepcntlent of the initd<br />

vnI11c.<br />

'I'llr tlist,:itrcc bet,wcctl t,hc point of t.r;~nsit,ion ant1 t,llc point of nc~~ll.rnI sl,:il)ilit.y<br />

tlrl>(~n& consitlernbly on tl~e 1urh11,l~~m inl~mity in atltlition lo its dcprntlcncc on<br />

nrnplifirat.ion (scc also Set:. XVI (1).<br />

Fig. I(i.lB. Curven of con-<br />

~tant. .~pdn1 nniplification<br />

for 1110 I~ot~nrlnry lnynr on n<br />

flat pIaI,e at, zero incidence<br />

in t,lw lower mnge of Reynolds<br />

n~lmbrrs xs cnlr~~lnt,ed<br />

I)y It. .lordinson 1471<br />

d. Compnrison of the tl~rory of sI:lbilily with rxl~rrirnrnt, 473<br />

More t,Iin,n n (l~n(lt~ was l,o cIi~1)sc l~vforc a11 r:xprrin~ct~I.:~l vvriIi(-:ltimt or the<br />

nl~ovc t.l~cory of s1,al)ilit.y co~~ltl be ol)l.:~int~tl. 'I'ltis W;IS I~rilli:~t~l.ly :~rl~ic:vc,tl I)y<br />

(1. 13. Srh~~l~:lrtrr :it~tI 11. I


474<br />

XVI. Origin of l,t~rl~~tlct~rr 1<br />

1%. (:. vnn dcr llrRge Zijnen 1411 and M. Tlanscn. 'i'hcsc mcasurernents led to the<br />

rc.sult. t.11nt. t,hn crit,ic:d Jbynoltls numhcr was cont,ainccl in the rangc<br />

Soon nfi.cr, 1 I. 1,. I)rytlcn I 16. 171 and his c:ollaltornt~ors nndertook I& vcry t,horougl~<br />

s.nd r,aroli~l inves(.ig~t.iorl of this l,ypc of flow. I)tlring the course of tht:sc invcst,igat,ions<br />

rxt,cnsivc? t1at.a. OII t,ho volorit.y clistrihl~l.ior~ were cnrcfullg plotted wit,l~ the aid of<br />

Imt-wire a.ncn~omrt.crs in t.rrrns of spncc roortlinntcs n.nd timc. Ilowc~nr, t,llc: srlcct.ivc<br />

an~plilication of (lisI.urImnc(~s ~~r(dicI.r(l Ity the theory could not yet Itr det.cct,cd.<br />

At nl~o~rt the same time, cxpcri~ncr~t~s cn.rrict1 out n.t Goct~tingcn on a Ilnb pinto<br />

ill a w:rtcr chnnncl yicltletl a qunlit,at.ivc confirmation of tho t,hrory of stahilit,y.<br />

'i'l~e plrot~ogr:rphs in Fig. 16.15 clcpict n t,urbrilent region which originated from n<br />

tlist.nrl)nncc of long wavelcr~gth. 'J.'ho similnrit,y between these pl~otogmphs mtl the<br />

!.l~corct,ic;~.l pxl,tcr~~ of nt.ream1inrs of a neutral clistt~rltnnce shown in I'ig. 16.14 is<br />

irrcfttta,I~lc.<br />

111 tiiswsing (,r:~nsit.ion it is necessary to introduce one very important pnrarnrt,rr<br />

which rncn.surcs t h "tlcgrcc of dislmrl~nncc" in the external stream. Ik im-<br />

~tort:t,nc-r wn.s lirsl, rccogniscd whrn mrnsttrctnc~lts of t,ho dmg of sphrres were per-<br />

(i)rnwI it1 tIi(lr.rcnt, win11 h~nnrl~. 111 this (:onnexion it/ was discov~rcd that the critical<br />

Ilrynoltls nrrml)or of a sphcrc, that is that valuc bf the Reynolds number which<br />

rorrcspontls to the abrnpt, t1t:crrasc in tllc dm.g cocflicierrt sl~own in Pig. 1.5, depends<br />

vtq rna.rl~r:tIly "11 t.11~ sl,rcngt.h of tho tlisturltnnccs in t,l~c free stream. This can bc<br />

~~~cnsttrrtl clt~nt~t,il,at,ivoly with tho aid of 1.110 time-averngc of [.he oscillxl,it~g, tur-<br />

Intlrnt, vrlocilirs :\s thry occur, for exn.nlplr, I)~hin(l a S~~IY>II (see nlw Scc. XVlll f).<br />

d. Compnrimn of tho theory of stnhility with cxlwri~ncnt,<br />

where rJ, denotes the mean velocity of thc flow. Tn gcnernl, nt n c:rrta;hir~ cIist,at~t.c.<br />

from the screrms or Itoncyeombe, tho torbeloncc in a wid tu1111el boco~~~es iwtropic,<br />

i. e. one for which tho mean oscillations in thc three components arc cqttal:<br />

- -<br />

,'I2 = "'2 = p.<br />

111 this cnsc it is suficicnt to rwtrict oncsclf to thc o~cillnt~iorl u' irl tJ~c dircat,iorl<br />

of flow, and to put<br />

T = ~/Z/U,.<br />

Fig. I(i.15. Flow along a flnt plnta; tt~rbu-<br />

Ience originating from n disturbmcc of<br />

long wavelength after I,. Prnndtl [A81<br />

The photngraplw wcrc Inken with thc aid ors alnw<br />

molion-plcbro eamcrh, which lravrllcd on s lrollcy<br />

nlong will1 the flow; con~cqurnlly, lhc camara In<br />

trsincd on the nnnlc group or vorllcrs nil tbc<br />

time. Tho flow la made vinihlc by uprinkling<br />

alumlnirtm dust on Lhe wafcr rn1rCar.e<br />

478


476<br />

XVI. Ori~in of turhulrnce 1 (1. Comparison of the throry of stal~ility nith rspcrinlr~~t. 477<br />

. . .<br />

'<br />

Fig. 16.17. Oscillogra~n of the a'-rotn- (37 2.23 --.-----..A"ponent<br />

of fluctualions caused by<br />

Lr181\<br />

ranclorn ("11:1t,t1ral") dislr~rl)nnccs in $ 152 2+8 *- , --<br />

the Intninar bor~ndary hyrr on n flat<br />

plate in a stream of air. Mcasvrementa<br />

on t.mnsition from htniriar to L~trbrt-<br />

S<br />

%<br />

8 I . 2.74<br />

D I .<br />

-<br />

. . . . . . . .<br />

1)uritig t h cxpcritncnt-s wit,Il urti/iri~rl (~;.v/~II./J,III(.c.G :I t II~II IIIVI,:II st,~ril~ t.\ I ISII(IIII~<br />

ovvr :L wi(lt,li ol'nl)out, 30 ctn, 045 mm I,ltivlc :t~ttl 2.5 nlm tlwl) W:IS ~~l:lcnl :I(. :I tlisl;111t.(.<br />

of 0.16- nlm fronl l,ltc wall nntl wn.9 cxcit.c.tl I)y :I tn:~gnc.lic: lic.l(l in(l~~c-vtl wiI.11 IIIV :~i(l<br />

of an alt.crnat,it~g crtrrrnt.. 111 this wnjr it, \\.:IS possil)lc: 1.0 in(l~tw L\vo-(litt~(~t~siot~:~l


478<br />

XVI. Origin of I.rtrb~tlmcr 1<br />

tlishrl,anc:rs of ~)rc:soril)o~l frc:cl~~nnry, as stipolat.cd by the tflieory. This gave rise<br />

t,o nmldilircl, tla~npcd and nr~lt,ml oscill:rtions sim~lt~aneonsly. They were again<br />

rnrnsurcrl wilh 1.11~ aid of a Iwt-wiro nnomornctcr. Itcsolt,~ of s~rnh mcasuremrnt.s<br />

:rrc! sl~ow~~ ~)loI,tc.tl ill l'i~. Iti.18. 'l'l~c. c~spcrimrnt.:d poi~~t.s, wl~ic:li are joincvi by a<br />

I)rolic.~i lint,, rrl)rrsrnl~ rnc~:~s~lrcd nc:11t.r:11 oscill;ll,ions. 'I'hc t,llcorc.t,ic.:iI ctlrvc: of nr11tr;ll<br />

I)nt~c.c-s :II. v:~rying tlisl.:lnc~c l'rotn I,II(: w:dl. I'ig. 16. I!) shows osc.illogr:~tns of ~IIC sin~tsoitl:il<br />

niot.ioti for tho c:onipient, 11'. Ih:h oscillogmm rnnt,nins t.wo sitnnltanc~ons<br />

cnrvrs, OIIC of \vl~ivh w:~s :d\v:~jw tdcn :\,I, tJ~r wnic dist:~.~~cc from thc \wIl, thc ot,lwr<br />

having Imrn t,:~ken at various distances. The variation of the amplitude of the U'<br />

oscillnt.ion over t.11~ I)or~ndnr~ I:~ycr witlt,l~ is shown in Fig. 16.20. Tho din.grn.m<br />

rcpre~cnt~s thc results ol)t.aincd by Schnba~~cr and Slrrarnstnd and refers to t,lic ncut,ral<br />

tlisti~rl)ancc~s mnrltccl I and 11 in I'ig. 16.1 1 . 'l'l~crc is good agrrcrnent with t.11~ tlicory<br />

(111~ t,o 11. Schlic:l~ting 1.771.<br />

Vvry rnrrfnl rsprrimcwt.~ of t,llis kin(\ IIRVO Iwnn pcrfornied more rct:erit,ly by<br />

,J. A. 1104s (-1.11.1. 1741 who ltntl at !.l~oi~.disposnl n, wind tunnel ol'tJ~r wry low ~JI~~II~CIICC<br />

int.cr~sit.y T -- 0.0003. '1'11ry report cqrlxlly good agrecmcnt betwccn tlieory and exprimcnt.<br />

\\lc. II:LVC :~lr(ml.y rronnrkctl c.n.rlic*r t.It:~.t. t .1~ oxpc:rirnrnt,:~l vorificat,ion of the?<br />

st.:l.t,ilil.y I.l~cwry W:IS first. m:rtlv ~mssil,lc: wl~cm :I st.rr:i~n of vory low l.~~rl)r~lt:ncc int.cnsit,.y<br />

(:ottlrl I,n protl~rcrtl. 'l'llc oltlvr os~wrime~ll,s wl1ic41 wcrr 1)rrfcorrnc.tl at a t~lrl~nlrnrn<br />

int.cnsity of T ..-. 0.01 c.ot~lirti~ctl the- c~s~wc*t,:~t,ion thn.t, t.11~ ol~srrvrtl pint of transition<br />

lirs tlownst.rc~:~n~ of t,Ii~: pint. ol' inskll)ilit..y prc:(lict.cxI l)y tlwory. Ilowover, the clist,nnc-o<br />

I,c~t,\vrc.r~ thr ~~oints of illst.:~l)ilit,y :III(~ t.r:~t~si(ion (lopn~~cls t.11 5% n~nrlzctl degree<br />

on t.rlrl,~tlrnc-c. int~c~~lsil,y. It. is t.o be c.xl)cv:t,n~l lht. illis clist,anrc s11011ltl tlrrrc:nsc as the:<br />

int~rt~sit~y of t~~trI)~tlrnc.c is it~cr~ws~~il IKYYIIISC<br />

in ~IIV prrscnrc of high t,urb~tlrnre a<br />

sn1:1.11 nrnottnt. of :iml,lilic~:~t~ior~ srtflic~cv to l)rotlttc.c- I~~trl,~tlc~ncc from t.ho unst.nl)lc tlisr<br />

.<br />

t1114,:mc.c~. I IIC grnp11 (III~ t.0 1'. 9. (:l:rnvilln 1361 :LII(~ S~IOWI~ in Fig. 10.21 ill~~stmt.cs<br />

this point. in r~~htion to t,l~c IIOIIII(~:L~~<br />

l:~.vcr on :I fht, plate. T11r clifTcrrncc l~ct~wec~~<br />

t.I~c: Itc-y~loltls n~lrnl)c:rs fortnntl tvit.l~ the tnotnrnt~r~rn tl~icltness at the points of transit,ion<br />

:incI inst.:~l)ilit~y, 11a111c~ly<br />

1:;s. I(i.18. Curvcs of ~mut.r:~l slaldity<br />

for 11~11lrnl frrq~trncic~<br />

t,nt~c:cs 011 n flnt, pl:rtr :rt mro<br />

i~~ri~lrr~rc. Blrwwrv~~~(*r~ta d11r lo S~III-<br />

Im~wr ILII~I S~~:LIIIX~II.(~ (821.<br />

clue to 'I'olln~ic~\ [W]<br />

'I%(:ory<br />

cl. Co111pnris011 of tllc t.11rory of nt1r1dit.y wit 11 c:xpcri~~~rt~l.<br />

of ili~lt~r-<br />

I. l!l ~I~:LSII~PIIIPII~~<br />

ill<br />

l,l~r h111i11:ir I)w~ttlnr.y l~ryi-r 111dor111r11 11.y<br />

Sch~~hn~ter nncl Skrn~l~ut,ntl [82]<br />

1 . 2 0 . \':lri:bt.ion of alnplit~ltln of tho<br />

Sim~lllmrow recorrlirt~ or vvlorily will1 Llir nirl of ?~'-llual~~:rLio~~ for t\vo ~lcntr:rl dist.urlmnces in<br />

Iwo Id-wirr ~llrlllOlllr1rrJ placed nl n didasm of<br />

30 c n ~ bohind ll~r rlril!. Ttw lowcr ctlrvo enrrragonds n. lanlir~nr Im~ntl:~ry lnyrr on 11:lt pl:rlc nt. zrro<br />

lo n ltol wirr plnrrrl nl :t clirl.anec wf 1.4 lnrn frmn i~ic:itlcnr.e. htc.:ts~~rr~t~n~t.s hr l,o Sdlul~;utcr<br />

lllc wnll: 1111. IIpl!rr rltrvr carrw)mncls Lo n Ibol. wirr :rnd Skrn~nd.:rrl (82.1 '1'11rory ~IIC 1.0 Srhlic:l~plnrtvl<br />

nluryitt~ dir1ntw.u froltl ll~r wnlf nr it~di~~l~vl.<br />

'~IIv qlrlp vnr pl:wwl nl n ~lirlancr or It0 rm III.IIIIIII t.it~g [771<br />

1 1 l 1 I a I I Yrntlwnr?, 70aee'. 'I'lw rrrvrr l11lw11vd 1 ttttd 11 wrn:s1wt~d 10 111~ LWO<br />

nct~lrnl ~1i~llIrl~;~nc~~ I nnd I1 it) Iqg. lli.1 I<br />

vrlucity Urn = 13 lnlsec<br />

011 nsi:ill:rl,io~~n


XVI. Origin of turbulonce I d. C'ornpariflon of the theory of fltability wilh rxprritnrt~t 481<br />

Vig. 16.21. Mrasnrrn~c~~l~s on t,r:~nsit.ion<br />

ol a 11:~l, plalc, nftrr 1'. S. l:rn~~villr<br />

(:Hi]. Dillivw~vr. I)cl.wc:ct~ t.hc Itcynoltls<br />

numhers at, t,lw poinb of trmsit.ion<br />

and insl,:~hilit.y in lrrn~s of twl~rrlcncc<br />

inlnnsity. As t.rtrItrtlcnce intnnsity<br />

incrrnscs, thr point of transition<br />

moves closer to t,hc point 01 instalti-<br />

1it.y<br />

All vspritncvlt,:rI poitits 1.r:lc.c a sitlglr: cltrvc. 'I'ho point of t,mnsit,ion does not coincide<br />

wil.lt t,hr poittl, 01' inst.:ll)ilit.y r~nl,il vrry high tmrbulcncr int,cnsilics of a h ~ T t =0.02<br />

t,o 0.03 I~avc, I)rnlt rr:~rlicvl ; c/. I 1.<br />

Other vclncity profiles: Wr now l)roc:cctl t.o tlescribe briefly i~ivcst~igat,iol~s into<br />

t.11~ st,nl)ilit,y of'o(.l~rr vdoc:iI,y 1)rofilw; a more tlct,ailctl account is given in Chap. XVII.<br />

A I):L~WI. IIJ S. Ilollirtgtlnlr [4:,l nont.ains a contribut,ion t,o t,l~c stdy of the<br />

st.n.l)ilit.y of vrlot:it,y prctfilrs in t,hc w:rlre of a solid body. 'l'hc stlability of laminar<br />

,ic.t.s w:~s statlic.tl by N. (h1t.1~ (IOJ. Mrntion may, finally, bc made of lhr work of<br />

I\. Rl id~alltr :~t~cl II. Sclln,elc (581, l'. 'l'nl,surni [!)Oaj, I,. N. IIowartl [4G], and C. MT.<br />

(.~lrnsh:~.\v ant1 I). 15lliot. [ I I]. 'I'll(; last rt~fcrcnce est,al)lishetl a limit of stability of<br />

RCrit - - 6.5 for :t 1)l:~nc. jet,, t.hc It~ynoI~Is nun~I)cr hing formcd with the jct wirlt~lr<br />

at, 11:dI' hvight,.<br />

and J.T. Stuart [DO] : see also R.O. J)il'ritna ct a,I. 1141 antl .I.'I1. Stlrn~+ I!)I 1. i\ srtnjttrary<br />

of t,llis prol)lrm area was givrn by A. R4icl1allrr. M. llzrtl:~ 14(il)] is :~lso oI'it~lt~~.wt.<br />

A clear idca of the tlctails of thc mccl~anism of an~plificaliot~ can I)(; fi)rmcd<br />

by studying the smoke pictures of the zone of t,rnnsit.iott ir~ thc bonntlary Inyw or1<br />

an airfoil takcn by IT. ncrgh [B] and rcprotlucctl in Fig. 16.22. TIN: :~rtific:i:~I clist.ur-<br />

I)anccs wcrc protluccd with tlic aid of a loutlspcaltcr; t.l~c:y arc sccn to itttluvc: in<br />

the boundary layer a succession of amplified, regtrlar waves, their amplitude incrc:wing<br />

in t,l~e downstmam direction. See also [I].<br />

Three-dimensionnl flows. The cxprrimcntnl cvitlcnrc ntltltlc:ctl so 1i1.r shctn.s bltnt.<br />

transition is st,artcd an a result of t,hc amplification of t,wo-tlit~lc:llsiot~:~~I tlixt.~rrl):tttc!t:s.<br />

'l'he growth of such tlist,urbances was investigated in great tlrt,ail I)g G. 13. S(:l~ultanrr<br />

and IT. I


482 XVT. Origin of tmbulcncc I c. Effort of oscillnhg frrc? st,rcn~n on t.rnnnit,ion 483<br />

process of transition from ltbmin~r to turbulent flow is the conseq~~cnce of an inshbility<br />

in t.1~ laminar flow, enilnciatcd by 0. Reynolds, is hereby completely vindicated.<br />

It. certsinly represents a posaiblr: and observahlr: mechanism of transition. The question<br />

as to whet.11~~ it pints a complet,e picture of the process and whethcr it constit~ltes<br />

the onhy nloahanism oneountcrcd in naturo is still at prtxent an open one. The latter<br />

cjt~:st.iotis now oconpy t.hc at.tcnt.ion of many research workcr*.<br />

e. Effect of oscillnting free stream on transition<br />

Aftrr it hntl bccn dincoverccl with 1.11~ aid of the oxprin~cnt drmrihed earlier thnt. the intensit.y<br />

of turbulenc:c of tho cxternnl stream, thnt. is thnt the preaence of an irreguhr tittle-dependent<br />

flnrtnntion in t,he free strcnm, cxert.ed a strong inflnence on transition, it was natural to nndertnke<br />

st,ndicu on t,ho chct of regular fluctnnt.ion in the free stream on tratlsi6ion. The effect of a<br />

nnperin~ponrd flnct,unt.ion of smnll nmplit,udc (E < 1) in an cxternnl stream U(z, 1) of the form<br />

on tho ~trtwt,urc of n lntninnr bonndnry lnyer w~ diucnwed in SBCB. XV n 3 nnd XV e 3.<br />

Sincc the Il*ynolils rlnrnbrr nt. trnnnition clrrrmnr*r ronnidorsl~l~ RR tho in tan nit^ of turbnlcnrc<br />

inrrrnru, it iu plnllniblc Lo suppoue Lhnt n ainlilnr erect nhould occur a8 the amplitude d u =<br />

~111 of the periodic cxternnl stream is 111;de to increw. The effect of an oscillation euperimposed<br />

on the external strcntn on thc transition of a hminnr boundary layer was clarified experimentally<br />

by J.H. Obren~ski nntl A.A. Fejer [63a] arr well aa by J.A. Miller and A.A. Fejer [60a]. Them<br />

inveetigntionu conwntrated attention, in the first place, on the boundary layer on a flat plate<br />

(Bl~ius profile). In this cnse, the velocity clintribution in the externnl stream is<br />

Hcrc {J, is the tin~c-avcrngc of thc frco-strcnm velocity which is independent of z, dU is the<br />

nn~plitudc of the temporal Rnctuntion in the external stream, and n denotea ita circular frequency.<br />

'rho mcnsurcn~enb rcported in 163~1 werc performed in an incompressible stream with<br />

and with frequencies of n = 4 Lo 62 sec-1.<br />

Them very carcful experin~entnl invent.iptions yielded the following emntial reaults:<br />

(a) The c-riticnl Rrynolds nnmbcr of tho start of transition, R,,fr = Urn zw/v dcpends only on the<br />

arnplitudc AU/Um of the external fluctuation.<br />

(h) Thc dimcnsionlr.s trnnuition length, thnt in the distance between the start of trnnuition and<br />

itn ronil,lrtion, R,,f - RZsc, depcntls only on the frequency of the externnl oscillationt.<br />

(c) '1.11~ record showing the varintion of velocity with time demonutratm that the line of transition<br />

is chnrart~rized by n regular and intermittent transition. The meaaurementa led to the conclusion<br />

thnt trnnnition rnn hc t~rscribrcl by the following "non-steady" hynoldu numbw:<br />

Sinrc thr rhnrnrlrrirtic length of tho cxtrrnal, oscillnt.ing stzrnm iu C - llm/n, it, iu po~sible to<br />

cxprrw the ~~non.~tt~ntly" I~tyold~ nnmbcr in thc form<br />

uz (A u/rrm)<br />

RNC =<br />

2nvn r'<br />

llrre All/l?, in the rlitnenuionlr~~ nn~plitude of tile impredsed oscillntion and ns/lJ: is itR dimensionlr~u<br />

frrqrrt-~~t*y. 'I'hr n~mnnrrn~rnb showd tlint the llcynolds number Rz.t, = 11, ~tr/v nt<br />

- --<br />

t Start of t.rnnnition nt R,,(, .- (1, .rl,/v -- lower curve in Fig. 16.10. Complct,ion of t,ranuition<br />

nt. R,,I, - 11, .rl./l* - nppcr ctrrvc it1 Fig. I ti. 16. Over the t1iut.nncc from zt, to xr it is observed<br />

thnt Ihr intr:r~~~ittr:r~cy fndor incrcnucu fro111 p = 0 to y = 1; this is interprctcd by t,hc statenwnt<br />

thnt in t.liin zone we ohnerve "trannitional t~~rbulcnce".<br />

the point of t8rnnuit~ion warr always con~itlcrnbly reduced con~pnrctl wit,l~ that for nhtionnry llow<br />

when t,hc %on-st.eatlyV Reynolds number am Inrge, i. c. whcn RNS > 27000. In t.l~c.sc: rxpcriincnt.s.<br />

t.rn.nnit.ion on tho flnt p1nt.c in ut.nlionnry Ilow s(.nrl.ctl nt. R,,,, -- 1.8 x 10". At.t.or,li~lg to<br />

Fig. I(i.l(i. thin vnluo of Rz.1, cor~.cnp~ntI~. np~)rt~~in~nLoly. t.o n tnrl~rtlet~co itrlr11nit.y of T 0.230/,,<br />

in the cxtnrnnl nt.rennt.<br />

So far, n nnt,isfnctory theory of ut,nbilit,y for houndnry lnyors in t,hc prcocnco of nn oxt.crrinl<br />

o~cillnting utrcntu doen not cxiut {I I a]. 011servnt.ion of intern~ittnnt t,nrl~ulcncc i r ~ t.11(! I~rrwt%tlrr of<br />

n frro-st,rcntn oncillntion ~IIOWR thtl its freqrroncy fl, is of thc antnc ortlor of n~np~it.~~clo nn thnt, of<br />

nntnrnl. neutrnl disturbnncer of the Tollrnie~l-Scl~licl~ti~~g typo fro111 ntnhilit.y t,l~eor.y; sm also<br />

I'ig. Ifl.18. The freqnenry, ,I, of 1.l~ oscillnt~ing flow invcst.igntml Irwc \vnn ~ninllrr 11y 11 I':u:tor of<br />

ahont 100 t.hnn thnt in t.hc nnl.urnl, nc~rtrnl tlint.nrbnnccs.<br />

A review of Ilte prorcns of trnnsition in thr prcnrnrc of frrc-strrnnl o~rillilt~io~ln uils rrrrntly<br />

prrhlinhrd hy ILJ. l,ochrkc, M.V. Morkovin, nntl A.A. Fcjcr 14HhJ<br />

(G) Conlcscencc. of 1.11rLulcnt spot.s ink) :I fr11l.y t1cvc~lopc:tl t.~~rl)~tlt*~rt. I)OIIII~~:LI.~ 1:13't~.<br />

In most CRRCR, t,hc t,rnnsit.ion frotn t,r~t.l)ulc:nt spvt,s (.o I.ully tlevclopotl (,III~IIII~W~I~ is<br />

associated with the furrnntion of a separat.ion bubblr, ns nlrwtly ~nont.ionctl in c:otlncxion<br />

wit,ll Fig. 10.10. At, tho present, time, only stngcs (1 ), (2) ant1 (3) nrr :~mrnnt)le t.o :L<br />

t,hcoretical analysis. The complete clnrification of the ~~~nnining stngrbn will rrq11i1.e<br />

rn~lch ntltlit,i~)nnl t.l~corc~t~icid resenrcl~ work.<br />

(1) Stnbtr now<br />

(2) I~'11~1nI~lr '~f~ll~~~l~~~~-H~~l~li~~l~li~~u<br />

WIWR 01--x I?,,,,<br />

Q 099 9 9<br />

lominor I- Ironsilion<br />

A,,,,<br />

R c<br />

JdTig. 16.23. Itlcnlizcd sltclrh of t.rnnsil.ion zone ill lhr I)O~III~~ILT~ 1:1~t:r 011 11 Ililt l~llltP 111 Z~.I.O i11t.i.<br />

clcncc after P. M. While 11073


484<br />

XVT. Origin of t~~rbulence I<br />

74, 34 1 -:!ti0 ( I !)05).<br />

121 Ihrry, M.I).J., nnd Jtosa, M.A.S.: Tlic flat. plnto boundary Inyer. Pnrt 2: The eKcct of<br />

i~~vrcnsing I.l~ic:kncns on stnbilit.y. .lFM 43, 813--818 (1070).<br />

[3] Ilrn~~y, I). -1.: A non-litwnr theory for oscillnt,ionn in n l~nrnllel flow. J IPM 10, 209 -2:lli (l!)61).<br />

141 Ilrtrhov. It.. nnd Cri~nin:~lo, W.O.: Stnhility of pnr:dlcl flown. Acetlc~nir I'rcss, l!)(i7.<br />

, 8 , .<br />

I4n] Ilout,liirr, M.: Stdilit.6 li116nire tlcs 6co~~lenirntfi prmqnc pnrnlli4es. I. .Jonrnnl clr MLrnnique<br />

11, 5!I9 W21 (1!)72). 11. I,n couchc lin~ito tlc I3lnni11n. Jor~rrlnl de M6cnniquc 12, 75-!I5<br />

(l!)73).<br />

I51 I5ergI1. 11.: A niet~liod for viwnlizing periodic bormdnry lnyer phcnonlcna. IUTAM Symposiuni<br />

I{onn~lary-layer rescnrch (fl. (;iirl.lor, otl.), Ik:rlin, l!)5X, 373-- 178.<br />

(61 Jhrgcrs, J.M.: The niot.ion of n fluid in t,he ho~tntlary lnyer nlong n plnnc? ~111oot~l1 snrfnec.<br />

I'roc. I'irst, Intern. Congress for Appl. Mec.11. 113, I)elft, 1924.<br />

171 Chng, S.J.: 011 the ut.nhilit.y of Isniinnr hor~ndnry lnyer flow. Quart. Appl. Mat,l~. 11,<br />

346.- 350 (1!)5:!).<br />

[XI :l~rnrr, I)., il:irry, M.l)..J., nnd Ross, M A.S.: Non-linur stability tl~cory of the flat plate<br />

~o~~ncl:iry Inyrr. ARC Cl' No. 1296, (1'374).<br />

[!)I (hrt.tc. M.: Ift,i~tlcs sur le frot,terncnt clrn liouiden. Ann. Chim. PIiyn. 21, 433--510 (1890).<br />

(10) (:uric. N.: Ilydroclynnti~ic ~t.nbility in r~nlitnitcd fieldn of visror~s Ilow. l'roc. Itoy. Sac.<br />

1,ontlnn I\ 2.78. 4W-501 (1!)57).<br />

11 I] (.'ler~sl~nw, (I.\V.. nnd l$lliott, I).: A ~ui~nericnl t.rcnt,nlent of the Orr-Sonlnrerfelcl eqn~tion<br />

in t11c c~i~sc of n ln~ninnr jet. Qrrnrt,. J . Mrrh. Appl. Mnth. 13, 300-333 (I!)liO).<br />

Illn] l):~vin. S.: '1'11~ nt.nl)iIil,y of prriodic flo~v~ AIIIIII:~ I


486<br />

XVI. Origin of k~rbulenre I<br />

1481 Jordin~o~~, 13.: Spr~1,r111n of rigcnvnlnrs of tho Orr-Somtnorfrld equation for lllnsilla flow.<br />

l'l~ys. I'l11i11s 1.1, 2535 -2537 (l!)71).<br />

I48nl I < ~ ~ I I ~ I


488<br />

XVI. Origin of t~rrh~rlence I<br />

(HRnJ Slirn. S. I?.: Stnbilit,y ol I:~niintw flo\vu. High Sprd Aorodynnn~iru and ,let, Prop~~lsion 4,<br />

71!) H5:l. I'rinrrlon nntl Oxford, l!)(i4.<br />

IX5l,] Slirn, IP.C.'l'., Chrn, T. S., nnd Ilrtnng, I,. hf.: The elTert8 of nlninflow r:~dinl vrlority on the<br />

s(:~l,ilily of tlrvrloping lnniinnr pip flow. .l. Al,pI. Mccl~., Trans. ASME Srr. IC 43, 200-212<br />

( I !)7li).<br />

InIil Sotn~nt~r(i~Id. ,\.: Kill I3rilr11g znr l~yclrt~tIy~~:~r~~i~cI~t~~~<br />

I':rkl5rung drr t.t~rI>~~lrnten Pliinsigl~t*i~sl)t*\%t*g~~~~gv~i.<br />

:\{ti tlvl 4. ('o~~pr. lnttm~;~l. th:i M:L~.. III. 111; --124. 1ton11~. I9OK<br />

IN7 1 Sq~tirv. I I. It. : 011 t IN* st~ttl)iIily 01' I l~rt.t\-tli~~~r~isit~~~nl tlist.ril)~~t~it)n ol' \~isoow l111iti l)t-I.\vrrn<br />

I~:~rnllc:l \v:~lls. I'rot.. I


490 XVII. Origin ol t,urbulencc 11 a. I3hct of pressure gradient on tmnsitioti it1 bountlnry layer along ~moot.l~ wnlln 491<br />

a. Effect of prennl~re grndierit on trnnsitian in boundary layer along ~n~ooth walls<br />

r 7<br />

J lw bountl:~.ry hyor on a llnt pl:lt,c a.t zero inridcncc whose stal)iliI,y was<br />

investigated in Chap. XVI has the pcc~rlixr characteristic that its vclocity profiles<br />

at tli&rcnt tlist,anccs from tho lending ctlgo are similar to each other (cf. Chap. VII).<br />

In t,his case sirnilnrit.y results from the ahsencr of a pressllrc gm.tlicrit in the external<br />

flow. On thc other h:md, in the case of a cylintlric:~,l htly of arbitmry shapc when the<br />

pressurc gmdient along thc wall changes from point to point, t,llc rcsult.ing vcloc:it7y<br />

profilrs arc not, grncrally speaking, similar to each other. In tho rangtrs where t,ho<br />

pressure docrc.ascs tlownstmam, the v~locit~y profilns have no point3s of inllcxiol~<br />

and are of t,llc typo shown in I'ig. 16.9~ wllcrcas in regions wl~crc t,llc: prossure inorcnscs<br />

downstmam thoy arc of the type sli0~11 in Fig. 16.9~ ancl do posscss points of<br />

inflexion. In t,hc caso of a flat plate all velocity profilcs have the same limit of<br />

stability, namely R,,,, = ( fJ, d,/v),,,, - 520; in contrast with that,, in the case<br />

of an arbitrary body sl~npc, the intliviclual velocity profiles have marlrrtlly tlifiront<br />

limits of stabilit,~, I~ighcr than for a flat plate with favourable prcssure gratlicnt.s,<br />

and lower with adverse prcssuro gradients. Consequrntly, in ortlcr to dotormino<br />

the position of the point of instability for a body of a given, prescribed shape, it is<br />

necessary to perform the following calculations:<br />

1. Dctcrminat,ion of the pressure tlist,ribution along the contour of Lhe body<br />

for frictionloss flow. 2. I)etcrminat,ion of the laminar boundary layer for tha.t pressure<br />

distribution. 3. Dctcrmination of thc limits of stability for these indivitlual velociby<br />

profiles. The problem of determining the prcssure distribution bclongs to potential<br />

throry which supplies convenient met.hotJs of computation as, for example, tlescril)etl<br />

by T. Theodorsen and J.1S. Garriclc 1242) and F. Riegels [193]. Convenient nlethods<br />

for the calculat~ion of laminar boundary layers were given in Chap. X. The third step,<br />

t,he st.al)ilit.y calculntion, will now be discussed in detail.<br />

It is known from the theory of laminar boi~ndary layers, Chap. VIT, that,<br />

generally speaking, the curvature of the wall has littlc influence on the development<br />

of tho houndary layer on a cylindrical body; this is true as long as the radius of<br />

curvahre of the wall is mnoh larger tjhan the boundary-lager thickness, which<br />

amounts to saying that the effect of the centrifugal force may be neglected when<br />

analyzing the formation of a boundary layer on such bodies. Hence the boundary<br />

layer is seen to develop in the samc way as on a flat wall, but under t1he influence<br />

of that, pressnrc gratlicnt which is tlctermined hy the potential flow pnst tfhe body.<br />

The same applies t,o the tl~t~orminat~ion of the limit of stability of a boundary layer<br />

with a pressure gradient which is different from zero.<br />

Tn contrast with Ihc case of a flat plate, whrro the external flow is nnilbrin<br />

at [J, 1 const,, wr now h:~ve Lo con0cncl with an ex1,ernal strram whose vrlority,<br />

I/,(T), is :L f~lnrtion of the lrngth roordinatc The velocity Urn (z) is related to the<br />

prrssuro gmtlirr~b tlp/tlr through tho Rrrnoulli orpation<br />

to work witsli a nicnn llow whose ~olocit~y Il (y) rl~pcn(ls only 011 hllr 1 r:it1svrrsc<br />

coortlir~~t~c y. 'l'ho inffl~oncc of Lhc I)~I:RSIICC gra(/irnt 011 ~l,al~ilit,y ~na~~if'rsl.~ iI,svlf<br />

t.hro11g11 tltr form or tdic vclocit,y 1)rdiIc givv11 by fI(?y). \\'c IIILVI: nlrwtly wicl in<br />

See. XVLb thnb the limit of st,al.)ilit,y of a vcloeil.y prolilo drpt:ntls shongly ou il,s<br />

shape, profiles with a pint of hllcxion possessing colisitlrrably 1owc.r li~nitw of<br />

stability than thosc without ono (poit~t-of-inflexion criterion). Now, since the pressure<br />

grndjent cont,rols t,hc curvature of the velocity profile in accordance with ~(111. (7.15)<br />

the shng tlcpentlencc of the limit of stability on the shapc of tho vrloni1.y profile<br />

n.mount.s to a largo inflt~cnce of tJlc: ~)~CSRIIPO gmclicnt on sl,al)ilif~y. If, is, I,ltc~rc.li~ro,<br />

true t,o say that accelerated flows (tlp/tlx < 0, clUrn/tl:c: > 0, f;~vour:lblc pressure<br />

gradient) are considerd~ly morc stable thn clccclerat,ctl flows (tlp/clz>O, clIJ,,,/dz


492 XVII. Origin 01 turbulcncc I[ a. Effect of pressltro gradient on tranxition in honndnry layer dong ~mooth wnll~ 493<br />

st.iplnt,e. for the SR~C of simplicity, a one-parameter family of laminar velocity<br />

profilns. An cxnmpie of sunh a one-parameter fnrr~ily of volooit,y profiles, which,<br />

nlorrovc.r, (:o~~sl,ih~ll~c exwt, solrltk)n~ of Lhc bor~rdnry-1n.yor eqr~alh~s, is rrprcsrrlt,ncl<br />

by I lnrl rcr's wctlp. flows. Their free-sl.re:~m velocity is givrn by<br />

nr~d 1.l1c ass.ioc:inl,ctl ve1oc:il.y profilcs can bc fourd plotkcd in Pig. 9.1. IIcre m denotm<br />

tho slt:~,pc farlor of the profiles and tho wctlge angle is = 2 m./(m..I- 1). When<br />

ni, (1 (ttcol.cn.siiig prrssurc), t.11C1.e is no point, of inflcxion. AS cerly as 1941, J . J'rctxh<br />

[I 78, IT!)] carried out ~JIC sta1)ilit.y cnlc~~lal,ion for a scrics of profiles of this one-paramc:t.rr<br />

family. l,at.er, in 1969, thcsc cal(:rllations were considerably cxtentlwl by El. G.<br />

O~nbrcwslzi ([G:!] of (~ha.p. XVI); Ilc cvaIuat,ed not only the critical Reynolds number<br />

In~t. a.lso 1.h~ an~plificat~ion ra1.c of t.hc ~~r~stsblc: tlistnrl)anc:c-s. 'l'hc ealc~~In.f~ions rcvcd a<br />

s1,rongc.r d~y)cwtlrnc:o of t,hc cril.ic::~I Iky noltls I~IIII\)IT on 1.11~ sl~n.~)(: l'n.(:I.or 1)) l.hnn tlitl<br />

varlivr wo~~lz. '1'11~ (li:~y,r:~n~ ol' liiy,. 17.2 dwcri1)cs OIIC rcs~~ll.


404 XVII. Oriein of tnrbnlencc TI<br />

Fig. 17.5. Sl~nrlograpl~ pict,r~re of reverse t.ransit.ior~ front t~rtrl)r~lnnt, to l:rn~it\ar flow in n \~orr~tdary<br />

layer it1 s~~pcrsonio flow rot~r~d a corner at. M = 3, nfkr J. Skrnl)erg [215j<br />

wig. 17.1;. Srltrtitnt.ic rrprcncnl,nt,ion of<br />

the flow in t.hc Imr~ndnry hyrr in RII~Waonir:<br />

flow nrot~ld n vornrr, nf1.w .I. Sternberg,<br />

c/. Fig. 17.5<br />

t l'hr vnlr~c R , - A45 givcw hcrc for A - 0 tliffcru so~ne\vhnt from the value 520 givrn previor~uly<br />

in JGg. 16.1 I. 'l'ltiu is duc 14) the clilli:rc~~cc bctwccn tl~c exnct I%lnniun vrlocity profile<br />

11srd ~wvvio~~sIy nntl nll ~b~~l~roxiltl:ttr ollr rlltl~lo,vcd for 1.h ~)rol~ar:bt.io~r of rig. 17.2.<br />

graph of wn.ve-like nt.rcnk I~IICR in a writer vl~n~it~el ~d~l.~illt*d with 1,h? nid of lrhc t.cll~~ritt~tt 111t?t11od<br />

by IT. X. Worttnnnn 1257, 2581; di~trlrbnitco crcnkd nrlificinlly hy n.11 oscill:~t.ing sllrip (3 x A00<br />

>: 0-03 III~I). The strip is lovntcd nt n st.iiIiou wltnre R1 =- 750; the at,rcnk li11c8 itre c:rnnlrtl xt<br />

R, == 950 (Irft. border of figure). The rolling up ofntrenk linrs tlow~~ntrrn~~t<br />

instnldit,y of the prrt.t~rlmt.ion wnres. 'l'hc figrlrra t1c11ote 1listnnc.r~ ill rm<br />

in n rotwicqrlrtlre of t,l~e<br />

Tho phot.ogra,pli of Fig. 17.7, tdtcn by F. X. Wortm~nttn [2M. 2561 it1 a wn.t,c:r<br />

cl~anncl conveys n clcar iniprrssion of unsf.cLl~lc oscillnlic)its in n. 1ntni11n.r I)ollntla.ry<br />

Inyw. The picture was obtained by the tolluri~~rn ~nt:t.hotl /256]. l'hc a.rt.ificnl dist.nr0nnces<br />

were generated wit,h t,ho aid of an oscillnt.ing strip placctl near t.hc nall,<br />

in n mnnnrr siri1ila.r t.o l,hat crnploycd by Schulmr~cr. ~lld ~krr?tnst,atl ant1 tIcseril)~(1<br />

in Chap. XVI. 'J'hc ~)rrssnrc rise a.long thr wirll is so srnnll t.l~nt. tho I'ol~lhn~tsc~~ prntnct.rr<br />

from rqn. (17.3) llxs t.11c vnlnr A - --8. At. f.hr shlion whrrr the. tlist.t~~.l):~nrc<br />

is gctivtnl~tl I.II(. 1oc:trl Il.c!ynol~ls IIIIIIII)I'I. 1111s 1.l1r \ ~ ~ I IRbl I \ - 750, IIII~I l.11(* (litllwsiol~lcss<br />

wa.vrlt:~~gLlt of the tlist,url)nnco is nl (TI -= 2 nOl/l -- 0.48. This [wir~t. is loc.:~.t.ctl<br />

far in thr ~lnst,nl)lr ficltl of Fig. 17.3. '1'11~ instmit.n.ncv)~ts s~lnpsl~o; of I.Itv sl.rcdc linrs<br />

in Pig, 17.7 sl~n\vs 111~ fii1:11 11I1nsc ol' Iht% t~\vo-tli~~~ct~sio~~;~l<br />

~I(:~~~~IoI~~II~*III~<br />

of' 1111. (listrrr1tnnc:c<br />

nI)out, 20 wnvc4rngt.11~ tlownst~rc~nrii of (.l~c osril1:rf ing strip. 'I'his tlisl.nr~~:~nrc:<br />

nmplifirs in cornplt~t,~ n.grrrmrnt of l.l~rory wil,li c!xl~rritnri~l.. 'I'l~c tl~~et,~~n.licin, wl~icl~<br />

is stmill two-tlirnrnsior~nl near t.hc Irf't. rtlgo of I.IIc pict,ttrr I~reonws tlisl.or1.cd in i1.s<br />

rnitltllc by 1.Iic: o~~cotning longitutlir~n.l vort.icos. At thr right, ctlgc! ol' I,III% pit:I.ttt.r if. is<br />

nlrrntly ~)ossil)lr t,o tlisccrn "t,~~rl~~tlent~ rows". 'l'l~is ronfit~tns our 1.c.lnn.14ts (YIII(:W.II~II~<br />

t,l~rcc-tlirr~rnsiotinl tlist,urbanccs givrn nl, t.hr cwl of t,his cli:tpt.cr.


490 XVII. Origin of turbrllence I1 b. Drt.crminntion of the ponition of thc point of inshbility for prrscril)rtl body shnl~c 407<br />

On sevcral oc:cnoions wc have sttrcsscti thc fact that n pressure increme along<br />

a 1)oundary lnycr sttrongly favours tmnsition to t,url)ulent flow in it. Conversely,<br />

a st,rong pressure tlecrease, such ns may bc crcat8cct bchi~id sharp cdgcs in supersonic<br />

flow, cnn car~sc a turbulent boundary laycr to become laminar. Interesting observations<br />

of this kind were made by J. Sternberg 12151 who employed a cylinder<br />

providctl wit,li e conical forc-body. Figure 17.5 shows a shadogmpll of the flow<br />

along the conics1 fore-body at a Mach number M = 3. The boundary laycr turns<br />

turbulentr at thc tripping wire provided for the purpose. Further downstream,<br />

hohintl t.11~ corner formed at the jnnct.ion of thc two bodies, the t~~rhulent bountlary<br />

1:ry-r hrns lamirrar again, Fig. 17.0. This phrnorncnon is explainctl by the circunnstnncc<br />

t11:lt t11c lnrgc f:tvo~~rnhlc pressure gradient at the shonlder impresses a very<br />

strong acrolrr:tl,ion 011 the flow and this, in turn, ~xt~inguishcs the t.nrl)ulrncc, in<br />

a w:iy rcniinisc:rnt of the eKccl of a strong contmction placed ahead of the test<br />

scct,iori OF a wind tunnt:l. Q~lalit~ative indications on this process can bc found in a<br />

~a1)or I)y W. 1'. ,Jones nntl E. 15. Immtlcr 1 low. According to thcsc nuthors, rclnminnrixa.Iion<br />

(nxt,inc:tion of t,rlrbrtlcncc) occurs in incomprossil~lc st.rcnrns w11c:n t,l~c<br />

tli~nc~nsionlws acc:rlcr:~t,ion paramctcr sat,ixfics the incq~ralil.~<br />

Introtltrring I'ol~lhnusen's shape fartor A from cqn. (10.21), anti using eqn. (17.3),<br />

wc ran tra~~slntc the prrcrding contlit.ion to rcari<br />

'I'hc: t.ransit.ion fro~n n t,ctrl)~tlrnt. to n laminar flow pat,t,crn in a tnbo of cirrular<br />

cross-scot,ion was invcsbigat.cil in dctail cxpcrimrntxlly by M. Sibnlltin ns cnrly as<br />

1962. In partirr~lar, this investigation cxtcntlcd to a study of the attenuation of<br />

longit,ntlinnl t.r~rl~rrlont flnctuat.ions and discovered that t.llis is st,rongcr ncnr the wall<br />

t.l~nn in thc ccnt.c:r of the pipe.<br />

. I . he prrwtli~~g rrs111t.s will cnal~lo us 1.0 ralrulat~c in thc following secfiot~ the<br />

posit ion of l.I~i, pint of in~t~ability for the casc of two-tlirncnsional flow past a body<br />

of arbit mry .;hapc.<br />

11. I)c.lc.rniinnlio~~ of the position of the point of instnbilily for prescribed hotly shape<br />

.,<br />

I 11c: tlct.crmina.l.inr~ of tl~c position of tJtc pdint ol tmnsit,ion for prescribed<br />

I)otlj~ sl~:~pcs (in t,wo-tli~r~c:r~sior~al flow) becomes very emy if IISC is made of the rcsults<br />

c:o~~l.:ririrrl it\ Figs. 17.3 nntl 17.4.'I'lrc essc:nt.i:d atlvnnt:r.gc of t,hc tnrt.Iiotl t.o \)ctlcscri\)ctl<br />

II(*I.~ consisl.~ in I.lt(: f:~:l, 1~1r:iL no ft~rtl~cr l:iI~orio~is ~nlc~tl:it.ions arc rcquirotl, t,he Lctlious<br />

j)arI, of the work I~nvil~g 1)ocn con~plctctl once nntl for all whcn compnt,ing the diagran~sii~<br />

Fig 17.3.<br />

We 1)cgin wit,ll t,he evalrlnLion of t8hc laminar 0onntla.ry 1:hyc.r from thr pot,cwtinl<br />

velovit,y tlist,rilrnl.ion ll,,(x)/U,, whicl~ is regnrdrtl :i.s known, I)y t.11~ IISV 01' 1'0111-<br />

II:IIISCII'S :I~)~)I~~X~III:I~,


498 XVII. Origin of turbnlmco II<br />

t,hr RXILIII~~IC of MI cllil)l.ic: rylirttlcr whosr major axis, o, is re1;~tctl to its minor axis,<br />

11, Oy 1.11~ r:~t.io rr/O :- 4. l'hc flow will he assumed parallcl to the major axis.<br />

The pot.rnt,ial vcln~it~y-clist,ril)uLion fur~ction for such a cylinder was already give11<br />

in l'ig. lo.!), and the rosults of the calculations pertaining to the boundary laycr<br />

are shown in Pigs. 10.10 and 10.10b. From the variation of the shape fact.or wit,]l 2,<br />

Fig. 10.1 lb, and wi1.h the aid of Fig. 17.4. it is now possible t,o plot the variation<br />

of t,l~e locnl critical Itcynoltls num her, R, = (U, d,/v),,,,, as shown by tile crlrvc<br />

marked limit o/ slnhilil?/ in l'ig. 17.8. I'ron~ thc calculat~ion of the larninnr bounrlary<br />

layer wc ca.11 also t,:t.ltc I,hr vari:~t.ion of tho tlimensiot~lcss displ:~ccmcnt, thicktlcss<br />

((r,/l) (I/l/,l/v), as SIIOWII in Vig. 10.IOa. For n givon Imly Reynolds ~,ttn~l~or<br />

71, llv, it is now possil~lc to cvnlu:~t.c the locnl Itcynoltls number, IJ, d,/~, basc,tl<br />

on t.11~ clispl:tc~c:ttton1. 1I1it:l~nt:ss;sit~rr<br />

whcrc! tthc valuc of U,,(z)/fJ, is known from the polcntinl vclocity funct.iot~. 'J.II(:<br />

curves of C, r?,/v in trrrns of t,hc arc Icrlgth, zll', have also been draw11 in Fig. 17.8<br />

for variotts values of tho Iboynoltls nrtn~bcr TJ, l/v. The points of intersection of<br />

thesr r~~rves with 1.110 liwiil 01 s(rrhilil!/ givr thc position of the point of instal~ilit.~<br />

for thv ~~c~s~~wt.ivo v;~ltlc. of t.I~o Itryl~oltls nrrrnl~c:rt. 'l'ho point,s of instability for n<br />

falllily oft-lli11t.ic c:ylitttlrrs ofsl~:ntl~w~cw r;tt.ios n/b -- 1, 2, 4. 8 arc shown in Fig. 17.9.<br />

It is rcvn:~rk;~l~lo t.lt;~t, t.hc sltif't. of (.It(: ~)oint of irtstabilit.y \vil,l~ an increasing ltcynoltls<br />

nun111c.r is vcry slt~:~ll for t,ho rasc of :L rirc~ll:tr c:ylintlrr. 'l'his shift becomes more<br />

prot~o~t~~~~~:tl as tJ~r slcwtlvrt~rss r:~t,io is irtcrrnsctl.<br />

'I'hr lwsif ion of 1,I1r ~wiitL of inst;~.l,ilil.,y [or MI arrofoil ran be cosily c:alculat.c:tl<br />

in :I sinti1:rr m:lnrlcLr. 111 l.llis c:onnc?tion it, is pnrt.ict~la.rly importan(, to tletermino<br />

(III. tlrprt~tl(~~~c.c on 1.I1t. at~glo of' inritlcwcc: in a(ltlit,ion to that on t,ltc: Iteynoltls<br />

~ltrlnl~c.r. 'l'hr rcw11l.s of s~tc:lt c:~.lrnl:lt,ions for thc C:LSR of a syrn~nct~rical Zhukovskii<br />

1- 'l'l~r I,IIVWS I[,,, hI/v 1'1,r v;~rio~tn va111rs of (Ic,> l/v C:LII 11t: tlr~iw~t<br />

l l ~ t w III :I (liwclio~~ ~:IIXW 11) 1111- :\xis l>r ~)r~li~uil,vs, if IL Iw::~rith~nic<br />

'I'hiq is :I vvry mnvtv~itv~l si~~~l~lilit~:~lit~~~ 10 IIW wl~tw<br />

fro111 rnch oll~rr 11y t,rn~~slnt,it~g<br />

w:dc is I I W ~ for I~Iw IILI.IIT.<br />

:I grnphi~d ~~~t~lhotl is vt~~pl(~~ixl.<br />

h. 1)ctcrmination of thc posibion of lllr point of ina1al)ilil.y for prrsrril~rtl 1)otly ~hnpc 499<br />

1Fig 17 9. I'onitiott of l)oi~lta<br />

of instnbility for clli1)tic 5-<br />

c.ylinilers of ~lrntlrvww --. I -<br />

rnlio n/b - I , 2, 4, 8, co (IhL<br />

plate) plotted against tho<br />

body llrynolds nun~hcr R ,<br />

, _,> ,<br />

6 fl5 4s 5 4s


500 XVTT. Origin of turbulence 11<br />

of minimttm prrssttrr irlstal)ilil.,v and, ronsequently, transition sets in almost at<br />

onrp rvm at low lteynolds numbers.<br />

I'igurc 17.1 1 SIIOWS, furt.l~cr, the pmit,ion of (,he point of instnbilit,~, as clet.ermined<br />

cxpcrimrnl:tlly for a. NAVA nrrofil, which possrssrd :in almost, idrnt,ical pressurr<br />

disl~rib~tl.ion with l,l~:il, ol' tl~c Zlt~tliovsltii :ic:rofoil ~ttttlrr ronsitlt.r:~f~ion. 11, is sccn<br />

t,l~:~t, l,Iir, lwit~t, oC tr:tnsiI.io~~ 1it.s Iwl~it~tI l l t ~ l)oit~t, ol' it~sl~:~l)ilil~y 1)11t, it1 fr0111, of l,ltt*<br />

poittL of l:~.l~lill:~r ~r~):il.ilI.ioll (i)r :III \':1111t'~ of Ib~ytlol(ls 11111nbcr ant1 Lift rocffioict~l,<br />

:IS rsprcl,rtl fron~ tl~rorc~lic~~l t.onsitlcr:it~iot~s. Sorontlly, the shift, of thc point of<br />

l,ratisibion wiI.11 a v;iryitlg Ibcynoltls n~tnll~c:r :rntl lift, cosfficirnt, follows l,h:~t, or 1.11~<br />

poinl, of insl:iI~ilil~y. I ~ ~ ~ s I Iof I I . sysl,ctn:il,iv ~ ~-:~I~ml;il~ions on t,hc position of ~,II(? lwi111,<br />

of tra~~sili~n I'or :~(*roli)ils of varying t,I~iclit~


Tlw tlisl.nr~cc Iwt,wccn the point, of iwt.n.l~ilit,y and t.11~ point. of t,mrlsit,iolt can<br />

bo rcprescnlccl in t,llc form of (.he tli1li:rrrlc:c: Irct,wce~t the Ttnynoltls numl)orn forrnctl<br />

wit11 the aid of the rnonwnt.~ltn t.lli~lzncss i~t t.llcsc tewo points, as wn.s a.lre.zdy clotlo<br />

in Fig. 10.21, that is, as (llr?,/~~)~, -- (116,/v),. Fig. 17.14 sllows a 111ot. of thin quantity<br />

in tmlns of tho lncan I'ohll~:ll~so~~ 1)~r:1n1rtcr J? :~ntl is hn.srcl on t,hc vnl~lcs fonntl<br />

by 1'. S. Gm.nvillc 1751. llorc we 11:~vc:<br />

i,rr~ninnr nrrdtd~: 'i'hr st.:llrilil,y c~:~lc.lll:~liolls s~~nlln:rrizrtl ill I?igs. 17.9 nrltl<br />

17. 10 clvrnnnst.rat~c. very c:onvinrit~gl,v t,llnt. I It(, ~)~~cssu~.c~gt.:~tlit.nt. llaxnclvc~isi\~c: i~r(lrtrl~c.c*<br />

OII sl:~l~ilit,,v ant1 tmnxition ill VOIII~II~IV :1.xrf~c.tn(-111, wit,l~<br />

'l'h (lnsig,~<br />

~II(*:ISII~I-~~I~*II~~~.


504 XVII. Origin of k~rbulencc 11<br />

positmion of t,l~c point of tmnsit,ion is shown in addition for aerofoil R 2626. It is<br />

seen that transition occurs sliortly after the pressnre minimum in complete agreement<br />

with t,Iw t,heorctical results in Fig. 17.10. Figure 17.16 shows, furt.her, plot,^ of drag<br />

cocfficicnt.s in terms of thc lift coefficient for three aorofoils of equal tl~ickness but<br />

varying caml)er. It shonld be noted that hy increasing tho camber it is possible to<br />

canse a sllift in the region of vcry small drag in the direction of higher values of<br />

lift,, Intt rvrri so, t,lic rngion of rctlucctl drag still extcntls over a definite witlth only.<br />

Needless to say, in the case of laminar aerofoils t.he int,crart,ion between t.hc estr~.nal<br />

stream antl t.hr bountlary layer is very import.ant; mct.liotls for the c:i~Ic~tlation of<br />

sncli effects have been tleveloped by R. Eppler [BO]. At this point, it, is nrccssary t,(~<br />

remark t.11ut cert,ain rircumstances c:ause consitlcrablc difficulties in t.he pract,ical<br />

application of laminar arrofoils. Principally thcse are dnc to t.he great. drmn~~ds 011<br />

t,he smoot~l~ncss of the surfaces in order t,o exclnde prwnat,ere transit.iot1 owing to<br />

roughness. In this conncxion we wish t,o draw the reader's at.tent.io11 t,o a paper by<br />

I,. Speidel [212] on lnniinar aerofoils placed in a Iiarn~onically dist,urbed free streatn.<br />

Fig. 17.15. I'rr*nw~rn dist,rih~tI,iot~ lor l:~.tninnr<br />

arrofoils at zero incitlmcc (c, 5 0). i\erofoilsOOI2,<br />

65, -012, 66, -012 from rrl. [I];<br />

wrofoil It 2525, nftrr IIort.~ch (Dl]<br />

'I' = posilinlt or point or trxnsilion for R -- :1.5 x 10'<br />

Fig. 13 Ili Corfficirnts of profile drng. c,,,,<br />

plotted ngninst lift coefficient, c,,. for three<br />

Inniinnr nrrofoils with vnrying rwnhrr,<br />

R - 9 x 10" from ref. [7]. The rrgion of<br />

smnll drag mows townrds higher lift roef-<br />

ficients, c,,. as rnmhcr increases<br />

b. Dcterrninntion of the position of the point of instnbility for prrsrrihrtl horly nhnlw 505<br />

'L'hc discussion in this section may bc suminarizctl as follows:<br />

1. The tJicory of std~ilit,y sliows that, tlic prcssure gmdioll; cxcrln an ovcrwl~c~ltnir~g<br />

influence on the stability of the Imninar bountlary hycr; a tlrcrc-as(: in prcssurc<br />

in the downstream directlion has a stal~ilizing cKcct,, wltcrcns increasing prrssurc:<br />

leads tjo instnbility.<br />

2. Jn consequence, tlic position of the point of maximum vclocil,y of t.lic pof.rnLi:~l<br />

velocity distrit~ut~ion function (= point of minimurn pressure) inllucr~c:cs tlccisivcly<br />

the position of the point of inshI)ilit,y antl of t,hc point of t,ransitio~l. It ran I)c<br />

assumctl, as a rough guiding rulc, 1Ji:~t at nwlium 1tc:ynoltls nrirnl)crs (R =--: {Of;<br />

to lo7) the point of inslability coincitlcs with the poinL of minimurn pressure<br />

and that the point of transition follows shortly afterwards.<br />

3. As Urc angle of incitlcnce of an acrof'oil is incrcasctl aL a constanl ltrynoltls<br />

number, the points of instability and transition move forwards on the suction<br />

side and rearwards on the pressure side.<br />

4. As t,he R.cynoltls number is increasctl at const.nnt incitlcnce the points of inst,al,ilil.y<br />

and t.ransit,ion move forwards.<br />

6. At very high Reynolds numbers antl with a flat prrssure minimum, t,l~e polnt<br />

of ins1.nl)ilit.y may, nntler ccrt,ain circum~t~ancrs, sliglit,ly precede the poitit of<br />

niinin~nm prrssurc.<br />

6. Even at low Iteynolcls nurnbcrs (R = 10Vt.o 10" t11c points of inst~:~t~ilil.y :I.IK~<br />

hnsition precede the point of laminar separation; nndcr cerhin circunistnnres<br />

the hminar boundary layer may become soparabed and may re-at,t.ach as a<br />

Flexible wall: Anothcr effective rnethod of stabilizing n larninnr bo~mdnry lnycr is to rnnke<br />

the wetted wnll flexible. In connexion with the obsorvetl antonishing swimming performance of<br />

porpoises [go], it hns been suggested that these nnimnls have n very small skin-friction coefficient<br />

bernuae the boundary lnyer on them remains laminnr even nt very Inrge Rcynolrle numbers<br />

owing to the flcxibility 01 thcir skin. Jri ordrr t,o put t.hk hypot,hesis to the tcst,, M. 0. Krnnter<br />

[110] performed ~ncnuuremenLq of drng on olwt.ic cirrulnr rylin(lcrs plnced in a stmnn~ pnrallel to<br />

their axes. Indeed, reductions of the order of 50% in drng, compared with rigid cylindrrs. have<br />

been observed in the range of Reynolds numbers R = 3 x 10" to 2 x 10'.<br />

Furthermore,T.B. Benjnmin (41 and M.T. 1,nndnhl [I201 instit,uted comprehett~ive thcoretical<br />

analyses on the stnbility of boundnry layers on flexible plntes with the aid ol the method<br />

rxplninetl in See. XVIc. Thcse revealed t,hnt, in nddition to tho Tolltnien-Sclrlirhtitig wnves which<br />

occur in n form ~notlilied by tho flexibility of t.1~ wall, there appcnr tnodifietl c1nst.i~ wavcs in tho<br />

wnll itmlf. Such elnstic waves are creatod owing Lo the prwence of tho flow outttide the wnll.<br />

F~rt~l~ermorc, there appear waves of the Kelvin-Helml~olCz type, rnther like those observed on<br />

free shear layers. The first effect - the n~otlification of the Tollmien-Scblichting wnves by the<br />

flexibi1it.y of the wall - may, taken by iteelf, explain the drnatic displacement of t.hc point, of<br />

neutd utnbility in the upstream direction. However, tho three effectn which depend on t,lic int,ernnl<br />

friction in the wall counteract each other t,o a certain extent. For this rcnuon, we would expect<br />

only a small overall effect. Thus, M.O. Kramer's experiment.al results appear to be confirmed by<br />

the ~1.nhilit:y throry only qrlnlitntively hut not qunntitntivoly. 'l'hc suppo~ition that M.O. Krnrnor's<br />

rwt~lltt wuld lwrhnp 1)o oxplniti~d hy t,ltn inll~~onw 01 wnll llcixihiIil,y on thr~ 111Il.y rlovc~lr~lj~~cl<br />

t.urbulcnt boundary layer induccd U. Zimrnormnnn [25!)) to rlnclcrtakc o thoorctionl invcntigntion<br />

into thin problem. He came to the conch~sion that the flexibility of the wall could lead to a roduction<br />

of the shearing stress on the wall of the order of 10 per cent,, nt lcnut in the presrnce of a fluid<br />

of high density such as water. In the nbsenc~ 01 n co~nplete theory of turbulc~~ce, it. is impossible<br />

to view these rwulta nu more than est,imaks. 'l'he pnpcr. [259], contains references to additional<br />

contributions which concern themselveu with the effect of wall flexibility on the stability and<br />

turbulence of boundary-lnyer flown.


c. Efict of ~urtintl on trnt~nition in n hn~rntlnry lnyer<br />

It, has alrrntly Iwrn poitrI.ctl 0111, in CII:I~I. SIV t.hnt Ihc application of suction<br />

I.o a 1:rminnr ho11rtt1:~ry hyrr is an rKcc1,ivc mmns of rrtlucing drag. The clrect of<br />

surtio~~ is t.o st.nOilizr I hc h~ntlary laycr in n way sirnilnr to the cffcct of the prcssrlrc<br />

gratlirnt tliscussctl in tl~o prccntling srctior~, antl the rrduction in drag is nchicvctl<br />

1)y 1)rt:vc11ling tmnsilion fro111 I:~tnit):~r t,o IIII.I)IIICII~. flow. A marc (Ichilc(1 :~n:~lysis<br />

rrvcnls t,l\nt. t.lrc it~fluc~~~cc of s~~vlion is (111~ to t.wo cficts. First, s~~ction ret111ccs thc<br />

l)or~~l~l:~ry-l:~.yrr t~l1ic4tnrss n.ntl a t,l~it~nc.r I)ol~ntl:~ry hyrr is loss prom t,o I)ocome l.t~rbrllrnl..<br />

St~:ontlly, s~~t:l.ion crr:~l.rs :I. I:~n~it):~r. vc~loc~il.y 1)rofilc which ~~ossc:ssc~ higl~rr<br />

limit. of stal1ilil,y (c:rit.ic::d I


608 XVII. Origin of turhulcnce TI c. Effect of suction on transition in n hounclnry lnycr 509<br />

It nligllt be rc~narlzc*cl 11c:rc LhaL n more nccurnte rnlc~~lation would prcsu~nnldy<br />

lr:~11 t,o n higiwr value: or tho volumc: coc.ffic:icnt,. This is tluc to the Fact that tho<br />

:~syrnpt,ot.ic: vclorit,y profile, on whosc oxistcncc thc nt)ove c:~.lculat,iorl was based,<br />

clcvelops only nt n, cc:rt,:~irl tlist,:mce from the laatling edgc. 'l'lle vclocitty profiles<br />

Imt,wrc:n th:tt, point and the leading ctlge :Lrr of different shapes, changing gmtlunlly<br />

from t,hr I~~:I,S~IIS form wit.11 110 s11ct~ion at short distances behi~~d t,he leacling edge<br />

t.o the :hove: asy~nptmtio I'orm. 'l'he profile shapes ill this initi:tl, stmt,irlg Icngth for<br />

the lamirlnr boundary Iaycr with suction have been plotted in detail in Fig. 14.8. All<br />

thcse vclocit,y profiles hnve lower limik of stnt~ilit~y than the asymptotic one, ant1<br />

it, follows that t.hc qu:tnt,it,y of fluid to be removed over the initial lengtll must; be<br />

larger tlmn tho valuc given in cqn. (17.11), if laminar Row is to be msintainetl.<br />

111 order to analyze this matbr in greater detail it is necessary to rcpcat the stability cal-<br />

culation for thc scrica of velocity profiles in the starting length taking suction into account. These<br />

profiles constitutc n one-parameter family of curves na shown in Fig. 14.8, the parameter being<br />

given hy<br />

and changing from 6 = 0 at tho leading edgc to 6 = w for the nsymptot,ic profilc. In practice,<br />

however, it may be assunlcd thnt t,hc starting length ends with 6 = 4. The resulting critical<br />

Reynolds nun~hers have bccn compubd by A. Ulrich [243] and are given in Table 17.1 ; the corresponding<br />

curves of noutral stnbilit,y haw been plottcd in Fig. 17.17. The nmplification of unstnble<br />

dist,urbancrs for the asymptotic profile has been calculated by J. Prcbch [180]. The highest<br />

drgree of amplificat.ion obtained in this calculation was about 10 times sn~nller than that for<br />

Fig. 17.18. Determinat.ion of<br />

critical value of voluinr coef-<br />

ficient for maintmlance of 1%-<br />

minar flow through suction for<br />

houndnry layer on flat, plate<br />

Table 17.1. Dependence of critical Reynolds number of velocity profilra witb suction on<br />

dimensionless suction volume factor [, after Ulrich [243)<br />

--<br />

= I< I o 1 oax j om 1 om I 0.18 / ox? / oli I a<br />

Q "<br />

tho flat plnto (I3lnniuu flow) in Fig. 10.13. With tho rc!..ulLR of thiu cnlrulntion it is now cvlrry to clot.er-<br />

mino the volume coelficicnt of suction which is sufficient to ensure stnl)ility ovrr 1110 st,nrting<br />

length. It can be obtained from Fig. 17.18.in which the limit of stnl)ilit.y from Tnhk 17.1 and t,lle<br />

variation of the dimensionle,ss displacement thickneaq<br />

for :r pcsr:ribc~l vnluo ~rf c~ - (--v,,)/Um hvo I~oon plol.lntl ~~gninnt. t.ho cli~~~c:r~niol~lr*n~ Icy~gt,Il<br />

coordinate. lierc (-8,) ijl/v is known in terms of { from tho calculation of the ho~lnrlnry layer,<br />

Table 14.1. It is sccn from Fig. 17.19 that tho limit of stability is not crossccl at nny point over<br />

the whole Icngth only if the volume coefficicnt is kept at a val~~e larger than 1/8,500. Hence, the<br />

critical valuc of the volume coefficient beconler,<br />

We are now in a position to answer the question which wm left open in Chap. XIV, nan~ely,<br />

t,hat concerning the acLunl dccrcn.qc in the drag on a flat plntc at zero incidrnco wllonc: t)o~tndirry<br />

Iaycr is kept larninar by suction. Figure 14.9 cont,ninccl a plot of the cocfhirr~t of slcin<br />

friction under these conclitions cxprrssetl in terms of tlie llcynolcls nntnber with the: voll11110<br />

coefficient eQ nppearing as a parnmcter. If the curvc wl~ich corresponds to cQCrcl from eqn. (17.12)<br />

is now plotted in the diagram, it is possible to dcducc thc variation of t,ho cooffic:icllt of skin<br />

friction for a llnt plate untlnr condition^ of oplimum ~~~ction, nn RIIOWII in Pig. 17.1!). 'J'hc clintancc<br />

between the curvc marked 'ol)timum suction' ancl that markcxl 'Lurbulcnb' rorrcspontls 1.0 1.11~<br />

saving ili drag en'ccted by thr application of suction.<br />

Fig. 17.10. Ckxfficicnt of skin frict.ion of :i<br />

flat platc at zero incitlcncc. Oplirnum auction<br />

dcnoles smsllcst volurnc coeffiricnt cqrrrc -<br />

Fig. 17.20. Itc4:ttivc snving in t1ra.g 011 flat<br />

pl:rt.c nt. xrro i~lc.iclcnrc! with sc~clio~~ III:I~I~hining<br />

ln~ni~~ar llow :~t, O ~ ~ ~ I I L W I.snr/ion I I from<br />

= 1.2 X 10 whii4i just sufliceu to main- I'ig. 17.19<br />

tain laminar flow '4r~ -s '1 rurb - '1 iataiwtr milh sudim


510 XVl I. Origin of Idmlrnro I I<br />

'I'l~c rlTc.rl, of srrc.t,iol~ on lhr litnil, of st4:~.l)ilil.y t.ogelhrr with t11n.t of :I. prcsstlrc<br />

grntlicwt, ran It(: rrprcsrntc:(l gr:lpltit.:lll~r 11y plotking t,ho cri1,icn.l Rcynoltls nnml)cr<br />

:rgaitwf, 1,ltc s11:spc I':ic:I.or Illz --: B,/dz of (,h: I)ountln.ry layer profile, as was clor~t: in<br />

Fig. 17.21. '1'11~ c,ril.ic::~.l Iky~~oltls nnrnbcrs for a fht plnte wit,l~ zrro prossllrc. gr:l,tlict~l,<br />

I<br />

cl. ICITrrt of hotly forces OI\ trnrlaitiot~<br />

Couette flow: l'hc st.nhilit.y of Ianlinnr 110~ IK~.WCCII I,WO con~rnl.~.ic, ~d,i~.l.ing<br />

cylinders (Couet,to flow) is govcrned t.o a 1wgc ext.ent I)y t,Iw ccwt,rifng:rl forecs. 'l'l~c:<br />

velocit,y dist~ribut.ions which occur in ttl~is cnscl wrrc. givvn in Fig. 5.4 on tlw Imsis of<br />

exnet, solut,ions of tl~r Na.vier-St,oltrs oquat,iot~s; t.l~cby rovc:rctl various v:ll~tc~s of Ihc<br />

ratio of radii n = rl/rz, nntl c,oncornctl two 1)n.sir cnsrs: (I) innrr c.ylintlcr rotn(.c:s,<br />

outer cylinder at rest,; (11) outer cylintlcr rot,nt,rs, inncr c:yliritler at. rrst.. In (hsv I


512 XVII. Origin of turbulence I1 d. Effect of body forcea on transitiou 513<br />

of (.his ar~.a~~grincnf,. I


514<br />

,<br />

XVII. Origin of turbulence 11<br />

e. Effeotu due: to hcnt trnnofer nrld compreusihilityt<br />

1. ln~rotlurtor~ rctmnrk. 'I'll(: t.ltrorc:t,icnl nntl ~xprritn(:nt,nl rns~llt,s coticcrtri~~g<br />

tr:l.tlsil.ion closcril)ctl itt tho prcv-(:(ling sc:c:t,ions are valitl only for flows at modcmtc<br />

sl~:ctls (itic~otlrI)rc~ssil~ln Ilow). 'l'lln rll'cc:l. of t,hn compressibilit,y of thc? firlit1 on tmnsit.iori<br />

h:~s rcrntll,ly Iwcn rxl~n~tsl,ivcly invnstignt,ed urltlcr the ~t~itiid~s from nerort:~.t~lic*nl<br />

c:t~ginrc:ring. In t.he c::l.so of'cornprrssil)lc Ilows, apart, from tho Rlnc:h nrt~nl)rr,<br />

it, is t~crrcss:~ry t,o hltr it1t.o :~cc:onnt, ono ntltliteional, itr~port~nnt pnr~~nct~rr which is<br />

ro~~~~c,rt.rtl \vil.l~ t,l~o ~:rt,c, of Ilrnt, t.rnt~sl'c:rrctl Ixtwccn t,llc: ll~~itl ant1 the wall. \Yhcn<br />

I,II(% I111itl is i~~(~o~~~~~t.(*ssil~l(:,<br />

lt(~~t, WII IN: vxd~;t,t~gwI l~~:t,\v~:rn Ih: w:i~ll :I.II(I I,IIc ll~ti(l<br />

i( 1 11(, (,(~t~~~)t~~~:~t,~~~~:<br />

of t,l~(: \v:~lI is I~igltcr or lowrr t,h:~~ th:~t, of t,he fIui(1 hvitlg<br />

IKISI. it.. 111 1.11~ c:n.sc: of' :L (:otn~w(~ssil)lc Il~~itl, 1.l1c h(~iI, cvoIvc(1 in 1.l1r I)ont~(l:~.ry l:iy(\r<br />

I~ro(l~~c~t*s :III :i.tltlit,ion:bl, itnl)orl,:~trI, inflnonce, ns nlrontly sltown in (:II:L~. X I1 1. 111<br />

rit l1c.r (.:IS(: :I t~Itcrtnnl l~ont~,li~ry I:~yrr (I~:voIoI)s in a(l(lil,iotr 1,o tho vc:Io(:it,y I)oun(l:try<br />

1a.y~-r ant1 plnys it,^ pnrt in the dctcrmin:~t,ion of tho inst.nl)ilit.y of n smnll dist,urbnnoe.<br />

r 1<br />

Lhr t~l~rorct.i~aI ar~tl cxpcrirnc~ntd rotisitlcrnt~iot~s which wr are abor~t t.o discuss will<br />

show t.11nt. for t.he s~~I)sonic flow of n ~:LR, lwnt. trnnsfer from t,lle 1mtntln.ry Inyer to<br />

t,hr wnll exrrt-q n st.n.l~ilizing influcnc-c, wltilr Irrat transf'rr from t,he wnll to t .1~ pas<br />

11ns the opposit.c cfT(~:t,. I3ot.h of t.hcsc nrr reversed for the fiow of a liquid. For srlprrsonic<br />

flow. n new t,ype of unstable rlist,urbnnco is possil)lr ~ hich responds to t,he tmnsfrr<br />

of 11ca.t. in nn entirely tliffcrcnt mnt1nc.r.<br />

2. Tlw effcct of lmnt frnnsfor in iucompressible flow. Sornr of the main frat,urrs<br />

of t,l~c rlkct of f.ltc t,r:~tlsfi~r of 11c:n.t from t,lx w:dl t.o t,lw fluid on t.he st.aldit,y of n<br />

Inn1inn.r I~ot~tttln.ry 11iytv. rrtn ltr ~v:tdily r(w)gnizrd rven in the rrrsc: whrn tho flow is<br />

incotn))rtwil,Ic. Wc shrill. t,llcrcli)rr, cxl~lai~~ it. first. in t,llis simplifird form. The first<br />

exprrirnrntnl invrst~ig:it.iotts on t.he inflltener of 11rn.t t,ransfer on t.ransit.ion were perli)rrnrd<br />

some t.imc ago by W. ],inkc [ 13 I 1. \\'. I,inltc measured t,hr c1ra.g of n vcrt,icnl<br />

hrakd ~)la.tc plncrtl in a horizontal strrntn in a rnngc of length Rcyllokki nlllllbrr<br />

R = 105 to 106, nntl ol)srrvrd t.li:rt. Ilc~nling rar~sc:rl it. to inorrase by n Inrgc ntnor~nt,.<br />

11e conol~ttlcxl ftwm t,llis incrca.sc, qnilr rotwrt.ly. t,llnt, t.hr l~cat~ing of the phtc cnrlficd<br />

t,he t,rnnsit.ion Itrynoltls numl~cr t,o dvrrrase.<br />

Now. if t.lw wall is Ilot.trr than Ihc. llllitl ill thr frcn strmni, we Irnve TI,, > T, ant1<br />

tIw t.t-mpcr:it~~t.c* gt.n.tlirnt. n.t Iltc. wnll is nc*)mti\.c: (t17'/tly)w < 0. Since for a gas the<br />

vis(.osily ittc.r(~asc-s wit11 tc~t)i~)t~~~:~t~~t~(~ :iwotding to ccln. (l3.3), we mnst. have (d/l/dy)fi;<br />

< 0. Since t h vclocit,y grndient is positive nt t,Ilc wnll it follows from ~clll. (17.15)<br />

tlmt.<br />

A nnmcrirnl cnlcul:tt.ion l)y '1'. Crl)rc:i nntl A.M.O. Smith [221 fi)r air cwnfirmrtl<br />

the (l(:crcnsc in t,Ile crit.icn1 IZ~~ynt~I~ls IIIIIII~N:~ for I,ltc ons~t, of i~~sl~al)ilil,y<br />

flnt plntr, nntl n sinlilnr tlrcrrnsc in t,ltc: I.ru.nsilion I (;On(:, tllc tlinit~nsion:~l<br />

irlc:rrnsos in invcrsc. proport.iot~ 1.0 dl. 'I'll(* rcsrtlls for :I. coolctl \vr~lI sl~ow tilt!<br />

cxpcctcd tlc-sl.nbilizing cll'cct for liquids. In t.hc t.ltc:o~.y of' A. It. Wrizz:l.n, t . 1 only ~ inflr~encc<br />

of hmt, transfer, other thn on t,ho rncnn vrlooil,y j)r.olile, is t~11rougll t.Ilr krnperaturn<br />

rlcpenclence of the viscosity. A more oornplrt.e (11c:or.y by It. I,. 1,owell and<br />

wntor boundary laycr on :L flnt platc, .aflcr<br />

A. It. Wwmnn, 'l'. Okilr~~r~rn atlrl A. M. 0.<br />

Smil.l~ [2RO)


516 XVII. Origin of turbulcnco XI<br />

E. ltrsliot,lto 11461 inclutletl the t,cnipcrat.nrc and dcn~it,~ Ilnct.unt,ions, but. led to<br />

almost iclcntical riumcrical rcsult,~. A st,ahilit,y experiment. by A. St,razisar,<br />

.I. M. I'ralll and 15. Itcshot.lro 12271 vorilirtl t,llr prrdic:l,rd shifl. ofl,llc rninimutn crit.ir.al<br />

ltcynoltls numbcr witli a small amount, ol' Iw~ting.<br />

I'rce eo~~vection: Transition of a frrc-cot~vcctior~ houndnry layer on a vertical<br />

Ilc~l.t.c~I II:rt. 11In.t~ wns fitxl, rc.ht.ctl t.o t,llcs a~nl)IiIicnt~ion of sm:l.ll tlistnt~l~nnoc~s by 15. 1%. (:.<br />

IC(:k(.rt and 15. S(icltrigcn 157, 591. 'J'lic rratlrr is referred to articles by 13. Cebhardt<br />

[79, 80, 811 for n comprchcnsive review of this field in which mrich progress has<br />

been rnatlc in explaining ot~sorvrtl t.rnt~siOion phenomena by rncnns of accurate<br />

n~ttnrt~ical calculnt,ions Oascd on thc n~c(~llod of sriiall dist,arbances.<br />

Wllcrc;~s for the vert.ical hent.cd plst,r the insf.abilit,y originat,es from progressing<br />

wavcs of t,hc 'I'olln~icrl-Scl~IiaIit,it~g t,ypr, on the irtolincd heatled plate standing unstable<br />

vorticw wit,li axes along the dircct,ion of flow havc been observed; t,hesc are<br />

of thr Taylor-(:oort,Irr t,ype, see 1147, 228, 811.<br />

. .<br />

'l'llo st.nl)iliiy of a ~ I W c.onvrc:t.ivc st,rcmn on a hval,rd vcrticnl plr~f,c- WILS invc-sti.<br />

g:~t.cvl I)y 1'. It. Nnchtnlic~irn ( l(i7 1 who rnil~loyc:cl (,hr mc~t.hoc1 of wrril.ll clist.~trl~n.ncw.<br />

I he vc,loc:it.y :~ttcl t,ompc:rat.nrc tlist.ribul.ions were those of Figs. 12.23 ant1 12.24,<br />

~cspcct.ivc:ly. Velocity prolilvs wil,h a st,rong point of inflcxion, such as tlltose in Fig.<br />

12.24, arc intrinsically characterized by a Inw limit. of stability. The inclusion of<br />

t,rmporal t,rrnpc~rat,urc fluctuat.ions on tol) of the velocit.y fluct~at~ions produces an<br />

adtlit,ional st,tvng tlcstal)ilizing cfict of t,hr nlain flows, because this mechanism t,ransliw<br />

cwrrgy from thc main motion 1.0 t . 1 tlisl.nrbancc. ~<br />

'l'hc calculat.ion leads to two<br />

c:ouplcd clilTc-rcnt.inl equat.ions which now rvpln.c:c: t,hr Orr-Sonirncrfdtl equatkm (1 6.14).<br />

Onr of t.llrm t d c w to vc.loc*il,y and t.ho otl~cr to t,cmprrat.urc. These two equations<br />

contai n t.hc I't.nntl t.l numlwr ant1 l,hc (:r:i~shof number in addition to the Reynolds<br />

nnmbrr. In this connexinn t,ltc ~mcler shol~hl consult t,he papers by E. Edrert ct al.<br />

)S!)I, A. Snc.\vc:zyli 122!)1 antl '1'. I 1 wit,ll phnnc vc.loc:il,y c, -- c:" --- (I,, m,<br />

and n = 0. Ncn1,ral supersonic tlist,urb:mccs wc: pos~il)lc~ ill wrt.:litt fIows, I)ut 110<br />

general conditions for their existence havc bccn given. Figurc 17.24 shows 1,11c: clirncnsionlrss<br />

phnsr vclocitics cJUm and co/U, of t.ho nc~~t.rnl sul)sonir and sonic: tlist.~~rl~:incv<br />

as fullct.ions of Mm for n fnrnily of ntli:rb:~t.ic flat.-pln.t,c I~onntlnt~y I;ryws. . 111c~ . 111(~:111<br />

bountlary laycr profilcs which were usrtl in t.hc cnlculat.ion of c,*, ant1 will h: usc:tl<br />

throughout this Section, are aceurat.c numerical soluLions of I,hc coml~rcssiblc: In.tninn.r<br />

boundary layer equations for air with both t,he viscosit.y cocflicient, nnd I'rnntltl<br />

numl)rr fr~nct~ions of t.emperature, and with a frcc-st.rcatn stngnation t,cmpcrnl,~lro of<br />

31 11< up to M, = 5.1 where Tm = 50 K. At higher Mach numbers, Tmremajns at 50 I co > 0 in Fig. 17.24, all of the boundk~y layers of t,his family<br />

sat.isfy the conditions of the extended theorem and are unst.al~lc tto frictioulcss ({is-<br />

turbnnces. The movement of the generalized inflexion poinL 1.0 larger y/S wit.ll ill-<br />

creasing M, is similar to t.he movement of t,hc inflexion point \vil.ll increasing nt1~r.t.s~.<br />

pressure gradient. in incompressible flow. l'igure 17.24 also givrs t,hc tlimct~sior~lt.ss<br />

displaccmcnt thicltncss dl vl/,/x v, ns a fnnoth of M, for Lltr fnmily of ntli:~I,;,.t,ic:<br />

boundary layers. I,. 1,ees and C.C. Lin were gblc to prove th:~.t l.llc wnvo n~rrnl)c~~. O~'I.IIV<br />

neut,rrtl subsonic disturbance is unique as in inco~nprcssil)lr flow, provitlccl t,llnt. t,Ilc<br />

mean flow relative to the phase velocity is everywheresubsonic, i. e. h2 < I t,h~.or~ghout<br />

t.he boundary layer, where M = ( IJ - c,)/a is the locnl rrlntivc~ M:tch IIIIIII~)~~.<br />

Although t-heir proof t,ltat cqn. (17.17) is a s~ifficionl, contlil.ion for 1,l1c: inst.:ll)lit,y h:stl<br />

t,he same restrict,ion, it appcnrs from rxlensive nnmrricnl c:rk~~ht.ions l.l~:rl, rtltt. (1 7.17)<br />

is a true snff cient condition even when M2 > 1. On the contrary, L.M. Mack [ 1521 show-


518 XVI I. Origin of turhr~lcncc 11 c. Effects duc to heat transfer and cornprcsnihilil.y 510<br />

rtl 11y n~lrncrirnl rnlrulnt,ions thnt with n region in tho boundary layer whcrc lk > 1<br />

tI1rr.c- nrc- :In inlinitc nrlmbcr of nculml wnvc numbers, or modes, with the sarnc plrasc<br />

vrlocity c,. 'l'hr mult,iplc modes arc n result. of the change in the govcrning tlilPcrc:nt.inl<br />

rquation for, say, thc: ~mwurc oscillntictn from rlliptic whon MZ < 1 to hyperbolic<br />

\vhrn M" I. 'l'l~e first motlo is t.lx snmn as in incomprrssiblc flow, nntl was first<br />

rotnl~~trtl I'IW c~otnpr(~ssil~lc flow 1)y Ir. IATS tu10 1':. Itc:sllot.ko 11421. Thc ntltlit.ionn1,<br />

or I~ighrr. rnotlw hnvo no incornprc~ssil~lc ronnt,crpxrts. c, = c,, MZ, first, reaches<br />

11nit.y at M, 2.2, nntl the uppcr I~ountlary of t,hc rcgion of supersonic relative flow<br />

is nt ?I/(> -- 0.16, 0.43, 0.50, Lor f& =- 3, 5, 10, rcsprctivcly.<br />

..<br />

lhc multiple 11tmt.rn1 di~t~url~nnrcs wit,lr phnsc vdocit,y c8 are not tho only ones<br />

possiblo wllcw ME, > 1. Thcrc nrr also rnult.iplc ncut,rnl dist,urbances wit.h U, < c,<br />

< Il, -t a,. Tllrse dist,nrbnnccs (lo not. tlcpond on the boundary layer having a<br />

gc.nrrnlizcd inllrxion point,. I~urt.llcrmore, there nre always adjacent amplified tlist~rlrlmnrrs<br />

of t IIC .w~rre t?/pr idh, plrass 11e1ocitie.s c, < I/,. Co~tacquentl?/, the co~rr.prossil)le<br />

Ooi~?tdar?/ /fl?/rr is isnslable lo frictioltkss dislicrba~~ces rrgardloss of any other f~aturen o/<br />

thc idoci/?/ rr~rtl hrg~cr(r/rtrr profilrs (1,s lonq n.p th,rre in a rqlion idtrre M2 > 1.<br />

A limiting fn.rt,or in t,he amplifim.t,im of first,-motln tlisturbnnccs is t.hnt c, must<br />

lir I)c:t.wcvw ro n.11tl r,. Any lhing t,llnb incrcnsrs the diffcrrnoo cr - co nlso incrc-asps thc<br />

nmpIilic:nt~ion f:~.c:Ior /?,. As shown Iiy Iqig. 17.24, t,llis tlifkroncc can be cl11it.c stnnll.<br />

Tho co~lst.rn.int inlposrtl I)y co, which tlnlilrc c, is nnrclnkcl to the boundary-layer<br />

profile, call only 1)o rrnlovctl 11y consirlcring n moro general form of disturbancc than<br />

has I)crn usrtl up to t.llis point,. With<br />

As n rcsult of c, - co increasing wit,ll {I t.ho ~naxirrlr~tn nmpliBcnt,ion fnet,or of<br />

t


620 KVII. Origin of tr~rbrllonce li<br />

lly M, -- 3.5, thc maxirnntn atnplificat,ion factmr of both t,llrec- and bwo-dimensionnl<br />

dixt~~~rl~nnccs occrtrs at. R = oo. It, is in this second rrgion, whcrc the inst,abilit.y<br />

nssrtmcs nn c:sscnt.ially frict,ionlrss ni~t.uiv, 1.lln.t. nn unst,al)lc bantl of frcqttrncics associakcd<br />

with thc sccot~tl mode first appears for R < 2.26 x 100. In the third region,<br />

M, .:- 5, t,l~c nmplilic~rt,ior~ fart.ors tlro.casc st.rdily in pt.oporl.ion to the incrcase in<br />

(TI sllowrl in I'ig. 17.24.<br />

For thr low snpctl flow of a gas, wc havc alrcatly disrusscd the tlcst,abilizing<br />

cffcct, of ,z hcatrtl wnll and tltc stabilizing effect of a cooled wall. Lccs 1123, I241 cal-<br />

cl~lat.etl similar rlrrcts for cornprcssihlc air 1)ountlary layers, antl, in addition, prrdictctl<br />

the possit)ilit,y of co~nplct~cly st.ahilizing snpcrsonic bountlary layers by cooling. Alt,llouglr<br />

t,his prrtliction anti s~lbscclnentcalcnlations of tllc cooling require(1for complete<br />

st,aI~ili~n.t.iot~ by M. Tiloom [I I I alltl E. 12. van I)ricst [32, 331 were bascd on the asymptotic<br />

t,l~eory of t.wo-ditncnsiond dist,~~rbances and took no account of the higher modes,<br />

tJ~c more rrccnt, oomput.cr calcnIat,ions have verified t,l~a.t, suffioient cooling will indeed<br />

~omplrt,~ly stal~ilizc, or nrn.rly so, bot,h two- and t,lircc-dimcnsiond first.-tnotlc tlist,ttrl):cnrrs<br />

ovrr n witlc: hlac:l~ nnml)cr rnllgr. I'iq 17.27 shows, from t,llc: ft.ic1.ionlrs.q<br />

tl~rory, t.llc rat.io of (/Ir),,,, to its vallro for thc adiabnt,ic wall, (/?t),nnz,ad as n ftlnetion<br />

of 7',,./7',a, the rnt,io of t,l~c wall tempemt,tlrc to the adiabat,ir, wall t,empcrat,urc. The<br />

st,nbilix:it.ion of t,l~rrc-dirnc~nsional first.-motlo distnrl~ancrs is clearly seen, with t1hc<br />

st.at~ilizat~ion tlccrcasing with increasing Mach number for the same tcrnperat,ure ratio.<br />

On t,hc contmry, sccontl-tnodc dist,urbnncrs, far from bcing st.abilizctl by coolil~g,<br />

arc tlc-st,abilizrtl, The rrnson for t,l~is tlin'crent, behnviour is, once again, t,llat the<br />

gcnrralizcd inllcxion point,, which is stmngly inflncnectl by cooling, has no importance<br />

fi~r t.hc ~lnst~al)lo Iligl~rr motlcs. 'J'llc irnportnnt, q~tanl,it~y, t.1~ cxtcnt of the supersonic<br />

~~c-lal.ivc-flow rrgion, is lil,t.lr inllucncrtl I)y cooling.<br />

Simil:rr rrsult,s t,o (,l~osc showlt in I'ig. 17.27 a.rc ol)t.n.inctl from the viscous t.hcory,<br />

exc.cpt, (.hat for M, > 3 Irss cooling is roquirrd for stabilim1,ion a(, any linit.c ky- noitls nnml1c.r than is given by the frict.ionltwi t,l~cory. In this corlncxion sec also<br />

pa~wr 11y I


on the bnsis of t.hc tl~corct,ical rcs~rlt~s just, prcscnt.ctl. An import,ant point to keep in<br />

mind is t.hat. altJ~ongh a l~oundary Inycr has definite inst,abilit,y properties, its transition<br />

Jtcynoltls nrrm1)cr dnpcnds not only on these propertics hut also on the t.ypc nnd<br />

int.c?nsity of the tlist,url~nnccs prcscnt in thc How. 'Tho only facility in which it is convcnicnt,<br />

to stwly atliabntic: I)ountlnry Inyrrs is {,he supersonic: wind tunncl which has<br />

its own spc:cin.l tlist,itrl)nncc rnvironmcnt. I3t:low M, := 3, t,ransitiotr rncasnrcmonts<br />

difli:r witicly for tlillrcnt, tunnels. Il'or M, > 3, hth .J. 1,nufcr 11351 and 1C.R. van<br />

Driest nntl ,J. C. 1his1)n 1341 have sl~own t,llat t,urbulcnce from the supply scct,ion docs<br />

not all'cct t.rn~tisit,iorl in t,ho tmt scc!l.ion. Infitcad, the primary tlist.urbnnce sourcc<br />

rc~sl)onsil~l~: liw t.t~:i.~~sil~io~~<br />

i~ IN: nt:ot~slk rn(li~i.I,io~~ rrotn I.lt(: l,url~r~l~:tlI, I)o~t~~tl:~.ry Inycrs<br />

on t h tunnc~l wn.lls. In atltlit,iot~ t,o t,lle rll'c~t:l, on trnnsilion tncasurctnerlt.~ of tlill'ercnccs<br />

in t,llc dist,urbaric:c cnvironmrnt-, t.hcrc is also the problem of defining nntl tncasuring<br />

the transit.ion Itcynoltls numhcr in n consist,cnt mnnncr. An instruct.ivc comparison of<br />

five dilrcrrnt mothods of measuring trn.nsit8ion has been given by .J. 1,. Potter and J. 1).<br />

Wl~it,fielcl [172]. 'Ute method of small dist.urbanccs can properly bc applictl only to<br />

the calcuint.ion of n start.-of-t.rnnsition ltcynoltls number.<br />

r 7<br />

Lhc nnmrrwus wind-tunnrl t.ransit.ion dn,t,a for Mm > 3 accunl~~lat~ctl hy S. It.<br />

I'ate :~nd C. .J. Schnclc:r (I831 fiw fiat plnt,es nntl by S. R. I'atc 1181 1 for cones, formed<br />

bllc I,n.sis of thcir corrclat.ions bascd solely on parameters of the ac~ust~ic radiat,ion.<br />

. 'Ihsc data, togct.hcr wit.11 measrlrcnlnnt,~ nt & < 3 by J. T,nufcr and J. R. Martc<br />

11381 on (*ones, I,y I). Colrs 1241 on n fiat, plat.(!, a single observation at Mm = 1.6 I)y<br />

,T. M. Kcntlnll of laminar Ilow on n flat. plnt,c n,t, R = 4.3 x 105 in t11c same tunnel used<br />

by I). (:olcs, and tnonsnrc?nwnts on cones in t,mnsonic tunnels by N. S. I)oughcrt,y and<br />

1'. W. St.cirllc [4!)], suggest, t,hc fi)llowing pnt,t,crn for the Mach numl)t:r dependence of<br />

tlrc ttrnnsit.ion Reynolds number in a good wind t.unncl: An init.ial incrc,ase for Mm > 1<br />

with a peak, ~~crlla~)s rnt.llcr broad, 1)c:twccn Mm = 1.5 and 2.0, follow~d by a<br />

decline, anti t,ht?n, st.nrl.ing son~e\vh~rc brtwt:tv~ Moo = 3 an(\ 5, a monotonic increase<br />

wl~icll cont,inucs t.o at. least, Mm = 16 arcording to n~easl~roncnts in a helium tunnel<br />

[157j. It is of particular int,crcst f.llaC tl~csc t,llrec Mach number regions corrcspontl<br />

roughly to the thrrc rrgions tlisaussctl prrviorrsly in conncxion with Fig. 17.27. A<br />

more tlirnct cont~cxion wit.11 st.ni~i1it.y thnory was rnntle by .I,. M. Mack 11541 by rncans<br />

of a simplified cn.lculn.t~iotl of t,lrc start of tmnsition on a flat plate based solely on a<br />

crit,ionl amplit.utlo A, of the most, amplifirtl single-frequency disturbitnce, as given by<br />

ecp. (I 7.18 a). 'Slllc rcsult.~ of t,llis celculat~ion dong with some experimental Nut-plate<br />

dnta 124, 451 nrc: shown in l'ig. 17.29. With A(l the value of A at the nnufrnl-std)ilit,y<br />

point,, Llrc uppt~ curvc rcsult~ from assuming tht. A. is intlcpmdcnt of Mach number,<br />

and the lower curvc rcsult~ from ,wsulning A. a M& for M, > 1.3. It is the lower<br />

curvc which corresponds t,o t.m.nsit,ion in a wintl tunnel, where J . Laufrr 11361 has<br />

clc.tmrninrtl that from M, -- 1.6 t,o 5.0 t.lw frcc-strrnm rms tlis1,rtrl)nncr nrnplitudc<br />

vnrivs rssrn1,inlly as M,:. 'l'llc pwrnl sitniln.t.it,y of t,l~is curvc h the mensurcmcnt~s<br />

fully suppork the viaw t.ha.1, tmmsition in s~~~)ersonic bountlary layers rosulLs from thc<br />

alnl~lilirn.tion of pnrticular flow tlistlurl)ancrs in acyordance with the rnetOlod of small<br />

tIist.ttrl,nncc:s.<br />

111 a11 rxpcrirr~twt,n~l invr-sl,i#nt.ion of Lhr c~ni.t:t, otl t,rnnsit,ion of a flow paran~ctm<br />

sltn)i ns M:~c:lt nun~\)cr, it. is ncwssary 1.0 Itcop t,hc unit Itcynolds number U,/v, const.nnt,,<br />

n.s wit,lr I.IIv t~~c~:~srlrc-~llrtit.s gi\+rn in Vig. 17.2!). 'I'hc clcprndence of thc transition<br />

lbc~.noltls n111n1,t.r on rtnil. I


524 XVII. Origin of turb~~lrnce 11 f. Shbility of a boundary layer in the presence of thrco-dimensional disturbancra 525<br />

'l'hc rcsult~s of an investigation by 13. R. van lhicst and J. C. Boison [34] on a<br />

conr at Me = 1 .!I, 2.7 and 3.7 arc shown in Fig. 17.31. Thc increase in the transition<br />

Itrynoltls nrlml)or 1vit.h cooling is clcarly seen, as is the reduction of thc st,:~bilizat~ion<br />

ofloot. wiL11 increasing Mar11 number. 'l'lic Int.t,cr trend continues to llighcr Mach numhrs,<br />

n.s mn,s shown by 1.h~ small stal)ilizat~ion cffcct found on flat platcs at M, = 6.0<br />

ant1 6.5, respccl,ivcly, I)y A. M. Gary (211 and 1). V. Maildalon ( 1561. These cffccts of<br />

w~olilrg arr in c:oml)lc*t,c. acrortl with t,hr I~cllnvioirr of first-mode tlist,nrl~ances<br />

shown<br />

ill It'ig. 17.27. Ilowt:vcr, in lwo cxpc~ritncnki by N.S. I)i:r.conis, tJ.lt. .Jack and It..l.<br />

\\'islli(~\vski 147, 101 J, at. M, = 3.12, cooling Iwyontl the rcgion of st,al~ilizat,ion shown<br />

in Fig. 17.31 rrsnlt.crl in a tlecrrosc rat-ller 1.han an increase in the t,ransit,ion Reynolds<br />

nn1111~t~. This pl~enon~enon has bccn rallctl "l.ransit,ion reversal" because it is contmry<br />

1.0 1.11~ cxprct,cd t.rcn11. It 1la.s :dso INWI OI~SCI~VC(I in sI~o(:Ic tunnrls by I$. E.<br />

Itic:ll:~rtls nnd ,J. 1,. Stoilcry 1195, 1961 011 a flat, at. M, = 8.2, and by K. F.<br />

Fig. 17.31? Expcrinrcntnl tmtisilion dn1.a ohtnirrcd<br />

on a iOo-cone at. zero angle of incidcncc showing<br />

~tnbilizing cffcct of wall cooling nt three<br />

Mnrh nunrhers in a sr~personic wind trinnel, nftm<br />

15. I


626 XVII. Origin oI t.11r011lonco I1<br />

~oncent~ric cylintlcrs of wl1ic11 tho inner cylinder is in motion and the outer cylinder<br />

is at rest nhrds nn cxnmplo of an ~inst~nhlo stratification caused by centrifugal forces.<br />

r 1<br />

.Lhe fluid pnrt,ic:lcs ncnr thc innor wall cxpericnce a higher centrifugal force ant1 show<br />

n tendency t,o I)rring proprllctl outwnrtls. '1'11~ st,abilit,y of this type of Row was first<br />

invrst.igat.cd I)y I,ortl Itzylcigh I 191 I who nssun~cd t,I~:rt the /hid wa.s non-viscou..~.<br />

Ila fount1 t,l~nt tho flow I)t:cornrs ~tnst~;~blo wl~rn tJlc j,eripl~cral vcl~cit~y, IL, tlcorcxsrx<br />

with th: ratlius, r, more strongly than 1 IT, t,l~at is, whcn<br />

const<br />

?L (r) = ---- -- \vit,l~ n > 1 (unstnl)lc) .<br />

r<br />

The case of n V~.~OIIS fhid was first, invest.ignt,cd in detail by G. I. Tnylor [I401<br />

who used tht? frnmc\vork of n lincnr throry for this purpose. When n certain ftcynoltls<br />

nun11)cr has 11rrn cxcrrtlrtl, t,l~rrc nltpcwr in t.hc flow vortices, now known as Taylor<br />

vort.icrs, whosr axrs nrc Iocntcd along the c.ircurnfrrencc and wl~ich rot,n.t.e in altrrnnl,rly<br />

opposilr clircct.ions. I'igrr~.t- 17.32 cont,nins n .whemnt,ic represcntnt,iol~ of t,l~is<br />

~not,ion whit:l~ is clrnract,rrizrd 1,y il~r I':act t,l~nt. tho nnnnlus Let.\vccn t,he two cylintlcrs<br />

is cornplct.cly fillctl by t,hcsc ring-lilir vort,ices. 'l'l~c contlit,ions for tl~c flow t.o 1)ccornc<br />

nnsta.l)le can ho expressed with t.hc nit1 of& cliarnctcrist.ic numl~er known ns t.he Taylor<br />

w?m~.bcr, T,, of t.11~ form<br />

wllrrr tl t1rnoCc.s t.11~ witlt,ll of t.11~ ga11, Ili tho innrr m.tli~~s, nntl I/, the pcriphcrnl<br />

vv1oc.il.y of l.11~ in~~rr c.ylitlt1t.r. (:. 1. 'I'iaylor's st,nl)ilit,y criterion is ill c.xrcllent ngrro-


528 XVII. Origin of turbulence I1<br />

IIICIII, \vitJ~ tncn~~~rctr~r~~l~~.<br />

This (::~n l)c infcrrotl very clearly from the pictures of snch<br />

'l':~.ylor vorl,icc,s ol)t:ainotl I J I?. ~ Schultz-(lrnnow and 11. IIein [204], several of whicll<br />

hnvo I1t:t:n rq~rotlnrcti in I'ig. 17.333. In their cxperimcntal arrangement in which the<br />

pip 11:t.tI I.lw tlimc~~sion or d .= 4 mm, and the inner radius was R, -- 21 mm, the<br />

vcwl.it~r.s :i.pp~:~~:d ;LI> :L ~wril)hcrnl vclority, I/(, which corrcspontls to n lboynoltls<br />

n~~tnlwr R (Ii d/v : .: !)4.5, Fig. 17.33:~. It, is t~ol~cworl,l~y t,h;~I, t,l~t: flnw rctn:iint:tI<br />

lihtni~t:ir :I(, L11t' IIIII(:~ I~igl~t:r ~bt:ynohIs I I I I I I I I ) ~ of ~ ~ R r--- 322 (T, --= 141) a11t1 R -:= 8(i8<br />

(T, =- M7), IGgs. 17.33 IJ, c. 'l'urbulcnt flow did not bccomc tlevelopctl until a Rcynoltls<br />

rli~mlm R -= :l!)fiO (T, = 1715) had bcct~ mncl~ctl, Pig. 17.33tl. It, should I)c sl,rcsscd<br />

rn~pl~n~.ir:~lly LhnL tshc first nppcnmncc of ncutral vortices n.t thc limit of stnl~ility<br />

in nocortlnncc wit,h cqn. (17.20) and thc pcrsistcnce of arnpliIict1 vorticos at higher<br />

Tnylor numl)rrs tlors not in any way imply that thc flow has bccome turbulent. On<br />

t.lw contrary, cvcn if the limit of st,ahility is exceeded by a large margin, the flow<br />

rcmains wt,Il ortlrrcd nntl Inminnr. Turbulent flow does not bccome developed until<br />

'I'nylor, ant1 t.l~rrcfort:, ltryr~oltls numbers vastly cxccctling the limit of st.al)ilit,y<br />

:~rr nl hit~ctl.<br />

.I. '1'. Sh~nrl, 12181 s~tc:c:twlcd in con~puting thc flow pattern of the unstal)lc<br />

Intnin:~r Ilow in l.11~ prcscnrc of Taylor vorticcs nntl with thc non-lincnr terms in<br />

(.llr r(luat.iot~ of' mo(,ion rctninctl. Ilc disrovnretl the sxist,once of equilibrium bctwccn<br />

Kg. 17.34. I'low hot\rsc:cn t.wo conoentxic rylintlrr.q: tor+io cocflicicnt for inner cylinder in t,rrms<br />

of t.hr 'I'nglor nnml)cr, T,,.<br />

f. Stability of a bo~inclary layer in Lho proscnm of tl~rcc-di~ncnniotlrbl tlisl,t~rl~:inws 52!)<br />

the transfcr of energy from the base flow to the sccondnry flow ant1 t.11~ viscous<br />

energy dissipation in t>hc secondary flow. The t,ransfcr of cncrgy fron~ the Onsc<br />

flow t,o thc secondary flow causes a Inrgc incrcnsc in thn torqrtc rcq~~irrd to roht,c<br />

t.l~(! inner cylinder. 7'hc diagram in Fig. 17.34 cotitair~s n compnrison I)ct,wrcn Ihc<br />

t.l~rorrt.icn.lly dcrivctl :inti thr cxpcrirntwt.ally mcns~trrcl v:~l~~rs of 1 h t.orcj~tc, roc*f'L<br />

ricnl, C,,. '1'11t- I:~l.tvr is clcfinwl as<br />

Xi<br />

C, = ------- - . - . . (17.21)<br />

R,~ 1' '<br />

-4- n ~ ( 2<br />

wit,l~ 1~ as tthc l~cight, of I,hc cylintlcr. '1'11~ 1inc:tr l,l~(:or~l wil,l~ SLII:LII rrhtivt: g;111s,<br />

(//I(,, yields<br />

In :tcldit.ion to the? txtrvc wllic:h (:orrt~spot~l~ 10 IJiis lint.:t.r t.lt(!ory, IIII(I wl1i(41 I(-:I.(IH<br />

lo :L Ior(11tc t;ot:l'fit~it:t~l, (,'M . - 047/T,, Sor d/11', O.OW, lht* (li~~pxtn (:o~~t,;~it~:+<br />

t,Iit:<br />

cllrvc provitlc:d 11y .J. '1'. SI,~~nrt,'s ~IOII-lirtwr t1~:or.y as wcll ILS on(: givt:tt l),y ;L I.Iwory<br />

lor turl)ulcnt flow; thc Intber leads to tho formul;~ tlial. Cnr - T,,-".2. 111 all, wt: may<br />

tlisccrn t,hrcc rcgirncs of Ilow, cnch circ:umscril)c:tl I)y 1.h~ 'l':~ylor r~~~rnltc:r in tho<br />

li)llowing way:<br />

T, < 41.3: laminar Coucttc flow,<br />

41.3 < T, < 400 : laminar llow with 'I'nylor vorl,ic:os,<br />

T, > 400 : lurl~tllor~t Ilow.<br />

Agrccmcnt bctwccn theory and cx~wrimrnt is cxecllrnt in thc first I.wo rangost.<br />

An extension of Taylor's thoory can bc found in a study hy Ii. Iiirchgarssner [IOG].<br />

A detailed experimental investigation of Couettc Row, particularly in transition,<br />

was carried out in 1965 by 1) Colcs [291<br />

Ekct of an axinl velocity: The preceding stability calculations have been<br />

extended by 13. Ludwieg [I 32, 1331 to includc the case when the two ryl~ntlct s arc<br />

also axially displaced with respect to each other. Let u(r) denote the tangential<br />

velocity, and let w(r) denotc the axial velocity. If we now introduce the dimensionless<br />

velocity gradients<br />

- r dzl r dw<br />

u=-- and GI=--,<br />

u dr u dr<br />

wc can writc the stability criterion for n non-viscous fl~tid in the form<br />

t l'lic cxperirner~tnl msulkq displnycd in Fig. 17.34 dernonstrntc furtl~or that an increase in the<br />

Taylor number, that is, that an increase in tho lteynolrls number at a constant value of d/.R,,<br />

cansen n trflnnition from cellular to tnrhulcnt flow. Whcn thc flnw is tc~rI)nlcnt (1, > 400),<br />

wo have CM - Td-0.2. and I~cncc, nt constnnt d/Rt al~o CM w ((I, dlv)-o.Z - R (1 2. 'l'lm sarno<br />

~(:RIIIL WIW discov(:red IIY {I. It~it:J~nrtlI, ((201 in Cl~np. XI X) WIICII 110 ~t.ndi(:~I I h I:ILH(: or I~III::~~<br />

Couette flow between flat parallol walls. It is remarkable that ll~c same dependence of the<br />

torqm coefficient on Iteynolds number exists for a disk rotating in a llnid at rcst, eqn. (21 30).


630<br />

XVII. Origin ot t.~~rhr~lrncc J l<br />

This ineqnnlity contnins Rayleigh's criterion from eqn. (17.19) as a special case<br />

ant1 rcs~~lt.s wherl 7o = 0 is ns~nmcd here; we then find that 1 + 5 > 0. The stability<br />

calcnlntion which led to eqn. (17.23) took into account disturbances which were<br />

not ~icccssnrily axially symmetric; the 1n.th.x turned out, to be the "moat dangerous"<br />

oms ant1 detcrminctl (he litnit of st.:~l)ilil.y implied by thc ineqrlnlity (17.23). l'ignro<br />

17.36 shows an example of an unstable flow which contains vortices in the shape<br />

of spirals. If. Ludwirg's tllcory has bccn compared withexpcrirnent.al resulk [134]<br />

in Fig. 17.36. Every bnse flow invcstigated experimentally is represented by a point<br />

in t,Ilc I;, 271 plane. The opcn ant1 full circles characterize stable and unstable flow,<br />

respectivciy, it being riotcd that vortkcs were observed for the latter. It is seen<br />

t.hn.t, IT. I,utlwicg's st.:~l)ilil.y crit,crion from rqn. (17.23) is fully confirmed hy cx-<br />

Fig. 17.37. R.nngen of Inwinnr nnd l,rrrl)~tlet~t, flow in n~~tii~luu I~C~IYC~II two concctltric. cyli11tlc.r~;<br />

innrr cylinricr rotntrs. outm cylitldrr nt. rn~I, in prmRltro of nxi:d flow: plot. in t.crr~lu of 'l'r~~lor IIII~II.<br />

I,t.rT,, 1111rl IIIIIIII#('). R.,; tlll~ll~11~l~llll'l1(H 1))' #I. I


632<br />

XVII. Origin of t~~rbr~lenco 11 f. Stability of n boundary layor in the prcacnco of thrcc-din~rnsionnl tlisturbnncc.~ 533<br />

d/N1 < 0.2. 'l'hc. out,c,r spl~crc was at rest, whereas the inner sphere rottat.etl. 'l'he<br />

charact.t-r of the Ilow in ~uch a spltcri~al annulus is also tlct.crn~incd by tho Taylor<br />

nurnlwr from rqn. (1 7.20) and t,hc Iteynoltls number formed with the annulus width,<br />

d, and I.hc poriphcral velocity, (II, that is by<br />

In t.11~ range of validit,y of linrar theory, that is bcforc t,hc appearanoc of Taylor<br />

vortices of the kind shown in Wig. 17.32, the torque noting on t,he inner sphere is<br />

with rlenoting t.11~ torqnc, and Rr the inner radius.<br />

Whereas in t.hc ~~rcretling msc with rot,at>ing conccnt,ric cylinders thc entire flow<br />

fidtl is either laminar or t.~~rl)~tlcnl,, dcprntling on t.hc valucs of t,he Taylor and Rcync~ltls<br />

nr~mI)ers, t,l~c: case of l.l~c- sphere is more complcx, bccause different flow regimes<br />

cat1 occur sirrl~~ll,at~ro~~sly sidc by sidc. AS t.hc Reynolds number is increasctl, Taylor<br />

vorticrs. and hence also t


XVII. Origin of t.urh~~lencc TI<br />

7 ! Alr:~s~~rwnet~t of tltr pni~~l. of I.r:~t~sition oil slighbly ronrnvr wnlln. nftrr H. \V.<br />

I .<br />

I,iq)i!~n.~tn 1 127. 12Hl; (n) cril ir:d 1Z.ryol1l~ IIIIIIII>~T<br />

. ~<br />

q~~ar~t,it.y r1wf21r vcmm f:f<br />

b, - I~WICII~.II~ lI~I(.k~~(.ss: It - rndills OF rltrvn1.11rr OF wnll<br />

IJm 421,<br />

1'<br />

62<br />

vrrsus z: (b) t.ho oharactcriut~ic<br />

f. Stability of n hountlnry layer in t.ho ~roncnre of t,hrcc-tlitnct~uic>t~nl clist~~rl~n~~cm 535<br />

A very t,horor~gl~ cxpcritnc.nt~a1 invrstigntion or t.rnt~sitiiru nloug n ~.OIIV:IV(~. c.111.vrt1<br />

wnll was rrccnt,ly mt.ric!tl out. I)y 11. Ilippc~s 1 161 who cwployrtl tnotlrls tll.nggc.tl n.lo11~<br />

a wnt.cr r1in11nc.l. 'I'l~esc, c~xltwit~~c~n(s l,l~t.o\v ligI~L on t,hc origin of lonKit 1ttli11:11 \.o~,t i(cj<br />

liltc those in I'ig l7.X 1). 111 t.llis ront~rsiorl stsr the: p:rpcLrs I)y I". X. 1Vol.t ttinlln I %%(iJ<br />

and 11. (:oert.lcr ntid 11. Ilnsslcr IH3J.<br />

,. .Il~e consitlrrnt.iot~s co~hit~cd in t,hc prcscr~t sec:t,ion togc?t.l~rr wit.11 those ill<br />

Chap. XVI ant1 Sees. XVll a, 11 lent1 to the follomit~g pivtctro of' t.mnsit,ion irt tllc<br />

bour~tlary layer of n solid body (c. g. nri n.r:rofoil); tm.n.silhi on flat, anel convex<br />

walls is governctl I)y tho itlst,i~l)ility of l,ra.vclling, t,\ro-(li~ncttsiot~n.l 'I'olllnion-<br />

Scl~lirl~t.ir~g waves wl~crc~s that on c:ono:ivc udls is povc:rnctl by the st.:il.ionnry<br />

Taylor-Gocrt.lcr vortices.<br />

Fig. 17.40. I%ot.ogrnph illtt~trntitlg<br />

t.mt~nit,ion in t.ho bountlnry layer on<br />

n disk rotnting in n fluid at rest after<br />

N. Crrgory, J. 'r. St.~tnrL ntd \V. S.<br />

Wrilltrr (771. 1)irrct.ion of rotntion iu<br />

ro~~r~tnr-clocka~iri; upaccl n = 3200rpm<br />

radius of disk = 15 om<br />

Stnlionnry vor1irr.r nrc rf!rn forming in an nnnlllnr<br />

rcgion or innrr radius lli = 8-7 cm End<br />

ouLer rn


536<br />

XVlJ. Origin of t,urhr~lcnce 11<br />

for which tlic tlrt,nils of the laminar laycr arc known from See. V b. A pliotograph<br />

iI11rst~rat~ing the prnt~css of transition on a rot-,ntirtg tlislr ant1 t8nkcn by N. Gregory,<br />

.J. '1'. Sttiart. rind W. S. Walker [77] is rcprotlucctl in Vig. 17.40. 7'11~ photograph shows<br />

t.hnt. in an nrtnnlar rcgion ttherc nppyr st,at.ioriary vort,iccs which assumc thc shape<br />

of log:trit,litnic spirals. 'l'ht: inricr ratllns of this region marks t,l~c? onset, of inst.nOilit,y<br />

:tntl f.rrlt~sit~ion oc:c:urs :el. I h oltt,t:r mtlills. 'l'lic: intwr r:~(Iius (:orr~spon(ls 1.0 :L ItcynnItIs<br />

nt~titl~rr of R, -1 ltt2 (L)/v = I.!) x 105at~tl ;et tlic outer radius we havc R, -- RO2 (01, =<br />

=. 2.8 x 10". ,J. 1'. Stt~art complcn~ontctl t,he cxpcrimcntal work with an analytic<br />

stmtly of thc stahilit,y of such a motion. In it,, IIC assumctl t.11~ existence of threetlimrnsiorial,<br />

pcriotlic dist~lrbanccs whose forms incl~ldcd 0.s special cases the progrrssing<br />

'I'olltnirn-Sclilicfitirlg waves as well as thc ~tat~ionary, t,l~rec-dirnensiol~d<br />

'I'aglor-Gorrtlcr vor1irc.s 'I'hc rcsults of his calculations sliowcd qrtalitntivc agreement<br />

with Ihc cxpcritnc~ntal results of Fig. 17 40.<br />

Anot,lier case of t,l~is kind occurs on a yawed flat, plate in supersonic flow when<br />

the :~ssorin.t,cti lantinnr lw~~ntlnry Inycr t)rcoinrs unst.at~le. As ~liown cxpcrirncntdly<br />

\,y .J. ,I. (:inoux 1841, t,hc \ IOIIIKI~I.~ hyrr tirvvtops ~ongit.w~ina~ vort.ic:rs which product:<br />

trnnsit ion.<br />

g. The i~~fluer~ce of rougl~rless on transition<br />

I. Introtl~~ctory remark. The prolhrn which we arc about to examine in this<br />

sec.t.ion, namcly the questhi of how t.hc process of transit,ion tlepentls on tllie roughness<br />

of t,hc solitl walls, is one of consitlcra1,lo practical importance; so-far, however, it<br />

has not. I)cen possiblc to annlgzc it t.ltcwrct,icnlly, Tllc prolA:m untlcr cot~sidcmtion<br />

has g:i.inctl in irn~mrt.anc:e in the rcccnt ~~ast,, ~~artic~~larly sincc thc adventl of laminar<br />

arrofds in acronaubic;d applications. 7'hc vcry cxtcnsive cxpcrimcntal material<br />

nolh:ot,cd np 1.0 d:'.t,c incl~drs information on thc efrcct of cylindrical (two-dimensional<br />

roughness elcmc~it~s), point-like (t,hrec-dirncnsional, single roughness clcn~cnts) and<br />

clistril~ut~ccl rorlghncss clcmcnt~s. Many of the investigations include addit,ionnl data<br />

on t,ltc: inflt~crtcc of pressure gratlicnts, t,~~rbulcncc intensity or Mach number.<br />

Generally spearking, the prescncc of rougllncss favours transition in tl~c. sense<br />

t,liat utltlcr oblicrwisc itlcnt,ical cordit.ions transition occurs at a lower lteynolds<br />

nt~nibcr on a rough wall Llian on n smooth wall. That t,liis should bc so follows clearly<br />

from t,lic I,llcory of stability: ti~~_e~i?tencc of roughncss elements gives rise to arldit,ional<br />

tlistur\)anccs in tho laminar stream which have to bc atltlcd to those gcncratG4<br />

by t~~trI~~~Ien(~~<br />

ant1 alrcady present in the boundary layer. If the disturbances creatctl<br />

by roughncss arc bigger tiinn those due t.o turbu~cncc, we ijiiistckji+ !,h


638 XVII. Origin of t~~~rbnlc~~rr II<br />

As the Ilright k is incrc:rsctl, the position of Lhe point of tjrarisit1ion ztr moves closer<br />

to tllc ronghncss clcn~cnt, which nlcnns tht tlic curves in Fig. 17.41 arc trnversctl<br />

froni left to right. The expcritncnl,nl points begin to tlcvint,e from this curve upwnrds<br />

as soon ns the point of tmnsit.ion has rcncl~ctl tho rougllness element, i. e. when x,, -. x,.<br />

Thy t.hnn lie nlorig tho fnrnily of stmight lines which contain r,/k as a parameter<br />

and is given by<br />

Pig. 17.41. 'I'l~r rri1,ic:nl Ikynolcln nulnbrr for lntninnr Im~~~clnry Iayrr nn o fitnc:Lion of t,l~r rnlio<br />

of t~riglil, k nfn~npl~nr~n elcincwL 14, tlltr dioplnrcntcnl, I I~icknracr of I lw I)onnclnry l~~ycr nl. Ihe poniI.ion<br />

of f.lir rongl~nms rlrtncnt,, dl,. for single, t\vo-~Ii~~~r.~~siotid ro~~gliness rle~nc~~it,s in inron~prr~~~iI)I~<br />

fl0\\.<br />

Tlw ~w:~~t~rrtn~~nIs<br />

wv ~:~li~C:~vl~~rlly inlrr~~~~lnl~~d 1,s rqn (17.28)<br />

t<br />

.-<br />

[I*<br />

it is nlso RIIOWII in Fig. 17.41. According t,n Jnp:tncse ~nonsuremcnls [237), the<br />

l~ypcrbole-like branch of the curves in Fig. 17.41 possesses 11nivers:~l vnlitlity,<br />

both for flows with cliKcrent, weak pressure gmtlicnt,~, nnd with different inlensitics<br />

of turbulence. Increased turhnlence eauscs merely an enrlicr deviation of the cnrve to<br />

the left,, in the direction of the tnrb~rlc~~cc-tlepet~(let~t crit,ionl IEeynoltls nuinbcr of<br />

,<br />

IIRVC Itvl I


540 XVII. Origin of turhulonce 1 I g. The influence of roughness on transition 54 1<br />

'I'ltc rorrrspontling curvo is rcprcscntcd in Fig. 17.42.<br />

According t,o TI. 1,. 1)rydcn [30, 401, it is possible to take into account the<br />

vnrintion in tjllc t,nrl~ulcncc intensity by plotting the ratio of the critical Reynolds<br />

nl~rnlwr for n rough wall t,o that for n smooth wall, namely (R,t,),o,,h/(R,tr),mOolh,<br />

:I.S n. fnnction of 1;/Olk, TGg. 17.43. When j~lottcd in this sgstcm of coorclinatcs, the<br />

r(w11l,s of tn(:rls~~rcrncnts wit,ll diffcrcnt itltcnsitics of tmrI)ulcncc fall on a single<br />

cnrvc which mcn.ns that, the ratio (R,t,)ro,,,/(R,l,),monlh is a function of tho single paranlct.cr<br />

k/R1,. Tht: t,llrcc questions posctl at thc cnd of the last section can now be<br />

easily nnswcrctl wit,lt t,lre nit1 of t,l~c t.hrrc graphs of Pigs. 17.41, 17.42 and 17.43.<br />

Very tlcl.n.ilrd cxperimcnt,~ concerning the influence of n two-dimensional, discrete<br />

roughness elcmcnt (wirc) on transition wcre performed reccnt,ly by P.S. IClebanoff<br />

ant1 I


\vi(,l~ a (-ylit~(lw envcrv(1 wiI.11 sit.11rrs,<br />

l.11~ S:IIII(* is svrtt 1.0 be t.r~~c :I,IK)II~, 1110 l):~r:~l)olic vcIo(~ity profilrs it1 a, pipe. 'I%r sn,t~~c<br />

conclrrsion w:ls rc~nel~otl by (:. R.1. C'otw)s nntl .I. 12. ScIInra ( I HI, by C. I,. I'c*l


544 XVII. Origin of t~~rbulcnco 11<br />

The rnrn.surctl jmints represent obscrved neutral disturbance vortices at the<br />

Im~mlary bet~wccti clamping and amplification. The agreement between theory and<br />

expcrinwrit is vcry good. 'l'hr thcory confirms the supposition that small velocity<br />

cwtnlwnrnt.~ in 1.t~ t,n,ngrnl,inl tlircctions cause Ilagen-l'oisenille flow to becomc unstal)le.<br />

,I. Ilot,l.:~. whosc~ work was disrus\qcd in (lcl.:~il in Scc. XVIa, performed rnoasurcn1t~nt.s<br />

011 (,IIo it~I.c\rttiit~t,ct~~y f:tctor of lwgc tlisLurbances propagdcd downstream<br />

in t.hr inlrt, sc~c:f,iott of :L pipe. Similar cxpcrinicnt,~ were performod by E. It. Lindp<br />

~ 11.701 n who rnaclr I,hc tlisturl)ance visihlc by the use of polarized light and a<br />

I)~-~.c~f~.ii~gctit,, wcalc solution of bcntonitc. IC. R. Lindgrcn was ablc to show that<br />

cvrrl strong initial disturbances decay in the inlet length when the Reynolds<br />

number of the flow (based on the pipe diameter) is small. At Reynolds numbers<br />

from nlm~t R = 2600 npwards the process of transition begins. It is characterized<br />

by an amplification of the initial disturbances and by the appearance of self-sustaining<br />

t~~rbulrnt flashes which emanate from fluid layers near the wall along the tubc.<br />

Thc preceding peculi:~ritics of laminar flows through pipes forcc us to re-considcr<br />

thc relation between the theory of small clisturbances and txansition and, in particular,<br />

to pose tJic question as to whether transition can alwmys be said to be duc<br />

to an nmplificat,ion of sn~nll disturbances. No conclusive answer to this question can<br />

at pr(:scnt be given without further work on the behaviour of small, three-dimensional<br />

disturbances. In this connexion it should also be remcmbercd that the limit<br />

of stability for plane Poiseuillc flow which lies at R, = 5314 as stated on p. 480,<br />

c:onsidcrably exceeds the critical Reynolds number for transition observed in<br />

cl~nnncls. This is inconsistent with the theory which asserts that t h limit of stability<br />

must always occur at a lower Reynolds number than transithn itself. However,<br />

at the prcsent, stage of knowledge, and in the face of tho present interest in the<br />

subject,, juclgerncnt must be reserved until further results become available.<br />

The stability of a laminar boundary layer on a body of revolution was also<br />

invrstipt~ctl I)y ,I. I't~t~cll [17C,J; in t,his coi~ncxion consult a paprr by 1'. S. Granville<br />

1821. 111 raws whew t,lir rat,io of' bonntlatylaycr t.hiclrncss to curvature is vcry small<br />

c:o~nl):irwl n.il.11 unit,y, the rcsult,ing st.n.l)ilit,y cquntion for t.hr axially symmetrical<br />

raw I)rron~cs itlvnt,ical wit.li t,l~at. for thc I)l:~nc case. llcnc:r, all rrsults obt.nincd for<br />

the Iatt.cr rnn bc extrntlctl to apply to the former withoi~t, rcsrrvation.<br />

111 Ahbolt. J.11.. van 1)ornlwK A.15., and Stivrrs, L.S.: Sltrnrnary of airfoil daL7. NACA<br />

L 3<br />

Il.cp. ~ 24 (1954).<br />

[2] Althn~~n. I>.: Sl,ut,tgnrt.cr Profilk:~t.alog. Inst. Acrodynamil~ of SI,tlttprt Univ. (19721.<br />

1:)) ARC Ilk1 24!)!): 'l'riinsi t.ion and thg rnrasnrct11c.nt8 on the 1lonll.ot1 I'xrtl sample of Inminnr<br />

flow wing c.on.rt,ruc:t.ion. Pnrt I: by .J.H. I'rcston nnd N. Gregory; J'art 11: by K.W.<br />

I< imlwr; l':~rt, I I I : .Joint, I>iscnssion.<br />

[:!:\I I~r:tdcy. .l. A,: (!:~lc~~l:lt.inrl of Lhc Inrninnr I,ountl:+ry Iayor nnfl prctlict.ion of (.rannition<br />

on n shrnrctl wing. AM! Ibhl 3787 (1976): ItAI': 'I'R-7:)150 (1!374).<br />

[4) I ~jnt~~in, 'l'. IS.: lI:lTc(:ts of IL flexible bc~tntrlary on l~ydrotl~nntnic ntnbilily. JFM 9, 513-<br />

.Kt2 1 l!Mi I \<br />

[7] Bradow, A. I,., and Visconti, F.: lnvest,igation of bonnd;rry Iaycr Rrynoltls nrrtnl)cr for<br />

transition on an NACA 05(215)- 114 airfoil in tho 1m)glcy two-dir11c11nior1111 low-t.t~rhu-<br />

Icncc prrsnllre tunnel. NACA TN 1704 (1948).<br />

[8) Ikinith. P.F.: Ro~tt~dary layer transit,io" at ~nch 3.12 wil.11 rind \vil.l~o~~f nittRlr ~ OII~III~U.SS<br />

elcrncnt. NACA TN 3267 (1954).<br />

[9] I3ussmann, K., and Miinz,H.: i>io Stsbilitiit der Iarninarrl~ Itc~ib~t~~gxnc~hicht ],lit 1\1J4:111 -<br />

gnng. .Ib. dl.. I,rtftfahrtforsol~r~ng I, 36 -- 39 (1942).<br />

[lOl I~llaslrlanrl, I


646 XVII. Origin of turbulence TI<br />

Frrnkiel, 1'. N., lanrlnl~l, Al. 'r., rind I,~~mlny, I,.: St.rnct,nrc of t,url)ulrnrr an0 c11-;1g r~duc.tion.<br />

ILJ'l'Ahl S~IIIII.. Wnsl~ingtm, I). C.. 7 - 12 .JIIIIC 107fi. 'l'l~r I%ysirs of I~'l~~i(ls 20,<br />

No. 10, I'orl, 11. p. S I ~ - 2!)2, S l!)77; :ilw I$. A. '~'II~IIII in l'rnv. III~WII. ('o~~grrss ~ I I


M8<br />

XVIT. Origin of t.nrhltlrncc II<br />

. .<br />

lag, Mninz, I00 - 1!)5, l!)W<br />

[!)I] Iliggins, IL.\Y., and Pnppnn, C.C.: An c.uprri~~~c~t;~l invcsLigalion of thr rfTrct. of snrftccc<br />

l~c~tine on lmrtntlnrv " Invrr . tr:rnsit.ion on n f1:ct plntc in snprrsonic flow. M;\(:rl 'l'N 2351<br />

(l!)51):'<br />

[!I21 Ilols1,cin. (1.: hlnssnngen zur I,:~~ninarl~:~lt~tng tlor lZc:il~rt~~gsscl~irl~t,. I.ilict~t.hel-llrric.l~t S 10<br />

17- 27 (1!)40).<br />

(931 tlrtnng, I,. hl., nnd ('hon, T.S.: Stnl~ility of tlrveloping pipe flow snbjrctrtl t,o no11-nxisynltnrtricnl<br />

rlistnrl)ancrn. .I lchl 8.1, 183 - I!):! (1!174), scr also 1'11yn. Iflnicls 17, 245- -247 (1!)74).<br />

1!)4] Van Ingrn, J. I,.: A snggrst.cc1 swni-rntpirict~l ~nrthorl for the ralculntion of t,hc bonndery<br />

Inver transit.iot~ region. 'l'echn. Univ. Uo1). of :\eronnutics. I)elft,. Report V.T. H. 74 (1956).<br />

19.51 Jnrk, .I. Jt., and IXaronis, N.S.: \':rriation of bonntlary-lngrr transition with heat tmnsfrr<br />

on Lwo bodies of revolntion at a Mach nntnhcr of 3.12. NACA TN 3562 (IDRR).<br />

[90] .Iacol~s, 13. N., ru~l Sl~crn~rcn, A\.: Airfoil nc:ction rl~~~r:rrLrriuLirs as rtnbctr.tl I'g vnri~ctionn<br />

of the ILeynoltlnnun~bcr. NACA TJt 5Mi (1!)37).<br />

[97] Jcffrcys, 11.: 'l'hc insLabilit.y of a Iagcr of flnid hentcd below. Phil. Mag. 2, 83:i-844 (1926);<br />

see also I'roc. Jtoy. Scc. A 118, 1!)5-208 (l!Y28).<br />

1081 Jones, 13. hl. : I?light cxpcritncnL~ on tl~c bonndnry Inyer. \\Iriglrt Brctl~ers Lect.ure. JAS<br />

.5, 81- 102 (19:IIl); also Aircrnft 1':ng. 10, 135--141 (1938).<br />

1991 Jones, 13. M., nnd Head, M. R.: Tho reduction of drag by distributed suction. Proc. Third<br />

Anglo-An~erican Aero. Conference, llrighton 109-2330 (1951).<br />

[I001 Jack, .J. It., and I)iaconis, N. S.: VarinLiott of bo~tntlery-layer t.ransition wit.h heat transfer<br />

on two hodics of rcvnl~~bion at a Marh nnrnlrcr of 3.12. NACA TN 3562 (1955).<br />

[I011 Jack, ,I. It., \Yisnic\vski, Jb. .I., and I)iaconis, N. S. : Effcctn of extrcn~c surface cooling on<br />

I)ortndnry Ingcr t.ransitiott. NACA TN 40!)4 (1!)57).<br />

[102] Jillir, l).Mr., ant1 Ilopkins, E.J.: 15fli~t.s of hfaclt-nnn~ber. Icading-edge blunt,ncss and<br />

swrep on honnctnr,y-layc:r transiLiotl nn rr. flat. plnto. NASA 'I'N 1)-1071 (1M1).<br />

[103] Jonrs. W. P., llnd I,nu~~tlcr. 13. I


550<br />

X\'ll. Origin of t,11rh111rnrc TI Itefcrences 55 1<br />

(I:18\ I,:~nirr. ,I., nntl Mnrlc, .I. I:.: lksrrltn nwl n criticnl c\iscrrssion of trnnsition-1loy11olcls-<br />

IIIIIII~)(:I. 1nvil~111rr1nents on insul:~trd rows nntl llnt plates in st~personir n.incl tunnrln. Jet,<br />

Propnlsion I.:tI)., I'nsntlcmn, (hlif.. Rep. 20--!I0 (I!J55).<br />

[I391 I,nufcr, J .. n.nd Vrrlmloviclr, 'I'.: Stithili1.y r~nrl 1.rnnnition of a s~~prrsonic: Inn~innr I)oundnry<br />

Inycv on :i flirt. plntc!. .lIVkl 9, 257- 2!)!) (I!)liO).<br />

11401 I,&R, L.: 1'110 nt.:tl,iliLy of t,l~c I:uninnr 1)01111dnry Inyrr in n con~prwsil)lc flow. NI\C:II TN<br />

I:%(iO (1947) and NI\(!I\ I


552<br />

XVII. Origin of tnrhnlonco TI<br />

Tin41 L-..., ltr*shot,ko. --.. ~. IC.: St.abilit,v I,hcorv na a mido " to the evaluation ot t.rnnsition data. AJAA J. 7,<br />

1086-- lO!)l (l!)69).<br />

ll94nJ Itesl~otko, I


554 XVII. Origin of t,rlrbuloncc TI<br />

[23HhJ Tnni, 1.. 1111~1 S:~tn, 11.: lloitndnry Inyrr t,ra~inition hy roupliness elemenk. J. Phys. Soc.<br />

Jnpn 11, 1284.- 12!)1 (IM(i): src also IXr Congrco Internntionnl de Mi.canique AppliquCe,<br />

AcLcn. 11'. RG93 (1057).<br />

12391 Taylor, O. I.: Internnl waves and tnrhulencc in n flnirl of vnrinhle drnsity. Rnpp. Proc.<br />

Verb. Cons. Jnternat. your 1'l':xploration dc la Mcr. LXXVJ Copenlingen, 35-42 (1931).<br />

12401 Tnylor, G.I.: Ell'ects of vnrialion in tlennity on the stabilit,y of superposed streams of fluid.<br />

I'roc. Roy. Soc. A 132, 49!)-523 (1931).<br />

12411 Taglor, (:. I.: Stability of a vi~rons liqnid e.olit,nined het.wcen two rofnting cylintlers. Pliil.<br />

Trans. A 223, 28IIb343 (1923); scc also l'roc. Roy. Soc. A 1.51, 4!)4-512 (1035) and 157,<br />

540---A64 nntl 565-578 (I 936).<br />

[242] l'l~roclorsen. 'r.. and Gnrrirk, J.: (2cncrnl pot,cnt,inl thory of ztrhit,rnry wing section. NACt\<br />

TI< 4V2 ( l!X33).<br />

\ ,<br />

12431 Ulrirl~. A,: 'I'hcorrtinrlic Utit~cr~~lcllilligrrl iihcr die \Vitlrrwtnntl~crs~inr11in cl~lrrh 1,nniinnr-<br />

Iin.lt~tng lnit, ~\bsnilg~~ng. Nrllriftm (10. Altncl. (1. Li~ft,fnlirt,forrrcl~~i~~g 8 13, No. 2 (1!)44).<br />

12441 \\'cntlf, L".: 'l'r~rl~nlcntc St,riin~r~l~g z\visrheu zwci rot.iornllclon konxinlc~i %yli~~d~rr~. 1)i48.<br />

(:iitt.ingcn 1!)34. I ng.-


6M XVI I I. Pundemcnt~nls of turbolent flow b. Mean motion nnd Il~~rt~~ntiot~s 557<br />

Fig. 18. l a. C:&nlcrn vcloril.y 12.1 5 ctn/scc<br />

- --<br />

Kg. IX. I 11. C:~n~or:t vr:lority 25 c~n/scc<br />

Fig. 18.1 rl. Cntncr:t vclocit.y 27.6 cnl/san<br />

Tn following this path it Itas at lonst provctl possil~lc t.o ~st,nl)lisl~ rmt.ait~ tllcoretical<br />

principlcs which a.llow 11s t,o int,rocl~~cc n 1nr:lsuro of ortlcr into the exprritnct~t~al<br />

mnterinl. Morcovcr in ninny cnscs it provctl possible to prctliot, t(11cw tntwn v:~lllc.s<br />

untlcr t,llc nssurnpt,ion of ccrtnin plat~siblo I~gpotllcscs nntl so to ol)t.nin gootl nglwment<br />

wit,ll experiment. The following clixpt,c~s will givc an nncount of such a srlniempirical<br />

t,licory of tnrbrrlent flowt.<br />

b. Mean motion n d fluctuntiot~s<br />

Upon closc invcst,igntkn it appears t.llnt, t.Ile most, striking f~::it,urc: of t~~rl)~rl(*nt,<br />

motion consist,s in the fact tlmt the velocity :lntl prossllrc :~t n fixctl poit~t. in s1,:ic.c<br />

do not remain const.nnt with tirnc but, pcrforni vcyy irrrgulnr fl~rc:t.~t:~t~ions of high<br />

frequency (scc Fig. 16.17). Thc lumps of fl~~itl whic:h pc:rfnrnl srrc:lt fl~tc:tu:~tions ill t.l~c<br />

tlirect,ion of flow and nt right a.nglcs to it, do not, co~isist. of single 11101~~ct11t:s :IS ~ISSIIIII(-~I<br />

in the: Itincl,ic theory of gases; they nrc tnnc:roscol)ic Iluitl I):dIs of varyi~~g sn1:111 S~XI'.<br />

It nmy be notctl, by way of cxnmplc, t.l~nt~ nlt.l1011g11 t,I~t: vcIocit8y Il~~(.t,~~:~t,iori ill<br />

ch:annel flow does not exceed scvcral per cent.., it, ncvcrt,hclcss has n drrisivo inllucnc:c?<br />

on thc whole course of the motmion. The flr~ct,l~:~l.ions rrntlcr cor~sitlrt.:~t.iot~ nlily IIC<br />

visr~nlizetl by realizing t,llnt, ccrtnin bigger port.ions, of t,hc fluid h:~vc: t,hcir own int.rinsic<br />

nmtion which is supcritnposctl on t,hc 1n:1i11 flow. S1tc.11 /hid 1~111s or 11i111ps :~rc!<br />

c:learly visihle in t,he pl~ol~ogmphs, Pigs. 18.1 11, c, (1. 'I'llc: sixc of sr1c.11 lluitl I):~lls,<br />

which c.ont,inunlly ngglornemt,o i d disint,(yy:it,(:, (It+ml~invs 1.11~ nrule o/ I~o.I~IPIIcP;<br />

thcir size is tlct,crtn~nccl by the cxt,crn:ll c.ontlit,ions :~ssoc*i:~.tt:tl wiI.11 1.11~ flow, t11:lt is,<br />

for example, by the rncsl~ of n screcn or Ilot~cgcolnl~ t,l~rortgh whirll tJ11: st,rc:~tn l~ntl<br />

p:~ssctl. Scvernl qunnt.itnt.ivc nienslrrcniont.~ of t.lic mngniI,~~tlcs :~ssoc-i:~t.c~l wi1.h s~tcl~<br />

fl~rc:t,rt:it.ions will be givon in Scc. XVl l l (I.<br />

-- - -- - - . --<br />

t Scvcral workers, in pnrt.icnlnr J. hl. Jhrgrrs, 'I'll. ~on Ji:irn~;in :ttlql (:. I. 'l'nylnr cl11i1c c.:u.ly<br />

dcvclopcd a tllcory wllich cxceetls t.llrsn li~nik nncl wllioh is I)nsrtl on sl.nl.ist,ic:nl ~w~rt.pl.s.<br />

JIowcvrr, (his I.llcory has not so far I)cctl nblc 1.0 solvc 1.11r ~IIII~~:IIII~II~:I~<br />

1~t11)1r111 t~lwlir~~~rtl<br />

cnrlicr. We do noL propose l,n consi~lcr I.llis sl:ttidit~:tl tlwory of l~~~rl~~~lrt~rr-<br />

in t 111% rwt1:1i11111\r<br />

of I h 1)ook IWII rrl'kr I,ltc rtwlor lo 1110 ~~o~~~~~rr-l~rt~~ivo<br />

tvvirw~ Ivy ti. I


558<br />

XVITI. Fundamentals of tr~rbulelit flow<br />

Tt, has already bcrn pointed out, in Chap. XVI that in describing a turbulent<br />

flow in mathcrnatiml terms it is convenient to separate it into a mean motion and<br />

into a flududion, or eddying motion,. Denoting the time-average of the wcomponent<br />

of vrlo~ity by 12 and its velocity of fluctuation by 7~', we can write clown the following<br />

rrlations for the vrlority components and pressure<br />

as indirntcd in eqn. (16.2). Whcn the tmrlwlent. stream is comprrssil~lc (Chap. XXTII),<br />

it is necrssnry to inclutlc ll~~ctr~ations in tho tlonsity, Q, and in the temperature,<br />

T and to put -<br />

Q z 3 1- Q' ; 7' 2' 4- yl' . (18. 10, f)<br />

'rhc time-averages are formed at a fixed point in space and are given, e. g., by<br />

In this connrxion it is understood that the mean values arc taken over a sufficiently<br />

long int.crval of timc, tl, for thcm to be complet,cly inclepentlcnt of time. Thus, by<br />

clcfiniLion, the t.imc-avcmgcs of all q~~antit~ics describing the fluctuations are eqnnl<br />

to zero :<br />

- - - - - -<br />

u' =O. , v' =O; w' =O; p' =O; Q' = 0; T' = 0 . (18.3)<br />

The fcc?n.t~~re which is of f~~ndamcnt,al import,ance for tho course of turb~~lent motion<br />

consists in the circumstnncc that the flnctmations u', v', 1u' influence the mean motion<br />

7Z, fi, 1% in s11c11 a way that the latter exhibits an apparent increase in the rcsistancc<br />

to tloform:~tion. 111 other words thc presence of fluctuations manifests itself in an<br />

apparent, incrcasc in the viscosity of thc funtlamentnl flow. This illcreased rcpp.renl<br />

visco.sit?/ of tlic mean st.mnm forms thc central conccpt of all t,l~eorctical considerations<br />

of tnrl~~tlont mot,ion. We shall begin, therefore, by endcnvouring to obtain<br />

R c:loscr ir~siglil~ into these relations.<br />

11, is uscful Lo list here soveral rnlcs of operating on mein time-averages, as they<br />

will be rc:qnirctl for rcli:rcncc. If / and g arc t,wo dependent variables wliosc rileall<br />

v:tIurs arc to Ijc li)rrnctl :11i(1 if s t11:nnk:s :III~ 0110 of the indcpcnd~:nt vn.ri:~ldcs s, y,<br />

z, 1 lhrn tl~c following rules :~pply:<br />

c. Additional, "appnrent" turbulent stresses<br />

Before tlctlucing the ml:~t,ion lmtwccn the mean motion :mtl tltc: np[)arc:nI, st,rosscs<br />

caused by the fluctuations we shall give a physical explanation which will illustrate:<br />

their occurrence. The argument will be based on the momcnt~~rn theoron.<br />

Let us now consider an elementary arca dA in a turblllcnt stream wliose vclocity<br />

components are u, rt, w. The normal to tho area is imaginctf parallel to the 2-rrxis<br />

arid thc directions y and z aro in the plan0 of dA. The mass of fluid passing tJ1ro11g11<br />

this area in timc clt is given by CIA . ~u - dl and h011c:c the flux of ~nomc:nt.urn in tlic<br />

z-direction is cIJ, dA . Q u2 dl; correspondingly the fluxcs in thc ?/ and z-tlirockions<br />

arc (1.1, = tlA - p n 77 . tll and (1.1~ = tlA . p id io - dl, rc:sl)cc:l.ivc:ly. Ilt:mcn~l~cri~~~<br />

I h l ,<br />

thc tlcnsit.y is co~~stmit we can caIc111:~bo the following tinlc-:~vcr:~gcs for tlic lluxcs of<br />

momcnturn per unit time:<br />

By qn. (18.1) we find that, e. g.,<br />

applying the rules in eqns. (18.3) and (18.4) wc find that<br />

awl that, similarly,<br />

u2 = us A- ~ ', 2<br />

Iience, the exprrssions for the momentum flnxcs per unit timc become<br />

7'11esc q~~antitics, dcnoting I.ho ratc of chango of momcntum, Imvc the clirncnsioii of<br />

forces on t,he elementary area cfA, and npon dividing by it we obtnin forces pcr unit<br />

area, i. e. stresses. Since the flux of momentum pcr unit timc through an arca is<br />

always oqnivalcnt, to an cqunl and opposih forec excrtcd on tlra arcs hy the surrountlings,<br />

we conclndc that the arca undcr considcmtion, which is nor~nal to - the<br />

s-axis, is act,cd upon by the strcsscs - e (iiz + p) in the 2-direction, - p (ii 6 -1- u' v')<br />

in 1.11~ y-~lirt~t:t,ion am1 - p(Q tZ -1 IL' IIJ') in tho z-dire~:tion. Tho li~,sl, of Ih: I,l~rtx: is<br />

a nornlal s1,ress nnd the I:bt,ter two are sitraring strrssw. It is t.1111~ scrn titat thc<br />

s~~prrposit~iori of flnct,n:blhns on the mc:m motion givcs rise 10 three atltlitional<br />

strrsscs<br />

- - -<br />

ozr = - Q u'2 ; tyzr = - Q U' V' ; t,,' = - Q 11' w' (18.5)<br />

acting on the rlemrntary snrface. T11c.y arc tcrmctl "app:~rc~~t" or It?c~no1& stres~es<br />

of t~~rbulrnt flow and nlust be adtlccl to thc strcsscs caused by tho steady flow as<br />

explained earlier in conncxion with laminar flow. Corrcsponcling rxprcssions apply<br />

in the case of rlcmcntary areas normal to the two remaining axcs y ant1 z. 'l'l~ry


560<br />

XVIII. P~tndan~cnlal~ of turbulent flow<br />

lorm topctllrr a c*omplrte ~trtss tensor oi l~~rbulenl /low. Eql~ationst (1 8.6) were first<br />

tlctlncrtl 1)y 0. ltcy~oltls 1431 from the equations of motion of fluid dynamics (see<br />

also the next srct ion).<br />

It, is easy 1.0 vis~~alizc - that f,he time-averages of thc mixed products of velocity<br />

Il~~ct.u:sl.ions, SII(~I as C. g. TI,' 11' - do, in fact,, diffcr from zero. The stmss component<br />

a,,' - T,,' -- - - Q 11' 11' c:~n he int,erprct,cd n.s the t,ransport of z-morncntfnm through<br />

a surfacc 11or1nn.l t,o tho ?/-axis. Consitlcring. for example, a mean flow given by<br />

IZ == I:(?/), Ij --- 221 --- 0 with t14/dy > 0, tPig. 18.2, we can see that the mean product<br />

16' 11' is tlilTcront. I'rom zero: 'l'llc pnrl,iclcs wl~ich travrl upwards in view of the trrrbulcnt,<br />

Fig. 18.2. Transport of momentum due<br />

to torbrdent velocity flrrctuation<br />

-<br />

ottly tlilli:ro~l, from 7,cro l~t, also nrg:l.l,ivc:. 'l'llc shearing stmss a,,' = - p 11,' 11' is<br />

~)osit,ivct in tllis c.:~.sc nntl hns tJ~e snmc sign as the rrlcvnt~t Inrninnr sllcaril~g stress<br />

T, -- 16 tl~i/tl?y. 'l'llis fact, is nlso csprcssctl by sl,a.l,ing that thcrc exists a co~wlnlion<br />

I)c*t,wcotl 1.l1o longit.n(linal and t~mt~svcrsc Iluctuation of vc4ocit,y at a givcn point.<br />

cl. nrrivntion of rlw ~trrss trrisor of nppnrctlt tt~rbrrlcnt friction<br />

from thc Nnvic-r-Stokcs cqrrntior~s<br />

ll;~\,it~g ill~~sl.r:~(.c(l t.11~ origin of t,I~r n,~l~lit,i(~~~:~l I'nrccs ca~tsc(I l>y l~~trl~nlc~~l~<br />

Ilt~c-(.~~:~l.ion wil.lt l,11(: :lit1 of :I, pltYsic:~l :trg~trnc:nt wo sh:~,ll ttow pt.o(:(~~~I 1.0 tl(*rivc<br />

tit(- snlllc rxl)rrssion in :I. tnoro forn1:~l ~ 1.y :~11(1 dirrd.1y from t.llr Navicr-SI,oIzcs<br />

cvl~~:~tio~~s. 'i'lw ol,jwl. of 111~ sncxwxlirtg :I~~IIIIICQ~, is 1.0 (Icrivc thn cqun.l.ions of<br />

~noliou \vhic41 tnr~sl, Ilr sn.l.is~ircl 1)y 1.11~ tin~c-avcrt~grs of t.llc vclocit,y com~~onc~~t.s<br />

ii, i;, 171 :111tl of tlw pr(.ss~~rr p. '1'11~ Nnvi(~r-Sl,ok(~s cclu:~I.ions (3.32) for incompressible<br />

llow WII I)(% r~x\vril,k~~ in tltc, rcu-111<br />

wltcrc V2 de~~ot~cs 1,apl:wc's oprat,or. Wc IIOW in troducc t.hc 11y pol.l~cscs t.rg:~tdil~g<br />

the decomposit.ion of velocity componcnt,~ and prcssnrc int,o tlwir tirne-avcr:~grs<br />

and fl~~ct,~lat.ion tmrns from cqn. (18.1) antl form tirnc-averagcs in tPhc rcwtll,iltg<br />

cqunt,ionst t,erln by tcrrn, t:lking inLo aec.onnt thc rult,s from cqn. (18.4). Sincsc<br />

a?/az = 0 et,c. t.hc equation of continuity bccomcs<br />

From cqns. (18.7) nntl (18.6~1) we obtain also thaL<br />

It is seen that the time-averaged vclocity components and tl~c fluctu:lt.ing coniponents<br />

each satisfy the incompressible eqnat.ion of cont,in~~it~y.<br />

Tntroducing tJle assumpl,ions from cqn. (18.1) ido the rcl~t:~t,ion.s of tnot.iolt<br />

(18.0a, b, c) we obtain expressions similar to those givcn in 1.lln ~)rccctling scv:t.ion.<br />

Upon forming averages antl considering the rules in cqn. (1 8.4) it is not,icctl t,l~nt. the<br />

quadmt.ic tcrn~s in thc menti values rernn.in unalt.crctl 1)ccausc l,l~ry :~rc :~Irc:t~ly<br />

const,ant in t.imc. l'hc tcrnls which arc lincar in the Lurb~~lcnt con~poncnts sud1<br />

as c. g. ad/at and a2u'/ax2 vanish in view of cqn. (18.3). 'rho sntnc is true of t.1~:<br />

nlixetl t,crrns such as c. g. G . IL', bllt t.hc cl~~adr:~t.ic tcrtns in t h llirc:l,n:~l.itt:! c:o~tl-<br />

--<br />

ponents remain in the eqnat,ions. Upon averaging they assume t,lrc form 1.'" 71,' v' ctc.<br />

llrncc, if the averaging process is carried out on cqns. (18.0), ant1 if silti~)lific~:~(io~ls<br />

arising from the continuit,y equat.ion (18.7) arc int.rod~~rc*tl, the follo\~ir~g syslctn<br />

of eqnatlions rcsults<br />

r 7<br />

.I 11c cl~~a(lrnl,ic terms in tnrlmlcnt vcloc:;l,y cotnpo~tr~~t.s It:~vo l)ecl~l I,r:~nsri~~wtl lo<br />

th: rigl~t,-I~:~~n(l si(1o for :I, r ~~~son whid~ will soott I)(WIII(: :I~I)IIIWI~,. ICeps. (1S.S)<br />

togctl~rr with t,l~e ccl~~:~I.ion nf cont,in~~if~y, (Y~II. (18.7), (I(~l.~wtlit~c 1.110 11r01~1(-111 t11111(.r<br />

consitlcralion. 'I'hc Icftr-Irnnd sitlcs of ccpls. (18.8) arc l'~~rtn:rlly itlcnt.icd will1 (111:<br />

steady-state Nnvier-Stokes equations (3.92), if 1,llc vc1ocil.y con~ponrnl.~ I(,, v, 111 arc


562 XVlI1. R~nclnmont.nIu of tur1)ulant flow<br />

replacctl by kheir time-averages, and the samc is true of the pressure mtl friction<br />

f.crms on tho rigtit-hand siclc. In atltlition the oq~lations contain terms which tlcpcnd<br />

on Llie t~~rl~nlorit fl~~cti~ation of the slrcarn.<br />

Comparing eqns. (18.8) with cqns. (3.11) it is secn that tlie additional t,erms<br />

on t,lic right-liand siclc of cqns. (18.8) mtn be int~rpmtcd as componcnts of n, strcss<br />

tcnsor. I3y eqn. (3.lOa) the rcsc~lf,:rnt snfi.~e: force per unit. :m:a dw to 1,hc n.tltlitional<br />

tcrnts is s(:m Im I)(:<br />

Carrying tho analogy with cqns. (3.11) stmill filrtlior we can rewritc eqns. (18.8) in<br />

tho form<br />

antl iipon comp:tririg cqns. (18.9) with (18.8) we can see tliat the components of<br />

the strcsq knsor tl~tc to the tr~rbillcnl vclocit,y componcnts of the flow arc:<br />

r 1<br />

Illis stresq tmsor is identical with tho one obtainad in eqn. (18.5) with the nid of<br />

thc: mornenturn c?q~rat.ion.<br />

l'rom tho preceding argument it can 1)c conclutfctf hhat, the components of<br />

tho mom velocity of tur1)ulcnt flow satisfy thc samc eqnn.I,ions, i. c. eqns. (18.9),<br />

as those satisfied by laminar flow, except that tho laminar stresses must be incrensctl<br />

by atlclitional sl.rcr3.qos wliicli are givcn by tlie strms tensor in eqn. (18.10). Thcse<br />

atltlitional stresses arc known M upparent, or virtual S~~CRSPIF of turbulent /low or<br />

Ile?/tsol*lm stresse.~. 'l'hoy arc due to t~~rbiilont flucti~atiori and arc givcn by the tiincmean<br />

vnlr~cs of the q~~adratic terms in tho t~~rbnlent components. Since thcsc stmsscs<br />

are atl(ic:cl to tl~c orclinary viscoi~s terms in Iyminar flow antl liavc a similar influence<br />

on the conrse of tjlie flow, it is often said tli& thcy arc caused by edh/ viscosity. Thc<br />

t.ol.al strrssc~s arc Ihc: snms of the viscoi~s ~(.rcsscs fron~ cqn. (3.25a,I)) and of tlrcso<br />

:bpp:i,rcnt, strcsscs, so thtt, e. g.,<br />

Crnemlly speaking, the apparent, strrsscs far outwrigh thr visro~~s romponc~ifs and,<br />

ronwclurntly, tlir Iattrr may 1)c ornittrtl in many nc411al r:isrs wil!~ a gootl clc.pc.c<br />

of apl)roxitnal ion.<br />

<strong>Boundary</strong>-layer eqnations: At this stage it may be iiscful 1)riefly to o~~t,linc thr<br />

form ctf the boundary-layer equations for turbulent. flow. In the rase of lwo-di~~aertsionczl<br />

flows (15 = 0) cqns. (18.7) ant1 (18.8a, b, c), ~norlifiotl by the Iwutitla~y-1ayc.r'<br />

approximations as outlined in Chap. VI 1, lead to<br />

(two-dimensional, tr~rbulcnt boundary layer)<br />

Due t,o the boundnry-layer simplifications, the term<br />

which is generated by the normal st,resscs, can be neglcctcd. A compnrisoii with the<br />

equations for the laminar boundary layer, eqns. (7.10) and (7.1 I), leads to the follow-<br />

ing rules :<br />

(&) The velocity components and thc pressure, u, v, nnd p, are to be rrplaced by<br />

their time-averages Z, 8, j5.<br />

(b) The inertia terms and the pressure term remain unchanged, whereas the viscous<br />

term v ??2u/??y2 must be replaced by<br />

This is equivalent to stating that the laminar viscous force per unit volume a~~/ay<br />

must be replaced by<br />

where tl = palllay is thc laminar shearing stress from Newton's law, and .ct =<br />

- Q TG'? is the apparent turbulent stress from Reynolds's hypothcsis.<br />

Do~~ndnry conditions: The boi~ritlary contlitions to bc satisfied I)y thc mrriri<br />

vrloritey ron~poncnts in cqns. (18.9) arc the Anme as in ordinary Ianiinar flow,<br />

namely they all vanish at solid walls (no-slip cotltlition). Moreovrr, all turbulent<br />

components must vanish at thc walls and they are very small in tlirir immrdiatc<br />

nrighl~oi~rhootl. It follows, tl~rrcforc, thnt dl componcnts of the trrisor of :1pp:1rcnl,<br />

xtrcssrs vanish at Ulc solid walls and thc only strcsscs which not nriw t,licrn arc the<br />

viscous stresses of laminar flow as they, generally speaking, do not vanish thrre.<br />

F~lrthrrinore it is secn that in thc irnmcdiatc ncigh1)ourhood of n wnll the nppnrent<br />

stressts are small compared with thc viscous stresses, and it follows that in cvrry<br />

tnrb~ilent flow there exists a very thin laycr next to the wall which, in rssence,<br />

behnves like one in laminar motion. It is known as the lnrminrcr svh-loycr ant1 its


564 XVIII. I~~~ndnrncntals of tr~rbulent flow<br />

C. Swnc mcn~urernenta on ll~~ctunting t~~rbulcr~t vclocitiea<br />

In cxpcrirnc~nt.al work on tnrbulcnt, flow it is nsual (,o mcasurc only the mean<br />

val~~cs of prcssorc and vnloc:it,.y bccausc thy arc t h only quantities which can be<br />

~nci~sured convenicrtt~ly. l'lw mcasurcmcnt of the turbulent, fiuctuatir~g components --<br />

u', v', . . . t,hcrnsclvos, or of their mean valucs such as 7~'~, u' v', . . . is rather difficult<br />

arid rcqrlircs cl:rl)o~.ato equipment. Itcliablc ~nc:isurement,s of the fluct~ration-velocity<br />

roml~mcnts IIRVO O(:cn o\~t,:~incd with the aid of hot-wire ancmometcrs. The measurement,<br />

of tho ntcan values is quite sufficient for most practical applications, but only<br />

tt~rotrgh the actual measurement of the fluct~tating components is it possible to gain<br />

n tlcepcr untlersta.ntling of tlic mechanism of turbulent flow. We now propose to give<br />

a short account of sonic c~perimcnt~al work on the measurement of the fluctuatingvc1oc:it.y<br />

con~poncnt,~ in odcr t,o present, a rnore vivid physical picture of t,he plienorncni~<br />

and i11 or(lcr to give some jnstification lo the preceding rnat~l~cmatical argument,.<br />

I I. Iteic:lia,rtlt 141 J carried ont, such measurements in a wind tunnel with a<br />

rect~ariglllar test scctior~ 1 In wide and 24.4 em high. The variation of the mean vclocit.y<br />

over t,hc height of the tunnel, ii(?y), is seen plotled in Fig. 18.3; measurements were<br />

matlc in the ccntml section of tl~c tunnel. It is seen to be a typical turbulent velocity<br />

profile with a steep increase ncar the wnll and a fpirly uniform velocity near the<br />

ccnt.rc-line. The maxirnurn vclocit,y was U = 10 cmlsec. The same diagram contains<br />

also plots of t h root-rt~can-scl~larc values of the longitmtlirial and tr:tnsvcrse components<br />

,1/2 ancl 115 rc~pcctivcly. The transvcrse flucLnatio~t does not vary grcally<br />

ovcr the Iwigllt, of t.he cllanrwl and its avcragc? value is about 4 per cent. of f7, but<br />

I.llc longit.~tdinal t.url~ulcnt component cxl~it~il~s a pronorrncctl stmp maximum of<br />

0.13 17 vcry close to the wall. It is clearly Reen frotn the clingram th:tt I)ot,l~ t.~~rl)ctlcnt,<br />

components decrease to zero at tho well, as st,atctl earlier. Figure 18.4 shows a plot.<br />

of tile mean value of the product - 7=, which - is cq~l.zl to the t,rtrl)~~lcrtL sl~twing<br />

stress except for a factor Q. The value of - 76' v' falls to zero in t.l~o cont,rr 0 1 t,l~c:<br />

t,est section for reasons of symmetry, wltcreas it.s maximulrt ocrnrs ncar t.11~ wall<br />

sho\villg that tnrbnlcnt friction has its largest value there. 'I'hc brokrn line t/o sl~ows<br />

the variation of shearing stress which was obtiiinctl from the ~nr:~surt:tl prcbssllrc<br />

tlistlribution and independently of the measurement of vclocit,y. 'She tewo wrvrs<br />

nrnrly coincide over the major port,ion of the Itrigl~t, of the t.cst, srct.ion, atitl this ntay<br />

I)c inl.arprrt.atl as a ~ ood cl~eck on the rncnsurcmc~~ls; it. :dso sl~ows t11:~t n.lnrost. :tll'of<br />

th(? sl~caring stress IS due to t.urbulcnce.<br />

- l'hc two nttrvcs under consitlcr:~t,iot~ clivc.rgt:<br />

rlpar t,Ile w;Lll, t,)lc cllrvc of -- TI,' I,' tlw:rcasi~~g t,o zero. Irc~c~:~~~sc- I,III.I~IIIVIIL (III(.~,II:I~.~~IIs<br />

&c out near the wall. The tlifirencc bctwecn the two curvcs gives I:~n~it~:lr fri(.t ion.<br />

Finally Fig. 18.4 contains values of the correlation coe//icie7rl, VJ, I)ct,wccn t,ltc 10npit~11clinal<br />

nntl transvcrse fl~tcl~r:~l.ions at t,l~c same point,; il, is tldit~cvl l).~<br />

Fig. 18.4. Blrnsurrt~~r~~t of Il~rc-l,~~n.l,it~p rotllponcnts<br />

in n clmnnrl, ~~ft,c:r<br />

llrir4mrtll 141 I<br />

TI," pro,lll,.L iF?,<br />

lltv shcxring slrvw T/,,. :111tl I IIV wr-<br />

r,411tI,,n v ~n4l\,~l~~lll<br />

v*


The corrrlnt,ion co~ffiricnt~ y~ ranges ovcr values up to y~ = -0.45.<br />

More rxlr~~sive rncasurcment~s on t,hr t,urhlrnt, fluct,~lat,ions have also been<br />

pcrformctl it1 t,hc I~ountlnry hycr of a flat. plate n.1, zrro incidence. Figure 18.5 reprntlnocs<br />

some of t,llr rrsults ob1,ninccl I)y 1'. S. IZlcba.noff 1251 irl a boundary layer<br />

on a fht. plak n.ssociat~cel wit11 a st,rmm of t,he very low t,nrl)~~le~lce intrnsit,~ of<br />

0.02 0/, (c/. Scrs. XVIcl ant1 XVI I1 f). at, a ltoynoltls nnrnl)cr R, = ( I, z/v = 4.2 x loe.<br />

,.<br />

I ho prnfileof 1.11~ t,en~poral me:m of the vrlocity, d, cxllibits ashape whic:h is very much<br />

lilte t,llnt in :I c:h:cnncl, I'ig. 18.3. 'Sllc vari:~t.ion of tho lon~itmtlinnl fluct.untion v


568 XVIII. F~~ndamentnls of turbulent flow<br />

,I<br />

1 his is cxplnint\d 1)y the reqnir~mcnt~ of cont,inuity accortling to which, as we know,<br />

t,l~e r:~,l,c. ol' Ilow through any cross-scction ronains constant in time. The integral of<br />

1.11~ c:orrrl:~tion function It, that is, thc quai~t~ity<br />

IS I.llc sc:c.ol~tl vrloc.ilty, 11~' in eqm (14.1:1). is n~wsurcd at. tht: same 1ora.t.ion<br />

l)111 :II. a (~iIl'(w111, ~IIS~.:III~< of I,imn (71~' at, inst,ant tl and 11.; at instant t2 = tl -1- 0, we<br />

obtain the so-called autocorrelalion funcliott. The provision of spacc-t,imc corrcl t .1011s, '<br />

that is, of observations of two velocity components, oath measured at a tlilrrrrnt<br />

location in space and at a different instant in tirnc, allows us to gain a gootl tlr:tl<br />

of insight. As an example, we reproduce in Fig. 18.8 snch space-time corr~lnt~ions<br />

Dist.anco from wall:<br />

y/d = 0.24<br />

T5orrrtdary-layer t.hickncss:<br />

8 - 16.8 nini<br />

Fig. 18.8. Space-time correlations of velocity flnctuatio~~s in Lhr turlnrlcnt Iwu~ltlary lnynr on<br />

e flat plate, as measured by A. J. Favre, J. J . Caviglio nnd 11. .J. lhnns [tfi]<br />

ol)t.nincd by A. J. Favre and his coworkers (161 in tl~c Lnrl~ulcnt bountl:~ry Inyrr on<br />

a fl:l.t plata. 'l'l~e 1nrnpor:tl tlispl;~cctncl~~l,, t,,,, of t.hn m;tsimcr~~~ oI'(-:~(.ll (:Itrvv is inll)osc(I<br />

by 1.h~ passage of turbulent ctlrlics; tho odtlics move wit,ll nn a~~~~rosit~~;~l~c:<br />

vc*lotil.y<br />

which is equal t,o 0.8 U,. 'l'11e tlccrcasc in the maxima is thc rcsult of ;L procrss wl~ich<br />

can be visualized as follows: With the 1)assago of time, tho t,url)ulc~~l, ntltlirs losr t,l~cir<br />

intlividnality t,hrougll mixing with the surroutlding I,urbnlc~~t, flt~icl. Concurrc:nt,ly,<br />

ncw etltlics c:ont,inttously spring into being.<br />

An albrnativc tlcscript,ion of the st,nicturc of turbulcricc is obt,:~inctl wltc~~ a<br />

fr~q~~e,zcy analysis of the motion is provided instcad of a correlation fu~irt~ion. 'l'l~is<br />

leads 11s t,o the concrpt of the speclr.w~rr of a t.rrrl)~~lcnl, st,rc:~ni. f,ct I, clcnot.r thc -- Srcquency<br />

a.7~~tl F(n) (171, t.11~ fr:wtional con1,rnt of tlw root-t~~r:~~~-s(~~~ar(:<br />

v:~lur, IL'~, of<br />

t.11~ longil.utlinal Iluct,uat,ion wl~icl~ bclongs t.o 1 .l~ frcqucnvy ir~l~c~rvnl fro111 11, - t.o 11. I ,111.<br />

'I'IIO fnnct,ion F(n), which rcprcsent,~ - t,l~c tlcllsi1,y of 1.11~ tlislxil)r~l.io~~ ol' IL'VII ?I, is<br />

Icnown as t,l~c .spechd rlistrih~~tio,a of 71,'" l3y tlcfi~~itiorr, wr: must, I~avct


670 XV111. I'nntlntnrt~t~nlrr of tt~rhrrlrnt, flow<br />

A. N. Kolmogorov, C. 1'. von Wcizsncclzer 1641 and W. Ilciscnbcrg. As the frcqrtency<br />

bcconirs cvcn I:irgrr, F(ir) clecrensee under ~IIC acttion of kincmnt,ic viscosit,y at, R<br />

fa,ot,er mtc st.ill. Arcortling to W. IIciwnl~crg's t,hcory [Inn], nt vcry high vnlt~cs of<br />

I'requcncy wc s11o111d nbscrve that F(a) - w7. 'Chc t,wo t.heoret.ica.l hws arc representrtl<br />

in Fig. 18.9 hv thc t.wo stmight lines lnhrllrtl (I) niid (2), rnspcct.ively.<br />

IPig. 18.9. Ikx-pmcy spectrttrn of<br />

the longitudinal fluct~~ation in the<br />

turbnlrnt horlndary layer on n flat<br />

platc ~neas~~red by 1'. S. Klcbanoff I251<br />

Cnrvo (I): F - n-513<br />

Curve (2) : F -<br />

<strong>Theory</strong> rlnc to W. Hciscnberg [I!)a]<br />

J . h1nrCel1n.l [36n] pc:rfortnrtl tlct.n~ilccl rncnsurctncnt-7 on tile frcy~trnry spect,runl<br />

in flows wit.h liolnogmrons turbulence. In particular, 11c invcstigat,ctl the effect, of n<br />

strong t,wo-tlimrtisiond contrnction of thc st.rcam.<br />

prrsswc Il~~ct~rintions it1 t,hcsc znncs move, nt, nn inst.n.ntmumr~s convect,ivc velocity of<br />

40 t.o A00/, of n1rn.n stmnni nntl ill t.hr tlircct,ion of t01c mrnn stwnm. Tllc wnvo form<br />

of s~trl~ fIuct~~l:lt,ions cl~angcs slowly ~it.11 titnc. See also the papers by W. I


572<br />

XVIIl. F~~ndnnwntds of turl)ulcnt flow<br />

For this rrnnon, cqunt,ion (18.17) enjoys very wide np licnhility. A dilnensional argument which<br />

w n fir~l, ~ ndvanccil I)y A. N. I


574 XVIII. 1'undnnient.alu of tnrl~nlrnt. flow<br />

Jhtnilctl invcstigntions wl1ic:h were rnrrictl out by (1. I. Taylor [5:1] and 11. L.<br />

Dryden [II] Iwt to the conclusion tht, t,hc drag in n stream cannot be adequately<br />

tlcscril,c!tl . .- Ijy ,sxcifying tl~c mapnit.utlc of t.llc: lln,ciu:~tio!~ of thqy+city . coppor~cnts .<br />

alone, I~ccnusc it is nlsn :~.ll'~~(:l.t:!l l~y t.11~ structure of thc turb.ulcnt. stream. On the<br />

bnsis of a t.llcory of trtrbulcn& 11cvcloy)ntl Ijy himself, G. 1. Taylor prr>J)%ecl thet<br />

t.hc vri1,irn.l ltt~yt~oltls<br />

tlr~rn\,c:r or :I. sl1l1c:rc: tlc:l~c:ntls on the p:~m.tnctcr<br />

whcrc: I, is t . 1 scnlc ~ of tnrl~ulcncc, th~t, is, t,llc intcgrnl of the corrclat.ion function<br />

dclined in cqn. (18.14), and L) is tho rlinmetm of the sphere. II. U. Meier et a.1. [36b]<br />

investigntctl the influence of the scale of turbulence, L, on the turbulent Iwnntlnry<br />

1n.yc.r nt low turh~~lcnce intensity. They obbained nlnximunl values of t,he wall shenr<br />

strcss wl~rn t,Iw scale is of t8hc ordcr of tho bonndnry-layer thiclrness.<br />

Fig. 18.10. Relation hct.ween the crit,icnl<br />

Reynoldn nun~bcr of a ~pl~ere nnrl t11c<br />

intensity of t~~rbulcncc of the tnnncl, nflrr<br />

H. L. Dryden and A. hl. ICucthe [8, 101<br />

[I] Iht.cl~clor, G.K.: The t11eory of hoinogenco~~u tnrbr~lcncc. Cnmhridgc, 195:). reprint 1970.<br />

[In] Rlnkn. W.K.: 'l'urhnlcnt houndnry Inycr wnII prcnsrlro Ilnc~lrrrrtir~r~u ot~ RIIIOO(.~I ILII(I ro11gl1<br />

wnll. .JlW 44, 637- 61iO (1!)70).<br />

(21 13ratlshnw, I'.: An int,rodnction to tr~rbulcnce nnd it8 tncnurcnlent.. I'crgnmon l'rm, 1971.<br />

[3J RowJcn, K. 17.. Prcnkicl, Y.N., and 'J'nni, I. (rd.): Ho~~ntlnry Inycm and t11r1)nlcnro. I'roc.<br />

JUG(:/IU'l'AM Syrnp. Kyoto I!)($, l'hyn. J%~ids Soppl. (1967).<br />

[:hJ 111111, M.K.: Wall ~~ress~tre fi~~ct~rntion~ msocintnrcl with ~nhrronic t.11rbn1cnL 1)onnrlnrv flow.<br />

?JPM 28, 719-754 (1!)67).<br />

141 Bnrgcrs, J. M.: A n~nthcmntionl n~odcll illr~sLrnt.ing thc theory of 1.urh11lrnrc. Arlvnt~ccs in<br />

Aj1111. Mcclt. Val. 1 (1%. von Mirrcs :ind '1'h. vot~ I


576<br />

XV1 I I. 1~untlnment.nls of turbulent flow Iteferences 677<br />

. .<br />

(l!l5l).<br />

[:%I 1 LnuTcr. .I.: New trendu in expcrirnrt~tnl turl)t~lcnce rmenrch. Annual Review of Fluid Mech.<br />

7, 307- 326 (1975).<br />

[:I21 Imrfcr, .I.: l'lw str~~c:t.urr of t.~~rli~~lcnrc in fully tlcvclopcd pipe flow. NACA Rep. 1174 (1954).<br />

(33) I,nurrnrr, J.C.: Intensity, uc:nlo, and spr~Lrn of t~~rli~tlen(~e iu mixing region of frcc ut11>sonir<br />

jrt. NACA R.cp. 12!)2 (1056).<br />

[34J I.rslir, I).(:.: Dcveltqmnnk in t.1~ theory of tnrbnlcncr. Clnrendon I'r&qs, Oxford, 1973.<br />

[:%5] Iin. C.C. : St.nt.ist,icn.l t.l~corira of turbulrnrc. High Speed Aerodyt~nmicu and .Jet I'rop~~lsion<br />

Vnl. IT, Srr. C, 10G -253 (IN!)). I'rit~rrton.<br />

[:Hi] Iin. C.C., nntl Ibc4, W. If.: I'~~rl)ulrnt flow, f.l~eoret.irnl nsperts. Hondl~. I'liynik (S. Fliiggr,<br />

ccl.) Vol. 1'111/2, Springer-Vcrlng, Ilrrli~~/(~iit.ti~~gcn/~Iri~IcII~erg, 1963.<br />

[3G;1] hlnri.cbnl, .I.: IC1.11tln cxp6ri111enlnle tlc In cli.for~nnt.ion plane cl'une turhulenc~c homogimc.<br />

J. Mi.ranint~c II, 2(i3 -2!l4 (1!)72).<br />

I:%lil~] hloi~v. Il. 11.. nml I


CHAPTER XIX<br />

Theoretical assumptions for the calculation of turbulent ilowe<br />

a. Fundamental equations<br />

It is not very likrly that scicncc will cver achieve a complete understanding<br />

of the merhanism of tllrbulence because of its extremely complicated nature. The<br />

main variablcs which are of practical intcrest are tho mean velocities, but so fnr no<br />

rational theory which would enable us to determine them by calculation-has-been<br />

formulated. For this reason many attempts have been made-to-create-a mathematical<br />

basis for-the investigation of turbulent motion with the aid of semi-empiricalhypotheses.<br />

The empirical assumptions advanced in the past have been developed<br />

into more-or-less complete theories, but none of them succeeded in fully analyzing<br />

even a single cnse of turbulent flow. It is necessary to supplement the original<br />

hypothesis with additional hypothcscs which vary from case to case, and the form<br />

of certain functions, or at least certain numerical values, must be derived experimentally.<br />

The aim which underlies such empirical theories of turbulence is to deduce the<br />

still missing fundamental physical idens from results of expcrimenta;l measurements.<br />

The-turbulent mixing motion - - is rcsponsib!e - not only for Fn exchange_@ momentom,<br />

hut, it rilG GnhRnces thG transrer of heat an? mass in fields of .flow ~ ~ c & @ d<br />

with non-uniform distributions of temprrature or concentration. The methods for<br />

the mlculation of turbulent flow, temperature, and concentration fields developed<br />

so far are based on empirical hypothcscs which endcavour to establish a relationship<br />

between thr Reynolds stresses produced by the mixing motion and the mean values<br />

of the velocity components togethcr with suitable hypot,heses concerning heat and<br />

mass transfcr. Thc morncntum cquations for the mean motion, eqn. (18.8), as well<br />

as the differential eqr~ation for temperature (not quoted in Chap. XVIII) cannot<br />

acquire n form whirl1 is snitablc for being integrated unlcss assumptions of this kind<br />

have brcn inlrotl~iccd bcforcharid.<br />

.T. IZo~lssinrsc~ 17, 81 wns tltr first, to work on the problrm stnterl in the preceding<br />

srrlhn. 111 analogy wilh tho cocffisirnt, of viscosity in Stoltos's law for laminar flow<br />

i)u<br />

Tl=/L --, , ay ,<br />

Iw introdricctl a miring cnr//icienl, A,, for ihc Reynolds stress in t-urbulent flow by<br />

pr~tbitlg<br />

- , , dS<br />

t, -=-pn v =A, -<br />

(19.1)<br />

dy .<br />

b. Pmndtl'a mixing-length t,llcory 5711<br />

The turbulent mixing cocfficicnt, A,, corresponds to thc viscosity, p, in la-<br />

minar flow and is, thcroforc, often cnll(x1 "appnrcnt" or "virtc~nl" (nlso "eddy")<br />

viscosity.<br />

The assumption in equation (19.1) has the great clisntlvantagc that the cdtly<br />

riscosity, Ax, is not a property of the fluid like yr, but clcpends itself on tho mean vclo-<br />

city Q. This can be rccognizetl if it is rrotcd that viscous forces ill turbulent flow arc<br />

approximately proportional to the squarc of the mean vclocity rather than to its<br />

first power RR in laminar flow. According to cq~~ation (l9.l), this would imply that A,.<br />

is apprnximntcly proportional to thc first powcr of the mran ~clocit~y.<br />

Often, use is made of the apparent (virtual or ctldy) kinrmatic viscosit,y E , - A,/@<br />

which is analogous to the kinematic viscosity v = p/p. If this is done, thc cquations<br />

for t,lw shcaring stress arc rewritten<br />

and<br />

It is now possible to introduce into thc Navicr-Stokes equations for thc mran flow,<br />

eqns. (18.9), the boundary-layer simplifications. In the casc of thc velocity 1)ountlary<br />

layer these will be similar to the considerations discussrd in Scc. VIIa in connrxion<br />

with laminar boundary layers. In the casc of two-di~~~cnsior~:~I, ineomprcssil)lr, turbulent<br />

Bow, with due regard being given to cquation (19.1), wc obtain thc following<br />

system of tliflcrcntinl equations:<br />

which ~honld bc romparetl with ecjns. (18.12) ntitl (18.13). The preceding sct of<br />

equations corresponds to equations (7.10) and (7.1 1) for Iarninnr flow, and tlrc bound-<br />

ary conditions for the velocity components are identical with tllosc in the laminar<br />

case, rqn. (7.12).<br />

h. Fmndtl's ~nixing-length theory<br />

IIC IISC~<br />

'1'11~ Ilypot,hrsos in eqns. (19.1) antl (19.2) C ~IIIIO~ for 1.11~ c:~Iwla(.io~~<br />

of actual cxrcrnples if 11othin2. is known about the dcprntlcncc of A, on vrlocifsy.<br />

In order to tlcvclop thc prccctling rncthotl (irritiatccl by I~oussincsq) it is II~. v : ( :- ssary<br />

to find empirical relations bctwcen the cocfficicnt.s antl the mean vclocil,y. Jn tliscussing<br />

these, we shall confine ourselves in the prcscnt scchion to thc velocity ficld<br />

in incomprcssiblc Row because the latter is then intlcpendcnt of the tempnmt~~rc<br />

field. The calculation of comprcssiblc-flow Grltls and OF temperature fmltls, ~ 1~1, in<br />

particuhr, of the rates of host transfer in trlrl)~~lcnt motion, will bo taltcn trp in<br />

detail in Chap. XXIII.


580<br />

XIX. 'I'lrmrclic~l ~~suntptions for the calrulation or t,nrhrtlrnt, Itown<br />

In 1925 L. I'rantltl 121 j made an import,ant aclvanoo in tfhis direction. In tlcveloping<br />

his I~ypot~hcsis we shall rcfcr ta tttc: simplest cast! of parallel flow in which the<br />

velocity varies only from st,rcarnlinc to st,rcarnline. 'I'hc principa.1 clircct,ion of flow<br />

is ihss~~n~rtl pnrnllrl to the x-axis ant1 wo havc<br />

-<br />

u=E(?/) ; 5=0; 5=0.<br />

r 7<br />

I It(: pmc:otlir~g t,ypc: of flow is rcdixc-tl itt :I rrc:tSangctl:~r c11nnnc.l for \vliic:lt 1,11(: rcsrllta<br />

of rt~t:astrrcrnc:nt, on t,~rrl~olc!ot, vnloc:il,y c:orn~~onc:rtl.s wcrrc? givtw in I'igs. 18.3 :tntl 18.4.<br />

In t.11~ prt:sott. c:wc only tlrt: slw:cring stres~<br />

rrtn:iins cliffrrrnt, from zero.<br />

- 0. Simil:irly :L Ilttnp of fluitl wl~iol~ trrrivcs a$ ?I, frorn the I:~mitia at -I- 1<br />

~)osscs~s :a vrlo~i(,~ \vltic:11 oxccccls that, around it,, the tlifircnce bcing<br />

( 'I'lir trrm inirlurr lt-nglh l~nn also hcrn usrd.<br />

Ilerc a' < 0. The valocit,y tliKerenccs ca11scc1 1)y the 1,r:~nsvrrst: motion cnn I)(.<br />

mg:irclctl as t h Lrlrlmlcnt velocity componnnt.s at ?I,. 1Ionc:c wc: can c:i.lcul:~t,c t.ltt5<br />

time-avrrage of t,lic nl)solitttc value of this Ill~ctmntion, :~ntl we obt.:~.itt<br />

Equation (19.5) lratls to t,ltr following p11ysic::d ir~l.c:rl)rrl.:~.l~ion of t.lm mixing Ic:rtgt.l~ I.<br />

'I'hc: mixing Icwgt 11 is I.l~:t,t, tlist~lnc:c: it1 t.l~c: t,r:it~svc:rsc: tlil.tv:f.iott whit41 ntrls(. Iw t:ovt.rc~~l<br />

by :III a&)n~w:ath of Il~tid p:~rt,i(:lrs t,ravc:lling with it,s origin:t.I III~YIII vc~lc~c:il~.v<br />

in ortlcr t.o nl:ilrc f.hc tlilk~rcncr bet,wct:n it.s velocity :and Lt~c vc1ocait:y ill t.11~ tw\r<br />

lamina oqu:rl 1.0 t,hc mc:m txansvcrsc: Il~~ct.u:at.ion itt t8t~rl~ulc.ttt. flow. 'l'ltc: cl11c4ort<br />

as to wl~cthr tllc lump of fluid complekly retains tltc vc1oc:ity of it.s original Intl~in:~<br />

as it moves in a t,ransvcrse tlirection, or whctl~cr it pnrt,ly assumrs tha vc:loc.ity<br />

of t.1~ crossed lan~itta xintl cont,innc.s itcyot~tl it, ill :r (Ir:~.~~~~c~~c:<br />

clit~c:ct.iott, is 1tvr~<br />

lc:l't, cnt~ircl~y o p ~ 1'r:~ncItJ's . concrpt, of :L tnixittg It-ngl~l~ is :III:L~~~OIIS, IIIP t,o :I vvrhi~r<br />

point,, wit.11 l,hc: mean free IKLLII in Lhr Itinctio t,ltcory of gases, tho nt:~in tlill;*rc~ttw<br />

being that. 1.11~ I:at.t.er conccrns it.sc:lf with t,ltc microsco[)ir rnotiot~ of 1nc~1~:c:ult~s.<br />

whereas the present concept c1cal.s wit,h t.lte ntacroscor)ic: rnot,iort ol I:trgc% :~gglonwrat,ions<br />

of fluitl p:crt,iclcst.<br />

It may bc imaginctl tht the transvcrsc vcloc:it,y Iluntuatior~ origin,


682<br />

XIX. Thcoroticnl wsltmptionu for the calculation of tnrbrtlcnt Rowa<br />

representation that the lumps which arrivc at layer y1 with n positivc value of V'<br />

(upwards from below in Fig. 19.1) givc rise "mostly" to a negntivc c' so that their<br />

product 7~' v' is negative. The lumps with e negative value of v' (downwards from<br />

nbove in Fig. 19.1) are "mostly" associntetl wit,h a positivc u' and the product IL' v'<br />

is ngsin negative. The qualifying word "mostly" in t,he above cor~t~cxt. expresses<br />

tho fact that the npponr:trtc:c of p:wl.ic:los for wlticli %' I I : ~ the opposite sig~t t80 tho<br />

nbovo is not completely - exclt~dcct I)ut is, ncvertl~elcss, much less freqncnt. 'L'hus,<br />

t,ho t,ornl)ornl avcmgc 14' v' is tlircrcnt from zero, nntl nc~tivc. lIcncc, we assume,<br />

-<br />

,ivr :- cm. m. (19.611)<br />

with 0 < c < 1 (c f 0). Nothing is known about thc numerical factor c but, in<br />

esscnce, it Rppcars to be idcnticnl with tltc correlation factor defined in eqn. (18.12).<br />

Thc experimental resultts plotted in Fig. 18.4 give some idea ns to its behaviour.<br />

Combining cqns. (19.5) ant1 (19.6) we now obtain<br />

It, sltoulcl be iiot,ed that the const.a.tlt in the above ~~11atio11 is diffcrcnt from that,<br />

in eqn. (l9.6), RS the former also contnins t,lw factor r, from cqn. (1 9.6a). 'l'hc constant,<br />

can now bc inclr~tlctl with t,hc still unknown mixing Icngth, and wc lnny write<br />

Conscquent.ly, the shearing sLrcss from cqn. (19.1) can bc writkn as<br />

l'aking it~t~o areo~tnt t.hnt the sign of 7, tn~~st, change with that of tlii,/tl!/, it is feud<br />

t,h:1tf iL is tnoro correct t,c) writc<br />

This is I'rrrnrlll'a ~~tdsi~~q-lr.trylh. hly~lhc.~i.~. It, will be shown lnt,cr Lhnt it. is very useful<br />

in the calc:ulnt,ior~ of Lurl)ulont Ilnws.<br />

Con~paring cqn. (19.7) wit11 the Boussincsq hypothesis in cqr~. (l9.l), we find the<br />

follo\ririg oxl,rcssiot~s for the virl,rtnl viscosit.~<br />

and for thr v irt,unl kinrmnt,ic viscosit,y from cqn. (1!).2)<br />

It is known from cxprrimcnt.nl cvitlrnrr t,l~nt, t,urbrllent drag is roctglrly prol)ort.iorlnl<br />

to thc squsrr of velocity and thc same result is obtained from eqn. (19.7) if the mix-<br />

c. Fnrtlirr nam~tnptione for the t,nrhnlent eltenring streas 583<br />

ing length is assumed to be indepentlcnt of the rnngnitt~do of velocity. The mixing<br />

length, ~rnlike viscosity in Stokes's Inw, is still not n propcrty of the fluid, htt it is,<br />

at least, a purely local function.<br />

In numerons cases it, is possible lo cstnblish a simple r~lntion l)ct.~ccr~ t,l~c<br />

mixing length, I, ant1 n cl~nrnctcristic length of the rcspcct.ivc flow. For exnmplc, in<br />

flows n.lor~g smoof,lt w:~lls b ni~~sl. v:lttisl~ :ll, lthc w:~.ll itself, Ilt.c:ltls~ 1~r:~tt~vcrst: tno(.in~ts<br />

arc inhibited by its prcscncc. In flows along rough walls t,hc mixing Icrigtflt ticar t,l~r<br />

w:d1 must t.crd to n vnlrtc of l,hc same ortlrr of ~nagnit~tttlc ns the solitl protr~~siot~s.<br />

Pr:~.ntI~.I's cq~tnt,ior~ (I 9.7) II:IS I~CCII SIICC~SS~IIII~ n.pplic:tI to tI~c RI.II(I~ 01. iur1t7I1c;tt<br />

moliou nloq ~r~nlls ((pip, clrxnncl, pli~tt:, 1)ountlnry Inycr), nntl to t,hc problctn of socallcd<br />

/rw lurhtle?~t /6w. 'L'hc Iatt,rr trrtn r.~fc!rs to flow wit,l~ont, solid wn11s, s11c1i ns t(.I~c<br />

mixing of s jet with t h snrrountling still air. Exnmplcs of such npplic:at,ions will he<br />

given in Chaps. XX, XXI, and XXIV. It. A. M. Ualbrnith ct nl. [13a] provitled<br />

good cxpcrimc.nt.nl support for the ut,ilit,y of the niixing-lrngt.lr concc.pt,.<br />

c. Further flssumplions for tho trrrb~~ht slleflring elresa<br />

l'r:tt~clt~l's cqtmt,ioti (19.7) for sIt(!:trit~g stress itt t~~trl~rtl~~nL llo~ is st,ill itt~s:~tisliit:l,nry<br />

it1 t,lt:~l. the :~.pp:~rt:nt~, kittt:ndi(: viscosit.y r, t-tin. (l!).7l~), v:~ttisl~(;s :bl, pink<br />

whcrc cl?Z/th/ is cqilnl t,o zcro, i. o. at, poi111.s of n~nxitntlt~~ or ~nit~itntt~~l vcloci1,y. 'L'his<br />

is certainly not thc cnsc bccn~rsc t~irbrtlt~rt, mixing t1oc.s not. vnnielt :~t pni~~k ol'<br />

maxin~utn vc4ocit.y (rcnt,rc of clrnnnrl). 'l'lir I:~t.t.ttr viaw is c:onlirmc-tl l)y I~r~ic:lr:~.rtlt,'s<br />

t~rc:~~srtrc-~nc~~t.s on l.ttrb~rlt:~lt~ Il~t(:Lu:bt.io~~s, Vig. 18.3, ivlticl~ sliow l,l~:ll. in tlic (:c:l~trc o(.<br />

t h (:11a.t1n(4 t,l~c: longitrttlit~nl :inti t.ransvrrsc Ill~c:t.r~nt.iot~s bol.l~ c1illi.r fro111 xrro.<br />

In orclcr t,o countcr thcsc difficidtics Id. 1'rnndt.l [23) rst,nl)lishcd n t:onsitlt.mbly<br />

sirnplcr cquxtion for tltc nppnrcnt kincmntic vi~cosit~y. It, is vnlitl only in the case<br />

of frec tpurbulcnt flow nnd was tlcrivctl from cxt,cnsivc cxpcrirnct~t,nl tlnt,:~ on frec<br />

turbulent flow duo to TI. Itcichnrtlt [24]. 111 mt.ting 111) this nrw hypnt,l~csis I,. Pmntltl<br />

nss~tmetl that the tlitncnsions of t.11~ lumps of lluitl wllich move in :I t,rnnsvcrsc tlircc-<br />

Lion during turl,rtlcr~t mixing arc of tllc s:mc ortlcr of m;~gnit~tttlc :IS the witlLI1 of tJtc<br />

mixing zone. It will I)c rccitllcd thnt, tltc prcviotts I~ypot,ltc;sis itnl)lit:tl that. 1,ltcy wcrc<br />

small compnrcd with t,lic t.ransvcrsc clin~cnsior~s of tJte region of flow. Tl~c virttlnl<br />

kinematic viscosity, s, is now formcd by multiplying the tnaxirnum tlifTcrcncc in thc<br />

time-mcnn flow velocity with n IcngtJr wl~ic:l~ is nssrrrnctl to be proportion:d to the<br />

widt,l~, I), of the mixing zone. Thus,<br />

t On comparing this cqtmtion with cqn. (19.5~). it is sccn tht. nccorcling 1.0 Llrr prrsrnt, I~yl~otI~c~iu<br />

thc transverse fiuctuntion v' is proporlional to 17,,,,, -1T,,(,, and I.lmt t3ho mixing longth I'<br />

is proportional to thc width h. 1\11 nltcrnntive h)pof.lrcxis ~rltiolr rc!lntc:n to thc npp:rrc.nt kincniatic<br />

vinronity F, nnd is wry similar to tl~id. in cqn. (1!).9) \\.a8 fortrrulittcd by 11. Itrirlti~rdl. [24].


wtl~:~.c t.I~t* otigini1IIj1 (:otlst.nn~. en is now ~nl~It.ipIicd Ily thc il~t.c~.rnit,t,rl~c:y fn.cI.~~ y. Jn<br />

t,urn. :III~~ in n.t:rortlnncr with ~ I I V ~ncvwl~lvrnc.nt,s of 1'. lZlr\)n.11olT (S~W \pig. 18.6), t h ~<br />

i~~l.(*t.~~~il,t~(~t~(*y<br />

fa(d or is :I,II~)I~~~~III:LI~(~(I l)y I~Iw rcl;~l,io~~<br />

SCV :~lso rcl'. I!) 11 1.<br />

A r(w111,. sitnil:ir t,o l,l~c on(: conhinwl in ~111. (I 9.71, 11:~s IKCII ol)l,:rinc(l 11y<br />

(:. 1. 'I':~.ylo~ (:{21 OII t.11~ l):wis of his vorl,ic:il,y t.~xns~)orl, I,hcory. In I'r:rl~tltl's t.llcory,<br />

(.llc* :~ss~ltnl)hn is nl:ltlc i.11:1.1. t.11~ rnc:tn vc,locity 17 rcwlnins ronsl.anl. tl11r.ing 1.111: t.r:~nsvcXt.sn<br />

tnol.io~t of :i Ir~mp of' Iluid; 'l':~yIor's thcory sl~l)sl.il,ul.cs for this the 1lyl)ot.hcsis<br />

1l1:1t LIIC roi:~tion, t,l1;1,1, is t,l~nt (lC/(l?y rctn:iit~s consl.nnl,. T11is yicl~ls I,IIC w111:ition<br />

wl~i(,l~ (lill'(w I'ront (~111. (l!).7) tncr(~1y l).y I,lw I':i(:l,or. 112. 'I'his n1c:tIls l,l~:it, I,IIP mixing<br />

I~~ngt11 ol' (:. 1. l';~y\or's vorl,i~~it,~~-t.r:it~sS~:r tl~;or.y is lnrgcr l ~y a f:tct,or 115 t11:in I,ll:~t,<br />

ill I,: I'~~:~~~tlt.l's I I I ~ I ~ I ~ ~ I ~ ~ . I ~ I I ~ - I.~I(YI~Y.<br />

~ . I ' ; I ~ I'1'1111s I S ~ ~ ~ ~ lu - : 112 1.. 011 IIIC I~nsis of his<br />

ot~silr:~io~~s, . I. 1'1lor o n t l I I : I I Iilsion of trnirrnl~rc tlilli.t.c:ncc:s<br />

:IIIO vorli(.il.y in 1.11(, nlisil~:: xonc 1)c~hintl :r c-ylit~tlricnl rot1 oi~mr in t.onformity \vit.l~<br />

I<br />

tl. Von Klrrn~hn's fiirni1:wity 11ypot.11nsis 585<br />

identical laws. This is in essential ngrccmcnt with cxpcrirnenta, ntd t,hc cxplnnat,ion<br />

turns on thc fact tht here the axcs of tllc vortices nrrango tl~otnsclvcs princip:~lly<br />

at right nnglcs to the main stream and to tho clirocl,ion of thc vc1oc:il.y gr:ulitrt~t..<br />

By contrast, in a flow field in the proximity of a solid wall there prctlorninat,e vort.iccs<br />

whoso axes arc pnrallcl to tho flow tlircct,ion. Vor tllis rnason, tl~c tcmpcml~tlrc Iioltl<br />

I)ccon~cs similar to the vclociLy licltl tlircct,ly.<br />

d. Von Kirmiu's siniilarity hypothesis<br />

It wo~llcl bc vcr.y convcnicnt to possess :L rulo w11ic:ll :~llowctl us to clctcrnlinc t,l~c:<br />

dependence of mixing lengt,l~ on space coordinates. Th. von Krirm&n 1171 tnadc<br />

an attcmpt t,o txt,al)lisl~ s11c11 a rdc assl~lnir~g that trrrlwlcnt fl~~c:tnat~ions :Lro sinli1:~r<br />

at all point of the field of llow (simihri/?y wk), i. e. t,I~at they (IiIPcr from pint to<br />

point only by time nnd lcngth scale factors. A velocity which ;s charnct.erist.tc of the<br />

turbulent,, fluct~lating motion nnn bc formod wit,ll I,llc nit1 of' thc t ~~~~l~nl~~nl~<br />

sIlr:l~~illg<br />

:<br />

st.rcss by tldining it., wil,ll I,llr n.itl of cvlll. (I!). I ), r1.s li~llows<br />

'She cl~m~t~it~y v, is cnllcd the /tiction veloci!?/ and is a rnc:asltrc of 1.111: inI.(:n~it.~ of<br />

turbulent, eddying and of the correlation which exists 0et.wcen the Ilr~ct.lmtincr com-<br />

?<br />

ponents in the z and y directions. For the si~nilarit~y rule under considcrnt.~on we<br />

imagine a two-dimensional mean flow in l,hr .r tlirccl~ion, RIICII t.llntl ?j - N (y) 11.1ld<br />

5 = 0 (parallel flow), and an auxiliary nlot,ion wl~icll is also two-tlirncnsion;II. 111 t,lris<br />

case it is possible to show t,hnt the rnle that<br />

const,itutes a necessary contlit,ion to secure co~npatibilit~y I)ctwcrn the simil:r.ril.y<br />

hypothesis and the vorticit.y trnnsport equat,ion (4.10).<br />

Introducing an empirical dimensionless constant x, von IChrtnh matlr tllc as-<br />

sumption that t,he mixing length sat,isfics t,he equntion:<br />

In accordance with the above hypothesis, thc mixing Icngt.11, I, is intlcpnntlrnt, of thc:<br />

magnitude of velocity, being a f~inction of the vclority clis(.ribut.ion only. 'l'l~o mixing<br />

Icngth bccorncs n purely locnl fnnction as :ilra:l.tly rc:cl~~irc:tl c:irlic:r, :i11


586 XIX. Throretical aaotin~ptiona for the calculation of turhdcnt flow8<br />

A. 1lrl.z [4] gave n very Iuctd derivation of eqn. (19.18). In latcr times von<br />

J


I lorv t,hr c:onst~;~,~~(, of in t.c:gr;rt.iotl, C, ~nnst I)c tlet~crtninctl from the condit,ion at the<br />

wnll :~ntl sc~vcs t.o fit, t.lw t.url)tilrnt vrlocity clistrib~~t~ion to Llrat in tl~c laminar sub-<br />

Iaycr. Ilo\vc.vcr, c:vc:n wil,I~out tlvt.nrrnining C it is possible to tlcdr~cc from eqn. (19.27)<br />

:L I;l\v an:~logotts t,o t.I~:ll in cqt~. (19.21). 111 spite of t,hc f;lc:t tkrt cqn. (19.27) is v:llid<br />

only in the ~~cighI)o~~rhootl or tlto w;~ll, I)(Y:RIIRG of the ass~~~nptiot~ thati t -- const.,<br />

we shall at,t,rrnpt t.o ~tsc it, for thc whole rrgion, i. I?. up to 11 = h. Since at y =: h we<br />

Irnvc u -7 u,,,,,. wc ol)t,:~in<br />

7',,,ar - 7 11 I h<br />

u,,,, = "*O In li -t C ,<br />

- -- In - ; (y = disb:~nrc from wall)<br />

"*o K Y<br />

,<br />

I<br />

,<br />

his 1111iv(:rs;11 vcl~(~i(.~~-(l~fc(;l,<br />

I:LW tlrw 1.0 I'rnndt,l is shown plotlet1 ;ls c:urvc (I)<br />

in ITig. ,1!).2. In t.11~ prc?c:c:tling argument we sr~cccetlccl in deriving a urrivcrsal vclocityclist.ril,~tt.io~~<br />

I:lw from I'r:~n(It.I's law of friction in cornplcbc analogy wit,h that in<br />

o(111. (1!).21), whic:h was olll.:linctl from von IChrrn~in's si~nilarit~y rrrlc. The only clifferent:(:<br />

is in t.l~c: form of t.llc: functions of y/h wl~ich'appear on the right-had side of<br />

cqns. (1!).21) : L I I ~ (1!).28) rrspc.cl,ivrly. on rcflcxidn this will not appear incomprchc?nsil,lc,<br />

if wc: f.altc intm nccount the tlifkmncc in t*hc assumption concerning the<br />

sl~r:~ring st.rcss. Vorl 1C:'Lrrn;in nssnmctl a linear slrcaring-stress distrib~ttion, bltc:<br />

mixing Icngt,l~ bring 1 - u'lu". On t h other hand, Prantltl assumed a constant.<br />

sl~cnriitg st,ross and 1 - ?I. l'igurc 19.2 cor~tair~s a comparison hetwccn t.hcsr: two<br />

I:rws. A I~rt.l~c:r cornprison with cxpcrirncnt is clcfcrrcd to Chap. XX.<br />

It* may be worth 11ot.ing in pnssing Il~nt, it. is possil,l(: lo ol)l.:li~l 1.I1v sin~l,l,: I.(~SIII(.<br />

l.l~:it. 1 .- x ?I front tl~c vclocit,y-tlrfi:c:t. I:LW (I!).27), t.ogot.lwr wil.11 vot~ I tlisc:~~ssrd in gr(~~t.vr (I(~l,i~il in 1 . l SII(YYT- ~<br />

(ling clrnpt.cr, give a value of x -- 0.4. 11'110 scc:on(l co~rst,:~nt,. 0, tl(,l)c*~ltls 011 t,11(,<br />

n:ttarc of t,hc wd1 snrf:icc; rdov:l~~t, n~~rncrirnl v:rlnc,s will IN! givrn in (%:I;). XS.


5l)O XIX. Tl~rorrt,icnl nmumptions for t,hc mlculntion of td~i~lrnt Ilows<br />

'I'll(: nnivc?rsnl vc~loc:it~y-elisl.ril~~~t,iot~<br />

I:Lw, nqn. (I9.:1:,), wl~ic:l~ has now I)ecn dcrivctl<br />

for th: (:tist? of :L fht, wnll (rcc:t.:ingul:w c:l~:~.nnol) rct.airw its fu~nlnmcntnl irn1)orLancc<br />

for flows t,l~rough circular pipes, :w will be wcn in t,l~c next chnpt,c:r. We may now<br />

st.ntc, in anticipation, that it loatls to pot1 agrccmcnt wit11 cxperimcnt.<br />

Tn nonclutling this c:hnptrr it may 1)e worth stmssing once again tht thc two<br />

nnivcrs;il vclocit,y-clis(.ril)~~ttio~i Inws in cqns. (19.21) ant1 (10.27) were obtained for<br />

t,~irl)nlcnt~ flow, and took i11t.o nc:nount,, ap:lrt from t,hc small sub-layer mar the<br />

wnll, only tmrhnlont shmring strosscs, ant1 it sho111tI 1)e realized trIrnt3 snch an assumpt,ion<br />

is s:ttlisfi(:(l x,l:~rg!r l~cyn?ltls nurnl)crs~only, (h~scq~~ent~ly tile vclonit~y-tlist,ri-<br />

1)ul.ion law, p:~rt.ic:~~ln,rly t.l1:11, in cqn. (I!).33), must I n rcjinrtlctl as nn asymptlotfie<br />

law a.pplic:xi)lc to very 1:~rge ltcynoltls numbers. For smallgr-Rcyr~oltls- ritlnll~c~~<br />

w11c-1~ .I?n~it!:~r. fi.ict,i(?l~ I:xo~(,s,. somc ~II~~IICII~C outside th~very~-tl~it~ ,q~b-l:~ycr,<br />

- .- - . . -. t:xp .<br />

riihcnt Icads to a power law of the form ,..<br />

. ..<br />

.<br />

wlwrr the exponent 21, is approximately rqunl to :, but varies somewhat wit.11 the<br />

Itrynolris nnml)cr. 'l'his point will also be t,akcn up agnin in the succeeding cl~aptcr.<br />

'rhc c:~e of so-cxllod Co~wtt,c flow I)ct.wcen two parallel flat plates which nre<br />

tlisplnccxl rcl:it,ivc t,o circl~ other (Wig. 1 .I) const.it,ut,rs a very simple cxaniplc of a<br />

flow it1 whicl~ the sl~c::~ring stress rcrnnins c:or~st~ant,. 'l'he sl~c~wing st.rrss T rrrnains<br />

Fig. 19.3. Vdority profilcs<br />

in prallel Coucttm flow<br />

betwren two parallel plates<br />

moving in opposite dirrctions,<br />

after H. Rcichardt<br />

[25, 261<br />

At R - I200 Lhc flow Is Inmimr;<br />

nt R .- 2000 nnd 34.000 ll~c flow<br />

Is L~~rbulcnt<br />

rigorously constant in trrrbnlcnt ns wcll ns in laminar flow, xncl is cq~~al l,o t,11:1t, :it,<br />

thc wall, to. 11. Ltcicl~a.rtlt. 126, 261 carrictl out an oxtcnsive invcst.igat,ion of this cSasc;<br />

somc of his rcsulh can bc inferred from Fig. 19.3 which sl~ows several vclorit,y pwfilcs<br />

observed in Couctt,c flow. 'l'l~c flow rcmzins laminar ns long ns the I~C~IIOIIIS<br />

number R < 1600 sncl thc velocity distribution is t,lwn linear to a good tlcgrrc of<br />

approximation. When the Reynolds r~umbcr R excccds tl~c value 1500 the flow is<br />

turbulcnt. Tllc turt)~~lcnt velocity profilcs arc very flat near the centre ant1 bccornc<br />

very steep near the walls. A profilc of this kind is to be cxpcctccl in tnrl)ulont flow<br />

if it, is rcmcnibcrcd thxL t.11~ shearing stress nonsists of n I:~.tninnr c:ont.rit)~~t.ion ,<br />

, anfl :i t,~~rbulcnt~ conI.rihl,ion<br />

clue to turbulent mixinp. Ilcncc<br />

wl~crc A, donotes the mixing cocfficicnt tlcfinctl in rqn. (19.1). 111 t,llis matinor the<br />

velocity gradient turns out to be proportional to I/(p -t A). Since A varies from<br />

zero at the wnll to its maximum in the centre of thc cl~anncl, the velocity profilc<br />

must bccomc stmp at tltc wall and flat at t,Im centre, as confirmctl 1p.y thc plots in<br />

Fig. 19.3. The turbulcnt mixing cocfficicnt increases with an increasing Reynolds<br />

number and the curvature of the vclocitpy profile bccomcs, correspondingly, more<br />

pronouncrtl; compare the paper I)y A. A. Szcri [nlnl.<br />

f. Further dcvelopmcnt of theoreticnl hypotheses<br />

The cnlculation of Lurbulcnt flows on 1.111: bn4k of t h difl'crcnt s~n~i-c~npirirnI l~yl)ot.l~(:scs<br />

discusset1 previously, and mrricd out in rict,nil in thc succoctiing cl~npkrs, is not sntisfact.ory<br />

in so far as it is still itnpossiblc to analyze t1ifli:rcnt kinds of turbulont llow \vitl;'iho &I of t.hc swnc<br />

hypothesis concerning trrrbulcnt friction. Ipor cxatnple, Prnntltl'a hyp~tl~c~is 011 1.11~ mixing length,<br />

cqn. (19,7), fnih cotnplctely in-tl!? casc of RO-cnlld isotropic. turbulence ris it, c?xint,s bcl~i~~cl n<br />

scrccn of $tic ~cs11, bccnuw in tliia cost the: vciociLy giatlicnL of the biuic flow ik ct111nI 1.0 zc:r~<br />

cvery.wJ~crc, Tho liyPo~llcscs lor bhc cilct;lniio~~ or clovclopccl LurlmIcnt flow, (~~HoIIRR('II in Sees.<br />

XIXb and c, have been considerably cxtentlcd by I,. I'ranclt,l 1221 in an attempt to rlcrivo n universally<br />

valid system of equations (turbulnnt flow near wall, frco turbulcnt flow, isotropic tmrhu-<br />

Icncc).<br />

Energy eqemtioa: L. Prnntlll bnsctl his<br />

-<br />

ncw dcvelopmcnt - on t.lw consitlcrntion of t.hc kinotic<br />

encrgy of turbulcnt fluctuation, R = o(r'2 + 11'2 + z), nnrl cnlc~rlatctl thc rltange of t.1~<br />

energy of the suhsirliary motion with tinrc, UR/J)l, for n particle which nlovcs with Lhc basic<br />

stream. This is con~poncd of t,l~rec Lcrnw: of the decrcnsc. in cncrgy t111c to internnl fric.t.ion in the<br />

motion of tho lumps of fluid, of thc tmnsfcr of cncrgy from tho hnsic motion Lo tl~o sut)sidiilry<br />

n~ot,ion - this term heing proportionnl to (dlJ/dy)z - and, linnlly, of thc trnnsfcr of kinetic<br />

energy from the more turbulent to the lem tmbulcnt zones. The encrgy balnnce I)ct,wren t,llc.~e<br />

tl~rcc terms leads t,o a differential equation for the cncrgy of the t,urbulcnt'sr~h~itlinry motion<br />

which must be added to the systen~ of differential equations for the Incan niotion; it has the forni<br />

cliasipntion production diK~~nion


502 XIX. Throrrl.icnl nsaun~ptions for the cnlrulntion of turbulent, flows<br />

flnre j -- 0 for t.wo-tlimrn~ionnl Incnn flown, j =; 1 for nxially symmetric nlenn flows (y-radial<br />

clist,nncc frorn nxis). 1,. l'rnndtl referred to the preceding as to the firot fundn~nental equation.<br />

A sroond equntion rclittcs the turbulent shearing stress with the velocity gradient of the mean<br />

flow nnd is nnalogoua to thc old mixing eqnnt.ion (19.2), but also contnins the energy of the<br />

turbulent nr~lr~itlinry notion, lhnt is<br />

,<br />

I . hr two rqunlionn - (I!).%i) ant1 (19.37) - ront.nin the three frce constnnta c, k, k, ahich in~~nt<br />

I)r rlnrivrcl 1)). :L rrfercnrc t,o cx~)erin~rnt~nl rrsnltn. 'rho length scnle I, is n locnl funct,ion which<br />

rc!l~rrsrntn. rss(wt.i:dly. lhr mixing length OF eqn. (19.7). The defi~~itiotl of this q~tntltit,y can, hornevrr,<br />

also I I 1):1sc:tl ~ nu :ui intcgml oft 111: eorrrl:it~ion funot.ion of t.lie velocity ro~npo~~cnls niens~~rorl<br />

:II I\UI lwinls (sw J.(:. l


594<br />

XIX. 'rheoreticnl nssornptions for the cnlculat,ion of t~~rhulcttt flows<br />

[I] 13ntcl1rlor, (!.I


Turbulent flow through pipee<br />

n. Experirnentnl results for smootli pipes<br />

\\'111*n :i Ilttitl is :11Io\vrtl to cnlcr :L circ111:w pip front a largc ronl,:~inrr, tltc<br />

vc~loc~i(,y tlis(,ril,r~( io11 in t.11~ rross-sections of tho idrt lan~~th vnrios with thc tlisCnncc<br />

from the: itliti:il cross-swI.ion. In sections (:IOSC to that at cntrancc the velocity<br />

tlisl.ril)~lt.ion is nearly uniform. Il'11rt1wr t1ownstrt:am tlhc vclocity tlistribr~t,ion<br />

cltnttgrs, owing 1.0 t,Itt: ir~ll~tr~tcc: of frict,ion, rrnI.il :I f~llly tlcvclopctl velocity profile<br />

is :~l,l.:~inc:tl :rt, :L given cross-scc:l.ion :LII(~ rcmains constm~t~ downstream of it,. Tllc<br />

vn.ri:ll~ion of t11t: vr1orit.y profile in the inlet length of a pipe in lam.innr flow was<br />

tlcwrilrctl in Scc:. XI11 (l'ig. 11.8). 11,s length is approximatdy 1, = 0.03 rl . R<br />

so I Il:tI, for R := 5,000 l,o 10,000 it, rangcs front 160 t,o 300 pipe-din~net~crs. 'rhc inletf<br />

Irng1.h in /?o.b~drt~l flow is consitlrmltly sllort.cr t,h:rn in lan~inar flow. According<br />

1.0 1.11~ IIIC:I.SI~~~III~-II~.S p(vforn1~t1 by I[. I


698 XX. 'I'~~rl~ulrnt flow f,lrro~~gl~ pipen<br />

Fig. 20.1. Vrictionxl rc:sistsancc in a ntl~ootl~ pipe<br />

R- y<br />

v I I I 5 . 1 o r 1c1-1i1i11c Cor ln~~~i~trr flow: curvr (21 rrwn cqn. (20.5). afkr DI%qi.il~s (51 Tor<br />

I'ig. 20.2. Vnlocil,y diu-<br />

I.ril~t~t.ion ill utnootli<br />

pip for varying Rey<br />

nolds number, after<br />

Nikr~rsdao 1451<br />

whnrc tllc oxponcnt n. varies slightly with t.hc Itcynolcls number. Y'hc plots in IGg. 20.3<br />

show that thc assumption of a simplc: l/n-th-power law agrees wcll with rxpwimcnt,<br />

.zs the gmplls of (u/(J)" againsl y/R, fall on straight lir~cs, wlicn n sr~i(,:~.l~It: cl~oicc:<br />

for n has l~orn madc. Thc valuc of t.hc cxponcnt 7s is n = 6 at. tl~c lowost, ltcynoltls<br />

number R = 4 x 10R; it increases to n = 7 at R = 100 x 10%nnd 1.0 71. = 10 at,<br />

thc liighcst hyrloltls numhr, R -- 3240 X ICYR, nttn.inotl in this invcstig:~t.iorr.<br />

found that<br />

Fig. 20.3. Velocity distribution in arn0ot.h pipes. Vcrificat.ion of tho ruurumption in eqn. (20.6)


'I'nblr 20.1. Itnt.in of IIIC:LII to nmxin~u~n velocity in pipe flow in trrrn~ of the exponent n of<br />

t h vrlocit.y tlisl.rib~~t.ion, according to eqn. (20.6)<br />

b. I~clntinn Lctwcrn Inw of friction n d vrlocity ilistributinn<br />

'1'11~ cvlu:~tio~~ liw t,lw vt~loc:it,y tlist,riltul,ion (20.6) is rclat,cd t,o 13lasir1s's law of<br />

l'ric.t.ion in ccln. (20.5) rintl t,l~is rclntion, first tliscovrrcxl 1)y 1,. I'mntltJ 151 1, is of<br />

I'~~ntl:amc~~t.nl i~nltorl.n.nc:c in t.11~ theory of t,~~rbulent flow; it allows 11s tlo draw con-<br />

(-Insions from pilw cxporimcnt.~ which art: valid for the flat plate [321; use of them<br />

will I)r marlo in Chnp. XXT.<br />

011 suhstit~i~ing the v:dnt: of 1 from (yn. (20.5) intm eqn. (20.4) we obtain the<br />

follo\ving t>pr(wio~~ for t .1~ shearing str~ss nt the wall:<br />

v,/v = 9, which wcrc nlr~atly r~sctl in cqns. (19.31) :1n(1 (1!).:


602<br />

XX. T~rrbulcnt flow thro~tgh pipes<br />

For fut,ure rcfcrcnco we now propose to write down an cxprcssion for the friction<br />

velocit,~ 11, from cqn. (20.10). We obtain<br />

v, = 0.150 u '<br />

This cnn also be written in tlimr,nsionless form as<br />

where c; denotes the local skin-friction coefficient. This relation, which is equivalerlt<br />

to the one in eqn. (20.5), is known as 13hsius's Inw of skin fcicthn in pipc flow. This<br />

relation will be used later.<br />

c. Universal velocity-distribution lawe for very large Reynolds nutnbera<br />

r 7<br />

1110 fact that the exponent in the law of pipc resistance as well as in the cxpression<br />

for velocity dist.riht.ion clccrcascs with increasing Iteynolds nurnbcrs suggcstR<br />

that both must tend asymptotically to some exprrw&ms which are valid for very<br />

high Ibynolcls nirmbcrs and which must contain the logarithm of thc independent<br />

variable, as it is the limit of n polynomial for very small values of the exponent.<br />

A tlct~ailcrl cxaniination of expcriment,al results for vcry large Reynolds numbers<br />

shows that such lt~garit~limic laws do, in fact, exist. I'hysically such asymptotic<br />

laws nre chamctcrizcd by the fact t.h:rt I:~minar friction becomes completely ncgligihlc<br />

cornpmxxl with turbulent friction. 'rhe great advantage of such logarithmic<br />

laws, as comparrd with the Iln-th-power laws, consists in their being a~ymptot~ic<br />

expressions for very large hynolds numbers; they may, therefore, be extrapolated<br />

to arbitrarily large values beyond the range covered by experiment. On the other<br />

hand, when the I/u-th-power laws arc used the value of the exponent n cllanges,<br />

as the range of Reynolds numbers is ext,cntled.<br />

S11c.h an asyn~ptot,ic log.zrit,hmic law has already been givrri in eqn. (19.33) for the<br />

rase of flow along a flat plat,c. It was dcdncecl frorn Prandtl's ecluntion (19.7) for<br />

t.ilrl)~~lcnt shearing strcss nntlcr t.hc assi~n~pt,ion that the mixing length is proportional<br />

t,o 1.11~ tlist.:anc:c frorn t.hc wnll, 1 = x!/, ~ n was d valid for small w:dl (li~tanccs y.<br />

.. l his rquat,ion h:ts 1-hc: form:<br />

4 == A, In 3 4- Dl (20.13) t<br />

.~ .<br />

t 11. lkic:har~ll. [fir,] intlirntcd a refined cxpremiort for thp vclocity distribution. It covcrs the<br />

wholc rangc of distances, froni the wnll of the pipe at ye= 0 to the centre-line at y = R, i. c.,<br />

it is also true for thc la~ninnr sub-layer, to which eqti. (20.13) does not apply. It is also valid<br />

in the ncighbortrl~ood of bhe ccntrc-line, wherc ~ricasurcd velocity-distxibution curves show systctnatic:<br />

clrviations fron~ cqn. (20.13). In particrtlur, the transition region shown aa curve (2) in<br />

Fig. 20.4 iu wcll rrproduccd by thc forrnltln. Thin ~~nivcrsnl velocity-distriblltion hw wan dcducccl<br />

with thc aid of bl~rorcticnl rabin~ntinns arid vrry r:rrrf~d riicns~trc*~ncnlrt of tl~c turb~llrnt mixing<br />

coefficient '4 rlrlinrcl 11y cqtt (I!).I). (hmparc also a pnpcr by \V. Sznbicwski (741.<br />

r. IJtiivcrsaI vc1nt:iLy-di~trib~ltioti laws for very large R.ryttnlds ni~t~~l~cru fi09<br />

with A, = 11% and Dl = - (11%) . In as free constants. Wcshallapl)ly this equation<br />

without ch:tngc to pipe flow. Comparing it with the rnt:nstrrcmcnt.s pcrforniccl I)y<br />

,J. Niknratlsc!, as shown by curve (3) in Irig. 20.4, it is seen thnt cxc:c:llont ngrecnlor~t<br />

is obtained not only for point,s near t,he wall but for thc wholc rango 111) 1.0 the axis<br />

of the pipc. The nilrricrical values of the constants :arc fortntl to IN:<br />

A, - 2.5; I), = 5.5 .<br />

'I'his gives I.llc following V:LIII(:S of x atitl fI:<br />

llt*tit~: l,Itr i~niv(wal v~~lo~:il.,v-tlisl.rilit~l~it~~~<br />

I:LW for vcry l:~r~t% lLt*y~~t)I,ls<br />

has the Ibrmt<br />

4 = 2.5 In 3 -k 5-5<br />

4 -- 5-75 log Y) 1- 6.5 . I (slllool.ll)<br />

I I ~ I I I ~ ~ B ~<br />

I5.y a reasoning siinilnr 1.0 I.l~c ow givw in 1.h~ ~nwwling wction it, is 1,ossiblt: t,o<br />

arrive at a corrcspontling universal asyrnl)t.ol.ic rcsisl.:rnc.c: forlnitln front t11c- :~l,ovo<br />

~rnivcrsal velocit.y-clist~ribiil~i~~ii crl~int.ion.<br />

1Scl1lat.ion (20.14), hcing one for l.~trI)ulont Ilow, is v:alitl only in regions where<br />

1.11~ I:rrninn.r shc:aring strcss c:~n be iw,nlwI.c:tl in cwinl):lrisori witlt the I.~rrl)itlc.nt<br />

stress. In I.hc irnmctliaf~o ~inigl~I~ot~rl~ootl of I,llo w:all, whc:rc Iflie I,~~rl)ulc:t~l. slic:~ring<br />

sl,rc:ss tlw:rcnscs 1.0 zcro : ~ r d I:amirt:ar sl.rcwc:s prctloinin:atc, tlt:vi:~tiolts froni t.his<br />

law must, be expected. 11. Rcichartlt. [54, 551 rxtcntletl l.l~is kind of ~neasnrcmc~nt to<br />

incli~tlo vcry small tlist.nnccs from t,llo w:~ll in n Ilow in a channcl. Curve (2) in<br />

Fig 20.4 rcprcscnts the transition froni t.hc Irrlninar sub-layer (c/. Scc. XVlllc)<br />

1.0 l,ltr I~trl~~rlotit. bonntl:~ry Inycr. 'l'hc c:~~rvc! tlotto1.cvl 11.y (I) in 1.11~ almvt: tli:~grnin<br />

c:orrosporitls to laminar llow for whit:ll T~, ---- 11 11/!/. \Vitl~ T,, = pv*2 we ol)l.:tin<br />

Irron~ (.his it can bc sccn t.1i:~t<br />

fric.l,ioit may be complctdy ncgl~:c:tctl c.ornp:aretl with 1:rniinar friction. In Lhc: r:Ln,ne<br />

5 < 1 17*/11 < 70 botfh conf.ril~ut.ions :in: of tho snrnc ortlcr of magnitutlc, wllc-rws<br />

for y v*/v > 70 l,l~c 1amin:rr con1 riI)ut,ion is twgligil~lc rotnparwl wil,l~ I 1tr1)11Itwl,<br />

frit:l,ioii. '1'1111s :<br />

for wrlurs y 11,111 < 5 (.lie cont.ribut,ion fro111 t~trht~It:~~t,<br />

'* > 70 : p~ir~ly t~irln~lcnt. friction . I


604 XX. 'hrl)r~lcnt now t,hro~tgll pips<br />

We now propose t,o compare the cxpcrimcnt.n.l rrsnlts on vrlocity-rlistril)utior~<br />

mcasr~rerncnts in pipc flow with t.hc altcrnntivc ~~niversal equation, which was<br />

clcdl~rc~l in Ch:~p. XIX in the form (I/ --u)/v* .- /(l//R). It will be rccalletl that<br />

it followcd hot11 from von I


606<br />

XX. 'l't~rhl~lc~rit flow thro~~glt pipes<br />

wlirrc /(?/)/I{) - > I for y/Jt + 0. lnt,rocI~tring v* = iT"/b :~ntl con~l)initig cqn. (20.17)<br />

with rqn. (20.IC,) we? ol~t.niri the following tliffcrcntinl equation for I.ho vcilocity<br />

dist.ril)~~t~ion<br />

whrncc:, l>v intc~r:tt.ion<br />

Wig. 'LO.(;. V:iriiJion of nlixinp hgld~ ovcr<br />

pip tlinnickr for rough pipea<br />

Curw (I) rrom rqn. (20.18)<br />

IJerc lJic lowor litnib of in(.cypt.ioli :1t. yo, wl~orc t.11(: vc:locit.y is ccp~l Lo zero, is ol'<br />

tlic orcler of l,lic tllic:knc~s of tlic 1:tminar sr~l~-lnycr and, tlicrcforr, proport.ional 10<br />

v/n, 3.s seen from cqn. (20.15a). 'l'li~~s yO/II = F, (n* R/v). Tilo ~naxirnum ve1ocit.y 11<br />

in t,hn mnt.rc: of tlw pip c:~n I)c? (Ic~II~M~ from cqrL (20.21 ) and I~coo~ncs<br />

r 7<br />

1 hus wc? hxvc :xgnin 1xwi h1 to t h univ(vx~I \~cl~(-ity-Oi~I.l'il)tt(.iO~l litw. (~111. ( 19.2 l )<br />

am1 qn. (l!).28). 'l'lic: cssrnt,i:~l g(:t~cr:tIiz:~t,io~~ wliic~lt I I : ~ now I)c:oti :tt4ticvc1l cot~sist.s<br />

in t,lir fact, t,liat thr ~~nivc:rsnl law in cqn. (20.22) is vnlitl for rougli :IS wdl :IS liwsnioot.lt<br />

ljipcs, tt.lic f~~n(:t.ion k7(?j/H) 1x:ing t.11~ s:\ni~: in I)ot.Ii oases. I':(III:I~ ion (20.22) :~ssc:r(.s I ltp~.<br />

c.11rvc-s ol' vc.1rwil.y tlislrilnll,io~l ~jlot~l.c:tl ovvr t.11~ 1)ipc rntlitts c~tn~l~r:lc~l, illlo :1, si~tgltr<br />

wrvc for ull v:~.Itws ()I' l~~~ynol~ls nt~nil~~ m(I for all (1c)grcc:s of rot~gl~~t~s, il' ((~---~I,)/IJ*<br />

is plol~t8~:~l ill t4(~rnis or !I/ It, lTig. 20.7. It, ni:~jf IK: nol~xl ~JI:LI, 1 . 1 ~ :I I)ovv I~WIII ol' I It(!<br />

vclocil,y-tlist~iiI)i~t~ioti law was lirsL tlrtluwtl I)y 'l'. 15. St,nnt,ol~ 1721. Ati c:xl)lic.it csxpression<br />

for F(?//R) cor~ltl Ipc ol)t.ninc:cl I)y ovnltlnl.ing tlic inl.cgr:~l in cc1n. (20.21):<br />

it is, Iiowev~~r, sitnplcr 1.0 ni:~kr<br />

IISO of 1.110 :tlro:uly Itnowti Ihrni or tlio vc:loc:il.y-~lisl.~~il~~tlion<br />

Inw for smooth piphs ns give-11 iii 1:(1u. (20.14). Ilonc:c,, ill :t wa.y sirni1:tr 1.0 c.clris.<br />

(20.9) nntl (2O.I0), wo Iinvc<br />

r. -- I1<br />

.<br />

R<br />

= 5,75 log - . (20.23)<br />

"* Y<br />

Pig. 20.7. IJtlivcm;rl vcloci1.y-11isl.ril~trlion Inw 3<br />

for smooth nnd rough pipe8<br />

6<br />

5 ..<br />

4 -<br />

C~~rvc (I) from rqn. (20.23). I'randtl;<br />

rl~rv~ (2) from cqn. (20.24). vnn K4rtnh:<br />

1 --<br />

eurvc (3) from egn. (20.25). 1)arcy -.<br />

o*<br />

I


'I'ltr ~tnivvrs:rl voloci(,y-tlisl.ril,rtt.iot~ Inw c;ul I)c tlctlr~cccl also from von K:i.rmdn's<br />

sirnil:~ril.y I;L\V, cqn. (1!).21), wltonno we ol)t.:tin<br />

\rit,ll y rlcnoiing l.lro tlixt.nnc:c frorn t.lw w;tll. 'l'his rq~~;ti,ioll, sl~ow~r RS CII~VV (2) in<br />

Il'ig. 20.7, also n.grc:cs well with tllc c:xpc~rirnrr~t:rl v:d~~c:s, if x -: 0.30 is c:hoscn.<br />

1Gg11ro 20.7 coni,:~ins ILII :t~ltlit,innal mrvo (3) which is l)nsc(l nn f1, lhrcy's I


GI0<br />

XX. Turbulent flow throngh pip<br />

and from t h nniversal ~clocit~y-dist,ril)~~t.ion law, cqn. (20.14), we have<br />

which coml~inctl wit.11 aqn. (20.20) gives<br />

We can introduce the Rcynoltls number from<br />

so that we obtain front cqns. (20.28) and (20.29)<br />

According to this result the univcrsd law of friction for a smooth pipe should give<br />

a straight line if 1/dj is plotted against log (R da). This feature agrees extremely<br />

well with experiment, as seen from Fig. 20.9, whcrc the results of measurements of<br />

Fig. 20.9. Univernnl I:rw of friction for n n~nooth pip<br />

Cervc (I) rrom eqn. (20.3n). I'mwlll: cttrvc (2) rrota rqn. (20.5). Illnslsl<br />

I<br />

e Nikuradse<br />

Saph a n d W<br />

0 ~urself<br />

e Ombeck<br />

lohob and Erk<br />

m Stantonandhmd<br />

Schillerad~<br />

d. Univcrd rcsint,nnce Inw for smooth pipes nt vory lnrgc Rcynolrln nilnil)crs 61 1<br />

many authors have been plotbcl. The nnmerical coefficients for tho avcragctl cnrvc<br />

passing through the experimental results differ only vcry little from the preceding,<br />

derived values. The straight line (1) passing thrortgl~ the cnpcrimcntal points in<br />

Fig. (20.9) can be represented by the eqrietion<br />

This is Prandll's w.niversn1 lnw of friclioiz for smodh pipcs. It hns been vcrifiecl by<br />

,I. Nikuradse's 1451 cxpcrimcnts up to a Reynolcls number of 3.4 x 10~ntl tho<br />

ngrcemcnt is seen to be cxccllcnt. From its derivation it is clear that it may bv<br />

extrapolated to arbitrarily large Reynolds numbers, and it may be stated that<br />

measuremcnfa with higher Rcynoltls nnrnl)crs arc, thcrcforc, not rcq~~irctl. V:dws<br />

computed from cqn. (20.30) are given in Tahlc 20.2. The ~iniversal law of friction<br />

is represcntcd by curve (3) in Fig. 20.1.<br />

Teblc 20.2. Coefficient nf resint.nncc for smooth pipcn in tcrmn of the 1L:ynolds nwnhnr; nee nlnn<br />

The universal equat,ion agrees well with Rln.sir~s's rqtl:~l,ior~ (20.5) up to R .= los,<br />

hnt, a,t higher V I ~ I I ~ l3lasi11s'~<br />

S cqt~ntion dcvi~~~t,cs progrwsivrl.y tnoro from ~,III! r(:sttIl.s<br />

of n~e;~sr~remr~~L, wlicrras cqn. (20.00) maint,ains good ngrccrncrit.<br />

The flow of gnscs throngh srnool.li pipos at vcry higli volocitins was invcs1.i~l.ctl<br />

hy W. lh~~sscl (lU]. 'l'hc vl~ri~~tion in 1)r(*sstirc httg ;L pi~w I'I~ 1liIhw14, ~I:I.SS llow<br />

mtcs is rcprcsentnxl in Fig. 20.10. Thc num1)ers shown agninst tho curvcs ititlic::t\a<br />

the fraction of maximnrn mass flow through a nozzle of cqnal dinmctm and with<br />

cq11a1 stagnation pressure. The curvcs which fall off to the right refer to subsonic<br />

flow, whereas the increasing curvcs apply to supersonic flow. 'Che lathr curves<br />

include jumps to higher pressures and subsonic flow cFTectcd by a shock. The cocfficicnts<br />

of resistance are not markedly diflercnt from t.l~ose in incompressible flow,


XX. T~lrbrrlcnt flow tl~ro~rgh pipcs<br />

Fig. 20.15. Srconclnry flows in piprs of triancross-section<br />

(urllcn~atic)<br />

g~tlnr R I TCC~II~II~R~<br />

~<br />

Fig. 20.16. (hrvcu of constant vrlocit,y for n.<br />

rcrtnng~~lor opcn rliannol, nfkr Nikt~ratlsc (431<br />

*<br />

tli;igrams of sccontln.ry flows in t,riangul:ir and roct.angular pipcs are shown inXFig. 20.15.<br />

It is swn that, the sccondnry flow in (.he rectangular oross-section which proccetls<br />

from t.ho wall inwnrtls in Clic neiglibourhood of the cnds of the larger sidcs and<br />

of t.lic mitltlle of the shorbr sitlcs creates zoncs of low velocity. They appear vcry<br />

clcnrly in (.he pic:t,urc of curvcs of constant velocity in Pig. 20.13. Such secondary<br />

flows romc int,o play also in opcn channels, as cviclcnccd by the pattcrn of curves<br />

of const,ant, vrlooity in Via. 20.16. Y'hc maximum velocihy docs not occur near thc<br />

free surfiicc I,nt, at. about, one fifth of 1.11~ tlcpth down, and the flow in the frcc surface<br />

is not, at n.ll two-clirnensionnl a.s might have been expected. When the cross-section<br />

of the cllannol cont.ains a narrow region, transition does not occur simulbanoously<br />

ovrr t.licr wholo or the Ilow. I'or cxnmplc, in the rrgior~ within an acute angle of a<br />

tfrinngulnr cross-section, the flow remains laminar to very large Reynolds numk)crs,<br />

whcrc.~ in thc bulk il 1i:t.d tnrrlctl turhrlcnt long ago. Such a state of affairs is seen<br />

illustrntc~l wil,li tlic nit1 of Pig, 20.17 which represents the results of mcasuremenLq<br />

Fig. 20.17. Bollndnry betwrrn laminar<br />

nl tl t.llrlmlrnt flow in nn n(:utr, t.rinw<br />

gular 1 cl~annel, dct~rniincd visually by tho<br />

we of smoke injection, after E. 1L G.<br />

Eckcrt nnd l'. E. Irvinc [13]<br />

R, - h,drrulir. rndius = dh/2<br />

pcrfornlctl by E. R. G. J3cltcrt ant1 T. E. Irvinc [13]. At a Itcynoltls nilnil)cr of<br />

R == 1000, the flow remains Inrninar ovcr 40 per cant. of [.he hcight of 1,hc triangle:,<br />

t.lic region of lamirmr flow dccrcnsing :is the Itcynoltls ri~trrtl)cr is iric:rc::lsc:tl.<br />

13. Meycr 1381 invcst.ignt,ctl the prcssilrc antl vclociljy tlist,riI~irtion iri a Ilow<br />

through a stmight channrl wit11 :i cross-sc:ct.ion whose sllapo varictl but whosc crossscc:t.ional<br />

nrca rcmainctl const.nnt,. IIc 11sc:tl a chnnr~cl in wllic:li ;I cir~i~li~r (:rmsscvtion<br />

was gmc1u:illy trxnsf'ornictl int,o n roc:t.n.nglc: wilJi ills sitlos in t.lrc r:il,io 1 : 2.<br />

'I'rn.rlsition was clli:ctctl in hot11 tlirt:c:t.ions over two rlilTc:rcrit~ I~:ngths, :rntl it, w:is<br />

tlisc:ovort:tl I,hnl. I,hc prcssnrc: loss in l11t: ~~ortioii with Im.nsit,ion from c:irc:lc: to rc:c:l.:lriglc:<br />

co~isitlcr:hly cxc:cctlctl t.Imt in the oplmsito tlirc:c:t.iori.<br />

Most, pipcs llsctl ill cngir~coring sl.ruc:tirrt:s c:nrlnot, IN: rc:g:lrtlctl :w hoing I~~tlr:ir~lic:n.lly<br />

smoot,h, ;it, Ic:lslf att highor Itc:ynoltls rll~nil)crs. 'I'll(: rc:sisL;~nc:c: 1.0 Ilow olli:rc:tl<br />

I)y rongh walls is larger than tl1:~t irnplictl I)y thc prc:c:t:tling oclllnlions for smoot.ll<br />

pipes. Conscq~icnt~ly, the laws of fric:tion in rough pips ;rrc of grc:;lt pr:ic:tic::rl importmwc,<br />

awl cxp(:rimcnlnI work on thcrn I)c:gan vory wrly. 'l'llc tl(sirt: Lo c:xl~lorc:<br />

the laws of frictionof rough pipcs in a systc:matic way is frr~st~r;it~(d l&.t.llc: funtl;~rnc:nt.~~.l<br />

. - . - . . cliffi~~~t,.~~.that the numbcr .of parn.nict,cr~ tlcscribirig roilgllncss is cxtmortliri;lrily<br />

large owing to t11c grcnt tlivcrsity of gcornc:t~ic forms. If wo consiclcr, for cxnrnplc,<br />

a w:dI with . .~. itlcntjcal prot.r~~sior~s ~~~~~~nt:i~~~t~Ilccor~clr~siv~i.bI~:it<br />

its tlr:tg clt:l)t:ritls<br />

on .. lhc . ,, tlcnsitty -. -. - of ... :-.-. tIist.riOnt+t~ .. of siic:li rougl~nrsscs, i. c. on their nllrnl)t:r IFr unil, :Lra:L<br />

as we n.s on thr shapc antlhnight nr~tl, fin:llly, also on t.hc way in whtt:h they :m:<br />

tiist,ribtit,&l over i!s surface, It took, ~hcroforo, ;a i o r t.irnc ~ ~ to fortnnlat,~ oIn:w ant]<br />

- - - -. . .<br />

sirnik ~ W which S tIcscril~c the flow of flnitls tl~ro~gll rough pipes. I,. Tlopf [25]<br />

rn:do :i comy)rol~cnsivc rrvicw of 1.110 nllnicw)ils cnrlicr cxocrirnont,:d rtwults :~ntl<br />

found two l.ypcs of ro~lghncss in rthtiori to 1.l11: rcsist~in(:(: fnrmuh for rough pipes<br />

and open c:ltnnncls. 'l'hc first, ltilltl of rongllrloss c::ll~sc:s :,. rcsisl,:irlc:~~ whic:ll is proj)orlSion:d<br />

to tljc.glunrc .of the vclocit.y,; !,I~is~~l~cans t,h;~t, t,ll(: c:ocfficiorrt of rc:sist,:l.nc-c:<br />

. . .<br />

Is itdnpt:ntlcrlt~ of 1,hc ltcynoltls ni~rnhcr ant1 corrosl)orltls to rcIat,ively coarse n.ntl<br />

tightly sp:icccl roughness clcrncnb SIIC~ as for cxninplc c:o:srsc s:lnrl gr:tins gluctl on tJl(:<br />

surf:lcc, cerncnl, or ro11g11 cast iron. In st~nlt cxscs lllc: nalirrc of Lllc ro~lglltlt:ss ~:;III<br />

bc cxprcssccl with tlic aid of n sitlglc rougllncw p:~r:imc:l.cr k/l


Icror~~ ()I(, phj.sic*:~l ~)oint. of vicw it ml~st I)c conclutlnd that 1.11~ mtio of t,hc height<br />

(IS prot,t.~~sions t,o t,l~r I,o\~~~cl:~r,y-l:~yc~r t,l~ic*lz~~rss sholtltl I)(: the tlct.rrmining factor. In<br />

l);~rli(~~~l:~r,<br />

I,IIv ~~II(-IIOIII~~I~O~I is cxl)rcl.c(l 1.0 rlrl)n11(1 on 1,111: I,l~idrrl~w or t,l~r In.minar<br />

s\~lr-l:lyc.r d,, so I.II:II. k/ii, ln~~st, I)c rrg;~rclvtl :IS an inlport,atlt tlirnonsionlcss ntltnbcr<br />

\,:Ili(.l~ is (*l~:~r:~(*l,~~risli(; of l,hf: ki11(1 of' ro11g~111~:ss. If, is d~ar 12hn,k roltgh~lcss \trill ca11se<br />

IIO i~l(-rt*:~sr in ~I&I:III(~ ill (::ISVS \vh(w: I.II(\ I)I.(~~IIS~OIIS arc: SO s111:~ll (or 1,111~ 1)011rl(l:~ry<br />

I:~yrr is so II~ick) t.llnl, I,llc-y ;~rv all c-orlt;rit~c.~l wilhit~ 1.l1c I;lrr~ic~:rr scrl)l;~jw, i. c. if<br />

k < (St, and t.11~ wnll may I)c cwwidcrrtl I~ytlr;ir~lic:~lly smoot,lt. This is simi1a.r to the<br />

:I,I)s~~IIT or t,l~c ~ I I ~ I I I ~ of ~ I ( ro~~gltn(w<br />

* ~ on rrsist:tncc in lln~g~~~~-l'oisc~~ill~: flow. I:I,sII~~:~)I(-II~,s 011 ro~tgl~ pip(-s 11:l.v~ IWCII<br />

w1.1.ivg1 o111, 1)). .I. Nilr\~r:t~lsc [.4(;J-\-, ~vllo IIS(YI (~irv111:lr 11ips (-ov(~rc~l 011 I,IIc it~si(Ic $IS<br />

t igltt Iy :IS ~)ossil)lv \vit.l~ s:~t~tl of :I t1cfinit.r gr:\i~~ sizt, glc~cvl 011 ($0 l llc w:~ll. 13y c-hoosing<br />

1)il)cs of v:~rying (Ii:~n~r~t.rrs n~ttl Ity (hnging IIIC sim: ofgrnit~, IIC wn.s :10lc 1.0 vary the<br />

rc-l:l( it.(, ro~~gl~ncw f.,/ll liom nbol~t 1l.500 1.0 1/15, 'l'ho rrgl~l:~rit.irs of I)rhaviour tlisc~)v(.r~~l<br />

(111ri11g 1.l1r ( WII~SC of l.I~rsv mr:~s~~rrtn(mts can .bc: corrrl:~t.ctl \vit.l~ l.l~osc hr<br />

stno01 11 pil)~*s ~ Ia, I sitt11)lc tn:~tlnw-.<br />

\\'v sII:III Iwgi11 I)), (l(w.ril)i~~g Nik111x11sr's III(~:LSII~(-I~I(~II~S :III(I w: SII+III t,It(:n SIIO\V<br />

t.11:11. 111r rrl:~I~io~r I)c~l~wrc~~~ t.l~c ~wisl,:~nc~r hrlnrtl;~, nntl I.llc: vrlori1,y tlisl.riI)~ction, \vl~ic.h<br />

\\r I;)IIII(I rilrlirr ill t11r (.:IS(- 01' sn1ool11 oil~vs. van I)c esl.rntlr~tl t.o t,l~r rnsc of ror~gh<br />

l)il~~,s ill :I II:II<br />

IICII W I ~ .<br />

t 111.whnl. Follows wc, sl~nll 11sr t.llr sylnhol ks Lo rlcnotr LIIC grain size ill Nikuratlnc's narltl rorlgll-<br />

wsu, wnrrvit~g I.hc ny1111)ol k for :III$ ol,llrr ltillrl of rollghncsn.<br />

: rl'l~c nu~~~t*rir~:ll ~:~IIII.s of t,? I-*/v q11otw1 11rrr will Iw hivc(1 1:tI.w ~~OIII 1.11~ velocity dist.riht~inl1<br />

law. Tl~cy :IM: v:lIirl OIII~ for rrw~l~~~rssrs ol~k~incd with mtld.<br />

Fig. 20.18. Rosiatance formuln for rough pipes<br />

The size of t,hc roughness is so smdl that, all prottrusio~~s :ire conf.ni~~c:tl \vit,hit~ the<br />

laminar snl)-layer.<br />

Protrusions cxtcntl pnrl.ly out.sitln Ihc I:rminnr sub-l:~ycr ;1n(1 1.11~ atltlit,io~~:~l ~.rsisl:~nty~,<br />

as cornp:irc:d with a srnoot.l~ pipe, is ~n:iitrl~y cl11o t>o lhc limn tlr:ig c:spr.ric.~~c.c-tl Ipy 1.11~<br />

pl'oLrusions in the bo~~rltlary layer.<br />

Vclocity dis~ribution: '['he vc.Ioci(.y gr:uliotlt no:cr :I. rollfill \v:1.11 is Ivss slwp I.Il:rr~<br />

f.l~al. nrar a sn~oot.l~ onc, ns can I)c scrn from Vig. 20.1!), in whicl1 l.I~r vcloc~i1.y ~-:~l.io<br />

71/11 has Gccn plol~ctl against the distance ratio y/ll for a smoolh a~ltl hr scvcwl


618 XX. Turb111cnt flow through pipen<br />

rough pipes, all Imving heen measurotl within the range of validity of t h square<br />

resistance law. Expressing thc velocity distribution function again by a power for-<br />

mula of t h type of cqn. (20.6) wc obtain cxponcnts of # to &. The variation of mixing<br />

length over the cross-section calculat,ctl from these curves has already been plotted<br />

in Fig. 20.6 from which it is seen that it is exactly the same for rough and for smooth<br />

pipes. It can be represented by the rmpiricd cquation (20.18). In parlicular, in the<br />

neighhourhood of the wall we have 1 = x ?/ = 0.4 y.<br />

r<br />

Rg. 20.19. Velocity diatri-<br />

bution in rough pipen, aftm<br />

Nikuradse [40]<br />

It. follows, thrcfore, that, the logarithmic law for velocity distribution, eqn.<br />

(10.2!)), remains valitl for rough pip, cxcept that tho con~t~anl of intcgmtion, yo,<br />

must 11c given R clilTcrcnt numcricnl vnl~ic. Furthormorc, it is natural to malto it<br />

proport,ional to the roughness height k,, i. e. to put y, = y k,, so tl~at cqn. (19.29)<br />

now becomes<br />

I<br />

tho c.onst,nnt, y still clrprtltling on t,lw nat,urc of thr pnrt.icular roughness. Comparing<br />

this cclui~tiou with J. Nikr~mtlsc's measurcmenk, we fild that they can, in fact, be<br />

rrprrsc~ltstl by an equation of the form :<br />

where the constant 2.5 = l/x = 1/04, whereas I3 assumca different vnlurs for tllc<br />

tl~rrr rauges of roughness discussed previously. In tlm rango of the complcl.cly rougl~<br />

regime, we have I3 = 8.5, so that in this region<br />

u - = 5.75 log $ + 8-5 (completely rough) .<br />

v *<br />

F<br />

(20.32a)<br />

The corrcspontling slmigllt lirto is scon to agree well with bhc rcsnlt~ of measuremcliL,<br />

Fig. 20.20. Gcncrt~lly spcalring M is a function of the rougl~ncss Itcyrmltls<br />

nurnlm v, ks/v. Thc valuo which corrcapords Lo I~ytlraulicnlly smoolli flow Idlows<br />

at ol~cc from dqrl.s. (20.32) ;~ritl (20.14), and is<br />

v* k,<br />

B = 5.5 -1- 2.5 In -- (I~ytlmnlically smooth) . (20.33)<br />

U- u R R<br />

- -- - = 2-5 Ill -- = 5.75 log -- , (20 23)<br />

v* Y Y


620 XX. Tnrbnlcnt flow tlvough pipes f. Rough pipes and cquivalcnt sand rough~icsa 02 1<br />

Fig. 20.21. Ilonglincss futlction Jl in hrn~s of ?I, ks/v, for Nilturarlsc's sand ronghncna<br />

t'urvc (1): I~ydrr~tllrfilly stnootk, eqn. (20.3:l): rurve (2): II - 8.5; completely rongl,<br />

onc:c morc. It li:~ hccri fount1 to :~pply to smooth pipcs in conncxion wit,h Fig.<br />

20.7. In ortlcr to soc morc c:lcarly the conncxion bctwccn the velocit*y distributions<br />

for smooth and roiigh pipes, it is uscful to re-plol tlic rcsults for rough pipcs in the<br />

form of a rrlation I~cLwccn thc tlirnc~~sionlcss vcloc:ity IL/V* = 4 and tho Rcynolds<br />

1iuni1)cr y v*/v = 91, as was tloric in cqn. (20.13) ant1 Fig. 20.4 in rolatiori to smooth<br />

pipcs. Writing cqn. (20.32%) lor the ror~gh pipe in thc form<br />

= 5.75 log v: + Dl (complctcly rough) ,<br />

v* (20.33a)<br />

and comparing it with cqns. (20.33a) and (20.32a), we olltain<br />

ks "*<br />

D, = 8.5 - 5.75 log - (cornplctoly rough) . (20.33 b)<br />

,.<br />

l his vclocily tlisldnition is sect1 plothtl in Fig. 20.22, .alter N. Scholz [W]; it<br />

rc:prcs(:rit,s tlic voloci(.y rlishibulion for smooth pipcs as wcll as that for rough pipes,<br />

in acaortlnncc with cqn. (20.33a). 'L'hc diagram consists of a family of parallel straight<br />

litics wiIih V+ kS/v playing thc part of 8. parameter. 'L'hc value of v, ks/v = 5 corres-<br />

ponds 1.0 hytlrartlir::~.lly smooth walls, thc range bctwcen o, ks/v = 5 to 70 corresponds<br />

t,o I.r:~nsit.ion frorti t.lic Ilyt1r:rulically smooth to thc cotnplcLcly rough regime, and<br />

for a, k,/v > 70 1.11~ flow is c:omplcl.ely rongll, as mdntioncd previously. Tn particular,<br />

t.llc: tliagr:rrn shows cl~::~.rly l,llat the laminar sub-laycr which reaches as far as ?/ v*/v = 5<br />

in hy~11.:111li(::~Ily stno0t11 pip, has no itnpt~rt.an(:c for c:omplctciy ronglt walls.<br />

Ildnti~m lwlwc.c.t~ rc.sistnncr: fortnula and velocity distributin~~: 'I'liis type of rcla-<br />

I ion (.xist.; for rottgli pipcs nlso :r11(1 ran lw tlrdnc:cd in the same mnnnrr as was clone<br />

Fig. 20.22. Universal velocity<br />

r o e or turuent o w<br />

tl~rongli pipcs which is valid<br />

for smooth as wcll as for rongh<br />

walls, after N. Scholz [65]<br />

fO<br />

+-f 3<br />

-+<br />

(1) amonlh, lnminnr rublnyer, + - q<br />

(2) amonlh, twbulcnt. cqn. (20.14)<br />

(3) ro~~gll, turbalcnl, eqn. (20.33a)<br />

m<br />

Ld<br />

with D, from eqn. (20.33b) 0<br />

. . .-<br />

li j i i b<br />

in See. XXd for the case of smooth pipes. The relation is simplest for tile complelely<br />

rough regime. We begin by calculating the mean velocity from cqn. (20.23) in the<br />

same way as in eqn. (20.26):<br />

13. L- I1 - 3.75 v* . (20.34)<br />

Substituting U = v, (2.5 In R/ks 1- 8.5) from eqn. (20.32a), we have<br />

i. e.<br />

C/v, =. 2.5 1n (R/ks) 4- 4.75 or 118 = ( ~,/6)~ = [2.5 In (R/ks) -1- 4,761-2 ,<br />

1 = [2 log (Rlk,) + 1.G8]-2 ,<br />

which is the quadratic resistance formula for complclcly rough flow. It was first<br />

derived by Th. von KLLrmiLn (Chap. XIX [17J)from thc simi1arit.y law. A comparison<br />

with J. Nikuradse's experimental results (Fig. 20.23) shows that closer agrrcrncrit,<br />

can be obtained, if the constant 1.68 is replaced by 1.74. ITence the resislnnce formula<br />

for the completely rough regime becomes<br />

The experimental results lie very closc to a straight line in a lht, of 1/1/1 ;tpinst<br />

log (Rlk,) and it is worth noting t.lrnt rqn. (20.35) may bc ;q)plictl to pipes wiI.11 nori-<br />

e--- --<br />

t An equation which corrclatos tho whole 1r:tnsiLion rcgion from liytlrnnlirally stnootli to<br />

completely rough flow was cstabliuhcd by Colchrook and Whik [GI:<br />

For ks - + 0 t.his equation transiorms into cqn. (20.30), valid for Iiyclranlit::~lly nn~oot.l~ pipos.<br />

For R + m, it transforms into cqn. (20.35) for Lllc con~plctdy rough rcgimc. In t,lic: tr:msition<br />

region eqn. (20.35a) plok 1 against R in a way wliicl~ rrscniblns the curvc labcllcd<br />

"commercially rough" in Figs. 20.18 and 20.25.


circ111n.r cross-sectional nrcas if R is rrplnccd by the hydraulic radius R, = 2 A/C<br />

(A -- area; C -= wettcd perimeter).<br />

If, is also c:wy to tlcrivc t,he relat,ion between the resistance law and the velocity<br />

tlis(ril)ut.ion it1 t.hc Irnn..~ilion rrgion,. From cqn. (20.32) we have<br />

On (.he other h:~.ntl, from cqn. (20.34) we ohtain<br />

and the preceding equation gives<br />

Fig. 20.23. Reaiatance forrnul:~ of snntl-<br />

roughened pip in completrly rouglr<br />

rcgitnc<br />

Cllrvc: (I) from cqn. (20.35)<br />

'I'hr last cquat,ion dc:t,rrminrs tlrr. valr~c of the resist.ancc conl'licient 1 if the cunst,ant<br />

I3 is Irnown from the vc4ocil.y tlisLribntion. 011 t,hc ot.l~cr hnntl, cqn. (20.36) can be<br />

~tsrtl 10 drtcrminc t,hr ronst;~,nt I{ ns :L function of a, k,/v either from t,hc velocit,y<br />

tlist.ril)t~i.ion or from 1,ho resist,nncc formuln. 'l'hc plot in Fig. 20.21 agrees well with<br />

t.1tr rrsnlLs from cii,l~rr of t,l~rso ~nct~ltotls and provcg (.hat the calcnlat,ion of t,hc<br />

vc~lorif~y tlistril)uI.ion front I,III! rt:sisfs:~nce I'orrnr~ln is prrtnissildc for rough pipes too.<br />

'l'hr 1imit.s bctwc:rn the thrcr rogimcs, namrly t.11oso of l~)~tlrn~~lirn.lly smooth flow,<br />

the t.rattsil.ionnl rrgitnr, :mtl t.hc con~plvt,cly ronph regime, whiclt 11n.v~ I~rrn givcn<br />

c::~rIicr, can t~ow I)o t.nlton tlircclly from Fig. 20.21. Wc have<br />

and plott.ed in Fig. 20.4. The limit of t,hn I~~clmt~lically smooth rcgin~c 11, k,s/~l - : 5<br />

givcs t,he thickness of the laminar sub-layer ant1 coincitlcs with 1.h~ limit of Lhc r:iny,c:<br />

in which tho Ilngen-Poisc~tillc, purcly Intnin:r.r, vrlot:it~-tlist~ril~~~f.iot~ I:lw rc.l.:~it~s il,s<br />

validity. 'l'hc! litnit, of v, ks/v - 70 for 1.h trxnsil.ion:rl rogirnc: ;dso c:oinc%lrs \r ilh 1.11~:<br />

point whrrc 1.I1o mcnsurcd vclority tlistriImt,iott goes over ta.l~gct~I,i:~.IIy ittt.o 1.h~<br />

log:lrithinic formula (20.14) in fully turbulent frict,ion.<br />

S. Goldstein [19J sncrectletl in detlucing the litnit. of v, ks/v == 5 for l,lto hytl~irtlically<br />

smool,l~ regime from the criterion t,l~nt at 1.hnd point a von I


dimensions<br />

Fig. 20.26. 1tc.sist.ancc of commercially rorlgh pip after 1,. P. Moody [40]<br />

Fig. 20.24. IZc~nlts<br />

of rnea-mrernents on<br />

regrllar roughness<br />

pattcrnr after H.<br />

Schliehting [G3]<br />

k - nctllsl hcight ol<br />

protrnsinn; k, - cqui-<br />

\rirnl sand rouglanesrs<br />

k, - oquivnlcnt rnnd rni~ghners, to he dctrrminnl in psrtim~lnr cwcs frnnl tlic suxillnry graph in Fin. 20.26. Tlm<br />

hrokrn llnc Inclirnln tho houndnry of tlm complctcly rongh rcpimr wlwrc I.lte qaadrslie law or friction n~pllcs<br />

g. Other types of tor~ghnms 626<br />

in Fig. 20.18, wlrere rcsult,~ of t.hc mc~s~lrc!rnc:~~f,s c~r-rictl o ~~t, by 1%. I ~ I I W :I,III~<br />

P. Cnlavics [3] on a "eomrncrcially smooth" stccl pipe wilh n flow of hol, w:t(,rr ;Ire<br />

seen plotted together with Niltumtlsc'a vnlrrcs for pipes ro~~glronotl witch sn,ntl.<br />

The clifliculty in applying tho nbovc cnlculnt,ioris Lo ~)r:~ct.ic:n.l c:~st~ lies itr (.II~.<br />

fact t,hnt, the value of roughncss to 1)c ,zscril)ed t,o a given pipe is not knowl~. Vcry<br />

extensive cxpcrimcntd results on tlic rc:sisLnncc of cornrric:rt:i:~lly rough pilci ;IIY:<br />

ro~it~ninctl in n pnpor by 1,. P. Mootly [N]. Fig. 20.25 SIIOWS I.IUI.(~ l.11t- gt.:1.1111 01. 2<br />

ngnind R for tlilrcro~rl vrht:s of k,/d is it1 csswt:c itlo~~lit::ll will1 ,I. Nilt~~l.:~(Is(~'s ~li:~.<br />

gram in Fig. 20.18. 'rhc intlivitll~al valucs of ccluivnlcnl, rcl:rtivc s:~t~tl rot~glt~~t>ss<br />

ks/d can be obtn.inccl from thc nuxilin.ry grnplr in rig. 20.20 wllorc: piprs nv(: SWII 1.0<br />

have bccn nrrangctl in thc ortlcr of v:~l~~cs on Nilu~r:ufsc's c:q~~iv:tlcnt s:~.~~tl-ro~lgllltt~ss<br />

scale. This follows from tJic fact tht the vnlt~cs of 1 ill l,c!r~ns or ks/d ngrt:t- wi(.l~<br />

Nikuratlse's velurs from Pig. 20.18 in the complctcly rough reginlo. 'l'lio h.:ursil,io~~<br />

from hydmulicnlly srnoot.li conditions at small ltcynoltls rrrtml)ors to cotnplrk<br />

rouglincss at large Itcynoltls nurnl)crs occurs n~llcli more gr:ullrnlly ill sr~cl~ cw~rr~ncrei:~l<br />

J'ig. 20.26. Auxiliary diagram for the<br />

evaluation of equivalent relative sand<br />

ronghnesa for cotnnrercial pipes, afkr<br />

1,. P. Moody [40]<br />

a) rivclcd steel<br />

b) rrinrorcrd concrctr<br />

c) wwc1<br />

cl) cnal iron<br />

a) ~alvanizcd ntccl<br />

I) blt~~mcn-rontod slcel<br />

g) olrllctllrnl nnrl fnrgeil slwl<br />

11) clrnwn plpcs<br />

It is somctirnos irnpossiblc to fit cornrncrc.ially rough s~~rfnccs snbisfacLorily into<br />

the scale of sand roughness. A peculiar type of roughncss giving very Inrgc values<br />

of thc rcsist.sncc cocfficicnt was tliscovered in thc water duct in t,hc vnlloy of t,I~c<br />

15clwr 168, 821. This pipe hntl a tliamctcr of 500 nun and nftcr n long ~)criotl or tts:ip<br />

it was noticcti t,hst thc mass flow tfecrcasctl by more t,hari 50 per ccrit. IJpo11 c.xntnination<br />

it was found that thc walls of the duct, wcrc covcrccl with a riblike tlcposit,<br />

only 0.5 mm high, the ribs being at right anglcs t.o thc flow tlircct.ion. Tlrtls thc<br />

geometricsl roughness had the small value of k/R = 1/500, but the effect,ive sand


626<br />

XX. 'rnrb~rlent flow through pip@ h. Flow in cttrvctl pipes nntl rliffuscrs 627<br />

roughness showctl vnlurs of ks/R = 1/40 to 1/20, as calculated from the resistance<br />

coefficient wl~icli was, in turn, dctcrmincd with the aid of the mcasnred values of<br />

niasn Ilow. It appcnrs, therefore, that rib-like corrugations lead to much higher rcsistances<br />

thnn sand roughness of thc name absolute dimension. Extcnsivc experiments<br />

on tho increase in the rcsistnnce found in commercial ducts, for example in mine<br />

shafts, can be found tlcscribed in a paper by E. IIuebner [26].<br />

Purt.licr tlct.nils concerning t,hc rrsisl.:~ncc offcrcxi to flow by rough wnlls, perticularly<br />

t.hosc due to single protrusions, will be givcn in Chnp. XXt in conncxion<br />

with t,lic (lis~nssion on t.hc r~sistnncc of flat plntrs.<br />

h. Flow in curved pipes ntd diuu~cr~<br />

Carved pipca: 'l'lir prcc.rcling considcrntions conrcrning pipc flow n.rc valid only<br />

for sl.r:ligI~t~ pipes. JII curvcd pipes thcrc rxisb a, scronthry flow hcrn~wn t,hc pnrtielcs<br />

ncnr t.hc flow axis wllicll 11:tvc a higl~er vclocil,y arc act.ccl upon by n lnrgcr ccnlrifugal<br />

force t.hnn t.ltc slower pnrticlcs near the walls. This Icntls to 611e cmcrgcnce of a<br />

sccontlnry flow which is tlirectctl ontwxrds in t.hc rcntrr and inwards (i. e. towards<br />

t.ht ccr~t~re of rr~rvnt~nrc) nrnr t h wall, Fig. 20.27.<br />

r 3<br />

J he inflr~cnrc of rt~rvnt~trr is strongnr in 1nmin:~r than in t,r~rl)~~lrnt, flow. C. AT.<br />

\Vllitc [RO] untl ]\.I. Atllnr (21 rnrrictl ont. cxprrimonl~n otl 1n.mirmr Ilow. 'l'l~c! I~~rl~t~lcnl,<br />

case was invcsLigntcd c!xprdrnont.nlly by 11. Nippcrt [47] and 11. ltichtcr [5G].<br />

Theoretical cnlculations for the laminar case were carried out, by W.R. Dean [lo]<br />

nntl RI. Atllrr 121. '1'11e rl~a.r~ctrcistic tlimrnsionlcss vnrinl)lc, whir11 tlct.crmincs t.1~<br />

inllrwrlcc of r~~rv:~t~~rc it1 /he lmni~mr cose, is the Deem number<br />

Fig. 20.27. Flow in n c.nrvrtl pipe, aflrr<br />

Prnntltl [52]<br />

may be u sd for values of the parameter D exceeding about 102." TThc rcsults of<br />

mcnsuremenB urc approximated with a higher dcgrcc of precision by the following<br />

empirical equntion, first given by L. Prnndtl 1531 :<br />

This cqunI,ion givcs good n.gmcmcnt wit,h cxporirncnLnl rcsulta in 1.h~ r:l,nfio<br />

C). M. Whil,c [RI] has Pouncl thal thc rrsisl,nnc:r cocfkir~~t for lr~rhulwrl lloro ill a.<br />

wrvrd pipc can hc rcpresentctl by the cquation<br />

whosc form indicates rlcnrly that thc ])ran numbrr can no longer srrve as n ~llitnl~lr<br />

independent variable. In more recent times, JI. G' Cuming [R] carried out an irivcsti-<br />

g,ztion into tho phcnomrnon of scrondarg flow in rurvccl piprs.<br />

in wlricl~ JZ -T= 2 D. If the nt~rncri~~d cocffiricl~t, o~~l.~itIc tlhe I )~~C~I~IICSVS is rrltl:tc~t1<br />

by 0.101, the equation gives good agreement with experirnentnl res~~lt~s in the range<br />

of K > 30.<br />

In the ti~rbulcnt case Ito 1271 hns sl~own thcoreticnlly that the ratio of 1.11~ ~.osintance<br />

coefficients, I/,Io, may bc exprcs3ed in terms of t.hc ditncnsionlcs-q vnriahle<br />

R (R/r)z. The experiment.al results of Jto [28J can hc represent,ed with sufncirnt i~cc~lracy<br />

by the equations mentioned in thc footnote.<br />

In flow through a bend or elbow t.herc is not only some loss of enorgy within t,he<br />

bend itself, bnt n part of the Ions protl~~ccd by the bent1 hkcs place in the stmight.<br />

pipe following it. 15xtensive measurements of the loss cocfficicnts for smooth pipe<br />

bends and n correlation of results wore given by 11. Ito 1291. Thcorcticd rrs~~lt.s nrc<br />

reported by W. M. Collins et ai. [Sb].<br />

In flow through a radially rotating st,raight pipe, n. secondary flow sirnilnr t,o<br />

that found in a curvcd pip is sct, up by the action of n (hriolis forc.n; it. fiirrs risv 1.0<br />

n Inrgc incrcc~sc in resisl,r~ncc. I3xt,c11sivc: ~ncnsurrrncn~a :1.11cl 1.11corct.ic:~l c:t~lcl~l;~l.ions<br />

on this subject were carried out by 11. Tto and li. Nanbu 1301.<br />

t H. Ito [27] givcs:<br />

and<br />

These differ somewhat from, hut are in general nprecmcnt with, C. M. IVl~itc'~ cqnnt,iot~ RI)OVC.


628 XX. T~lrbnlmt flow through pipes i. Noa-shady flow throngh a pip<br />

15xttcnsivc mcasurcmcnt~s and tlicorcLica1 calculations on frictional losses in<br />

turbulcr~t flow hnve also bcen carried out. hy R. W. Dctra [ll] who includcd curved<br />

pips of nonrirculer cross-scclion in his investigations. It is found t,haS the resistranee<br />

offered by an cllipt,ic pipe is grcater whcn the major axis of the ellipse lies in the<br />

plnnc of CII~VA~JI~C than when it is pcrpcndiculnr to it.<br />

- -<br />

11:. l


630 XX. 'I'r~rl~ulrmt. flow t.l~rouah pipc:s<br />

j. Drag reduction by the nddition of polymers<br />

Tn turb~~lcnt flow, t.11~ prrssnre drop in n pipe can be considerably reduced relative<br />

to eqn. (20.00) by t,hr ntltlition of sn~nll qunntitics of polymer particles. In laminar<br />

flow, similnr nrltlilivcs leave the pressure drop prncticnlly uncl~angrd. The extent of<br />

drag rcd~tetion tlcpcnds on the tnolcculnr weight of t,he polymcr and on its concentration.<br />

7~hc gmph of Fig. 20.29 dcucribcs 1.11~ rcsist,ancc cocflicicnt,, 1, as a function of<br />

tho licynoltls nurnbcr R = S'd/vp - where vp is the kinematic viscosity of the solut,ion<br />

- for dill'ercnt valucs of the conccntrntion c of the solution. 'rhe measurerncnts<br />

were perfortnrtl by R.M1. I1nt,ct~son and P. 11. AbcrnntAy [50nJ. As the concent,ratio~~<br />

incrcnscs, the rrt1ucc.d rrsislmce cocfficirnt tends t,o a curve of maximum reductiot~,<br />

curvc (3), indicated by 1'. S. Virlc 1771. 'The diagram of Fig. 20.29 tlisplnys poitits<br />

obtnincd at two measuring stations along the pipe. The diflkrence in t,he values<br />

of thc resistnt~co coefficient nt hhosc two sections is cxplsinetl by the fact that the<br />

polymer molecules ?re tmn npnrt in the turhulcnt st,rcarn resulting in an effective<br />

tlecre~se in concentration in the downstrenm direct,ion. In spite of intensive<br />

rcsearch into this phenomenon (c/. the pnpcr I)y M.T. IAnndahl [36]), no satisfactory<br />

cxplanntion for its occurrence has yct been advanced. Nevertheless, experiment,^<br />

demonst.rate unmiutnlrahly that thc retl~~ction in tlrng is linked to changes in thc<br />

stxncture of tthc tnrlmlrncc. The proccss is bcst illustratetl with the aid of t.he experimcnt,n.lly<br />

dct,erminctl ve1ocit.y-tlisttributsion Inws.<br />

nn - kinrn~ntir visrvelty of t,hr rr~lutlon<br />

0 - ~wnsl~ri~~~ alntlcrn at 214 cl frrrnl lolet<br />

A - n~rnsrlrin~ st.nl.lon at 1641 d from inlrt<br />

(1) lnn~irrnr flow with 1 = 64/R<br />

(2) twt~elcnt now. Nnwtonlan nllla, elin. (20.6)<br />

(3) nryn~ptots for rnaxin~nnl rlrn~rccl~~rlionnlter<br />

1'. S. Virk [77),rqn. (20.46)<br />

Fig. 20 2!). Ilroistn~~creorfficir~~t, 1,of ~111ootl1 pipes in t~~rbulctrt flow of polyn~ersolutiona ns nfunction<br />

of II.~ynoIds nr~wbrr as ~nrns~~rrd by R. W. Pntcrson nntl F. H. Ahernathy r60]. Solntionn of<br />

1mIyc*l I~ylcnr oxide of givrn roncentrntions r ; 1 pp111 dcsignatcq I g of polyn~rr per 106 g of watt-r<br />

Arc:r)rrling l,o I'.S. Virlc [78, 793, it is necessary to distinguish three velocitydist.ril)~~l,ion<br />

zones:<br />

r<br />

$<br />

(1) 'I'hc Intninnr snl~lnyer (0 < 17 < 10); this corresponds t.o curve (I) in Fig. 20.4.<br />

(2) 'IYic fnlly tlovrlopc.tl t.nrhnlent zone. TTcrc the distribr~t~ion follows the law nccortling<br />

t.o rqn. (20.13) with A 1 = 2.5 rrgnrdlnss of th- physicnl propertics of the<br />

solut,ion. 'l'hc c:onsl~:~.nl. 14 vnrics st,rongly wi1,h tlw conc~nt~r~tion.<br />

(3) 'I'lic zonr tlcsrril)rrl as elastic^" 'I'his zone plnrc,s itsrlf I)ctnrrn 1 hr In n~innt.<br />

sublayer and the fully tlrvcloprd turl)ulcnt region 1771. llerc fl~c vrlocity is<br />

rrpresrntrtl by the log:withtnic Inw<br />

. .<br />

Illis law is vnlid For nll int,ent,s t~nd prposrs ILN fn,r :LS 1,111: c:c~tit.~~v of the* pil1c Sot,<br />

sul'ficirnl.ly high concc~n tmtions. In iinalogy wit.l~ ccln. (20.30), we c:nn in tcg~.;~t.c it,<br />

to drrive t.11~ rcsistn.nce formuln<br />

( I] ;rkeret., J.: (:rcnzscl~ichtrn in gcrnclcn unrl gekriin~~nI.rti I)ill'~tsorrn. 111'1'~1bl-Sy1nposi11111<br />

t(reiburg/Br. 1!)57 (H. Gvrtler, etl.). Ilcrlin, 1958, 22-37,<br />

[In] Ackcwt, .I.: AspcoLq of inlarnnl Ilow. lfll~~iii nrrel~~ini(.~ of inf.c.rnnl flow ((:. Sovrirn. c.rl.).<br />

lhcvit*r I'ublinhing Conri~nny, AIIIsI~~~~~IIIIII/I,~II~IoII/Nc~~<br />

l'ork, l!)l;7, I - - 24.<br />

[2] Atller, M.: Stroniung in gckriim~nten Jlohrcn. ZAMM Id, 257--275 (1!)34).<br />

131 Bauer, B., and (Mnvics. F.: I':xprrin~cntdlc unci tlioorctiscl~o Untrrsncl~r~ngon iilwr din<br />

Rol~rreibung von Heiza~nsserleitur~~~~. Mitt. d. J"rrnl~rizk,afL~wrkc:~l tl. IC'I'II Ziirich I!):l(i;<br />

see nlso: F. Galnvics: Scl~\wizer Archiv 5, 12, 337 (1!)3!)).<br />

[4] Becker, E.: Beitrag zur ~erechnung von Srk~~~~tl:irnIrii~~~r~r~ge~~.<br />

ZAhlM Jfi. spccinl issue,<br />

3--8 (1956); seo nlso: Mitt,. Max-l'lanck- Inst,. riir SI.rii~~~r~ng~forsrl~~t~~g 13 (1!)5li).<br />

[4nj L


632 XX. Turhulcnt flow through pipcs<br />

1141 Eckcrt., 15.12. G., nnd Irvine, T.F.: Incon~prcssible friction factor, transition nnd hydrodynamic<br />

cntrnncc-length studies of ducts with trinngular rind rectnngulnr cross sections.<br />

Pnpcr prcsenbd nt Fifth Midwcstcrn Conf. on Flnirl Mecl~. 1957.<br />

[IS] Pox, H.. W., and Itline, S.J.: I%w regimes in curvctl subsonicdiffuscrs. J. Basic Rng., Trans.<br />

ASMIC $4, Scries I), 303--312 (1962).<br />

[15n] I'renkicl, F.N.. Lnndal~l, M.T.. and I,umlcy, -1.L. (ed.): Stn~cturc of turlmlcnce nnd drag<br />

rotiuctiou. IU'I'AM Symposi~~m, Washington 1). C., 7 -- 12 Jur~c 1!)7fi, 'l'he Physics of I~l~ricts,<br />

20, No. 10, I'nrt 11, S 1-S 209 (II177); scc nlso 13.11. l'on~ in I'roc. Intern. Congr. Rheology,<br />

North-Holland, A~nstcrtlarn, 1949, Scc. 11, IB5.<br />

[I61 I~ribch, W.: IGinfluss tler Wandrauhigltcit nuf die tnrhulc~~te Gcscl~wir~tligkcibvcrtcil~~ng<br />

in Rinncn. ZAMM 6, 109-216 (1928).<br />

[I71 k'romm. I


634 XX. Turbnlont flow tltroogh p ip<br />

Seifertlt. R.. anct Kriiger, W.: Uherrmclmd hohr rtoibangaziffer einer Fernwnaserleitung.<br />

Z. VDl $2, IH!) (19.50).<br />

Spnlrling, 1). B.: A single fortnuln for the "law of the wall". J. Appl. Mech. 28, 456-458<br />

(JMl).<br />

[08h] Sobey, J.S.: Invi~rid ncrondnry tnotionn in n tnbe of slowly varying ellipti~it,~. JFM 73,<br />

G2l -039 (1976).<br />

[an] Sprmgcr, 11.: Mr~nungrn nn J>iffuooren. VDT-Bcr. 3, 10-110 (1955); see also ZAMP 7,<br />

372--374 (J950).<br />

[70] Sprengcr, ti.: 1':xprrimentdle Untomnchnngen nn gernden und gekriimmtcn Diffusoren.<br />

Mitt. Jn~t. Aerodyn. EII'H Ziiricli No. 27 (1!)59).<br />

I711 Stanton, T. R.: l'lie mccllnnicd viacoaity of flnida. Proc, Roy. Soe. London A 85, 360 (1911).<br />

1721 Stnntnn, T. I


636<br />

XXI. Td~nlcnt houndnry layers at zoro promure gredicnt a. The smooth flat platc '<br />

R = I/, 1/v (Urn - frcc-strca~n vclocity; 1 - length of plate) are so large t1hat they<br />

cannot bc strbjcctcd to mcasurcment in a laboratory. Moreover, even at motlerate<br />

Itcynol(1s numhcrs it is murh morc difficult to carry out mcasuremcnts in the<br />

bounclnry Iaycr on a plate than in that inside a pipe. It is, therefore, very atlvantageons<br />

that it is possiblc to calculate the skin friction on a plate from the extensive data<br />

availnblc for piprs hy thc nse of a method dne to 1,. Prandtl [40] and Th. von<br />

IGirmi~n [30J. This ralcnlation of t,hc skin-friction drag on a plate can he rarrictl out.<br />

both for smooth nnd for rough walls. A good summary of this work was given by<br />

P. R. Hama [23].<br />

a. The smooth flnt plate<br />

The approximate method to bc applied to this problcm is based on the momentum<br />

integral equation of I)onntlary-laycr theory as givcn in eqn. (8.32) of Chap. VIIf,<br />

the vclocily prolile ovcr the boundary-laycr thickncss bcing approximatccl by a<br />

suitable empirical equation. Thc morncntum equation thcn provitlcs a relation<br />

hrtwccn t,hc chr~mderislic prumelers of thc boundary laycr, i. e. bct,wcen displacement<br />

tdlicltness, morncntum thickncss and shcaring stress at the wall.<br />

Tn thc following argument we shall assume at first that the bountlary layer is<br />

turbulent already at thc leading edge (x=0) antl we shall choose a system of coortlinatcs<br />

as shown in Fig. 21.1, h tlcnoting the width of the plate. The boundarylayer<br />

thickness O(x) increams with x antl on translating the tlatn for n pip into<br />

t.hose for a j)lat.e we not ic:c that the maximum velocity, U, of the former corrrsponds<br />

to thr free-stream vclrx:ity, U,, of thc lnttcr, the rntlius, R, of thc pipc corresponding<br />

to the boundary-laycr thickness, b.<br />

At this stage wc introduce with I,. I'ranrltl the fundamental assumption that the<br />

vr4ocit.y dis~ribution in tlic bonnclary lnycr on a plate is idcnticnl with tht inside<br />

a c.ircular pipc. This assumption cannot, ccrtainly, be exact, because the velocity<br />

rlist,ribnt.ion in a pipc is formed unclcr the influence of a pressure gradient, wllcrcas<br />

on a platr t,hc prcssurc gradient is zero. However, small differences in thc velocity<br />

clistribntion arc unimportant, bcca~~sc the drag is calculated from the intrcgral of<br />

morncntum. I~urtllrrrnorc, thc cxperimcntal results obtained by M. IIansen [23a]<br />

ant1 .J. IW nnrgrrs [6] prove that this assumption is well satisfied at least in the<br />

Y<br />

Fig. 21.1. Tnrbulent, boundary lnycr<br />

on n flnt plab nt zero iricidcnce<br />

mrrgc of rnotlrratcly large Rrynoltls nurnbcrs (IJ, l/v < 10" They hot11 found<br />

that thr vrlority profilc in thc bountlary laycr on a plate can be described fairly<br />

well hy a powrr formnh of thc form of eqn. (20.6), as found for a pipe We shall<br />

revert once more to this problem (p. 643), when we 'shall discuss some systematic<br />

deviations between the velocity profiles in pipes and on plates at larger Rcynolds<br />

numbers.<br />

The skin-friction drag D(x) of a flat plato of lenght x on onesidcsatisfics the follo-<br />

wing relation as seen from eqns. (10.1) and (10.2) in Chap. X:<br />

IEerc to(%) dcnotes Lhe shcaring stress at a distnrlcc x from tl~c Icading rtlgo, :~lld<br />

the secor~d integral is evaluated at x over the boundary-layer thickness. Introd<br />

ducing the momentum thickness d2, dcfincd by A, 1Jm2 = / 7l(r!, - TI) dy ill<br />

eqn. (8.31), we can rewrite eqn. (21 .l) as follows:<br />

From eqns. (21.1) and (21.2) we obtain the local shcaring strcss :<br />

Equation (21.3) is identical with thc monlent,lrn~-int,cgral equation of ho~~~~dary-<br />

layer theory, eqn. (8.32), in thc case of uniform potential flow U(x) .= IJ, -- COIIS~,.<br />

We shall now perform thc calculation of the drag on a flat plate on the assump-<br />

tion of a f-th-power law for tho velocity profile which is trrro for modcrntc Royriolds<br />

numbers, and we shall then confinc onrselves to quoting thc results for thc hgarith-<br />

mic law which is valid for arbitrarily largc Itcynolds numbers, Fig. 20.4, bccarrsc<br />

the complete calculation for this case is fairly tedious.<br />

1. Resistance formula deduced from the 4 -th-power velocity distribution Inw. 111<br />

accordance with the preceding argument and with eqn. (20.6) it is seen that the<br />

+-th-power law of velocity distribution in a pipc leads to the following volonity<br />

distribution in the boundary layer on a flat plate<br />

whcrc d = B(x) tlcnotcs tho I~oun~lnry-layer ~II~CICIICSR wl~ioh is a function of rlist,nnt-r-,<br />

x, and is to bc clclcrminctl in thc course of thc calculation. 'l'hc :msumption in<br />

cqn. (21.4) implies that the velocity profiles along a Rat pletc arc similar, i. e. that<br />

all velocity profiles plot as one curve of n/U, versus y/d<br />

Tllc equation for shcaring stress at the wall is also taken ovrr tlirwtly from<br />

the circular pipe, cqn. (20.12a) :<br />

.From eqns. (8.30) and (8.31), togcthcr wilh cqn. (21.4) we o:~n ca1culat.c t,l~c tlispl:tcemcnt<br />

thickness, dl, and thc momcntnn~ tliickncss, (1,:<br />

637


638 XXT. Tnrbnlent, honndnry Inyeru at zero prcmnre gmdirnt.<br />

l'ront rqns. (21 3 ) oncl (21.0) we have<br />

6 - . a<br />

7<br />

,-g; 6,=;i,jd.<br />

wllicl~ is the- tlill'vrcnl in1 rqltation for (Y(x). lntrgrntion from thc initial vnll~c: fi = 0<br />

at 1 =- 0 gives<br />

S (x) = 0.37 z (y)-" (21.8)<br />

The l)o~~nclary-layer t.hickncw is seen to iricreasc with thc power 21-f the<br />

dist,ancc, wl~creas in I:iminar flow wc had S - ~ ' 1 ~ The . total skin-friction drag on<br />

a flat, plate of length 1 and width b welf,ctl on one side is, by cqn. (21.2), given by<br />

'l'he drag on a plate in turl~ulcnt flow is sccn to hc proportional to iJWR15 and l4I5<br />

compnrctl with 11,"2 and 1'12, rcspcctivcly, for laminar flow, eqn. (7.33). Introducing<br />

tlimensionlrss coefficicnta for the local and thc total skin friction by putting<br />

we obtain from eqns. (21.3) and (21.2) that<br />

1ianc.0, fromeqn. (21.9). wecan writccff =0-0876 (U,~/v)-J1~andc, = 0.072 (U,Z/V)-'~~.<br />

Tllc last equation is in very good agreement with experimental resulh for plates<br />

wlloso hountlnry layers are turbtllent from thc Icading edge onwards, if the<br />

numerical constant 0.072 is changed to 0.074. Thus<br />

'1'111: rrsist,ancc formula (21.11) is seen plott.cd as curve (2) in Fig. 21.2. The range<br />

of vali~lit~y of t.his formt~la is restricted to U, 6/v < 105 in accordance with the<br />

limitation on Blasius's pipe resistance formula. JJy eqn. (21.8) this corresponds to<br />

U, l/v < 6 x IOfi. Since for R, < 5 x 10"he boundary layer on a plate is fully<br />

. .<br />

t In. tho genornl cam of a power law u/U = (y/d)lln we have:<br />

Fig. 21.2. histance formula for amooth flnt platm at zero incidcnccr; cornpnri~on brt.wrcn<br />

theory and rncnsnremcnt<br />

Tl~eorellcnl carvcn: curvc (1) mom eqn. (7.30. Inn1111nr. Illnrrlnrr; cwvc (2) Tm~tt eqn. (21.11). l u r l ~ ~ ~ I'r~1ldt.1; l ~ i ,<br />

curve (3) from eqn. (21.18), lurbnlonl. Prandll-Scl~lirl~llnp; curvo (3n) from rqn. (21.IOn), la~si~~nr-lr,-tt~rh~~lrnl<br />

tranaibion; curve (4) rrom efin.('L1.10~).111rb11im(. Selmlt~-Ctr~~now<br />

laminar, it is possiblc to specify tl~e following mngc of valitlitty for cqn. (21.1 1 ):<br />

6 x lo5 < R, < lo7, using round numbers. Int.roducing tl~c ~iccessary corrections for<br />

the numerical coefficients we obtain the following expression for the local corfficiant<br />

of skin friction<br />

Equation (21.11), as already ment,ioned, is valid on the assuml)t.ion t.hat the 1)ourlciary<br />

layer is t,urbulcnt from tthe lending edge onwards. In rcalit.y, t.he boundary layer<br />

will be laminar t.o Iwgin with, and will cl~at~go to :I t,~~rbulent, onc furtlwr tlowns(,reanl.<br />

The position of tho point of transition will clepentl on tho intlensit,y of t,ltrl)~rlcnce<br />

in the extternal flow and will bc tlcfinecl by t.he value of the oritirnl ltoyrlolds 1111tnI)er<br />

which ranges over (TI, x/v),,,, = R,,,, = 3 x 10Qo 3 x 10" (sro Sco. XV1 a).<br />

The existmce of t,hc I:minnr scc:t.ion cntlscs tho tlrtq t,n tlcc!rcnsc> II.II(~. l'ollowit~g<br />

I,. Prantlt,l, the dccrcasc can be cstimatcd if it is assumed tallat 1)c:hintl lhc point,<br />

of tmnsition tthc turhulont boundary layer hel~avcs as if it* wcrc tnrbulc~tt, from<br />

the leading edge. Thus, from the drag of a wl~olly turl~ulcnt boundary l;~pc?r it is<br />

necessary to subtract tlic turbulent c1ra.g of the lengt,h 111) to thc poiht of t,ransitiott<br />

at xcr,, and to add thc laminar drag for the same IcngtJ~. 'Sltus, the dccrcnsc I)rc:onw,s<br />

AD = - (~12) Urn2 6 xcrl, (eft -el,), whcre c!, and cf, donote tl~c cocfficicnt of<br />

turbulent and laminar skin friction, rcspect~vely, for the total drag at the: scct.ion<br />

where tran~it~ion occurs, i. e. at R,,,,. Hence the correction for cf is


610<br />

XXI. Ttrrbulent bor~ndnry layers st zero premure gradient<br />

1'11t~ting Acj = - AIR,, we find that the value of the constant A is determined by<br />

the position of the point of transition R,,,,, namely<br />

Conscqaent,ly, the coefficicnt of total skin fricLion including the eflcct of tlic laminar<br />

initial hgth becomes<br />

Taking cjt from cqn. (21 .I 1) and cj, = 1.328 R,-'I2 from the Blasius formula,<br />

eqn. (7.34), we obtain the following values for A :<br />

, 1 3 x los 1 a x lo6 1 lo8 / 3 x loa<br />

- -- - --<br />

A / 1050 1700 1 3300 / 8700<br />

2. nesistance formula deduced from the logarithmic velocity-distribution law.<br />

The Itcynolds numbers which occur in practical applications in connexion with<br />

flat plate problems considerably exceed the range of validity of eqn. (21.13)t,<br />

and it, is, thereforc, necessary to find a resistance formula which would be valid<br />

for mucli higher Reynolds numbers. In principle such a formula can be derived<br />

in tlie same way as before, except that the universal logarithmic velocity-profile<br />

equation slioultl be used instead of the f-th-power formula, in analogy with<br />

eqtis. (20.13) and (20.14) for pipe flow. Since the universal logarithmic formula,<br />

as shown rarlicr, may be cxtrepolatecl to arbitrarily large Reynolds numbers in the<br />

case of pipe flow, wc may expect to obtain a resistance formula for the plate which<br />

would also lcntl itmlf to extrapolation to arbitrarily large Reynolds numbers. In<br />

any case, it is again implied that pipe flow and boundary-layer flow on a flat plate<br />

exhibit identical velocity profiles (see also p. 643).<br />

The derivation is not so simplc for the logarithmic law as it was for the f-thpower<br />

forml~ln. This is mainly doe to thc fact that the application of the logarithmic<br />

law t,o thc flnt platc does not lcad to similar profilcs any longer. We shall, thereforc,<br />

refrain from reproducing here the details of the calculation, referring the reader to<br />

T,. Prandtl's original peper [40].<br />

l'hc lognrithmic: formula for pipc flow was derived in eqn. (20.14) in tho form<br />

t In largo and fnst aeroplanes tlie Rcynohls numbers of the wing are of the order of RI =<br />

- 8 x lo7; a large, modern fnst ~tmmer reaches about Rl = 5 x JW; see also Tablc 21.3,<br />

p. GFI.<br />

a. The stnooth flnt plntc<br />

denoting the characteristic vclocity formed with the wall shcaring strcss to. In bhc<br />

case of pipc flow considcretl in Chap. XX, the constants wcrc intlicat,ctl to II:LVC the<br />

numcrical valucs A, ---- 5.75 and Dl - 5.5. Ilowcvcr, cxt.cnsivc ox~~c~rinic~n~.nl irivestigations<br />

(sec Fig. 21 3) have clcmonstratcd that thc vclocity profilcs in the two<br />

cases under consideration, in a pipc ant1 on e flat platc, arc sorncwll:~t tliffcrcnt<br />

and it becomes necessary to modify tthc numcrical valucs to<br />

'lllc calculat,ion leads to a fairly cumhrrsomc sct of cqnations for tho local :wtl t20t,al<br />

cocfficicnts of skin friction in tcrms of tltc Icngtli 1k:ynoltls nuni1)cr R, - : I/, ll~.<br />

In the process, a formula for the dimensionless boundary-layer tliickriess 11, d/v = r],,<br />

is also obtained. The numcrical rcsults arc shown in 'hl)le 21.1 and the grnph of<br />

c, versua R, has bccn plott,ctl in Fig. 21.2 as curvc (3).<br />

Since the exact formulae from which the resistance law rcprcscntd by Table<br />

21.1 has bccn evaluated is exceedingly inconvcnicnt, IT. ScIilic11t.ing fittcd thc<br />

relation between c, and R, from Tablc 21.1 into an empirical cqnation of t.hc hrnv<br />

In ordcr to make an allowance for tlic laminar initial Icngth, it is mquirctl to makc<br />

the same deduction as before, cqn. (21.13). Thus<br />

where the value of the constant A dcpcntls on tllc position of thc point of transition<br />

as specified in the Table on p. 601. This is the Prnndtl-Schlichting skin-/ridion /ormula<br />

for a smooth flat plate nl zero incidence. It is valid in the whole range of Reynolds<br />

numbers up to R, = 10hnd it agrecs with cqn. (21.13) up to R, = lo7. It is seen<br />

plotted ,as curve (3a) in Fig. 21.2 wltere A = 1700 was choscn, corresponding to<br />

transition at R, = 6 x 105 13lasius's curvc for laminar flow corrcsponcling to<br />

cj = 1,328 R,-'12 is also shown for comparison, curve (I).<br />

A very similar theoretical calculation for the skin friction of a flat platc was<br />

tlcvised by 1'11. von lCbrmi~n [20]. iC. 15. Scllocnllorr [50] ~nntlo use of' von IZrir-<br />

mbn's schcmc and derived from it the cxpressior~<br />

1<br />

- - - = 4.13 log (Rl c,) .<br />

1/CI<br />

ltesults of numerous experimental mcasuremcnts arc sccn plottd togcthcr with<br />

these theoretical curves in Fig. 21.2. The measurements performed by (1. Wiescls-<br />

--<br />

t The reaulta for the coefficic~~t of local skin friction, c;. in 'Cable 21.1 can nlso be fitted into<br />

an empirical equation ns follows<br />

c f ' = (2 log R, -0.65)-~"


642 XXI. Ttlrbulent boundnry lnycn nt zero prcwtlrn gradient<br />

Tnble 21.1. Itcniutnnce forrndn for flat plnte computcd front the lognritlimic velocity profile<br />

in eqns (21.14) and (21.15); sec curve (3) in Fig. 21.2<br />

R,. 10-8<br />

0-107<br />

0.225<br />

0.355<br />

0548<br />

0,864<br />

1.20<br />

2.07<br />

343<br />

6.43<br />

9.70<br />

18.7<br />

34.3<br />

51.8<br />

102<br />

229<br />

125<br />

768<br />

1576<br />

l~ergcr [67] on cloth-covered glazctl platcs lio somewhat above t,he turl~ulent. curve (2),<br />

which would indicate that, there was no substantial laminar length in his expcrimenb<br />

mil that the roughness was small. The measurcme~it~s duc to P. Gebers [10], which<br />

mngc from R, = 10"m 3 x lo7, fall on tlic transition curve (3a), cqn. (21.1Ga), at<br />

the lower end of the mngc. At thc higher Reynolds numbers his results lie on curve (3)<br />

from eqn. (21.16). 'l'he measurements reported by K. E. Schoenherr [50] also show<br />

good agreement with tlicory. 'l'hc highest Reynolds numbers have been whieved<br />

hy (2. I


644 XXI. Turbulent boundary laycrs at zero pressure gradient a. The smooth flat plate 645<br />

K. Wiegl~artlt [M] ntlvanccd an cxplanntion for the difference between tlic velocity profile<br />

in a pipo and tlrnt on n phk, pointing or11 tllnt t,he influence of t1tr1)ulrnce at the outer edge<br />

of t h boundary lilyor tliNcm in the two cnRca. In t,ho cam of n platc a low degree of turbr~lcnce<br />

in the cxtmtd ~t~re~i~ii gives risc to vclorily fl~~ct~~ntions which arc practically mro at the oubr<br />

edge of Ll~o honnrl~~ry Iiycr, wllcrcas in tlrc crntro of the pipo thcy would hnve an apprcciablc<br />

mngnit.r~do bccarrsc of t,lw inllitcncc of 1l10 other side. To the srnallcr intensity of turbulence<br />

on a plnlo there corrcsporirls a slacpcr incrcnsc in velocity and l~criro a thinner total houndary<br />

Inycr. lle wns idso able t.o ~llow t,hat thr vclocil.y profile on a platc bccon~ca vcry clono Lo tlrnt<br />

in pip flow if tlrr cxtcrnal llow in niatlc Iiiglily I.tlrbtrlcnt.<br />

J. Nilz~~rndsc [38] alxo condnctcd a vcry comprcl~enxivc series of cxpcrimonh on flat plnlcs.<br />

Ire found that in the range of l:qe Rnynolcls twtnbcrs of R, - 1.7 x 10' to 18 x 106 the volocity<br />

profilcs arc similar, if ?i/U is plot,lcd against y/dl, whcrc 6, clcnotes the displaccmcnt thickness.<br />

'J'lic univcrnnl vclor:ity-clist.ribrltiol~ law w/ll = /(y/~!~) turns out to be indepcndcnt of<br />

lhc Iteynolcls number. 'l'l~r loca! nncl total cocfficicnb of skm friction have heen calculated from<br />

tho nicns~~red ~rlooit~y proliles wit11 thc aid of tho ~noment,um tl~corem.<br />

Tho following intcrpolnlion forn~ulac wcrc ol)t,ninctl for tho velocity distribution, dis<br />

lhic4~nc~, and roefficicnt~ of &in friction, rcspcct,ively:<br />

plarcrncnl thickness, IIIOI~CII~~I~III<br />

.- ~ ~ =<br />

urn<br />

0.1315<br />

0737 ( ) ,<br />

'.?.!L = 0.01738 ~zo'86L ,<br />

v<br />

In conncxion with t,lie calculation of skin friction on a platc, the papor by V. M. Falkner [15]<br />

may also be consulted. In a paper hy D. Colerr [Ea] the velocity profiles are reprcselntrd by n<br />

lincnr con~hinat,ion of two universal functions, one of which is c:allcd the law of the wake, the<br />

other being the law of the wall ns already mentioned.<br />

Mc,muretnent,s pcrforrnrtl hy 11. hlotzfcld [3GI concerncd tlre~nnclves with the turbulent<br />

boundary lmyer on a wavy wall. II. Schlichting [46] gave some eutimatcs concerning trrrbulcnt<br />

boundiiry layers with suction and blowing. When homogeneous (that is, continuously and<br />

unifornily dist.ribnted) suct.ion is applied, thc asytnptotio boundary-layer thicltncss remains<br />

constant in lho name manner an for a laminar boundary laycr. However, in the turl~nlcnt case<br />

thc borrntl:~ry laycr is ~nr~clr inorc scnsitivc to clrnnges in the snction HOW-rate than in the<br />

laminar. Vcry cxknsivc tncasurcmcnb pcrforn~ccl in tr~rbtllcnt boundary layers on porous flat<br />

walls by A. l'avre, R. D~~mna and E. Vorollet [lo] show that the npplication of suction exerts<br />

a st.rong inll~~cncc on t.he 1.11rb11lcnt motion.<br />

4. Errect 01 finite dimensions; boundary Inycrs in corners. Wl~cn a flat platc of finite span<br />

is pllrccd in a ulrrn~n which llow~ in t h tlircction of ik Icngl,l~, il is I;)ontI t.l~nl, nonr tJre docdgc<br />

1110 honnclnry layer is no longcr two-din~rnsionnl, ns it is along tho centre-linc of t,he platc.<br />

~xperinicntri pcrfi~rtnctl by .I. W. 1Tlder [13] dcnionslrated that near the edges there arise<br />

sccolldary flows wl~icli arc similar to'lhosc ol)scrvcd in pips of iron-circulnr cross-~cct,ion (cf.<br />

See. XXc). 'l'l~ix causes n large incrc;mr, in the locd skin-friction cocfficicnt along the edges.<br />

I\ccording tn 1':ldcr'~ mcasuron~cnL~, and rcmnrltnbly cnongh, thin additionnl dmg, always<br />

avcmgcd over t,lic span, hrns out Lo ho intlcpcndcnt o[ tlrc lcngl,l~ Ilcynolds number, Rl, or<br />

the width of thc plate. Irowcvcr, t.hc rcgion sit,uatd vcry close to tlic lcacling edge of thc plate<br />

forms an cxcrption, tlic lorn1 skin-friction coefficient varying irregularly in the flow direction<br />

and gt right anglcs to it. Still weording to ISltler's mcasurcmants, the incrcasc in drag is given<br />

hv<br />

The second term in this equntion accounta for the rapidly deoaying erect of the lending edge<br />

(on this detail the reader nmy also refer to A. A. Townsond [04j).<br />

A similar effect arim when two platea ali ned with the flow are made to form a concave<br />

corner. The interaction between the two bounfary layers for the cam of a rectan lar corner<br />

waa studicd by K. Ceraten [20] who indicates the existence of an additional drag oKnsgnitude<br />

where, according to K. Geratcn, the interaction contribrrbion is<br />

and<br />

8.76<br />

Ac = - -- in laminar flow,<br />

I Rl<br />

Ac = - -- @;:<br />

in turbulent Row .<br />

f<br />

The supplementary drag hna turned out to be negative, which mcnna that the drag of two platcs<br />

which are wettcd only on the inner side of the corner and which arc joined at riglrb angles, is<br />

smaller than the drag of a flat plate of equal total area.<br />

E. Eichelhrenner [12] examined the case of a corner of arbitrary angle.<br />

5. <strong>Boundary</strong> layers with suction and blowi~~g. Mensurenrent: In this section wc nhnll intaroduce<br />

brief remarks concerning turbulent boundary layers on a flat plate with suction and blowing<br />

which may serve as an cxtcnoion of tho conaidcrntiona of Chap. XIV on Inminnr hounclnry layora<br />

with suction. Thc first tllcorcticcil study of this Inpic wan ~nntlo<br />

(21.21 a)<br />

nfl erirly IUI 11M2 11y II. S~~l~lir~l~l.i~~g<br />

146, 471. In modern t.imcs experimental as well as tl~eoretical studics have been perfortncd by<br />

J.C. Rotta [44].<br />

Some of Itotta'a expcrimentol results are shown grapliically in Fig. 21.4. This is a dingriim<br />

showing the variation of the momentum thickness dl(%) along a porous flat plate with I~onrogcncoua<br />

suction and blowing at various values of the auction velocity, v,,,, at the wall. The external<br />

velocity was Urn = 20 to 30 m/sec and the normal wall velocity ranged from o,, -= -0.10 n~lsec<br />

(auction) to 0.13 m sec (blowing). The volume coefficient varied from ca = v,,,/fJ, = --0.005 to<br />

+0.005 and was, t I IIIR, vcry smnllt. Thcse rncmurements confirmod thc well-kno\vn fwt. that tlio<br />

rate of hountlary-layer thickness growth in the downstream direction increases MI the blo~ring<br />

Fig. 21.4. Turhulent boundary<br />

lnyer on a flat plntc with mi-<br />

form suction or injection: nio-<br />

mentum thickness 62, according<br />

to eqn. (7.38), along the plate;<br />

mea~urements by J. C. Rotta<br />

[441<br />

t Suction and blowing startd at a short distanrc from the lending edge rathcr th-11 nt t,hc leadi~lg<br />

edge itself.


646<br />

XXI. Turbulent houndary layers at xcro presRure gradient,<br />

ratc incrcwcn. For CQ = - 0.005 the boundary-lnyer thickneu~ reaches n constant vnll~e downutrcrrnl<br />

n ~ cw~ntitutca d an twyn~ptc?tic honnclwy layer in the sense of Sec. XIVh.<br />

The stndy of tnrhnlent boundary layers with suction hns marly applications. Among them<br />

we may ~ncnt~inn tht tlie int,roduction of a foreign gaa inb tlie boundnry lnyer t,hrough a porous<br />

wall or ttlirough doLa ronsLit.i~Lrs a very effcct,ive Incano of film or tranalliration coolin Thin<br />

rcduccs the rate of 11mt trnnnrer from the hot, sbrramirig gas t,o the solid hody, as is done kr gaa-<br />

Lnrhine blarleu. Si~nil:rrl,y, thin is n Incans of rcrtncing the ratc of heat flow frorn t.he boundary<br />

laycr rendcrccl very hot by kitict,ic heating on a body flying at a hypersonic velocity to it8s wall.<br />

Hlowing can also produce a considerable reduction in drag. A very good review of such rpplicat,ionn<br />

wan pnhlinhcd hy L.O.P. .Jcromin [28].<br />

Thcory: In order to cnlrnlntc the nsynlptot,ir: tnrln~lent boundary layer on a flat, plate with<br />

Iiomogcncous ~nct~ion, we ohservo fro111 cqn. (18.13) t.hat the normnl vclocil,y v = fa, iu constant<br />

over the whole thic:kness of the Inyer. Hcnce, we can inkgrata the equation of motion in the z-<br />

dircrtion wit.11 rcnpcct. to tho nortnal pliroct.ion, and thns ohfnin<br />

Int,rodncing t.hc frict.ion velocity 17, = (r,,/e)I12 and taking into account, t.he fact that at large<br />

tlistanrca from t,hc wall (i.e. ontrritle the lan~inar sublayer) - it is po~sible to ncglcct the viscons<br />

hear v(?w/a!/) with reapcct t~ the tnrhule~lt stress -dvl, we derive from eqn. (21.22) that<br />

With l'randtl's mixing-length aaaumpt.ion<br />

from eqn. (19.6~). and putting 1 = x y, we deduce from cqn. (21.23) tliat<br />

Hem x - 0.4 dcnoteu von KkrrnBn's connt,nnt. The preceding equation immediately proves that<br />

the velocity disLribution can be given the following dimensionha form:<br />

Pig. 21.5. Tnrhulent honndnry<br />

lnyer on a flat plate with uni-<br />

form suction or injection: theo-<br />

retical velocity distribution<br />

according to cqn. (21.26) after<br />

J. C. Rotta [44]<br />

Pig. 21.6. Tnrhulcnt boundnry laynr on a flat<br />

platc with nniform snction or injevtion: VCIOcity<br />

diutribntion in the honnclary lnyer according<br />

to eqn. (21.26) for different v~rlnes of the<br />

snclion pnrnnictw v&, nncr J. C. Rotla<br />

1441<br />

0 rxporl~~~rnt<br />

- rnlcwlnllon<br />

Here q = y v,/v is the dimensionleas distance frorn thc wall from oqn. (18.32). Tho integration<br />

of eqn. (21.23) given<br />

Equation (21.26) can he regarded aa a goncrnlisntion of tho universal velocity tlistribntion<br />

. law . for impernleable turbulent boundary layers, eqn. (10.33), to the cmc of pervious walls with<br />

e~ther surtion or blowing. In order to inclnde in our considerations the existence of a laminar<br />

sublayer, it is pertinent to int,roduce E. R. van Driest's [ 101 damping term, eqn. (18.1 I ). 'rhe<br />

result of such a calculat~ion is shown in 1Pig. 21.5. A comparison with the experinicnts of .J.C. Ilottn<br />

is given in Fig. 21.6. The agreement is satisfactory if a suitable value is cl~osen lor Lhc nr1jnstd)lc<br />

constant C.<br />

Experimental invcstignLions on turbulent boundnry layers with injection of tho sanlc or<br />

another gun through porous wella into a compressible stroam at Mach numhcrs up to M = 3.0<br />

have been performed by L.C. Squire [58]. Calculations show that the nsaurnption of Prantlt,lls<br />

mixing length here too leads to satisfactory result9.<br />

b. The rotating dink<br />

1. The "free" disk. The flow in the ncighbourhootl of a rot.ating disk is of grnat,<br />

practical importance, p.articularly in connexion with rotnry machines. It, bccorncs<br />

turbulent at larger Reynolds numhcrs, R = U R/v > 3 x lo5, in tho sarnc way as tlrc<br />

flow about a plate. Here R denotes the radius anti U = n) R is 1hc t,ip vclociLy of<br />

the disk. The character of this kind of flow was described in Scc. V I I, w11ic:li<br />

contained the complete solution for the laminar cnse when the disk rotdes in an<br />

infinitely extended body of fluid ("free" disk). Owing to friction, tho fluid in the<br />

immediate neighbourhood of the disk is carried by it and then forced outwiwds by<br />

the centrifugal accelcration. Thus the velocity in tho boundary laycr has radial<br />

anti a tangential component, and the mass of fluid which i,s driven o~it~wnrds hy cxwtrifugal<br />

forces is replaccd by an axial flow. Making n simple estimation of thr, balarrcc<br />

of viscous and centrifugal forces in laminar flow it was possible to show that the


048 XXI. Turbulent boundary layers at zero preaeure gradient<br />

boundary-layer thickness 6 is proportional to 1/72;, and hence, independent of<br />

the radius, and that the torque, M, which is proportional to p R3 U/S, must be<br />

U2 n3(U R/v)-11" The exact solution for<br />

the laminar casc showed, further, that t,he dikensionless torque coefficient, dcfined<br />

as<br />

given by an expression of the form M - Q<br />

for a disk wetted on both sidcs, is given by cqn. (5.56), and is equal to<br />

C, = 3.87 R-"' (laminar) , (21.28)<br />

where R = R2rn)/v is thc Roynolds numhcr, Fig. 5.14.<br />

It is now proposcd to make the same estimation for the turbulent casc basing it<br />

on the same resistance formula for turbulent flow as was used in the case of the flat<br />

plate, i. e., in the simplest case, on the +-th-power law for the velocity distribution.<br />

A fluid particle which rotates in tho boundary layer at a distance r from the axis is<br />

acted on by a centrifngal forco per unit volume of magnitude e r w2. The centrifugal<br />

force on a volume of area dr x ds and height S becomes e r w2 dr x ds. The shearing<br />

stress to forms an anglc 0 with the tangential direction and ita radial component<br />

must balance the centrifugal force. IIcnce we have to sin 0 dr xds =erwV~Jr xds or<br />

On the other hand, the tangential component of shearing stress ran be expressed<br />

with the aid of eqn. (21.5) which was used in the case of a flat plate, replacing U,<br />

by the Lmgential velocity r o. Thus<br />

to cos 0 - e (or)"' (v/S)ll' .<br />

Equating T, in thcsc two cxprcssions, we find that<br />

8 - ral' (v/Up6 .<br />

It is sccn that in the turhnlcnt casc thc bonntlary-lnyer thickness increases outwards<br />

in proportion to r3/bnd docs not rcmain constant as in the laminar case. Further,<br />

the torque becomes M - to R3 N e R W~(V/CO)~/~ RRI6 B3 so that<br />

Th. von ICiirrnhn [30] investigated the tnrbulcnt boundary layer on a rotating disk<br />

with the aid of an approximate method based on the momentum equation and<br />

similar to the one applied in the preceding section ijb the study of the flat plate. The<br />

variation of the tangential velocity component through the boundary layer was as-<br />

surnctl t40 obcy the 4-th-power law. The viscous torque for a disk wetted on both<br />

sidcs'wa.. shown to be equal to<br />

b. Tl~c rot~ting disk G49<br />

and tthc torquc coefficient dcfined in cqn. (21.27) bccomcs<br />

C, = 0.146 R- turbulent) . (21.00)<br />

This equation has been plotted in Fig. 6.14 as curvc (2). It shows very good agrccmcnt<br />

with the experimental rcsults cluc to W. Schmidt and G. ICctnpft for<br />

R > 0 x 10" Tho numerical factor in the cquntion for ((he 1)ound:~ry-Iayrr t hi&n~ss<br />

which was left unclctcrrninctl bccomcs<br />

3 = 0.520 r (v/r2 o)' 15, (2 I .3 I )<br />

and the volume of flow in the axial direction is given by<br />

as comparcd with cqn. (5.57) for laminar flow.<br />

An approximate calculation based on the logarithmic vclocity-dist~ribr~l,iot~ Inw<br />

u/v* = A, In(?/ v,/v) -1- Dl was performed by S. Coldsteiri [21], who found i.hn following<br />

formula for the torque :<br />

1<br />

= 1.97 log (R 1/c) + 0.03 (turl)ulcnt)<br />

7"M<br />

It is n~tewort~hy thnt this equation has tho same form as the ~~niversnl pipe-rraistancc<br />

forrn~rln, cqn. (20.00). Tho nnmcricnl fac1,or~ have bccn 'atlj~rstctl lo obLl~i11 I,II(- IwsI~<br />

possible agreement with experimental rcsults. This equation is sccn plotted as cnrvc<br />

(3) in Pig. 5.14. On this topic see also P. S. Granville [22].<br />

2. The disk in a housing. The dislc in turbines or rotwy compressors 111os1Iy<br />

revolve in very tight housings in which the width of thc gap, a, is small compared<br />

with the radius, R, oC the disk, Pig. 21.7. Consequcntly, it was found necessary to<br />

investigate the case of a disk rotating in a housing.<br />

Laminar flow. The relations become particularly simple when thc flow is laminar,<br />

R < lo5, and when the gap is very small. If the gap, s, is smaller than the boundarylayer<br />

thickness the variation of the tangential velocity across the gap becomes<br />

linear in thc mmncr of Co~~ctto-flow. lFcncc, tho shcaring strcss at a distancc r from<br />

the axis is equal to T = r(up/s and thc torquc of the viscous Corccs on onc sitlc of<br />

a disk is given by<br />

n<br />

Consequently for both sides we have<br />

J<br />

2M<br />

=n w R4,+ ,<br />

and the torque coefficient from eqn. (21.27) becomes<br />

t Soc refe. [10] and [31] in Chap. V.


650 XXI. T~lrhulent boundary lnyers at zero preaaure ~rndicnt<br />

Bwnday layers<br />

Fig. 21.7. Rxplnriatiori of sym-<br />

bola for the problom of n clink<br />

R - RL<br />

7-<br />

Fig. 21.8. Viacottn drag of dink rotating in o houning<br />

Curvr (I), rrom cqn. (21.341, Imnllnnr: rurvo (2), rrorn cqn. (21.35).<br />

laminar; crlrvc (3). rrom eqn. (21.36), tarbulcnt. <strong>Theory</strong> with no Lous-<br />

ing (Tree disk) sce Pig. 5.14<br />

C,, = 2n - (laminar) .<br />

9 R<br />

t 3<br />

J his equation is secn pk)thd as curve (1) in Fig. 21.8 for a value of .v/R = 0.02. It<br />

shows very good agreement with thc cxperimentnl values due to 0. Zumbusrh<br />

(sw rrf. [54j).<br />

C!. Schmir~lcn [49] invrstigat.rtl I,l~o influcncc of 1.11~ witlt,ll n of t,lm lateral spacing<br />

of R clislc in a cylindrical housing, Pig. 21.7, on the assumption of vcr.y small Rcynolcls<br />

numl~ers (creeping n~otion). Thc Navicr-Stoltcs equations can bc simplified because<br />

of t,hc vcry low ltcynoltls nurnbcrs (scc Soc. IVtl) and the solution for the moment<br />

cocffirionC appears in tho form C,, = Ii/R, in analogy with cqn. (21.34). The const.ant<br />

I\' tlrl)cnds ou t,he two tlimcnsionlcss ratios n/R ant1 a/R.' In t.ho case of vcry smdl<br />

vnllws of o/R (< 0.1) tho valurs of C,, arc! n~arltctlly 1:trgcr I.l~n.n thoso in cqn. (21.34),<br />

wl~c~rrns liw hrgo vnlncs of cr/II' cqn. (21.34) retains ib valiclit,y (K = 2 n Ills).<br />

. .<br />

'I'lw flow pal,tnrn in t.11~ case of larger gaps diffors considerably from the above<br />

sin~plc scl~rnic. 'l'llis latrl.cr case was invrst.iptct1 t.~~rorcticaily and cxpcrimcntally by<br />

1'. Srll~~lt~z-(:r~lllo~v [54]. If 1.h~ gap is a mnlt,ipl# of t,he boundary-layer thickness,<br />

thcn an ntlditional boundary layer will bc formed on thc liousing, Fig. 21.7. The<br />

fluid in thr bount1:ary Ia.ycr on tho rotding disk is centrifuged outwards, and this is<br />

co~nprnsatctl by a llow inwartls in t.hc I~onnclary layer on thc housing at rrat. Tllcre<br />

is IIO apprrcinldn radial component. in tllo int,t:rrnctlial.c Iayer of fluid which rot,ntcs<br />

wi1.11 :~l~ont Irn If t,llo angular velocity of 1.l1c clislc. P. Sc1111lt.z-Grunow invcstigatcrl this<br />

b. The rotating disk 66 I<br />

flow both for thc laminar antl for the turbulcnt case. Tl~c cxprrssion for t,ho tmqw is<br />

of the same form as for thc free disk in eqn. (5.56). only thc numerical factor has<br />

a tlifforent valnc. 'Che frictional momcnt of a disk in laminar flow and wrl,tctl on both<br />

sitlrs I~cromcs 2 M = 1.334 ,A I 3 x 10' tJw flow arountl a clislc rot :tLing<br />

in a housing becomcs turbulent as usual. This crwc was also solvctl by 1" S~r1111ltz-<br />

Gronow who usrtl an approxitnalc mclhod bnsctl on t.hc sc~hcmc of Fig. 21.7. 7'11~<br />

tangential vclociLy was assnmctl to obey the 4-th-powcr law and it was sl~own that<br />

t,hc eorc rcvolvrs with nl~out, half t h angnlnr vc1oc:it.y in t,his rasc t,oo. The monirnt<br />

cocficicnt wc~s shown bo bc aqua1 to<br />

C, = 0.0622 (R)-"' (turbulent) . (21.36)<br />

This equation has bccn plottccl in Fig. 21.8 ns curvc (3). Comprotl wilfh Inwwre!ment<br />

it laacls to vnluea which arc too small hy ahout 17 par cont., nrd this mwt I)o<br />

atLribut,rtl to the arntlc n.q.sl~tnl)t.ionu mntlo in tl~c cr~loulnl,ion.<br />

It is particularly noteworthy that, apart from thc casc of vcry small gaps,<br />

eqn. (21.34), the momcnt of viscous forecs is complctrly inclcprnttcnt of I(hc witltlr of<br />

the gap, as secn from cqns. (21.35) nntl (21.36). Comparing tho frictionsl rnon~cul on<br />

a "free" disk and on one rotating in a housing, cqns. (21.35) and (21.36) as against<br />

eqns (21.28) arid (21.30), it is seen that tho n~omcnt on a frcc tlisk is grcatm than<br />

that on a disk in a housing, Fig. 21.8. This fact can bc explained by the existence of<br />

the core which moves at half the angular velocity. This dccrrascs t.hc transverse<br />

gradient of the tangential velocity to approximately onc half of what it woultl hr on<br />

a free disk and, consequently, the drag is also smaller than on a "free" disk.<br />

The flow process depict,ctl in Fig. 21.7 in which thc boundary layer on thc rotating<br />

disk flows outwards and that on the casing flows inwards was lat.er invcstigntcd<br />

e~periment~ally by J. Dailey and R. Nece [Bb]; their measurcrncnts covcred the wiclc<br />

range of gap widths s/R = 0.01 to 0.20, and a range of lteynolds numbcrs R =<br />

R2w/v = 103 to 107 and included bot.11 laminar and turbulent, flows. Thc rcsults<br />

shown in Fig. 21.8 concerning the torque have bccn largely confirnicd.<br />

coolcr casing at, rest. is irnport,anb in the design of gas turbines. Tl~c tcmpcrnt,urc ficld<br />

which develops in t,he gal) bctwcen t.he disk ant1 the casing is strongly infinrnrcd by<br />

the complcx flow pat.t,nrn which prcvails in it; in t,urn, this has a large i~~llurncc on<br />

the flux of heat from tlisk to ho~lsing. The simpler case of a rot.nt,ing "frcc" disk wxs<br />

I invest,igated some t.imc ago by K. Millsaps nntl I


652 XXI. Turt)~~lcnt houndnry layers at zero prcssure grndicnt c. The rough plate 653<br />

gap with a single bountlary lnyer and that of a wide gap with two scparate boundary<br />

layers, one on tho inner and one on thc outer wall. In most cases good agrecmcnt<br />

between theory and measorcment of heat flow was obtained.<br />

c. The rough plate<br />

1. The resistnnce formuln for n uniformly rough plntc. In mOst practical applications<br />

conncctcd with thc flat platc (c. g. ships, lifting surfaccs of an aircraft;,<br />

turbinc bladcs) tho wall cannot bc considcrctl hytlraulically smooth. Conscql~cnt~ly,<br />

the flow pa& a rough platc is of as much pract.ical interest as that throl~gh a rough<br />

pipc.<br />

The rclative roughness k/R of the pipc is now rcplnccd by the quantity k/6,<br />

where (9 denotcs tho boundary-layer thickncss. Tho csscnt,ial difference bet,ween<br />

tho flow through a rough pipc and that ovcr a rough plate consists in the fact that<br />

the rclativc roughness k/6 dccrcascs along the platc when k remains constant because<br />

8 increases downstrcam, wl~crcas in a pipc k/R remains constant. This circumstance<br />

causes the front of thc plate to behave differently from its rearward portion<br />

as far as the influcncc of roughncss on drag is conccr~lcd. Assuming, for the sake<br />

of simplicity, that thc lmundary laycr is turbulcrlt from the leading ctlgc onwards,<br />

wc find complcLcly rough flow ovcr the forward portion, followcd by the hnsition<br />

rcgimc and, cvcntually, thc platc may become hydraulically smooth if it is sufficicntJy<br />

long. The limits bctwcen these three regions arc tletcrniincd by the climcnsionless<br />

roughncss paramctcr v, k,/v aa givcn in cqn. (20.37) for sand roughness.<br />

'l'hc result of t h calc~~lation for pipcs can bc transposed to thc casc of rough<br />

platcs in cxaciJy the samc way as for smooth platcs in complcte analogy with the<br />

dctailcd clcsoription givcn in Scc. XXTa. Such calculations were carried out by<br />

L. Prandtl and 11. Schlichting [41] wit,h the usc gf Nikuredsc's results on pipes<br />

roughcncd with sand (Scc. XXf). Thc calculatio~~ was bascd on the logarithmic<br />

velocity-distribution law for rough pipcs in tho form of cqn. (20.32), whcncc u/v, =<br />

1.= 2.5 In (ylk,) + B. The dcpendcnce of the roughncss function R on the roughness<br />

paralncbcr v, ks/v is given by the plot in Rg. 20.21. The calculation, which is<br />

esscntially thc samc in Scc. XXIa, n~ust be carricd out separately for the transition<br />

and complctcly rough rcgimcs rcspcctivcly. For the dcteils of this method reference<br />

sho~lld hc made to the original paper.<br />

The rcsult can bo rcprescntcd in two graphs, Figs. 21.9. and 21.10, in which<br />

the coefficient of total skin-friction drag, c,, and the local coefficient, c,', have<br />

been plotted against the Reynolds number R = U, l/v with the rclativc roughness<br />

Ilk, as a, paramctcr. In the case of the local coefficient, U, x/v and xlk, are used.<br />

In addition thc diagrams contain curvcs of U, k,/v = const, which can be comp~ltcd<br />

at once from the previous oncs. The two families of curves have the following<br />

significance: if the ve1ocit.y on a given plate is changed, Ilk, remains const,aut, arlci<br />

the cocfficicnt of skin friction varies along a cur,vc ilk, = const. If, on the, other<br />

hand, the length of the plate is changcd, (I, ks/b remains A constitnt, and the &,ocfficicr~t,<br />

of skin friction varics along a curve lJ, k,/;= const. 13ot11 grapl~sfliave<br />

beon computctl on thc nss~lrnption that the turbulent bou~ldsr~ layer t~cgiri; rigl~t<br />

at the lcading edge. 'lh broken cwvc shown in the tli:~&,ims corresponds to t,he<br />

limit, of complete rotrghness and it may be notctl that a given rclnt,ivc rorlgl~rlcss<br />

]pig. 21.9. Ilcsist,ancc formula of sand-roughcnrd plnto; cocfficict~t of lokd skin frict,ion<br />

Fig.21.10. Resistance formula of sand-rougllcned plate; cocificicnt of local skin friction<br />

!&.z


654 XXT. l'url~ulmt I~o~~ntlnry lnyrr~ at zero pressure gradient<br />

causes the coefficient of skin friction to increase only if the Reynolds number ex-<br />

ceeds a certain value, in complete similnrit,y with pipe flow (see See. XXId).<br />

In the romplot,cly rough rcginic it is possible to make use of the following<br />

interpolation forrnnlnc for t h oorffirirnts of skin friction in terms of relative rough-<br />

ness :<br />

2.87 1- 1.58 lng -"<br />

(21.37)<br />

ks<br />

which are vnlid for 102 < Ilk, c~ lofi.<br />

In order to use these clingrams for roughr~esa other than the sand roughness<br />

assumetl hero, it. is necessary to tlctcrmine t hr equivalrnt send roughness as explained<br />

in Src. XXg.<br />

In the cslrulat.ion of t.ltc tlrag on ships it, is important to consider plates with<br />

vcry small roughness (painted mctd plntcs) as well as smooth plates covered with<br />

single protuheranccs, srrch as rivet, heads, wrltlctl seams, joints, etc. F. Schultz-<br />

Grunow [62] carried out a large numl)cr of rncns~~rements on such surfaces in the<br />

open cl~annd of the Tt~stitut~e in Gont,i.ingcn mcntioncd in See. XXg Atlditionnl<br />

comprchcnsivc data on ronghncsscs occuring in shiphilding can also IIC fountl in<br />

several papers hy G. I


656 XXI. Turbulent boundnry layers at zero prcssure gradient<br />

Fig. 21.12. ltcnistance coefficient of<br />

circnlor cavitics of varying depth in a<br />

fiat wnll, ns tncnsurcrl hy \Yicghnrdt [66]<br />

Figurc 21.12 presents thc increase in drag caused by circ~~lar cavities shown in the sketch<br />

(diameter d and dcpl.11 h). Since the definition of q adopted previously loses ita sense in this case,<br />

the drag wns mnde dimensionless with refercnco to the stagnation pressure outside the boundary<br />

layer, Aco = ADlf q n d'. Tho increaso in drag is smaller for smaller values of the ratio of the<br />

depth of t.hc cavity, A, to the hondary-layer thickncm, 6. It is noteworthy that all curvcq have<br />

a common rnnxinn~m at hid r~ - 0.5. l%rlher, small locnl nmxima occur at -hid 0.1 and<br />

1.0. The rninin~a bctwccn them occur at - h/d = 0.2, 0.8, and 1.35. Depending on the depth<br />

of the cavity it. may nometi~nes hnppcn Lhat rcgular vortex patterns arc formed in it, leading<br />

to tl~c diRcrent, val~rcs of drag. As swn from tho symmetry of tho curves about h/d = 0. ~l~allow<br />

cavitiw of up to - d/h = 0.1 givc the same incrcaso in drag as cormpnding small protubcrancoa.<br />

ltor~gh~~css in the form of rifling or ridges on a plate cut normal to the flow direction have<br />

been the subject of modern studies by A. E. Perry et n1. [39a].<br />

1<br />

Fig. 21.13. Curves of conatant velocity in tho flow field1 bchind a row of spheres (full lines), as<br />

n~easurcd by 11. Schlichting 1451, and accompanying it the secondary flow (broken lines) in<br />

the bounr1:iry Inyrr bchilld sphere (I), ,zs calrulnted by F. Schultz-Grunow [65a]. In the neigh-<br />

bourhood of the wall, tho vcloeity behind the nphorcs is larger than that in the gaps. The spheres<br />

produce a "ncgntivc wake cff&t7' which irr rxplnincd by the existence of secondary flow<br />

1)ismrtrr of n1rIirrt.q d - 4 mm<br />

The flow patlcrn which exisb bchind an obstnclc loccd in the boundary lnycr nmr n wnll<br />

diRcm msrkcdy from that bchind an ohshclo placc(f in tho irco ntxcnm. 'Shin cirnntnst,ancc<br />

cmcrgca clcarly frorn nn oxpcritnc~~t pcrformctl by 11. Scl~liol~ting [45] nncl ill~~nt.r:itnxl in<br />

Iqig. 21.13. Thc cxpcrin~ent consiuLCd in tho ~ncnsurcmcnt of 1.11~ vclocity liclrl I)chind a row of<br />

sphcrc~ plnccd on a smooth Ilnt s~~rincc. 'l'hc pnlhrn of curvcs of conntrrnt vcloc-ity clorwly nhown<br />

a kind of negative wake e//ect. Thc smallcst vclocitira Imve bcon mcn~urcd in Lhc frcc grrp in<br />

w11ic.h no spherrs are prcscnl ovcr Lhe whole 1cngt.h of thc plate; on thc olhcr hrrr~tl, l.11~ lnrgcst<br />

vc1oc:itine havo bccn n~cnsrrrcci behind tho rown of upl~orcs whcrc prcciscly t.ho nmnl1c:r vc:loc:il.ios<br />

would bc cxpectcct to exist. W. Jacobs 1201 corriccl 0111 rr tuorc dc:t;iilccl invc~st.ig:iLion or thi~<br />

peculiar cllect. According to $1 remark made by P. SchulLz.Ur~~now [RR], Ihc rcnson for n~~ch<br />

behrrviour seems to be conncctr,d wit.1~ the cxintmw of wcondary (low of a kind which is similar<br />

to thnt on a lift..gcnerating body. 'rhc strcamlinc~ of this secondary llow havc I)C(YI shown<br />

skct,nhcd in Fig. 2];13. 'l'ho cxistcnce oi Lhia cllect was oonlirmccl by I). 11. Willi:in~n nnc1<br />

A. 1". Brown [68] who pcrformcd mcnar~rcmcnb on an ncroloil provitlctl with rows of rivctn.<br />

Thcre i~ in existenno a very cxtennivc literature concerning thc ror~ghncsa of acrofoiln<br />

[9, 24, 251.<br />

3. Trnn~ilion from n smooll~ lo a rough ~~rrlnee. W. .Jncnbs [27) i~~vrntigslotl 1.hi Ilow p:rtlearn<br />

near a wall which co~eisted of o smooth wction followd by a rough one, or vice versa.<br />

The problem is of some interest in meteorology and oeeurs whcn a wind passcs from ncn Lo 11111d.<br />

or from land to sea, flowing past nurf~rocs whose roughnesscs dimcr connitlorably from cnch<br />

obher. It is noticccl that the vclocity profilo which corrwpontls lo thc clownst.rc:rn~ nrc4.ion of 1.11~<br />

wall forms only at a cerhin distance bchinel the bonndary bctwcc~~ 1110 two sccliol~u. 'Ik, a vnri:il.ion<br />

of nhcxring st,rcss ~alcnlntcd frorn tho mcnn11rc:c1 velocity prtdilc with I h :lie1 of l'rr~11cIl.1'~ hypo-<br />

Lhcnis, i. c., r - plz (ei~l/t~?y)~, is ncxw ldol,t~!cl in b'ij?,n. 21.14 11111~ 21.1fi. 'th? ~ I ~ # L ~ ~ ~ HII


658 XXI. Torhulcnt boundary layera at zero preuaure gr~liorit<br />

Fig. 21.14. Varint.ion of slicnrit~g stmm in tho bonndary layor on pnaaing from a amoolh to a<br />

rough portion of wall, na ttl~a~ured by W. Jacobs 1271<br />

Fig. 21 I5 Varinlir~n or dimring ~trr911 in ~IIP I~ontidnry lnyer on pauning from a rough to a<br />

rmoolh porlion of \$:ill, ti~rnsi~rrtl 11y \I1. Jnrol~n (271<br />

InJ!le case of lur.bu~?nt.~bo~m+ry hyrs roughness has no effect, and the wall<br />

is hy&aulic$llfjmooth if all_ potuberanc& iife co_n_tai+ -within the laminar sub-<br />

GeTAs mcntionctl befor&, the thicltnrss of the lnttcr in only a small fr,zvtion of<br />

the boundary-laycr t.hickness. In conncxion with pip flow it waq founcl that, the<br />

condition for a wall to be l~ydraulically smooth is given I)g rqn (20 37) which statrd<br />

that the dimensionless roughness lteynolds numbert<br />

-<br />

-- v* -k - < 5 (Iiytlmnlicnlly smooth) ,<br />

wl~crc v, = \/to/P denotes thc friction velocity. This result can be consit1t:rccl valid<br />

also for the flat plntc nt zero incidence. 1Iowcvcr, from tlto prnctical point. of viow<br />

it sccrns more convenient to spccify a value of rclativc rouglincss kll. Itcfcrring to t.lie<br />

diagram in Fig. 21.9, which represents thc rcsistancc formula for a plate, we can<br />

obtain the admissible value of k/l from the point nt which a givcn curve Ilk =-. (:onst.<br />

deviates from the curve for a smooth wall. It is sccn that the ntlnlissiblc vnluc of k/l<br />

decre,wes as the Reynolds number U, l/v is increased. Ronncletl-on' vnl~rcs from<br />

Fig. 21.9 are Listed in l'al)lc 21.2. They can be sitmmarizccl by tlic following simple<br />

forrnula :<br />

.--- . = lw,<br />

(21.42)<br />

wl~ose approximate validity can also be deduced dircct,ly from Vig. 21.0.<br />

Y<br />

Table 21.2. Admiwihle height of protr~bcrances in tcrlns of the Rcynoltln nu~nl~c~<br />

This fornir~la givcs only onc v:~luc of k,,,, for t,lir: whole Icngt.1) of t.hn pl:tto.<br />

Sincc, howcvcr, tho bouncl:wy-layer tJ~iclzncns in smnllcr ncSnr (,IIc: It*:ltling rtlgc:,<br />

the atlmissibb vdue of k is srnaller ~q)st,rcani thn ft~rl~llcr tlownst.rcnm. A fi)rtnrlla<br />

which takes this circu~nst,:cr~nc into acaonr~t is obt;~inctl wllrn o,2/(1,2 = t,,/~) 11,,2 -<br />

= 4 cf' is introtluced, cf' clonot.ing the local cocfliciont of skin friction, as given in<br />

'I?ahlc 21.1. Thus wc obtain<br />

Umrknam 7<br />


660 XX I. Tl~rhlent bo~~ndary layers at zero pressure gradient<br />

For mall Reynolds numbers R, < loR eqns. (21.42) and (21.43) give practically<br />

the snmc results, whereas at larger Reynolds numbers eqn. (21.43) gives somewhat<br />

greater values. We are, thus, jr~stified in retaining the simpler equation (21.42)<br />

because there is noclanger of finding values of k,,,, which are too high. Equation (21.42)<br />

stdes that the admissible height of roughnes.9 elements is independel~t of the length of<br />

the plate; it is tlt+rminctl sololy by tt~r velocity and by tho ItincmaLic viscosity in<br />

:~ccortlancc: with thc contlitior~<br />

(21.44)<br />

It follows that t,he absolutc values of admissible roughness for a modcl and its<br />

original arc equal if tile velocity and kinematic viscosity arc the samc in both cmes.<br />

Vor long botlios this may lead to extremely small admissible roughnesses as compared,<br />

with t,hcir linear dimensions, see Table 21.3.<br />

Fig. 21.10. Atln~issible roug11ne.w<br />

k,dm for rough platcs at zero inci-<br />

dence, and aircrnft wings from<br />

cqn. (21.44)<br />

For ~xnct'icnl applicntions iL is still more convenierlt to relate the admissible<br />

valuo of ronghncss directly to the Icngth of the plntc, 1, or more generally, to the<br />

length, I, of t h I)otly undcr consiclcration, (c. g. length of ship's hull, wing chord,<br />

blntlo chortl in t~rrl)inrs or rol.ary cornprcssors), I)ccnr~se this lcatls to a more graphic:


662 XXT. Tiirltnlcnt bo~tntlnry lnyrrrr nt zero prcssnrc ~rndicnt<br />

mrnsure for tlw rcqttirrtl snrfarc smoothnc~s. To achieve this, eqtlation (21.44) may<br />

be rewrilttcn ns<br />

wlwrc R, - Il.,, I/v. 'l'hn tli:~grntn i ~ t<br />

l'ig. 21 .I0 rnny Itc: uscd to fn~ilit~nta calculnt,ions<br />

with the nit1 of' cqn. (21.46). 'L'hct tlingrnm cont.;rins a plot of admissible sizes of<br />

prot,ul)crn.t~cen ngnirlst Rcynoltls ntln~l)(?r, wit.11 the cl~nractcristic length as a pararnctcr.<br />

'l'hc mngrs of Itcpnoltls n11rn1)crs cnrot~nLcrctl in variolts engineering applications<br />

(ship, airsllip, nirc:r:l.ft,, conlprcssor I)ln(lcs, .sI,cam t,~crbinc blndcs) I~nvc been<br />

shown at, t,llc bottorn or thc diagram for convenience of reference. In addition, Table<br />

21.3 gives n sumrnnry of scvcm.l examples which hnve been computed with the aid<br />

of Fig. 21.16. rri thc cnsc of .d~ip' hdl~ atlmissiblc roughnesses are of the order of<br />

scvcrnl Iiuntlrcclths of one ntillimcbrc (scvcrnl t,cntlls of one t.housantlt.l~ to scvcrnl<br />

t,ho~tsnndf.l~s of an inch); surl~ vnltrcs c~tinot 1)c attained in practice nnd it is always<br />

necessary to allow for a consitlrra1)lc increase in dmg due to roughtlcss. The same<br />

is txuc of nir~hips. As far ns rcircm/t surlncea are conccrnctl, it is seen that atlmissible<br />

rongllncss tlimcnsions lie bcl.wcen 0.01 and 0.1 mm (0.0004 and 0.004 in). With<br />

vcry carcful pmpnmt.iori of t,Ilc surface it is possible to meet these demands. In the<br />

r:rsc of nrodel nircrnlt and compressor blnrlcs wliicl~ rcqnire the same order of smooth-<br />

IIPSR, i. 0. 0.01 to 0.1 mm (0.0004 to 0404 in), hydraulicnlly smooth surfaces mn bc<br />

ol)t.nined wit.llot~t nntfnc clifficully. 1'11c Itcynoltls numbers encountered in steam<br />

twbimx arc coml)arntivcl.~ large ~CCRIISO the prcss~~rcs arc cornpnrntivcly lligl~t<br />

in spitc of Lllc smn.11 linmr tlimcnsions, nntl ndmissiblc rougllncss values are, conseqt~cnt~ly,<br />

vcry smn.ll. 'I.'hc rcqrlimtl vnlucs of Iwtwccn 0.0002 to 0.002 mm (1O4to<br />

10 in) c.n.1, I~artlly Ire al.tfninctl on newly manufacturetl blnrlcs. They are certainly<br />

cxccctlcd :rfl.er n prriotl of opcrntion due t.o corrosion and scaling. It may now be<br />

rc~mnrltctl tht, 1.hc prcretlirlg consitlcrntions apply to t1igl~tjly spaced protul)erances<br />

wltic:h corrrsporid l,o sand rotlgl~ncsn. In t.hc rnsc of widely speccd obst.aclcs and in<br />

1.l~ msc of w:lll wnvincss the atlmissil)lc vnlr~cs arc sorncwl~at larger.<br />

r 3<br />

1I1c in(l~irn~:c of rougllnrss 011 the Iossrs in :r st,cnm turbine stage? tlepcntls to a<br />

gwnt, rxtant, on t,lw prrssnrc tlrop :wross it.. i . e. on t.Im tlcpree of reaction of the stage.<br />

,<br />

I . his point crnolpcs clcnrly from Fig. 21.17 whicli rcprcscnts the rfsdts of measnren~cnts<br />

pcrfolmrtl by I,. Spriclrl\68l on turbine cnscntlcs with varying sand rougllness.<br />

,<br />

1 . IIC tlia.grnm cont.nit~s n plol of t,llc loss cocf'ficicnt


664 XXI. Turbulent boundary layers at zero pressure gradient<br />

We shall now calculate the valuc of k,,,, for a wing of length 1 = 2 m (about 6.5 ft) in<br />

air (v = 14 x m2/scc) at a velocity U, =83m/sec =3OOkm/hr (about 185 mph).<br />

We have R, = U, l/v w lo7. Consider a point on the wing at x = 0.1 1, i. e. at<br />

R, = U, x/v m lo6. The boundary layer can remain laminar as far as this point<br />

owing to the existence of a negative pressure gradient. The shearing stress at thc wall<br />

--<br />

for a laminar boundary layer is given by eqn. (7.32) and is to/~ =0.332 UW2 1/1'/~~X =<br />

= 0.332 x 6000 x lo-? m2/scc2 = 2.20 m2/sec2. IIcnce v, = itole = 1.52 mlsec.<br />

Inserting into cqn. (21.40) we havc<br />

v 15<br />

kc,,, = 15 - = ~ 6 X 3 0.14 x lo-' m = 0.14 mm (about 0.0056 in) .<br />

u 8<br />

This shows that the critical size of a protuhcrancc which causes transition is about<br />

ten times largcr t,linn thc valuc of about 0.02 rnm (0.0008 in) in the turbulent boundary<br />

layer, as calculatctl in Tablc 21.3, for the case in hand (small aeroplane).<br />

Thc laminar bo~~ndary laycr "can stand" much largcr roughness than the turbulent<br />

boundary layer. I(. Schcrbarth [481 carrictl out experiments on the bchnviour<br />

of laminar bountlnry layers on walls provided with single obstacles (rivet heads).<br />

It was mccrtained that behind the obstaclc t,herc forms a wedge-like turbulent<br />

distjnrbcd rcgion whose angle of sprcad is about 14O to 18'.<br />

r 1<br />

I hc very rxlmsivc mmsuremenl~s carried out bv E. G. Feindt 1171 h:~vn I d to<br />

k J - -..<br />

a refincnicnt~ of the criterion for t,l~c critlical height given in eqn. (21.46) as mentioned<br />

in See. XVIIg.<br />

Kg. 21.18. hag on circular cylinders<br />

at varying ronghness, aftm Fage and<br />

Warsap [I41<br />

Thc inflnrnct of rouglmcss on form tlrag can be surnrnarized a$ follows: bodirs<br />

with sharp rtlgrs, such as c. g. a flat plate at right angles to the st,rearn,'nre quite<br />

insensitive to surface roughness, because the poitjt of transition is determined by<br />

thc edges. 011 the othcr hand, thc drag of bluff bodies, such as circular cylinders, is<br />

very sensitive to roughness. Thc valne of the critical Rcyrloltls number for which<br />

thc drag shows a sudtlcn drop (Pig. 1.4) tlrpcnds to a rnarltetl degree on thc roughness<br />

of Ihc surfacc. According to mcasurrmcnts, [I, 141 as shown in Fig. 21.18, the critical<br />

Reynolds nurnher decreases with increasiug relative roughncss k/R (d = 2 R = dia-<br />

meter of cylinder). Tllc boundary laycr appcars to I)c tlisturbctl by rougl~ncss Lo<br />

such a tlcgrec that transition occurs at considerably lower Iteynoltls nurn1)rrs t.lr:~n<br />

is the case with smooth cylinclers. Ronghncss has, Olwrcforc, thc samo clTc:ct as<br />

Prancltl's tripping wire (Fig. 2.25), namely, it does reclncc tlrag in a ccrl.nin rnngc<br />

of Reynolds numbers. Jn any case the drag in thc supcrcritical r:tnge of Itcynoltls<br />

llu~nbcrs is always Iargcr for the rough than for t.11~ smool~l~ cylintlrrs; scc I ~tm IC,OJ.<br />

[I] Ackerct, J.: Schweiz. Bnuzeitung 108, 25 (1936).<br />

[la] Alltonin, It.A., nntl Wood, D. H.: Cnlculnt,inn of a tnrl~r~lent I~onntl~wy Inycr clo\vnslrt~:~n~<br />

of a an1a11 step cliange in surface roughncss. Asro. Quart,. 26, 202--210 (1!)75).<br />

[Z] Rammert, K., sad Fiedler, K.: Dcr Rcibungaverlnat von rn,~heri TII~~~IICIIS~~I~<br />

13rcnnatoff-Wiirmo-ICraft<br />

18, 430-436 (1966).<br />

[2n] Banner, M. L., and Melvillc, W. K. : On the separation of air flow over water nnvcs. ,I TM<br />

77, 825-842 (1976).<br />

131 B~mnlert, K., and Ficdler, K.: Hinterkantcn- und lteibun~~vcrluut in '~urbineti~c.l~:r~~fcIg11,lern.<br />

Forschg. 1ng.- Wca. 32, 133- 141 (1066).<br />

[4] Blenk, H., and Trienes, H.: Str~m~~ngsteehr~isclre 13eitriige zuni Wintlsch~rtz. (;r~~ntllagcn<br />

der Landteehnik. VDI-Verlag, No. 8, 1956.<br />

[5] I%rndrrhaw, P., and Grrgory, N.: The dotorminnbion of locnl tnrl~nlcnl, ~ltin fri(.I.ion fro~n<br />

observations in the viscous sub-laycr. AltC JtM 3202 (I!Nil).<br />

[O] Burgers, J.M.: The motion of a fluid in tl~c bountlnry Inyrr along a plnnc? ~nionl.l~ RII~~IWC.<br />

Proc. First Intern. Congrese Appl. Mech. 121, Delft (1824).<br />

[en] Caly, R.: Der Wiirmeiibergang an ciner in1 geschlosaencn Gehause rotierenden Sclleibc.<br />

Thc~is Anchon 1966.<br />

[7] Chapmann, D.R., and ICester, It. H.: Mcasnrenicnl~ of tnrbnlcnl skin friction in cylintlcrs<br />

in axial flow at subsonic and supersonic velocities. JAS 20, 441-448 (1083).<br />

[8] Colea, D.: The problem of the turbulent boundary laycr. ZAMY 5, 181-202 (1054).<br />

[Ba] Coles, D.: The law of the wake in the turbulent bonndary layer. JFM 1, 191 -226 (1986).<br />

[8b] Daily, J., and Nece, R.: Chamber dimension effecta on induccd flow npd friction resintnnce<br />

of enclosed rotating disks. J. Raaic Eng., Trans. ASMIP. Series D, 82, 217--242 (1960).<br />

[9] Doetsch, H.: Einige Versuche iiber den JCinfluss von Obcrf~ric~lcnstarrlngcn auf die Profileigensclraften,<br />

insbesondere auf den Profilwidcrstand irn Schncllflug. Jb. dt. Luftfnlirtforschung<br />

1, 88-97 (1939).<br />

[lo] Van Driest, E.R.: On turbulent flow near a wall. JAS 23, 1007-1011 (19N).<br />

1111 Dutton, R.A.: The accuracy of tneasuretnent of turbulent akin friction by means of surface<br />

P~tot tubcs and the distribution of skin friction on a flat plate. AltC IZM 3058 (1957).<br />

- 1121 - Eichclbrcnner, E.: La touche-limite tnrbulente B 1'inti.ricnr d'un dihdrc. Itech. A6ro. I'aria<br />

NO. 83. 3-8 (1961).<br />

1131 Elder, J.W.: The flow paat a flat plate of linitc width. JFM 9, 133-183 (1960).<br />

[I41 Fage, A,, and Waraap, J.H.: The eKects of turbulcncc and surfacc rougl~neas on the drag<br />

of circular cylinders. ARC RM 1283 (3930).<br />

[IR) Fnlkner, V.M.: The resi~tance of a smooth flat phtc \\it11 turbulent bonndary hycr. Aircraft<br />

Engineering 15 (1843).<br />

[I61 Favre, A., Dumaa, R., and Verollot, E.: Couche limite sur paroi plane porcuac avcr a~piration.<br />

Publications Scientifiques et Techniques du Ministdre de ]'Air, No. 377 (1961).<br />

[I71 Feindt, E. G.: Untersuchungen iibor die Abhangigkcit dcs Urnschlages laminar-turbulent<br />

von der Oberflachenrauhigkeit und der Drnckvertcilung. Disa. Braunschweig 1956. Jb.<br />

Schiffbautechn. Ges. 50, 180-203 (1957).<br />

[17a] Fomter, V.T.: Performance loss of modern stream-turbine plant due to surfaro r~ugl~nras.<br />

The Inst. of Mech. Eng., Preprint, London, 1967.<br />

[18] Gadd, G.E.: A note on the theory of the Stanton tube. ARC RM 3147 (1960).<br />

[I91 Gebers. F. : Ein Beitrag zur experimentallen Errnittlung des Wauscrwiderstandru gegrn bewogte<br />

Kiirper. Schiffbau 9, 436-452 and 475-485 (1008); also: Daa Bl~nlicl~keitclgesetz fur<br />

den Flaclienwider~tand in Wauaer gcradlinig fortbcwegter polierter I'lntten. Srhiffbau 22,<br />

687 - 030 (1920/21), continuation8.


666 XXI. Turbulent boundary layers at zero prensure gradiont References (if17<br />

[20] Gersten, I Schiichtinn. 11.: Exncrimcntelle Untcrsuchungon znm Ita~~higkoitrrprohlcnl. Ing.-Arch. 7,<br />

1-34 (19%). NAC~ TM 823 (1937).<br />

r461 . . Schlichting, k.: Die Grerlzsch~cht an der ebenen Plntte mit Ahsaugung und Auuhlwen.<br />

~rnftfal~rt&rncl~~~n~ 19, 293-301 (1942).<br />

r471 Schlichting. H.: J)ic Gren7achicht mit Absnngon nntl A~~shlnscn. J,~lftfill~rt,ft~rurl~~~~~g 1.9, .<br />

L- 2<br />

179- 181 j1n42).<br />

1481 Scherbarth, IC.: Grenzschiclltnlessungrn hinter einer punktformigcn Sttirung in Inminnrcr<br />

Strdmung. Jb. dt. Jn~ftfahrtforschung I, 51-53 (1042).<br />

[49] Schtnieden, C.: vber don Widentand einer in ciner Flunsigkeit roticrcndon Schrihc. ZAhlAI<br />

8, 400-470 (1028).<br />

[50] Schoenherr, K. I:.: Resintnnce of flat aurfacecl moving througll a fluid. Trans. Soc. Nav. Arrh.<br />

and Mnr. Eng. 40, 279 (1932).<br />

[51] Schofield, W. H: Mcaaurements in arlvernr prwure gradient turhnlcnt honndnry lnycrs wilh<br />

a ntep rhange in surface roughness. JFM 10, 573-693 (10713).<br />

[52] Schultz-Grunow, F.: Der hydraulischo Itcibungawiderstantl von Platton tnit tniinnig rnuhrr<br />

Oberfliiche. insbeaondere von Schiffaobcrflachen. Jb. Schiff bnutcchn. Gcs. 39, 171; -198<br />

(1938).<br />

rr;m Schnltz-Grunow. P.: Neucs Widorstnndngcsctz fiir glnt.t,c l'laltnn. I,uftfnl~rLfornt:l~~~r,a 17,<br />

L J -<br />

239 (1940); also NACA TM 980 (1941).<br />

[64] Schultz-Grunow, F.: Der lteibnngswitlrrnt~r~~d rotiercncler Srl~rihcn in (:ol~~instw ZAMM<br />

--, 1.5. 191-204 - 11935): sce also: H. Fultinger: ZAMM 17, 356-358 (1937) and I


CHAPTER XXII<br />

The incompreesible turbulent boundary layer with<br />

preseure gradient J-<br />

In tho present chaptcr we sliall discnss the bchaviour of a turbulcnt boundary<br />

layer in the prwrnce of a positive or nrgativc prcssr~rc gradient along thc wall,<br />

thus providing an extension of thc sobjcrt matter of the preceding chapter in which<br />

the boundary layer on a flat plate with no pressure grhdicnt was considered. The<br />

present case is pzrticnlarly important for thc calculation of the drag of an aeroplane<br />

wing or a tutbinc blade as well as for thc untlcrstanding of the processes<br />

which takc plarc in a tliffuscr. Apart from skin friction we arc intcrcstctl in knowing<br />

whether the boundary layer will scparal.c under given rircumstanccs and if SO,<br />

wc shall wish to detcrmine tl~c point of separation. The existmcc of a ncgstive<br />

and, in particular, of a positive prcssnrc gratlicnt exerts a strong influcncc on the<br />

formation of the laycr just as was thc case with laminar layers. At the present timc<br />

these very complicated phcnomcna arc far from being understood complctcly but<br />

there are in cxistcncc several scmi-empirical mctbods of calculation which lead to<br />

comparatively satisfactory results.<br />

In the year 1962, J.C. Rotta [86] prepared a comprehensive and careful review<br />

of this vast ficld of knowledge. In order to develop methods of calculating incom-<br />

pressible, turbulent boundary layers with pressure gradients it is necessary to derive<br />

from experiment relations which go beyond thosc employed for pipes and flat plates<br />

at zero incidence. For this reason we shall begin by giving a short account of some<br />

experimental results.<br />

a. Some cx~mrirncntal results<br />

ILrly systc~natic cxpcrimcnts on two-dimensional flow^ with pressure drop and<br />

prcssuro rise in convcrgcnt, and divcrgcnt clianncls with flat walls have been carried<br />

out by F. Doench [28], J. Nikuradse [71], II. Hochschild [45], R. Kroener 1571 and<br />

J. Polzin [76]. Measurements on circular diffusers, and particularly on the efficiency<br />

of the process of energy transformation, are described in papers by F. A. L. Winternitz<br />

and W. J.Ramsay [123]. These experiments demonstrate that the shape of the velocity<br />

profile dcpcnds very strongly on the pressure gradient. Figure 22.1 shows the<br />

velocity profiles which were mcasurcd by J. Nikuradse during his g~~erirnent.3 with<br />

t Tho new veruion of tliiu chnplcr wo.8 propnrcd by Profemor E. Truckenbrodt whose nssistance<br />

I I~ercl~y grnbhlly ac:knowletlgo.<br />

a. Some experimontnl rusulta<br />

Fig. 22.1. Vclocit,y diutri1~11Lion in coni~ergcnl<br />

and. divergent cl~nnnols with flat wall^, as<br />

n~cmrirccl by J. Nikurnduo [71]<br />

- ImIr Included nnglr; It - wicllll of ctlnnrlcl<br />

-1.0 -0.6 -0.2 0 0.2 0.6 LO<br />

L6<br />

Fig. 22.2. Velocity distribulion in a divergo11<br />

chnnnel of ldf includotl angle n = 6" and<br />

a = Go, as measured by .J. Nilruradse [71].<br />

The lnck of Qmmetry in the velocity distribution<br />

signifies incipient separation<br />

Fig. 22.3. Volocity distribution in n diaergent<br />

cl\aiincl of hnll inclrtdect analc n =: X",<br />

rnctwr~red by .I. Nikr~ratlnc [71]. Itcvcrsc flow<br />

is coniplebly dcvclopcd. Tlicr flow oncillntcs<br />

nt hgt?r iiikrvah het.wm\ pnthrll~ (a) twd<br />

(b)


670 XXII. Tho incomprcaniblo t~urbnlont bound~ry laycr<br />

slightly convergent or divergent channels. Tl~c half included angle of the channels<br />

ranged over the valrles a = -ao, -4", -2", 0°, lo, 2", 3", 4". The bo~~ndary-layer<br />

thickness in a convergent channel is much smaller than that at zero pressure gradient,<br />

whercas in a divergent channel it becomes very thick and extends as far as the centxeline<br />

of thc chn.nne1. For semi-angles up to 4' in a divergent channel the velocity<br />

profile is fully symmetrical over the width of the channel and shows no features<br />

associated with sepamtion. On increasing the semi-angle beyond 4" the shape of the<br />

velocity profile untlcrgoes a fnndament.al change. The velocity profiles for channels<br />

with .5O, Go and 8" of divcrgence, respectivcly, shown in Figs. 22.2 and 22.3,cease t,o<br />

bc symmctricnl. With a 5" nnglc of divcrgcncc, Wig. 22.2, no barlz-flow can yet bc<br />

disccrncd, but separation is about to brpin on one of t,he channel walls. In addition<br />

the flow bcnomcs unstable so t,l~nt, depending on fort-uitous disturbances, the stream<br />

adheres alternately to the one or the other wall of t,he channel. Such an instability<br />

is characteristic of incipient, separation. J. Nikuradse observed the first occurrence<br />

of separation at an nnglo bet.ween a = 4.8" and 6-1". At an angle of a = Go, Fig. 22.2,<br />

the lack of symmetry in the ve1ocit.y profile is even more pronounced, and the reversal<br />

of t.he flow intlicnt~cs the start, of separakion. At n = 8" the witlt,h of the region of<br />

Pressure distribulion<br />

Try-<br />

Fig. 22.4. llol~~lrlnry lnyrrotl wing nrrofnil. nn rncrmltrcd by Stilrprr [IOR]; mensuremmtrr in flight;<br />

lift rooffic:iollt r,, =- 0.4; IZoynolrln nt11111)cr R - 4 x loo; chord 1 = 1800 nlm. 't'l~e boundary 1a.s-er<br />

in turhulrnt all nlonp tho prrn.wrc sirfr owing lo xtlvotnr, prmnttro grnrlintlt; on tlle aertio~s ridr it. iu<br />

lnn~innr uprtrcntn of prcfxwrr tnit~i~~i~~tn nnd trlrl~rtlc~~t downut,rcnl~l from it<br />

reversed flow is considerably larger than for n = 6", and frequent oscillation of the<br />

stream from one side to the other is observcd, the phenomenon being absent at a =<br />

6" and Go. However, the duration of one particular flow configuration is sufficiently<br />

long for a full sct of readings to be obtained. As tho nnglc of divcrgence is incrcnscd,<br />

the region of reverse flow becomes wider, and the beats are more frequent.<br />

The diagram in Fig. 22.4 shows an example of a turbulent boundary laycr formed<br />

on an ~erofoil and measured by J. Stueper [lo61 in free flight. In the case represented<br />

here, the boundary layer on the pressure side is turbulent from the leading edge<br />

onwards, because here the pressure rises over the whole width of the wing. On tho<br />

suction side, t,hc point of t,ransition plnccs itsclf a short distancc behind thr pressure<br />

minimum in agreement with the description given in Scc. XVII b. The fact that the<br />

boundary layer has become turbulent is inferred from the sudden iorrrasc in its<br />

thickness.<br />

Very thorough expcrimcntal in~est~igations into t,ho bchnviour of l.url)ulcnt,<br />

boundary layers with pressure gradients have been later perfnrmctl by G. 1%.<br />

Schubauer and P.S. Klebanoff [97], by J. Laufer [68], and by F.H. Clauser [21].<br />

The first two of the abovc papers contain, in particular, rrmlts of mcnsurcments on<br />

tmrbnlent, fluctuations and on thc correlation cocfficicntw which wcrc clolincd in<br />

Chap. XVTII. Thc last paper contains cxtcnsive rcsu1t.s of mca~urcmrnt~s on shnaring<br />

sLrcssns. 'l'hc c:nlcul:~l,ions closcril)otl in tho following oonl.ic,~t~ c::ru c:vitlonI.ly nlq~lg o11l.y<br />

to [flows which adhere comptctcly to the walls, tirat is, to cnscs which are sitnililr to<br />

the one shown in Figs. 22.1 and 22.4.<br />

b. The cnlculntion of two-dimc~~siorlnl turbulent lto~~nclnry lnyers<br />

1. General remarks. To this day, all methods for the calculation of turbulent<br />

boundary layers rely on semi-empirical procedures, because the apparent nornml<br />

and tangential stmss componcnta crent.cd by the turbulent fluclmations as well as<br />

the thus released energy losses cannot be ~alculat~cd by purely theorct.ical means.<br />

Furthcrmorc, it. is still necessary to int,rotlucc hcrc empirical relations of the t,ypc of<br />

Prandtl's famous mixing-length formula invented in 1925, because the statistical<br />

t,hrory of t,urbulcnce has yet t.o produce a replacement. for it. [t is nst,onishing thatf<br />

1'rnndt,l1s hypot,hesis, half a cent,ury after it8 discovery, still plays a vcry important<br />

role in the lit,erat,urc on the calculat~ion of tu~.bulcnt boundary Iaycrs. Mosl contcmporary<br />

met,hods are approximate; thy make use of t,he momentum and energy<br />

equat.ions of t,he velocit,y layer (as distinct from t.he t,hcrmal layer which will not be<br />

discussrcl in this scction) and of certain relations t.hat follow from them. Thc corrcslmding<br />

rclitl,ions for Inmi11n.r I)ouneln.ry In.ycrs wrro tic-tivctl in Clr:~ps. S :me1 XI.<br />

The procedures for the calculatio~~ of turbulent boundary laycrs available today<br />

can bc tlividcd into two classes: methods based on in,legral fornts of t,hc principal<br />

equations and methods based on diffarcnlid equations. The former can be traced t,o<br />

work t.hat was done by Th. von IGirrn.in in 1!)21 1.: +!:is procedure, thc partial tlifferer~t,ial<br />

equations are reduced to a system of ordinary dillercnbia~ cquat,ions in that. an<br />

ana1yt.i~ int,cgrat,ion in the t,ransversc dircot,ion is first performed, cf. C11n.p~. VllI<br />

and XITI. It1 the ot,l~er class of cnscs, thr pnrt.inl tliITrrential ~clnat~ions arc int.cgratctl<br />

dircct.ly I)y the n.pplicnt,ion of nnrnoriral rnrt,hotls, suc:h as the mrtltod of fi11it.c tlifircnces<br />

outlinctl in Scc. IXi, or by finitc clcmcnt.s. It, is c:vitlrnl, thn,t t.hc nniount, of work


672<br />

XXll. 'l'llc incon~prcssiblc turbulent bol~ndary lnycr 1). 7'110 cnlci~lnLion of two-rlimcnsional lrtrbulont boundary lnynrs 673<br />

involved when differential equation methods are used is substantially larger than in<br />

tho case of integral methods. The former require the use of a very large digital<br />

computer equipped with a large memory, whereas the latter can be done on a small<br />

calcrllator or, even, with the aid of a slide rule.<br />

In the following paragraphs we shall confine ourselves to the des~ript~ion of<br />

methods which rcsult merely in the calculation of time-averaged values of such<br />

variables of the turbulent flow as t,he velocity, the local shearing stress and the region<br />

of separation, because we subscribe to the view that only such mean values are of real<br />

interost to the engineer. Thus we rcfrain from calculating all those quantities that<br />

result from fluctuations, for example the correlation coefficients, the intensity of<br />

turbulence and its scale. Readers interested in these aspects are referred to more<br />

specialized publications, e. g. [lo, 813.<br />

Rcsearch into turbulent boundary layers was considerably advanced by the<br />

Stanford Univcrsity Conference organized by S. J. Kline in 1968. The results achieved<br />

at the time have been published in two large volumes edited by S. J. Kline, M.V.<br />

Morkovin, G. Sovran, D. J. Cockrell, D. E. Coles and E.A. Hirst [64]. In the appended<br />

[79] "morphology" prepared by W. C. Reynolds, the reader will find a de~cription<br />

of 20 integral and 8 differential methods and characterized according to their respective<br />

physical basis (status = of 1967). They differ, principally, in the empirical closure<br />

functions which are introduced in ordcr to malre the system of equations solvable. In<br />

addition, the conference had at its disposal 33 sets of experimental data which served<br />

as testing material for the computational algorithms. About ten years later, W.C.<br />

Reynolds [81] provided once again a summary review of the very large number of<br />

computational schemes; this appeared in his contribution to the Annual Reviews of<br />

Fluid Mechanics of 1976 (cf. the same author's 1974 contribution in Chemical Engineering<br />

[80]). In 1974 there appeared the book by F.M. White [I191 which describes<br />

20 integral and 11 differential procedures. It is difficult, and we shall not attempt, to<br />

select a "best method" from among the very large number proposed so far.<br />

A summary of many of these methods, principally integral ones, was prepared<br />

earlier by A. Walz [116] and J.C. Rotta [86, 871. A review of differedial methods is<br />

conlaincd in P. Bmdshaw's contributions [9, 12, 13, 141. Further, the book by T.<br />

Cebrci and A.M.O. Srnit,l~ [20] and two earlier papers by the same authors [18, 191,<br />

contain good reviews of many calculational procedures. The two earlier reviews by<br />

L. S. C. I$Y .<br />

2. Truckenbrodt's integral method. Before we proceed with the description of the<br />

details of E. Truckenbrodt's [I141 method, we find it helpful for its understanding to<br />

preface it with a few historical remarks. As already mentioned earlier, all computa-<br />

tional algorithms for turbulent boundnry layers rcly on ecrtnin empirical relations.<br />

As time progressed, and, in particular, since thc middlc of t,hc tl~irtics, tho empirical<br />

basis, and hencc also the semi-empirical and theoretical computational proccclurcs,<br />

underwent a process of continuous improvement.<br />

The first method for tho calculntion of t,urbulcnt boundnry Inycrs wit.11 prcssure<br />

gratlicnts was formulated by E. Gruschwitz [40] in 1931. The cxpcrimcntd data on<br />

which this mrthod wns basod wcro Intcr irnprovcd by A. 1


074 XXIJ. Tho incomprc~~ihlo t,t~rbnlcnt boundnry lnycr<br />

uniqwly, as evidcnced by the graph of Fig 22.5 This fact is expressed by a relation<br />

Iflz = /(If32), if a dight, residual rlcpendence on the Reynolds number is neglected.<br />

Guided hy the prenrding ohservaf ion, IS.'rruckenbrodt [I 141 introducetlt the nrodt/i~d<br />

shape factor<br />

The reference valuc (IIz3)m = (l/Naz)m hns been chosrn as t.he loner limit, of integmtion<br />

because it. reprcsent.~ an avcrage value for flows wit'hout a pressure gradient,. 111<br />

the casc of t~urbulcnt boundary layers wn choose = 1.3. The nunierical evaluation<br />

of the relation in eqn. (22.4) can tie undert,alren on the basis of a relation<br />

intlicntcd 1)y 11. Fernholz [33]. The result is seen plotketl in Fig. 22.6.<br />

In the case of flow with zero pressure gradient, we find that I/ = If, = 1 by<br />

definition (mean value in the casc of tnrbulrnt flow). Flows wit11 atlversr pressure<br />

gradicnta (pressure rising in the downstream direction) are characterized by If <<br />

H < 1, wlierc.ns for accelerated flows (pressure decreasing) we find that 1 < H <<br />

Hop where Ifs denotes tlie shape factor for the velocity profile with incipient separ-<br />

ation, and Ifo denotes the shape factor of a two-dimen~ional stagnation-flow profile.<br />

According to I<br />

(Hlz)s > 4.0 or 11s w 0.723, wl~creas A. \\'nlz [I 161 proposcs the values 1.50 < (1132)s <<br />

1.57, or 0.736 < If,. < WXil. According 1.0 A. I\. 'I'ownseritl (I Ion] (cf. St.vatfortl (1041)<br />

a vanishing xhcar st.rcss occurs for (I/12)s - 2.274 or IIs = 0.784 in tlie case of<br />

profiles crcat,ed by an ext,crnal flow with U(x) - sP with p = -0.234. The various<br />

shapc fact,ors for incipient separation haw been indicat,ed. in Fig. 22.6. The values<br />

of the modified factor Ils fluctuate n~uch less than those of (Ill& and (H23)S.<br />

Refrrcnce 11141 indicates t.l~at acparalion can occur for<br />

The rangc Ifs - 0.723 < II < 0.761 = If; I<br />

describes vrlority prolilcs thnt nre prow to separiatc.<br />

: l'hr ri~rnirric*nl<br />

nv:~il:~blc nL llw I~nre.<br />

roncltnntn in rqn. (22.51,) hnve heen ndjusted to represent the experiments<br />

b. Thc cnlculntion of two-dimcnsionnl tr~rbulcnt honndnry Injqyv 675<br />

Fig.22.5. l'hr ratio of houndnry<br />

lnyrr thirknrclncn Ifaz = &/rh plottcd<br />

against If12 = fill&, aftcr J.C. ltottrr<br />

1831 and I


070 XXII. Tlic incompreaaibto lnrl)~rlent bounclary layer b. The calculation of two-dimenaionnl turbulent boundary lnyera 077<br />

As ttlie hnsic rqiia~f,ions for nromen,tum. thickness &(x) and for e?asrg?/ thickn,esa<br />

03(2:), we obtaint :<br />

and<br />

rmpcct.ivcly. Ilere CT is the skin-frict,iorr cocfficicnt and c~ is thc.dissipntion cocfficicnt.<br />

r 7<br />

llrr prrretling two coeifiricrib rela.t,ctl to thc shearing stress depcnd st,rtingly on the-<br />

ltcynolrls nurnbcr, R, arcording to eqn. (22.2), and on the shape factor 11 in conform-<br />

ity with cqn. (22.4). 'l'hrr following power-laws for their description lrnve withst.oot1<br />

the fcst of time:<br />

I I<br />

'l?lic cxprcssions contain the factors a([{) and P(N) which are kque functions of the<br />

shape factor and a specified power of the local Reynolds number~ Rz or R3. Thc dingrams<br />

in Figs. 22.7% and b represrnt the quantities n. and h as well as a' = n/nm and<br />

p' = fi/j?rn together with am and /?, (denoting values for zero-gradient flow) as<br />

f~lnrtions of II. The rrsprctive form~rlac are quotcd in the captions. Jt is seen that<br />

/?' varirs slowly with 11, whcrcas n' assumes the vnlue af(ll = Ils) = 0 at scpnration<br />

antl t>llcn inrrcascs fast with incrcasing If.<br />

Equations (22.8a, b) are now substituted int,o eqns. (22.7n, b) and this lends 11s<br />

to the modified forms of thc momcntum and energy equations for &(x) and 63(x),<br />

Pig. 22.7. Shearing stresses in turbulent bonndary layer/corresponding to eqn. (22.8) after [33],<br />

[I 161; a) exponent8 n and b in terms of If; b) fnctors a and P in terms of If<br />

t The above eqnntiona ncglect t.hc effcct of the normal components 3 and of the tonsor<br />

of lteynolds stressrs from oqn. (18.10). Among othcrs, references [85, 87) contain indications<br />

on how to modify bliooe equnt.iona if this uimplification is not acceptable.<br />

In order to complete the evaluation it is still necessary to know the ahape-laclor<br />

/un,dion H(x). It is shown on p. 487 of [I 131 that eqns. (22.7n, b) lead to tho working<br />

forms<br />

for the cnlculation of H32(x) and of HZ3(x). The shape factors can now be cnlculated<br />

either by the use of a coupled pair of cquations, namely (22.7a) antl (22.98) or (22.7 b)<br />

and (22 9b) To distinguish bctwcen these two possibilities we speak of the morne~tl~~rn<br />

method in the first casc and of thc energy method in the second case. In most. proccdr~res<br />

use is made of the momentum method, whereas E. Truckcnbrodt [I 11, 1141 favours<br />

the energy method. Thc lnttcr choice has bccn madc for two rcnsons: (a) The Icft-lland<br />

side of eqn. (22.7b), unlike that of cqn. (22.7a), does not dcpcrld explicitly on tho<br />

shape factor. Thus instead of eqn. (22.7 b) we can also write<br />

(b) TIlc dissipntion fnc(,ol. c~ on thc right siclc or c(,n. (22.70) munt bc (::llc\~l:~(rcl rroin<br />

eqn. (22.8b) by performing a quadrature extended ovcr the boundary-layer tlricltness<br />

0 ( y < &x), whercas the skin-friction coefficient c~ on the right-hand side of cqn.<br />

(22.7~) tlcpcnds only on the local shcaring strcss at thc wnll, cqn. (22.411). 'l'llis<br />

signifies that the dissipation work depends much less on the shape factor than thc<br />

shearing stress at the wall. This is confirmed by the graphs of n'(I1) and P'(I1) in<br />

Fig. 22.7b. Thus, in the energy method, the coupling between the equations determining<br />

the boundary-layer thickness (energy equation) and the equntion which<br />

determines thc shape fnctor turns out to bc much wcnlccr than in thc n~omcntum<br />

method.<br />

Reference [114] s11owsI1ow the basiccquntions for t,lre boundary-laycr t.llicltncsses,<br />

eqns. (22.7a, h), can be transformed into equations that dctermine the local ltcynolds<br />

numbers defined in eqn. (22.2). Similarly, this reference shows how the basic equations<br />

for the shape factors, eqns. (22.!h, b), can be transformed into equations for<br />

the modified ~hape factor defined in eqn. (22.4). In this mnnner, we obtain<br />

Table 22.1 summarizes tl~c expression for the contractions m, di and y. The quantities<br />

R, m, @ and p are provided with subscript 2 for the momentum mcbhod, and<br />

wibh subscript 3 for the energy method.<br />

4. Quadrature for the calculation of plane turbulet~t boundary layers. Under crrtain<br />

simplifying assumptions it is possible still f~nrther to simplify the system of equations<br />

(22 lla, b) In this manner it is possi1)le to derive explicit cxprcssions for R(n) and<br />

N(r) by quadrature for an arbitrary velocity variation, TJ(x), in the outer flow, that


678 XX 11. Tho inconiprcnnihle t~~rl~alont boundnry lnyer<br />

Table 22.1. Su~nn~ary of thr qnanlitir~ whirl1 occur in the equations for the cnlrulation of the<br />

din~ensionless ~non~entum tlrirkness, Rz, of tlw din~rnsionlcss energy thickness, R3, and of the shape<br />

factor; RCC eqns. (22.1 In, b)<br />

BIonwntum method<br />

(wbscript 2)<br />

Energy method<br />

(subscript 3)<br />

is for zcro, atlvrrsc, or favouraMc prcssnrt. grat1icnt.s. The int,rgrat.ion is here cxtentlccl<br />

only over c~rt~nin powers of TJ(z). We now proceed to derive such approximate, cxplirit<br />

form~ilae and to show how a, suitable choice of approximate procedures can<br />

lead to a step-by-stcp improvcrnent.<br />

Analogy with lan~innr borrndary layer (momentum method): In a manner analogous<br />

wi1.h I


FRO XXII. Tho incornprcs~iblo turbulent boundary layer 11. Tho calculaLion of two-climcnsional turbulent boundary lnycrs (iX I<br />

tribution U(x). Since the valuc of the shape factor, N(x) = 1, has already been<br />

assigned, the only quantity that we need to calculate is the local Reynolds number<br />

determined by eqn. (22.11a). Since m = const, we can contract the two terms on<br />

the Icft-hand side and solve the problcm by performing two integrations, one each<br />

for Rz(x) and R3(x). In ~ont~racted form these are<br />

The relations and numerical values to be used for the exponents i, e and n, as<br />

well M for the modified lrinematie viscosity v' are listed in Table 22.2, separately<br />

for the momentum and for the energy method. The constant of integration is<br />

DifTercntiat.ing eqn. (22.17) wit11 rc~pcctr to x and taking into account thc contmctions<br />

dcfincd in Tablrs 22.1 antl 22.2 wc can tlcmonstrat~ eonsist~ency with eqn. (22.11a).<br />

In the case of the moment,um m&hod, eqn. (22.17) becomes identical with eqn. (22.16)<br />

if wc put i = n, R = Rz antl IZ = Ez.<br />

Comparing the nurnerical data of Table 22.2, we find far-reaching agreement.<br />

In spite of considerable difl'erences in the assumptions for the shape factor and for<br />

the shearing stress at the wall we discover that thc two explicit cquat.ions for the<br />

calculation of the momentum thickness are equivalent. The following specific numeri-<br />

cal values can be recommcndctl:<br />

The cnergy mcthod is discussed below.<br />

Analogy with self-similar eolutions (ener~y method): Self-similar solutions in<br />

boundary-layer thcory are generally described as equilibrium /lows when they occur<br />

in turbulent motion. They are charnctcrized by the fact that the velocity profiles<br />

u/U nt varying positions x become similar for certain velocity distributions U(x) of<br />

the ontcr flow. 'J'his means that, the shape factor H(x) remains constant with z, that<br />

is that dlfldx = 0. Figure 22.7 implics that all quantities which depend on x in<br />

gcnrml n~ust bcrome constant for such equilibrium boundary layers.<br />

We now suI)st,itutc in cqn. (22.10) the expression for cn from cqn. (22.813) and<br />

note that the integration with respect to x can be performed in closed form with b =<br />

const and p' = const. The Reynolds nnmbcr formcd with the energy thickness is<br />

thus given by<br />

. .<br />

I hc numerical vn.lucs for 6, r, n, and v' are to Ip sclcctcd in accordance with the<br />

relations in Table 22.2 and l'ig. 22.7s.<br />

I<br />

In the spceial rase of separation-prone flows for which Hs < I1 < Ilk, we find,<br />

for example, that. 1 4- b$ = 1.004 and I + b, = 1.152. Tliesc two values differ by<br />

about. 5%. Such a disrrcpancy can t)c tlisregardcd in view of the i~ncert~ainties in-<br />

Iirrent in s~wh appro xi mat,^ mctzhods. In othcr words, this signifies that it is possiblc<br />

to perform calculations using numerical values based on t,hc flat-plat,c ani~logy. 'rhc<br />

quantity P' = PIPQ) that appears in eqn. (22.19) also depends only wcaltly on the shape<br />

factor; by way of approximation, we let it be P' = I. 'rhns, the calculabion of ~(IIc<br />

cncrgy t,hickness with the aid of eqn. (22.10) can be bascci on tdlc followitig numerical<br />

valucs :<br />

R += R3: h = 0.152; e == 2.3 ; n = 3.3; r' = 78 v; P' =- 1 . (22.20)<br />

With thrse assumption, eqn. (22.19) transforms into cqn. (22.17) bearing in mint1 that<br />

i = b, R = R3, and /C = "3, as cxpcctcd.<br />

Refcrence [114] diows t,hat eqn. (22.1 la) suffices by it,sclf to solvc the prnbleln<br />

when the energy mct,llocI is used. 13y contrast, when t.hc nionlent.urn mctliotl is usctl,<br />

t.he coupling between cqns. (22.1 la) and (22.11b) cannot hc disregardcdt. 'Hie Iatkr<br />

Icads us t,o the trivial result that Rz = IIz3R3 in view of thc dcfnit.ion Ifzn -- 02/fi3.<br />

At. t.hr icvcl of approximation - -<br />

considcrcd so far, thc momcntum mctliotl t.urns out<br />

t,o be itlcntical witJr t.11~ cncrgy mct.liot1. Ncvcrthclcsrr, tho two proc:rtl~~~.c,s tlilli,~,<br />

csscntially from one another in that tlic momentum mcthod employs tho t,wo basic<br />

cquat,ions (22.11~~) and (22.1 lb), whcrras t,hc cncrgy mct,hotl gct,s by with cqn. (22.1 la)<br />

nlonc. As far as tlic devclop~nent of furthcr approximat.ions in the for111 of simple<br />

inkgrals is concerned, we have cxhaust,ctl t.hc pot,ent.inl inlierent in thc rnomrnt.um<br />

mct,horl. In the energy mcthod, cqn. (22.1 1b) is used to tlcrivc n forninla for t,hc shape<br />

fnclor by closed-form int.rgrnl.ion, as wc arc about, t.o how.<br />

Integration method due to E. Truckenbrodt: 13. Trucltcnbrodt [I 11, 1141 worlrcd<br />

out an npproximnt,~ mc:l,hotl for 1.11~ cxplicil inttcyrnl.iol~ of t,llc cqi~n.Iio~is of t.111.1~111v1it~<br />

boundary layers which serves to obtain the boundary-layer t,l~iclrness (cnergy tliickness)<br />

as well as the (modified) shape fact,or. The first vcrsion of the method [Ill] has<br />

proved to be practicable for calculat,ions in engineering applications. It was, therefore,<br />

tliougl~t useful to modify it in the light of more rccent discoveries. Employing<br />

the classification introduced above, we tlescribc this as an energy method. Tlrc method<br />

can be used for two-dimensional as wellasforaxiallysymmct~ricflows,c/. Sco. XXlX cl.<br />

Tlic method is based on cqn. (22.11a) which is used to calculate the Iteynolds<br />

number formed with the energy thickness. Hence we put R = R3, m = 2 and (IS =<br />

@a = (21~) /? Rab in accordance with Table 22.1. If we assume 1,hat 6 = const and<br />

p(r) is known, we can integrate eqn. (22.11a) with rcspcct to x and obtain<br />

1:<br />

1 B4x)<br />

{R3(4I1+* = -;; [C1(2)1C where E3(x) = E3(x1) + JP' Un dx. (22.21)<br />

The numerical values in cqn. (22.20) are valid up to P'(.T) = P(:c)/Pw. Ilowcvcr, an<br />

inspection of Fig. 22.7b shows that /I' docs not clcviatc much from the valuc 1.0,<br />

and we may calculate with /I' = 1.0 by way of approximation. In this case, eqn.<br />

(22.21) transforms into cqn. (22.19). Thus, if no great dernands of accuracy are made<br />

on the values of the Reynolds number, we obtain<br />

--<br />

z<br />

2%<br />

\ lllltbl<br />

t By way of amplificstion, we mcnt,ion that the result, derived in Tal~le 6 of [I141 in also valid<br />

when a -= const nnd b = ronut,.


082<br />

XXII. Thc incomprm~il~lr L~lrbtrlolt bn~rndnry lnyrr<br />

wherc bhr following numerical vnlncs (cf. Table 22.2 - energy method) have been<br />

employed :<br />

b = 0.152; v' .= 80 v; with flq(rI) = v' {[U(r1)J2 R3(xl))lCb.<br />

(22.22 b)<br />

This explicit formula cont,nins only t.hr extmnal free-strcam vclocity U(x) which<br />

mny IIC known from pot,cnt,ial t.hcory or from mcasarement. The positmion .2: = xl<br />

constit.ntes t,he st.nrt,ing point for t,he calculation.<br />

Apart from the velocity U(xl), the constant of integrntion E3(rl) rontains also<br />

the encrgy thickness 63(.cl). If the station xl coincides with the point of transitmion<br />

the cnergy thickness should be ralc~llatcd over the laminar boundary layer in t.hc<br />

rangc 0 2 x xl Here x = 0 rlenotcx thc start of t,he boundary layer; for example,<br />

the leading edge of a plate or the stagnation point of a blunt body. It waa shown in<br />

11141 that eqn. (22.22a) is also valid for laminar boundary layers whenb = 1, vi =<br />

v/Q& = 0.91 7v and lC3(xl = 0) = 0 should be specificd. In this case, with a laminar<br />

starting length, the constant of integration becomes<br />

112<br />

(point of transition). (22.23)<br />

If the boundary lnyer drcntly is t,urbulent at z = XI, it is necessary to substitute<br />

into eqn. (22.22) for E3(z1) t,he local vnlue R3(x1) = n3(x1) U(xl)/v.<br />

In many practirnl npplicnt.ions it. is not enough to know the \)cl~aviour of t,hc<br />

boundary-layer thickness, lwre t,hc encrgy t.hickness &(x). This is the case wit,h<br />

ueparation-prone or separat,ctl boundary hyers. If, for example, it is necessary t,o<br />

makc n statcmcnt about t.he possibiliby of separation, it is necessary to know the<br />

velocity parameters along the wdl. All mct,hods discussed in Sec. XXIIbl provide<br />

procedures for t,he calouletion of sonir xhnpe fnctor in addition to tht of a boundarylayer<br />

t~liiclrncsx, such as the niomcnt,~~m thickness &(x) discussed t.here. The shapc<br />

factors nre defined differently in diff'rrent methods and different differential equations<br />

are specified for thcir ralrnlation. A revicw and intercomparison was given by J.C.<br />

Roth [85].<br />

l'hc diPFrrcwt,inl rq11r21~ion (22.!h, 1)) for t.hc shnpr. factors 1132(x) and Hz3(~) were<br />

obtained by tlic coupling of thc ~~ior~~rnturn-integral and energy-integrnl equnt.ions<br />

(22.78, b). Thc pereding dilTrrent,inl equntions det,ermine the shape factor in a unique<br />

way proviclrcl that onc-para~net~cr velocity profiles Hlz.= f(H32) or Hlz = f(Hm)<br />

nrc post,ulnt,ctl and npproxiniak cxprrsxions for t,he shear-stress coefficients CT and<br />

co are s~hst.itllt.c11 from rqn. (22.Rn, b). The dct,crmining equntion (22.11b) for thc<br />

shapr factor cnn br writ.tm in t,crms of thc naodijied shape lactor If = f(llzs) proposed<br />

by 15. l'r~~rlrcnl~rotlt.. l'ogcl.hcr with rqn. (22.11a), this relnt,ion forms a system of<br />

simultn.rous tliffrrrnhl equations for t,l~e Reync~lds number formed wit,h t,lte energy<br />

t,hickncss, Ra(:v). and for thc shapt factor 11(a)! According to Table 22.1 we must<br />

put TN -.- 2 =- const 1tr1 Ihr rnrlgy ntcthotl clisrussed herc 7'hc forms of the funrtions<br />

cl,3(RR, 11) nnd lli3(R3. If) arr lo Irr taltrll Irom thc same talrlc Rcference[ll4]summarizci<br />

cqns (22 1 I n) nntl (22 1 1 0) as follows :<br />

with<br />

and<br />

Z<br />

G1(x) = G(q) + j y' un-' dx,<br />

where n is listed in Tablc 22.2 (energy method). The correction function y'(x) =<br />

yf(R3, H) can be calculated with the aid of a(ll), b(H), u(H), /l(II), If12(x), 1fS2(H),<br />

as well as R3(2) and N(x).<br />

The correction y' differs by a larger or smaller amount from the value 1.0 in the<br />

case of a turbulent boundary layer, nnd cannot bc determined with an adrqunte<br />

degree of reliability. 13y way of approximation, we assume y'(x) = const = 1.0 and<br />

introducc a new quantity c = const = 4.0 in order further to simplify the analytic<br />

solution. The qunntily c has been. so dct~ermincd as to nchicve optimum ngrccmcnl<br />

between available measurements [64] and theoretical results; see also [114]. The<br />

modified shape factor is obtained from the equation<br />

which is the result of somc algchraic txansformations not reproduced Itcrc. llerc thc<br />

influence /unctions of the external velocity distribution are defined os<br />

The initial valuw, i.0. the constants of intcgration are<br />

We take the numerical constants as<br />

The integral expression (22.25) for the calculation of the shape factor contains<br />

only the external velocily distribution U(x), as was the case with the corresponding<br />

integral expression (22.22) for the calculation of the Rcynolds number. The detm-<br />

mination of the inllucncc function N(r) rcquircs thc pcrformnnco of n doublc inLc-<br />

gration with respect to x. The position x = xl once again represents the starting<br />

point of the calculation.<br />

The constants of integration G(s1) and N(xl) contain the shape factor lI(xl)<br />

in addition to the'velocity U(xl) and thc Reynolds number R3(xl). If the position<br />

xl coincides with the point. of transition, it, is necessary to require that the encrgy<br />

thickness of the laminar boundnry layer must be equal to that of the turbulent.<br />

boundary lnyer in accordance with eqn. (22.23). On the other hand, the shapc factor<br />

may change it.s value at the point of trnnsition. The numcricnl values of bl~c shapc<br />

fnctor lic in t,hc mngc 1.0 2 11 2 Ils = 0.723.<br />

2,


684 XXII. 'Yhc incon~prcssible Lnrbulont boundary layer<br />

The t,l~cory of tJic origin of turbulence presented in Chap. XVIl leads to the<br />

conelusion, which agrccs with mcasurcmmt,s, that tmnsition from laminar to turbulent~<br />

flow in the boundary Inycr occurs at n place which tics n small distance downstream<br />

from the vclocity rnaximuru of t,lic external stcream. For t,his rcnson, and by<br />

way of approximntion, it is permissi1)lc t,o base thc calculz~tion at the point of transition<br />

on the value that, corresponds t ,~ an cxtcrnal flow with a zero pressure gradient.<br />

According to the definition of II in qn. (22.4) the latter is equal for laminar and<br />

turbulent houndary Iaycrs, namely<br />

If thc boundary laycr is already tdrbulcnt at x = q , it is necessary to employ tho<br />

corresponding local valucs G(zl) and N(xl).<br />

5. Applicntion of the mcthod. The approximate mcthod described in the preceding<br />

paragraphs can bc applicd wit,h ease bccausc only simple integrations are required.<br />

Such dct.ailcd caloulat.ions have been performed for all experimental data (33 sets)<br />

collected in 1543; in particular, using cqn. (22.22), thc calculations yielded the variat.ion<br />

R3(x) of the Reynolds number formed with the energy thickness as well as the<br />

corresponding variation Il(z) of the modified shape factor aftcr eqn. (22.2B)t. In this<br />

manner, thc pract,ical calculations inclutled vcry diverse extcrnal flow rcgimcs and<br />

so covercd a wide range of applications. Figure 22.8 illustrat~es the comparison bctween<br />

theory and mcasurement for an aerofoil in an adverse pressure gradient. Similar<br />

comparisons for ot,hcr meas~iremcnt.~ are shown in Figs. 22.9a, b:. The latter diagram<br />

contains a comparison of calculated and measured valucs of the Iteynolds number<br />

and of t,l~e shape factor for the measuring stlation located furthest downstream.<br />

Deviations from the straight linc const.itut.e a measure of the quality of the approximate<br />

method. The comparison for logR3 contained in Fig. 22.9a is satisfactory,<br />

particularly if account is taken of the fact that excessive demands on the accuracy<br />

of calculat.cd valucs of the Reynolds number arc of no great practical significance.<br />

According to tlicory, the six sets of rneasurcments illustrated in Fig. 22.9b for<br />

which I2 < Ils cxhibit incipient scpamtion. Measurements have confirmed this, arid<br />

Ref. [J 141 cont,ains a more dctailcd discussion of this circumstance. The sets of mea-<br />

surements designated ldent 1500 antl Idcnt 2600 show particularly large dis-<br />

crepnncics hctwxn Lhcory antl measurement. Thc casc Itlent 1500 rcprcscnts a re-<br />

attached boundary laycr bnhind a ledge. It is understandable that thc preceding<br />

method is not quit,e sat,isfactory in this casc as far as the calculation of the Reynolds<br />

number antl of t,hc shnpc factor is conccrncd. Case Idcnt. 2600 rcfcrs to n so-callcd<br />

equilibrium boundary hyer formed uncicr an external stream with U(z) - x-0.255.<br />

Townscnd [IIOa] investigated a similar boundary layer, na.mely one with TJ(x) -<br />

x-0.234. IIc obtained t.he value B = 0.748 for the shape factor which differs consider-<br />

ably from t#hc measured value Ei = 0.823. Thc appyoximate method yields If = 0.731.<br />

At Lhc prcscnt time it is not possible to explain the reason for these discrepancies.<br />

To conclutlc, we wish to draw the reader's at$ention to the fact that the simple<br />

t We have introduced corrcct.iot18 for t.lircc-tli~~~er~niotlal eflccts ill order t,o account for a possible<br />

bouvcrgcncc or divnrgenco of nt.rcntnIincn. Tim correction wns based on t,he methot1 of J.C.<br />

:<br />

Ihttn 1861. Cf. mmnrk on p. 676<br />

'rhc dingrnnis inchtlc t01c crms of axially ~ytnmct~ric flowd discus8ed in See. XXII d 1.<br />

1). 'I'll(: calc:ulntion ol two-climrnsionnl lurbulcrit bounclnry lnyrrs<br />

Fig. 22.8. Turbulent boundary layer on a wing aorofoil in adverso premuro grndient [R4]; cnsc Idcut<br />

2100: a = (z - xl)/(x - sN) where zl = initial lneasuring station (start of measorement), XN =<br />

final measuring station (end of measurement). Memured points by G. B. Schubaucr and 1'. 8.<br />

Klebnnoff. <strong>Theory</strong> - full line - after eqns. (22.22) and (22.26). a) Reynolds n~rn~bcr; I)) uhnpe<br />

fnctor~ Ill* nnd II<br />

Fig. 22.9. Turbulent bouudary layer data taken from 33 sets of mensureruents with diKercnt velo-<br />

city distributions in the free stream; plotted points refer to end station at ZN. Measurements (sub-<br />

script Illms) nftcr [R4]. 'rheory (nub~cript I'h) ns in eqns. (22.22) nnd (22.25). n) hynoltls ru~mber<br />

RB; b) shnpe factor 11<br />

assumption regarding the coefficient CD from cqn. (22.8b) for dissipated work is only<br />

conditionally valid because it describes merely ita variation with the local Rcynolds<br />

number and shape factor. A more accurate calculation would have to include the<br />

effect of the upstream portion of the boundary layer on CD (cf. here the investigation<br />

in [86]).<br />

In cases when the external velocity can be assumcd to be proportha1 to a<br />

power of x, say U(x) - xp with p = const, the application of our method becomes<br />

very simple. Let us assume that the turbulent boundary layer starts at x = 0 with-<br />

out a laminar inlet portion so that the constants of intcgmtion in cqns. (22.22a) a d


(22.26) vi11k11. 'S11r reql~ircrl int,cgrnls can bc writkrn in closed form, and we obt,ain<br />

-<br />

with 1) = 0.162, -- 2(1 4 1)) /?, = 04127, c = 4.0, r = 1 + (3 -+- 28) p and n =<br />

I -1 2 (1 -1- b) p. I'or n givcn vnlr~c of p t h shnpc factor is Il(z) == const,. 'l'hia means<br />

t.hnt, for 11(:1.) - .7:p IVD arc tlcnling will1 n sdf-sirnilnr solrgtion (cquilil~rir~r~~ I,ountlnry<br />

Inyrr). 'I'ho c:nsc p 5 0 rq)rewnI..s n Il:rt plnt.o at zrro incitlcnce wit,11 lJ(:r) = U, =<br />

co11st..<br />

08<br />

0 7<br />

O' O.? dL 0:6 i8 1.;<br />

lheory<br />

0 02 OL 06 08 10<br />

X<br />

Fig. 22.10. Tnrhnlrnt honntlnry - laver . on a bodv<br />

of rrvolution with initially strong prcssnrc tine<br />

end tmnsition to constant prrssnre [R4]; cnac<br />

Sdrnt 4000: ii - (x - XI)/(% - XN), where xl<br />

= initial measuring station (start of meaaure-<br />

rnrnt). ZN = find measuring station (end of<br />

n~cnsurrmcnt ). Measured pointi by Mosrs (case 5)<br />

<strong>Theory</strong> (fnll line).<br />

a) ILynolcls nnrnher R1; b) shape factor Ill2 6. Rc~narks on the behnviour of turLulent boundnry layers in the presence of n pressure<br />

grndirnt. 'Slw applicntinn of the method described in Chap. XXIlb4 to turbulent boundnry layers<br />

lrndn 11s to the cnlc~~lation of the vnrint.ion along the llow of the Reynolds number Ra(z) fornlcti<br />

wit11 tlm energy t,l~ivkneru, fin(%), and of that of the modified shape factor H(z). Adrlitional quantitics<br />

pcrtnining to the bonndnry In.yer cnn be obtnincd hy adding .the re la ti or^^ depicted in Figs.<br />

22.6 and 22.7.<br />

,<br />

I . hr Ilr,ynoltla stressos (lo not change rn~trh dong strna~nli~~rs in rclnl.ivnly short t ~~rb~~le~t<br />

hn~nthry litycrn in 1.11~ ~~rcscn(.c of atFOng p'W8111.C gradicnLq. It. O. Doissler 1261 dc~nonstmte~l<br />

that, t,hc n~snn~pt.ion ofa constant shnaring stress can lead to good agreement betarell ealcr~lat.ion<br />

and ~ncnsnrcmrnt ; Ito also snccccded it1 calculating heat-t.rn118fcr coeflicients for tr~rbul~~lt bollnd.<br />

nry 1:tyrr.s 1261 by tho nsc of the same met.hod.<br />

I<br />

Boundnry layer tl~ickness: When tho vnlucs of II(k) n.rc know11, t,he diagram in Fig. 22.0<br />

yields the reln.tion 111z(a.) = 1ftz[1f(z)l and Ilzn[ll(~)J 111 turn, employing the deAnit.ions given<br />

in eqna. (22.31), c), we ran cnlcnlate the disj~laoen~ent thickness and the motnent11111 thicklless<br />

I). 'I'hr rnlc~tl:rf ion of t.\vo-dimrnnion;II I.nrbnlrnt. hom~tlnry Inyrrs 687<br />

rcspcctively. For cqvilibriuni bowdwy laynr~ for which Ille(z) = eonst nnd Ilm(r) - ro~~st.<br />

we obhin<br />

hl(z) - &(x) - &(x) - z(I-~D)~"+~),<br />

as seen from eqn. (22.281~).<br />

Total drag: 'The form drng of n hody in a &ream consisb of skin frirtio~~ ant1 I~~CSSIIIC tlr:~~.<br />

Tho skin friction is the integral of shearing stresses taken over tho surface of thc body. 1Svon in<br />

cnnna \viIll~w~t ~rpn~~:~.l~in~~ it in nc(:cunary to n01l 1.110 prn.s.viirc flr(~q tm skin frif4ion. 'I'h(- ~ri~il~ of<br />

the 1)rcssurc tlrng lies in the f~wt that thc boundtiry Isycr cxcrh a displncctncnL artit~n OII 1l1o<br />

external utream. 'l'l~c stren~nline of the potential flow are displaced from the contonr of the hody<br />

hy nn amotrnt, eqnnl to t,l~c tlisplncement thickncrrs. This motlifirs sorncwhnt thn prmsrlrr rlistrilmtion<br />

on tlte bwly ~nrfnoc. In contrnst wit.11 poLc:ntial llow (cl'Alcn~bwt's ~~TILIIOX). Iht: rcs~~It.i~(~t<br />

of this prcsnnrc disl.~~ibnLion ~notlilirtl 11y friclion no Irmgrr vnnisl~r~ ~IIIL prvd~~rw n 1)rrswrc drng<br />

which IIIII~~. be added t,o skin friction. The two togeLhcr givo lorw drog. '1'111- c-nlrnlntion ol- for111<br />

drag which is determined by t,lle momcntnm tl~irkncss at t.hc t,rniling edge will ho tlisc~~sscd in<br />

det.ail in Chap. XXV.<br />

Non-sepnrntina boundnry layers: Thc ~~rcnuurc drag remains smnll only if scpamtion mn be<br />

avoitled. 'Shis cnn be nchicvctl by llw I)ropc!r clc~ign of t.he nhnpc of tho 1)otly. 'l'hc srlf-~imilnr<br />

Inminnr flowu dincnss~d in (;thnpn. Vl 1 1 and IX tillbrcl cxnlnplcfl of flows whic:h (10 nol. Irnd to<br />

separation in the prtxence of an adverse prcssnrc gradient. When 1.h~ external flow follows the<br />

power law U(z) - zp, separation occun in lnminar flow for values of ps < --0.09. Thr corrcsponding<br />

value in tr~rt~ulcnt flow is obtnined from cqn. (22.28b) by suhstitdng in it. N = Ns < 0.723.<br />

Thi~ qivw p~ < - 0.27, wherem A.A. Townsend [IlOa] indicntm the valrre ps < - 0.234. This<br />

nignifien tllat a tnrhulcnt honndnry lnyer cnn sustain a considerably lnrgcr adverso prcsaurc<br />

grdicnt. wilht~t, srparnling t,l~nn tlocn n Inmin~w h~ndnry lnycr. Self-nimilnr nnl~~l~ion givf* 11 hint,<br />

on how 1.0 nrr~rngc? 1.110 prr-vxurn dinlribation ill ortlt?r In) n~~skrin 1hc 111r4(wt. ponnilh IIIIVI'~H(! JlrI~HHIIIo<br />

gradient without separation. A pressure dislribution that stark wiLh a large and continues with<br />

n decren.hg adverse pressure gradient generates a thinner boundary laycr and makes it possible<br />

to ~~~stnin n Inrgo t,otnl I)ressnro incrrn~c t.llnn n, uniform gratliont, wonltl. This fact wnn rt~nfirmrd<br />

cxporirnontnlly by G. U. Sc11ul)auor and W. C. Sl~nngor~borg [!I&!] rrnd by B. S. Ft.reLl;,rtl (10.iJ. I\<br />

critical review of different methods of calculating the position ot the point ol' separation is contnined<br />

in [17].<br />

Re-attaching boundary layers: More recent contrilmtions concerning t.lm partic.ulnrly intcresting<br />

me when a separated shear layer re-athchos itnclf to the wall and clcvelops furt,l~er as a<br />

boundary layer in the downstream direction arc rontainctl in the papor 11y 1'. Rr1rtls11:iw ~rncl 1'. Y.<br />

F. Wong 1141 na well na P. Wauschkuhn and V. Vnmntn ltnm 11 171. The tliscussion rclatrs to a<br />

boundary layer which has separated at a backward-facing stcp. The esscntinl dill'crcncc bct\vecn<br />

such a houndary layer and a "normal" boundary layer, for cxamplc on n flnt pla.te or nn aerofoil,<br />

consist8 in the fact that its turbulcnce structnre h~ hcromc st.rong-ly disturbed by the prior<br />

separation. Such a pcrtnrhation in st.ructure n~altcs it very climcult to formulate a proccrJurc for<br />

calculation. P. Wanschltuhn nnd \'. Vnssnta Ram [I 171 report measurements of wall nhcar stress,<br />

mean-velocity disttihntion and Reynolds ~t,ress in the rc-attached laycr and describe romparisons<br />

with uevcral evalunt,ion procedures.<br />

7. Turbulent boundary layem with suction and injection. The possibility of ir~flncncing the<br />

Bow in a boundary lnyer by blowing or snction in of some practicnl iniportnnco. parlicnlnrly with<br />

a view to increasing the maximum lift of aerofoilu. The promd~~ro for cnlculnting laminar boundary<br />

layers with suction was given in Soc. XIV h; tho corresponding mcthotl for a b~rhr~lrnt. ho~~~~tlary<br />

laycr wns discusbed in Scc. XXIa.<br />

A procedure for the calculation of a tnrhulcnt houndary laycr with I~omogenrous<br />

suction<br />

and blowing on a flat plate at zero incidence wna first fortnulatcd by H. Schlichting [!)0]. Expcri-<br />

mental invcstigatione and a comparison between them and theory were discvbed in See. XXIa.<br />

The preceding procedures were extended by W. Pechau [75] and lt. Eppler [32] to inclnde the<br />

ewe of an arbitrary velocity distribution -vo(z) of suction velocity. The rtxulk obtained by<br />

these methods are discussed in [92, 941. They contain further calculations performed with the aid<br />

of this procedure; they illustrate the effect 01' the magnitude and position of the suction zone on<br />

the minimum suction flow required to eliminate sepnrstion on ncrofoils. It turns out that the<br />

optimum arrangement is to concenLrate the auction zone in a narrow region on tho suction side<br />

of the mrofoil and to place it at n short distance behind the noso. This is undcrstnndahlc, beca~~so


688 XXJI. The incon~prcssible t,urbulent boundary lnycr<br />

the Inrgcst local advcrse prcssurc gradicnta occur in that region when the angles of incidence arc<br />

large. The required mir~imuni suction mta, ns described by the suction cocfficicnb co. ,{, are<br />

of the order of 0.002 to 0,004. A. R.wpet [78] performed flight mensure~nonts on wings provided<br />

with suction at the nosc.<br />

AnoI.hcr clli?cl.ivc? mcl~hotl lo incrrrr.qe wrrrin~lo~r li/l<br />

*! )arl,icnlarly in wings with a large flapdcflcct.ion<br />

:~nglc, consists in Ll~c injccliou of :t I.l~in jet of atr of largc vclority closc to the nosc of<br />

the flap, I'ig. 22.11. 'J'his dcvicc inll)arl~ a considamhlc arnonnt of enrrgy to the turbulcnt bounrl.<br />

nry lrtyor and causes it lo adhere lo 1.hc wing. 'Ulc pin in lift nchicvcd by this method can be<br />

esbin~at~tl by comparing t,hc pressnrc distril)utiorm of the flap wing with nnd witl~ot~t ~eparixtion,<br />

rwpecthly. According to J. Willinrns [122], t~l~ceffcotivencssof (.he jet can be judged with reference<br />

to t.lm tlin~rnsionlr~a ~nomcnlnn~ cocfficicnt<br />

wl~cre 11, dcnolcs t.hc vclociby of tShc jet and n rcprcnolta ib witltl~. F. 'l'l~o~itns [log, 1101<br />

~~wfortnod rxlcnsivc nic:murrn~cnt.~ on t,hc rlli:ct.ivc~mn of injcction Tor tlrc incrcnne in the lift<br />

of Ilnp wings. 110 W.ZS RIRO able to formul:rh n procedure which allows us to calculnte t,hc value<br />

of thc motncntnni c~ocflicicnt rcquircd to avoid separation h injcction through a slit into a<br />

turbulent boundary Iaycr. In addition, I?. Thomas [I001 perLrmed detailed measuremente in<br />

Lhc turl~nlcnt 1)ound:rry Inycr I~chind an injection slit. Sirnilnrly, iuvratigations were performed<br />

by P. Cnrrik nnd 15. A. Eichclbrenner[lC,J on t.11~ q~wkion of the rct,urn of a ~epsrakd boundary<br />

Iaycr in a large ildvcrsc presstire gradient throngh t,hc application of a tangential jet.<br />

H. Srhlirht.ing rgl] gnvc n ~hort snmn~nry of irivc~t.igal~ion~ into tho pro1)lcnl of increasing<br />

the n~aximum lift of wings by snit,nl~ly controlling the boundary layer.<br />

If a dilfcrctit gw is injccLcd into :r turbulent I)OIIII~I~~,V I~rycr, wc nrc ngail~ fnccd witell a<br />

Oinnr!y lnyer, .w wns the cwc with laminar flow (Scc. XIVc), in which the concc~~tratiotl varies<br />

throughout tlw flow field. Various physical hypotheses have bcen proyoscd in order to bc in s<br />

position to annlyssc the procrss of injection into a turbnlcnt boundary layer. 11. L. Turcotte [115]<br />

amumcs tlint the proccss of mixing is c~scn1i:rlly complete in the laminar sublayer and derives<br />

in this manner an approxin~ate formula for t,he shcnring atreas at the wall for the case of an inc:on~prenail~lc<br />

Iluirl. The formnln wm extended to include compressible boundary Iaycn; ih form in:<br />

111 this cquntion, the sobacript tu rcfcrs to the wall, thc subscript 0 relaks Lo the ewe without<br />

injection and thc subscript 1 dracribcs tllc frce ~trenn~. Tl~c validity of the preceding equation<br />

haa been confirmd by n~enn~~rclncnta lwrformcd by several authors on plaks and cones at Mach<br />

numbers ranging from 0 to 4.3.<br />

Extensive mcamrementa on the c(fect of the injection of an other gas on the shearing strew<br />

at the wall in boundarv layera formed on conea in wmpresaible flow have been reported upon<br />

by C. C. I'appna and A: I?. Okuno [731.<br />

M. W. Jtnb&n aud C.C. Pappna [UU] propo~cd a mixing-length theory for tho calculation<br />

of the effects of the injection of a foreign gas into a turbulent boundary layer. This waa applied<br />

to the calculation of thc rate of hwit transferred from the wall, and the corresponding results<br />

for the injcction of hclium and hydrogen are shown in Fig. 22.12; they have been plotted along<br />

with experimental results for comparison. The latter show an even larger decrease in heat transfer<br />

mka than predicted by the theory. By contrast, the dcovery factor seems to be affected but<br />

little by the injection of a lighter gtw, in a t>wbuIcnt as w&II aa in a laminar boundary layer.<br />

Expcrin~enb in which a heavy gnn (freon) was blown into a tarbuicnt boundary layer of<br />

air yiclded npproximnlcly idrnticn.1 velocity profiles ns those in which air was discharged, even<br />

though t.lie deosit,.y ratio of the gasos between t,he wall and outer edge of the boundary layer wna<br />

ns hig11 as 4. &x(:ept for t,l~c cnec of an adverse prcwure gmdicnt or of very vigorous blowing,<br />

the phcnomenn rnn Im described quite well with the aid of Prandtl's mixing-lengt,ll theory.<br />

b. Tho cxlcnlntion of two-dimensional turbulent bonndnry ltrycrs<br />

1) without Injection<br />

gain in lit1<br />

"due lo injeclion<br />

separated llow<br />

dl with injeclion<br />

Fig. 22.1 1. Flnt wing wit,h injection thrortgl~ n ulit at thc nose of Lhc 11111) for 1.ho IIII~~OHV ol'i~~~witsing<br />

maximum lift; a) separated flow, without injection; b) adhering flow with injeclion; c) prcsstm<br />

dist,ribution: d) vclocit,y distribution in tho boundary layer(<br />

Fig. 22.12. Heat-transfer rates for a binary bouiidary layer on a flat plnte at zero incidence with<br />

the injection of hydrogen or helium int,o air in a turbulent bonndnry Iaycr, after M. W. ltubcsin<br />

and C. C. Pappna [UU]. Comparison between theory and mennnren1cnt for tho St.anlon number<br />

S = q/el ti1 cpl (T, - T w)<br />

689


690 XXII. Thc iticompre~niblc ti~rbi~lorit boundnry lnycr<br />

8. Bonnclnry lnyers on cnmhered wnlls. Two-dimensional boundary layers on<br />

curved walls have been investigated by 1%. Wilcken [121] (see also A. Retz [4]). If<br />

the wall is concave the faster p~rticles are pressed against it by centdugd forccs and<br />

slower particles are deflected away from it. Thus the process of turbulent mixing<br />

which takes place between faster and slower fluid particlcs is accentuatecl and the<br />

intensity of t~~rhltlence is increased. The rcvcrsc is t,rue of mnvc.z walls in the ncig11bourhoocl<br />

of wliicll the faster particles are forcctl riway from the wall, the slowcr<br />

particles being pressed towards it, and turbulent mixing is impeded. ConsequentJy<br />

with equal pressure gradients, the thicltnws of a turbulent boundary laycr on a<br />

concave wall is greater than, and that on a convex wall is smaller than, the ihiekness<br />

on a flat plate. 11. Schmiclbaucr [!%I cxtcnded Grusehwitz's method to include the<br />

case of convex walls. Further results were provided by G.L. Mellor [lola, 101 b] and<br />

R. N. Meronry and P. ~radshaw [G5a] and 13. R. Ramaprian and 13. G. Shivaprasad<br />

[77a].<br />

c. Turbulent boundary layers on nerofoils: maximuna lift<br />

A very comprcl~ensivc survey of thc prol~lcm of high-lift of ae,rofoils has reccntly<br />

been given by A.M. 0. Smith [101]. In the following, we proposc to dealwith t,hc theoretical<br />

t~qpocts of calc~lat~ing the maximum lift of aerofoils.<br />

It is wall known that t,hc maximum lift of an aerofoil is a.ssot:iat.sd with {.he<br />

separation of the boundary layer on its suction side. 'J'hus the theoretical preclict,ion<br />

of the n~aximurn lift must deal wit.11 the prcssurc di~tribut~ion of an aerofoil section<br />

with partly separated Row and with the int.eraction between this pressure disbribution<br />

and t.he bo~~ntlnry laycr. This prohlcm 11n.s bccn at,t.nclted by K. Jacob [47]; sce also<br />

the summary articlc by G. K. Korbacher [55]. Figure 22.13 refers t.o a. prof le at the<br />

rather large angle of incidence of ac = 10.7", and presents some theoret,ical and experimental<br />

results for the pressure distribution. The pressure distributions (a) and (b)<br />

for the two Reynolds numbers, R = 0.4 x 105 and 4.2 x 105, differ considerably:<br />

for t,he low Reynolds number the flow on t.he suction side of the profile is nearly fully<br />

separated; at t,he higher Reynolds number, the flow is only part,ly separated, S being<br />

the point of separation. 130th pressure dist,ributions are eharact.erized by a rat,her<br />

long stretch of nearly constant pressure on the suction side of t,he aerofoil. In t.he<br />

separated acre in terms of the potential flow theory, these pressure distribut,ions are<br />

calculated by nssun~ing that there exists a region of "dead air" on the suct,ion side<br />

wit,h approximat.cly constant pressure at its boundaries. With a surface singularity<br />

n~ethod such a region can be simulated hy an out,flow region produced by a cerhin<br />

distribution of sources on t.he aft part of the suction side of the profile. R~alizing this,<br />

the main prohlcm now is to determine how the Reynolds number influences separahion.<br />

'l'his is achieved wit>h t,hc aid of boundary-layer theory in the following way:<br />

in t,he potential-flow cnlcr~lnt~ion the 1ocal.ion of the point of sepnrdion is treated as a<br />

free paraniet,cr. TIIS determinat.ion of this parameter is achieved by combining the<br />

cnlc~ilnt.ion of the pressure disl,ribution of thc potential flow with separation wit.11 the<br />

calc~~lation of t.he laminar or turbulent boundar layer generated by this pressure<br />

distribution. An "atlecluatc flow" demands t,hat t I le point of separat,ion of the boundary<br />

laycr must coincicle wit,h the point of' separation of the potential flow with a<br />

tlmd-n.ir region; the rcquirctl rcsult is achieved by iteration. In this way the point of<br />

scpnmt.ion cart be located. The calenln.l.ion bring.9 to hear t.hc influence of the Reynoltls<br />

numlwr, h~cause the lomlinn of the point of sepnrat,ion of n tnrbulent bound-<br />

S - sepnrntlon;<br />

T = trnnsltlon<br />

c. Turl~~ilcnt boitndnry lnynr~ on ncrolniln: mnxinintn lilt 691<br />

Fig. 22.13. Prwure distribution on an<br />

wrofoil in aepnrated flow, after K. Jacob<br />

[47], nt two different Reynolds numbers<br />

R = Vllv<br />

Fig. 22.14. Lift coefficient eL against angle<br />

of incidence a for an nerofoil with a slat.<br />

Thsory by I


002 XXI1. Tho inro~nprc~sil~lo tt~rb~rlent boundary lnycr<br />

ary layer dcpends on the Reynolds number. Figure 22.13 shows that for the pressure<br />

distribution of the profile Go 801 thcre cxists rather good agreement between experi-<br />

ment and the trheory undcr consideration.<br />

The theory was extended to multi-element aerofoil systems with separation [48].<br />

Additional results, especially on the lift, are presented in Fig. 22.14. The diagram<br />

dcmonst,ratcs that, the curve of the lift coefficient versus the angle of incidence Cr,(n),<br />

and especially the maximum lift coefficicnt C[,max, for an aerofoil NACA 64-210<br />

with a slat is considerably improved by tho slat. The agreement betwecn theory and<br />

experiment is quite satisfactory here, too. Finally, Fig. 22.15 shows the dependence<br />

of the maximum lift coefficient, CL,,,,, of the profile NACA 2412 on the Reynolds<br />

number, R. The increase in thc maximum lift coefficicnt with increasing Reynolds<br />

number, which is ohcrved in experiments, is well confirmed by the theory.<br />

Calculations of maximum lift of wings in laminar flow have bcrn performed by<br />

G. 11. Goradia rt, al. [37, 381.<br />

11. Three-dimensional boundary layers<br />

General remarks: The phys~cal nature of a three-dimensional boundary layer is<br />

charact,erized by the fact that the direction of the velocity in the interior of the boundary<br />

layer deviates considerably from that in the outer flow. This is brought about<br />

by a pressure gradient that acts at an angle to the main flow. As a result, there occur<br />

vigorous scconclary motions, cf. Fig. 11.1 in Chap. XI. A good example of such a<br />

flow pntlrrn is rontnir~ccl in thr mmsurrmrnts pcrformcd by ILC. Snrhdcva and J. TI.<br />

Preston [a!)] in thc boundary laycr on a ship's hull.<br />

There exists a summary account describing the calculation of three-dimensional,<br />

incompressible bounciary layers prepared by J.C. Cooke and M. G. Hall [23]; it deals<br />

predominantly with laminar boundary layers. A comprehensive monograph on turbulent<br />

three-dimensional boundary layers was published by J.P. Nash and V.C.<br />

Patel [70]. The analytic calculation of a general case, for example that of the boundary<br />

layers on swept or delta wings, is still very difficult, even though numerous<br />

proposals of such met.hods exist. &re we may mention, for example,-the work of<br />

N.A. Cumpsty and M. R,. Head [24], J. C. Cooke [22], P. Bradshaw [7], L. F. East<br />

[29], 1t. Miclwl ct nl. [FG], and A. Elscnanr and R. van den Berg 1.311 anrl F.M. White<br />

et, :~l. [L 18:1]. 'l'hc prcsrnt st,al;ns of rcscnrch in this ficld was rcvicwcd by Fannelocp<br />

at n symj)osinn~ hcld in Trondhcin~ in 1076 [30a]. In what, follows, we shnll describe<br />

sevcrnl simplcr examples of t,l~rec-dimensional turbulent boundary layers. The state<br />

of the thcorg is, howcvcr, still unsat,isfactmyt.<br />

1. <strong>Boundary</strong> layers on bodies of revolution. C.B. Millikan [67J'was the first to<br />

enlcnlat~ a turbulent boundary laycr on a body of revolution, the method having been<br />

based on thc momentum integral equat,ion. The relevant momentum equation was<br />

given in eqn (I I 39). Using our prcsrnt notatio?, we can write it as<br />

IJrre R(T) tlrnolcs thc radius of the local cross-section of thc hody of revolution.<br />

e,<br />

At the aft portion of n body of revoh~tion the two derivatives, rlN/tl:t: :lnd<br />

dR/dx, become negative. It followsfrorn the precedingequation that thr ~norncnt~urn<br />

tdliclzncss dz(x) increascs and becomcs very Iwgc there. This may orcntc circumstmccs<br />

which nullify thc main assumption of boundary-layer thcory, nxrnrly t,l~at<br />

6, < IE. As a consequence, the calculat,ion near the butk ol t,he body of revolution<br />

may become crronco~s anrl thc posit,ion of the rrgion of scpnration cannot IJC tlctrrmincd<br />

reliably. According to F.M. White [II!)], cquation (22.31) romnins us:~l~lc<br />

when the local Reynolds number satisfies the condition that<br />

U(l) R(2:) > 1000.<br />

v<br />

1'. S. Granville [39] formulated a multiparamcter procedure for tho cnlc~~lntion<br />

of t.urbulcnt boundary layers on rotationnlly symmctric bodies placccl in an asidly<br />

tlir~ct~ctl st,rcam. 'l'hc nlcthod hinges on trlic cnlculat~io~? ol' momcntmm t~l~irkncss and<br />

of a shapc factor and can bc used for the aft portion of the body where t.hr I)onntlnry<br />

layer thickness is of the same order of magniturlc as thc local radius of t.11~ I~otly.<br />

In a manncr similar to that used for two-dimensional I~onntlnry Iayrrs, 'I'I~II(:~ZCIIbrodt<br />

[Ill, 1141 was able to show that t,he use of the encrgy intcgral rquathl leads<br />

to an explicit integral formula for .the calculat,ion of the mcrgy thickness. If a: tlcnot,cs<br />

the current, arc length measured along n meridian, and ]((a) the radius of a, scc.t,ion<br />

normal to tho axis of symmetry, then tho cxt.cnsion of cqn. (22.22n) Tor 1.11~. Itc.y~~oltls<br />

number formed with the energy thickness can now be written<br />

r<br />

The numerical constants b and v' should be taken from eqn. (22.22b) and the constant<br />

of integration is<br />

In the more recent formnlation [114], the equation for the modificd shape /aclor in thc<br />

axially symmetric case contains the function describing thc variation of the body<br />

radius.This is in contrast with the earlier formulation [l 111 according to which the<br />

modified shape factor was the same for bodics of rcvolut,ion and t,wo-tli~t~c~t~sior~al<br />

bodies. The generalized form of eqn. (22.25) is now<br />

whore the influence functions for the radius and cxternal velocity distril)ut.io~~s nrc<br />

~(1) = ~ ( x ~ )<br />

Z<br />

Z<br />

+ I Ill+b U2(l+b) dz; N(x) = N(q) 1 c / IIl-'h lJ2("h)I'GC-' tlz.<br />

2, 21<br />

The constants of integration are<br />

G(x1) = v' [l€(rl) {IE(x1)}'+"U(x1)}'+26 {R3(rl)}1+b];<br />

N(xi) = [U(xi) G(.zi)/I~(xi)lC.<br />

'I'hr nr~mcrical ronstants follow from rqn. (22.2Gb).


J'ig. 22.17. 1,ovnl lift. cwefhienb. c,, nt. vnriot~~ rntlinl sections on n rot,llt.ing propeller nccordirlg<br />

tn IIII('ARIIRIIICIIL~ 1wrfor111cc1 by 11. lli~ntnolskntl~p [44]<br />

Tho diagrams in Fig. 22.10 show a comparison bctwccn tlmwy and mrnsurcrnrnt<br />

in a flow past an axially symmetric body; the diagrams plot the Itrynoltls number<br />

formed with thc cncrgy tl~icloicss and the modificrl shape factor.<br />

Tn order to take into account correct,ions due to thrcc-di~~rc~~sio~ralit~y r:111sr(1 by<br />

the possible convergence or divergence of streamlines, J.C. Itotta [8F] proposcs to<br />

base the calculntion on an clTccLive radius R(z). Numcrioal valuos for R(n) nrr snmrnnrizctl<br />

in [86] for all ~ncasr~rcmolts catalog~~rcl<br />

mrrils 1)y Mi.\\'. \Villmart,h ct xl. 1122~1 nntl A.M.O. Stnit,lr [IOh].<br />

in 1541; comI)nrc Iirrt: t,lic III~~:~,sIII.(~-<br />

2. Bn~tt~clnry lnycrs on rntnting hndiea. 'J'l~t: calt:ul:~t.io~~ ol' I:intin:~t. 1~)111itl:i1.v<br />

layers oti rotating bodies placcd in an axiril strcn~n was clisoussotl in Scr. S 1 c.<br />

The mctl~od of calculation which maltcs usc of ntomrntt~n~ int.rgl;ll t~~n;ltions,<br />

formulated for the meridional ant1 t:irc~~mfcrent.ial tlirrc:tions rcsprc~tivc4y, hs been cxtc~~cletl by R. Trucltenbrotlt 11121 to inclutlo t.hc ~urbulrnt, c.:~sr. IT(: wn.s,<br />

moreover, fortunato to succcctl in giving convcnicnL intcgr:ils li~r the rn.lt~~tI;tt ion ol'<br />

the parameters of thc boundary layer. JCxperimcntnl and furtltcr t11cwrct.ic::l.l i~~vrs(.igntions<br />

into the boundary layer on rotnting strcamlinc botlics wcrc c:nrrirtl ot~t I)y<br />

0. Parr 1741. Jn this casc, tho bountlary laycr grows rajjitlly wit.11 t,lro rot.;~l.iotr<br />

paramctcr 2 = (11 RIU,,,; hcrc (1) tlcnotcs tho nng111w velocity, It t,l~t: I:~,t.grst, r;uIius<br />

of thc body, nntl (1, is tho axial rofrrcnc:~ vcloc:il,y. 'I'lrc t,~~rln~lt!r~l. I~ott~i(l:~ry 1:iyt:r<br />

on a rotating body of revolution placctl ill an axial st.re:ltn can IN: (::dt:~tl:~.lt:~l witl~<br />

the aid of thc system of equations (11.45) to (11.48), in whicl~ thc shr:wit~g strcss<br />

must bc ass~tmcd to vary with the rotat.ion pnr:mct,rr. 'I'hc tlin.gr11.m ill I'ig. 22.16<br />

compares Lhc onlculatctl nntl n~cas~trt:d vnlt~cs ol tho rnomcntr~nr I.l~ic:lit~c:ssrs A,, :111t1<br />

a , as rcportcd by 0. l'nrr [74] for :I cylintlrical botly provitlctl wit.11 n. sp11vric.nI Ilosr.<br />

'L'hc ngrccrncnt is good. 'L'lrc rcgion of tmnsition l'ron~ laminar to Lnrl)ulcnt flow<br />

moves forward as thc rotation paramctcr incrcascs; its position coincitlos with the<br />

point at n~hiclr thc momentum tlrickncsscs incrcnsc al)r~~j)(Jy. Scc also Scc. X1112.<br />

A mctliocl for thc calculntion ol tll~rrr-tli~~~c~tisionnl bo11ntl;~ry I:~yc:rs or1 st.;~t.io-<br />

. ~<br />

rtnry botlics as \vdl as on rotating orics, suc:lr as pro[)cllors or 1)l:rtlcs of rol,;lr.y cornpressors<br />

and turbinw, was inclicatcd by A. Magcr [Fl]; comparat,ivc mcasurcmenb<br />

are contained in ref. [621. H. Himmclskamp [44] carried out mcasurcmcnts<br />

in thc boundary laycr on a rotating airscrcw ant1 tlctcrminctl iooal lilL cocffioic~rb<br />

of t,hc blade from mcasurcmcnts of prcssurc tlisLribuLions. Somc of his rosulbs arc?<br />

sccn reproduced in Fig. 22.17; they arc given in the form of plots of lthc local lift<br />

cocfficicnt., c,, at various radial seclions, in term^ of thc nnglc of irlciclcnce, or.<br />

Corresponding mcasurc~nents on n stntionary bladc placcd in a wind tnnnnl are<br />

also shown for comparison. Figure 22.17 shows that ~narlrr?tlly itrt:rcasctI lift coefliri~~~f,~<br />

arc obt.aincd near the hub, and the dcct can LC trnoctl Lo soparation 1)cing clc1:~yccl<br />

to larger angles of incidence. For cxamplc, the scc:t,ion closcst to the hub has I,<br />

maximum lift coefficient of 3.2 compnrcd with 1.4 on thc stat,ionary blatlc. The<br />

tlisplacemcnt of s~pirat~ion towards larger anglcs of incidcncc is cxplai~rctl by the<br />

appearance of an additional acceleration which acts in thc flow direction ant1 which<br />

is crcatcd by Coriolis forces; it has tl~c samo cffcct as n favonrablc prnssurtr gmtliont.<br />

111 addition, but to a lesser extent, the ccntrifugd forces acting in the bound;rry<br />

layer carried with the blade exert a bcncficial influcncc with rcspcot Lo soparntion.<br />

Ii'luict p,zr~icles in the hountlarg layer are actctl upon by a centrifugal forcc which


is prol)nt~t,iot~nl to the rnclius. Consctl~lcl~tly, loss fluid is transprtctl to each blntfc<br />

from t h contm tAan awry from it and outwarclu, ant1 tl~c bor1ntlnry layer is thinner<br />

t.llnn woultl be I(II~ casc in t~wo-t~itiicnsiotl:rI flow about the same slrape. A. Betz 161<br />

gave some t(t~eorct.icnl argumcnta on l.his point. F. Gutscl~e [42J made tile flow on<br />

a propellor I~lntlc visible: I)y ~~ainting Chc former with a tlyc. Ccl~t~riftlgal forces also<br />

rxcrl :r hr~c itl~lut:ncc on the J)rocc:c%s of 1.mnsiI.ion. I[. M~lcsnlal~n [(j8] sllowctl ill<br />

his t.hc.sis t,l1:itp, otl~cr thit~gs being cqnal, trarlsition occurs or1 a rotatirlg propeller<br />

I)la.tlc at. :t. considcrat)ly lowcr Ltcynolds number than on one wl~icll is stationsr.y.<br />

Fig. 22.18. ConvcrgrnL :tntl clivcrgent<br />

hounclnry Inycrs; ~yrrtmn of<br />

coordinnten;<br />

a) divcrgc~~t~,<br />

a -1 z > 0 ;<br />

11) oonvcrgcnl., a I- :r -:<br />

0 La- ' "n*,<br />

3. (:rcnvcrgc~lt ~ IICI clivcrgeni bo~rrdnry layers. 'rhc methods for tllc calculat,ion<br />

of t,r~r\)t~lcnt 1)ortntlary layrrs wlrith were tlcscribed in Scc. XXlTb have been ext,cntlntl<br />

11y A. l


(308 XXIT. The incomprc~~iblc turbulent bo~rndnr~ layer<br />

[16] Carribre, I'., and Eichelbrenner, E.A.: <strong>Theory</strong> of flow reattachment by a tnngentinl jet<br />

diachargin ngninst a strong adverse prmmre gradient. <strong>Boundary</strong> layer ~ n flow d control<br />

(G. V. l,acknnnn, ed.), Vol. 1, 209-231, 1961.<br />

[17] Cebeci, T., Mosinskis, G. J., and Smith, A.M.O.; Cnlculation of separntion point8 in incompreasiblo<br />

turbulent boundary Inyers. J. Aircr. 9, 618-624 (1972).<br />

[I81 Cebeci, T. and Smith, A.M.O.: A finite-difference solution of the incon~prewible tnrbulent<br />

boundnry layer equntions by an eddy viscosity concept. AFOSR-IIW, Stanford Conference<br />

on Con~pntntion of Turbulent Roundnry I,ayers, Vol. I. 346-355 (1968).<br />

[In] Cebeci, T., and Smith, A.M.O.: A finite-difference method for celculnting comprrssible<br />

lnminnr and turbnlent bonndnry layers. .I. I3nsic Eng., Trans. ASME, Series D, 92,523-535<br />

11 ,-- 9701 ,<br />

[201 Cebrri, T.. and Smith, A.M.O.: Annlyni~ of tnrbnlent bonndnry layers. Amdemir Press,<br />

New York, 1974.<br />

[21] Clauser, P.M.: Turbulent bouudnry layers in adverse prcasnre gradirnk. JAS 21, 91 - 108<br />

1 , lc)fid\ * ., ., .<br />

[21a] clnuser, F.N.: The tnrhulnnt honndarp layer. Adv. Appl. Mech. 4. 1-51 (106.5).<br />

[221 Cooke, J.C.: <strong>Boundary</strong> layers over infinite yawed wings. Aero. Quart. 11,333-347 (1960).<br />

[231 Cooke, J.C., and Hnll, M.G.: Ronndnry lnyer in thrce tlimcnsions. Progmss in Acronauticel<br />

Sciencca 2, 222-282 (1062).<br />

[241 Cumpsty, N. A., and Head, M. R.: The calcr~lation of t.hree-dimensional turbulent boundary<br />

layers. Part I: Flow over the rear of an infinite sweptwing.Aero. Qunrt. 18,55-84(1067).<br />

Part 11: Attachment-line flow on an inlinito swept wing. Aero. Quart. 18, 150-164 (1967).<br />

Part 111: Comparison of attachment-line calcnlntions with experiment. Aero. Quart. 20,<br />

99-113 (1969). Part IV: Comparison of nienwrementa with cnlcr~lationa on the rear of a<br />

swept wing. Aero. Quart. 21, 121 - 132 (1970).<br />

[251 Deimler, 1t.G.: Evolution of n n~oticrately short turb~~lent honndnry lnyer in a sovere<br />

prcssurc grndient. JFM 64, 763-774 (1974).<br />

[26] Deisalcr, R. G.: Evolnt.ion of tlic hrnt t.rn~ml'cr and flow in moderately short turbulent bounclary<br />

layers in severe preasurc grndienk. J. Heat and Mn~s Transfer 17, 1079-1085 (1974).<br />

[271 von Ilwnhoff, A. R., and Tctorvin, N.: I)ot.crn~innt.ion of gonornl rclntio~~rr lor tho I~cliavior<br />

of turbulent boundary layers. NACA Ihp. 772 (1943%).<br />

[28] Donch, F.: Divergcnte und konvcrgantc Stromungcn mit kleinen ~ffn~rn~swinkcln. Dim.<br />

Gottingcn 1925. Porschungsnrl~eiten VDI No. 292 (1926).<br />

1293 Emt, L.F.: Mensurcmenta of thc threc-dimcn~ional incon~pressible turbulent boundary<br />

laycr on tho aurfncc of a slcndcr tleltn wing by the leading cdgc vortex. ARC RM 3768 (1973).<br />

[301 Eaat, L.P., and Hoxey, 1t.P.: Low-sprml three-dimensional turbulent bonndary lnyer dntn,<br />

Part 1. RAE Techn. Rep. 60041 (1969).<br />

[Ron] E&, I.. F. (cd.): Con~put.nt,ion of thrce-tlimcnsionnl honndary Inyers. Symposi~~n~ 14hromech<br />

60. 'I'ronrlheim, 1!)75. FP,\ TN AlC 1211 (1975). Sec article by Fnnncliip, T.K.. and<br />

Krng~tntl. P.A.: Thrcc-dimensionnl t.nrbulrnt houndnry lnyers in ex'ternnl Ilo~vu. Also JPM<br />

71, 815--826 (1975).<br />

[31] Elsennnr, A,, vnn den llrrg. B., nnd I,inrlhout, J.F.P.: Three-dimensional sepnrat,ion of an<br />

incompresnible turbulcnt boundnry layer on nn infinite swept wing. AGARD Collf. Proc. No.<br />

168, Flow S~pnrnt~ion, 34- 1 to 34- 15 (1975).<br />

[32] Eppler, R.: I'raktische Barecl~nung lnminnrer und turbulenter Absnuge-Orenzschiclitc~~.<br />

1ng.-Arch. 32, 221 -245 (1963).<br />

[33] Pornholz, H. N.: Hnlbetnpirischc Gcsotze znr Berechnnng turbulenter Grenzscl~icht,en nach<br />

dcr Mct,l~otlo dcr I~~l,rgrnlbcdit~g~~ngcn. In Arch. 33, 984-305 (1964).<br />

[34] Prrnholz, 1I.H.: l~xpcrimcnlcllc 7Jrl(crsttcf;ng cinor inkornpreesiblcn Lurbulcntrn Grenzschicht<br />

n~it Wandrcibong nnhe Null in einem liingsnngecrtromten Kreiszylinder. ZFW 16,<br />

401 -406 (l9G8).<br />

[35] Garner, H.C.: 'l'hc clcvclopmcnt of tnrhnlcnt boundnry layers. ARC RM 2133 (1944).<br />

[36] Gcrstcn, It.: Corner interferrncc cn'eots. AGARD~ltep. No. 209 (1959).<br />

[37] Gorntlia, S.H., and Colwrll, G.T.: Annlysis of Ingh-lift, wing systems. Aero. Quart. 26,<br />

88-108 i1!)75L ~,<br />

[3$] Goradin, S. [I., nnd J,yman, V.: Tmninnr stall prrdiction and cstimntlon of CL J. Aircr.<br />

. 11, 528-53li (l!)74).<br />

[39l Grnnvillr. P.S.: Similnrity law rntrninn~ent method for thick nxinymmetrir turbulent<br />

bounrlnry lnyrru in prcssurr ~rntlirntn. David 'hylor Naval Ship Resenrch nnd 1)cvclopm~nl<br />

('rnlrr. Ilrlh~ndn. MI). HP~. No. 4525 (1975).<br />

[40] Gruechwitz, E.: Die turbulente Reibung~lchicht in ehoner Stromung bei Druckabfall und<br />

Druckanetieg. Tng.-Arch. 2, 321-346 (1931); summary in ZFW 23, 308 (1932).<br />

[411 . - Gruschwitz, E.: Turbnlente Reibungnschichtcn - mit Sokondiiratr6mungen. 1ng.-Arch. - 6,<br />

355-365 (1935).<br />

[42] Gutache, F.: Verauehe an umlaufcndnn Pliigolschnitten mit nngorisscner Shriimnng. .lb.<br />

Schiffbentechn. &a. 41, 188-226 (1940).<br />

[43] Head, M.R.: Entrainment in the turbulent boundnry layer. ARC RM 31.52 (1960).<br />

[44] Himmelsknmp, H.: Profilutitersuchungen an einem nmlnufendcn Propeller. Dies. Giittingen<br />

1945. Max-Planck-Inat. fiir Stromungsforsclmng, Gottingen, Rep. No. 2 (1950).<br />

[45] Hochschiltl. H.: Versuche iiber Stromungsvorgnnge in erweiterten und vercngton Kaniilen.<br />

Forschungsarbeiten VDI No. 114 (1910).<br />

1461 - . Hornnna, H. G., and Joubert, P.N.: Thc mcnn vclocitv - - profilc in thrce-dirncnnionnl t.urbulent<br />

bo&clary layers. JFM 15, 368-384 (1963).<br />

1471 Jacob, K.: Berechnnng der ahgelosten inkompressibleti Stronmng nnl Trngfliigclprolilc urtd<br />

Bcstimrnung des maximalen Auftriebs. ZFW 17, 221-230 (1969).<br />

[48] Jacob, K., and Steinbach, D.: A mcthod for prediction of lift for multi-elemcnt airfoil<br />

systems wkh separation. AGARD CP 143, V/STOL-Acrodynamica, 12-1 to 12- 16 (1974).<br />

[40] Johnston, J.P.: On tho thrco-clit~~c~~aionnl tnrbulcnt bonnclnry lnyer gonornted by secondary<br />

flow. Trans. ASME, Ser. D, J. 13wic lhg. 82, 233--248 (1000).<br />

[50] Johnston, J.P.: The turbulent boundary layer at a plane of syn~metry in n thrcc-dimensional<br />

flow. Trans. ASME, Ser. D, J. Bnsic Eng. 82, 622-628 (IDGO).<br />

[5l] Johnston, J.P.: Meaaurementa in a threo-dimensional tnrbulent boundnry lnyor incluccd<br />

by a forward facing step. JPM 42, 823-844 (1970<br />

[52] Johnston. ,J. P.. and Wheeler. A. J. : An uessment oiihree-dimensional turbnlcnt bo~~lldnry<br />

lnyer prodiction tnothoda. Trans. ASME, Ser. I, J. Fluids Eng. 9,5, 415-421 (1!)73).<br />

[RO] Kohl, A.: Untorsuchungct~ iil~or konvcrgcnta I I I tlivcrgct~Lo<br />

~ t.nrb~~lonl.o It~*il~~ll~~u~r.l~ii.l<br />

Diw. Gottingen 1942; 1ng.-Arch. 13, 293-320 (1943<br />

[N] Xliiie. 8.5.. Morkovin. M.V., Sonan, 6.. Cockrell, b.J., Colca, D.B.. and Hirsl. E.A.<br />

(ccla.): Proc. APOSR-1FP-Stanford Conforonce 1968. Cotnlmt,ntion of t,nrhnlrnt bountlnry<br />

Inycrs, Vol. I nncl 11. Stnnforcl Univ. I'rwm, lO(l9.<br />

[55] Korbncher, (:.I


lf$8] Mucsm:tnn, 11.: Z~~snrntncnhnng dcr Strii11111ngaeige11scI111ft~e11 dcs IAmlrndes eiues ,\xialgcblascs<br />

mit denen cines 15inzclflugels. Diss. Braunsch\vcig 1958; ZFW 6, 345-302 (1958).<br />

[on] Nnnh, J.F.: The calculation of three-ditnonsionn.I t.urbnlcnt boundary laycrs in incornprcsslble<br />

flow. JI'M 37, 625- -242 (1969).<br />

[70] N:rsh,. ,J. I?., nnd I'ald, V.C.: 'I'llrec-dir~le~~sio~~al turbuleut boundary Inyers. S. 13.C. 'rechnicnl<br />

llooks (Scicnt.iRo & 1311siness Consultante, Inc., At,lanta, Georgia), 1!)72.<br />

1711 Nikurndse, J.: Untersuchungen iiber die Stromungen des Wnsscrs in konvergenten und.<br />

divorgent,en Iianalen. Forschungsarbeilar~ V.DI No. 289 (1929).<br />

[72] Orzag, S.A., and I~rneli, M.: Nurnerirnl sin~ulation of viscous incotnprcssihle flows. Ann.<br />

Rev. Fluid Mech. 6, 281--318 (1974).<br />

[73] Pappns, C.C., and Okuno, A. F.: I\.lens~lrmcnts of skin friction of the compressible t,t~rl~nlrnL<br />

bountlnry Inyer on a ronc with forcign g:w iujcction. JASS 27, 3321 -331 (I!)(;()).<br />

[741 I'nrr, 0. : Untcr~url~ungcn dcr drcitlirncnsionalrn Gmnzscl~icl~t an rot,icrentle~~ Drel~kiirperl~<br />

bri nxi~ler Anst,riimung. l)iss. 13raunsch\vcig 1902; 1ng.-Arch. 32, J93--413 (1903).<br />

17.51 I'ecl~au, W.: Nin Niil~crun~sverfnhrcn zrlr 1Zerechn11n~ dcr ehenen ru~d rotntionnsvrn~~~etriscllcn<br />

t,urbrrlentcn Grenzs~hicht mit beliel~igcr ~bs,&pn~ oder Ausblns~lng. .fb. \VGL<br />

1958, 82- V2 (1959).<br />

(761 I'olzin, .J.: Striin~~~ngs~~ntm~cl~~~~~gcr~<br />

an cinem ebenen Diffuser. 111g.-Arch. 11, 001 -- 385<br />

(l!)40).<br />

1771 i'rete&, ,I.: Zur thcorctischcn I3crenhr11111g dcs I'rofilwitlcntnt~tles. Jb. (It.. I~~ftfnhrt,forschune<br />

I. 01-01 (1938).<br />

[77a] ~nrnnprinr~, B.lt., and Sl~ivaprasad, 1%. G.: Menn llow mcasnrcrnenb in t~~rhulcnt houndnry<br />

I:t.yers : h ~ n~itll~ g curved s~~rfnccs. A[AA J. 15, 189--1!)0 (1!)77).<br />

[78] Rmpct,, A,, Cornish, d.,J., and Grynnt, (?.I).: Delay of the stdl by suction t.hrough distributed<br />

perforations. Aero. Eng. Rev. 11, 0, 52-00 (1952).<br />

1791 Reynolds, W.C.: A morphology of thc prediction n~cthodo (of turbulc~~t I)oundary layers).<br />

Article in [A41 Vol. I, pp. 1 - 15 (1969).<br />

[80] Ilcynolds, \V.C.: Rccent advnuce*r in t,llc computation of t.orIndent Row. Advances in<br />

Clicmirnl Icnginrering 8, 1!)3--240 (1974), cd. by T.B. Brcw ct al., Acatlen~ic Press.<br />

I ] y n o l l \ : omputtion of 11r011lnt OV. Ann. v I l i c l . 9, I 204 (1!170).<br />

[82] R.ott,n, J.: Hcitmg zur 13ererhnung der turbulonbn Grcnzschicht~cn. Ing.-Arch. 10, :$I -41<br />

(1!)5I) nnrl Max-l'ln~~clz-IIIS~.. fiir St,rii~i~i~ngsfors(:I~~~ng (:iiLt,ingcn Itrp. No. l (1950).<br />

[83] JEotCa, J.: Scl~~~bspnnn~~~~gsverteil~~~~g<br />

und Encrgiediwipation bei turhr~ler~bn Grenzscl~icl~tcn.<br />

1ng.-Arch. 20, 1%-207 (19.52).<br />

[84] Rot,t~, J.: Nilheru~~asvrrfnl~rc~~ zor Uerechnuna turbulcnter Grenzschiclrten unter Benutzung<br />

(leu ICncrgi~safxes. Mr~~-l'litnek-ln~t. fiir ~t.rij~r~~~~~~sforsel~~~ng<br />

(:iittingell Itep, No. 8<br />

(1953).<br />

[05] itolti. .J.: 'J'urbulcnt boundary laycrs in incotnprrssible flow. Progress in Aero. Sci. 2,l-219<br />

(1!)f12). ,- ,. cd. IIV ., A. k'crri. I). Kiichcmann and L.H. G. Strrno. , Pernnmon u Press. Oxford. l!J02.<br />

ltot,t,a, ,I.: ~cr~lcichcn~lc I3ereolinungen von t,urbulent.en Grenzschicl~ten mii verscltiedenen<br />

Dissil)nt~io~~sgcsetzc~~. 111g.-Arch. 38, 212 -222 (IVO!)).<br />

ltott.~, J.: 'l'urbulentc Striimungcn. Stuttgart, 1972.<br />

ltubcsin, M. \V., nnd Pnppn8, C.C.: Annlysis of Ll~c turbulent boundary-lnyer cl~arnctcristics<br />

on a lht late a.it,l~ tlintribut.ccl light,-gns injcction. NACA TN 4149 (11158).<br />

Ituhin, S. I:.: IIICOIII~~CSS~~I~C flow dong n corner. JPM 26, 97--- 110 (I!)C,Ii).<br />

SnchJcv:~, It. C., and I'rrst.on, J. If.: Investignt,ion of turbulent boundnry layers on a ship<br />

moclcl. S~:l~ill'sbrrh~~ik 23, 1 --45 (1!176).<br />

Srhlirl~ting, 1-1.: Die C.mnzschicl~t an clcr ehcnen Platto init Absaugung uud A~rshlxsen.<br />

1,11ftfaI1rt,f~)rscl1111g 1.9, 2!)3-301 (1042).<br />

Srhlicht.ing, It.: 15inigc neucrc ICrgeh~~issc iiber Gron7.~cl1iol1tbeeinfl11ss1111g. Proc. First Int.<br />

Congr. /\c?ro. Sci. hlndritl; Atlv. in Acro. Sci. It, 503-58fi, Pcrgnmon Press, I,ondon, 1959.<br />

Srl~lirhting, 11.. nnrl Pcrl~nu, W.: A~~ft,ricbserI~ijl~r~~~g von 'Vragfliigeln tll~rcli kontinuierlich<br />

vcrLriItc /\hs~tugung. ZIPW 7, 113.- 1 I!) (1!)5!)).<br />

Srl~lirht.il~g, H.: 'I'l~ree-tli~ncnxionnl hountlnry lnycr/flow. Intern. Assoc:. Ily~lmulir Iteswrcl~,<br />

IXth (hngr., I~~~l~rovnik, l2(?2--- l2!)0, (I!)(il).<br />

Sri~Iichting. II.: Acrotlynntnisclrcr ~~roI~Ic~nc drs IIiic~I~ntn.r~ft.rieI)~~x. I,cctore at '1'11ird ~nt.<br />

Congr. Arro. Sci. (ICAS) Stocltlioln~, Sweden, 1902; ZI'W 13. I--14ql9G5).<br />

Sd~lirhling. 11.: 15inige llcucrc ICrgcbnissc nus der Acrodynnmilt rlrs Trngfliigcls (Tenth<br />

I'mndtl hlrnwrinl I,rrt,~~rc? I!l(i(i). .Jh. W(:l,lt 1966, 11 --32 (1907)<br />

ary layer. N,lCA Ihp. IW) (1951).<br />

[!Is] SCIIIII);LIIC~, (:. 13.. a d Spnngcnherg. W.O.: Icorcctl !nixing in I)oun(l;u.y I:~yrrs. .ll'Rl 8,<br />

[104n] Smith, A.M.O.: St.rat.fortl's turlmlcnt srp;trntion rritmion for axially ayn1111(4ri(. IIow.<br />

%AMP 28, !I28 - 938 (1977).<br />

(l!)54).<br />

[I071 Sznblenski, W.: Turhulcnte Striimungcn in tlivergcntcn Irr~~ss~~l~i~~l~lsl.rii<br />

gen mit Druckanstieg. 111g.-Arch. 23, 2!)5--301; (1!)55).<br />

[10!)] 'rl~o~~lnrt, F.: Untersucl~ungcn iihcr dic ISrhiihung flea Aultriebcs von 'l'rnglliigoln ~uit~t.i:Is<br />

C~rcnzscl~icl~tI~cai~~fl~~ss~~~~~<br />

thrcl~ Ausl~l:rnc~~. I)iss. I3rn111mol:i I ! ; I 0, 4 li5<br />

( I!)Kq.<br />

[I 101 Thomas, F.: Untersuchungcn iiber die Grcnzsrlricht an einer \V:~nrl sl~ro1n:~l1\r.iirt.4 v011 ri~~cm<br />

Ar~sblnsspnlt. Abhnntll. k~iss. Gcs. Urnunsrh\vrig 15, I - 17 (l!)Iif).<br />

[LlOn] Townsrntl, A. A,: The tlevclop~ncnt of t~url)~llont I)ountlnry I:iycrs \vit.ll nrgligil~lc wnll<br />

strcs~. ,J IW 8, l4:$--. I55 (l!)GO).<br />

[I I I] Truc~kenl)rotlt, 142.: Ein Qr~:ttlrntnrvc~rf~tl~w~~ zur Ilcrrcl~nung dcr litn~innrcn und l.~~rl~ult:~~tcu<br />

I~eihrtngnscl~irl~t. hri cbcncr und rotntionsnym~~~c.Lrisc!li~~r Sl.riinrung. Ing.-Arrli. 20, 41 1 - Z'L8<br />

(1!)52).<br />

[I 121 l'ruc*ltenhrodt, 15.: Ein Q~~actmt~~rvcrfnl~rcn zur IJrrccl~n~~ng tlrr I~c:iI)~~ngmc~l~irI~t, nn :~xi;xl<br />

an~estriitnte~~ rotierenclrn I)rehkiir~crn. hg.-Arch. 22, 21 -35 (l!)54).<br />

[I131 'I'ruckcnl)rodt. E.: St.riir~~r~~~gsl~~c:(.~~iIz. Springer. I%orli~~/lltitl~:lI)crg/N(*\~~ York, I!t(iR.<br />

[I 141 Trurkcubrodt, E.: Neucre ICrkcnntnissc iibcr die Bcrcc:l~nung von Slrii~~~rr~~gngrc~~~xsc.l~ir:l~l~c<br />

rnittels cinfacl~cr Q~~ntlrnt~urformel~~. Part I : Ing.-Arrh. 43, !) 25 (I 973); l':~rt, I I : lng..<br />

Arch. 43, 130 - 144 (1!)74).<br />

[I151 Turcottc, I). I,.: A sublayer tllcory for fluid injcction int.o 1.lw incon~p~rssil)~~ t,~~rl)ul~wt,<br />

I)ountl:wy It~yrr. .JASS 27, 075078 (I9(;0).<br />

(1 161 Wdz, A.: SLriin~ungs- und 'Vr~~~l~cr:tt,~~rgr~~~~zsrl~irI~tt~~~.<br />

I~IIII, 1


Turbulent houtldary layers in compres~ible flow t<br />

n. Grncrnl rcmnrks<br />

It has been domonstfrnt.ccl in Src. XTTTa tht tho presenco ot'ltigl~ velocities in<br />

tho I~onntlary In,ycr gives riso to sii(:h 1qc tcmpcratnre tlifi'crcnccs tht it becomes<br />

ncccssary to f:&c into account thc elT'cct of temporatwe on the properties of tlic fluid<br />

in addition tm that of tlic clinngcs in its volume. Beyond this, it is found that the<br />

transfer of hcat plays an esscnt.i:rl part in the bchaviour of a compressil~le bountlary<br />

hycr; its presence leads to the appcxm.nce of a strong interaction bct,wccn the velocity<br />

ficlrl arid the t~cnipcmt~~rc field:.<br />

I. Turbulent hcat transfer. When :I liquid or a gas of non-uniform trmptraturc<br />

is caused to move tnrl)ulcntly, it is found that the tmrbulent mixing motion creates<br />

in it tsemporaturo fluctuations in :ctltlit,ion to thc more familiar vclocit,y Il~rct~uations.<br />

In analogy wit,li rqn. (18.1 ) for v~locity flt~ctnations, we may r~presrnt the fliictuating<br />

tcnipcmture<br />

T=T+T' (23.1)<br />

in tlie form of the slim of a temporal average, 7', antl a pure fluc:tuat.ion, I". These<br />

fluctuations givc rise to a supplementary heat flux which is analogous to the flux<br />

of momentum evolved by the velocity fluctuations. In order to show this more clearly,<br />

we assume, as we did earlier in Sec. XVllIb, that throngh a surface element, dA,<br />

whose normal points in the x-direction, there Bows a mass of fluid dA eu dl during<br />

timc dl. The cnthalpy of this mass per unit volume is e cp T, and tho convective<br />

flux in the x-dircction has a value dQx = dA e u cp T. If we now introduce the expression<br />

for u from eqn. (18.1) and that for T from eqn. (23.1) and form the tempornl<br />

average of the heat flux, we shall obtain<br />

It is secn that tho presence of vclocity and temperature flr~ct~uations generates the<br />

-<br />

supplementary heat flux rlA e c, u' I" in the x-direction. Corresponding expressions<br />

are obtained for the supplementary fliixes of hdat in the directions y and z. We<br />

-.<br />

t I km indebted to Dr. J.C. Rottn for the text of this chapter which is new.<br />

: A comprehensive aummory of the theory of turbulent boundary layers in compressible flows<br />

is given in the book of S.S. Kutateladze and A. I. Leont'ev [SO].<br />

a. Grnrrnl rcrnnrks 703<br />

concludc, therefore, that the three components of thc additional heat flux (q~iant~ity<br />

of heat per unit arca and timc) arc:<br />

q; = e c , , m ; qyl =ec,,v(rllr; qi =ecp?OI[I1). (28.2)<br />

It has bccn assumed llcrc that there exist.s a statistical corrclntion bctwcrn tltc<br />

velocity and tcmpernturc fluctualions. The existcncc of such a correl~itiori in the<br />

presence ofagratlicnt dT/tlyof t,he mean tcnipcratrtrc can bc den~onst~ratctl in - the satno<br />

way as that usetl earlier to tlcrnonslrate the cxistcncc of the corrcl:~t.ion IL' v'. 'l'llc<br />

:~rg~~rnrnt atlvancctl in t.he last paragrnpli of Scc. XVIII 11 rct.airts its forc:o if is<br />

subst,itutctl for 12 antl 7" for I*'. In sue11 circurnst:~nccs 1.hcrc will :~riso a corrclnt.ion<br />

v"l". 1t follows fi~rt.ltcr from this :~rgntncnt. that, t,lie sirnnlI.nncons esist.cncr of t,lic?<br />

gmdicnts ch;/tly and dT/tly must impose a strong corrclntion betwxn TL' i~n~l 'I".<br />

%'his conclusion has I,ccn confirmed by mcasurcments with hot-wire ancmomctcrs<br />

in notnprcssil,lo [47] nnd inc!ornprcusil~l~ hot~n(lary Iay~rs forrnctl on n I~c~:tt.cvl wr~ll<br />

141, 421. According to rneasurcmcnts pcrforrnctl by A. I,. IZistlcr 1471. the c:orrclalion<br />

coefficient. - -.<br />

u' T'<br />

-. .- -- - . - . -<br />

i* f?<br />

2. The frtndnnirntnl cql~aliona for comprrnsibic flow. 'I'crnpc?r:~t~lirc fluc.bttnl.ions<br />

togclltcr with I.ho prcssurc Ilnetnnt.ions mcnl,io~lctl c~~rlicr in SCC. I\: VI I I 1) 11rotI11t'(?<br />

tlcnsity flnctuat,ions. lror this reason it is assutnctl that the tlcnsity<br />

e=@+e'<br />

(23.3)<br />

is also equ:ll to the sum of a tirnc-avcmgc, $. and a tlcr~sil~y flt~ctunt,ioli, p'. The<br />

fluctuations in tcmpcmturc, pressure, and density arc rcl:tt,otl throiigll thc ccl~rnl,iort<br />

of state of the gas, eqn. (12.20). When the gns is trcatd as pcrfcct., and wlicn t,hr<br />

fluctuations are small, we may put<br />

to a first approximation. In addition to thc turbulent transfcr of heat,, thc presence<br />

of density fluctuations constitutes tho second important ncw pltcnomerlot~ which<br />

occurs in compressible, tr~rbulent st.rcanls. Evidently their prcscncc may not bc<br />

ncglcclctl when cxprcssions for tho tensor of nppnrent strcsscs (SW.. X.Vlllc) is<br />

derived. Formally, when eqn. (23.3) is tnkcn into accorlrlt, cqns. (18.5) n~t~sl I I rc- ~<br />

placed by tlie following additional terms due to turbulctlce<br />

--<br />

Here e'u', e' v', and e' play the part of tho components of a turbulent flux of


70-t XX I1 I. 'Ihrbulcnt bonrwlnry lnycrs in comprcwiblc flow<br />

mass in the thx directions: z, y, z. On averaging, the equation of continuity for a<br />

c~omprcssible strewn, cqn. (3.30), leads to<br />

1bcgn.rcling tho clensity flnctuat.ions, it is possible to say at first that p'/@ is hanlly<br />

likely 10 exccctl u'/S. Sinco, now, u'/d < 1, it appears possible to neglect the last<br />

tcrtn in caoll of cqns. (23.6) with respect to the first. Further simplifications rrsult<br />

when aI.l~(:nt,iot~ is confined to bountlary layers in which d & 12. .I. C. Rottn [SO]<br />

clc:~nor~str:~l.ccI l.l~:rt, in such cnscs if, is possiblo altogct,llor to eliminate thc tlcnsity<br />

Illlct~~ations from t,hc cc(nnt,io'ns for boundary layers if, as is customary, tho nornial<br />

st,rosses tllnmsclvrs arc ncglcctctl. First we notice that 6 < ~i in the eqlmt,ion<br />

for t',, in (23.5), so that only two terms need be retained. Purthcrrnore, since<br />

r?p/(7r < ae7/a!/, thc contitluit,y equation (23.G), written for a t)onntlnry layer<br />

which is two-tlimcnsior~d on t,hc average, aeqr~ircs the form<br />

'l'l~c bountlary-layer equation i.9 clrrivecl from eqn. (12.50b) in that cqn. (12.50n),<br />

mult,iplictl wit,l~ u, is adtlcd, with eqns. (18.1) nntl (23.3) s111~sLiLutccI ; thc ro~ult is<br />

thcn averaged in nccortlanco with cqn. (18.4). When the above-mcntionecl t,ertns arc<br />

neglnct.ctl, tho following, final form for the boundary-lnycr equation is ol)t,ninetl:<br />

It is nol.cd that in tyns. (23.Ga) and (23.7) the tlensity fluctnat.iot~ appears only in<br />

the form of fl adtlctl to @ 6. It is, therefore, convenicr~t to re-introduce the original<br />

- -<br />

expression fo; t.ho mass IIIIX p v -;. 17 -1- p' v' in the y-direction, ancl to tlcfine the<br />

tfurl~l~lnnt,, appnrcnt. strc:ss as<br />

In any cam, the exact value of tho mean velocity component at right angles to the<br />

wall, 17, remains untlet,crnmincd, boing of little interest anyway. The energy equat.ion<br />

(12.19) can ljc: treatctl in like manner. Introducing the turbulent heat flux<br />

we obtain tht: following set, of equations which describe the processes in compressible,<br />

t~rrbolcnt, bour!tlary layers:<br />

Ilere, (.he t,erm ~rcpresents the mean valuo of the (lissip:~t ion, ancl for it,, I hc following<br />

npproximat,iori may bc employed:<br />

, @ = ( p<br />

ail<br />

-- -1- rt )<br />

The set must. t)c nugmcntctl by t.hc a.pproxirnato form of the rqn:rt,ion of st,nl,c for<br />

mean values :<br />

- - -<br />

P"PR?'. (ZI.!))<br />

Tho prccccling syst,crn of cquntior~s for co~npressil)lo, l~rrrl)l~lcnt l)o~lntl;~ry I:~.yc!m rcplnccs<br />

crpnt.ions (1 2.6Oa) to (1 2.ROtl) liw corrcspontlitlg I:~n~in:~r flow. 'l'l~c I)OIII~~~:II~<br />

contlitions rcmn.in 11nc11:rngctl (cf. Chap. XII).<br />

In order 1.0 explore the tlchils of t.rnl~nlcnt motion in comprt?ssiblc mctlin, it, is<br />

necessary to untlert,akc tncasuremcnts with hot, wires. 'l'his is matle cliffic~rlt. 0~1 thr<br />

ncctl to unro~lplc 1.11~ c:fTcrt of Lcmpc:rat,urc ant1 vcloc:it,y Ill~ctnn.l~ions \vit.l~in ;I si~~glr<br />

signal. 'L'hc problems which :wise in this way form f.hc subject of tho pl11)lic.n.t.ions<br />

[49, 651 by I,. S. G. Kovns~nny and M. V. Morkovin, rcspc:cl,ivcly. 1,cavirrg n1)art the<br />

appe~rnncc of density :rnd temperature flr1ct,r1:~t,ions, it is found thatf 1.11~ flow rrmnir~s,<br />

in its gcnar:d oublinc, tho same :IS in :LII inc:oml)rc~ssil)le Il~~itl. Ilowc~vc:r, :IS I,IIv hl:rc.h<br />

nnml)or is incm:~sctl, the volooity Iluc:tu:~Liot~s loso ill iill,t:tlsit.y, :I.$ ~lc!~r~o~~sl,r:tl,~:(I I)y<br />

Lhn oxpc:rim~~n(,n.I rrs11ll.s tlrtc! 1.0 A. I,. IZistlrr 1471 : LII~~ SIIOWII ill Icig. 23. I . '1'11t- t*lli~4~<br />

of tlcnsitv fluctnat,ions which go bcyoncl those inc:lwlrcl in ccltls. (23.8:~) to (23.8~)<br />

Fig. 23.1. Distribution of turbulent vclocity<br />

flnct,nntionn in tire houndnry Inycr<br />

on n flat pink placed st, zero incidence in<br />

a sulvxsonic strcnrn. Monsorc~nc~~b clnr tx,<br />

A. I,. Itiatlcr [47J nntl F. S. Kle11nnoR [48]<br />

In ortler to render the system of cqnntio~~s (23.8;1.) to (23.8tl) more :~mctl:~l)lr<br />

to practical calcnlnt.ions, it is possible, as was (lone in Ch:rp. X [X, to iritrothco i1ll.o<br />

it empirical ass~irnptiorls for momentturn and heat. t,mnsport. lCcluat,iorl (19. I) for thr<br />

app~rent shearing stress t, = t',, is usnnlly taken over ul~changcd. As far ns the Lnrbulent<br />

1ica.t flux is conccrnetl, it is custon~ary to givc it a f rm rc~ninisccr~t of Fourier's<br />

law of ther~nal conduction, cqtl. (12.2), according to which we have<br />

aT<br />

--k.- ?I<br />

Q I -<br />

(Iamiriar) ,


706 XXTII. T~~rbulont bo~~ndary loyors in comprcaaiblo Row h. Rnlntion bctweon vclority and tcmfnmturc dintxihotion 707<br />

and to postulate that<br />

aT<br />

q, = - c, A - (turbulcnt) .<br />

(23.10)<br />

ay<br />

It is ~ N C that the exchange mechanisms for momentum and heat, arc similar; neverthcless,<br />

they arc not identical. The cxchange coefficients A, and A, for momentum<br />

and heat, respcctivrly, havc, therefore, dillkrent values in general. Taking into account<br />

cqns. (19.1) and (23.10), together with eqn. (23.8d), we can transform the system<br />

of equations (23.8a) to (23.8d) to the form:<br />

3. Relation between the cxchangc cocfficienta for momentum and heat. We<br />

have stressed in the past that the occurrence of a fluctuating motion in a turbulent<br />

flow causes momentum to be exchanged vigorously between the layers of different<br />

velocities. It also causw an increase in tho tran~fcr of heat and mnss when tcmperaturo<br />

or concentration gradients arc present. For this reason, there exists an intimate<br />

connexion between heat and momentum transfer in general. In particular, we must<br />

expect the existence of a relation between the heat flux and the shearing stress at<br />

the wall itself. The existence of such an analogy between heat and momentum transfer<br />

was first discovered by 0. Reynolds [76], and for this reason we now speak of Reynolds's<br />

analogy (cf. Sec. XIIe 3). This analogy enables us to make statements concerning<br />

the transfer of heat from the known laws of drag in s turbulent boundary<br />

layer. The exchange coefficients for momentum and heat - A, and A, - both have<br />

the dimension of a viscosity, p(kg/m see or lb/m see in absolute systems), so that in<br />

addition to the molecular Prandtl number P = p cJk, it is convenient to introduce a<br />

comcsponding, dimensionless, turbulent Pradl number<br />

Thus by definition,<br />

The totd rate of heat tratisferrcd assumes the fofm<br />

The turbulent Prandt-l number can be dctcrmincd with the sit1 of simultaneous<br />

determinations of velocity and trmparatmc profiles; unfort~~nately, the level of<br />

Fig. 23.2. Ratio of the turbulcnt trnnafcr<br />

coefficiente A,/A. over the length of a<br />

radiua in turbulent pipe flow, after B.<br />

Ludwiog [65]<br />

Rcynolda numhcr R - 3.2 x 10' tn 3.7 x 10'<br />

confidence with which thc results of such measurements can be accepted is low owing<br />

to the difficulties of measuring locd temperatures in flows in gencral, and to the<br />

uncertainties in the values of the gradients dzi/dy and dP/tiy. It turns out that P,<br />

varies with the distance from the wall. In an investig.ztion performed by I-I. Ludwicg<br />

[56] it was found, as shown in Pig. 23.2, that thc ratio A,/A, = l/Pl vi~rics from nbo~~b<br />

unity at the wall (r/R = 1) to about 1.5 in the ccntrc of a pipc (r/R = 0) and is indcpondent<br />

of the Mach number. Similar rcsulb were rcportcd by 1). S. Johnson [42] who<br />

made measurements in a boundary laycr on a heated wall. According to tllesc, thc<br />

ratio AJA, increases from about unity at the wall to approximately 2 at the edge<br />

of the boundary Inyer. A. F'xgc and V. M. I~alltncr (cf. ref. [R7]) and IT. Rcichartlt [72]<br />

mcasrtrccl a vnluc: 0f2, thc I'ortncr in the waltc bchincl a circulrw c:ylitlclor,rrntl t h Ird.Icr ill<br />

a free jet, both in a11 inc~rn~rcssible st.ream. According to the preceding measurements<br />

the ratio Aq/A, is smaller in a bountlary Iaycr thn in a frcc strcern owing to thc<br />

inflncncc of tlic wrdl on 1.110 ho~~ntlnry I~~ycr. I I, R~OIIIR, Itliornroro, plnr~aiblo to nswnto<br />

that thc mtio Aq/Ar Itas a valuc of unity at the wall (according to Imlwicg the value<br />

is 1.08 giving P, w 0.9) atid increases to a valuc of 2 (P, =.. 0.5) away from the wall.<br />

In practice, frequently, n constant value of Aq/A,=l (Pt = 1) or of 1.3 (Rcichnrdt,<br />

kiving P, = 0.769) is nssumcd. It, mnst, howcver bc poirltcd out that thc nlanncr<br />

111 whic11 tho turbulcnt 1'rantlt.l number varies across a boundary laycr has not Lcen<br />

dotcrmincrl beyond tloul,t,, ant1 that 1,l:crc oxist, cxpcri~ncnt~al rcs~~lts which arc in<br />

conllict wit11 the prccetling oncs, as rcl)ortntl in the ~nmmarics by J. I


708 XXIII. Turbulent bonndnry Iaycrn in co~npmibl~ flow<br />

wumed that the same mechanism causea the exchange of momentum as well a8<br />

of heat. Since the velocit.y and temperature profilm are identical, we can then writo,<br />

that<br />

k Tw- Tm<br />

q (2) = -<br />

/a urn TI, (4<br />

The ~mcccling equation can be easily re-arrangcd to the form<br />

N, = t R, c,' (Reynolds, P = P, = I) (23.16)<br />

describcd earlier as the Reynolds analogy. It is seen that the relation of direct<br />

proportionality between the Nussolt number and the coefficient of skin friction<br />

which was derived in Chapter XTI for the case of laminar flow paat a flat plate at<br />

zero iricitlcncc, (el. cquation (12.156 b) remains valid in tho turbulcnt wso. Equatior~<br />

(23.16) retains its validity in the prescnce of compressibility, just as was the case<br />

with laminar flow, on condition that the Nussclt number is now formed with the<br />

temperature difference Tw - T,. t<br />

As already mentioned bcfore, the principal difficulty in studying turbulent<br />

houndary layew and turbulent heat transfer problems stems from the fact that<br />

the eddy or exchange coefficients A. and A, are not properties of the fluid, unlike the<br />

viscosity p or the thermal conductivity k, but that they depend on the distance from the<br />

wall inside the boundary layer. At a sufficiently large distance from the wall they<br />

assume values wllich are many times larger than the molecular coefficients y and<br />

k, so much so, in fact, that in most cases the Iattcr can be neglected with respect<br />

to the former. By contrast, in the immediate ncigtibourhood of the wall, i. e. in the<br />

laminar sub-layer, the eddy cocfficients vanish because in it turbulent fluctuations<br />

and hence turbulent mixing arc no longer possible. Nevertheless, the rate of heat<br />

transfer between the stream and the wall depends precisely on the phenomena in<br />

the laminar sub-layer and so on the molecular coefficients p and k. It is fortunate<br />

that eqn. (20.16) remains valid throughout, regardless of the existence of a laminar<br />

sub-layer, because whcn P = 1, as shown in Section XIIg, the velocity and tempc-<br />

rature distribution in the laminar sub-layer remain identical. The assumption that<br />

P, = 1 in turhlent boundary layers leads, as a rule, to useful results; by contrast,<br />

the Prandtl number in the laminar sub-layer can differ appreciably from unity, as<br />

is the case, for example, with liquids (Table 12.1). When this is the case, cqn. (23.16)<br />

loses its validity. Extensions of the Reynolds analogy to cases whcn P # 1 have been<br />

formulated by many authors, among them L. Prandtl 1701, G. I. Taylor [96] and<br />

'l'h. von 1CArnitin [44j, and R. G. Dcisslcr [20, 21, 22, 231.<br />

I,. Prandtl nssumctl that P, = l and diviclctl the boundary layer into two<br />

zoncs: tlir laminar sub-layer in whirh the eddy coefficients vanish, and the turbu-<br />

t Frequently, insCmd of th Nr~rrselt nnrnbcr nse is mfde of the so-called Stanton number<br />

If this i~ prcfrrmd, t h Itcynolds analogy from eqn. (23.16) becornea ' '?,<br />

s = ; c,'.<br />

Tho rrnminir~g nql~ntionn can bo owily I.rnnnforrnd to rcplnco N by S.<br />

lent, cxtcrnal boundary layer, in which the molecular coefficients p onel k con be<br />

neglected. Under these assnmptions, cqns. (19.1) and (2:1.14), wriLtcn for 1,111: laminar<br />

~ub-layer will Icad to the form<br />

k dT<br />

- (1 -- .. - - --<br />

T 11 du '<br />

whercas in tho turbulcrlt layer thy will lend to<br />

d 7'<br />

fl<br />

-<br />

- -- CP a*,, .<br />

IlcIncnlbcring t,hat at the wall r = 0, as sum in^ t,hat the tcml)cmt,urc :L& the wall<br />

is r,or~sLnnt al1ct cq~~:rl 1.0 It,, nnd clcnoting the volocity nnd t,cn~[~crnt,~~rc, rcspoc~ivaly,<br />

at tlIc 0111cr cdgc of t h laminar sub-layer by u, nncl 7',, rrntl in the: free sl.rc!a~n 1jy<br />

[I,, 'I1,, 1'raI1dtl i~~tr~d~~~ccl thc assnmption tht tho rrltio q/t remains const:tntj<br />

across the width of the I)oundnry hycrt. lntcgration over bhc Inminor sublaver<br />

will t.hen load to<br />

Sirnilarlv, integration over the turl~~lc~lt zonc will lcncl to<br />

I4;quating the two right-hand sidcs we obtain<br />

Ilcncc. the local cocfficicnt of heat txnnsfcr bcconlcs<br />

On introducirlg eqn. (23.17) we have 1<br />

C T<br />

a -?<br />

L i u U (P - 1) (J,<br />

wC express Lllis rcslllt in terms of tho Nassclt numl)cr : L I ~<br />

ore: led in this ~ :ty<br />

to tllc extension of the Reynolds analogy which was clorivcd indcpcnclcrltly by<br />

1,. l'randtl and G. I. Taylor:


710 XXIII. l'urhnlrnt. honntlnry lnycrn in rornprrmihlo flow<br />

In order to apply the preccding equation to particular cases it is still necessary<br />

to malzc a suitable ass~~mption about the ratio of thc mcan velocity at tho outer<br />

edge of the laminar suh-laycr to that in the free stream t. In the particular casc when<br />

P = 1, thc I'randtl-Taylor equation (23.18) reduces to Reynoltls's cquntion (23.16).<br />

In clcriving tho Prar~tlt~l-Taylor equation (23.18) it was supposed that tllc bountlary<br />

laycr coulcl bc sharply divitlcd into a turbulcnt laycr and a laminar sob-layer.<br />

In actual fact onc merges intp thc othcr in a continuous way antl it is possible to<br />

discern the cxistcnce of an inkrmcdiatc, or I~uCfer layer in which thc mngnit~~rlcs<br />

of tlic molccl~lar and tml)ulcnt cxchangc arc comparable. 'S?Il. vo11 I


712 XXI 11. 'I'~~rl~~~lemt bo~~ntlnry lnycrs in comprwsiblc flow b. Rclat,ion bctween velocity and ternpcrnture distrilmlion 7 1 3<br />

Tnhlc 23. I. l'lw conntnntn n nrd 11 for bhc cnlrulntion or the coclficior~t nf hent transfer from cqn.<br />

(23.20) nnd of tho rcrovrry htor l'ron~ rrp. (2:1.27), nfler H. Ibichnrdt [73] nrtd J. C. Rottn [El].<br />

'l'lic tcmpcmturc tlistribution in turbulent boundary layers on flat platcs in the<br />

prescncc of an arbitrarily vn.rying, turbulent T'mndtl number, P,, was studied by<br />

R. R. von Ilricst 1283 :rnd J. C. Itotta 1811. In thc I;~tt.cr rcfcrcncc it is showti t,l~at<br />

only thc vsl~rcs whidi Ll~c turhulcnt I'r:dtl numbcr, P,, assumes c1o.s~ to t,he wall<br />

detcrrnine the rate of hcat transfer antl the tempcraturc distribution; conscqucntly,<br />

tlic details of the variation of P, away from the wall are less important. The variation<br />

of P, with tlist,:incc: from tfl~o w:Jl is hrougl~t to Iw:w only through tho int.crrnctliary<br />

or the cp~ntily A wlion in t.hc rcrnnintlcr thc val~~c of P, at the wall is substit~ited.<br />

A suitable value for this scems to be Pt = 0.9. J. R. Taylor [98] performed such calculations<br />

for boundary layers with variable pressure and temperature along the wall.<br />

2. The transfer of heat from rough mrfaces. tt tins bccn clcmonstratctl in<br />

Secs. XXf and XXIc that rough surfaces develop considerably larger values of<br />

skin friction in turhulcnt flow than do smooth ones. The samc is true of thc coefficient<br />

of heat tmnsfcr. Normally, however, the percentage increase in the rate of<br />

hcat tmn.sfcr is smallcr t,l~arl that in skin friction. This is understandable, because<br />

a part of the turhulcnt sharing stresscs can bc transmitted to the wall through<br />

pressure forcw cxert~tl on protubcranccs; but thcrc exists no analogue for this<br />

mcchanism in Iicat, transfer. Expcrimenhl invcstig,ztions on the transfer of heat to<br />

a rough ttrbc wcrc carried out, among others, by W. Nunncr [66] and V. F. Dipprey<br />

and R. IT. Sabcrsky 1261. 'rh~ latter autliors made mcasurcmenta at different values<br />

of trhc I'rancltl nunibor. l'l~coretical conaidcmtions clue to 1). F. Ilipprcy and R. TI.<br />

Sal)crsky [26] :13 wwrl 113 to P. It. Owen antl W. It. Thomson [67] arc bnscd on thc<br />

hypothesis that the elfcct of roughness on the rncchanism of exchange is confined<br />

to the regions locatd in thc proximity of thc wall. Starting with this hypothesis,<br />

it is possible to derive an equation which has the same structure as cqn. (23.20),<br />

and differs onlg in that the term (P - P,) must be rcplaccd by a quantity, P, which<br />

is a function of the Prandtl numlm, P, and of the roughncss. In the particular case<br />

when P, = I, we othin<br />

I c ' R P<br />

N z - --- -- .--;:r _-%._ _ . .. (r)' ipprcy, Sabersky, Owen, 'I?~omsorr ; P, = I). (23.22)<br />

I -4- 4 c,' /I (a, k/v; P)<br />

Pig. 2:1.4. Tho roughnc~n funct,ion (p 4- 8.5) P-0.44 rts n ft~nr.t,ion of lJ+ k./v for sand FOII~IIIICRR<br />

nt vsrioun Prnnclll nu~~~bcrci, from 1110 lncn~r~ro~~~o~~l~<br />

by I). IT lI)ipprc*y 111rt1 It. II. S1\11t!wI 70. '1'110 grnpl~ ol' fho<br />

function p togctlicr with tlic expcrimcntd rcsr~lt,~ ovcr Lhc wholc rarlgc of roughncss<br />

Reynolds numbcr v, ks/v is shown in Pig. 23.4. Owcn ant1 'l'homson corrclntcd<br />

experimental results from various sourccs, including thosc from refs. [25] and [66],<br />

and coricludcd that<br />

(23.24)<br />

Proccdurcs for thc calculatio~~ of heat-transfer ratcs in turbulcnt flows with nonisothermal<br />

surfaces havc been worked out by D. U. Spdding [88], and J. Kcstin antl<br />

coworkers [36, 46, 461. Extcnsivc mcasuremcnts under such conditions awe performed<br />

by W. C. Itcynolcls, W. M. Kays, and S. J. Klinc [77].<br />

3. Temperature distribution in comprceaiblc flow. In ortlw Lo ut~tlc~rat~ancl the<br />

laws which govern the tcmpcraturc distribution in compressible flows, tho rcadcr<br />

may wish first to rofcr to tho rolovant consirlcrntions for lnminnr I)o1111tlary lnyors<br />

wliicll wcrc advanccd in See. XlItb. Wlicn tlic pressurc remains (:oIIHI.:LI~I~ I I I ~<br />

P = P, = 1, the tcmpcraturc distribution satisfies cqns. (13.12), and cqn. (13.13)<br />

in tho general case with hcat transfer, both owing to the evolution of frictional I~cat,.<br />

When P + P, $r 1, it is possible to cvaluatc thc recovery t~mpcrat~~irc on an (atliabatic)<br />

wall by tlic usc of cqn. (13.19), i. c. by<br />

The rccovory factor, r, is somowhat larger in turbulcrlt flow than it was in inrnir~ar


714 X X I I I. 'hrhulcwt. I)oc~ntl:~.ry I:rycrs in conq)rcrrsiblc flow<br />

flow, rxpcrirnr~~ts showing tltat on the avcragc its value placcs itaelf between 0.875<br />

ant1 0 88 (see lj'i'ig 17 31). 'I'hc diagram in l'ig. 23.5 rcproduccs 1,. M. Mack's [56]<br />

comparison of valucs of the rrcovcry fartor, r, measurcd on concs at cliffcrcnt Mach<br />

numhrrs and at cliffcrcnt Itrynoltls numbrrs In order to rstimate the cffcct of<br />

Pr:tntlt,l nurulwr, many rtutllors quote thc formula<br />

whic:l~ yioltls r .-I 0.896 at. P :-: 0.72. It is rtlso possildc t.o obtain this csthatc thcorcti-<br />

oally, in a mallncr analogous to that used I,r thc crtlculntion of tltc cocfficiont of<br />

11eaL transfer. For this I)urpost? it is ncccssary to start with the cncrgy equation<br />

(23.1 1 (:) ant1 10 irlclutle Lhc cffoots of Cllc molecular and of tho turbulcnt transfer<br />

mechanisms in aocortlancr! whicll the hypot.hcsis contraincd in eqn. (23.14). Proceeding<br />

in this way, .J. C. Rotta [81] obtaincd the cquation:<br />

Tltc quantity h is a function of the raLio PIP, and accounts for, like the quantity a<br />

in cqn. (23.20), tho procwscs taking place in the laminat' sublayer. It is given by the<br />

intrgral<br />

Wind lunncl 1 Mm 1 Typo of pone<br />

I<br />

k~,ercirca<br />

(:AI.CIT 5 x G In.<br />

Aatm I x 3 lt No. 1<br />

JI'L I8 x 20 in.<br />

I ' 18 x 20 in.<br />

J I I?( x 20 in.<br />

J I 12 x 1% in.<br />

I , 12 x 12 in.<br />

2.18 10' wood<br />

6.0 20" ccrnrnlc<br />

2.0 PO' l~olluw; slrcl<br />

4.60 5" nl~rcglnss<br />

I.o:l 13' lucitx<br />

4-50 13" llrcitc<br />

1.W 13" lf~cilc<br />

2.54 10" lllcitr<br />

c. Influcncc of Mach nunher; laws of fricbion 715<br />

Numerical values have bcen incluticd in Table 23.1. The factor 13 dcpcnds on P, and<br />

somewhat on dc,'/2 . According to Rotta, we may take<br />

When the turbulrnt I'mndtl number varies over the thicknrss of thc bouutlary<br />

layer, it is necessary to insert into eqn. (23.24) the value assumed by it at the wall.<br />

Whcn the Pmndtl n~lml)er, P, as well as the turbulcnt Prantltl number, P,, differ<br />

from nnity, it is worth noting that, normally, eqn. (13.21) givcn in Chap. XTII for<br />

laminar bountlary layers constitutes a usable approximation for the tcmpcmt~lrr<br />

distribution in a comprcssiblc turbulent boundary layer. 13. SchulCz-Jnncl~ 1!15]<br />

dcvelopcd n procedure for the calculation of temperature distributions in turbuicnt<br />

comprcssible boundary layers.<br />

c. Infl~~enee of Mnch nun~ber; lnws of friction<br />

To date, the calculation of turbulcnt boundary laycrs in inconl pressiblc flow<br />

has not developed to a point where it could be classccl as bcing morc than a semiempirical<br />

theory. It is, therefore, not surprising that the same remark applies to the<br />

cnlc~tlation of comprcssil)lc tur1)ulcnt boundary layers. In tho rnsc of incomprcssil)lr<br />

turbulcnt bounclwy laycm a starting point is proviclctl by tllc hypothcscs whicll wc-rc<br />

tliscusscd in the prcccding chnptcrs, narnrly by l'rnntltl's mixing-lcrlgt.11 Ilyl~otlw~is,<br />

by von Kilrmh's similarity rule or by Prandtl's universal velocity-distribution law.<br />

The authors of numerous contemporary papers have cndcavourcd to create a semiempirical<br />

theory of comprcssiblc turbulcnt boundary layors by transposing thcsc<br />

hypotheses and by adapting them to thc compressible case. This ncccssitatcd thc<br />

introduction of additional ad hoc hypotheses. In the absence of detailed investigations<br />

into the mechanics of compressible turbulent flows, thc transposition of thc semiempirical<br />

theories of turbulent flows from the incompressible to tho cornprcssible<br />

case involves a good deal of arbitrariness.<br />

Prom the practical point of vicw, thc tlimcdtics incrcnsc bccnusc, on tl~c one<br />

hand, there arc two additional pamrnetcrs- thc Mach numbcr, A&,, of thc: froc<br />

stream and the temperature, T,, of tllc solid surface- which influence the flow, and,<br />

on trhe other hand, tile available experimental results are not cntircly frcc of contmdictions.<br />

Tllrcc mcthotls should bc singlcd out from among tl~c numcrous propos:ds<br />

for handling the problem, bccause they havc bcen employcd parlit:ularly freq~lentIy:<br />

(1) Introduction of a reference temperature for the density and viscosity of the gas.<br />

(2) Application of PrantlLl's mixing length hypothesis or of von Kitrmbn's similarity<br />

hypothesis.<br />

(3) Transformation of the coordinates.<br />

Over and above, the litcrature of thc subjcct contains expositions of mc4lotls<br />

which cannot be classified under any onc of the thrcc proceding hcdding~. In an<br />

impressive comparison, D.R. Cllnpmnn and R.11. Kcstcr [I I] brought to thc forc<br />

the large diffcrcnces which result when cliffercnt methods arc usctl to calculat~c skin<br />

friction (cf. [30]). An extensive comparison betwcen twcnty cliffcrcnt ~omput~ational<br />

schemos and cxisting, expcrimental rcsults was carried out by D. R. Spnlding and<br />

S. W. Chi [89].


716 XXIII. 'I'urbr~lcnt bor~ntlnry lnycra in con~prcmiblo flow<br />

1. The flat plate at zero incidence. The guiding idea of the methods of class (1)<br />

is tho hypothesis that the laws of incompressible flow remain valid in tohe compressible<br />

case on condition thnt the values of density, Q, and viscosity, p, are bken at a suit-<br />

ably choscn rcfercnce temperature, T*. Th. von Khrmicn [43] was the first one to<br />

utilizc this possildity and sclccted the tomperaturc at the wall as his refcrcnce<br />

tempcratnrc. Starting with tho law of friction for a flat plate at zero inridence in<br />

incomprcssiblc flow embotlicd in eqn. (21.17), von lCdrmAn obtained the following<br />

equation for t.he skin-friction coefficient in the compressible mse:<br />

whcre M, = tJ,/c, dcnotes the Mach number of the free stream. The preceding<br />

equation is valid only for an adiabatic wall; in it, the viscosity function was assumed<br />

in the form p/p, = l/T/To. Various attempts have been made to improvc the method<br />

of thc reference temperature by choosing a value T* which lies between the highest<br />

end the lowest values of temperature, T, encountered within the boundary layer.<br />

E. It. G. Rrkcrt [29, 301 proposed to place the referencc temperature at<br />

T* = To -t. 0.5 (TI, - TI) -1 0.22 (T, - TI) , (23.30)<br />

whore TI denotes the tempcmturc at t,hc cclgc of the boundary layer, T, is tho sorfacc<br />

te~npcrat~urr at thc wall and 'f', rcprcsents the recovery (i. e. adiabatic wall)<br />

tcmpcmLrrre. lilckcrt's formnla inc:l~~tlcs I.hc c:wc with hcat transfer. Thc int~roduction<br />

of a mfcrcncc Lcmpcmturc const,iltntcs the simplcst way of accounting for thc influcncc<br />

of Mach numbcr and heat transfcr on skin friction ant1 lcatls to results which arc often<br />

adcquate in criginecring applirntions. For this reason, M. 11. Bertram 121 carried out<br />

a Iago programme of calculations of skin-friction coefficients covering a wide mnge<br />

of Mach num bcrs and trmpornt,~lrc rat,ios.<br />

Thc itloa of applying Prancltl's mixing-lcngth hypothesis wa.9 taken up by E. It.<br />

van Thiest [27]. Ilc ~Lipnlatcd that 1 == x y, as given in oqn. (10.22). The cffect of<br />

coniprcssibilit~y is brought to bc:w by allowing the dcnsity to vary thus causing the<br />

boundary-layer thicknrss to change too. Ilc obtained explicit formulae for turbulent<br />

ski11 frict,ion on ;I ll:~t plale, with and wiLhout, hcat tr:msfcr, which acconnt for the<br />

influcncc of thc 1L.ynoltls ant1 Mach numI)crs simultancoosly. For tl~c case of an<br />

adia\)atir, wall thc formula for thc coefficient of total skin friction has the form:<br />

whcrc<br />

and M, = U&, denotes thc frce-stream Mach nwnbcr. The symbol u) denotes the<br />

exponent in the viscosity law p/p, = (ll/T,)" from eqn. (1 3.4). This equation differs<br />

from (23.29) by the factor (sin-' 1)/1 on the left-hand side and by the appearance<br />

of t,l~e exponent cr, of thc viscosity law. For M, -+ 0 eqn. (23.31) transforms into<br />

Fig. 23.0. Cocfficicnt of lob1 akin friction for nn ndinbntio flirt plnh nt mro inc:iclc.nro for In~nitubr<br />

ant1 turbulent bounclnry leycr. 'J'hcoroticnl curvca for tr~rlwlc?nt flow rrotn cqn. (2:).31). :tftn.r<br />

E. R. van Driest [27]; y = 1.4, cu = 0.76, P = 1<br />

- <strong>Theory</strong> dl10 to Wllson<br />

[I021 k,r an adlnbxlic wnll nnd<br />

zero prewlre grnrliant: Lllc rntio<br />

T,JT, vxrirn helwaen 1.8 Tor<br />

M -- 2 and 21-0 for M - I0<br />

Tlwory dlic lo vnll Drirat<br />

(271, wit.11 ltcat trnndcr, wro<br />

pressure gradient<br />

Menserotnml.s:<br />

(1) xclinhntic wnll, zero pressure<br />

grndinnt<br />

(2) wi1.h I~anl<br />

trnsnfer, zero prrs-<br />

sure grnclicnt<br />

(3) with i~cnt lrsnsfcr, T,,IT,<br />

= 8.0, favourablc prCSsUrC gra-<br />

dient<br />

- theory, If%son, without heat trmh- _- _ _<br />

--- the04 ran Dies[ with heat Imn* I I<br />

Fig. 23.7. Skin friction coeficient of a Rat plab at zero incidence M n function of Lhc Mach<br />

numbcr for a turbulent boundary layer; compariaoti betweon theory and measurement; R, w lo7,<br />

from 1381


718 XXIII. Turl~ulcnt boundnry layem in comprossiblo flow<br />

von 1Z:irm;in's i~icomprtssiblc resistance formula, eqrl. (21.17). Fig. 23.6 gives a plot<br />

of eqn. (23.31) ant1 a comparison with experimental results. The measure of agreement<br />

bctwccn thcory and experiment is not satisfactory in all cases, but ill this comexion<br />

it, must bc pointd out that mcasurcmcnts at high Mach numbcrs are somewhat<br />

uncertain. R.E. Wilson 11021 cnrricd out similar ealculationq, but based them on<br />

von JZ6rm6n's similarity hypot~hcsis, cqn. (19.39). Limiting himself to the case of an<br />

:ulial~at,ic: w:dl, IIC tlcrivccl a resultf which is quite similar t,o cqn. (23.31). I'urtllcr<br />

cxpcrimontnl msulk arc contninctl in Pig. 23.7 which shows a plot of the ratio of<br />

tltc skin-friction c:ocfficients in compressible and incomprcssiblc flow in terms of t.11~<br />

M:wh n~lmbcr, c:ovcrirlg a rangc which includes very high Mach numbers. The graph<br />

cont.ains two t,heoreticnl curves; the first one due to R. E. Wilson [102] presupposes<br />

an adiabatic wall, and the second one, +rived by E. R. van Driest [27], includes<br />

tl~c cffcct of hcat transfer. The mcasurementa were performed 11y several workers<br />

[7, 14, 38, 63, 871 and show good agreement with thcory. Atlditionnl information<br />

concerning the inllt~cticc of hcat transfer on skin friction is contained in I'ig. 23.8<br />

wllich was also based on van Driest's calculations 1271. The diagram shows that the<br />

skin friction on an adiabatic wall is sornewhnt smaller than is the case when hcat<br />

flows from the fluid to the wall.<br />

Pig. 23.8. Skill fridiot~ codfit~irnt for a<br />

ht pl:rls at zcro il~citlcr~cc in turbulcl~t<br />

flow with lieat transfer as a function of<br />

Itcynolds numhcr for different valrrcs of<br />

t.lic tetnporakrrc ratio !7',/T,, after 1':. It.<br />

van Driest [27]<br />

Coordinate trnnsformntion: 'l'hc coordinate transformn.t.ion dcscrihcd in See. XIIId<br />

and valitl for 1amin:w flow can also be cnrricd through formally whcn applictl to the<br />

cliffcrrnlial cquaf.ions for comprcssil~lc tarl~ulcnt bountlary hycrs. The lteynoltls<br />

stress t',, is trnnsformcd t,o<br />

and with this substit.ntion, the momcnt~~m equation (23.8h) acquires the form:<br />

ati a - ac<br />

6 -1. "j .-'C. = s1 ---' (1 -1- a8a 1<br />

a~ ag a S) 4- v, --I- + -<br />

% eo ag .<br />

(23.33)<br />

(23.34)<br />

The symbols uscd here arc identical with those dcfincd for eqns. (13.24) to (13.41).<br />

Wit.11 the mnthematicnl possil)ilit,y of t.ransforrning thc equations for coniprcssil~le<br />

flow ir11.o a form it1cntic:d with that for iricomprcssihln flow, ninny nut,liors (r. g.<br />

B. A. Magcr [57j, D. Colos [15], L. Crocco [16], I). A. Spencc [$I, 921) t:ouploti a<br />

physical Iiypothcsis, accortling to which the vclocitry prolilcs in the t,r~~rislormc:tl pl:cnc<br />

rct:~in t.hc samc form as tlir~l, valitl for iriconiprcssil~lc Ilow. Conscclucnt.ly, tl~c law<br />

of friot.ion as wcll as othor relations rcrn:~in viditl wl~cn the Imtisforn~otl<br />

arc sub~tit~~t,cd into them. This conclusion, whic:li is ccrtainly valid For Iamir~:w flows,<br />

tlocs riot ncccss:~rily carry over to I.url~ult:nl. Ilows bct::~~lso t,hc l.rnt~sli)rlti:~t.io~~ <<br />

coortlinatcs cannot be applictl to the eqnations which tloscribc the IlrrctunLing motion.<br />

This lcatls to contratlictiorls with rcspcot to all thcorics which arc 1)ascd onI3o11ssillesq's<br />

assumption cmbotlicd in cqn. (19.1). Thcsc inclutle thcorics whicl~ utilize Pr:~litll.l'.s<br />

mixing-length hypothesis or von IGrm:i.n's similarity hypothcsis. If wc accept t h<br />

physically plausible assumption that thc eddy kinematic viscosity E, dcfinrtl in cqn.<br />

(19.2) is intlcpcntlcnt of clcnsity, we arc f:~ccd with blic fncl 1,liaL a t~.nrlsli~r~li:tl,io~i LO<br />

t,hc incomprcssil~lc: form ccasrs to be possil~lc. Ilowcvdr, :L t.mtisforrn:ktion to<br />

~:L~:uII(.~~('~s<br />

can still be cnrric:tl out. In thi~ case (,lit: ricw rtltly Itinc*tnr~l.ic: vis(:o~iI.~. I.,, is II-IIII~.~I<br />

to the original quantity, 8, through the equation<br />

Now, it is known that thc dcnsity mtio e/pl varies consitlcrably with the distance,<br />

y, from the wall whcn the Mach number is large. Conscqucntly, one of two conclusions<br />

forccs itself upon us. If wc, assume that the velocity profilcs remain unchangctl oom-<br />

1)arcd with the incomprcssiblc case, we find that, the clisl,rii)~~l,ion of F has cli:~ngctl.<br />

If, I~owcvcr, wc admit, that c rcmnins unalt.crccl, we cntl up wit.11 rnoclifictl velocity<br />

profilcs. The statements concerning tlic cffcct of Mach numl~or on thc vclot:ity profiles<br />

in tlic original coordinates which can be m:ulc on the I~asis of the two prect:tling<br />

schemes turn out to be exactly opposite. This observation throws a gootl tlcnl of<br />

light on the whole complcx of problems which arisc whcn tho laws ol~lainctl in ihc<br />

incompressible case are tmnslatcd to apply to t.lie comprcssiblo case.<br />

Further dctailer The effect of Mach number on thc velocity profile is hrought to<br />

bear through the increase in temperature in the direction of the wall. Since it is<br />

possible to soppose that the pressure, p, is indepcndcnt of y, it is found that thc<br />

density distribution in the boundary layer is described by<br />

As tho Mach number incrcascs ont.sitlc an atlial~n.t,it: wall, it is seen that the density<br />

nlust dccrease very strongly at small values of y ant1 Chis must cause the l~o~lntla.ry-<br />

Iaycr tl~ickness to incrcasc considerably. On tlic othcr hand, an incrcasc in thc Mach<br />

~lnrnher effects an increase in viscosity and a decreasc in the skin-friction coefficient.<br />

,<br />

I<br />

,<br />

his, in hum, causes I,hc laminar suh-layer lo incrcnsc strongly. An cxa~nl)lc of the


720 XXIII. Turbulent boundary layers in con~prcasible flow<br />

Fig. 23.0. Meanurcrncnts on<br />

vclociLy tIistril~uLio~~ in<br />

turi~ulcnt boundary layer<br />

on flnL plate at zero incidcncontsupcrsonic<br />

velocity,<br />

ahr It. M. O'I)onn~ll [20]<br />

M, = 2.4; d, - nlomcnlun~<br />

lluieknrss rrorn cqn. (13.76);<br />

TW - "'a<br />

vclociljy profile in n aom~~rcssiblc Ifnrl~~rlcnt Iwundary laycr is given in Fig. 23.0 which<br />

contains a plot of u/U, in terms of y/02 for M, = 2.4 as mcasurctl by It. M. O'llonncll<br />

[26]. Ilcrc, d, rcpmscnls thc momcnt~rm thickness dcfincd in eqn. (13.75).<br />

In t4hc atloptctl systcnl of coortlinatt?~, thc points for tliffcrcr~t, Rcynoltls numbcrs<br />

arrange tli~rnsclvcs well on a single curve. 'l'llc t,l~corctia~l curvc shown on thc graph<br />

tlcviates from the corrrspontling curves for incompressible flow much Icss than was<br />

tl~c cnsc with laminar flow, Fig. 13.10. As cxpccted, thc 11ountlar.y-layer tl~it:ltncss<br />

incrcn.scs with Mach nnmbcr ; this is I~rongl~t, into evidcncc in Fig. 23.10 which<br />

clisplnys velocity profiles up to M, = 0.0. It is worth noting in this conncxion t,l~at<br />

turbulent boundary layer on n. flat plate<br />

in'supcrsonic flow at various Mnch num-<br />

bh, r29 memured'hy I!. W. Matting, D.<br />

It. Clqman, J. R. Nyholm, and A. C..<br />

T1iornn.q [58]<br />

c. lnfl~lence of Mach number; lawe of friction 72 1<br />

t.hc momentnm thickness from eqn. (13.75) bccomes smaller comparccl with the<br />

boundary-layer thickness, 8, as the Mach numl>cr is incrcascrl, bccausc the clcnsity<br />

tlccreascs in t,hc direction of tho wall.<br />

The tliagrarn in Fig. 23.1 1 contains a logarithmic plot of the vclocitty ratio 'M/IJ,<br />

against 71 - y v*/vW of thc type er~countercd in Fig. 20.4, in wliiclr thc valucs of<br />

clcnsity, Q, ant1 kinematic viscosity, v, havc bccn taken at thc wall tcmpcratnre. It is<br />

noted that the characteristic shapc familiar from incornprcssiblc flow persists at!<br />

lligl~cr Rlnch numbers, but qnantitativc tlepxrturcs makc their appcamncc. 'I'his<br />

follows from I,l~c ex~~crimcntal rcs~~ltn plot,l.ctl in lhc figtlro ant1 due tm It. I


wl~erc c, denotes the vclocity of sound at the wall, S is the Shnton nnmher, and<br />

c,' t,l~e local skin-friction coefficient. Calculations performed by J. C. Rotta [78]<br />

under certain simplifying assumptions yielded results which werc qualitativcly correct;<br />

howcvcr, the elTcct of p, on the 1amina.r sub-layer turns out to be larger in experin1ertt.s<br />

than that which can be reflected in the calculations. The measurcrnents undertaken<br />

by 8. U. Mcicr L60, 01, 621 give an indication of the corresponding t,cmperat.ure distributions.<br />

The eval~lntion of these result* showed that the t(urbu1ent Prandtl nrttnbcr<br />

increases across the sublaycr and reaches a value exceeding unity; this means that*<br />

thc factor A, for hcnt tmnsfcr to the wall dccrenacs fmtcr than t,hc corrrspo~~tling<br />

eddy coefficient A, for momentum transfer. According to H.U. Meier and J.C. Itottn<br />

[63], it i~ possihlc to descrihe this state of affairs theoretically by txansposing Pmndt,l's<br />

mixing-lengt,h hypothesis (Chap. XIX) to the transport of heat. Thus, eqn. (23.14) is<br />

transformed into<br />

The mixing length 1, for heat transfer diffcrs ~cs to mngnit,r~cIe from that for morncntum<br />

transfer, 1 in eqn. (19.7). In analogy with I3.R. van Drinst's equat,ion (20.15b),<br />

it is assumed that in t.hc neighhourhood of the wall we may put<br />

The dimensionless const.artta xq and A1 have tliffcrcnt, vdues than x and A in eqn.<br />

(20,1511). The turhulcnt I'rancltl numhcr, cbs drfinctl in eqn. (23.12), becomes<br />

The variation of Pt acrosu the boundary layer was computed by I1.U. Meier [64].<br />

Figure 23.12 allows us to conclude t,hat measured total-temperature distributions<br />

are reproduced quite well by calculat~ions ba,sed on J.C. Rott,a's [78] law of the wall<br />

for compressible boundary layers. The diagmms represent the ratio To/Tm of total<br />

Fig. 23.12. Totnl tompcrnturo To in tho<br />

tnrbulent boundary layer on a flat wall<br />

and in tho prcsenco of a weak hent flux at<br />

sr~pcraonic vclocit,y, nflcr H. U. Mcier et<br />

,nl. [G21<br />

, blnrlt nunther Mm ;- 2.0<br />

, Rry~tolda numtwr Rlrn~ = 0.8 x 10' cn-'<br />

ntcantlrrnwtts 1,). 11. U. >Icier l6Oj<br />

--- Illwry ns 111 eqn. (23.378) wlllt (XI+'= 0-9;<br />

A/AI -; 1.3<br />

I)ln~enalo~~ler~ heat tranafer roefflrlent<br />

hc'lw1cp TWQW rJ<br />

1<br />

1.ocnI nk111-Trivtlnn rorfflrlnnt rj - r,,/ p , IJ'<br />

c. lnfluonco of Mac11 nntnl)or; lnwo frict,ion 723<br />

temperntmres as functions of the Mach-numbcr ratio M/Mm. llere<br />

When the rate of heat transfer is small (q, m 0), the temperature increases from t.he<br />

wall outwards and reaches a maximum which is followed by a decrease to a minimum<br />

and an ultimate increase.<br />

When the wall is rough thc influence of thc Mach number on slrir~ friot,ion is<br />

even greater. According to H.W. Liepmann and F.E. Goddard [37. 621, the ratio<br />

~,~,,,~,,,/c~,,~ for the complotdy rough regime I~ccomrs proportional to the, (Iw~si!.~<br />

ratio e,/em, and hence<br />

"l compr = 1<br />

el cnc 1 -I- CL Ma<br />

2 "<br />

where r denotes the recovery factor.<br />

2. Variable preosurc. In practical applications, it is frcqucntly ncccss:wy to<br />

perform calculations for turbulcnt boundary layers in compressible flows with varying<br />

pressure. The need is particularly acute in the design of co~lvcrgcnt-divergent nozzlcs<br />

for supersonic wind tunnels, because the displacement cmect of the boundary layer<br />

in them must be known fairly accurately. As was the case with incomprcssiblc flow,<br />

the known approximate procedures are based on the integral momentl~m equation;<br />

in some cnscs, tho cncrgy integrnl cqnation has also baan ctnployetl. 'l'ho Lwo il~lqr~d<br />

equations in question have been already given as eqns. (13.80) and (13.87) for adiabatic<br />

walls. As far as turbulent boundary layers are concerncd, these are writtcn:<br />

momentum-integral cquation -<br />

dd, d dU<br />

--+2-(2+N -Mz)=.Y<br />

dz U dz 12 61 u' '<br />

energy-integral equation (kinetic energy) -<br />

they are valid for P = 1, and are not restricted to adiabatic walls. Here, O3 denotes<br />

the energy thickness, eqn. (13.76), 6, represents an cntl~alpy thickness, eqn. (13.77),<br />

and HI, = 6,/6,.<br />

A number of authors, including G. W. Englcrt [31], IC. Rcsltotlto and M. Tucker<br />

[76], N.B. Cohen [12] and D.A. Spence [92], applied the Illingworth-Stewartson<br />

transformation with respcct to thc momcntunt-intcgml cquation (23.39) and thus<br />

reduced it to its incompressible form. A. Walz [loo] rcduced the two cqnnLior~s<br />

(23.39) nnd (23.40) to a rclativcly convcnicnt form from tho point of vicw of n~rrncricnl<br />

computation and oncornpassed the required universal f~~nctions in a srt of tnblcs<br />

of numerical values.<br />

J.C. Rotta [84] described a similar procedure for two-dimensional and nxi-<br />

symmetric Rows as well as for the calculation of a body of revolution in subsonic<br />

and supersonic flow [105]. The agreement between calculations and mensurrmcnt is<br />

satisfactory up to a Mach number of M, = 2. The deviations which occur at M, =<br />

2.4 and 2.8 are cxplnined, partially, by the fact that the curvature of the strcnmlincs


724 XXlll. 'rur1)ulcnt boundnry Inyera in coinpressible flo~<br />

in conj~rnction with t.1~ vnrintions of tlenait,y exert^ nn unexpcetetlly large inflrlcnec<br />

on the tlevclol~mcnt. of t.ltc boundary Iayc-r - an effect not aceor~ntrd for ill t,lle<br />

calcnlat~io~~. The rcnsona for this effect, of streamline cnrvatrrre were invest.igat,etl<br />

by J.C. Rotta 1821; n cont.rihulion t,o t,llis prr~l~lcrn was also rnatlc by 1'. Rrarlsltaw (4).<br />

Methotls of finite tlilTerr.nrrs hnvc also becn atlnpt.ct1 to deal wit.11 l,url)ule~~t bountlal.y<br />

layers in comprrssilde st~rc:ltns. 7'. Ccbcci and A.M.O. Smit.11 [I)] dcveloprtl n mtttllotl<br />

Imsrtl on ~nising t>lwory (srv Scc. XIXr) wllosc wlitlil.y lins 1tcc.n rxtcntl(,tl to inc:l~ltl(*<br />

t.hroe-tlir~~cnsio~~al 1)ountlnry Inycrs I 101. 'l'he ~net.l~od due t,o 1'. 13rntlsltnx\. (sc.e<br />

Sec. XIXf) that mnlres use of t.he equat.ion for kinetic energy has n.lso becn extended<br />

to a.pply t,o cornprcssihlc flows (61. P. I~mtls11,zw [5] rcnchctl t,hc conclusion t.hat t,hc<br />

volumet,ric tlilxtation exerts a deep influence on the st,ructure of the turbulence in the<br />

boundary laycr. Agreement between rnensnrement, and calculnt.ion could be considerably<br />

improved by the introduction of an additional term in eqn. (19.42). A method<br />

of int,egrat.ion for three-dimensional cornprcssible boundary layers was (leveloped by<br />

PT). Smit,l~ (941; a ~)roposnl in this rnaI.(.cr was tnntlc by J. Cor~st,cix [gal: colnparcalso<br />

I). Arnnl ct, al'. [Inl n.nd J. Consteix c,t al. [Db].<br />

References<br />

[I] Anon.: Con~preasihlc turbulent houndnry Inyers. A symposium held at Langley Itesearcll<br />

Center. Hnmpton, Virginin. Ilecenibcr 10-11, 1968; NASA SP 210 (1969).<br />

[In] Arnnl, I)., Courrl.c:ix, .I., and Mid~cl, I


[40] fioffninnn, E.: Ikr WRrmciibrrgeng bei drr Stromung im Itohr. X. Ges. K5ltr-Ind. 44,<br />

nn -107 - II!I:~I \- .,.<br />

[41] Johnson, 1).S.: Vclocsity, temprmtl~rc, and hmt transfer mcnsuren~cnts in a t~~rbulcnt<br />

bountlnry lnyrr do~~r~trrxtn of n ntepwise d~scontinuity in wall tempcrntc~rc. J. Appl. Mcch.<br />

24 ..' 2 - X .. 1 ,-..,.,. lOTr7I<br />

(421 .Johnnori, D.S. : Vclocit,y and l~niperat~urc fluctuation rncnaurcmei~ts in a t~~rbl~lcnt houndary<br />

laycr downntrcnrn of a step\visc discontinuity in wall tenlporat~tre. Trn~ls. ASME ,I.<br />

Appl. Mecdi. 26, 32.5--33G (I 9.59).<br />

[43] von KB.rn16.n. Th.: '1'hc ptoblctn of rcsi~tancc in cotnprc~niblc fluirls. Volta Congress Rome<br />

19JR. 222 -277; see also Coll. Works Ill, 17!)-221.<br />

1441 von Khnhn, '1'11.: 'rho analogy bet.wccw lluid friction and hcnt t,ranafcr. Trnns. ASME 61,<br />

70R--7 10 (I!):)!)); RCP 111~0 (:011. Work8 111, 3.56-X7.<br />

14.51 Koatin, .I., and Hicltartlson, P.D.: Heat tmnufer ncrom turbnlent incompressible boundary<br />

Inyera. Int.. J. Ilcat anti Mnun 'I'rnnufor 6, 147-189 (1963).<br />

1461 Kcstin, J., nnd Ricl~arclson, 1'.1).: Wiirmeiibcrbrngung in turbulenten (:ren7*lcllichten.<br />

Foruchp;. 1ng.-WCR. 29, 93-- 104 (1963).<br />

[46a] Kcstin, J., and Perscn. L.N.: The Imnafer of hcnt across a turbulent boundary layer at<br />

very high l'riindtl numbera. lnt. .J. I-lmt and Mass Transfer 5, 355-371 (1962).<br />

1471 KistJer, A.L.:' Fluct.unt.ion rneasnrctiicti~ in a supcrsonic tnrbulcnt boundary layer. Phys.<br />

@ Iui& 2, 2!)0 - 296 (1969).<br />

1481 Klobnnoff, Y.S.: Chnrackristic8of turbulence in n boundary layerwith zeropressurcgmtlient.<br />

NACA TN 3178 (1954); TR 1247, 1135-1163 (1955).<br />

[49] Kovnuenny, L.S.O.: The hot-wire nncmometer in ~npersonic flow. JAS 17,565-673 (1950).<br />

[50] Kutateladze, S.S., and Leont'ev, A.I.: Turbulent boundary layer in compressible gesee.<br />

I'ransl. by D.U. Spnlding. Edward Arnold Publishera Ltd., London, 1904.<br />

[6l] Lilley, G.M.: An npproximation solution of the turbulent boundary lnycr equation in incompressible<br />

and compressible flow. Coll. Aero. Cranfield Rep. 134 (1960).<br />

1621 Licpmann, H.W., and Goddard, F.E.: Note on the Mach number effect upon the skin<br />

friction of rough sitrfncca. JAS 24, 7R4 (1957).<br />

[R3] Lohb, R.K., Winklcr, EM., and Porsh, J.: ICxpcrirncntnl invratigntionoftr~rbr~lettt bormdary<br />

layern in hypcrnonic flow. NAVOJtD Rep. 3880 (1955).<br />

[54] Ludwieg, li.: Ein Gerat zur Measnng der Wandschubspannung turbulcnter Reibungsschichten.<br />

1ng.-Arch. 17, 207-218 (1949).<br />

[65] Ludwicg, 11.: 13cntiminung des Verhrilt.niaaea der A~tstauachkoeffizienten fiir Warme and<br />

Inipula bci tnr1)ulenten Grcn7achichten. ZFW 4, 73-81 (1966).<br />

[RO] Mack, L.M.: An experimental investigntion of the temperature recovery-factor. Jet Propuluion<br />

Laboratnry, Calif. IIIRL. TCCIIII., Ynundcnn, Rep. 20-80 (1054).<br />

1571 Mnger, 8.: Trnnalbrmntion of tlic compresuible turbulent boundary layer. JAS 25,305-31 1<br />

(1958).<br />

[BR] Matting. P.W., Chapman, D.R., Nyholtn, J.R., and tho me^, A.G.: Turbulent skin friction<br />

at high Mach nnmbcrr and Reynold~ numbers in air and helium. NASA TI2 R-82 (1961).<br />

[59] Mchffcrty, O.11.. irntl Hehbor, RE.: 'rho cffect of ndverae proasure gradienb on the characteristic~<br />

of turhulcnt honndary lnyers in supcrsonic atrcams. JASS 29, 1-10, 18 (1962).<br />

[60] Meier, H.U.: Experirncntellc und thcorctische Unterauchungen von turbulenten Grenzschichten<br />

bei Uherschnlistrii~n~~ng. Mitt. MPI Stromungsfonchg. u. Aerodyn. Vernuchsanat.<br />

Nr. 49, 1 - 136, (1070); Dim. Brnrtnschweig 1970. .<br />

[61] Mcier, H.U., Lee, R.E., and Voisinet, I2.L.P.: Vergleichsmessungen mit einer Danberg-<br />

Teniperaturaonde und einer kombinierten Druck-Tempcraturaonde in turbulenten Grenzachichtcn<br />

bci Obcrsclinllotro~n~tng. ZPW. 22, 1-10 (1974).<br />

[62] Moicr, H.U., Voiainct, R.L.P.; and Gatea, D.P.: Temperature diatributiona using the law<br />

of the wall for cornprcauible flow with variable turbulent Prandtl numbers. AIAA 7th Fluid<br />

and Plnnma Dynamics Conf.. Palo Alto, Calif. 1974, AIAA Paper No. 74-696 (1974).<br />

16.31 Mcicr, H.11., and Jtotta, J.C.: Tempcrature di~tfibntions in supersonic turbulent boundary<br />

Inyers. AIAA J. 9, 2149-21R6 (1971).<br />

I641 Meior. H.U.: 1nvcstignt.ion of the hcat tranafcr tncclianism in auperuonic turbulent boundary<br />

Inycrs. Wiirme- und Sbffiihcrtragnng 8, 169-165 (1975).<br />

[c,:',] Morkovin, M. V.: Effect* of comprraaibility on turbulent flows. Colloqucs Jnt. CNRS No.<br />

IOR, 3fi7- 3R0, MCcirniquo dc In turbulcn~~, Marseille, 1962.<br />

[66] N~tnncr, W.: Wiirtneiibergang und I)rnckabfalI in rauhen Rohrcn. VDI-Porxcli. 455 (1956).<br />

1671 Owrn, P.R., and Thomaon, W.R.: Hcnt trnn~fcr across rongh surfnccs. JPM 1.5, 321 --Xi4<br />

- -<br />

(1943).<br />

[68] I'nppns, C.C.: Mcasnrcnwnt of beat trnnufcr in the tnrbulorit Iiornltlnry layer on n flat. plate<br />

in supcrsonic (low and comparison wilh skin friction rcsulta. NACA TN :12'2!! (l!)h4).<br />

[69] Perscn, L.N.: A note on the bnnic cquntions of tr~rbulcnt, boundary laycn nntl tho hcat<br />

transfer throng11 such laycrs. ZFW 15, 31 1-314 (1967).<br />

[70] Prandtl, L.: Eine Beziehung zwischen Wiirtncaltstnusrh nnd Striin~ungswiclerstntlcl (lor<br />

Fliissigkciten. Phya. Z. 11, 1072- 1078 (1910); see also Coll. Works II, 585--5!M.<br />

[71] Reichardt, H.: Dio Wiirmciihcrtragnng it1 Cnrb~~lonbn Rcil~~tngsscllicl~te~l. ZAMM 20, 297.-<br />

328 (1!)40); NACA TM 1047 (1943).<br />

172) - - Jloic:hnrtlt,, 11.: 11111)nla- rind Wiir~t~o~ir~nI.nr~sc.II bci froior 'I'1n~11111c~nz. ZAhlM 2.i. 21% 272<br />

(1944).<br />

[73] Reichnrdt, 11.: Ocr Eilifluu~ der wnndnahcn St,rijmung nt~f tlcn trrrbnlcnten Wiirmciibcrnng.<br />

Rcp. Max-Plnnck-Inst, fiir St~riit~tungsforscl~~~ng No. 3, 1---li3 (1!)60).<br />

[74] fZeichardt, H.: Die Grundlngen des turbulctrten Wiirmeiibcrgn~lges. Arch. Wiirtnotc!chn. 2,<br />

129- 142 (1061).<br />

[75] Reahotko, E., and Tucker, M.: Approxirnate calculation of the compre~~ihle tllrbulent<br />

boundary layer with heat transfer and arbitrary preaanre grdicnt. NACA TN 4164 (19.571.<br />

(761 Reynolds, 0.: 011 tho extent and nct,ion of tho heating surface for rtcaln hnilcrs. h"~.<br />

Munchester Lit. Phil. Soc. 14, 7-12 (1874).<br />

[77] Reynolds, W.C., Kays, Mr.M., and Kline, S. J.: Hcat trnnufcrin the turbulcnt inconlpr~~ible<br />

boundary Iayor. I. Constant wall temperature. NASA Mcmo. 12-1-58 W (1968); 11. Stop<br />

wnll tcmpernt,ure distribution. NASA Mcmo. 12 -2-68 W (1958); 111. Arbitrary wall<br />

temperatnrc and heat flux. NASA Mcmo. 12-3-58 W (1958); IV. Effect or loc:ntion of<br />

trnnsition nnd prcdiction of hont tmnafor in n known tran~ibion ragion. NASA Momo.<br />

13-A--5R .- - -- W .. I , IORRI. - -. ..-,.<br />

[78] Itotta, J.C.: Ober den Einfluaa der Mnchschen Zahl und dm Wiirmeiibergangs auf das<br />

Wandgesctz turbulcnter Stramun en. ZFW 7, 264-274 (1959).<br />

1701 Rotta, J.C.: Turbulent boundary!ayera with heat trnnsfer in comprcssible flow. AGARTI<br />

t. . Rep, 281 (1900).<br />

[80] Itotta, J.C.: llemerkung zum Einflnes dcr 1)ichtoschwank~ngcn in turbulcnlotl Urcns-<br />

scliichten bei kom~reaaibler Stromung. 1ng.-Arch. 32, 187-190 (1963). - .. .<br />

[81] Rotta, J.C.: ~entp~rnturvrrteilun~en in dei turbulenten Grenzschicht an der ebencn l'lntte.<br />

lnt. J. Hcat Maaa Transfer 7, 216-228 (1964).<br />

[82] Rotta, J.C.: Effect of streamwise wnll curvaturc on compr~lsiblc turbulent. bonndnry layers.<br />

IUTAM Symp. Kyoto, Japan, 1966. Phys. Fluids 10, S 174-S 180 (1967).<br />

[83] Rotta, J.C.: Eine Bcziehung zwischen den ortlichcn Ibib~rngsbciwerten turbulcnkr Grcnzachichten<br />

hci kotnpressiblcr und inkomproasiblcr Stromong. ZFW 18, 195-201 (1!)70).<br />

[84] Itott.~, J.C.: POICI'RAN IV - Hechrnprogmmm fiir ~rcnzachichtcn hoi kotnlirrsd~lon<br />

ebenen untl achuensymmetrischen Strbmungcn. DLR FB 71 -51, 1-82 (1971).<br />

1851 Rubeain. M.W.: A modified Reynolda analogy for the conlprcssible turbulrnt boundary<br />

laycr on a flat plate. NACA TN 2917 (1963).<br />

. 1861 Schubauer. G.U.. and Tchen, C.M.: Turbdent flow. High Spcocl Aorodyt~trtnics and Jot<br />

><br />

Propulsion V, 75-196, Princeton (1959).<br />

[87] Seiff, A.: Examination of the existing data on the hcat transfer of turbulent houndnry<br />

lavera at su~enonic speeds from the point of view of Reynolds analogy. NACA TN 3284<br />

Heat trnnsfer to a turbnlent stream from a surface with n step-wise tliscontinuity<br />

in wall temperature. International dovcloptnents in hcat tranafcr (L'roc. Cod.<br />

organized by ASME at Boulder, Coloredo, 1961), Part 11, 439-446.<br />

[89] Spalding, D.B., and Chi, S.W.: The drag of n compressible turbulent boudary layer on<br />

a smooth flat. plate wit.h and without hcat trnnsfer. JFM 18, 117-143 (1964).<br />

[90] Spence, D.A.: Velocity and enthalpy distributions in the compr~lsible turbnlent boundary<br />

layer on a flat plato. JFM 8, 368-387 (19GO).<br />

[9l] Spcnce, D.A.: Some applicatione of Crocco'a integral for tho turbulent boundary Iayor.<br />

Proc. 1960 Heat Transfer Fluid Mech. Inat., Stanford Univ. 62-76 (1960).<br />

[92] Spmce, D.A.: The growth of comprwible turbulent boundary layers on isothermal and<br />

adtubatic walls. ARC RM 3191 (1961).<br />

[93] Stratford, B.S., and Beavers, G.S.: The calculation of tho con~prmaiblc tnrbulcnt bonndnry<br />

layer in an arbitrary presaure gradient. A correlation of certain previous mclhods. ARC<br />

RM 3207 (3959).


[04] Smith, P.D.: An integral prediction met.hnd for three-dimensional compressible turbulent<br />

bou~ldary Inyers. ARC IIM 3730, 1-54 (1074).<br />

[BB] 8cln1ltz-Jantler, R.: Hont t,ransfer cnlculrlt,ions in tnrhulcnt boundary layers rtsing integral<br />

relations. Acta Mechanicn 21, 301-312 (1075).<br />

[!lo] Tnylor, G.I.: Conditions st the swfnco of a hot body exposed to the wind. ARC RM 272<br />

I1RlRL<br />

3 ,<br />

[07] Tnylor, G.1.: Tlw transport of vorticity and hat through fluids in tnrbulent motion.<br />

Appendix hy A. Fagc and V. M. J'alknrr. l'roc. Roy. Soc. 135, 685 (1032); .we also Phil.<br />

Tram. A 215, 1 (1015).<br />

/ Taylor, .J.It.: Tetnpcraturr and heat RIIX tlistriht~tions in incon~nrrosible tr~rbulent eouilibriun~<br />

honntlary iayero. Int. .I. llcnt MILRR 'I'rnnsfcr 15, 2473--i488 (1!)72).<br />

Tnclcer, M.: Approxitni~tc t,urbulcnt hor~ntlary layer tlcvclopn~ent in planc? con~pressible<br />

flow along t~hrrnmally insulated sr~rfaccu wit.11 application to uupcrso~~ic-t,ur~nrI contour<br />

corrcct,ion. NACA TN 2045, 78 (1950).<br />

Walz, A.: Niil~er~~ngstheorie fiir kornpressihlc t~~rbulente Grenzncl~ichten. ZAMM-Sontlerheft<br />

36, 50-56 (1050).<br />

Walz, A.: Uher Fortsc11rit.k in Niihcrwigsthnorir r~nd I'mxis tler Rercchnung kornprcssibler<br />

Ian~ino.rer nnd turbulenter Grenzschicht~en mit Wiirn~eiibergang. ZFW 13, 80-102 (1065).<br />

Wilson, It. E. : Turbulent bountlnry layer chamobristics at supersonic npectls - <strong>Theory</strong> sntl<br />

experiment. JAB 17, 585-504 (1!)5O).<br />

Winltler, 1E.M.: Invcstipntion of flat plate hypersonic turbulent boondary layers with heat<br />

transfer. J. Appl. Mech. 83, 323-32!) (1901).<br />

Winkler. E.M., and Cha, IM.11.: Investigation of fiat plate hypersonic turbulent boundary<br />

layers with heat t,ransfrr at a Mnch nr~nil)cr of 5.2 (U). NAVORL) Rep. 0031 (19.59).<br />

Winter, K. G., Roth. J.C., and Slnith, I


730 XXIV. Prec turhi~lent. flowu; jcta and wnkes<br />

in tjhe tlownst.ream direction. Concurrently the jet spreads out and its vclocity de-<br />

creases, but the total momentum remains constant*. A comprehensive account of the<br />

problems of free jets was given by S.I. Pai [26]. See also the book by G.N. Abrnmo-<br />

vich [ll.<br />

A wake is formed behind a solid body which is bcing dragged through fluid<br />

at rest, Fig. 24.1 c, or hehind a solid body which has hcen placed in a stream of fluid.<br />

The velocities in a wnkc arc smaller than those in thc main stream and the losses<br />

in the vclocity in thc wakc amount to a loss of momcnta~m which is due to thc drag<br />

on the hody. Thc sprcad of thc wakc increases as tllc distancc from thc body is<br />

increased and the cliffcrenccs between the velocity in the wake and that outside<br />

I)ecomc smaller.<br />

Qnalitativcly such flows resemble similar flows in the laminar region (Chaps. IX<br />

and XI), but thcrc arc large quantitative differences which are due to the very much<br />

larger turbulcnt friction. Free turbulent flows are much more amenable to mathc-<br />

matical analysis than turbulcnt, flows along walls because turbulent friction is much<br />

larger than lnrninar friction in the wholc region under consitlcration. Consequently,<br />

laminar friction may bc wholly neglected in problcms involving free turbulent flows,<br />

which is not tho c.wc in flows along solid walls. It, will be rccalled that in thc lattcr<br />

case, by cont.mst,, laminar frict.ion must always bc taken into account in thc imrnc-<br />

diatc ncigl~bourhood of thc wall (i. c. in thc laminar sub-lnycr), and that causrs great<br />

mathematical tlifficultics.<br />

Furtlirrmorc, it will ho noted that prol)l~ms in frec turbulent flow arc of n<br />

houndmy-hycr nature, mcaning that tho region of space in which a solntion is being<br />

sought docs not cxtcntl far in a transverse direction, as comparctl with the main<br />

dirc~t~ion of flow, and that tho transverse grndjcnts arc large. Conscqucntly it is<br />

permissible to study such prol)lcms with the aid of the boundary-layer equations.<br />

In tlic two-tlimrnsiond iwomprrssit)lc flow tlicsc are<br />

Ilcrc T t1c:notcs t.hc I~url~~~lcnt shmring sl.rcss. l'hc pressure term has bccn droppcd<br />

in the cqrmtion of motion because in all problems to be considered it is permissible<br />

to assume, at Icast to n firsL approximation, that the prcssnrc remains constant. In<br />

the case of wakcs this assumption is satisfictl only from a certain distance from the<br />

tmtly onwartls.<br />

In ordm to be in a po.sit.ion t,o intrgratc the systcrn of equations (2.1.1) and<br />

(24.2), it is necessary to exprem the tnrbulcnt shearing stress in terms of the paramctcm<br />

of tho main ~Iow. ~t present suct~ an rIimin&tiort can only 110 aotticvcd witti<br />

the aid of sorni-cnipiricd ~~snmptions. 'LY~csc liavc already bcen ciiscuwcd in Chap.<br />

XlX. In this conncxion it is possible to make use of I'rantltl's mixir~g lcngtll tl~cory,<br />

eqn. (19.7):<br />

or of ite extension<br />

b. Estimation of tho incre-c in width ntid or tho dccre,wo in vrlocity<br />

where the mixing lcngths 1 and lI are b be rcgartl~rt na purely local functionst. They<br />

must be suitably dcalt with in each particular case. Further, it is possible to use<br />

Prandtl's hypothesis in eqn. (19.10), namcly<br />

t,=o& aa- ~ I L<br />

,ag - e xl b (urn,, - %,in)<br />

731<br />

(24.5)<br />

where h tlenotcs thc width of the mixing zone and x, is an empirical constant. Morc-<br />

over<br />

is the virtual kinematic viscosity, nssumcd constant ovcr thc wholc width and, IICIICC,<br />

independent of y. In adclition it is possible to use von IChrmh's Ilypothcsis, cqn.<br />

(19.19) and that due to G. I. Taylor, cqn. (19.15~~).<br />

Whcn cithcr of thc nssnmpthns (24.3), (24.4) or (24.5) is uscd it is fonncl that<br />

the rcsolts differ from cach otlicr only compnmtivcly littlo. ?'he bcsl rncnsuro of<br />

ngrccmcnt with cxpcrimcntal rcsnlta is furnished by thc awnml)tion in ccln. (24.5)<br />

and, in addition, the resulting cqnations arc morc convenicrit to solvc:. I'or I.l~c:sc:<br />

reasons we shall express a prcfercncc for this hypothcsis. Ncvcrtl~clcss, sonlo cxar~lplcs<br />

will be st~~diccl with the aid of thc l~y~otlicscs in cqns. (24.3) and (24.4) in ortlcr to<br />

cxhibit tho diffcrcnccs in tltc rcsulta whcn clifhrcnt, l~ypoblicscs arc IIRCCI. Morcovt~r.<br />

the mixing Icngth formula, cqn. (24.3), has rcndcrctl such valuablc service in the<br />

theory of pipe flow that it is useful to tcst ib applicability to thc typo of glow under<br />

consideration. It will be recalled that, among others, the universal logarit~limic<br />

velocity dist,ribution law has bcen dcduccd from it.<br />

b. Estimation of the increase in width anal of the clecrcnoc in vclneity<br />

Bcrorc proceeding to intcgratc cqns. (24.1) ant1 (24.2) fnr scvcrd parth11:rr<br />

cascs wc first propose to make estimatiotis of onlcra of magr~it~utlc. In this way wo<br />

shall bc able to form an idea of the typc of law wl~ich govcrns thc increase in the<br />

width of thc mixing zone and of the decrcasc in the 'hcight' of the ~clocit~y ~~roAlo<br />

with increasing distancc x. The followit~g accourlt will bc based on one first givrt~<br />

by I,. Prantltl [27].<br />

When dealing with problems of turbulcrlt jck and wakes it is usu;dly assumed<br />

that the mixing lcngth 1 is proportional to the width of jct, 0, because in this way<br />

wr are led to 11sdu1 rcsults. Hcnce we put<br />

t This extension was not diucu~acd in Chnp. XTX bccnuuc it is usrd only very rnraly.


732 XXIV. Frcc trtrbt~lent flows; jets and wakeu b. Estimation of tho incresso in width and of the dccrcnso in volocit.y 733<br />

III addition, the following rule has withstood thc test of time: The rate of increase<br />

of t,he width. b, of the mixing zone with time is proportional to the transverse ve-<br />

locity 1)' :<br />

Here D/Dt denotes, as usual, the s~bstant~ive derivative, so that DID1 = u a/ax -1-<br />

+ v a/az/. According to a previous estimate, eqn. (19.6), we havc v' - 1 au/ay, and<br />

t,hus<br />

Further, the mcan value of au/ay taken over half the width of the jet may he nssumetl<br />

to bo approximately proportional to u,,,/b. Consequently,<br />

1 Z' = const x -- u,,,,, = const x B u,,, .<br />

(24.7)<br />

Dl b<br />

Jet boundary: With t.he use of t h preceding relations wc shall now estimate-<br />

tho rntc at which the width of thc mixing zone w11ic:h nccompnnics n frro jcl, l~orlntlnry<br />

incrcascs with t.hc tlist,xncc, z. For the jet bountlar.y we have<br />

On comparing eclns. (24.8) and (24.7) we obtain<br />

which mcnns thnt tho width of the mixing zone associatctl with a free jet. boundary<br />

is proportional t,o t,hc cli~t~ancc from t,hc point wllcrc the two jcts meet. Tl~c coristnnt,<br />

of inl,cgraLion which mustf, stricLly spcalting, appear in Ll~c nbovc equation can br<br />

rnatle t,o vanish by a snitablc choice of t.hc origin of the coordinate syste$.<br />

Two-tlimcnnionnl nntl cireulnr jet: 15qr1ation (24.8) rc:nr;rins vn.litl in t.hc cnsc 01'<br />

a two-tlimcnsio~~d ancl of a cironlnr jrt,, rc,,,,,<br />

lirir. 'l'lins in sn(:Ir t:ascs wo :dso Ilnvo<br />

clr~~of.itrg now I.hc vclocii,y at, t .11~ ccn1.1.r-<br />

.;I<br />

In thc case of a two-dimensional jet we have J' = const x p uZ,,,,, 11, wlicrc J'<br />

denotes momentum per unit length, and hence u,,, = const x h-t/21/.~'/p. In view<br />

of eqn. (24.9) we have, further,<br />

u mnZ= const x -- 114 (two-dimensionaI jet) . (24 10)<br />

iG<br />

In the case of a circular jet the momentum is<br />

J = ronst x p u2,,,, h2<br />

and hence<br />

[n view of eqn. (24.9) we now have<br />

Two-dimensional and circular wake: Instend of cqn. (24.8) wc now have<br />

wlierc u, = U, - 14. On equating tho two cxprcssions, wc obtain<br />

or<br />

db 1<br />

U,--- -U<br />

dz b l=Bul<br />

db<br />

-- - p - (two-tlimcnsiond nntl circular wr~ltc) . (24.12)<br />

ci z U,<br />

'J'lte cnlcnlation of momcritum in problems involving wsltcs tli~crs from that<br />

for the case of jets, because now t,here is a direct relationship 1)ctwcc.n momcntrtm<br />

and the tlrag on the body. As nlrcntly mentionctl, eqn. (9.26), the momcntrim irilrgrnl<br />

is<br />

D=J=eJu(U,-u)dA,<br />

provitlctl t,l~at 1.11~ control surface has I~ccn plac:ctl so fnr bchintl the body t.h:~L t


734<br />

XXlV. Prrc b11r1111lcnt flows: jot8 RIIC~ wnkcs<br />

Inserting eqn. (24.12) for t.lio rate of increase in width, wc obtain<br />

or<br />

h N (p x cell d)1/2 (two-tlimonsiond wake) . (24.15)<br />

Inserting this vr~lur into cqn. (24.14) we fintl that the rate at which the 'depression'<br />

in the vclocity curve tlccrcascs downstream is rcprcscntcd by<br />

(two-dimensional wake) .<br />

Tn other words, t,lie width of a two-dimrnsional wake increases as ii and thevelocity<br />

tlccreases as 1 /fi .<br />

Circular wakc : Dcnot.ing tlir frontal arca of thc body by A we can write<br />

its drag as D = 4 c, A e M,Z and the momentum, eqn. (24.13), becomes<br />

J - e U, u, h2. ICqunting 11 and J, wc ohtain<br />

Inserting this v:rluc into rqn. (24.12), wr fi~d Illat thc increase in width is given by<br />

or<br />

d 1)<br />

6' ,iz - P CII A<br />

h N (p c, A x)1ln (circular wake) . (24.18)<br />

Tnscrting eqn. (24.18) into (24.17) we fir111 for Lhe clccreasc in the ilcpression in the<br />

vcloc.ity profile tho rxprossion<br />

c,# d<br />

(circular wake) .<br />

- ( )<br />

'I'nblc 24.1. I'owrr Itiws for tho inrrcnso in witl1.h nntl for tho docrcnm in tho ccntm-lino vclocity<br />

in terms of distance z for problclns of free turbulent flow<br />

Fro jet boundary<br />

Two-dimenuionel jet<br />

Circnler jot<br />

'I'wo-dintonsionnl wake<br />

Circulnr wake<br />

width<br />

b<br />

laminar<br />

--<br />

:ent-rc-line velocity<br />

or Ul<br />

Z0 '<br />

1<br />

Z-IIJ i<br />

turbulent<br />

:entrc-line velocity<br />

'J,",,: or 'JI<br />

, .Lhus, . for a circular wakc we find that, Lho wirlLIi of Llic w:dtc incrc~nsos in ~rroport.ion<br />

to x'I3 arid that the velocity decreascs in proportion to x-~IR.<br />

The power-laws for thc width and for the vo1oi:ity in ftllo centre 1i:~vo 111:ori<br />

summarizctl in 'l'able 24.1. Tho corresponding laminar eases which wtm partly<br />

considered in Chaps. IX and XI have been added for completeness.<br />

c. Examples<br />

Tlie prcccding c:stiniatcw givc in Ll~crnsclvcs n vory good i(lo:~ of t,llo OHSI:II~.~:L~<br />

features cncountcred in problems involving free turhulcnt flows. We shall, howover,<br />

now go one stcp f~~rthcr arid shall exaniinc scvcral pRrticl~lar c:ases in muc:li grcatm<br />

detail deducing the complete velocity tlistributiori function from the ccl~~:~tions<br />

of motion. In order to achieve this result it is necessary to draw on ono of tho hypotheses<br />

in eqns. (24.3) to (24.5). The examplcs which hnvc bccn sclcatd Iicro for<br />

consicler:~tion all have tlic common fc:hire that tho velocily profiles wliicli owur<br />

in thcm are aim.ilnr to each othr. 't'liis means that thc velocity profilcs at tlifi'~:rcnt~<br />

distances x can IN made congn~cnt by n, suitsblc choicc of a vclocity and :r width<br />

scalc fnctor.<br />

1. The urnoothing out of a velocity discontineity. As our first cxarnlrlr wc- s1i:~ll<br />

consider tlic problem of the smoothing out of a velocity tliscontinuil.y wltit:h was<br />

first treated by 1,. Prandtl [27]. At time 1 = 0 thcre are two strcams moving at<br />

two different velocities, U1 and U2 respectively, their boundary bcing at y == 0<br />

(Fig. 24.2). As already mentioned, tlic bonndary ncross wliic4i the vcloc4t.y v:trit-s<br />

discontinuously is unstable and the process of turbulent mixing sinoothcu out. the<br />

transition so that it becomes continuous. The width of the zone ovcr which this<br />

continuous transition from velocity U1 to velocity 1J2 takes place incrcnscs with<br />

incrca9ing time. We are hcre concerned with a problem in non-steady parnllcl llow<br />

for which<br />

u = u(?y,l) ; v = 0. (24.20)<br />

Thc convectivc terms in eqn. (24.1) vanish idcntically. Making use of I'randtl's<br />

mixing theory, eqn. (24.3), we can transform eqn. (24.1) In give<br />

Fig. 24.2. The amoothing out of n velocity<br />

discontinuity, after Prandtl [27]; a) Initial<br />

pattern (t =O), b) Pattern at later instant a)


700 XXIV. Prrc tr~rb~tlent flowa; jcla and wakes<br />

The width of the mixing zone, b, increases with time and b = b(t); the mixing<br />

length is nssumcd to be proportional to b in the same way as before so that 1 = /I b.<br />

Assuming that the v~locit~y profiltts are similar, we may put<br />

wit01 11 = y/h antl 1) - lp. 'I'ltc cxponrnt p in the oxprcssion for the witl1,h can be<br />

detwnminctl from tho contlit,ion that in eqn. (24.21) the accrleration ant1 frictional<br />

terms n~ust br. proportional tlo cqual powers of t,imc, t. Thus awlat is proportional<br />

to 1-I, wllercas thc right-hand sidc is proportionnl t,o 12P-" = 1-P, so that p = 1.<br />

In this manner we obtain the following ass~lmptions for the problcm in hand:<br />

The ve1ocit.y u is bcst assumed to be of the form<br />

with lJ, = & (U, -1- U,) ant1 A = 4 (I/, - 11,). In ortlcr to maltc sure that at the<br />

edges of the mixing zone, i. e. at y = & 6, the velocity becomes equal to U, and U,<br />

respect ivdy, wo must put f = jl 1 at 77 = f 1. Tnserting thc vnlue from rqn. (24.22)<br />

into cqn. (24.21) wc obtain (.he followi~~g tlill'crcr~t,ial rqu:rtion for / (I/):<br />

l'hc equation has one solution /' =- 0, i. o. / = const, which rcprescnts tho trivial<br />

case of a constrant velocity. Tf, howcvcr, 1' tliffers from zero, we may tlivitle through,<br />

whcnrc we f ntl<br />

q 4- D2.B /Ir =o.<br />

B<br />

with c, = - IX/6 /?2 A. 'I'hc above solution satisfies the condition f (0) = 0 so that<br />

tlm rot~stant~ c,, and C, can br tlctcrmincd from thc condition f(q) = 1 and /I(?)<br />

nt, y == b, i. e nt 11 -- I. Ilrncr,<br />

= 0<br />

Introtlucing t,llcsc values illto cqn. (24.22) we qbtlain the solution in its final form<br />

with<br />

1 1<br />

, t) = - 2 (ul + 0,) + (24.23)<br />

(ul - UJ [ ; (F) L (6)3]<br />

6 -- $ 8' (U, - U2) t . (24.24)<br />

The velocity distribution from eqn. (24.23) is sccn plotted in Fig. 24.2. It has thc<br />

remnrlrablc property t,hat tho velocity in 1.11~ mixing rcgion docs not go over into<br />

the two free-stream velocities asymptotically. Transition occurs at a finiGc tlistanrc<br />

y = 11 with a tliscont,in~tity in @u/ay2. This is a general propertmy of all solutions<br />

obtained on the basis of Prxndtl's hypothesis (24.3) for tho shearing stmss in Curbulont<br />

flow. It, const.itut.es what may be called an esthetical tlcficiency olt,l~is hypot,llcsis.<br />

Thc itnprovctl hypothcscs (24.4) or (24.5) are frcc of this blcmish.<br />

Tho quantit,y /I = llh is the only empiriral constant which appcnrs in t,he so-<br />

I~rtion; it can bc tlctcrminctl solcly from cxpcrimcrlt.nl tl:cta.<br />

2. Free jet bon~ldnry. Thc condit,ions at a frcc jcl boundary arc rloscly rt.lnt,rrl<br />

to thosc in t,he prccetling examplc. With rcfcrencc to Fig. 24.1 a we shall consitlrr<br />

the more gencral case when at x = 0 therc is a meeting of two stfreams whosc const,:l~~t<br />

velocit,ics are IJl and U,, respectively, it, being assumed that U1 > IJz 1)ownstrcam<br />

of t.he point of cncountcr thc streams will form a mixing zonc whoso \vitll.l~<br />

h increases proportionately to x, Fig. 24.la. The first solution to the problcm<br />

under consideration was given by W. Tollmicn [B2], who madc use of I'rantltl's mising<br />

length hypothesis for turbulent shear, eqn. (24.3). We shall review hcre the mathcmatieally<br />

simpler solution due to H. Goertler [I81 who bascd it on Prantlt,l's hypothcsi~<br />

in cqn. (24.5). Since tho virt11a.1 Itincmnt~ic visrosit,y E is inclcpontl~~nt~ of' ?/,<br />

C~IIS. (24.1) nntl (24.5) givc<br />

au a~ aZu<br />

1L--+V--=&-.<br />

(24.25)<br />

az ay 'ay=<br />

Putting b = c x we obtain thc following expression for tho virtual kinematic vis-<br />

cosity, cqn. (24.5a), which is applicable t,o our casc:<br />

In view of the similarity of the velocity profiles and v arc funot.ions of y/x. Pl~t~ting<br />

[ = a y/x we can integrate the equation of continuity by the adoptio~~ of a sLrrnm<br />

function p = x U F([) where U = h(U1 + U?). Then u = U a Ff([) and eqn.<br />

(24.25) leads to the following differential equat~on for F([):<br />

F"' -+ 2 a2 F F" = 0 , (24.27)<br />

where a = &(x, c 1)-112 and A = ( Ill - U,)/(U, + U,). The boundary conditions<br />

are = & 00 : F'(t) = 1 f 1. The differential equation (24.27) is identical with<br />

Blasius' equation for the flat late at zcro incidence, cqn. (7.28), but the presrnt<br />

boundary conditions are different. II. Gocrtler solvcd oqn. (24.27) by nssl~n~ing a<br />

powcr-series expansion of the form<br />

with Fo = [. Substituting (24.28) into (24.27) and arranging in ascending powers<br />

of A, we obtain a system of differential equations which is solved by recursion.<br />

The first of the differential equations is of the form


738 XXIV. Frcc tnrbnlcnt flows; jctn nnd wnkes<br />

with the boundary conditions F'l(5) = f 1 at 5 = f oo. The solution of (24.29)<br />

is given by the error function<br />

The contriht,ions of the s~lccccding twms of the series in eqn. (24.28) are not significant.<br />

JJence the solution becomes<br />

with<br />

u = IJ, + U, UI - y,<br />

Figure 24.3 compares the theorctirnl solution with 11. Reichardt's [29] m~asurements<br />

for the case when [Iz = 0 nntf agrcemcnt is seen to be very good. The quantity a<br />

is the only empirical constant loft free to be adjustad from experiment. According<br />

to the mensurements performed by H. Reichardt the width h,,l of the mixing zone,<br />

mensurcd between stations where (UIU,)~ = 0.1 (corresponding to 5 = - 0.345)<br />

and (u/~J,)~ = 0.9 (corresponding to 5 = 0.975) haa the value h,,, = 0.098 x, which<br />

yicltls a -- 13.5. 'rhr virt,unl Itincmatic viscosity 1)ecomes c = 0-014 h, , x lJ1.<br />

Fig. 24.3. Velocity tlistribntion<br />

in the mixing zonc of a jot;<br />

n = 13.5<br />

Blunt body: The process of turbulent mixing th~t occurs in the wake behind a<br />

blunt body was explored in detail by M. Tanner [49]. The results are displayed in<br />

Fig. 24.4. At each edge behind a blunt two-dimensional body or around the sharp<br />

circular edge behind cylindrical bodies t.here form mixing zones of the kind sketched<br />

in the figure. Tho velocity distribution across sttch a zone is of the same shape as<br />

t.liat in Pig. 24.3; it can be described by eyn. (24.30). The similarity parameter a from<br />

eqn. (24.30n) strongly depends on the angle 4 of the two-dimensional wedge or axially<br />

symmetric cone. This dependence is represented graphically by Fig. 24.4. The<br />

pa~nmcter a tlecreascs considerably as the wedge angle 4 is increased. For 4 = 180"<br />

(plate at right angles to the flow direction) the value of a is only one half of that for<br />

$ = 0 (frce jet). This signifies that in the walte the angle of spread of the mixing<br />

Fig. 24.4. Turbulent mixing zone in the wake<br />

close hchinrl n ~q~int wedgc-liko body RA invwtigntctl<br />

by M. Tsnner [40]. Tho aindnrity pnrnnmbr<br />

a front cqn. (24.308) reprwcnted as a function<br />

of tlie wedgo angle 6<br />

zone behind a flat plate at right angles to the flow is about double of that in n hae<br />

stream. However, this is true only for the case when a flnt splitter plate is placed<br />

in the wnlre to prevent the forn~ation of n von JGrmAn vortex street.<br />

W. Szablewski [46, 47, 481 extended these calculations, acr well as those given<br />

in Scc. XXIVcI , t.o cnscs wllcn therc is n Inrge cIifi~rr~~cr in the tIcnuit.itw of I.II~!<br />

two strwms, IIUL :t s~nall tlil~crcncc in t11t:ir vclocitit~s. 11, tt~rus out, tIt:~t, tht* \ vitlI,lt~<br />

of the mixing zoncs are afTcctcd only very slight.ly by this tlihrcncc! in tlrnsit..y.<br />

Ncvt~rtlicless, as tlic cliffcrcnco in t.llc drnsit,ics is incrrnsrtl, the zonc of rnisin~ I~rt.olnt~+<br />

tlispI:t,ctxl in the ~lircction of t11c loss dt!tisc jct. 'l'lto p~wtding W S I I I ~ t::tut :I~SO IN:<br />

appliccl whcn t.hc two jets differ in tlioir cllomical cotiat?l~t.r:lt,iot~s. 1'. 13. Goocl(~t~ni,<br />

G. 1'. Wootl and I[. J. JJrcvoorL [I71 cnrrictl out an cxpcritncnt.:d invast.ip(.ion into<br />

the contlitions at the frcc I~otrntlary of n supersonic jot,. l'hr rcsults SIIOWC(I that<br />

the mixing zortc is soincwhnt nnrrowcr ant1 the 1cvt:l of turl~t~lrncr is somrw11:~t~<br />

smaller than in inconiprrssil~lr flow.<br />

3. Two-dimensional wake behind a eingle body. Two-dimensional walres wrre<br />

first investigated by H. Schljchting [35] in his thesis presented to Goettingen Utd-<br />

versity. The investigation was based on Prandtl's mixing length hypothcsis, cqn.<br />

(24.3). A solution for the samc problem which was based on I'mnclLI's liypotI~(~~i.~<br />

in eqn. (24.5) was later given by H. Reichardt [29J and II. Goertlcr [18]. Wc sh;d<br />

now give a, short account of both solutions in order to illustrate thc fact that tplla<br />

two results do not differ much one from the other.<br />

In the case of n wake, the volocity profiles bccomc similar only at! lnrg~ t1istnnt:r.s<br />

downstream from the Gody, there bcing no similarity at smallcr distnnrcs. Wt:<br />

shall restrict ourselves to tho consideration of large distances x so that, thc vrloritty<br />

difference<br />

u1 = Urn-u (24 31)<br />

is small compared with tlie frce stream vclocity I/,. At large dist,nncrs 1.11~<br />

stn.l,ic<br />

pressure in the wake is equal to the static pressure in tho frce stream. Conseq~~enbly,<br />

the application of the momentum theorem to a control surface which oncloscs the<br />

body, assumed to be a cylinder of hcight h, gives


Neglecting u12, we obtain<br />

XXIV. Prce twbulcnt flows; jets nnd.wnkos<br />

+ m<br />

n=he U,/u,dy<br />

y- -m<br />

Substit,uting D = 4 c, d h e rJ:, whcrc d denotcs<br />

we obtain<br />

+m<br />

t,hc thiclrncss of the cylinder,<br />

As deduced in,Scc. XXIVb, thc width and the velocity difference vary in a manner<br />

to give 1) N x1I2 and u, N x-'12.<br />

Shearing stress hypothesis from eqn. (24.3): Since the term v8ul8y in eqn.<br />

(24.1) is small, we obtain<br />

- a14! = 2 la 2 au aau<br />

--I.<br />

(24.33)<br />

ax ay ag<br />

It is assumed that thc mixing length 1 is constant over the width h and proportional<br />

to it, i. c. t,lmt 1 = /I b(x). In vicw of the similarity of the velocity profiles the ratio<br />

7 = ?//h is inlrotlurcd as tho intlcpcntlcnt variable. In agrccrnct~t with tho power<br />

laws for the width and for the dopth of depression in the vclority profilc wc makc<br />

the assumptions :<br />

h = B (en d x)'I2 (24.34)<br />

Inserting into eqn. (24.33), wc arc led to the following different.ia1 equation for<br />

the frtnction /(v) :<br />

--<br />

1<br />

(/ -1 7 /') =<br />

21J2<br />

- --- /' /"<br />

2 U<br />

wit,l~ the honndary conditions u1 = 0 and aul/ay - 0 at y = h, i. e. f = /' = 0<br />

at 11 -= 1. I~~tcgrathg oncc, we obt.ain<br />

whrrr thr constrant of intqption Itas been mn?tle ccpl to zero in vicw of the boun-<br />

dary rontli tion. I


742<br />

XXIV. Frcc t,url)rllcnt flown; jctn atid wnkcn<br />

bllz = 0.441 h, we have 0.44 1 ]/lii /I == : ant1 thus<br />

1 0 = -- = 0.18.<br />

b<br />

The precctling so111th1 const,it~~tcs an approximni.ion for large tli~t~ances X;<br />

rncnsnrcmont~ ~llnw t,llaf. it, is valid for z/c, d > GO. 111 the casc of srnnllor distanccs<br />

it is possible to calculate additionid farms for tho velocity, t,hc terms bcing proportional<br />

to %--' and x-~/~, resprctivcly.<br />

Shearing stress hypo thesin from eqn. (24.5): From eqns. (24.1) and (24.5) we<br />

now obtain<br />

i)ll<br />

ax<br />

a2UI<br />

ayZ<br />

(24.38)<br />

The virtrtal lzirwmatic visrosity is here E,= k1 ul,,, h and, hcnec, constrant nnct<br />

equal to E,, say. Consequently, the tlifferential~equation for ul is identical with that<br />

for a laminar wake, eqn. (9.30), except that thc laminar kinematic viscosity v must<br />

be replaced by F,. Thus we can simply copy the solution which was found in Chap.<br />

IX. Denoting r] = y i- , wo obhin from cqns. (9.31) and (9.34) t.hat<br />

so that finally<br />

The valllc of half tJlc wit1t.h at ldf tho depth is I),/, -.. 1.075 I/F,,//I., c,, rl (.r c,, rl)'ly.<br />

Comparing witall tho prccctline; mcnsurctl vah~e of bIl, it is Ii)ul~(l t.lt:~t, fhc vml)irit::tl<br />

qunntit,y 6, has t.hc vnlne<br />

Eo . .. = 0.0222 .<br />

ar D<br />

The preceding solution shows that the vc1ocit.y distribnt.ion in t,llc wnko c:w be rcprcscnt.ct1<br />

by Gausrt's function. The allarnativc sohrt.ion from cqn. (24.3!)) is scott plol.t.cd<br />

in Ipig. 24.5 ns curve (2). 'rhc tlifkrcncc bctwocn this rtolnI.iol~ it~tfl 1.11:1t in rqn.<br />

(24.37) is vory sln:dl.<br />

\V. Tollmien [53] solvcci the same problcm on Chc lxtsis of voll Ii:irm;in's<br />

tlypothcsis from eqn. (lD.l!)). Tn tho nrigllbourhootl of t,llc point,s of inflrsion in tho<br />

velocity profile, wl~crc Pir/ay2 = 0, it, Itas provctl nc:t!c:ss:try to in:lkc: :~~l~lil,iol~i~l<br />

assumptions. Extcnsivc cxpcrimcnts, which wrrc carried olll, by A. A. 'I'ownscwl 1.541<br />

in tho wako of a cylinder antl which wcrc concerned with t~~rlnllcnt fI~~~t~~:~t,ion<br />

at Reynolds numbers near 8000, showed that at a distancc equal to al,out 160 1.0 180<br />

tliamcters thc trlrl~cllent microstructrlrc is not ynt ftrlly tlevclopetl. I~urt.hcrn~on?,<br />

osoillngrams taken in t,hc strcanl dcmonsLmtc that the flow is f111ly t ~~rl~~~lnnt~ o111.y<br />

aro~~nd the ccnt.re, nnd ~I~~rtuntcs br.twcen laminar and tliri)ulent, in the ~lrighhlrhood,<br />

of the outer boundaries of the wake. Mcnsc~remenk on circ~tlar cylinders at, very<br />

large Reynolds numbers wcrc dcscribcd in Chap. I1 ; cf. 11. I'fcil 126b 1.<br />

Circular 11111lkecn have Ixcn invcst.ignf.ed by Miss I,. M. Swain [41] who Oiwt~I<br />

the calrr~lation on the hypothesis in eqn. (24.3). She obtained thr same rxprrssion<br />

for vclocity as in thc two-din~ensional casc, cqn. (24.37), but thc powcr laws for tllc<br />

width antl for thc ccnt,rc-line vclocity wcrc found to be tlilTercnt, namely b - XI/:'<br />

and ulm,, N X - ~ / ~ as , already shown in Tablc 24.1.<br />

Until recently, it has bccn ncccptctl tht t.hc valociby disLribuLion in :I W:I~C<br />

becomes indcpentlent of the shape of the body far cno11g11 bchind it,, antl is thrrcfore<br />

of a universal form. This belief was put. t,o ~ IIC t.est in a scrirs of ~~p(~ritnrr11,rt<br />

performed by If. Iteichardt ant1 It. J3rmshaus [31] and re1:itctl to wakcs bchintl bodics<br />

of revolnt,ion. Tt turned out that in cach individual casc the vclocity profiles rcmnin<br />

similar at varying distanccs behind the body. Ne~crt~hcless, the profiles behind bluR<br />

bodies (plates, cones with a ratio diamcter/height = 1) tcnd to be fullcr than t,hot;o<br />

behind lender ones (for examplc a cone with a ratio tlian~cter/hcight = 114 to 116).<br />

IJiffcrenccs of t.his kind have not bccn observed in two-dinrcnsional wakcs.


744<br />

XXIV. lhc L~trl)ulcnt Ilow~; jot. nnd wnkr~<br />

4. Thc wake behind a row of bars. The wake behind a row, or cascade, of bodies,<br />

such as that, behind a row which is composed of a very large ntimber of cylindrical<br />

bars whose pitc11 is eqnal to 1, Fig. 24.7, is closely rclated to the wake behind a<br />

single botly. Thc prcsant, casc was investigated both theoretically and experimentally<br />

by R. (:ran Olsson [19]. At a certain distance from the row, the width of the wake<br />

cast by a singlc clcmcnt of the row is equal to the pitch, i. e. b = 1. Tho velocity<br />

diffcrencc ul -- ITr,, - it is hero also small comparctl with IJ,, and cqn. (24.1) can be<br />

simplified to<br />

1 ar<br />

.. [JW ?'I =.= . - ...<br />

ax ay '<br />

(24.40)<br />

'rhc c:alculat.ion for thc caw in llancl bccomes very simple whcn the more general<br />

mixing longth i~ypot~l~csis from cqn. (24.4) is used. 'rho first step consists in the<br />

clct,crniinat,ion of t.hc cxponent in the power funct,ion for the decrease of u, with x.<br />

011 putting u, - XI' /(?I), wc have au,/az -- zp-l. 'l'hc right-hand side of eqn. (24.40)<br />

becomrs proport,iona,l to atla?/ N (an/$/) . (azu/ayz) - x21', because the mixing<br />

length, hcing proportiod to thc witlt.h, is constmt. Thus p - 1 = 2 p and it<br />

follows t,hnt p = - 1, or, that t,he velocity difference ul decreases in proportion<br />

to a-I.<br />

In the case of fnlly tlcvelopcd Row the vclocit8y tlistribution must he expected<br />

t,o he n pariotlie fnnct,ion in y, whosc period is equal t,o 1. Thus we assume<br />

1 - "1<br />

x<br />

I'ig. 24.7. I'low pattern bcl~inti a row of<br />

ham. Explanatory ketch<br />

The point y = 0 has here been made to coincide with the centre of one depression<br />

in the velocity di~t~ribution, and A is a free constant whose value is still to be determined.<br />

We now form the expression for the shearing stress t from eqn. (24.4) wit.h 1 = const<br />

and assume that l1 = 112 n, which scems permissible. The result is a very simple<br />

expression of the form<br />

Inserting t,llis cxprcssion into eqn. (24.40), we obtain A = (r1/1)2/8 n%nd hence<br />

the final solution<br />

.4ccording to the measurements performed by R. Gran Olsson, this cquat,ion is valid<br />

for x/l > 4.<br />

Behind a row of circnlnr bars for which 1/d = 8 the magnitude of t,hc mixing<br />

lengt,h is given by<br />

1<br />

7 = 0.103 .<br />

R. Gran Olsson also studied the case with t from cqn. (24.3) which implics 1, = 0;<br />

wit,h this nssu~npt~ion the calculation bccomes much moro cu~nbcrsomc-. 11. (:oc~t.lr~-<br />

1181 solved the same problem with thc aid of assumption (24.5) for t antl found<br />

that t,he solution was itlcnt,ical wit,h cqn. (24.41)t. A sccontl approsimnt.ion for<br />

smaller distances from tho cascndc was tlctlnccd by G. Cortlcs [7].<br />

Cascades with a very narrow spacing bctjwccn the bars arc often used in wind<br />

tunnels to obtain a locally uniform velocity disLributsion. But, oftcn several jets<br />

close in on each other, and this process prcvents the velocity from becoming uniform.<br />

J. G. von nohl [5] made a more detailed stndy of such phcnorncna nntl pcrfornlctl<br />

experiments on several rows of parallel, polygonal bars varying the solidity m, i. e.<br />

the ratio of that portion of the cross-section which is filled by bars t,o thc total<br />

channel cross-section over the values m = 0.308, 0.462 and 0.618. Wllcn tho value<br />

of In is small t,hc singlc jets remain parallel; the closing-in of jets occurs 11.t ahont,<br />

m = 0.37 to 0.46.<br />

5. The two-Jimci~eio~~nl jet. Tl~c tj~~rl)ulcnt two-tli~nc.~~sio~~~il<br />

lated by W. Tollmien [52] who used Pmndtl's mixing length hypothcsis, cqn. (24.3).<br />

In t,he present section we shall, however, give a short account of the simplcr solution<br />

based on Prandtl's second hypothesis, eqn. (24.5), which was given by 11. Rrichardt<br />

[29] and 11. Goertler [18]. Measurements of the velocity distribution wcre performed<br />

by E. Foerthmann [Ill and H. Reichardt [29].<br />

The rate of increase in the width of the jet, b - r, antl that of thc drcrcasc<br />

in the centre-line velocity, U - z-'I< have already been given in 'J'ablr 24.1. Eqrrations<br />

(24.1) and (24.5) lead to the differential equation<br />

jot, WIW first. (YIIVII-<br />

which must be combined with the equation of continnity. The virtrtal kincmalir<br />

viscosity is given by<br />

&, =xlbU,<br />

where U denotes the centre-line velocity. Denoting the centre-line velocity antl Llle<br />

width of the jet at a fixed characteristic distance 3 from the orifice by U, antl b,, re-<br />

-- - - -- -<br />

A<br />

t With tr=K A(u,,, --u,~,,), we have u - -- -- - cos (2" i) or, on mmpring wil~<br />

8xeK x<br />

eqn. (24.41), K - ~(1/1)~ = 0.103* = 0 0333. Thtm the virtttal kinematic vi~cosit.y herornrs<br />

&I= 0.0333 A(%mnz-~~m(n) .


746 X XIV. I+cc turhttlrnt flown; jeta and wnkcn c. Examples 747<br />

spectively, we may write<br />

Consequently,<br />

Fnrther, we put<br />

' 8<br />

s,= s, (:)' with E, = x1 0, U,<br />

7 =a-Y,<br />

where a denotes a free constant. The equation of continuity is integrated by the<br />

use of a stream function tp, which i~ assumed to be of the form<br />

Thus<br />

y) = a-I Us 6"' z''~ F(q) .<br />

On substituting into eqn. (24.42) we obtain the following differential equation for<br />

F(v):<br />

1. F' + 1<br />

-. FF" + -EL a2F"' =O,<br />

2 2 us<br />

with the boundary conditions F = 0 and F' = 1 at TI = 0, and F' --; 0 at v = oo.<br />

Since s, contain^ the free constant xl, we may put<br />

This substitution simplifies the preceding differential equation which can now be<br />

integrated twice, whence we obtain<br />

FB+F'=l. (24.44)<br />

This is exactly tlic same equation as that for the two-dimensional laminar jet,<br />

eqn. (9.42). lksolution is F = t.anh v so that thevelocity is# = Us (~1.9)-lla(l -tanli2v).<br />

'L'lie chamc~cristic velocity can be exprcsscd in terms of the constant momentum<br />

-I m<br />

per unit Icngth: .I -- p / UZ dy. Hence .I = ) p Us% s/a With J/p = R (kinematic<br />

-03<br />

momrnt,um), we obtain thc final form of the solution:<br />

,rllr Vn~IIo<br />

t,llr siligle cmpiricn.1 constant o was determined experimentally by<br />

11. Rcicliardt [29] who found that a -1 7.67. Fig. 24.8 contains n compnrisou 1)ctwccn<br />

the theoretical curve from eqn. (24.46) with the nicasurcmt:nts due to E. I'oertli-<br />

mann, curve (2). The theoretical curve obtained by W. l'olltnicn [52] on the I)xsis of<br />

Fig. 24.8. Vclocity tliatril)~~tion in a two-tlilncnnionnl, turbulent jot. hlctw~~rtmct~b<br />

Foerthmann [ll]<br />

<strong>Theory</strong>: rarrv (I) BIIC If* Tnlln~irn [Be]: curvr (2) lrom cqs. (24 45)<br />

cllto Lo<br />

Prandtl's mixing-length hypothesis, curve (I), hna also been shown for cornparinon<br />

The first theoretical curve shows a slightly superior agreement with nieasurerncnt<br />

as it is fuller near its maximum.<br />

1.125 I<br />

From the given nnmericnl value of a we obtain s,= - -<br />

4n 112 J . or<br />

E,= 0.037 bl12 U ,<br />

whcrc hllr again denotes half the width at half depth.<br />

A generalization of this problem consisting in a study of turbulent mixing under-<br />

gone between a two-dimensional jet with a co-directional external stream was ex-<br />

plored by S. Yamaguchi [GO]. See also S. Mohnmmadian [24n] nnd TI. Pfcil ct nl. [26a].<br />

6. The circ~tlar jet. Experimental rcsnlb on circular jcts wcrc give11 11y W. Zitil~n<br />

[61] and 1'. Ruder1 [33] as well as by IT. Reicliardt 1291 ant1 W. Wucst IFi!)] So&<br />

results of measurements on circular jets are also contained in t h scrirs of rrl~orts<br />

published by the Aerodynamic Institute in Gocttingen [GZ].<br />

The first thcorctical treatment of a circular jct was givcn by W. 'l'ollrnit~n [52]<br />

who based his study on Prandtl's mixing-length tlicory. In t.his cxsc, as ~cll as<br />

in the preceding one, the assumption for shcaring stress given in eqn. (24.5) lcntls<br />

to a considernbly simpler calculation. According to Table 24.1 (.lie witl(.li of t.11~


748 XXIV. Free turbulent flowa; jete and wakes<br />

jet is proportional to x and t h centre-line velocity IJ - x-I. Thus t,he virtual<br />

kinematic visrosit,y t~rcomcs<br />

which means that it ronxins constant over t,he whole of the jet, as it was in the<br />

two-dimensional wake. Consequently, the dirercntial cquation for thc velocity<br />

distribution bccornes formally identical with that for the laminar jet, it bcing only<br />

necessary to rcplacc the kinematic viscosity, v, of laminar flow by the virtaal ltinemat,ic<br />

viscosity, F ~ of , turbulent flow. It is, thercforc, possible to carry ovcr t,he<br />

solution for the Iarnitmr, circular jct, ccps. (1 1.15) to (1 1.17). Introclucing, once more,<br />

the constant, kinematic momentum, K, as a measure of the strength of tllc jett,<br />

we obtain<br />

I<br />

3 K 1<br />

U =- -<br />

Xn cox 1+ 1 ,2 ( T ) ''<br />

The empirical constant is now equal to fl/co. Accortiing to the mcasurement<br />

pcrformctl by IT. Reiclmrdt the width of the jcl is given -- by h,/, =- 04848 X. With<br />

7 = 1.286 at u = ) u, we hnvc hllz -- 5.27 x c ,/1/~, and hence<br />

whrrc, as bcforc, I),,, tlcnotcs half t.11~ width at half dcpth<br />

'I'hc diagram in Fig. 24.0 contains a comparison ,between measured velocit,y<br />

tlist,ribut.ion point,s and the tlleorcti~d results from eqns. (24.46) shown as curve (2).<br />

Cnrvo (1) proviclcs a furthcr cornprison wit.11 t,hc thcory due to W. Tollmicn [52].<br />

The mixing 1cngt.h tllcory lends hcrc also to a vclocity distrihut.ion curve wlticll is<br />

sonicwlmt t.oo pointcti near thc mnximum, whereas eqns. (24.46) givc exccllcnt<br />

agreement ovcr the wf~olc widt.11. 'I'hc pnttcrn of stream-lines is &own plotted in<br />

Fig. 24.10. IL is seen tllat the jet draws in at its,haoundary fluid from the surrounding<br />

mass at, rcst, so tl~at thc mass of fluitl carrictl by the jet incrcascs in a downstream<br />

c. Rxarnplcs<br />

. .<br />

Fig. 24.9. Velocity distxibut,ion in n circolnr, turbulent jot,. Menuuromentn duc t,o ltoicl~nrrlt [2D]<br />

'l'hrory: rurvc (I) dur lo Tullmlcn[6Zl:curve (2) from eqns. (24.48)<br />

Fig. 24.10. Pntttlrn of streamlines<br />

in a circulnr, turbulent free jet<br />

tiirection. The mass of fluid carried at a distmcc x from the orifice can bc ralculat.ed<br />

from eqn. (11.18). Inserting the above valnc for F,, we obtain<br />

Calculat,ions on the velocity and tcmpcraturc distributions in two-tlimc~~sional<br />

and circular jets havc also becn carried out by 1,. IIowartll [21], both on the basis<br />

of I,. Prandtl's and of G. I. Taylor's assumption conrcrning turbnlcnt, mixing. 'l'llr<br />

mechanism which governs thc mising of a jct issuing from a circular nozzlc wit,lr<br />

the fluitl in a large pipe was studied cxpcrirnentally by K. Irikt,orin [%I. 'l'hc<br />

experiments covered a range of values of the velocity ratio in thc pipe to that in<br />

the jet of from 0 to 4. Compared with thc mixing of a free jct wit11 the surro~lnd-<br />

ing fluid it is noticed that the pressure increases in t,hc direction of flow in :I m:rllnrr


wliic:h rrscm1)lrs t,Ile pl~cnomrna now a sucldcn incrcnsc in cross-scct.ionn1 nrcn<br />

nntl somctitncs tlrscrild as (hrnott's loss. A thcorct,icnl cnlculxtlion bnscd on<br />

I'mntf(,l's tni sing length hy potlicsis sllowcltl that t,hc vclorit.y dist.ribution i~chnvcs in<br />

tho s:lrnr way ns in n t:ircwla.r \wkc (witlt.11 - r1/", centre-line vrlocity -~-~1:').<br />

\\'l~cn $1, jet, of fini1.r wiclt.11 rmrrgrs it1t.o n ~~nifor~n st-ream, the uniform vclocity<br />

tlist.ril)nt,ion I)rcwi~rs l.r:~nsfortnrt1 I1c.n.r t,lic n1out.h of tho nozzlc into the prccctling<br />

prolilc. 'l'lic caso in hnntl wn.s sl,tijlietl by A. M. J


762 XXIV. Frcc td)ulcnt flows; jcta and wnltcs<br />

The first attempt to describe the circumstances of a wall jet by theory was under-<br />

taken by M. B. Glauert [16]. Thc former was considerably improved by E. A. Eiehel-<br />

brrnner et al. [13]. The semi-empirical theory succeeded for the first time in predicting<br />

the separation of a wall jet. Subsequently, J. S. Gartshore and B. (2. Newman [I41<br />

established an integral-momentum method which was based on very extensive mea-<br />

surements. Thesc includcd wall jcts witll injection. The calculation made it possible<br />

to determine the numerical value of the momentum coefficient that is necessary to<br />

avoid separation of the wall jet. Further expcrimental results can bc found in the<br />

papers by P. Bmdshaw and M T. Gee [4] as well as of V. IZrulta and S. Rskinnzi [23].<br />

The account by P. Thomas [51] describes expcrirncnts concerning thc mixing of a<br />

turbulent,, two-dimensional jet boundetl by a wall on one side with nn external flow on<br />

the other.<br />

Two-dimensional jete on highly convex, curved walls exhibit the wcll-lrnown<br />

C:nn.nrln cffrct, that is the adherence of the jet over wide tlistances along the wall in<br />

the flow directiofi. Expcrimental and t,heoretkal investigations into the pattern<br />

ereatcd by a plane jet flowing nlong the contour of a circular cylinder have been<br />

cn.rrird out, by -1. Gersten [Is]. 17. A. Dvorak [lo] deals with the calcnlat.ion of turbu-<br />

Irnt I)o~~ncla~ry hyors on highly convex, curved wall^, pixying special attontion t,o wall<br />

jcte flowing along cnrvctl walls. Wall jets are employed in practice for boundary layer<br />

cont,rol and in film cooling; compn.rc a,lso H.G. Ncwrnan [25a.], A. hTcl,rnl [24c, 24tlI<br />

anti I). W. Young [ROa].<br />

Thrre-rlirnrwionnl unll jrls with a finite ratio of the two sides have been recently<br />

stutlirtl expcrimcntnlly Ijy 1'. M. Sforzr~ and G. Ilt.rl)st [42], hy 1%. G. Nrwmnn ct, nl.<br />

[25J, by N. V.C. Swnrny nnd U 11. Gowtl:~ 1431, as wcll as by N.V.C. Swarny and 1'.<br />

Bandyopatfhyay [44] 'rliese measurcmcnts revealcd a very fast ratc of spreading of<br />

the jet in the spanwise direction and the existence of a very different fictitious origin<br />

for the growth of the width of the jet In the parallel as opposed to the normal wall<br />

direction.<br />

e. Dill'usion of tempernlure in free turl~ulent flow<br />

r 7 I hc process of turbulent mixing causcs a tlransfcr of the proprrt,ics of the fluid<br />

in a tlirot:lion at right angles to tho main stream. On the onc hand the mixing motion<br />

enusrs ~nowc~tlicm to flow awny from tho tnriin sl,rc:tm, on the otllcr I~:rntl, p:rrt.iolcs<br />

srtspcntlt:d in the Iluitl (1lo:cting particles of dust, chcmical ndtlitivcs) arc directed<br />

into the stream, and in atltlit,ion there is a transfer of heat, that is a diKusion of<br />

a tempcrature field. The intensity of the transfer of a given property in turbulent<br />

motion is asually itcscribctl I)y a suital~le coefficient. Denoting the coefficient for<br />

momcntum tmnsfcr by A, ant1 that for heat I)y A,, we can define them (sccScc.XX11Ia)<br />

k1.y writing<br />

Ilere 11, antl r, T tlertofc morncntum a,rltl hcat per unit mass, respectively, and t and<br />

q clcnotfe the flux of momentum and heat (= quantity of heat per unit area ant1<br />

tinic) rcspeclively. In t,his conncxion 14 and T denote temporal means. Since the<br />

mechanisms for the transfer of momeritnm antl heat are not iclent,ical the values<br />

of A, and A, arc, generally speaking, different. However, according to Prantltl's<br />

mixing-length theory the mechanisms of the transfer of ~nomcntnn~ :~,ntl 11r:~t it1<br />

free turbulent flows are itlent~ical which means that A, and A,, are nss~ltnr~l c:cl11:11 to<br />

each other. The messuretncnt pcrformctl by A. 1i'nge and V. M. I~:rlkncr 1.50) in the<br />

wake behind a row of heat,ctl bars have shown that t,hc tcmprmtrrrc prolilo is witlcr<br />

than the velocity profilc antl that, by way of approxirnntion, wc mn.y assrtritc<br />

A, = 2 A,. This rcsull agrccs with Cr. I. T:~ylor's tlicory which was t1isc:ussctl in<br />

Scc. XIXc, and according to which brlrl)rtlcnt mixing ~not~ion c:~,tlscs :LII c.xc:ltnngc:<br />

of vorticity rather than momentum. The problem of t,he tliIFusiorl of tctnprratnrc<br />

in free turbulcnt flows was also consitlcrctl I)y It. 1tcicha.rtlt 1301, who tn:~.tl(> I)ot.l~<br />

tlicorctical antl cxpcrirnont,al contribrtl,ions. 'J'he thcorctic.:d work is closoly rol:~lctl<br />

to t.ltat tlcscribed in thc prccecling scction. First, empirical rclat~ions have bco~l tlrtlucctl<br />

for the temperature profile from expcrimcntal rcsults in the same way as was tlonc<br />

previously for the velocity (nlomentum) distsribution, hypothcscs on turbulcnt flow<br />

having been avoided. On the basis of an argument which we sl~all omit. I~cre,<br />

Rcichardt succeeded in Jcriving a rcn~arlrnble relation bctwccti l,hc t~ctnpc~ral.urc<br />

and the velocity distribution. This is given by<br />

T = (ufn:)Ar'Aq . (24.60)<br />

Tmnz<br />

Hers, the subscript mas refers to the n~aximnni valucs, and the sc:llt:s for 11. :111(1 7'<br />

must I)c so rcrrattgctl ns Lo rcntlnr Lhc poinl,s li)r WII~CII TC r - 0 n~~tl 7' . - 0 t.oi~t(.i


754 XXJV. Frce turhnlent flows; jets and wakes Rcfcrenccs 755<br />

Exp. I1<br />

1.36<br />

0 2.34<br />

0 3.65<br />

A 1.19<br />

A 2-01<br />

Fig. 24.12. The mixing of coaxial turbulent jets<br />

of different velocities and temperatures in a pipe,<br />

after S. R. Ahmcd [la]. Variations of the velocity<br />

along the nxis of the pipe n) for vnrious velocity<br />

rntios U* = urro/~so at a constant value of the<br />

temperature rntio O*; b) for vnrioua values of t.lie<br />

temperature ratio Q* = Olro/Oso at a constant<br />

value of the velocity. F* = frro/fso denotes the<br />

area ratio of the inner jet Lo the whole jet<br />

two cases: 1, two-dimensional [low above a lincar source of heat placed on a horizont,nl<br />

floor and 2. &xi-symmetrical flow above a point-source. In both cases the width of<br />

the velocity and temperatmure profilc increases in clircct proportion to the height<br />

abovc the floor, x. In the two-dimensional cnsc thc vcloait-y rcmains constant at dl<br />

heighbs, whereas the temperalure dccreeses as x-1. In thc axially symn~etrical casc<br />

the velocity is proportional to 2-113, the temperature being proportional to x-514.<br />

The two-dimensional case was treated theoretically on the basis of Prantltl's mixing-<br />

length theory (tmnsport of rnomcntum) as well as on thc basis of G. I. Taylor's<br />

vorticity tmnsport tlteory. The nxially ~ymmctricnl casc could bc invcst~igntcd only<br />

with the aid of Prandtl's thory bccausc G. I. Taylor's tlicory brcnlts clown in thig<br />

case. Measurements performed for thc axi-syn~met~rical enso conf rm t.11~ thcorrl~ical<br />

cslculations. The diffusion of temperature behind a point-source and behind n Linear<br />

source placed in the boundary layer on a flat plat,c were investigated experi~ucntslly<br />

by I


756<br />

XXIV. Prrc torbulent flows; jeta and wakes<br />

[14] Gartnhore, ,I.%, end Newman, B.G.: The turbulent wall jet in an arbitrary pressure gradient.<br />

Aero. Q,uart. 20, 26-66 (1969).<br />

1151 . - Gcrsten, I


CHAPTER XXV<br />

Determin~ation of profile drag<br />

a. General remarks<br />

The tdal tlrag on a Ijotly placctl in a stream of fluid consists of ski~r./;iction<br />

(equal to thc intcgml of all sllrnril~g strcsscs takcn over the surface o ~~~lle botly)<br />

ant1 of Jorm or prewurc, drag (integral of normal forces). Tho sum of th6 two is called<br />

told or pro/ils tlmg. The skin friction can bc c:LIcIII~~~ with some accuracy by the<br />

rise of the rncthotls of the prccccling chaptrrs. The form drag, dhich docs not exist<br />

in frictionless subsonic flow, is due to the fact that the presence of the boundary layer<br />

modifics the pressurc distribl~t~ion on t,he body as compared with ideal flow, but its<br />

comput~ation is very difficult. Consequently, reliable data on total drag must, in<br />

general, bc obtained by measurement. In more modern times methods of estimating<br />

the amount of profile drag have, nevertheless, been established. We shall discuss them<br />

bricfly in See. d of the present chapter.<br />

1.1, many cascs the tlcbrminatio~~ of total drag by weighing lacks in accuracy<br />

bccarisc, when mensurc~rlrnts arc performed, for example, in a wind tunr~el, the drag<br />

on the suspension wires is too largc compared with the force to be measured. In some<br />

cases even, such as in frec flight cxperimcnts, its direct determination becomes impossible.<br />

In such cases the mctliotl of tlctermining profile dmg from the vclocit,y<br />

tlis~rih~t,ion in the wdzc (I'itot travrrsc method), which has already bccn clescribcd<br />

in Chap. IX, 1)ccotnrs vcr.y ~uscful. Morcover, it is often the only practicable way of<br />

pcrforrning this kind of mcasr~rcment. In priuciple it can ody be used in two-tlimensional<br />

and axially symn~ctricn.l cnscs, but we shall restrict ourselves to the consitleration<br />

of tho two-dimcnsiontd casc.<br />

Thc formula in cqn. (9.2'7) which was tlcdacec~ in Chap. IX and whidi serves to<br />

dctcrn~inc the magriitutle of drag from thc v~locit~y distribution in the wake is valid<br />

only for com~)arat,ivcly large ctisbnces from the body. According to it the total drag<br />

on a botlyt is givcn 11y tlic cxprcssion:<br />

+m<br />

1) ==~Q/U(U,--u)dy. (25.1)<br />

y= -OD<br />

Tlcrc h tlrriot,rs the Irngt,ll of the cylindrical body it, the direction of thc axis of the<br />

cylinder, I/, is the frcc-stream velocity, and u(y) dcnotcs thc velocity distribution<br />

t In Cllnp. TX tho totnl drag or1 a ldy ~.la<br />

111 this chnptcr Llic sy~llbol U is used for iL.<br />

tlrnokd hy 2 I) (for tho two ~idtxi of the plate);<br />

b. The expcrimentol method due to nets 759<br />

in the wake. The integral must be taken at such a large tlistancc from the body that<br />

the static pressure at the measuring section becomes equal to that in tlic untlisturbctl<br />

&ream. In practical cases, whet,hcr in a wind tunnel or in frec flight incas~~remcnt,s,<br />

it is necessary to come much closer to the body. Consequently it becorncs nrcessnry<br />

to take irho account the c~nt~ribution from trhe pressure brtn and eqn. (26.1) nlctst<br />

be modified. 'l'his correction term has an appreciable vhluc whcn mcasummct~t,s arc<br />

performed close to the body (e. g. at distances lcss tlh onc clmd in tho case of<br />

aerofoils) and it is, therefore, important to have a comp~rativcly accuratc exprcswion<br />

for it.. The correction term was first calculatccl by A. I3ctz 141 and later by 1%. Rf.<br />

tJorrcs [2G]. At prcsct~t~ most mcasuremcnb arc bcing cvalu:~tccl wilh t,l~o :&I of t.116<br />

formula clue to Jones because of its compamt,ive simplicit,y. Ncvcrihrlcss, we propose<br />

t.o cliscuss Bet,z's formula as well becausc it* clerivatkm cxhibits scvcm.l very<br />

iritIcrcstting features.<br />

b. The cxperirnentnl method due to Betz<br />

Wit.11 rcfcmnet: to I'ig. 25. I we s~lcct a control surface around tho 1)otly as sliow~l.<br />

In thc rnbry cross-section 1 in front of the botly the flow is loaslcss, its total pressure<br />

being g,. The total prcwurc in cross-scct.iori I1 I)chintl tho hotly is !j2 ,: (I,.,. '1'110<br />

remaining cross-srctions of the control surf;lcc arc imaginctl placed far cnoirgl~ from<br />

the body for the flow in t81iem to be untlistorbecl. In order to satisfy the condit.ion<br />

of continuity, tl~e velocity u2 in cross-sect.ion It niust in some places cxccccl t,he<br />

11ndist,ur1)~tI velocity 11,. Applying tlic moinentwn tlrcorcrn to the cont~rol surf:~c:c<br />

gives t.11~ following expression for the drag on a cylinder of length h:<br />

In order to atlapt this rq~li~tion to the cvnluation of cxpcri~ncn~~nl rcsn1t.s it, is nct~eswary<br />

1.0 t,mnsfornt the above int,cgmls so that they necd hrdy be cvn1unt.c.d owr Illat.<br />

sect,ion of the velocit,y curve which includcs the dcpression of plarlc: I1 in t,hc profile.<br />

The total pressures satisfy the conditions:<br />

I<br />

;it. inlinit.y:<br />

900 = ~ r+ n e um.z<br />

The first integml already hns the tlcsirrcl form, 11cm11sc the total prcssrlrtx is rt111aI t,o<br />

g,, rvrrywlierc outsidr thc tleprcssion In order to transform the scco~~tl inirgml in


760<br />

XXV. DotcrminnLion of profilo drag<br />

the same way wc intro(1uce a hypothetical flow u,'(y) in cross-section II which is<br />

idCllt,i~al with IL, cvcrywhcrc outside the tlcprcssion but which differs from u, in the<br />

of tllc drl)rc~siot~ in LhaL lhc totd ~rcssllro for 1 ~ is ~ cqllal ' to gm. ' r h ~ ~<br />

9,=p2+<br />

1<br />

Zeu,'a. (25.5)<br />

since t,hc actrlal flow ul, u, satisfirs the equations of contir~nity, the mass flow of the<br />

hypot,llctical flow rl, 11,' is too largo across scction I[. 'Phis is cquivaleat to the<br />

exist,ellee of a source which is locatccl, essantially, at the body ant1 whose strcngth is<br />

Fig. 25.1. 1)ctornlinntion 01 profilc<br />

drng by tho method due to Bctz [4]<br />

A source which cxists in a frictionless parallel stream of vclocity U, suffers a thrust<br />

cqual to<br />

R =--p u,Q. (25.7)<br />

We now apply the momentum theorem from cqn. (25.4) to the hypothctiml flow,<br />

i. e. we assume a velocity ul in section I, and a velocity u,' in section XI. Since<br />

g,' = g, and since the resultant force is equal to R from eqn. (25.7), we obtain<br />

Subtracting this value from eqn. (25.4) we have<br />

~+~~,Q=b(~(g,--g,)dy+-;e/(u;'-~~?dy). (25.8)<br />

111 view of eqn. (25.6) we have now<br />

Each of thc above integrals necd only bo evaluated over the wake since outside it<br />

?I,' = r,. Sincc u,', - uZ2 = (u,' - 7t4 (u.~' f %), the above can be transformed to<br />

In order to determine tho drag, D, it is ncccssary to measure the total prcssurc, g,,<br />

and tho static pressurc, p,, over the cross-scction I1 bchintl t,lrc body. Thus wo also<br />

obtain g, as it is equal to g, out,sicic tho clcpression. Thc l~ypothct~ical vclori1,y IL,'<br />

is (lcfincd in cqn. (26.5) from which it can bc calc:ul:~tctl.<br />

In cascs whcn the static prcssurc ovcr the measuring station cquals that ill tllc<br />

untlistmrhcd strram, i. c. whcn p, = p,,<br />

transforms back into cqn. (26.1).<br />

wc also have u2' - IJ.,, :~n(l rqn. (25.9)<br />

Ilcfining a tlirncnsionlcss cocfficicnt of drag by writing<br />

where qm = 11; denotes the dynamic prcssurc of t,hc oncoming stmnm nr~d 1, x 1<br />

is the reference area, we can rcwrite eqn. (25.9) to read:<br />

c. The experinicntnl nicthncl doe to Jnues<br />

Some time later, I3. M. Jones [26] indicatcd a similar mcthod for the dctcrn~ination<br />

of profile drag. The final formula duc to Jones is somcwhat simpler t,l~an that<br />

due to A. Betz.<br />

The cross-section I1 (Fig. 25.2) in which measurements are performed is locatctl<br />

behind, the body at a short distance from it; tho static pressure p, at the measuring<br />

station is still markedly different from the static pressure in the undisturbed strcam.<br />

Cross-section I is placed so far behlnd the body that p, = pm. Applying cqn. (26.1)<br />

to cross-section I, we obtain<br />

Fig. 26.2. Dotcrminstion of profile drag<br />

by the method due to B. M. Jones [2F]


762 XXV. Determination of profile drag c. The experimental mcthod due to Jones 7 63<br />

In order t,o confinc the determination of u, to the use of results obtained from mea-<br />

surementa in cross-section 11, we first apply tlhe equation of continuity along 8<br />

streamtube<br />

euldy, =euzdy. (25.12)<br />

Hence<br />

~ = b ~ / u ~ ( ~ ~ - u ~ ) d y . (25.13)<br />

Secondly, according to B. M. Jones 1261, we make the assumption that the flow<br />

proceeds from section I1 to section I without losses, i. e. that the total pressure<br />

remains constant along every strcnm-line betwcw~ the stations I and 11:<br />

lntroilucing the total pressures<br />

we see from eqn. (25.13) that<br />

--<br />

= 261dg~ - p2 ( ~ / 9 - ~ i&=-%)<br />

z ~ dy ,<br />

(25.15)<br />

where t,he integml extends over cross-section 11. In this case, as in the previous one,<br />

the integrand differs from zero only across the disturbed portion of the velocity<br />

profile. Introducing a dimensionless coefficient., in thesame way as in cqn. (25.9a),<br />

and taking into account that g, - pm = qm, we have<br />

Jones's prccrtling cq~mtion also transforms into the simple equation (25.1) in cases<br />

when the static pressure at the me,asuring station is equal to the undisturbed static<br />

pressure, pz = pm.<br />

A. 1). Young [75] inclicatacl a transformation of Jones's formula which sirnplifie9<br />

the eval~at~ion of thc intcgral in cqn. (25.16). The resulting equation contains<br />

an ntltfitivr corrertion term apart from thc ir~bcgral of the total prrssi~ro loss taken<br />

ovrr bhr tlrprcssion in t,hc vclocity profile. The correction term depends on the ahnpo<br />

of tho vrlocity profilc in the measuring station, but it can be computed once and<br />

for all. A rritiral nppmisal of this method is contained in a note by G. I. Taylor [67].<br />

The prcrc(ling two experimental mct,hotls have been used very frequently for<br />

t.hc tlcfenninxt.ion of profilc drag 110th in flight and in wind tunnel measurements,<br />

[(i, 12, 16, 20, 38, 39, 61, 62, 69, 701, and have lrd $0 very satisfactory results. 11.<br />

I)oc.tsc+ [6] dernonst.rnt~cd that both the 13etz and the Jones formulae can bo uscd<br />

whcn the clist.nncc bctwccn the mcn.suring statmion belhd the acroloil and the aerofoil<br />

it.sclf is as short as 5 pcr cont. chord. In this casc thc correction term in Betz's<br />

formnla amou~it.s t,o al~out, 30 per ccnt. of thc first term, Both mcthotls are partvicularly<br />

suit.ahle whcn t h inflwncc: of strrfacc ro~~glincsscs on profile dmg is being determined<br />

as well as t,o t,hc il~t.rrminnt.ion of the wry stnnll drag of laminar nerofoils.<br />

A. D. Yorang 1711 extended t.he applicnbility of Jones's mothod to comprcrrsihlc flows,<br />

Retracing the steps in that derivation, we apply the continuity cquat,ion for co~iiprwsihlc flow.<br />

el u, ~<br />

and deduce the following formula for drag:<br />

Y= I el dyt . (25.17)<br />

Fiem, again, il i8 ncmsnry to cxprcae u, in brms of the qrrnntit,ic:s tnmrcnre~l in plnno 11. In tho<br />

realm of wmprmible flow it is necrmunry 10 rcplnco Jonra'e nnacmplion thnt g, = g, hy tho<br />

mnutnption thnt the entropy remains constant along a atrcamlinc from plnnc II to plane 1.<br />

This lends to the isentropic rclation<br />

If, now, the stagnation pmure measured by the Pitot tube in compro~siblc flow is clonotctl<br />

by g, we have<br />

and it can be vcrificd that e n (2.5.19) also lends to tho ~~onmpbion g, -- g,. 1.11~ vr1orif.y u.,<br />

cnn bc doternlined front t~ic hirnou~li equation for co~nprcssiblc ,low, nnmnly<br />

I 9-1 1<br />

In order to solvc the problem in principle, it, is only ncrc.usary to express tlrc vclocit,y 11, i11 terms<br />

of the measurcd prrasurea g, and p, in plane 11. A mcaaurcmcnt of the totnl and stnlic prcssurcs<br />

in plane I1 is again sufficient for the determination of the drag of the body. However, the com-<br />

plic~ted relation between velocitiea and prewures in the compressible Bernoulli eqantion Icn&<br />

to a very cumbemomc equation. For this rowon, A. D. Young cxpnntied tho vclocitics ?I., a d u,<br />

into series of the form<br />

In this manner, the terms in eqn. (25.15) derived by Jonm for the incomprc~siblc cnsc. can now<br />

be separated, and tlic remaining terms can be nrrangrd in a jmww scrim in tcrnls of 1 110 hlnc.11<br />

number. Thus<br />

where ca, ( denotrrr t,lm drag coeflicicnt for tho incotnprcssiblc cnue, na given by eqn. (25.16),<br />

and the cocfficicnts A], A,, . . . rcpreaent certain integrals which can be calcc~lntetl from tllc<br />

measured dnta in plane 11. Rcstxicting one~clf to low Mnch numbers, and I~cnce to two krn~s<br />

in tlrc oxpansion (2.5.23), one obtains


764<br />

XXV. I)ot.crtninntiotl of profile drag<br />

Tilo ndditionnl term which d~ponrh on the Mneh number provides n negntivc contribution<br />

to tilo drag cooffirirnt,. It is poasiblc t.o cvalnxtc lhis additional tom once and for all if a suitable<br />

nsst~rnption i4 nindc for tho shape of the drpression in the velocity profile in the wake; this was<br />

also done by A. I). Young.<br />

'1. Cnlc~~lotio~~ of profile drag<br />

Mcthocls which can 11c usctl [or the calculation of profile drag antl which arc<br />

I~a,scd on t,l~c same principl(:s as tl~o abovc cxpcrirncnt:d mcthotls, havc I)con tlcvisctl<br />

by J . Pretscli [40] and IT. U. Squire arid A. 1). Young [MI. Thcse are tied in with<br />

t,hc calculat,ion of boundary layers, as described in Chap. XXII. However, in ordcr<br />

t.o bc in a position to calculate pressure tlrag it is necessary in each case to make<br />

use of certain additional, empirical relations. See also H. Goertler [19].<br />

We tlow propose to give a short des~ript~ion of 11. B. Squire's and A. D. Young's<br />

mct,llod of calcnlation taking into account some more rcccnt reqults. We shall begin<br />

by transfornling eqn. (25.1), which relates the tlrag on a body with the velocity<br />

profile in thc wake behind the body. Introducing the momentum thickness &, from<br />

cqn. (8.31) nil thc drag coefficient from eqn. (25.9a), we can rewrite it as<br />

tlcnotcs tllr momcntnm thickncss of thc wake at a largo distance from the body.<br />

On the other hand, the calculation described in Chap. XXII permits 11s to evaluate<br />

the momc~tt~nm thickncss at thc trailing cdge, for which the symbol a,, will be used.<br />

The cssencc of Squire's method consist8 in relating these two quantities, dz, and<br />

dzl, in such a way as to permit the calculation of drag from eqn. (25.25) when the<br />

momcntum thickncss at the trailing edge of the body is known from a boundarylayer<br />

calcnlatior~.<br />

'l'hr momrr~tum integral cquation of boundary-layer theory, eqn. (22.6), is<br />

valid also for the wake behind a body with the only difference that the shearing<br />

strrss s,, must be equated to zero. Thus we have<br />

whew 11 -- 01/b2 antl U' = dU/dxt. The symbol,^ denotes now the distance from<br />

thc trailing edge of the body measurcd along the centre-line of the wake. The last<br />

rqnatiori c.:m also be written in the form 1<br />

t 'I'hr shapr f;wlor ,Y,/h, will now Iw drnobrd by If, for uilnplicit.y, rather LIian hy [I,,, ns hrfore.<br />

Integrating over z from the trailing edge of the body (sub~cript 1) to a stntion<br />

sufficiently far downstream, so as to have U = U, and p = pm, we oblain<br />

At a large distance behind the body we have H = 1, and consequently<br />

m<br />

n-n.<br />

B-I<br />

Here HI = 61/6, denotes the value of the shape factor H = 611/821 at the trailing<br />

edge which is known from the calculation of the boundary layer. This equation<br />

gives the required relation between BZm ar~d 821, provided that TJ1/U, and the valuc<br />

of the integral on the right-hand side are known. First we find that<br />

In ortlcr to bc: in a position to cviiluntc the intrgml, it, is ncccssriry lo know Lhc rc-<br />

lation between the static pressure in the wake, which determines the valuc of U,<br />

and the velocity distribution in the wake which, in turn, determines thc valuc of<br />

the shape factor If. Tho mngriitutlo of In (U,/U) docrcascs monolonically along<br />

the wake, starting with the valuc In (U,/U1) at the trailing cdge until it roaches<br />

zero at a large distance. Simultaneously I1 decreases from the value If1 at the trai-<br />

ling edge, until it reaches unity at a large distance. H. I3. Squire established an<br />

empirical relation between In (U,/U) and H. According to experiment:<br />

so that<br />

On substituting into eqn. (25.27), we obtain<br />

or, with the roundcd-off' value of HI = 1.4:<br />

On substituting this valuc into eqn. (25.25) wc obt,ain an cxprcssion for thc coof-<br />

ficicnt of total drag in the forn~


766<br />

XXV. Determination or profile drag<br />

The coefficient of profile drag can be evaluated from the above oqnation, if the momentum<br />

tltickness at the trailing edge is known from the boundary-lnyer calculation<br />

ant1 if, in addition, the ideal, potential vclocity at thc trailing edge, U1, is known.<br />

The latter can be found, for example, from a reading of the static pressure at the<br />

trailing edgc. According to a method proposed by H. R. Helmbold 1221 the determination<br />

of IJ,/IJ, can also proceed as follows: We begin by evaluating the momentum<br />

thickncss at the trailing edge, 8,,/1, from eqn. (22.17) using the value 7~ = 4.<br />

This valuc is thcn substiti~tcd into eqn. (25.28), and in thc resulting formula IJ1/U,<br />

is raised to the power -1 0.2. 'I'hus this factor can bc approximntcd by the vnluc<br />

of unity, because UJU, itsclf (Ides not dilTer much from unity, ant1 the value of<br />

the coefficient of profile drag for o m side (R = U,Z/v) can be found from eqn. (25.28)<br />

to he<br />

i I<br />

with<br />

The subscript 1 rcfers to tho point of transition nnd thc vnluc of the constant C<br />

can bc cletcrmincd from the condition that thc laminar and turbulent momentum<br />

thicknesses must be cqi~nl to each other at the point of transitmion, bzt = dztwb =<br />

aZfarn. The value of dzlatn can be found from cqn. (10.37). For uniform ~ot.entia1<br />

flow 1vit.h IJ = U, eqn. (25.20) transforms to the corresponding exprcssion for the<br />

flnt plate at zero incidence, eqn. (21.11), if, in addition, we put C = 0 for fully<br />

tleveloprtl t~~trk~ulettt flow.<br />

TC. 'l'rucl~cnbrotlt [G8] tmnsformcd cqn. (25.20) replacing tho potential vclocity<br />

distribut,ion by t,hc coordinates of the acrofoil scction thus, evirlent.ly, eCcct.ing a<br />

considerable simplificnt.iort.<br />

11. B. Sq~~irc n.nd A. I). Young [64] cvnlr~atcd a number of cxamplcs by tile use<br />

of a tliffcrcnt mctltotl. We shall now tlcscribe somc of thern, rcfcrrit~g to Fig. 25.3,<br />

wltirh csontains a waumk of thcsc rcsrrlt~. Tltc thickness of tlhe acrofoils was vnricti<br />

from dl1 - 0 (flnt platc) to rill -- 0.25 and tho Reynohls nurnl~crs R -- IT, 1/v<br />

mnpcd from 10Q,o 108. It is found that the profilc drag is very sensitive to the<br />

position of the point of transition from laminar t,o turbnlent flow. This lntter parametm<br />

wns vnricd from x,/E = 0 to 0.4. The increase in profile drag with thicltncss<br />

is, rssenl~inlly, tluc t,o an incrcnsc in form drng. Fig. 25.4 shows the rclation bctwccn<br />

form atttl profile tlrng. Analogolls calculations were performctl by J. Pretsch [40]<br />

in rclation to von I


768 XXV. Determination of profile drag c. Losses in thc flow through cilclcad~s 769<br />

Fig. 25.5. Increase in the coefficient of pro-<br />

file clrag plotted in terms of relative thick-<br />

ncas, as calculnted by Scholz [58]<br />

Totnl or proflla drag cl)tOt - CU form -1- CI<br />

metrical cases, applied to rough walls (equivalent sand roughness) as well. From<br />

a very large number of calculated examples on aerofoils (two-amensional case)<br />

and bodies of revolution, it proved possible to deduce relations to describe the influence<br />

of thickness on profile drag. 'Shese are shown plotted in Fig. 25.5. The<br />

difference Ac, = c, - c,, denotes the i~crcase in the coefficient of skin friction,<br />

related to the wetted surface, as against, its value for rr. flat plate at zero incitlcnce,<br />

c,. The curve for the two-dimcnsiorlal case agrees fairly well with the results<br />

shown plotted in Pig. 25.3 for the case of a fully turbulent boundary layer (z,/l = 0).<br />

In this conncxion the paper by P. S. Granville [lS] may also be consulted.<br />

These calculations give an indication about the effect of friction on lift. The<br />

displacement of the external streamlines caused by the bountlary layer modifies<br />

the pressure distribution on an acrofoil and causes the experimental value to become<br />

lower than that givcn by potential theory. This loss of lift was calculated by I


770 XXV. Determination of profile drug e. Lomen in the flow through cascndca 771<br />

Pig. 25.7. Prcssrlrc clist,rihulion nnd position of point of scpnrntion or n tnrhnlcnt, houndery<br />

l:rycr 011 tho I)lntlo of n 1.urlho mscntlo for two tlilTercnt nnglca of inflow, afler F.W. Iticgcla [44]<br />

The work ill rnf. [4G] shows how t,o employ the method outlined in Sec. XXVtl<br />

it\ ortler t,o c.nlt:nl:~tc thr. losscs of n two-clirncrmsionnl cascade at varying angles of<br />

illllow. N. Srllolz allti I,. Spcitlel 1601 syst,cmatixecl such calculntio~ls ancl comparctl<br />

tht!n~ wit.l~ rxlwrin~cntal results.<br />

'I'ltn vrloc.it,y tlisl.ril)t~t,ion irnn~rrlintcly Idtirlc\f the exit plane of the cascnrle<br />

shows stmng tlc~~,rrssions wllicl~ st.cnl from t,hc bountlary layers of the iutlivitl~lal<br />

l~l:~.rins. 'I'url)ulrnlf ntixing rausrs t.I~csc velocity tliffernnce~ to sn~oofh out further<br />

clownbl.rrnm, thl~s giving rise to an ntltlitionnl loss of energy. 'l'l~c amount of los.9<br />

tlltc lo n,il:ing r:in IIC t:v:~.I~t:~,,c.tl wit.11 tltc nit1 of t.hn ~nomtmtum tl~rorrm. When<br />

tlt+~rmi~~i~~g the t.ot:l.l loss it1 the flow tl~ro~lgl~ cascncl~s, it is necessary t,o take Chis<br />

mixing loss into account in atltlit,ion to the loss of rnergy in the 11ountl:ar.y layers<br />

of the individual blades. Thus a calculation of losses in n casc:dc cot&trs of the<br />

following three partial calculations: 1. 1)eternmination of the ideal, potrnti:tl prcssure<br />

distribution around tho contour of the blacles. 2. Calculations of t,lw (1:rminar or<br />

turl)rrlont) hountlary layer at a blntlc. 3. DcLcrrninat.ion of the losses clrle to mixing<br />

in t.hc wake bchintl the cnscadc.<br />

The tot,al amount, of losscs nssociated with a cascade is best spccifictl by intlicatjing<br />

thc tliffcrcncc Ag in t h total prcss~~rcs between the nnclisturbctl flow in front<br />

of IJtc rascnclo rind Lhc "srnoot,llctl out" nclunl flow far bol~ind it. 'Jll~us<br />

where p2' and wz' denote the pressure and vclocit,~~ in the real (i. e. alfcctctl I1.y<br />

losses) flow far bchintl the cascatlr, respcctivcly. 'rhcsc sl~ould bo clist.ingrtisl~otl from<br />

thc values p, and iuZ, respcctivcly, wltich refer to ideal (losslcss) flow. It is convenient<br />

to render thn Lotd loss Ag tlimensionlcss with reference to thc dynnmio Ilond<br />

formed with the axial velocity component w,, = wl sin P, = toz sin P,, as it tlct.crmines<br />

the mass of fluid which passes through the cnscadc. For reasons of rontillttit,y<br />

iB vnluc must be tho same in front of ns bclti~~tl tltc cascade. We tlto~ il~l.rotlttc:c<br />

the following coefficient:<br />

t, = - -9 -<br />

few,," '<br />

Some results of the systematic invest,igntions on cnscntles, rarrircl o~tl :it t he<br />

Braunschweig Engineering University 1601, alao [49], are shown in Fig 25.8 These<br />

represent a comparison between measured and calculated values of the loss coefficient.<br />

All blades were derived from the aerofoil NACA 8410. The variable parameters<br />

Fig. 2.5.8. LORS co~flicicnt tt from eqn.<br />

(25.33) in terma of the deflexion coefficient,<br />

dn = '~tl$f/W,, for turbine cascndes 8..<br />

with difircnt solidity ratios t/1, after<br />

[49J. Men.911rc1ncnta and calculntio~~a by<br />

N. Scllolz nnd L. Speiclrl [GO]<br />

Itlarlr prolllc. NArA RllO<br />

Rcyeolds na~olrer R = w,llr - h x 10'<br />

.- .- -. . -~ -<br />

t In t,hc dmign of stcnru turbines it is 11sun1 to employ n aelocit?y coc//icient, 111, wl~icll<br />

is clrlincd<br />

as the ratio of thc rod exit vclociLy to its veluc in ideal flow, so tllet y, -- tu',/tc~,. Co:~srq~~rn(ly,<br />

thc two cocflieicnh snlisfy the rcl:~tion Lt = (I -i/~2)/sinZ<br />

P2.


XXV. 1)obrlninalion of proRlo drag<br />

included the solidity ratio 111 (= 0.6, 0.76, 1.0 and 1.25); the blade angle was Ps =<br />

30" (turbine cascade). The loss coefficient defined in eqn. (25.33) is seen plotted in<br />

terms of the dcflcxion cocfficient or deflcxion ratio<br />

ad = Awd/?l~,, ,<br />

where AN?, tlcnolcs 1.h~ tm.r~svcrsc compor~cnt of vclocit,y (i.'e. vclocit,y in circomferential<br />

direction) created by the cascade. If we first center our attention on the<br />

middle range of the polars (adhering boundary layers), we notice a steep increase in<br />

the loss coefficient which occurs as thc solidity ratio decreases. The reason for it lies<br />

in the fact that the number of bladcs per unit of length of the circumference is larger<br />

when the pitch is small than when thc pitch is larger. To a first approximation the loss<br />

coefficient is proportional to the number of blades. At the right and left edge of the<br />

polar we observc a sudden and large increase in the loss coefficient. This is due to flow<br />

separation on the pressure side (left end of curve) or on the suction side (right end of<br />

polar) of the bladc. In the latter case, an increase in the flow angle causes the admissible<br />

load on the blade to be exceeded. It is remarkable that the polar curves displace<br />

themselves in the direction of largcr angles of deflexion as the solidity ratio decreases.<br />

The ~ncasurcmcnts a.nd the calculat.ions were carried out for a Reynolds number<br />

R -. to, llv - 5 x 10% .TIC calculations wcrc performed on tho assumption that thc<br />

bountlnry hycr was turhulcnt. all along the hlatlcs. In the oxpcrin~ontal nrmngcrncnt<br />

the boonrlary layers wcrc made turbulent by the provision of tripping wires ncar<br />

the leading edges. Thc calculated and measured values of the loss coefficient show<br />

very good agrccmcnt with cnch other. Furthcr examples and comparisons between<br />

theory and experiment are givcn in [47, 631.<br />

Wake: A very dctailcd experimental investigation of the flow in a turbulent<br />

wake bchind a cascade of blades is described in a paper by R. Raj and B. Laksh-<br />

minarayana [42]. Measurements included determinations of the velocity distribution,<br />

intensity of turbulencc, and of the apparent Reynolds stresses in the wake at different<br />

distances from the cascade. It has transpired that the wakes are not symmetric up<br />

to a distance (314) 1 bchind the blades in cascades which turn the flow. The decrease<br />

in velocity downstream from the cascade exit section is considerably slower than at<br />

a flat plate, behind a circular cylinder or downstream from a single aerofoil at zero<br />

incidcnce.<br />

Jet flnp: The angment,at,ion of the turning angle A,'? = Dl - p2 of colnpressor<br />

cascades by a jet flap has been investigated by U. Stark,[G4a].<br />

2. 111flue11ce of Reynolds number: Thc chnngcs in the aerodynamic coefficients of<br />

n cascadc protlucctl by a chnngc in l,hc itcynol(1s nnmber arc import,n~~l whcn it<br />

becomes ncccssary to apply the results of tcsts on models to thc design of a fullscale<br />

turho~nachine. This effcct is excrtetl principally on the loss coefficicr~t, and<br />

the can be found discussed in a sizeable umber of publications 15, 41, 651.<br />

From tho physical point of view, the cffect of Rey A" olds number on the loss coefficient<br />

of a two-tlimcnsional cascndc is analogous to that of the skin friction of a single aerofoil:<br />

hccausc in eit.her case the cffect originates in the boundary layer. The losses<br />

sufTcred by the cascatlo stem mainly from the boundary layer if the pressure distribut,ion<br />

dong a I)latlo in n cascadc is such that no imporhr~t scparntions occur.<br />

'l'hry nro t,hcn ak:rl.otl hy tllc Ttcynoltls number in aho~lt t,ho same way as t,he skin-<br />

I<br />

friction coefficient of a flat plate at zero incidence arid are proportional to R-'12 for<br />

laminar flow, becoming proportional to R-lI5 in turbulent flow. In both cases, the<br />

Reynolds number is formcd with the blade length, I. Thc dcpcndcnccof t.hc loss cocffi-<br />

cient on Reynolds number in the absence of separation can be determined by calcu-<br />

lation with the aid of a method proposed by K. Gersten [15]. A rcsult of this kind is<br />

seen displayed in Fig. 25.9. The diagram describes thc variation in the loss coefficient,<br />

A g<br />

(12 = -<br />

;be4 ' (25.84)<br />

of a cascade consisting of thick, strongly cambered bladcs, over a considcrablo range<br />

of Reynolds numbers, that is from Rz = wzllv = 4 x lo4 to 4 x 105. I-Icre Ag dcnotes<br />

the loss in stagnation pressure and iuz is the exit velocity. In order to providc a<br />

comparison with mensurcmenta, thc diagram contains a thcorctical crrrvc which tnkcs<br />

into account separation losses computed with the aid of Ref. [GO]. As far as the position<br />

of the point of transition is conccmed, the calculation was based on the expcrimentally<br />

verified circumstance that the boundary layer on the pressure side of a<br />

blade remained laminar as far as the tmiling edge, whcreaa that on the suction side<br />

undcrwcnt transition at the point of minimum pressure. Thc dingmm in Pig. 26.9<br />

demonstmtcs t.hnh thcrc cxist.~ cxccllcnt ngrccrncnt I~cLwccn oalcnlntiotl nnql rtltrclrrilrament.<br />

The magnitude of the losses is strongly influenced by t.he position of the point of<br />

transition. As thc Rcynolds numbcr is incrcnscd, tho point of transition movcs for-<br />

ward and this lengthcns the turbulent portion of the boundary layer and causes the<br />

losses to increase. The forward movemcnt of the point of transition is enhanced by<br />

increased roughness 1131 or by an increased turbulencc intensity [a], as one would<br />

expect to find in a turbomachine. At very low Rcynolds numbers the boundary laycr<br />

can separate before transition has occurred in it thus causing a large incrcasc in thc<br />

Fig. 25.0. Loss coefficient of a turbine cascade, eqll. (25.34). in brr~rs of the Rryl~oltls tl~it~~bcr Rz,<br />

after I


XXV. Dctcrminntion of profile drag<br />

a) rrensurc distribution for vnrioun Rry-<br />

noltk numbero nt Mz -- 0.3<br />

b) Loss cocfficirnt (12 from cqn. (25.34)<br />

nrr n function of tho Reynolds numbcr Rz<br />

Fig. 25.10. Aerodynamic coefficients of a turbine cnscnde its a function of the Itrynoltls number as<br />

menm~red by H. Schlichting nnd A. Dns [52, 531<br />

n) I'rcauure dist.ribut,ion for vnriorls Rey-<br />

tlolds nulnberu nt MI = 0.7<br />

I<br />

b) 'IJous coerficieut. Ira from C~II. (25.34)<br />

as a function or the Mach number Mz tor<br />

various vnlura of the ltcynoldu number<br />

vig. 25.1 1. Aplclrlynnnlir. rotffirirntn of n t,t~rl,inr wnrnclr its n funrtion of Mnvb nr~mhrr nn measu-<br />

T& by 11. Schlicl~ting and A. I h [62,53]<br />

c. Los~es in the flow tlwnlgh cnscndos 775<br />

loss cocfficient under certain circumstances. This large increase in the loss coefficient<br />

at low Reynolds numbers is illustrated in Fig. 25.10b which refers to a turbine cw-<br />

cade. At larger Reynolds numbws, Rz = 5 x 105, the transition is spontaneous nnd<br />

the losses are small. At moderate Rcynolds numbers, Rz = 1 x 105, thcrc is Inn~innr<br />

separation followed by turbulent re-attachement. Thus under the boundary layer<br />

there forms a so-called separation bubble and the loss coefficient increases consider-<br />

ably. At very low Reynolds numbers, Rz = 0.5 x 105, the laminar layer separates<br />

and stays separated to t,he end of the blade. The losses increase by a large amount<br />

once more.<br />

The details of the separation of the boundary layer are once again mirrored in<br />

the pressure distributions plotted in Fig. 25.10a for three valucs of the Itcynolds<br />

number. The extent of the scpnration bubble depends strongly on thc Reynolds<br />

number and on the intensity of turbulence of the oncoming stream. See [8,20,28,37,<br />

43, 57, 601, and the pnpcr by R. Kiock [30]. C/. W.B. Robcrts 1431.<br />

In conjunction with our discussion of the cffect of thc Rcynolds number, it is<br />

necessary to stress that under certain circumstances the surface roughness can have<br />

a large influence on the losses. In addition to enhancing transition, roughness can<br />

also directly increase the losses. This occurs whcn thc protubcrnnccs cxccrd n crrlnin<br />

admissible value; see [3, 561.<br />

3. Effect of Mach numher : The preccding results concerning the Loss coefficient of<br />

cascades refer to incompressible flows (M < 0.3). The effect of compressibility can<br />

be said to set in at M > 0.4. An example of this effect is shown in Fig. 25.11b. The<br />

plot represents the loss coefficient for a cascade producing a small angle of turn in a<br />

subsonic flow. The Mach number Mz is the independent variable and t,he thrce curves<br />

refer to three different Reynolds numbers. The pressure distribution for M = 0.7,<br />

Fig. 25.118, shows that at Rz = 4 x 105 the loss coefficient increases sharply as the<br />

Mach number is increased. The sharp increase occurs as a rcsult of shock formation<br />

in region8 where the local value of the velocity of sound, cp, crit, has bcen exceeded in<br />

the flow. For the two lower Reynolds numbers, Rz = 1.0 x 105 and Rz = 2-0 x 105,<br />

the pressure distribution points to a separated flow. The results displayed in Figs.<br />

25.10 and 25.11 demonstrate that the Mach number exerts a deep influence on the<br />

flow through cnacades in the range of Reynolds numbers from R = 104 to 105, in<br />

addition to the large effect of the Reynolds number itself. The preccding measure-<br />

ments were performed in the high-specd cascade wind tunnel in Brunswick [54] in<br />

which the Reynolds number and the Mach number can be varied independently.<br />

The diagram of Fig. 25.12 illust.mt,es the effect of the Mach number on the loss<br />

coefficient of a cnscade that produces a large angle of turn in the flow. 'rhc cnscadc<br />

was designed for incompressible flow. The loss coefficient remains nearly constant at<br />

the value Ct2 M 0.03 up to M2 = 0.7; it increases sharply as the Mach number is<br />

further increased. The reason for this behaviour is clear from Fig. 25.13 in which it<br />

is possible to discern the existence of shock waves on the suction side of the blade.<br />

These cause separation of the boundary layer.<br />

The effect of the Mach number and of the turbulence intensity on the loss coef-<br />

ficient of cascades has been studied in two theses presentcd to the Engineering<br />

University at, Rraunschweig by J. Bahr [2] and 1%. ITcbbeI 1211, respectively. Rcfe-<br />

rence [50] may also be consulted on this point.


776<br />

XXV. 1)ctormination of profile drag<br />

Fig. 25.12. Loss coefficient of a turbine<br />

cascade, t tz from eqn. (25.34) in brnis<br />

of the Mach nnmber Mp aftm 0.<br />

Lawaczeck [34]<br />

blnclc nnule: Ps = 56'; snllclily rnt,lo: 111 -0.81<br />

n~iulr nl inlet: /1, = 00'; Iley~~oidn nrtmbcr:<br />

A, - 0 x 10'<br />

Fig. 25.13. Transonic Row through n<br />

tmrbinn cancndc. Phot,ogrnph obtain-<br />

nd wiI.11 the aid of Schlieren tnetlrod<br />

by 0. Lawaczeck and H.J. Neinernann<br />

[32]. Exposure 20 x 10-9 sec. The<br />

strong shock waves on the suction side<br />

of the nerofoil cause separation and<br />

hence large losses, see also Fig. 25.12<br />

In modern times, the development of steam turbines of increased powcr density<br />

has caused the outer bladc sections of the low-pressure stages to operate in the transonic<br />

vclocitpy rregimc. This made it neccssnry to undertalte systematic investigations<br />

into l,hc behnvio~tr of t,ransonic turbine blades. Here tho Mach nrimber of the appronching<br />

stream is lower than unity (MI < l), ,whereas that at exit exceeds it<br />

(Mz , I); cf. 1.11 1. Rcfcrcncrs 133, 341 contain an~accor~nt of t,ransonic flow across<br />

cn.scadc with n Inrgc angle of turn.<br />

11. IInas and IT. Maghon [20a] give a comprehensive account of the practical<br />

appli~at~ions of these research results on flow through cascades as they relate to<br />

modern developments in steam and gas tmbines.<br />

References<br />

Abhott, J.H., vot~ Doenhoff, A.E., and Stivers, L.S.: Summary of airfoil data. NA('A IIrp.<br />

824 (1945).<br />

Uahr, J.: Untersuchungen ribw den Einflnss der Profildirke nuf die komp~rusil)le ebcnc<br />

Stromung durch Verdichtergittcr. Dim Braunsch\\eig l!)62 Forschg. 1ng.-\Vcq. 30, 14- 25<br />

( 1 !I641 I--. ,<br />

Jhmmcrt,, I


778 XXV. Detcrn~inntion of profilc drag Jteforenccs 779<br />

[27] Jaumotke, A.I,., and Deviennc, P.: Influence du nombre de Reynolds sur lea pertes dana<br />

len grillm d'nuhea. Technique et, Science AQronautique 5, 227-232 (1966).<br />

[28] Iforton, H.P.: A semi-empirical theory for the gro\


A.<br />

Reviews organized in serial publications<br />

Bibliography<br />

A 1. Annual Review of Fluid Mechanics, Annual Review Inc., Palo Alto, Cnl.<br />

Vol. 1 (19GS)<br />

Goldstein, S.: Fluid mechanica in the first half of this century.<br />

Turner, J.S.: Ihoyant plunlcs and thermals.<br />

Brown, S.N., and Stewartaon, K.: Laminar separation.<br />

Yih, Chia-Shun: Stratified flows.<br />

Melcher, J.R., and Taylor, G.I.: Electrohydrodynamics: A review of the role of interfacial shear<br />

stresses.<br />

Kennedy, J.F.: The formation of sediment ripples, dunes, and antidunes.<br />

Tani, I.: Roundary-layer transition.<br />

Ffowca Willian~s, J.E.: Hydrodyt~anlic noise.<br />

Jones, R.T.: Blood flow.<br />

Phillips, O.M.: Shear.flow tnrbnlcnce.<br />

Van Dyke, M.: Higher-order bonndary-layer theory.<br />

Levich, V.G., and Krylov, C.S.: Surface-bnsion-drivel1 phenomena.<br />

Sherman, F.S.: The transition from continl~utn to molecular flow.<br />

Hawthornr, W.R., and Novnk, R.A. : The arrodynamica of turbo-tnachinery.<br />

Lumlcy, J.L.: Drag reduction by additives.<br />

Zcl'Divich, Y.B., and Raizer. Y.P.: Shock waves and radiat,ion.<br />

I,ighthill, M.J.: Hytlronlccllnnics of aquatic nnimnl propulsion.<br />

Vol. 2 (1870)<br />

Inituinnskii, L.G.: The tlcvclopmcnt of boundnry-lnycr throry in thr USSR.<br />

Enimons, H.W.: Criliqttc or numrrirnl moclcling of fluicl-nlcrhanicu phcnotnena.<br />

Veronis, G.: The analogy betwren rotating and stratified fluida.<br />

Ncwninn, J.N : Applications of ulrnder-body theory in ship hydrodynnmics.<br />

ICovnwx~ay, 13.0.: The turbulent boundary layer.<br />

Lick, W.: Nonlinear wave propgation in flnid~.<br />

Brenncr, )I.: Rhrology of two-phnse systcn~s.<br />

Philip, J.R.: Flnid in porous media.<br />

Hrndcruhott,, M., and Munk, W.: Tides.<br />

Monin, A.S.: Thc atmospheric 1)outldary layer. 1<br />

I'hillipa, N.A.: Motlcls for wmthcr prediction.<br />

Rohinson. A.R. : I%ortndnry laycrs in ocean circulat.ion models.<br />

Sprritcr, J.R., nntl Alltmr, A.U.: Solar-wind flow past ohjcch in the solar system.<br />

R,irh. J.W., arid 'rrrnnor, Ch.13.: Vibrational rclnxnt,ion in gas-dynatnic flows.<br />

Marble, F.IC.: 1)ynninics of dusty gaacs.<br />

Vol. 3 (1971)<br />

Busemann, A.: Compressible flow in the thirties.<br />

Jaffrin, M.Y., and Shapiro, A.H.: Peristaltic pumping.<br />

Hunt, J.C.R., and Shercliff, J.A.: Magnetohydrodynamics at high Hnrtmann number.<br />

Friedmann, H.W., Linson, L.M., Patrick, R.M., and Petachek, H. E.: Collisionless shocks in<br />

plasmas.<br />

Vincenti, W.G., and Traugott, S.C.: The coupling of radiative transfer and gaa motion.<br />

Rivlin, R.S., and Sawyers, K.N.: Nonlinear continuum mechanica of viscoelaatic fluids.<br />

Willmarth, W.W.: Unsteady force and pressure mellsurementa.<br />

Willinma, F.A.: <strong>Theory</strong> of combustion in laminar flowa.<br />

Fung, Y.C., and Zweifnch, B.W.: Microcirculation: Mechanics of blood flow in cnpillnries.<br />

Rollsenow, W.M.: Boiling.<br />

Wehausen, J.V.: The motion of floating bodies.<br />

Hayes, W.D.: Sonic boom.<br />

Cox, R.G., and Mason, S.G.: Suspendctl particles in fluid flow through tribes.<br />

I


782 Bibliography<br />

Fay, J.A.: Wnoynnt plnmrs and wakes.<br />

Acoata, A.J. : Hydrofoils nnd hydrofoil craft.<br />

Saibel, E.A., and Macken, N.A.: The fluid mechanics of lubrication.<br />

Gebhart, B.: Instnhility, transition, and turbulence in huoynncy-induced flows.<br />

Horlock, J.H., and 1,nkshminorayann. B.: Secondary flows: <strong>Theory</strong>, experiment, and application<br />

in t~trl~o~nnrhi~tcry acrodynanlics.<br />

MrCune, J.E., and Kerrehrock, J.L.: Koise from aircraft turbon~nchinery.<br />

Perri, A.: Mixing-controlled anpersonic combustion.<br />

Eichelbrcnner, E.A.: Three-dimensional boundary layers.<br />

Werle. 11.: Hydrodynntnic flow visualization.<br />

Kognn. M.N.: Molecular gas dynamics.<br />

Nickel, I(.: I'randtl's boundary-layer theory from the viewpoint of a mathematician.<br />

Vol. 6 (1974)<br />

Taylor. G.I.: The interaction botwcen experiment and theory in flnid nlechanics.<br />

Milea, J.W.: Hnrhor seiching.<br />

Turner, J.S.: Double-diffusive phenomena.<br />

Streeter, V.L., and Wylie, E.B. : Watcrhammer and aurge control.<br />

van At&, Chaw.: Sampling techniques in turbnlence meaanremente.<br />

Phillips, 0.M.: Nonlinear dispersive wttves.<br />

Truesdell, C.: The meaning of viaconletry in fluid dynamics.<br />

Panofsky, H A: The atmospheric boundary layer below 160 meters.<br />

Roberta, P.H., and Donelly, R.J.: Superfluid mechanics.<br />

Batchrlor, G.K.: Transport properties of two-phase materials with random utructure.<br />

Benton, E.R., anti Clark, jr., A.: Spin-np.<br />

Orzng, St.A., and Israeli, M.: Nunierical simulation of viscous incompressible flows.<br />

Korbacher, G.K.: Aerodynamics of powered high-lift systems.<br />

Vol. 7 (197.5)<br />

R~tr~ers, - .I.M.: Some memories of early work in fluid mechanic8 at the Technical University of<br />

I Mft.<br />

Willniart,h, W.W.: Pressure fluctuations beneath turbulent boundary layers.<br />

Palm, E.: Nonlinear thernlal convection.<br />

Lomnx, IJ., and Steger. L.: Relaxation methods in fluid mechanics.<br />

Wieghardt, K.: Experiments in granular flow.<br />

Christiansen, W.H., Rumell, D.A., and Hertzberg, A. : Flow I~mrs.<br />

Widnall. S1i.E.: The structure and dynanlica of vortex filementa.<br />

Tien, C.L.: Fluid mechanics of heat pipes.<br />

Koh, R.C.Y., and Brooks, N.H.: Fluid mechanics of waste-water disposal in the ocean.<br />

Goldsmith, H.L., and Skalak, R.: Hemodynamica.<br />

Ladyzhenskaya, 0.A.: Mnthcmaticnl nnalyais of Navier-Stokes equntiona for incontprcsaible<br />

liqnida.<br />

Mnxworthv. T., nnd Ilrowand. F.K.: Experinlent8 in rotaLing and stratified flowa: Oceanographic<br />

application. I<br />

Lnufer, J.: New trends in experimental turbulence rwearch.<br />

Itnichlen. F.: The cflect of wavw on rubble-mound structorea.<br />

Csn~acly. G.T. : Hydrodynan~ics of large lakes.<br />

Vol.8 (1.976)<br />

ROIIRR, 11.: Hydranlirs' Int*?st golden age.<br />

Bird, R.B.: Useful non-Newtonian models.<br />

Petorlin, A.: OpLical effects in flow.<br />

Davis, St.11.: The stt~bility of time-pcriodic flows.<br />

Ccrmak, J.E.: Aerodynnntics of buildings.<br />

Fischer, H.B.: Mixing and dispersion in esttmrieq.<br />

Hill, J.C.: IIomogcneons turbulent mixing with cl~ctnicnl reaction.<br />

Pearson, J.H.A.: Instability in non-Newtoninn flow.<br />

Reyt~olda, W.C.: Compntntion of turbulent flows.<br />

Cotnte-Rallot, G.: IIot-wire anc~nomctry.<br />

Woocling, R.A., and Morrl-St-ytonx, H.J.: Multiphnsc flnid flow tllrongh prons tnrdin.<br />

Inmnn, DL, Nordstrom, CI1.E.. and Flick, 1t.E.: Currcmtn in ai~htnnrine rnnyons: An nir-sea-<br />

Innd inhwwtion.<br />

Rcshotko, E.: <strong>Boundary</strong>-layer stability and tmnsition.<br />

Libby, PA, and Williams, F.A.: Turbnlent flow^ involving chentirsl reactions.<br />

Ruannov, V.V.: A blunt body in a snpersonic sham.<br />

Vol. 9 (1977)<br />

Jones, R.T.: Recollections fmm an earlier period in Americnn aeronautics.<br />

Pipkin, A.C., and Ttmncr, R.1.: Steady non-vincnmetric flown of vincoclnntie Iiquitln.<br />

Bradshaw, P.: Cotnprerrsible turbulent shear layers.<br />

Daviduon. J.Jr., Hnrri~on, I)., and (?nede~ 11e Ct~rv~dho, ,J.It.l~.: 011 tho Iiq~~idlikn<br />

Ilt~iclizcd bccln.<br />

Tani, I.: History of bonndary-layer theory.<br />

Williarn~, 111. J.C.: Jncotnpreasible boundary-layer neparation.<br />

Pleaset, M.S., and Prosperetti, A,: Wobble dynamics and cavitation.<br />

Holt, M.: Underwater explosions.<br />

Zel'dovich, Y.B.: Hydrodynamics of the universe.<br />

Pedley, T.J.: Pulnionary fluid dynamica.<br />

Canny, M.J.: Flow and transport in plan&.<br />

Spieltnan, L1.A.: Particle capture from low-speed laminar flows.<br />

Saville, D.A.: Elcctrokinotic effocta with small particlcs.<br />

Brenncn, Ch., and Winet, 11.: Fluid mechanics of propulsion by rilin and flagella.<br />

Hiitter, U.: Optimum wind-energy conversion systems.<br />

Shen, Shan-fu: Finite-element nlethods in fluid mechanics.<br />

t~~hvior of<br />

Ffowcs M'illintns, J. E.: Aeroacoustic~.<br />

Belotaerkovskii, S. M.: Study of the unsteady aerodyna~nica of lifting surfncw wine, the r.otnprrt.w.<br />

Vol. 10 (1978)<br />

Binnie, A.M.: Some notfa on the st,ndy of fluid ~nechanics in Canibritlge.<br />

Tnck, 1E.O.: I-lytlrorlynantic problenls of ship in rcst.riclotl 1vnt01.e.<br />

Bird, C.A.: Monte Ca.rlo simulation of gnsflows.<br />

Berninn, N.S.: Urng reduction hy polyniors.<br />

Ryzhov, 0. S. : Viscons transonic flows.<br />

Griffihh, W.C.: Dust explosions.<br />

Leith, C.E.: Objective methods for weather prediction.<br />

Callancler, R. A,: River meandering.<br />

Dickinson, R.E.: Rosshy waves - Long-period oscillation^ of ocenns nnd atmospl~rrca.<br />

Jenkins, J.T.: Flows of nomatic liquid crystals.<br />

I,eibovich, S.: The structure of vortex breakdown.<br />

Lawn. E. M., and Livruey, J. 1,. : Flow tltrongh Rcrrons.


784 Bibliography<br />

Sherman, I?. S., In~bcrger, J , and Corcon, G.M.: Turbulence and mixing in ntably stratified waters.<br />

Patkrson, G.S., Jr.: ProspecLq for compultional fluid ~necshanics.<br />

Taub, A. 11.: Lielntivistic flnirl tnechanirs.<br />

Rcethof, G.: 'I'~rrl~r~lr~~rc-gc~~rrntrd noine in pipe flow.<br />

Ashton, G. D.: ltivor ice.<br />

Mei, Chiang C.: Nwncrical mcthods in water-wave diKraction and radiation.<br />

IZcllrr, 1-1. R.: Numerical mrthods in bortntlery-layer theory.<br />

B~~sse, F. H: Mngr~etol~ytlrodyt~alnics of the e.zrt,h'u dynamo.<br />

A 2. Advances in Applied Mecl~anics, Academic Press, New York<br />

(only ront.ribrttions to fluid mechanics listed)<br />

Vol. 1 (1948), od. by R. von Misea and Th. von Krirmhn,<br />

Dryden, H.L.: ltcront advances in t.hc mcchanics of bonndary layer flow. p. 2-40.<br />

Unrgcrs, .J.M. : A mathcmat~ic tnodcl illr~rrtrnting tllc theory of tnrhulcnco. p. 171 -1!)0.<br />

von Mises, R., and Schiffer, M.: On Horgn~nn'o integration method in two-dimensional compressible<br />

fluid flow. p. 240-285.<br />

Vol. 2 (1062), ed. by R. von Mises and Th. von KhrrnQn<br />

von Khrmbn, TI)., and Jh, C.C.: On the st,nt.i~t,ical thcory of iuotropic tnrbnlence. p. 2-19.<br />

Kuorti, G.: The Intninar boundary lnycr in romprc.ssiblc flow. p. 23-92.<br />

l~olubarinova-Korhina, Y.Y.: <strong>Theory</strong> of filtration of liquids in porous media. p. 154-225.<br />

Vol. 3 (1953), ccl. by R. von Mises and Th. von KhrnAn<br />

Carricr, G.F.: I3onndnry lnycr prohlcmu in applicd mcchanics. p. 1-19.<br />

Znltlnatnni, 0.: Tho one-dimcnsionnl iticntropic fluid flow. p. 21-59.<br />

Frcnkicl, F.N.: T~trbulcnt diffnaion: Mcan concontrat,ion distribution in a flow field of homogeneons<br />

turht~lcncc. p. 62- 107.<br />

I,udloff, H.P.: On acrodynamics of blastn. p. 100-144.<br />

Gudcrlcy, G.: On t,l~c prescncc of shock^ in mixcd suhaonic-sopcrsonic flow patterns. p. 145- 184.<br />

Rosenheacl, I,.: Vortcx systcms in wakes. p. 185-195.<br />

Vol. 4 (19,5G), cd. by 13.1,. Dryden and Th. von IZhrn~hn<br />

Clauscr, F.H.: Tho turbulent bonndary layer. p. 2-51.<br />

Moore, F.K.: Thrco-dintensional boundary layer theory. p. 160-228.<br />

1'01. 5 (195R), ed. by H.L. Dryden and Th. von KSrmhn<br />

Fabri, J., and Sicstrunck, R.: Supersonic air ejectors. p. 1-34.<br />

Van Do Vooren, A.I.: Unsteady airfoil theory. p. 36-89.<br />

Fricman, X.A., and Kulsrud, 1t.M.: Problems in hydromagncticu. p. 195-231.<br />

Wcgnnrr, 1'. I'., ntttl Mnrk, L.M.: Condonsnl.ion in snpcr~onic and 11ypcrs011ic wind tnnt~ols.<br />

p. 307 -447.<br />

Vol. 6 (IBGO), ctl. hy F1. I,. Drydcn and Th. von Iprcnnir flow over slender Me aeiated with poser-bu shocks. p. 2-3.<br />

Rnymoncl. H., and ltobcrt,, 1j.H.: Somo clctnentnry problems in tllngr~eto-llydro(Iy~~;l~tlil.n.<br />

p. 210-319.<br />

VoZ. 8 (IBG4), cd, by H.L. Drydon and TI). von Khrmhn,<br />

Sears, W.R., and Resler, E.L.: Magneto-arrodynamics flow past hodics. p. 1-68.<br />

Markovitz, H., and Coleman, B.: Incon~pressible second order fluida. p. 69- 101.<br />

Ribner, 1I.S.: The generation of sound by turbulent jets. p. 104- 182.<br />

Run~yantsev. V.V.: Stability of motion of solid bodies with liquid filled cavities by I,yap~~nov's<br />

method. p. 184-232.<br />

Moineev, N.N.: Jntrodrrction to thc theory of oscillations of liquid-rontnining botlira. 11. L?:!:! -28!)<br />

Val. 9 (196G). etl. by O.G. Clwrny et al.<br />

Drnzin, P.G., and Howard, L.N.: Hydrodynsn~ic stability of pnrallel flow of invinoitl Hnid.<br />

p. 1-89.<br />

Moiseev, N.N., and Petrev, A.A.: The calc~~lation of free oscillationu of a liqrtid in a ~notionlonn<br />

container. p. 91 - 154.<br />

Vol. 10 (1067), ed. by G.G. Cherny et al.<br />

Lick, W.: Wave propagation in real gases. p. 1-72.<br />

Paria, G.: Magneto-elasticity and magneto-thrrmorlnsticity. p. 73-112.<br />

Vol. 11 (1971). ed. by Chin-Shun Yih<br />

Yao, 1'11.. nnrl '~RII, W.V.: IIydrodynamic~ of ~\vinlmin~ MI~R rind CO(.~CPIIIIU. 1). I ti:!.<br />

Fung, Y.C.: A survey of the blood flow prohlenl. p. 65-130.<br />

Sichel, M.: Two-dimensional shock structure in transonic and hyperuonic flow. p. I01 -- 207.<br />

Vol. 12 (1972), ed. by Chin-Shun Yih<br />

Harper, J.F.: The motion of bubbles and drops through liquids. p. 69- 129.<br />

Gerrnnin, P.: Shock waves, jump relations and structure. p. 131 -104.<br />

Liu, V.C.: Interplanetary gas dynamics. p. 195-237.<br />

Vol. 13 (3973), ed. by Chia-Shun Yih<br />

Veronis, G.: Large scale occan circulation. p. 2-02.<br />

Wehausen, J.V.: Wave resistance of ships. p. 03-246.<br />

Kuo, H.L.: Dynamics of qunsigeoatrophic flows and instability theory. p. 248-300.<br />

Vol. I4 (1974), ed. by Chin-Shun Yih<br />

Stewartson, I


786 Bibliography<br />

A I). Progress hr Aeronautical Sciences, Pcrgamon Press, London<br />

(only contributions to fluid mechanics listed)<br />

Vol. I (lSIil), ed. by A. Forri. D. Kiichernnnn nnd L.H.G. Sterne<br />

Mmkell, E.C.: On t.lm principlw of acrodynnrnic design. p. 1-7.<br />

Legendrc, R.: Celcrtl den profils d'nuhcs pour turbomachines t.ranuuoniques. p. 8-25.<br />

Fennin, M.: l,n thkorie den 6couletnent~ b potent.icl I~omogPno ctses applications an cnlcul den ~<br />

en rhgimc ~uperaonique. p. 20- 103.<br />

C R<br />

Becker, E.: IrtstationRre Grcnzschiclltcn hinter Verdicl~tungsat~sscn ontl Expansicna\vcllen.<br />

p. 104- 173.<br />

Goldworthy. 1P.A.: On 1110 tlynamicn of ioni7.cd gns. 1). 174 --205.<br />

~nrron, C.l1.E., and Randall, D.C.: The theory of sonic bnngs. p. 238-274.<br />

Vol. I1 (1962), ed. by A. Forri, D. I


Clementa, lt.R., and Mad, D.J.: The rcprescntntion of sheet8 of velocity by discrete vorlices.<br />

p. 129-146.<br />

Chuc, S.Jg.: Prrsst~re probes for fluid n~rasnrcmentn. p. 147-223.<br />

Tanner, M.: Reduction of bnse drag. p. 360-384.<br />

Cnrricre, P., Siricix, M., and Delory, J.: MBthodes de calcul dcs Bcoulcment turhulents d6coll(?c~<br />

ct suprsonique. p. 385-429.<br />

Vol. X VII (1976/77), ctl. hy I>. ICiichemann<br />

Broadbent, E.G.: I'lows with heat addidion. p. 03-107.<br />

Jones, I). S. : Thc mnthcmnticnl theory of noise ~hiolding. p. 149 -220.<br />

Broarlhcnt. 1C.G.: Noisc shickling for aircraft.. p. 231-268.<br />

Glms, J.J.: Shock waves on earth nnd in spncc. p. 260-286.<br />

Tanetla, S.: Visunl study of unsteady acpnratcd flows around bodies. p. 287-348.<br />

A 4. Advaneen in Aeronnntical Sciences<br />

I Vol. I ond Vol. II. T'roccrdings of the First Tntcrnationnl Congrcss in Acronn~~tical 9 CICtlCPR, '<br />

Mndrid, 8 -13 Srptetnbcr, 1958. I'crgamon Press, London, 1959.<br />

Vol. III and Vol. I V Procredings of tho Second Tnkrnntional Congrens in t\cronautical Sciences,<br />

Zi~rich, 12 - 16 Septenrhcr, IWO. Pergan~on Press, I,ondon, 1962.<br />

Vol. V: Proceedings of tho ThirdCongrms of the lntornntional Council of the Aeronnnticnl I 'I rlcnces, '<br />

Stockl~oln~, 27 -31 Augrwt, 1962. Spartan 13ooks. Wnuhington J).C., 1964.<br />

Vol. VI Proreedings of the Fourth Congress of the 1ntcrnat.ional Councrl of the Acron~utiral<br />

Sciencw, l'nris, 24-28 August, 1964. Sparlnn Books, Wnshington D.C., 1065.<br />

Two Volnnie~ Aer~spn~ePr~rccdings 1966: Proceedings of the Fifth Congrcas of the International<br />

Coimcil of tho Acronnutirnl Scicnccs, London, 12-10 ScpIamhc.r, 1066, cd. by Tho Royal<br />

Arronnut.irnl So(-irLy nnd McMillnn, Imldon, 1067.<br />

R. Ilnedhooks, Collected Pnpern, Applied Mechnnies Congresses<br />

Princeton University Serie~ on High Spccd Acrodynnmics and Jet Propulsion, ~rinceton University<br />

Press, I955 -1964, Vol. 1 to XI1<br />

Vol. 1 (1965), cd. by 1P.D. Rosnini: Thermodynamics and physics of matter.<br />

Vol. 11 (1.9*56), rtl. by 11. Lcwi~. R.N. Pcnac, 11,s. Tnylor: Con~hustion processes.<br />

Vol. 111 (1958). cd. by H.W. R~nn~nns: Funrlan~entals of gns dynan~ica.<br />

Vol. I V (l964), ctl. by F.K. Moore: <strong>Theory</strong> of lnrnil~nr flows.<br />

(=onlril~ulions h?/:<br />

Moore, l7.lC.: 1ntrotluct.ion.<br />

1,ngerslrorn. P. A. : 1mni11nr llow l.hcory.<br />

Mngcr, A.: TI~reo-ditt~ct~nional Intninnr boundary Iaycrs.<br />

Rott,, N.: <strong>Theory</strong> of tin~c-dcpcntlcnt laminar Bows.<br />

Moorn, F.IC.: Flypersonic boundary laycr theory.<br />

Ostrnrh. S.: 1,ntninar flow with body forces.<br />

Shen, S.F.: Skl)ilit.y of Inminnr flows.<br />

Vol. V (19.59), ed. by C.C. Lin: Turbnlcnt flows and heat transfer.<br />

Contrbvtionn 6!y:<br />

Drytlen, 11.L.: 1'rnnsit.ion frotn laminar to t,urbnlrrlt flow.<br />

Srhnl)nunr, G.R.: Turbulent flow.<br />

Bibliography 789<br />

Lin, C.C.: Statistical theories of turbnlence.<br />

Yachter, M., and Mayer, E.: Conduction 01- heat.<br />

Deissler, R.G., and Sabersky, R.H.: Convective heat trnnsfcr and friction in flow of liquids.<br />

VR~ Driest, E.R.: Convective heat transfer in gases.<br />

Yuan, S.W.: Cooling by protective fluid films.<br />

Penner, S.S.: Physical bunis of thermal radintion.<br />

Hottcl, H.C.: Engineering calculations of rndiant hcnt exchange.<br />

Vol. VI (1954), ed. by W.R. Sears: General theory of high spced aerodynamics.<br />

Vol. VlI (I%57), a d by A.F. Donovan and 1I.R. Lnwrcncc: Acroclynnmic componontn of air..<br />

craft at high speech.<br />

Vol. Vlll(1961), ed. by A.F. Donovan, H.R. Lawrence, F.E. Goddnrd, and R.R. Gilruth:<br />

High speed problems of aircraft and experimentnl methods.<br />

Vol. IX (1!?54), ed. by R.W. Ladenburg, B. Lewis, R.N. Pease, and H.S. Tnylor: Physical<br />

rncnsnrementm in gas dynamics and combustion.<br />

Vol. X (1964), ed. by W.R. Hawthorne: Aerodynamics of turbincs and compressors.<br />

Vol. XI (1960), cd. by W. R. Hawthorne and W.T. Olson: Ilcsign and perforrnancc of gas<br />

turbine power plnnta.<br />

Vol. XII (ISc59), cd. by O.B. Lancaster: Jet propulsion engines.<br />

Ilnndbucl~ der Phynik, ctl. hy S. IPliiggc, Springer Vorlng, Ik:rli~~/(l;iit,t~i~~l/IIt~itIeII~org<br />

Vol. VIIIII (I%!?), Stromungsmechnnik I<br />

Oswntitmh, I


B 2. Collected Works<br />

Prandtl, L.: (:ean~nn~clto Abhnndlungen zur angcwandten Mechanik, Hydro- und Aerodynamik.<br />

3 Volumes, etl. by W. Tollmien, H. Schlichting, and H. Gortler. Springer Verlng, 1901.<br />

von Khrmhn, Th.: Collected works of Theodore von Khrmhn. 4 Volumeu (1902-1951). Butterworth,<br />

London, 1056; Supplement Volume (1952-1963), von Kkrrnhn Inut,itutc Jthode St.<br />

Gcni.se, Belgium, 1075.<br />

Taylor, G.1.: The scientific papers of Sir (hoTTrey Ingrnm Taylor. 4 Volnmes, ccl. by G.K.<br />

Batchelor. Cambridge University Press, 1W8-1971.<br />

Taylor, G.1.: Surveys in mechanics. The '2.1. Taylor 70th anniversary volume, ed. by G.K.<br />

13atchelor, and R.M. Daies. Can~bridgc, 1986.<br />

B 3. Applied Mechnnirs Congrcr~es<br />

Uortler, H., and Tvlln~ien, W. (ed.): Fiinfzig .hhre C.ro~~zscl~icl~tforscl~ung. Eine Fcst.schrift in<br />

Originnlbeitriigen. Vieweg, Braunschweig. 1955, 499 pp.<br />

Giirtler, It. (od.): (:rct~zscl~icl~tforschung. IUTAM-Symposium, Freiburg/Breisgnu. 1957. Springer<br />

Verlng, 1958, 41 1 pp.<br />

MQcnnique de In Tnrhule~~ce, Marseille, 28 August-2 September 1961. Colloqrtes Internationn~lx<br />

du Centre Nntionnl de la HBcl~crche Scicr~tifique, No. 108, Paris, 1902, 470 pp.<br />

Proceedings of thr 10th International Congrese of Applied Mechanics, Stresa, Italy, September<br />

1900, ed. by F. Rolla and W.F. Koiter. Elsevier Publishing Co., AmsterdnmJNew York,<br />

1962, 370 pp.<br />

Proceedings of the llth International Congrrm of Applied Mechanics, Miinchen, Germany,<br />

August 1964, ed. by H. Cortler. Springer Verlag, Berlin, 1906, 1190 pp.<br />

Proceedings of t.1~ 12th Int,ornnt,ional Congress of Applied Mechnnics, Stanford University, Cal..<br />

USA, August 1968, ed. by M. IIethnyi nnd W.G. Vinccnti. Springer Verlag, Berlin, 1969,<br />

420 pp.<br />

Proceadingu of tho 13th Intcrnntionnl Congrom of Applied Mcchnnics, Moskan University, Augrtut<br />

11172, cd. hy lC. Bocltc~r nntl (;.I


792 Bihliography<br />

13ird, R.R., Slewnrt, W.l


704 Bibliogrnphy Bibliography 706<br />

White, F.M.: Viscous fluid flow. McOrnw-Hill. New York, 1974.<br />

Walz, A.: Striimungs- nnd Temperat~~rgrenzscl~ichten. Brnun-Vcrln . Knrlsruhe, 1966. English<br />

trenslntion: Ihundnry lnycrs of flow nnd tmnpernture, by H. ,J. &or, MIT Presn, Cnmbridgc,<br />

Mass., USA, 1969.<br />

D. Bench-mark publications (in chronologicnl order)<br />

Prnndtl, I,.: Uher IWi~nigkeit~hewegung bei schr kleiner Rcibung. Vcrhnndlungen IIIrd Intern.<br />

Mnth. Kongrem Heidelberg 1004, 484-491 (1904), Teubner, I~ipzig, 1905. English trana-<br />

lation: NACA Menlo No. 452 (1928). Reprinted in: Vicr Abhnndlungen zur Hydro- und Aero-<br />

dynamik, Giittingcn, 1927; Coll. Workn, Vol. 11, 575-584.<br />

Blnaiun, 1-1.: Grcnzsc11icht.en in I~liissigltcitcn mil, klcincr Rcibung. Dins. Cottingcn 1907. Z. Mnth.<br />

11. I'hya. 56, 1-37 (1908). Englinh tmnnlntion: NACA TM 1256.<br />

Boltze. E.: Orcnzscl~ichten nn I~otntionskiirpern. Dins. Gothgen 1908.<br />

IIierncnz. K.: Dic Grcnzschicht an cincm in den glrichfiirn~igcn Flussigkeitsst.rom eingctm~chtrn<br />

gcrndcn Kreiszylinder. Diss. Cot.t,ingen 181 I . Dingl. I'olytechn. J. 28, 321 -410 (191 1).<br />

Prnndtl, I,.: Der Luftnidcrotand von Kugeln. Nnchr. Ges. Wiss. Giitt,ingcn, Mat,h. Phys. Klnasc,<br />

177---I90 (1914); Coll. Works, Vol. 11, 597-608.<br />

von Khrnm&n, Th.: Ubcr laminare untl turbulcnte Rcibung. ZAMM I, 233-262 (1921). NACA<br />

'I'M 1092 (1946).<br />

Pohlhnusm, K.: Zur nriherungsweisen Intrgrntion der Diffcrcnt~inlgleicl~u~~g der laminaren Grenzachicht.<br />

ZAMM 1, 252-308 (1!)21).<br />

Prnndtl, L.: Ucmrrkungen iiber die IPutatehung tler T~~rbnlcnz. ZAMM I, 431 -436 (1921); Coll.<br />

Works, Vol. 11, 687-690.<br />

Tietjens. 0.: Beitriige zur Eut,stehung dcr T~~rhulcnz. Disa. Giittingen 1922. ZAMM ti, 200-217<br />

(1925).<br />

Burgers, J.M.: Tho motion of n flnid in the boundnry layer nlong n plnne smooth surface. Proc.<br />

First Intern. Congress p\ppl. Mcch., Tklft, 113- 128 ( 1924).<br />

Betz, A,: 15in Vcrfnhren znr direkkn Errnit,t,lrnlg des Profiln.idcrstnndcs. ZFM 16. 42 (1925).<br />

Prnndtl, L.: Uher die nrtsgcbildctc Turbulenz. ZAMM .5, 136-130 (1925); Vcrhnndlungen 11.<br />

1nt.crn. Kongrcsn Angew. Mcchnnik. Zurich, 02-78 (1926); Coll. Workn, Vol. 11, 714-718.<br />

Tollmien, W.: Bercchnung turbulent,er A~~shrcitung~vorgnr~ge. ZAMM 6, 468-478 (1926).<br />

Prnndtl, I,.: The generation of rorticcn in fluids of smnll viscosity. 15th Wilbur \Vright Memorial<br />

I~cture, London 1927. J. Roy. Aero. Soc. dl, 720 (1927). Sce also: Oie Entstcl~ung \.on<br />

Wirbeln in einer Fliisoigkcit mit klciner Reib~n~g. Z. lil~~gtcchn. Motorluftscl~. 18, 489 -4!)(i<br />

(1927); Coll. Workn, Vol. 11, 75%-777.<br />

Tollmien, W.: Uber dic Entstehung dw Turbulenz. I. Mit,teilung Nnchr. Geu. Wiss. Giittingen.<br />

Mat.11. Phys. Klnsse, 21--44 (1929). NACA TM 609 (1031).<br />

Schlichting, H:: Ubcr das cbene Windschattenproblem. Dim. Giittingen 1930. 1ng.-Arch. 1,<br />

633-571 (1930).<br />

Nikurndnc, J.: GcsctzmiiBigkciten der turbulenten Stromung in glntten Rohrcn. Forsell.-Arb.<br />

1ng.-Wen. Heft 350 (1$)32).<br />

Taylor, (:.I.: The t,ransport of vorticity and heat through fluida in turbulent mot,ion. Appendix<br />

by A. Fngc and V.M. Fnlkncr. Proc. Roy. Soc. 135, 085-705 (1032).<br />

PrnncltJ, 1,:: Newre l5rgrhnisve der 'I'r~rbnlcnzforscl,rrng. Z. VI>t 77, 105-114 (1933); Coll. Workn,<br />

Vol. 11, 81!J -845.<br />

Nikr~rntlse, J.: Striimungsgesrt,zc in rnuhcn Rohrcn. Forsch.-Arb. 1ng.-Wes. Heft 361 (1933).<br />

Schlirhting, H.: Zur EntRtchung dcr Turhulenz hei dcr Plnt,tet~stijr~nnn~. Nnchr. Ges. Wiae.<br />

Giittingen, Math. L'hys. Klasec, 182-203 (1933); sq also ZAMM Id, 171-174 (1933).<br />

I'rnntl1.l. r.. : Tho ~nrrl~nnics of viscous fluids. In \V. IT. i)urnn:l (ed.) i\crodynnmicn <strong>Theory</strong>. Vd. IIT.<br />

Springer Vcrlng, 34 208 (1935).<br />

'r~ll~l~icn. W. : Ein nilgemcines Kritcriom der Inst,nbilitiit laminarcr Genchn.indigkeitRverteilungen.<br />

Nnchr. Ocs. Wiss. Giitliugcn, Mnlh. Phyn. Klnssc, Fnchgruppc I, 1, 7:)-114 (1!)35).<br />

Srl~lic.hting, fl.: tZ~~~~rlitt~tlc~~vertrrilr~r~g rind 1Snwgicbilnnz der klci~len Storungen bei tlcr Platbnnlriimung.<br />

NncI~r. (:cs. C\lisu. Ciittingcn, Mnth. Phys. Klnsue, Fnchgruppe 1, 1, 47--78 (1938).<br />

Busemann, A.: Gaastromung mit lnminarer Grcnzschicht entlnng einer Plntte. ZAMM IS, 23---26<br />

(1935).<br />

Joncs, B.M.: Flight experiments on the boundnry lnycr. Firnt Wright llrothcrs' Memorinl 1,ccturo<br />

1937. .I. Acro. Sci. 5, 81 - 101 (1938).<br />

von KQrmQn, Tit., and Tsien, 1I.S.: <strong>Boundary</strong> lnycr in comprcasiblo fluids. J. Aero. Sci. 5.<br />

227-232 (1938). See also: Th. von Iihrmhn: Report on thc Voltn Congrcs8, Rome, 1035.<br />

Giirtler. 11.: llber einc drcidimensionalo Instnhilitiit lan~inarer Grcnzschichten an konknvcn<br />

Wiindcn. Nnchr. Gca. Wim. Oottingcn, Mnth. Phys. Iilnesc, New Scrim 2, No. 1 (1940).<br />

Schubnuer, G.B., and Skrnmstnd, H.K.: Lnn~innr bonndnry lnycr oscillntionn nntl st,nbilit,y of<br />

lnn~innr flow. .J. Aero. Sci. 14, 09-78 (1!)47). NACA Ilcp. 1109 (11148).<br />

Tollmien, W.: Asyn~ptotischc lntcgration dcr Stijru~igsdiKcrent~ialgIcichung cbcncr In~ninnrn<br />

Striimungen bei hohcn Reynolds-Zahlen. ZAMM 25/27, 33-50 nnd 70--83 (1!)47).<br />

Mnnglcr, W.: Z~~snrnmenhnng zwincheu chencn rind rot.nt.ior~nsyn~lnrt.riscl~cn Orcnz~cl~ichtcn in<br />

komprcasiblcn Fluwigkciten. ZAMM 28, 97-103 (1948).<br />

TruckcnbrodL, E.: Ein Qnndroturverfnhrcn zur Bercchnung (lor Inminnrcn untl tnrhulcnten<br />

Ileihungrrschicht bci rhener uud rotntionssyr~~nlctriscl~cr Strii~n~~ng. 1ng.-Arch. 20, 21 1-228<br />

(1952).<br />

Dryden, H. I,.: Fifty ycnrs of houndnry layer thcory and cxperimcnt. Scicncca 121.375 ---380 (IMR).<br />

Schlichting, H.: Application of boundnry lnyer thcory in t.nrbon~nchincry. J. llarric lhg. 81,<br />

543 -MI (1959).<br />

Kcatin, J.: Tho ~ITcct ol free-ntmnm t.~~rl~ulcncc on bent. t,rnnnfor rnh. Atlvnncocl iu Iforrf. 't'rnnnfor<br />

3, 1-32 (lfl66).<br />

~rarlnhnw, P.: 'I'hc untlcrat,nntling nntl ~)rodict.ion of t~~rl~ulcnt flow. 6l.h Ilc>y~~olcln-I'r1tr1cll.1 IA:~.(.III.c.<br />

.I. Roy. Aero. 80c. 76, 403-418; acc nlso J)(:LIt Jb. 1972, 51 -82.<br />

Schlichting, 11.: Recent progrcss in boundnry lnyrr resenrch. 3(il.l1 Wright Ilrothcrs' Mrnmrinl<br />

IecLurc 1973. AIAA -7. 12, 427-440 (1!)74).<br />

Smith, A.M.O.: IIigh lilt nerodynnmics. 37th Wright Brothcrn' Mrmorinl lect,urc 1!)74. .I. Airrrnft.<br />

12, 501 -530 (1975).<br />

Schlicht,ing, 11.: An nccount of the scientific life of 1,urlwig Prnndt,l. Invited hct.urc prtz~cnlcd n(.<br />

the Symponium on Plow Scpnrntion of the A(:AIED Fluid Dynamics I'nncl at (:fittingon,<br />

May 27 to 30, 1975. ZFW 23, 297-316 (1975).<br />

Tani, J.: History of boundary layer thcory. Ann. ltevicw Fluid Mcch. 9, 87- 111 (1977).<br />

E. Ludwig Prnndtl Mcrnnrinl Lectures (sincc 1957)<br />

Betz, A.: Lchren einer fiinfzigjnhrigcn Striin~u~~g~forschung. ZFW ii, 97- 105 (1057).<br />

Drydcn. L.: Gcgcnwnrt.sprohlcmc dcr L~~ftlnl~rtlorscl~u~~g. Z1W 6, 217 --233 (19fiS).<br />

Roy, M.: Ubcr die llildung von Wirbelzoncn in Striitnungcn rnit gcringcr ZLl~igltcit. ZlpW 7,<br />

217-227 (1959).<br />

SchmidL, E.: Thcrtnischc tt~~ftric~tsntriil~lrlr~gcn nnd Wnrrnoiihcrgnng. ZFW 8, 273-284 (1960).<br />

Lightldl, M. J.: A technique for rendering npproxirnnte sol~~tionn to phyuirnl prohlrn~s uniformly<br />

valid. ZFW 9, 267--275 (1961).<br />

Tolltnicn, W.: Aspektc tlrr Stromungsphysilt 1902. ZIW 10, 403-41:) (1902).<br />

SGII~.~. It.: I)ir Aufgal)c tlcs Mnthrmatilccrs in drr Arroclynnmik. ZFW 11. 349 357 (In(;:))<br />

Ackeret, .I.: ,\naentlungen drr Acrodjnsmik it11 Ihu-rnen. ZF\V 13, 109- 122 (1965)<br />

Busrmnnn, A,: Minilnnlprohlernt. tler Ldt untl Rnnmfnhrt. ZIW 13. 401 -41 1 (1965).<br />

Schlirhting, 11.: Einigr nrucre ISrgrltnirmr nrtR der r\~rodynnn~ilz dc4 'I'rngfliigrls. I)(;l,R .TI,. I!)G(;,<br />

1 l -32 (l9ti7).


Oswatitach, I


B11~1inrll. 1). M. 5!12<br />

I111ssn1n1in. K. 218,223,989,<br />

390, 406, 500. 500, 545<br />

Riiyiiktiir, A. It. :I21<br />

('ntriet, C. I?. 141, 148, 258.<br />

2liO<br />

Vnt~i+rr, P. 088, 0!)8<br />

(':wler, J. C. 31%. 373<br />

(::try, A. hl. 524, 545<br />

(htlicrnll, 1). 1 IO<br />

(:nza(w, Bl. 1). 420, 445<br />

('cbcci,'r. 188, 1!)8.515,545,<br />

5!)4, (i72, (i!)8, 724, 792<br />

t'er111:~k. .I. I


H:I:IR, 11. 776, 777<br />

Ilnnsr. 1). 628, K12<br />

~I:I~I(~~III~IIII, It.. 485<br />

1Iii111111cr\in, (:. 535. 547<br />

1I:Lgcll. (:. 12, 2:1, 87. I I0<br />

I~:I~III~.III:~IIII. tl. 187, I!)!)<br />

l1:1ll. A. A. 485<br />

II:III, M. (:. (i!)2<br />

11:1t11a, 12. It,. 235, 2Gl, 536,<br />

553, 623, (iW. W7<br />

Iln~llcl, (:. 73, 82, !)0. 108,<br />

lo!), 110, lG8. 281, 5!)4<br />

1Ia111ilto11, ti. 11. 54t;<br />

Ifn~~~n~an, .I. 443<br />

I~~IIII:I~I. I). R1. 242, 261<br />

~I:IIISCV. A. (:. 254, 261. 7!)2<br />

I~:III%PII, k1. 40,45, 141, 142,<br />

453, 474, li3(i, Mi6<br />

II;III~~SCIIC, \v. :


Linkc, W. 173,200,514,049<br />

List, I$. 11. 75fi<br />

Liu, T. Y, 550<br />

Livhgnotl, .I. N. 13, 308,<br />

30!), 321, 522, 3!)1, 403<br />

Ihytl, J . H. 650<br />

1,obb. Jt. l


Scl~crb:trl,l~, I


Vnrlwti, 11. ,J. 315. 324<br />

Vnn, I. I(. 372. 376<br />

Vmat~ln Itatn, V. 257, 263,<br />

302. 326, fi87. 701<br />

VnLqa, V. N. 3172, 3176<br />

Vrrollrb, 13. 644. OW<br />

Viktori~~, I. 223, 224<br />

\Vill~~~:rrll~. \\I. \\I. 570, 577,<br />

(i!f5, 728<br />

W~~SOII. I


805 811bjrct lntlrx<br />

209, 354, 385, 637, 673<br />

tlissipnt,ion (3, 74, 207, 705<br />

-- fl~nction 267, 705<br />

ctinlort.ion 54, 57<br />

tlisLr~rbn~rc~c, nrt.ifirinl 477<br />

- cquntio~~ see Orr.So~i~~~~rrfrlcl rquntion<br />

- -, nnt,ur;~l 45!), 477<br />

, spiral 530<br />

- , t11rc:c-di~~~c~~sional 460, 481, 525<br />

~lisl.r~rlw~~ccs. ~~~otl~otl of stl~;tll 457<br />

tlr;\g 2, 5, lli. 20, 25, 27, 2!), 114, 176, 202,<br />

7 I , 7 7 7 .vccrrIsofc~r~~~clrag;<br />

A~II fric4io11<br />

-, :rcrnfoil 22. 7(i7; scc olso :wroli,il<br />

- irc~lar yli~lcr 7 4 4 s w rllso<br />

c~,lir~dcr, circular<br />

-, flat, plate 2(i, 138, 637,641,644, Ii53, 716;<br />

sen n1.w fltrt. plate<br />

- , ~wl.or vrh:cla 35<br />

- , pressrlrc? 758<br />

--, prolile 758, 764<br />

- rerlr~rt,io~~ Ii30<br />

- - , t,ot.nl 758<br />

tlyc cxl)cri~rwnt. 38, 449<br />

finilr* clilliw~~ccs ', 187, 194, 671<br />

- olc~~~cnl.n 672<br />

liirst. Law of tl~crn~orly:~n~~~ics 265<br />

llap li89<br />

lI:il, pI:~.lr 1 24. 26, 32, 40, 135, 139, 156, 175,<br />

201, 214, 250, 2!)2, 2!15, 392, 333, 383,443,<br />

4531, 465, 468, M6, 07!), 707, 716<br />

- -, oscill:it.ing 93, 432, 4314<br />

- --, ror~gl~ fi52, 720<br />

- --, ynwctl 250<br />

I~lctt,r~er's rotor 380<br />

I~:I~PII-l'oine~tillo flow 11, 85, 280, 512; .we<br />

ir1,w pil)e flow, liwli~lnr<br />

heat-ror~rl~~r:tior~ nqnntion 157; see rclso<br />

l'ol~ricr cqunt.ion<br />

-- flux 275, 703, 706<br />

-, frict,ionnl sce fri~t~io~d l~ent<br />

-- t~rar~sfrr 3, 2G.5, 286, 2!)6, 315, 514, li8!),<br />

70'2, 707; ace nl~o co~~vcct,ion; tl~rrn~nl<br />

11ot1ncl:rt~y 111.yor<br />

- -- :~ualogy 286, 707<br />

- - . rough snrf:~cc 712<br />

Ilclc-Shnw flow 123<br />

I~III~II:L~ ncrofoil 382. 45fi, 502. 573<br />

- - IlO\V 3, 1 I<br />

s111)laycr 563, (iO3, 708<br />

I,:~pl;~ct:'s rqr~n.liotr 10<br />

Inm of t,hc \vdI 640, Ii43; ncr nlso ~~nivrrnnl<br />

vrlocity clist.rib~~tio~~ Inw<br />

lift 16, 23, Xi, 43, 394<br />

-- , III:I~~I~IIIII 2, 35, 43. 380, 687<br />

Lin'n n~ol hod 41 1, 432<br />

Iovnl xt.t~In. ~winr.il~lc: or 58<br />

I,ortl I(:aylr~igl~'~ cywil,io~t 4(i2<br />

- tlrcoro~r~s 4li3, 4M<br />

loss roclliricnt. fcnnrntlrs) Mi:!. 77 1<br />

I~rlicqter rotor 254<br />

1~it'lllcll7. flow<br />

flow<br />

!IS, 194; See R ~ ~t~~gllfL(~iol1<br />

O<br />

11ylrndir:dly sn~ootl~ rcgin~c ,me ror~gl~~~esn<br />

height,, crilical<br />

hydraulic: dinn~rtcr GI2<br />

hyrlrar~lics 1<br />

I~ytlrost~nt~ic sl,ress 51


Mnnglor'u trnnsfornintion 245<br />

nmsn conscrvnt,ion 47, :)!I9<br />

nicnn motion 557<br />

~netltotl of indires 14<br />

niinin~otn s~~ction see suction<br />

von Miucs trn~~sfort~~~~t~i~)~~<br />

157<br />

mixing aocflicicnk sec wldy cor?fIicicwt2s<br />

-. lengtlr 3, 57!), 582. 604, 715, 730, 751<br />

-- --, niodificd 731<br />

-- - throry 582<br />

n~ornent see torqno<br />

nio~nentnn~ eqnilion 175, 201, 20(i, 441). 758<br />

- intcrpral eqntrl,ion 158, 160, 201, 20(i,:353,<br />

355, 392, 671, 672, li75, 678, 723, 704<br />

-, kinemiltic 182. 252<br />

- method 677, 678<br />

- thi(.knms 141, 160, 177, 202, 209, 353,<br />

354, 385, 637, 673, 764<br />

--, trnnufcr of 40<br />

nmtion, erpntion of 47<br />

NACA norofoil ROO, 502, (i!)l, 707, 771<br />

Nnvicr-Stokm equntion 1. 44,47,04, 70,84,<br />

320, 561<br />

.. - - in con~prtwil~lc flow (M<br />

nentrnl utnl)ility rnrvr 4lil, 4li!), 470, 47 1,<br />

472, 479, 4!)2, 493. 507. 530, 534<br />

Newt.oninn flnid scr flnitl, Newtonian<br />

Newton's law of friction 7, 26<br />

- Srrond Lnw 48<br />

no dip contlit ion 5, 20, 72<br />

nnincricd rnrtl~otl 187, 219<br />

Nuuurlt nnnibcr 275. 296, 708<br />

orwin c~rrrcnt~ 5 I3<br />

Orr-Sotnrncrfeld rquntion 459, 400, 462<br />

onnillnlions see tlisturhnnms, tnctliotl of<br />

sn~nll; pcriotlio flow; I,ountl:iry Inycr,<br />

lwioclic<br />

oncillogrnn~ (t,~lrl)nlent. tlow) 452, 477, 4!)1<br />

Ouccn's in~provcmcnt 1 I5<br />

11"rnflox S/!C d'Alrn~l~rrG'u ~ ~ R ~ ~ I ~ O X<br />

I1i:clct nnrnl~nr 273<br />

perfect gas 10, (M, 267, 271, 327, :$!)!I, 705<br />

pcriotlic flow 41 1. 428, 432<br />

jwrt~trl~~~liot~ 413<br />

pipe llow .we rrlso inlett flow; nnnulrrr effect;<br />

rcsinl.nnce cocflioicnt,; rcsistnnce forlnul:r<br />

- --, curved (i26<br />

- , inlct 92, 241, 560<br />

.~. -. , len~inxr 1 1, 12, 85. 92<br />

- - , nonnhirtly !)2, (Z!)<br />

- --, osr:illntjing 436<br />

- --, st.nbi1it.y of 542<br />

- . , st.nrl, of tnot.ion !)2<br />

- - - , tmnd itin :)!I, 44!)<br />

-- --, turhnlcnt 13, 39, 85, 449, 544, 59(i<br />

I'il.ot tmverse niethod 758<br />

plntc ace flat plate<br />

---, rongl~ (i5<br />

-- t.I~ern~otnctcr 286, 333<br />

pint of inflexion 132, I65<br />

-- - -- witcrion 463, 4!10, 514<br />

- - i~int.nbility 41i2<br />

.- - tannnit,ion 462<br />

I'oincnillc llow see flagen-I'oiscr~ille; see nlao<br />

pipe flow, I:w~innr;<br />

~~olyn~cr KIO<br />

pl,ct~ti;il flow 71, !)ti, 128<br />

power law (117-tlt) R!W, IiOO, 637, 648<br />

I'rnntltl IIIIIIII)~~ 26!), 273, 274, 283, 289, 330<br />

- --, ttn-hnlcnt 706, 708<br />

Prtu~tltl-Scl~licl,Li,~g forrnuln 641<br />

I'rnntltl'n pip rcuiatnncc law 01 1<br />

pross~~rc 51, GI<br />

- diulrilntt.ion 2, 20, 21, 22, 40, 114, 117,<br />

122, 49!), 504, 770<br />

-- drag see fortn drag<br />

- drop 12, 37, 92, 241, 596, 612<br />

-- grnrlicnt 33, 132, 206, 340, 456, 463, 48!),<br />

lili8; see nlso wetlgc<br />

-, t,l~ert~~otly~~~it~~it: 51, GI, 03<br />

pri~~cipal axcu 57<br />

prolilc dmg sect ctmg<br />

propeller 6!)4<br />

propcrl.irs (L:rbloa of) 8, 9, 269, 662<br />

])rotlr~~nion we rougl~ne~<br />

rnrcfnc:tion wnvc aer! expnnuion fnn<br />

Il:iylcigl~'u eqnntion see Lord Ikyloigli's<br />

cqnat.ion<br />

-- ll~rorcn~~ see J~wd Jtnyloigl~'~ thcorcrnn<br />

-- prohlcm me Stokcn's first prohlcm<br />

rc:il gnu 327<br />

rocovcry fnclor 355. 713, 714<br />

rcfcrrncc tr~npcrnture 715, 716<br />

rcsisltrnce see drag<br />

- cocfficicnt. (of pip) 12,86,507,607,012,<br />

613, 617<br />

- fimnuln (RIa.Ui11s'n) 597, 60, 61 1<br />

- - , nnivcrunl 609<br />

rcvcrnc flow 2,25,28,85, 108, I2 ; see aho<br />

ucpnrntion<br />

rcvc?ruil~lc proc:csu 62<br />

Itcynolds nurnbcr 12, 14, 72, 128, 150, 772<br />

- -, criticnl 3. 461, 480, 514, 573<br />

- - , - (ncrofoil) 490, 500, 502<br />

- -, - I(cylir~tlcr, upliere)<br />

- -. - , ( IMI~) 37.80.450<br />

173<br />

- - effoct on loss coefficient 772<br />

-- -, retlucctl 117<br />

- st.re.wcs 559, 703<br />

lteynolcls'o analogy 286, 706, 707<br />

Subjrct Index<br />

- --, extended 709, 710<br />

- dye expcritnent 12<br />

-- cq~tnlion of Iubrir:~t,ion 121<br />

- principle of siniilnrity 12, 70<br />

llichartlson nutnbcr 512<br />

Il,ich:irtlson'u nnnul:ir effect 438<br />

rigid-l~orly rnt:&ion 55, 56, 57<br />

rotnting body 242, 005<br />

- flow 225<br />

r~llg~lll~~~ 530, 619, 624, 652, 712, 723<br />

-, tirltnisnil~le li57, 660<br />

--, tlistril)rrt~cl 540, (iR2<br />

-- clcn~cnt, 537, 655, (M!)<br />

- hctor (i 1 (i, 152<br />

- height,. rriticnl 537, 663<br />

-, l~ydrnnlicnlly sn~ooth 016, (I50<br />

-, intmn~ectinto rnngc (transition rcgitnc)<br />

537. 617. 622, 650, 713<br />

-, rrlntive 015, 652<br />

-, stnntl:~rtl 623<br />

slat 380<br />

din ti<br />

ulippcr (of hmring) 11 7<br />

slit 6H!) . solidit,y rnt,io 7110; see nlso c:nswtlc flow<br />

sound velocity scc Mnt.11 IIIIIIIII(-~<br />

specific lieat 269<br />

spectr~itn see freq~~onc-y spcctru~n<br />

qil~cro 17, 10, 21, 25.4'2, I I:!, 237. 243. :)20,<br />

42 1<br />

spots aec tnrl~nlc?nt npotu<br />

sqnnlinmn 557<br />

st.nl)ility rquntion aec! Orr-So~~i~~~~~rf~~lcl<br />

I~II:~.<br />

tion<br />

- - , frictionlc~u 462<br />

-- , li~nit of 460, 4!)7, 502<br />

-, neutral 4G6; am nlso neutral stnliilit,y<br />

cnrvc<br />

- t.l~cory 3, 451;<br />

stngnntion en( l~nlpy 3533<br />

sand ro~tghncss 615, 623, 654, 663<br />

- ---, eqt~ivnlrnt r,23,(i54; ncertlaoro~~gl~nrsn<br />

Srhlic:rcn !ric.t.nrc 320, 3(iO, 363, 364, 3(i5,<br />

:w :IW<br />

Scliobnucr-Skm1114tatt cxpcritnent 470<br />

sccontlnry flow 102, 226, 230, 248,428,431,<br />

432, ($12, 613, 626, 644, 657<br />

- flow, tl~rce-tliti~cl~uiot~nl 100, Ili5, 250<br />

- -, two-dinicnsiot,al 33, 35, !)5, 0!), 156,<br />

165, 214, 250, 252<br />

- lonpcrttt.~~ro 208, :I%<br />

st,~intlnrtl ~01lgllllt~~U sec mugl~nrsn<br />

1 1 n r ~ ~ i v tonfirti r i li72<br />

Stnn1.011 IIIIIII~J~~ (is!). 708<br />

self-sitnilw solutions see bonntlnry layrr,<br />

siniilnr nntl aclf-uiniilnr solutions<br />

sen~i-sitnilar uolutions 415<br />

ucpnriition 2, 25, 28, 33, 43, 131, 152, 172,<br />

215, 220, 243, 253, 254,258, 259, 382,378,<br />

417. (Xi!), 674, 687, 769<br />

--, prevcnt.io~~ sec honntl:rry-lnycr control<br />

sl~tipc f:lct.or 208, BO(i, 4!l2, 675, 678, (i79<br />

- .. , ~notlific~l 674<br />

slic?xrin,q s1.1.c~~ (nt wdl) 26, 134, 138, 143,<br />

147, 202, 20!), 600, 037, (i54, 670; see nlso<br />

skin friction<br />

ship 054, 062<br />

sl~ook tul~c 4:%0<br />

- wnve 358, 3(i0. 3(il, :3li3, 314, 365, 368,<br />

X!), 43!)<br />

sitnilnr nnd self-aimilnr uolnliona 90, 101,<br />

107, 13li. 151, 152, 164, IMi, 203, 2D3, 300,<br />

316, 344, 38!), 415,48!), 735, 737, 740, 746,<br />

75 ; see rrlso honntlnry I~iycr, ni~nilnr nntl<br />

~tntc see eqnnl.ion of sknte; locnl slnlc<br />

stor1111 tnrbinc, louses cl~tc to rougl~nrs~ li02<br />

Shkcs'u tlrng fortnnla (upl~cro) 114<br />

- liruL problcn~ !)O<br />

- second problen~ 93<br />

- hypotliesis (if)<br />

- Inw of frirtion 2, 7, 48, 58<br />

- second prol)lr~n !)3<br />

nl.r~iin 48<br />

--, mtc of 7, 52. 58<br />

stmtilicntion 512, 73!)<br />

stream function 74, 133, 136, 15:I. 157, I(i3<br />

~t.renn~ing ace arcontla.ry flow<br />

streiwlinc I~otly 22, 42<br />

st,rrss 48, 4!)<br />

-, nppnrcnt or Jlcynolds's 3, 55!), 560, 704<br />

--, tlcvintoric: 48, 41)<br />

--, hytlrontntk 50<br />

- tennor 50<br />

Slrol~linl nunlbt~r 31<br />

srIf-~i~nil:w sol~~lionn<br />

siniilnrity 12, 70, 151, 271, 450, 597; see<br />

also bonntlary Inyer, si~nilnr solut,ions and<br />

self-similar solutions<br />

- in liento t.mndcr 271<br />

-, von I


812 Snhjcct lntlcx<br />

- vorl.irrs 526, 527<br />

-- -- behind bars 741, 744<br />

tm~~pcrat.~~re, tlill't~sio~r of 752 - - , chnnnel 84, 107, 168, 277, 668<br />

- licltl am? Ll~crnrnl bountlnry Inyer - --, c$itldor 171, 21(1<br />

-- rise, :~dinl)ntic 270, 27!), 286, :1R2, 717 - -, jet see jct<br />

t,l~eorcticnl I~ydrotly~~n~nics 1 - -, lubricntion 117, 121<br />

I,I~errnnl barrier 3<br />

.- - , pipe see pipe flow<br />

- honntln.ry hycr 3, 78, 265, 327, 330, 514, - .- , pinto 142, 205, 385, 454, 039<br />

702, 712, 713, 754<br />

-. .- , WWI~O 165<br />

co11d11c1ivit.y 2Mi, 260, Mi2<br />

-- -, wing 249, 085, W!), 690<br />

-- difl~~~ivit:~ 2(i!). 273<br />

-- grntlicnt 33, 128, 132<br />

t,l~or~~~otly~~:t~~~ic:<br />

prcss~~rt! 51, 61, 63<br />

--- ofpropngntio~~ (ofclist~~rl)n~~rc) 459, 460,<br />

'l'oll~~~ir~l-Srl~lic:l~ti~~$<br />

\VILVCR 45!), 474, 4!)5,<br />

SRC (rlx~ 0t.r-S0111111t:rfcl11 tq~~iilio~~<br />

see n2.w tlist,~~rl)a~~con, 11101.l1otl of sinall - of sonntl aec Mach nnn~bnr<br />

t,orqr~e 105. 24'2, 647, 649 - thiclc~~ess 356<br />

hce (of nt.rcs~, tensor) 51<br />

viscosity 6, 6, 8, 9, 60, 2n9, 328<br />

tra~n~forn~ation, c*o~nl~rcssiblc tt~rbl~lent flow - , convcraion factors 8<br />

7 18; ace r~lno I lli~~gtvor(.l~-Slcn.~rtm -, Ici~~e~nntic 7, 8, 9, 269<br />

trn~~nfor~nnt,ion - ~ncnaurcn~ent 12, 88<br />

t,ra~~sforn~rcl vnri:r.l)lvs (Tor nun~cricnl t~reLhod) - tnbles 8, 9, 269, 662<br />

I87<br />

vortex f lnn~cnt 89<br />

- for~nnt,ion 2, 19, 25, 28, 425, 427, 525,<br />

529<br />

- sliedtling freqt~cncy 91, 173<br />

- so~~rco 230<br />

- spirnl 529<br />

- st.rccb (von JCdr~~~rlln's) 18, 28, 173<br />

vort.icily 58, 73<br />

-- trn~~sfer cquntion 73<br />

-- - thory (G. 1. 'l'nylor) 584, (i08, 755<br />

\v;iko 25, 175, 234, 729, 733, 741, 758<br />

- behind bhnt body 738<br />

-- - c,nsmrle 772<br />

- - row of bnrs 744<br />

-- single lmly 73!)<br />

- - , oiror~lnr 733, 743. 747<br />

, t~wo-~li~~rc~~nio~~al 175, 733, 745<br />

~mll, ncliebetic 268, 277, 28(i, 2!)4, 332, 333,<br />

335, 337, 344, 517, 5l!), 718<br />

--,<br />

c11rvrr1 510, 525, 526, 6!)0<br />

-, flexible 505<br />

-- jct 750<br />

\wvc tlrng 76!)<br />

n;~vclc~~gtl~ 459, 532<br />

rrctlgc 156, 364; see n1.w si~nilar a ~ self- d<br />

siwilar solnt.ions<br />

wi~d (i54<br />

wi11d-1.1111nrl t,~rrl~~~lc~~ro 572<br />

wing 24!). 685, fi8!), (i!)O<br />

-~-, slolt,otl 381<br />

-- . swept, 253<br />

--, ynwod 248<br />

I<br />

Abbreviations<br />

The following abbreviat.ions lmve been un(d thro~~gl~o~~t. the book<br />

AIAA J. - Journnl o/ the American Inslilale of Aeromutics nnrl A.dronmr/ir.~. New<br />

York, publiahetl aince 1903 (nee JAS nnd JASS)<br />

ARC = Aeronnuticnl Rc.senrch Cooncil, Jmndon. Publint~r.~ two ~rrir~ of (lot-11-<br />

~nontq, rnch n~~tnbcrctl ucpnrntnly<br />

ARC RM - Iteporta nnd Memornndn<br />

ARC CP - C~lrrent Pnprm<br />

ARSJ = Jor~rnnl t1111erirn11 Rocket Sorirty<br />

ASME .- An~rricnn Socidy of hlccl~nnicnl Knginrors. Now York<br />

- I~eotsche Forsch~~~~gs- r111c1 \'ersi~c~l~s:~~~st;~lt fiir 1,11rt.. 11w1 IZ;it~n~Ltl~rt,,<br />

Kiiln (nincc I!)(;!))<br />

Scientific jonrnnl enlitlccl<br />

Ingmieur-Arrhiv, 1krli11 iu~cl, sinro 1947, 1hxli11 nrd Ilritlcllwrg<br />

JAS Journal of /he A~ron(ttrtirrr1 A"j'icncc*. Ncw York, (1!)32 1!)58);<br />

replnced in I959 by ,].ASS<br />

J ASS = Jourtutl of Anro/Space Scienrc~, Ncn York (1!)5!) -l!)T,2):<br />

rcplnced in 19G3 by AIAA .I.


814<br />

NACA<br />

NASA<br />

Proc. Roy.<br />

I? I\ I<<br />

USAF<br />

V Dl<br />

ZAMM<br />

ZAMI'<br />

ZFM<br />

- Tho Nntionnl Advisory Committor for Arronautica, Wrurhingtan D. C.<br />

[rrplncctl in 195'3 by NASA (nrc below)] hblishrd three nrrica of<br />

tlorumenk, ear11 nunihrrrcl srpnrntcly:<br />

NACA Rep. Rcportn<br />

NACA TM Trc1niic.d hlr~nornrida<br />

NACA 'I'N 'I'rcl~nicd Notcn<br />

- Nntionnl Aeronn11tica ancJ Spacr Adtninintrntion (crenbd in 1'359 in<br />

rrplnrrrncnt of NACA)<br />

= Nntio~~nl (inn 'l'11r11inr 15nl:cl1lisl111irrlt, Crrnt Rritnin<br />

- Office Nationd d'fit~~tlea et do 1Erchorrhc~ A6ronpntinlen, ChBti11on-aou8-<br />

13ngncux. Frnnce<br />

- Itoynl Aircraft I'~nt:~l~linl~l~~r~it.(:rrnt I%rit,~~iri<br />

- Unitctl Stntrn Air Irorcr<br />

- Vcrein Drutsclirr Ingrnicurc (German Society of Engineera), Dueascidorf.<br />

Publial~es: Pornchg. 1ng.-Wcs. with its supplement Forachrtngsheft<br />

(aoo nbovc)<br />

- Jnhrl~~trl~ rlor \Vissc:nncl~nft~lic.he~i (:cncllnchnft fur I,r~lt.f:iI~rt, 1952 - l!W2;<br />

fiir I,11ft- rrntl lZ.aunifal~rt,, lf)liJ--1975 (H. J%lenk ard W. SCIIIIIZ, ctls.,<br />

Vicweg, Ilrn~inocliwcig)<br />

- Zcibchrifl fiir nngntmnrllr: Mnlheninlik sm! Phpik, nasrl. Switzerland<br />

- Zoitschrifl /iir Flqtechnik und rlfolorla/lschi//ahrt, Munich nnd Ilerlin.<br />

Germany<br />

List of most commonly used synlbols<br />

In order not to depart too drnat~icnlly from the convent.iona normnlly cmyloyrtl in pnpcrn<br />

on thc subject, it was follnd neccannry 1.0 rtw t.1~ anrnc aymbol to thoto ncvcrsl dilTcrrnt, qrlnlltitics.<br />

Thus, for vxnmple, 1 clcriotru tho rcniat.anco cocfficicnt of pipe flow, both I:aniin~ir ant1<br />

turbulent,, and in the theory of stability of ln~ninnr houndnry lnyera it dcnotcs the rvnvrlc~ngl.l~<br />

o[n clinturbnnco. Sirnilnrly, k tlenotes t.her~nal concluctivity in the theory of t,hcrn~nl bo~~ncl:try<br />

Iayera, nntl llic Iicight of n protubcrnnce in thc discussion of the infludncc of roughncw on<br />

turbulent flow.<br />

'I'l~r follorving in a lint of ~yn~boln n~ost romnlonly used in 1,110 book.<br />

I. General symbols<br />

.1 -- wcl.tccl nrcn, or fronlnl nrca<br />

c: -, vc:lorit,y of R~IIIIC~<br />

d, L) = dinnictcr<br />

g E nrcclcrntion (IUC tn grnvily<br />

h - rhnnnrl wirlt h<br />

I, 1, - lrng611<br />

p = prranuro (Torco prr rinil nrm)<br />

T = 4 e V2 = tlyrian~ic hrncl<br />

r, 4, 2 = cylindricnl coordinntea<br />

r, R - rndiun<br />

a - nirnn velocity (in pipc)<br />

Urn =. froe-ntrcnni velocity<br />

U(z) -- velocity in potrnt.ial flow<br />

u, v, cu = velocity coniponcnta<br />

72 = tempornl mean of velocity (pipc or bonnrlary Iayrr)<br />

z, y, z = cnrtcsinn coordinntcs<br />

V = frcc-strcnn~ velocity<br />

e = dcnsit.y (111~s per unit volume)<br />

w = nngulsr velocity<br />

A, = eddy viscosity<br />

b = width of jet or wake<br />

c~ = drag coefficient<br />

c, = akin-friction coefficient<br />

c,' = locnl akin-friction coefficient<br />

D 5 drag force<br />

lllz -- t51/dz - first nhnpr fnetor of vrl~city j~rofilr


List of most commonly used synibola<br />

If,, = d,/rl, = uecond ellape factor of velocity profile<br />

M = (rrlc) = Mach number<br />

k = l~eiglit of rongl~neaa elemcnt (protuberance)<br />

ks = lieight of grain for equivalent aand rougl~ness<br />

K = sl~npc factor of velocity profilc in boundary layer<br />

1 = mixing length<br />

R = (VL/v or ridlv or Ud/v) = Reynolds number<br />

Rr = Riclinrdson nurnbcr<br />

S = Stronhal nnml~cr<br />

T = turbnlcncn intensity (also dcgrce or level of turbulence)<br />

u', v', w' = componcnta of turhulmt, velocity<br />

.~. .-<br />

~'2, v'*, u' v' . . . = temporal means of tnrbulent velocities<br />

U = maxinlutn vclocity at bipc centre<br />

U, = free stream velocity<br />

E'* = 4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!